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1. INTRODUCTION

The wrap-around fin (WAF) may be used in many applications to
provide missile performance equal to flat fins. The WAF has liad limited
use as stabilizing surfaces, and has been considered for use as control
surfaces.

One of the main thrust of modern military technology is accuracy
improvement for the most basic form of missilery, the free flight
rocket. Both existing free flight rockets and future concepts range
from large fixed and/or vehicle launched, to sizes and weights small
enough to be man-portable and shoulder fired. The stabilizing surfaces
may be constrained by physical limitations imposed by rocket motor
geometry and launcher considerations.

The WAF offers a solution for many geometric constraints, and in
many applications can be sized to provide aerodynamic stabilizing
characteristics equal to flat fin stabilizers. The WAF, however, has
unique aerodynamic characteristics, particularly in roll, that are
different from other types of stabilizing devices. The WAF is inherently
adaptable to tube launched constraints, making it, perhaps, the most
pratical for tube launched rockets.

This report contains a summary of the findings from wind tunnel tests
conducted by the US Army Missile Command (MICOM), Redstone Arsenal,
Alakbama, with partial support provided by the Air Force Armament Test
Labs (AFATL). The ultimate goal is to develop and analytical model
to describe the flow phenomena defining the unique WAF aerodyamic
forces; however, at the time, because of the need, it was more
expedient to define. the characteristics through systematic para-
meteric wind tunnel test. The objectiveof this study was to uncover
characteristics and provide trends that can be used in missile design
where the anialytical models are not available. The results from this
study and other data, such as the Navy III pressure data, should provide

,-. .sufficient information to begin development of an anialytical model.
The data herein are presented for comparison of several of the parameters,
with importan~t characteristies and trends highlighted, illustrating
those, that have tile most significant effect upon the WAV rolling moment
coef ficient * Problems associated with measurement of WAF roll moment
Voofficients usings Conventional techniques are mentioned. In addition
to refrences cIted in this report, a bibliography of other WAF docu-

* ~mentcs is included.

I. MODELS ANU EXPENIMNIATAL TEST

* NICOM and Ai'ATL undertook the study of fint; anid afterbody
gemetriv effectg on the static rollinig maictit charActeristics of WAV,
a.ý cigrood to in the initial plantndng of ;I TTCP vtoperative program.
Fiji gteowetry was varied arounid tIL stladIA il al )sown iii
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the Arnold Engineering Development Center's (AEDC) 4-T wind tunnel in
Figure 1. The models consisted of a 2-caliber secant ogive nose with an
8-caliber cylindrical afterbody, including 3 afterbody shapes and fin
configurations. The basic body configuration had a straight cylindrical
afterbody (4 inches in diameter) and two alternate afterbody shapes
stepped down to a diameter of 3.6 tnches over a length of 7 and 4 inches,

* irespectively, from the base (Figure 2).

The exposed semispan b/2 for the WAF was chosen to be approximately
the chord length for the arc that encloses a quadrant of tubular body
cross section or 0.707 D (Figure 3 and Table 1). These variations
(Table 1) included two larger aspect ratios (same span as standard WAF
with shorter chords of 2 and 4 inches), three additional thickness
ratios, four leading edge shapes, seven leading edge sweep angles, one
tip alteration, two reduced span fins, one fin body gap, and several
of these fins tested on a step down body configuration (Figure 2).
An investigation of fin opening/closing angle for the standard WAF was
conducted for seven opening positions ranging from fully closed to 10Q
beyond the standard fully opened case. Static aerodynamic measurements,
including total airframe and individual fin force and moment character-
istics, were conducted in three wind tunnel facilities. The majority
of transonic tests were coaducted in the AEDC 4-foot transonic wind
tunnel 12,3,4,5,61, while the majority of supersonic tests were conducted
in che NASA Langley 4-foot unitary plan wind tunnel 17]. Limited
transonic and supersonic tests were conducted in the McDonnell Douglas
Aerophysics 4-foot trisonic wind tunnel [8]) In addition, limited
roll damping chikracteristics were conducted in the AEDC 4-foot transonic
facility (9], and both subsoMIc and supersonic free flight tests were
conducted in the Jet Propuls-ion Laboratory (JPL) 20-inch supersonic
wind tunnel for the standard WAF configuration and its equivalent planar
fin, V9 (Figure 4). Test: variables for the static aerodynamic tests are
listed in Table 2 for the varying geometry tests. In addition to these
"MICON/AFATL sponsored tests to specifically study the WAF effects,
several projects have considered use of the WAV; 4ome are listed by
Holmes IlI and others are briefly mentioned in this report. A more
complete description of the models and testing conducted by 141COM is
contained in data reports 12,3,5,6,71.

