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. ABSTRACT

\ 4

;ﬁlln general, the investigation of practical dynamical systems is more
heuristic than rigorous; consequently, most literature attempts to
provide a conceptual key to the general treatment of the response by
correlation with linear theory. Practically none of this literature
sets forth any new ideas of basic methods of attack. The usual attack
is by extending present classical methods rather than by inventing new
basic approaches. The major limitation found in the existing work is
the lack of comprehensive understanding of the basic parameters of
simple nonlinear oscillators.

This thesis presents an accurate solution of several types of damping

on the dynamical behavior of harmonically forced single-degree-of-

freedom systems. The study is based on the fundamental parameters of

the system. The fundamental response is described with reference to

the equivalent damping energy, the Ritz method, and dimensional analysis.
Dimensional analysis is used to develop a method for predicting the gen-
eral response diagram characteristics. The high accuracy of the solutions
permitted the collection of some very important design data. The results
are presented in both graphical and tabular form and may be useful to those
engaged in calibration, design, and data analysis of work requiring an
accurate solution. Also, the linearized methods give results sufficiently
accurate for many engineering applications. The prediction of response
characteristics by dimensional analysis should be of interest.

The time-histories of displacement, velocity, and
along with the response diagrams of displacement,
phase angle, and energy curves by both the linear

acceleration are presented
velocity, acceleration,
and accurate solutions.
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NOMENCLATURE

The following nomenclature is used in this thesis:

A Frontal drag area, ft2

€ General damping coefficient BJ, units vary

Cc Viscous critical damping coefficient, dimensionless

CX General damping or drag coefficient, units vary

D General constant, units vary

d Dimensionless frequency ratio, “/“h

E Total damping energy per cycle, in.-1b

F Amplitude of harmonic forcing function, 1b

FD Fluid-dynamic drag force, 1lb

g Acceleration of gravity, in./sec2

k Spring constant, 1b/in.

L Length, in.

M Total system mass, lb-sec2/in.

S Unit stress, lb/in.2

‘B Steady-state period, sec

Tt Time, sec

t Instantaneous value of time, sec

W Weight of mass, 1b

X Peak amplitude of steady-state displacement, in.

Xl Magnitude of steady-state displacement for Coulomb
damping, in.

X2 Magnitude of steady-state displacement for viscous

damping, in.

1X




NOMENCLATURE (Continued)

Magnitude of steady-state displacement for velocity-
squared damping, in.

Magnitude of steady-state displacement for displacement-
squared damping, in.

Instantaneous value of the displacement, in.

Instantaneous derivative of displacement with respect
to time, in./sec

Instantaneous second der&vative of displacement with
respect to time, in./sec

Coulomb damping coefficient, 1b

Viscous damping coefficient, lb-sec/in.
Velocity-squared damping coefficient, lb-sece/in.2
Displacement-squared damping coefficient, lb/in.2
Coefficient for Ritz solution, C/(2 Mwn), dimensionless
Viscous critical damping ratio, 32/CC, dimensionless
Phase angle, radians

Fluid mass density, slug/ft3

General variable for any angle, radians

Circular frequency of forcing function, radians/second

Natural circular frequency, radians/second .
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INTRODUCTION

This thesis is an analytical and numerical investigation of the
effects of several different types of damping on a harmonically-forced single-
degree-of-freedom system. At present there exists no basic comparison tech-

nique or analytic procedure for the accurate plotting of the response of a

damped physical system. The main objective is the establishment of the
physically correct expression for the damping ratio so that the effects of
the damping function can be accurately described and compared with other
functions. The customary critical damping ratio does not describe cases
other than the viscous case. This thesis presents the correct ratios for
four basic damping functions and an approach for determining the expression
for a general damping function.

The effects of damping on the general dynamical response of a physi-
cal system is important for both qualitative and quantitative investigations.

Qualitative studies are important because of their wide application
to distributed systems. In general, they are treated by applying assumptions
that will simplify the problem analytically. The conceptual key to the gen-
eral idealization of distributed systems is the understanding and intuitive
knowledge of the problem. Once the problem is well defined physically, avail-
able mathematical tools may be applied. Almost without exception all vibration
problems are treated analytically as lumped-parameter systems.

