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Abstract1

Most variance reduction techniques encountered in simulations
are designed to operate with stationary models. However, many simula-

tions are nonstationary in character, population growth models being

an example. One way to facilitate statistical inference in a nonsta-

tionary simulation is to interchant:e the order of replication collectior

and time evolution. That is, at each time point several replications

are performed to enahle a user to estimate parameters at that point ill

time. This paper describes three variance reduction techniques that use

this interchange between collection and evolution to induce negative cor-

relation between replications, thereby producing esti-3tes with smaller

variances. Model 1 describes a procedure that occasionally relies on the

solution of a linear program to develop an optimal sampling plan. Model

2 offers an alternative that applies when the populationsin strata are

large. Model 3 applies when survtal probabilitie. are functions of an

exogenous random veriable such as rainfall. A fe.nale elephant population

simulation illustrates the success one can expect with model 1.



1. Introduction

A. ong the tools available to the simulation user, variance reduction

techniques have from their inception held considerable attraction. Broac y

speaking a variance reduction technique is a sampling plan th'at enables a user

to achieve a specified level of statist-,cal acc.sracy for less cost than pure

random sampling permits or, conversely, it allows a user to realize greatev

accuracy for specified cost. Hammersley and Handscomb [2] describe variance

reduction techniques applicable in Monte Carlo simulation. Fishman [1],

Kleijnen [3] and Mihram [4] describe the extension of these methods to dis-

crete event digital simulation.

In reviewing the techniques and the problems for which they are aPpro-

priate one notes an emphasis on th.eir use in simulations of stationary

nwodels. A stationary model describes an environment in which means and

covariance structures remain constant in time. However, the simulation

method also applies to nonstationary systems of which population growth

models form a substantive share. In a population model each year or period

begins with i frequency distribution of population by stratum based ors age

sex, etc. In advancinq time by one period the simulation exposes each

member of eacti stratum to the risk of death so that at the 2nd of the period

a new distribution by strata appears. If the expected frequency in each

stratum is constant through time, then stationarity prevails. However, this

stationarity reqLires a fortuitous balance Detween birth rates, age specific

tThis work was motivated .y discussions on the construction of population
simulations for long-lived species with Professor Daniel Botkin of the
Ecosystems Center of the Marine Biological Laboratory at Woods Hole, Massa-
chusetts dnd Professors Richard Miller and Matthew Sobel of Yale University.
I am grateful to theme for introducing me to the problem and for their
valuable ir,.ights. I am also grateful to William Kwapil and Mark Miller
for providing computat -nal assistance in preparing Tables I ,.id 2.
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survival rates and other rates More conmnnly, the shape of the strata

frequency distribution, the mean number of members in the population or

both change a % time evolves so that nonstationarity prevais.

Now the difficulty with nonstationarity in practice is that one can,

not appiy the statistical mett ods developed for analyzing simulation output

for stationary models. These latter techniques take two principal forms.

The first analyzes data within a single run to estimate parameters of interest

that are time independent and the second uses averages formed on inuividual

replications to estimate the parameters (I]. Because nonstationarity implies

time dependent parameters one has to look elsewhere for analysis techniques.

One approach is to use the. data on sample frequency distributions collected

on several replications at the sah;n time point to estimtLe the true fre-

quency distribution at that time. Th.s technique is legitlmate, provided

that all replications begin with the same initial strata ,reque.cy distri-

bution and population.

Analysis across replication-s, can proceed in at lease two ways. One

way has the simulation us.r run replications serially, store the sample

freqtiency data at each time point in each run and then combine correspond-

ing dato, after all runs are completed, to estimate the mean rtrata

frequ cy distribution at each point. For a model with many strata run for

a long ..-riod of time the raw data may require substantial storae. Moreover,

the simulation user must wait f,,r co.pletion of all runs beore learning

about interim estim'ates.