I. TESTING TECHNIQUES AND ACCURACY

There are questions, concerni•g the accuracy and repeatability
of the rolling momenti coffiient data. Tie magnttudes of the self-
-idutueed Vo.litlg moment coefficiants of the WAV are ,mall in relation to

ithe si, of tEle coeffioiouts of fins wittl large cants. The only ready
m isa~ of obrtinting foree data Wi a wind tunuel is with a strain gage
611 i. ba.la . Th1 0.tlan1ce1 MUst be sized to meet special, rtequtlremenAts. but
it must he capabl)e of handtling thie forcee and moments of the Complete
mIdel in the test facility 1to be us,4ed. To obtain sensible rolling

:,merit cOMefficient induced by WAY., wivid tunnel dytiamie pres•atre and
fin sizes must be wade largo Withliln practicable limits. Botii Cause
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larger aerodynamic loads on the model which result in requirements of
larger strain gage balances. To date, strain gage balances and associa-
"ted instrumentation are not ideal for measurement of these small rolling
moments; however, from the available balances one can be chosen that
is optimum for given requirements. A composite plot of rolling moment
data precision is shown in Figure 5. At transonic speeds, the rolling; !. *1 moment gage was large because of the requirements dictated by normal
force and pitching moment loads. As a result the data precision, as
quoted by AEDC [3,5], is larger than desirable; however, as shown later,ci the repeatability from duplicate points during the same test and from
separate entries show that the data are reproducible well within these

precision limits. An attempt was made to measure the cant of each fin
"during the transonic testing [2,5]. These measurements of 76 fin instal-
lations had a mean cant of 0.011 with a standard deviation of 0.142%,
with a quoted measurement accuracy of ±0,1. If all four fins for one
configuration have a 0.1i cant, the rolling moment coefficient would be

V 0.004 to 0.010 which is within the quoted (Figure 5) data precision for
the subsonic/transonic test. Because of the uncertainty of the cant
measurements and the small magnitude of fin cant-induced rolling moment
relative to the data precision, corrections to rolling moment coeffi-
cient caused by fin cant are not presented.

0 0.04
w•, REFERENCE 141N

4 REFERENCE 13.51
0.02-

REFERENCE 171
EFERENCE 18)

S~-0.02--

0
'-0.04

0o 1.0 2.0 3.0
MAC41 NO.

V1'i•Fgure 5. WAF rolling momnt data precision.

Several compiri sons were made frow the numerous duplications and
other geometric stmilaritite. Figure 6 showe a comparison of the
1-caliber chord WAF configuration BIF2 tested on the smooth body with
four malin balaucos aMd iL three different facilities. A separate test
J4] was conducted explicitly to check the rolling moment obtained i.

S .... -11.
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0.06
CONFIGURATION BIF2

0REFERENCE [2] Pt = 2000,RN = 4 x 10 1/ft
03 REFERENCE [4 Pt =2600, RN-=S x 106 lift AR 1.3"

uA. 0.04- '~REFERENCE [5 Pt=2600.R= 5 x 106 1/ft tc=ii?1.0r
0 t~~i REFERENCEP [7 R=3x;O 1/ft C.C=.

Z ~~ REFERENCE [8] RN = 7x106 1/ft

0.02-C REFERIENCE [81 RN-7x 16 1ftFROM FIN DATA

'U

ONN

MACH NO.

Figure 6. WAF rolling moment coefficient comparisons
from several tests, a 00 0 0.

an earlier test (2] at transonic speeds. This test was conducted with
a balance that had a 100-inch-pound roll moment gage. Tile normal force
and pitching moment gages were alsc. low capacity, and angle of attack
was restricted to less than% 2'. The m~ain purpose of this test was to
observe tile self-induced WAF rolling moment coefficient at vero angle
of attack, and compare these to previously obtained coefficients with
tile less sensitive balance. Comparisons of this repeat, Lost are shown
in Figure 6 by tile square symbol.