The analytic procedures describe the system in terms of linear theory.
This description generally takes the form of successive linear approximations.
The correct assumption for the solution almost never is obvious. For example,

in the dynamic calibration of shock and vibration pickups, measured outputs

are sometimes differentiated to determine velocity, acceleration, and/or jerk
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of a sinusepidal motion applied to a system. The assumption is that there 2
exist no higher harmonics in the motion. The basic difficulty with this
differentiating process is that a high-frequency component can have an
arbitrarily small amplitude in the original wave form and an arbitrarily
large amplitude in the differentiated wave form, if the frequency of the
component is high. The component frequencies may be either amplitude,
phase, and/or frequency distorted. The effect of differentiating an
assumed linear motion to obtain the solution would be questionable. Also,
these steady-state solutions are obtained only if the physical parameters
change in a specified way.

Almost all of the analytical and experimental work has very little
basis for comparing the effects of damping with other systems. This work
usually is limited to a study of amplitude, velocity, acceleration, or
phase angle instead of a simultaneous evaluation of all the parameters
This is particularly true for nonlinear response. Indeed, some authors
neglect the effects of damping or give only a cursory description of its
effect on the system.

In order to make a complete qualitative and quantitative analysis
of the préblem, every pertinent physical property should be described in
detail. The general and specific variations of these properties must be
accurately described.

The small amount of experimental data available is for specific en-
vironmental conditions and is taken with methods and equipment that are not
well defined. Also, it is difficult to determine the effect of inherent
equipment characteristics. For example, an accelerometer-cable combination

can completely filter harmonic components. The usual methods lead to an

analysis of the maximum values of the response; therefore, full insight int




the problem is not obtained. A detailed analysis of the motion should in-

clude a study of the time-histories of the response. In order to accomplish
this it is necessary to have an extremely accurate solution tc the problem.
Since most of the basic theory of operation of physical systems rests
on the assumption that the linear theory with constant coefficient describes
them, it is logical to evaluate the problem in this manner.
The most logical attack to the problem would be to obtain the exact
steady-state and transient solution. The most practical approach would be
to do this for the most common types of damping, i.e., Coulomb, viscous,
velocity-squared, and displacement-squared, that are encountered in practical

applications. Since a multiple degree of freedom system would introduce

considered. This will provide the information necessary for an accurate

evaluation of the effects of damping on system response.

The object of this thesis, therefore, is to (1) obtain an accurate
solution to the four basic damping cases, (2) compare the results with the
basic theory, (3) investigate the general and specific effects of damping,
(4) reach conclusions concerning these effects, (5) obtain accurate design

data, and (6) provide an adequate base for future research of combined damp-

ing cases.

other unknowns, a sinusoidally forced single-degree of freedom system will be

e b s S a e

Y




CHAPTER I

STATEMENT AND FORMULATION OF THE THEORETICAL PROBLEM

The dissipation of energy of some type and degree occurs in all
physical systems. The effect on mechanical systems is regarded generally
as being undesirable except for vibration control or shock isolation prob-
lems. The desirable effects of damping have been used to good advantage
in some limited instrument design areas. For example, the mechanical move-
ment of graphic recorders may be damped in such a manner as to preserve the
phase shift characteristics over a wide freguency range. It seems possible
that other desirable characteristics of the dissipation forces could be
utilized if their characteristics were known.

In order to fully utilize the optimum response characteristics of
a dynamical system it is necessary to know such steady-state properties as
(a) resonant bandwidth, (b) damping ratio, (c) damped natural frequency,

(a) phase angle, (e) phase angle shift, (f) harmonic content of the motion,
(g) the maximum displacement, velocity, acceleration, and (h) the waveform
of the response.