In an alternative method of analysis that we plan to use here, the

simulation user perform- replications at a given time point before proceed-

ing to the next time. In effect, he reverses the order of time advance and

replication. Doing so 'nables him to estimate the mean strata frequency

distribution at a given time point before moving forward. If an online
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graphics device is available, looking at successive images of this estimated

distribution may provide sufficient information to terminate the simulation

prematurely. Or the information gained may encourage the user to change

certain parameters of the simulation to see how the population responds.

Although the display and interpretive feature alone make this second

alternative attractive, the ability to apply a variance reduction te nnique

to corresponding strata in the different replications at a given time point

offer an additional attrdction. Especially since the accuracy achieved

for a given cost can be considerably greater than independent replications

allow.

In this paper we describe three methods of variance reduction applicable

to population growth models. K'del I in Section 2 outlines a method appro-

priate for a simulation in whic:" the probability of survival in each strata

in each year randomly assumes onL of two possible values. As n the

number of replications increases, the achievable variance reduction often

increases dramatically. Occasionally the technique calls for the solution

of a moderate size linear program, perhaps an impediment today but not

necessarily so tomorrow.

Section 3 describes a second variance reduction technique that applies

for the survival probability mechanism of model I when the number in each

stratum is large. This technique appears most relevant whcn the two possible

survival probabilities per strata are close in value. Section 4 offers a

third variance reduction technique that applies when the survival

probability is a continuous function of an exogenous variable such as rain-

fall which itself follows a normal probability law. To give the reader an

appreciation of potential performance Section 5 describes the application of

model 1 in Section 3 to a simulation of female elephant population growth.

The results are encouraging.
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2. Model I

Let W denote a random ,ariable whose distribution is rectangular on

(0,1). Then W defines a iniform deviate and U(0,1), its distribution. Let

B(N,o) denote the binomial distribution with integral parameter N and probability

0. Define X and Y as random variables from B(N,a) and B(N,B), respectively,

and let I denote the binary random variable

f1 < W'Cp
0 O <W <p(1)I -

[ 0 p<W<l

To illustrate the use of these concepts, assume that in a given year a

member of a particular age stratum of a population has a survival probability CL

with probability p or a with probability 1-p. For example, in an animal

population the different survival rates arise as a consequence of favorable (c)

or unfavorable (8) weather conditions. Then one expects a>B . If the stratum

has N members then the number who survive to enter the next age stratum the

next year is

(2) R = IX + (I-I)Y = I(X-Y) + Y

Define the operator A to mean deviation from expectation. Then

(3) AR = N(a-o)AI + p (AX -AY) + AI(AX-AY) + AY

which, provided W is independent of X and Y, has mean zero and variance

(4) V = var (R) = p(l-p) N2 ( .B) + N[c(l-) + (I-p)1(l-8)].

Applying the procedure to each stratum with its corresponding p, N, a and 8,

one can construct a samfle age distribution for the year following the o,,e in

which sampling occurred. Repeated application through successive years allows

one to see how the sample age distributions change over time.

Since our pri~icipal interest concerns nonstationary features of the

distribution, it is important that the variance of the ordinates in each



sample age distribution in each year rem.in within acceptable limits for meaning-

ful inference. If in each year one performs r independent replications for

each age stratum, then the sample mean ordinate for a given stratum has variance

V/n, V being determined by the stratum. The objective of the present research

is to devise a sampling plan among the n replications tnat not only produces a

smaller variance but actually produces the smallest possible for n replications.

Although an attempt at variance reduction is always desirable, it assumes par-

ticular importance in the present case. Notice that the leading term in (4)

is proportional to N2, not N as would occer in the binomial cae (a=a). This

source of variation provides additional impetus in the search Yor sampling plan

that will lead to acceptable estimates of the ordinates of an aj'i ii t.ribution.

Let a subscript on I, N, X, Y, V and W denote replication nuirber.