Most models were tested at 00 and 45' roll. angles (Figure 2)
throughout thle Mach number range at angles of attack of' -6* to 6. Tile
outcome of thle rolling mnoment coefficient should be the tsamo for any
roll angle at zero angle of attack from it flow and model, syntiietiw
viewpoint. Differences between roll position canl Le ittributed to datai
instrumentation repeatability. Figure 7 shows self-induced WAF rollinig
moment coetticients At zero anigle of, attack throuighout thle Makch
number range for two roll angles of 0'~ an~d 45*. This does niot ncoss~ar-
ily indiciate the precision of thle data, but these resul~ts are typical
of the repeatability of thle data fur both thle transonic and supersonic

12
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0 0 = 0 MAIN BALANCE REFERENCE [2 AND 81 AR - 1.54
0 = 45 MAIN BALANCE REFERENCE [2AND 81 t/C = 3%

l3 = 0 FIN BALANCE REFERENCE (21 CR/D - 1.00
. 0.02 CT/CR 0.75

0

-20

LU -0.02-
"0

l Z-0.04
p -0.0e

1 -. 0 &o 30
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Figure 7. WAF roll moment coefficient from main balance
and fin balances, 0 = 0 and 45 degrees.

phases of testing. Tests were conducted for other roll angles during
the transonic phase, and all results were compatible with those shown

in Figure 7.

"Each fin was mounted on a three component strain gage balance.
Total missile rolling moment coefficient was computed from the measured
fin normal force and root bending moment coefficient and compared to
the rolling moment coefficient obtained from the main balance. Typical
comparisons of the WAF self-induced rolling moment coefficient at zero

"angle of attack for the transonic test are shown in Figure 8. The data
most questionable are the transonic phase, as shown in Figure 5, where
compariaion between the two methods of obtaining rolling moment coeffi-cient are better than expected.

In addition to the computed rolling moment coefficient from the
four fin panel balances, shown by the flagged symbols (Figure 8), the
rolling moment coefficient also includes the main balance data for the

TTCP standard WAF Bl Fl. Fin cant variation cn produce roll moments
equally as large as any WAF-induced roll moment observed during all
tests, Superimposed on the data of Figure 8 is the roll moment coeffi-
cient for a typical tactical prototype fin with incidence (cant) toler-
ance of O.l for all four ftns, where the nominal fin incidence
was zero. The overall value-of this analysis is to indicate the

"13



00

04 0

* 0l

w Q)I

0 13

0
00 0

00 14

000

OV. ~ I 4
dL

0IVL AO91N
*uzW mDIA"A~o sui *

14 I



10 7

difficulty in obtaining the precise magnitudes that a WAF may exhibit
with flight hardware; however, the trends shown here and those in the
following sections are realistic. To obtain the accuracy of the
magnitudes desired will require extreme care in model fabrication and
sophisticated measurement techniques tailored for precise roll moment
measurement.

IV. COMPARISON OF WAF TO FLAT FIN STABILITY AND DRAG
The major concern of the effects of WAF has been the self-

induced rolling moment; however, additional comparison of static stability
parameters was made for a flat fin and the standard WAF. The flat fin
had the same total exposed span and projected area as the WAF. These
two fins were tested through the Mach number range of 0.3 to 3.0 on a
body of revolution. The normal force coefficient slope at zero angle
of attack and the center of pressure are shown in Figure 9 for the
flat fin and WAF. Any difference in total configuration static
stability coefficients appears to be within the uncertainty of measure-
ment accuracy. Included on the center of pressure data are points
from the JPL free flight bi-planar results at Mach 0.86, 2.0, and 3.03.
Similar results were obtained from a comparison of data for the flat
fin and WAF tested on a reflection plane at transonic speeds and from
body mounted fin panel data. The flat fin and WAF were also compared
by testing both on a reflection plane (6] (Figure 1, bottom photo) at
transonic speeds, Figure 10 shows the basic WAF and flat fin coeffi-
cient variations with angle of attack for Mach 0.3 to 1.3. This shows
"that the basic lifting characteristic of the WAF is essentially the same
as the flat fin for angles of attack less than t". Figure 11 shows the
flat and WAF basic fin lift curve slope at zero 4.,Qle of attack along
with the longitudinal and lateral center of pressure for the fin on
a flat plate and on the body of revolution. The only significant
difference between thle splitter plate data and the data for fins on
the body of revolution is the increase in normal forca coefficient caused
y b ody upwash. The upwash factor obtained from the ratio of these two

curvwes ranges from 1.4 to 1.7 through the Mach range of 0.3 to 1.3.
This is comparable to tile slender body theory factor of 1.39 for this
f in wtith a body diameter to total span ratio of 0.43.