Practically all mechanical apparatus are subjected to accelerati
loading. The evaluation of the transient response to this loading is almost
entirely experimental. The effects of shock are determined by subjecting
the equipment to a known impact condition and observing the failure by visual
inspection or photographic techniques. This procedure obviously is undesir-
able since it would be better to be able to predict the effects in the initial
design stage. The basic difficulty is evaluating the effects of rate of
loading on the test piece and the test instrumentation. The evaluation of

the rate of loading for various types of damping functions should includs




analysis of the third derivative with respect to time (jerk). A study of thece

In shock isolation problems it is desirable to compare the response

3 characteristics of a damped system to determine the peak amplitude, velocity,
and acceleration versus time of occurrence. The simultaneous evaluation of
transient energy would be required to choose the optimum system. Since the
wave forms of displacement and velocity vary with the type and degree of

damping, the energy will vary considerakbly.

The establishment of a suitable system of equations that will allow

a qualitative and a quantitative study of these effects requires careful con-

sideration.

The qualitative aspect of the problem requires the establishment of

| . parameters that can be applied to a physical problem. Sound judgment as to

i how far an idealization may be carried without affecting the response must

!

i be established. However, actual design and practical applications require a
complete and accurate knowledge of the general response of the system, which
is obtainable only through quantitative analysis. The above statements indi-
cate a rather broad attack on the problem; however, practical limitations re-
strict the number of equations considered. Therefore, these investigations
are limited to those damping forces which are basic to design practice.

These damping forces are Coulomb, velocity, velocity-squared, and displace-
ment-squared damping.

A wide range of problems can be represented analytically with con-
& < J

data could provide sufficient information to design suitable test instrumentation.

stant mass and constant spring properties. This is particularly true in instru

ment design since springs with hysteresis errors of no more than 0.02 per cent
accuracy are readily available. Therefore, constant mass and spring char-
acteristics can be considered without loss of generality.

Yo : . . ) .
Superscript numbers refer to the References, p. 1hl,




Almost none of the forcing functions are sinusoidal; however, many
are periodic. The effect of the forcing function on a general study of
dissipation effects is not significant, since any function can be completely
described by amplitude, period, and wave form. Therefore, a sinusoidal
function will be considered.

The system to be studied is represented schematically in Fig. 1.

It consists of a mass M, a linear spring of rate Kk, a harmonic forcing function

F sin(wt), and a generalized damper represented by Cf(x,%). Equating the sum
of the non-inertial forces in the direction of moticn on the mass to mass

times acceleration and rearranging yields

—
)
S—r?

MX + Cf(x,%x) + kx = F sin(wt) .

In Eq. (1) kx is the spring force on the mass, Cf(x,%) is the
damping force, MX is the inertia force, and F sin(wt) is the forcing
function. The instantaneous displacement and time are x and t, respec-
tively. The forcing function amplitude is F and w is the circular fre-
quency of the forcing function.

Excluding the cases of no damping and viscous damping, there exists
no exact analytic method of solving the above equation that will give both
steady-state and transient solutions. The solutions that are available
apply only to special cases and then the linear approximations are to "first
order"” accuracy.

Equation (1) approximates many real systems; therefore, the evalua-
tion of the effects of basic damping functions should reveal useful design
information. Also, a wide variety of problems are predominantly affected
by one of the basic forms of damping. For example, the fluid-dynamic drag

on a fullysubmerged body is predominantly velocity-squared.
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ML+ B, T§T + kx = F sin wt

M +8, X +kx=F sin wt

ME+ B, X |[X] + kx = F sin wt
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MX + Bu X 7§T + kx = F sin wt

Equations of Motion

FIGURE 1

SYSTEM DIAGRAM WITH EQUATIONS
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Velocity-squared damping is most predominant in practical applications

2

of fluid dynamics. The magnitude of the damping force is Cpr %? :
For a particular problem all of the variables are well defined
except Cx' The value of Cx can be obtained by testing in a wind or water
tunnel or by reference to previous work. Hoernerb has published a book
that gives the values of Cx for many configuration. ‘ncountered in prac-
tice. The combination of these coefficients with the solution to Eq. (1)

will permit an accurate description of the motion of systems affected by

this damping force. Also, fluid flow in pipes7 has been represented by a

constant times X 1'8. The fundamental study of a Helmholtz resonatorLlis
closely represented by Eq. (1) except for the radiation losses at the end
of the neck.