Define Wi as

(5) Wi ei+ U (mod 1)

0 < 0. ,.,

so that WI,..., Wn are uniform, but not independent, deviates. Then for a

particular age stratum replication i yields

(6) R i = i (Xi Yi) + Yi

(7) ARi= Ni (a-B)AI. + P(AXi-AYi) + Ali (AXi.A-.i) + tYi

Here R denotes the number of survivors on replication i and

_ = n " n
R n  E Ri

denotes the sample mean number of survivors over the n replications.

If these replications are independent then R has variance V/n.n



-6-

Consider the case in which Xi,..., Xn are i.i.d., Y],..., Yn are i.i.d.

and {Xi } and {Yi } are independent. Then h has variance

1n

(8) var(l) ( = ()+2u(1 ))/n
n n

(9) nV~=
(9) nV p(1-p) (a-0)9 N2 + [p(l-a) + (l-p) 0(-)] r N.n1 i 1

(10) nUll) N)2 n-N N.
i=l j=i+l

where the superscript denotes the model number. Let

() + _ max (0,o) .

Since a little thought shows that for {ai >e_, i=2,..., n}

I) E(I. Ij) = (p-ejV+ + (p-1-0i+o)+ + (p+-O.j-(p-ej)+) +  J>i9

one can show that the optimal e,... n for minimizing U n)emerge

from the solution of the linear program:

n- n
(12) C min Ni N (D + + F..) ' (1. On)n 0 ip j=i+l EJ..

subject to the n(n+l) constraints

oI > 0

On1

(13)

- j-1

D. j =,..,
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Eij > P-I-0 i+
j=i+],..., n; i~,.,n-I

ij i-j-i

with a, 6, Nl,..., Nn specified. Notice that the optimal 0 is independent of a and S.

To measure the extent Gf variance reduction with a pe-ticular model,

one can use (k) (k) (k)
(14) n V /n m Evar

(nkv

The quantity n k denotes the number of replications that independent

sampling requires to achieve the same variance that results from using the

optimal sampling plan for model k. For model 1 one has

(15) Jl) = I/ !l, + 2 ( .,)2 [c'l) p 2 n-i .Nix i + N.]n iVnl) (

which for large N1 . . Nn is

(1) ' ( 2 n-1 n
(- p N. . N.)/p(1-p) Y N.]

= i j=i+1 i=l

(l-,,))/(l-np + 2C( I ) IN2np)
n

where the upper bound obtains when ; l- N2  . ' Nn -"N.

Since large N1, ..., Nn lead to a large variance for R when using

independenz replications, we explore this case in more detail, In particular

this allows us to ignore linear terms in Ni in ( ). Suppose that p <.1/n.

(1) 2

If oi  (i-l)o , where p btai /n for i,,.., n, then coy (Ii, I.) -p

s 1 3

n
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n-l n n
(17) WOl) 1/[ 1-2p N. N N/(I-p) N 2

nn n =

(l-p)/[l-p( N.)2, 2 (l-p)/(l-np)

This case avoids the need to solve the l inear program in ( 13 ) and (14 )

Moreover it applies equally well for p L 1 - 1/n since one can substitute

(l-p), a and a for p, a and 0, respectively,without loss of generality.

Solutions of the linear program for 1/n < p < 1/2 wi1th N1  . Nn N

also yield worthwhile insights. Perusal of Table 1 for

i/n < p <. (1+1)/n, i = I .. Ln/ 2-lj showed that for large N

(18) var~l'Ifn = N' (,m_0) 2 q(l-nq)/n

for q = p-i/n so that

(19) W(l) = p(l-p)/q(l-nq)n

TI.- variance in (18 ) vanishes for q=0 and 1/n and has a maximum

N 2(a-a) 2/4n 2for q = 1/2n . This implies that

(20) min var~1 ) (Rn) N 2L(.a) 2 /42 0<p<1/

so that

(21) W(1)> 4n p(l-p)
n

For examples, n=2 and p=.25 leads to w(1)> 1.5 whereas n=10 and p=.4

leads to w(1)> 9.6
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The linear program solution for N1 = ... = Nn = N also reveals that the

optimal o need not have distinct entries. For example, n = 8 and p = .45

gives e1 = 2 = 0, 03= .10, e4 = .35, 05,= . e6 = 7 = .55, e .9.