Drag coefficiean comparisons between the flat and WAF configurations

"are shown on Figure 12. The upper portion shows the drag force coeffi-
cient for body alone, the WAF and body, and the flat f t (of equal
projected area to thie WAF) and body. The lower portion shows the
same data with tho body alone, drag subtracted out. The WAF is approx-
ima-ely I0% highter, which corresponds to the additional frontal area that
the WAF hirs becausoe of the. curvature. The other geometric parameters
(loading edge sweep, thlickness, leaditng edge shape, and aspect ratio)
,show their itifluence on drag to be as expected for flat fins with the
same guooetric changes.

f •5
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0 FLAT
* j o&L JPL FLIGHT

0
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MACH NO.

)?igure 9. Comparison of flat and WAV static stability derivatives.

V. ROLLING MOMENT COEFFICIENT

The uwin objective for this study was to investigate the
effects on WAV rolling woment due to the various gemtrie, and flow
parameters. Thto variation of rollitig moment Is considered for three,
flow parameters: Mach number, Reynolds number, and angle of attack for
several geometric variations. Peatlterstone and Dalidke 110,.111 hatve
shtowni the WAV to have self-induced normal forces at vero angle of It tack.
Theo most significant effect With Mach number appears to he at transonic

spees werein eneal, a chainge In sign occurs for roilling miomenit.
lit initial studiess, Pentlterstone hans suggested the scelf-indueed force is
directed toward the ceniter of curvature a usncsed n wyfo
the center of curvature at supersonic speeds with t~he crossover oecurring
close to Macih 1. This was demonstrated for those- fin configuratitons
Oil smooth body With a C /D~ 1.75, with the exception of 0th fin% with

16
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maximum thickness t/C = 0.045 F8. This trend exists for fins with
rectangular and trapezoidal planforms, for leading edge profile modifi-
cation, and for modifications to the root chord (gap fin) and the tip
chord. All roll moment coefficients are referenced to the area of body

* 2
cross section vD /4, and reference length is the body diameter D. It
is difficult to isolate and illustrate many specific parametric effects
without pointing out the influence of another parameter. There is also
the case of the influer'e of Reynolds number which, at this time, is
not clearly shown to be an important parameter with the exception of the
otherwise unexplained difference between the crossover point shown by
the JPL free flight data and the results from static test. Grit was
used as boundary layer trips on the body of JPL models, but grit was
not used on fin leading edges which Mr. Jaffe (JPL) and this author
agree may have been a mistake. The effect of three parameters are shown
on Figure 13 for the standard TTCP WAF. The Reynolds numbers vary from

7 to 40 x 106 based on body length for the static test and for the JPL

models was 2.5 x 10 . As can be seen, the effect of R. on smooth and

step-down body, except for JPL, shows differences well within dava
accuracy. Illustrated on this same curve is the variation of rolling
moment with Mach number and the difference of trends with a smooth body
and a step-down body which may more realistically simulate flight hard-
ware hinge recesses. More information will be presented for the Mach
number and body with step-down later in this report.

Other parameters which appear to have lesser influence on the WAF
rolling moment are leading edge sweep and fin thickness (Figures 14 and
15). The surprising result from the leading edge sweep data is the level
of magnitude, and the trend with Mach number appears very much the same
as the rpetangular fin with the same root chord length. Sweep of the
leading edge dtd not show a shift in crossover Mach number as antici-
pated. The effect of modifying the leading edge shape is shown in
"Figure 16. There is a large change in roll moment, as expected, with
the unsymmetrical leading edge. This may be related to regimes of sub-
sonic and supersonic leading edge due to detached and attached shocks
over the curved fin, which is neither aii axisymetric body of revolution
or a two-dim•nsional surface. The symmetrical leading edge variation
with included angles of 20.0*, 45.00, and blunt show an effect tran-

* .sonically, but at supersonic speeds is incomplete at this time. Navy
WAV pressure data .ill have showit the leading edge pressure difference
betweell the convex and concave side to be larger than any other chord-
Wiiv location, except H - 1.3 data which show the largest difference to
occur at aj)proxiwately 312 chord from leading edge. Unfortunately,
neither the 200 or blunt leading angles have been tested supersonically.
Ho.wevor, as p'eoseuted by Featherstone 1101 , this leading edge pressure
-f fect may be atn inlet phenomenon due primarily to fin curvature and not
influenced signiticantly by leading edge shape or fin thickness.
.igure 17 presents the rolling moment coefficient for three rectangular
plantform WAF's with different churd length, therefore,. haviug different