Coulomb friction is a constant force and independent of velocity

or displacement. The direction of the force opposes the relative motion

across the damper. For periodic motion the relative velocity is zero twice
during each cycle; in practice the coefficient of friction is a function of
j the materials at the interface. The static and dynamic coefficients differ
by a factor of 2 to 5, and an effective value of the coefficient is custom-

arily used. The coefficient of rolling friction for preloaded ball and

roller bearings is fairly constant. In general, shafts sliding through

S i P

sleeve bearings and structural joints may be approximated with an effec-

P

tive damping coefficient.
< )
. . v 1.4 X
4 The displacement-squared function ~’ has been used to represent
the total damping caused by structural joints and internal material damping.

It is represented by the specific damping energy which is the area within

the stress-strain hysteresis loop of the material. Therefore the specific

———

damping energy is a function of the stress level and is independent of the

—————————




shape, stress distribution, and volume of the material. The expression

for the specific damping energy is C Sn, where the constant n = 2.0 to
3.0 for the usual stress levels encountered in both ferrous and nonferrous
materials. A rather comprehensive list of the values of n are given on
page 36-35 of Ref. 4. Although the above equation is rather general, it

14

is impossible to represent a general hysteresis loop.




CHAPTER II

LINEARIZED ANALYTIC INVESTIGATIONS

A. Survey of Methods

For a general damping function, Eq. (1) is nonintegrable and ex-

perimental and analytical methods of solving the equations must be con-

sidered. The use of an analog computer is not desirable because of the
inherent inaccuracy, particularly when nonlinear elements are used;
therefore analytic procedures are considered.

Several analytic procedures of solving the equation customarily
are considered: separation of variables, representation of the solution
by a power series, methods of generating functions, method of successive
approximations, and representation of the solution by finite integrals.

In general, the separation of variables is not possible and the solution

by Laplace transforms apply only to linear differential equations over a
small interval of a region. The other procedures are generally effected

by assuming a homogeneous and a particular solution. The homogeneous solu-
tion is the solution of a freely vibrating system and the particular solution
is included to represent the forcing of the system. As a result of these
assumptions the solutions are interpreted as a superposition of the linear
assumptions. Thus the result has real sense only for linear systems. The
response for light or no damping is explained as the superposition of sub

or super harmonics. The response for the damped case is distorted by phase

and amplitude variations which these linear assumptions do not describe.




Since the existing methods are based on linear concepts, Minorsky

Stokerlg,and others have suggested that completely new concepts might be
developed to treat the nonlinear problems. No specific suggestions are
made; however, Stoker propcsed the method of matching the response with a
driving force.

The general nonlinear response consists of harmonics of all orders
and an excitation force with a corresponding frequency might excite and
sustain one of the harmonics. Therefore a plausible physical explanation
for the effects of damping should be independent of linear assumptions.

There exists no general analytic method for obtaining an exact
solution of Eq. (1). Approximate solutions of a known mathematical form
may be assumed. Generally, these solutions present formidable mathemati-

cal difficulties if other than first order approximations are assumed.

=

major difficulty is determining the basic form and the required number of
terms to include in the estimate. The methods vary somewhat, but the pro-
cedure is to assume the solution consists of linear independent functions,
LSy

®(t) = xo(t) + D, xl(t) + D, Xl(t) + oo + D X“(L) . (2)

where the Di are considered as constants or functions of the independent
variable, depending upon the mathematical procedure. In general., x (t)
the basic form of the solution and is the term that contains the initial
conditions for the entire solution. This solution is substituted into the
differential equation and evaluated by various methods.

With the perturbation mothmdls,the solution is approximated by a
function of the independent variable whose coefficients are in powers of
a small parameter ,u, of the nonlinear term

x(t) = xo(t) " xl(t) P x,(t) ¢ (3)




n

This assumed solution is substituted into the differential equation,

and coefficients of like powers of the small parameter, W, are
equated to zero. As the coefficients are determined they are substituted
into Eq. (3) to form the solution. The term xo(1) is called the gen-
erating solution and represents the exact solution of the differential
equation when p - O. The initial condition

x(t ) = x (¢t ) (&)
is used to evaluate the arbitrary constants that occur when the solutions
are formed at each step.