Here one forms R8  as

(22) R8 = (2R, + + R4 + R5 2R6 + R8 )/8.

With regard to the actual simulation, one would use R= R and R7  R6.

These results imply that the suggested variance reduction technique can use

no more than six replications for opt~mality. However, the weighting

opportunities when n =8 apparently allow a greater variance reduction 8.25

than in the case of n = 6, 7.07. Some additional cases, such as n = 9 and

p = .20 also need clarification. Notice that 01 = 0 and 09 = 1. Since

W9  U + eg (mod 1) we have

(23) = (2Rl + 2R2 + 2R4 + 2R6 + R

Here five replications suffice for optimality.

Let us now summarize the properties of model 1.

1. The optimal 0 is independent of a and o. See (12).

2. For large N1 ,.., Nn,  (1) is independent of a and o. See (16).n'w

3. For given p 4l) increases as N -,N for i = 1 n. See (16).

4. For equal N. ) (1 - q)/(l - nq) where
1 n

q r p (mod I/n). See Table 1.

5. For equal Ni the optimal solution may call for n < n repli-

cations but with different weights for each observation. The

result is a smaller variance and larger variance reduction than

would occur for the optimal solution would yield for n

replications with equal observation weights. See Table 1.



3. Model 2

The assumptions in model 1 that X1,..., Xn be i.i.d., Yl'."' Yn be i.i.d.

and that ,'Xi) and {Yi } be independent are unnecessary restrictions whose re-

moval can lead to an additional variance reduction. Assume that Ni is

sufficiently large for i=l,..., n so that treating X i and Yi as normal

variates with means Nia and Nia, respectively, and variances Nia(l-a) and

Nio(l-a), respectively, introduces incidental error. Also assume that

WI W. follow (5) . Let ZI dinote a random variable from the normalr.|

distribution with zero mean and unit variance, denoted by N(O,1). Since

either Xi or Yi occur one can represent these quantities by

Ii = Nia + Zi /Niam'-a)
~(24)

(Yi 
= Niy + Zi .i"(l-0)

Then (3) recomes for replication i

ARi = (a-,3)N i AlI + A A Z. Ali + (Ap+B) / Zi

SA- /a7"Z - a B
1 1 T1 111

so that n s

(25) var (2(n) = (V(2) + 2U(2))/n
(2) ar()n n n

where = v as is expected, and
n2) n 2

(26) cov O(I ENi Nj (c-8)

+ A2  N corr Zi Z) (Ap+B)2 N, corr (Z ,Zj

If Z,..., Zn are independent then

nI
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() n-1

(27) nU z Ni z N coy (Ii, .) ( -) 2

1=1 j=i+1

However, it is possible to iiake ZI,..., Zn negatively correlated so that

corr (Zi, Zj) < 0 for all itj. In particular, the most negative correlation

achievable is
r

(28) cov (Z., Z.) = - 1/(n-1) iqj

so that(zg)nu 2 n {(29) U n2) n E ov (Ii,2 N. N - A2/ N N /(n-1)]

n i=l j=i+l Ic
-(Ap + B)2 4A.'(n-)}

To induce (28) one proceeds as follows. Let Z, Zn be independent

from A(O, 1). Then form

i !

(30) Zi = ii ni=I,
j=l 1 j.

where one restricts the lower triangular matrix

h1 0 .... 0

h= t'12 ,22

I n h2 n'hnn

so that i} h2i =1I
h: ij I

j=i
(31,

k hik hik = -I/(n-I) i<j, i1,..., n
k=l kj

In particular, solving (31) yields

(32) h -/(n-l)2...., n

hi  = hi,,j j 2,...i; i = 2,..., n-1.

t This is seen by noting that any smaller covariance makes the covariance
matrix of ZI,..., Zn negative definite.
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Algorithm VRN computes h.