21
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Figure 13. Effect of Reynolds number on zero angle of attack
rolling moment coefficient.

aspect ratios. The primary influence seems to be the fin body juncture
geometry and/or boundary layer, which it this case ia fin root chord
length rather than aspect ratio. Aspect ratio was also varied by
sweeping the leading edge. The leading edge was swept up to 60' for
C /D - 1.75t and a delta planform for CR/D - 1.0. From these variations

it- is shown (Figure 15) that data with like root chord length tend to
j look similar and that the effect seen in Fligure 17 may be a subsonic

( ¶ fin-body juncture (chord) length effect.
Additional modifications were made to the fin root and tip chord

- .(F1O and F1l, Vigure 3 and Table 1). These were tested only at tran-

sonic speeds and show small effect on rolling moment coefficieet
(Figure 18).

One of the most significant changes lit WAF rolling voment coeffi-
cient occurs with variatiott of angle of attack. The toll producing
force increases with angle of attack at all Macht numbers ann missile
roll orientation and is directed toward the fin away from the fin center
of cuovature. Figure 19 presents the VAF compared to the flat fin &t
supersonic Maclh numbers from the Langley atqd McDounel tests [7.81.
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This trend was shown to be essentially unchanged with missile roll
attitude with fins of equal exposed span and to a lesser extent at
subsonic Mach numbers [2,3,8]. The rolling moment coefficients
throughout the Mach number range tested are shown with varying angles
of attack for fins F! and F2 on Figures 20 and 21. Navy ZUNI data have
also demonstrated this phenomenon and it has been shown by Stevens [12]
that this driving moment may be a useful design tool for avoiding roll-

yaw resonance problems during missile flight.

The span for all but two WAF's tested had nearly equal exposed
semispans of 0.66 body diameters. These two (F20 and F21) had reduced
spans of 0.54 and 0.35, respectively. The zero angle of attack rolling
moments are shown at supersonic Mach numbers (Figure 22). Significant
reductions in induced rolling moments occur at Mach numbers above two
for WAF's with spans less than a quarter circle. This suggests the
possibility of tailoring the induced rolling moment variation with Mach
number by varying the fin radius of curvature. This design procedure
is only allowed when adequate space exists around the rocket for the
fin curvature to depart from the body surface. The variation with
angle of ittack and missile roll attitude are shown in Figures 23 and
24 for the three spans. There are two significant effects that should
be noted. There appears to be much less variation with angle of attack
induced with shorter span WAF (Figure 23); however, at the supersonic
Mach numbers, roll moment will be dominated by body vortex and span
(Figure 24). The interaction is not necessarily unique to the WAF but
is related to the relative position of the body vortex core at angle
of attack, fin span, and missile roll attitude, where the fin arrange-
ment is not symmetrical at angle of attack (e.g., * 22.50).

The step-down body effect is probably the most significant trend
that must be considered in WAF designs requiring a hinge recess and/or
body step-down geometry. The standard WAF is shown on the smooth and
step-down body in Figure 1$. All symmetrical leading edge fins on t!-
smooth body show only one crossover point for Mach numbers less than
3.0, but the step-down body demonstrated an additional crossover at
low supersonic Mach numbers and is opposite to tihe Featherstone postula-
tion that the force at supersonic Mach numbers is dtirected away from
the WAF center of curvature. Two additional fins that show this are
shown in Figure 25. These fins have a 1-caliber root chord; one is
rectangular and the other has a 20.6' swept leading edge. Comparisons
of rolling moment coefficient between the smooth and step-down body for
four fin planforms are shown on Figureps 26 and 27. The flow lmechanism
that causes this trend may be the key toward development of supersonic

analytical .. othods.
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Vl. SIDE FORCES AND MOMENTS

It has been suggested [11] that in addition to induced rolling
moments, the WAF causes side force and moment variations with pitch
angle of attack. A typical comparison between flat and WAF at supersonic
Mach numbers is shown as a function of angle of attack in Figure 28.
Nothing was observed during this series of testing (Figures 29, 30,
and 31) that substantiates the generation of cross derivatives of signi-
ficant magnitude over the angle of attack range ±60, contributable to
"cruciform WAF at subsonic and transonic Math numbers. Small variations
with angle of attack may have been seen at supersonic Mach numbers as
shown in Figure 28. ZUNI data at Mach 3.) are shown to have a similar
trend to the MICOM data at Mach 2.86. The step-down body does not show
any significant differences in side force or moment with angle of attack

•;, variation.