The frequency of the oscillation is usually expanded in a power

series

7
~

W= Wt uw T T A 05

with the initial conditi

w(t, ) = w (t.) (6)
applied in the same manner as the steady-state amplitude expression above.
This provides a technique for eliminating secular terms which have the
amplitude growing indefinitely with time. Since the accuracy of the method
depends on the number of correction terms used and the magnitude of the
nonlinearity, this procedure would not provide an accurate base for com-
paring the effects of the damping functions. Also, the perturbation method
is less useful where changes in amplitude and phase occur. This is pre-
cisely the major effect of damping on the response.

The method of variation cf paramv*er::'lo provides a better teche
nique for describing the changes in amplitude and phase. This procedure

provides for the constants of the assumed solution to be functions of the




A A

i

independent variable. The technique is customarily illustrated with the
following solution:

x = X(t) sin(wt + o@(t)). (7)

The derivative of Eq. (7) is

X(t) sin(wt + @(t)) + X(t) cos(wt + o(t)) [w + &(t)]

1}

X

X(t) sin(wt + @(t)) + X(t) w cos(wt + @(+))

+ X(t) @(t) cos(wt + o(t)). (8)

This velocity expression must be changed to be compatible with

the original assumed solution, thus the additional restriction
X(t) sin(wt + o(t)) + X(t) @(t) cos(wt + @(t)) = 0. (9)

The acceleration becomes

X = %? X(t) w cos(wt + o(t))

= X(t) w cos(wt + o(t)) - X(t) o sin(wt + o(t))
- xX(t) o(t) w sin(wt + o(t)). (10)
Equations (9) and (10) are substituted into the equations of motion. The
equations may be solved for X and @-
Because of the nonlinearity it may not be possible to solve the
two equations exactly. In this case the values are customarily evaluated

by the averaging procedure of Krylov and nguliubuv,]

2m
X avg = ﬁro F(x,)'(,t) cos @ d o £11)
277
o avg = 5#%E~ro F(x,%x,t) sin ¢ 4 ¢. (12)
The amplitude, X, and phase, ¢, are treated as constants when determining

the average value.
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Several methods of evaluating the residual error (

difference of the approximate solution from the exact solution) of an

assumed function are available. The most important methods are the virtual

10

work, Ritz, Harmonic Balance, and Galeriken methods.” ~  The approximate

solution is substituted into the differential equation and the resulting

error is defined as a function of the independent variable. ince the

residual is not a direct indication of the difference between the assumed

and exact solution, the evaluation of this error has been treated by
various means.

3 . . iy ; :
The virtual work and Ritz methods require the average en

=
(T
s
s
=

be zero over the interval in question by specifying the instantaneous
virtual work to be zero. When the virtual work expression is derived from

Lagrange's equation,

t,
2

J )i g—g 8D dt =0 , (13)

i}
1

where X is the assumed solution, § is the first variation of x with respect
to D. The expression for the integral to be minimized contains a term that

specifies the manner in which the parameters of the approximate soluti

are t b ter he practical value of knowing the manner -
mi t 4 ¢ Al n demonstrated.
I Y efficients and the X, ax rthogona Y
i
1 rat s
tion, as determined by the Ritz procedure, is
ta 1t mcta that can be minimized by th Imtegr
lad
e(t) @ (t)at = 0. (14)
.«
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]
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In Eq. (2) the Xi(t) are orthogonal functions over the integra-
tion interval. The Di are minimized by requiring vl O. This gives
n algebraic equations.

The principle of harmonic balance requires the approximate
solution to be adjusted to satisfy all terms of the fundamental frequency.

3

This procedure can be used for the same class of problems as the variation

M
Q
&
o
=i
8

}

i\
=
-
0

of parameters. The periodic solution must be express

i.e., the solution is a periodic function in time.