The same mechanism that causes large roll moment changes with
short span fins at roll orientation and angle of attack (Figure 24) also
induces large yawing moments (Figure 32). This trend is not considered
to be unique to the WAF and may be, as expected, a function of roll
orientation especially for angles of attack (at supersonic Vach numbers)
where body vortex cores rise to the fin tip. Missile roll rate will tend
to average out this phenomenon and usually wil.l not prevent a problem
in flight. Outside of this effvect, cruciform WAF's do not appear to
have significant cross derivatives except possibly at Mac•li numbers above

--- .2.5. Goometric arrangements of the WAF other than cruciform can be
expected to induce side force/yawing moment variations with angle of
attack and roll, attitude. These would Include; throe-fin configurations:
staggered longitudinal conl(igurations; WAV with a .ternate open i ng
directions; and, opening angles other thian tihe fully open as defined in
this report.

VII. OPENING ANGLE

The standard WAF was testod on the smooth body for istvevn
.pening/lclosing angles defined as fully open whet% zi line passAes thf body
center, the fin pivot point, and tip chord. The fin is fully Closed and
conforms to the body surface at 0 139. The rest mittrix is tdiown
in Table 3. Host transontic data were obtained At AIim4 II, and aill
supersontic data were obtained at tichontnel 001igl.as Aerophysieot 1aboratory
18). Figure 33 shows the modol. with tihrte opening jinges of 0, A'S' aInd
90*. Vtn lifft etiven, s (Figure 34) is shiowti for three Mach nmtihlbers
over tie range of closing augles tes1ed. ai ftt•'levtiveito"s is defioed":*ll• . as the ritiu of tihe fin% normal, force ait a given tising angle • to the

fit nor"1l force at the fully open cact, 0 - 00.0) The fin centter o!
pressure appears to be essentially tnvaruiant with olosing 1ngle akitd 0
a function only of Ma30 nuohber as for the lul ly opein ease. A goometrit"
fit of vos 2/3 0 is showit in vowpari %•,oti i the fill lift oftfect iveness.
Figure 35 shuws the zuero angle of aLLack rolling auwleut varI4Lloti with
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Figure 35, Effects of opening angle on WAF rolling moment
zero angle of attack C RID 1.75, b/2D 0.665.

closing angle for Mach 0.8 to 3.0. No large influence was noted for
small variations and, at any given angle, appear to follow the roll
moment variation with Mach number as the fully open case does. At angles
of attack above 6' some side force and yawing moment change was observed
at opening angles other than zero.

VUil. WAF ROLL DYNAMICS

Tests were conducted where roll dumwping was measured for several
f ill configurations. Included in this was a comparison between a flat finl
aud the stanidard WAV. These data are in a MICOM report (9). The tmodel
wa-s spun up in the wind tunnel by an internal hydraulic motor. At a
prescribed roll rate. the motor clutch was released and the model was
allowed to free spin until the steady state roll rate was reached.2 .Roll damping for ou,ý of the WAF's and one flat are shownt to vary little

theory aretifwtw to be good c~e~pt attransonic. spoeds. Figure 37 shows
the easred teay sate rol rate for the WAF with fill cant angles

of (V* and I a kt Mavih numbers f row 0. 3 to 1. 3. A comparison of the fla t
fill and WAV is shouwn for Lthe I' cant. Tito roll rate for the flat fin

an 40~ -eins approximately the same through I~ael nlu ber 0.8. Above
Hach 0.8 the 14AP deviated sharply away decreasing unitil at Mach 1. 3 the
roll rato wag essenutially vero. Titus the free spinning results sub-
atantiat.e the abrupt negative ultift in rolling moment shown by the static

4.5
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I, ' data (Figure 13). The effect of fin cant (incidence) on WAF static

rolling moment coefficient at zero angle of attack is shown through the
V transonic Mach numbers on Figure 38. These data are for the fin with

geometry [9] shown in Figure 36, and the data implies that for moderate
cant angles the self-induced WAF rolling moment simply produces a bias
in total rolling moment. This is verified by the free spinning data

shown in Figure 37.