In Eq. (2) the Xi(t) are orthogonal circular functions and the I

O

are functions of time. The residual is formed by su
tion into the integrals of the Ritz procedure
21

f e(t) cos wtd(wt) =0 (15)
o

21
fo e(t) cos nwtd(wt) = O. (16)

10 : M
The Galeriken method is the same as the Ritz method, except
that the residual is minimized by the principle of least squares. This
criterion is more appealing mathematically; however, the number of al-

gebraic equations obtained is twice the number obtained by the Ritz

method, less one. The residual is given by
ts

7=/, e“(t) a(t). (17)

The major difficulty of assuming a functional form for the dis-

placement and substituting its derivatives in the differential equation

is the error in the wave forms. No mathematical procedure has been found
that will adequately describe the solution. For cases of "small" damping,

excellent results have been obtained for the displacement. It should be




noted that the same difficulties exist for distributed systems. The

application of Tschebyscheff polynominals to the equation of motion of a
fundamental system yield practical results for a lightly damped infinite

i
medium only.

At any rate, the above methods yield analytical expressions that

are relatively good for displacements, fair for velocities, and perhaps nc
good at all for accelerations. Accuracy in the derivatives can be obtained
only by an accurate description of the displacement. The mathematical 4if-
ficulties of deriving accurate expressions becomes impractical for known
displacement wave forms. Since the nonlinear problems present unknown con-
ditions, the most expedient method for evaluating the general characteristics
of a system is the procedure that would yield results of equal accuracy for
all damping cases.

Basically, the numerical ‘procedures consist of stepwise integra-
tion of the equation by estimating the value of the dependent variables at
each step. These values are substituted into the differential equation to
determine the accuracy of the calculations. The methods of choosing the
values of the variables to substitute into the equation range from choosing
the values from a random table to more efficient methods for analytically
estimating the solution. The most efficient methods are based on Taylor
development about a point; therefore, the accuracy is a function of the
order of the development and the step size. The R%hfv-Kultuu formulas are
a direct extension of Taylor's development. The solution can be continued
by the Adams-Moulton“ method which weighs previous slopes to determine the
value at the next step. The procedure is practically impossible without a

digital computer; however, the accuracy is easily controlled.

The complexity and accuracy of the above procedures vary with th
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nonlinearity of the problem. An estimate of the accuracy of these methods
can be made by comparing the analytical solution to experimental data or
to a more accurate integration procedure.

The inclusion of both sine and cosine terms is necessary to de-
scribe the solution of a damped system. It generally is reasoned that
damping causes phase distortion in all nonlinear problems as it does in
the viscous case. Certainly curves with large variations in wave form and
period can be described mathematically with this technique. It is impossible
to know which terms of the series to include in the estimate of a solution.
In general, the transient solution would contain more terms than the steady-
state solution, since amplitude and phase variations are greater for this
condition. This makes the evaluation of the phase angle variations for the
damping case even more important.

Since the Coulomb equation is not considered strictly nonlinear, it
is appropriate to discuss other linear procedures. The most widely used

/ The

method of treating linear systems is the equivalent energy method.
equivalent energy method is based on equal energy dissipated in both linear
and nonlinear dampers. The use of the equivalent damping factor in the
viscous solution gives a direct evaluation of the nonharmonic character of
the motion.

The author feels the reason that very little is known about effec-
tive damping on dynamical systems is the lack of knowledge of the natural
response of the system. Certainly the proper evaluation of a damping function
and/or coefficient could not be made if the natural response of the system
is unknown. Comparison of peak amplitudes for the measurement of damping co-
efficients is not sufficiently accurate for exact design requirements. A

detailed study of the motion wave form and phase variation over a cycls f

motion should reveal some interesting design information.




B. The Equivalent Energy Method

The energy method has been used to approximate the response of

single-degree-of-freedom systems subject to nonlinear damping forces.

This approximation is effected by replacing the linear damping co-

efficient in the linear solution with an equivalent nonlinear element,
which is determined by integrating the basic expression for the energy
dissipated per cycle in the nonlinear damper. This equivalence is based o
the assumption that for one period of stemdy-state motion the energy

pated in the linear damper is the same as the energy dissipated in the

linear damper. The basic assumption is that the motion is described
D 19

the foreing function.
If the general expression for the nonlinear damping force is

+

f(x,% ), then the expression for the energy per cycle for the sclution

x = X sin wt is the integral of the product of the damping force and

the velocity, X = X w cos wt, over a cycle,

dx dt

B=| £(x,%) F(== —) dx
cyecle
or
E={ f(x,%) %xdt
L‘yl‘lr'r’

The energy dissipated per cycle for any damping force f(x.,x )
may be obtained by suvstituting the damping force into this equatiot
For the motion assumed above, the equation becomes

2Tt
w : L
E = Xw f f(x,%X) cos wtdt.
The results of substituting the expressions for f(x,%) int

Eq. (19) are shown in Table

non-



[P,

R e e —

The expressions for the amplitudes and corresponding phase angles

are found by substituting the normalized damping coefficient into the

. ; : 2,3
viscous equations for the displacement and phase angle, ’

O
~—

E
K T
X = 2 (20
/_[1-(5)’-)515+ W =
n n

and

-+
o
2]
@
I
€
N—r
-~

The final expressions are shown in colums 4 and 5 of Table 1.
It should be noted that the identical solutions could have been obtained

with the Ritz two-term procedure.
C. Ritz Method

s s v . : . .
The Ritz Method is a convenient mathematical procedure for

TO 1ncluac

approximating the solution to Eq. (1). It is relatively easy

nonlinearities in any or all of the terms. The solutions for the damping

cases considered are given for comparison with the Equivalent Energy Method.
A two-term approximation of the solution

x = X sin(wt-6) (22)

is assumed. The derivatives of the solution are substituted into Eq. (14).

These integrals replace the appropriate terms of Eq. (1).
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> 2m
-w°X I sin(wt-6) sin wtd(wt)
o

2
c .
* o Io f(x,x) sin wtd(wt)

i 2m
+ =X f sin(wt-6) sin wtd(wt)
e

21

. %‘".4 j‘o sin wt sin wtd(wt) = O.
Let 0 = wt-6,
then
wt =g + 8,
and
d(wt) =do

The first and third integrals are
T
2 f sin(c) sin(oc + 8) do .
o

Using the trigonometric identity
sin(o+ 6) = sin 0 cos 8 + coso sin @
and % sin 2 ¢ = sin 0 cos ©

the integral becomes

n

[V L

i 2
ZJ' Esin o cos 6 +
o

Integrating and substituting integration limits

~ T
2 |= cos 6 ] = TF cos 8 .

=

sin 2 ¢ sin 6 ] & @ .

n




The integral of the fourth term is m. Thus one algebraic equation in

X and € is
5 - 21
-w™Xrmcos 8 + = I f(x,%x) sin wtd(wt)
(o]
+5chose=£n.
m m

Using the other orthogonal integral, another equation in X and 6
is obtained:
2 o 2m
-w” X sin 8 + = f f(x,%X) cos wtdwt

(0]

3 Xm sin 6 = 0.
m

Solving the above equations for X and 6 yields

& dad C2 F2
[l = {e=} ] * (73) FiX,») = () (23)
n Mw
n
and e
o, F(X,w)
tan 0 = > (24)
w
l-(m )
n
where
21
F(X,w) = f f(x,x) sin odo . (25)
o
i Presentation of Analytic Results

The result of substituting the expressions for f(x,%X) into Eq.(25) and

integrating for F(X,w) is shown in colummn 3 of Table 1. The expressions
for the displacement and phase angle, as given by Eqs. (23) and (24) are
shown in columns 4 and 5 of Table 1.

The general equations for the maximum steady-state displacement

are given in column 2, Table 2. The equations that are obtained by
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24
substituting the fixed parameters of the problem (see Table 2) into the
general equations are shown in column 3 of Table 2.