A three phase investigation was conducted by JPL. Several small
scale models were flown in the JPL 20-inch wind tunnel (Figure 4).

Al Some were flown solely for obtaining rolling moment and roll damping
coefficients, others were flown for a bi-planar dynamic investigation.
A sting-mounted free spinning test was conducted initially to observe
the roll direction of models with WAF as a function of Mach number.
Data for the standard WAF and equivalent flat fin from the AEDC spinning
test, theoretical estimate, and the JPL free-flight data for the flat

. and WAF are shown on Figure 39. The JPL data points (vertical lines
indicate spread) have too much scatter for a thorough analysis. Even
though some had initial roll rates with and against the fin fold direc-
tion, the scatter prohibits definition of roll damping for spin in any
given direction.
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IX. CONCLUSIONS

The general characteristics of a number of WAF's on a body of
revolution at Mach numbers 0.3 to 3.0 have been presented. The effects
of geometric and flow parameters are summarized in the following

* statements:

a) The static stability derivatives at a 0 of missiles
with WAF's are essentially the same as with equivalent planar fins and
may be estimated by using the flat fin techniques.

b) Drag of the WAF is larger than the flat fin with the same
projected planform area. This increase is approximately a factor of
1.1, for the fins tested, which corresponds to the increase in frontal
area of the WAF over the flat fin.

c) The WAF does induce roll moment to the missile at zero
angle of attack and zero fin cant. This self-induced roll moment can
change direction as a function of Mach number shown, from static data,
to crossover near Mach 1.0 for smooth bodies. The parameter appearing
to influence the subsonic roll moment most is the fin root chord length,
indicating a fin-body juncture effect.

d) Step-downs on the afterbody, simulating a fin hinge recess,
show additional crossover of the WAF-inducad roll moment. at supersonic.
Mach numbers from 1.2 to 3.0.

e) The WAF rolling moment variation with total missile angle
of attack is stmll for absolute angles of attack less than 2'. Above 2*
the rolling moment may deviate significantly froem the zero angle of

Sattack caue depending upon fin geometry and Hach number.

f) (ross derivatives induced by the WAF do not appear to be'
signifWcant at 'Mach numbers below 2.5. This may not be the case for
Mach numbers above 2.5, for three-fin configurations, WAF configurations
where •fin opeoing directions are alternated, or ihigher angles of attack.

g) Aecurate weasurement of WAF rolling moment requires sonsi-
Live roll motmnt measurentit strumeuntation and small tolerance oi the
individual fin geomotric incidence.

h) The IJAF moments do not appear to be intolerable, and
"-is1 tt roll rates can be tailored by proper geeowtriie dusigu for many
applieiatious.

Tito 4ummary v f WAF aerodynamieu presentted in thig report is bolieved
to Ile ,Iideoqu•lte, iW my eases, as prclitminary estimates for aerodynamic
&01des . n nditlon, tie moany paramneters pres.ted are for fa2iliariza-
Lton ort as a guide for mitlal desigit ind testing witen WAFis are. aptliud

to spoecfie desigos. A corpletu sutrmiry of all statit, stability dwta
obtained during this study are cootained iui a. coupaion data report L 141.
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SYMBOLS
2

A Reference area, 0 /4

2
AR Fin aspect catio, (b/2) *S

b Fin total exposed span, 2 panels

C Drag coefficient less base-drag
DF

C Rolling moment coefficient based on A*D

C Roll damping coefficient, d C /d(pD/2V)
P

CN Normal force coefficient'

CN N

C Fin root chord
R

CT Fin tip chord

C Side force coefficient
y

D *Refert~nce length-body diameter, 4.0 in,

L Model total length, 40.0 in.

M Mach number

_P Wind tunnel stagnation pressure

Reyinpojdenumer lnr exposed area, b/4*(CR + CT)

t Fin thickness

WAF Wrap around fin

J~j X cp Center of pressure, longitudinal

Y Fin spanwise center of pressure
cp Age

a -Angleof attack

Leading edge total included wedge angle (deg)

e Fin opening/closing angle (deg)

A Leading edge sweep angle (deg)

4) Roll attitude (deg)

TTCP' The Technical Cooperative P'rogram Exterior Ballastics Panel.-07

Kr3

I,06.

K *~VA
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