The position of maximum frequency response as a function of damp-
ing ratio for the damping cases can be determined by differentiating the
equation of motion with respect to the frequency ratio and equating the
result to zero. The value of the maximum amplitude is then determined
by substituting this frequency ratio into the amplitude equation. In all
cases except the velocity-squared case the separation of the variables
after the differentiation can be accomplished. The results are shown in
colum & of Table 2.

The choice of damping coefficients to substitute into the algebraic
expressions in Table 2 are not obvious; however, the equivalent damping
energy method may be used to approximate the coefficients. The expressions
for the coefficients are given in Table 3. The coefficients were determined

by normalizing the energy expression and substituting the viscous coefficient

into the resulting equation, the only assumption being the equality of energy
for the two expressions. The normalized expressions are given in Table 3.
S 6 : .
Many authors (such as Wlelandl ) have performed experiments by

assuming the damping coefficients at the resonant frequency are sufficiently

accurate to determine the response at all frequencies. Therefore, the damp-

ing equivalent coefficients are determined on this basis so that the error

of this assumption can be determined. Also, the range of the coefficients
©

may be approximated by this method, since a value for the frequency peak
amplitudes cannot be determined beforehand. Although these coefficients ar
obviously wrong for the exact solution, they are correct for the assumed
linear solution. The coefficients can be evaluated at the resonant peak.
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TABLE 3

LINEARIZED EQUIVALENT VISCOUS COEFFICIENTS

TYPE OF LINEARIZED EQUIVALENT COEFFICIENT |DAMPING COEFFICIENT
DAMPING DAMPING TERM NORMALIZED TO CORRESPONDING TO
VISCOUS ASSUMED VISCOUS
VALUES
2 0.0077153153
M~ X s b
COULOMB B. = n" 8. = Pa®, 0.3857656
1° & : S 0.7715313
l 1.54206%
{
2 005
VISCOUS 8. = B e
2 o — 0.05
@1 | .
| ®
2M 1 0.0000299
VELOCITY A Y o B T | 0.00149908
SQUARED 3 0Ly 3 " Bao X I S
| 5996351
2 231
DISPLACRMENT | o 3 oM i Pa®y™ 1.157
SQUARED ¥ . : & L
| it
|
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The degree of error can be estimated by solving the displacement expressions

given in Table 2. The algebraic equations in Table 2 have only positive
roots for the values of the dissipation coefficients considered. By defini-
tion the magnitude of the assumed solution is a real positive number.
Therefore, the other roots of the equations are not considered. A computer
program ( see page 123) was written to solve the expressions for the
steady-state displacement and phase angle equations (column 3 of Table 2)
with the coefficients in Table 3. The values of the displacement and phase
angle are substituted into Eq. (22), the assumed solution, which is sub-
stituted into the differential equation for the corresponding damping case
(see Fig. 1, p. 7).

The steady-state displacement response diagrams are shown in Figs.
2 through 9. They are plotted as a function of the damping ratios shown.
The root-mean-square (RMS) error was calculated over each cycle (150 points/
cycle ). A chart of the RMS error is shown in Table 4. The value of
the error for the viscous case is in the order of lO-lO. These values were
checked on the desk calculator and found to be correct. Table 4 shows that
the BRMS error in the solution for cases other than viscous damping range

from 10’l to 10'3

over a cycle. The variation for 200 points per cycle gav
the same order of magnitude of the RMS error.

Since the incremental values indicate an insignificant change in
the RMS error, a comparison of these incremental values with the exact solu-
tion would reveal little additional information to add to the peak ampli-

tude analysis above. Also, a detailed analysis of the phase angle error is

not beneficial.




RMS ERROR OF THE ANALYTIC

The RMS error of
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TABLE 4

Lyt

are given in the following pages.

The equations are presented in the same order

Fig. 1. Also, the same designation

indicated in

the

second column.

The steady-st

colum 3. The phase angle (in radians)

cies are shown in column

e RMS error is

shown ir

SOLUTIONS OF THE EQUATIONS OF MOTION

second line under each equation designation is the valu

displacement, velocity, and acceleration, respectively.

The values of the damping coefficients
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