Algorithm VRtJ(n)

2. hil .A l

3. For i=2(I)n h p . [
4. j ,- 2.

5. s 0.

6. For i=l(1)j-l s s + hji

7. h.. -/' .

8. If j = n, deliver h.

9. S p .

10. For i l(I)j-I S- s-h~i2

11. h s/h

12. j -4 j + 1

13. If j < n, for i j+1(1)n h + h= hij_1 "hilj_ 1

14. Go to 5.

Consider the case for which cov(I i, l1) =0 for i t j. Then

(33) w(2)= II[I -2 (Ap + B)2 (n - i). n-i v0 ) 4ff 1 )
iI j=i+l

is the variance reduction. Consider the case N1 = ... Nn = N. Then (3d) is

(34) ~(2) = - (Ap + E)21[p(1 - p)(c - B)2N + pa(1 - a) + (1 - p)o(l - 0)1

n

Expressions (33) and (34) allo, the observations:

1. For given a ,fand p, variance reduction decreases as N1 ... , n increase.

2. For p close to one or zero

n n -n-l n ,t nN N - 2(n - W t;,Ni 1
= i=I+i I+1
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Clearly this model is of most benefit when the mixture is heavily weighted

toward a or a , a result that is the -onverse of an observation for model 1

where small p leads to snall variance reductions.

4. Model 3

The assumption of only two possible survival probabilities a and B in ?

given year is an abstraction usually forced on an investigator by incomplete

knowledge. In a more realistic model one can conceive of the survival probability

P being a continuous function of, say, rdinfall F. For example, suppose that

(35) P=eaF b a > 0, b < 0

where F is from N(p,a) and pr(F > -b/a) %, 0. Here P increases with F

as one might expect in an animal population where rainfall is positively

correlated with the nutritional base available to the po:ulation.

Let subscripts on P and F denote replication number and assume that

F = ji + Zia, where Z, is from N4(O,l). If Z is formed as in (30) then

corr (Fi, F.) = - l/(n-l* for n replications and one can show that

E(Pi) = f(Il)

(36) {f(4,2) i = j

E(P.pP)E(PP f = (2-21/(n-1),2) i t j

2 2ea a /2 + *(b + ap)f(0,0) F

Let Ri denote the number of survivors out of a population of size Ni

with a randomly selected survival probability P V Then



f E(R11P1) =N 1 P 1

E(R'lPi) =N 1 P1(l -p)+( 1 P1 2

E(R1 RjJP,--PJ) N NJj P P

E(R1) 1 01l1)

E(Rj) =Ni~f(l~l) - f(4,2) + Nif(4,2)J

E(R1 Rj) 'N N N f(2 -2/(n - 1), 2)is

so that

(38) n 2 vr3(fn) [ f(4,2) -f(2,2)] i. N1 + [f(l,l) -*f(4,2)] Y N11=1
n-i n

+ 2[f(2 -2/(n -1), 2)-f(2,2) Z X NN.

Since

(39) W(2 2/(n - 1), 2) =f(2, 2)f(- 2/(n -1), 0)

the covariance contribution in (38) is negative.

Consider the case N N* N= N for which the variance reduction is

(40) wn 111+(-)f-2(-)0 ]/Lf(2.0) -1 + (f('.l,-l)i -(2.0))/NJ)e

For N large this isj

(41) W (3- 1{ + (n-l)[f(-2/(n-1), 0) - ]/(f(2,0) - 1JI.)

2For given a and a (41) dedreases monotonically as n increases, suggesting

the appeal of correlating replications in pairs. Moreover, variance considera-

tions indicate that for a total of n replications creating n/2 (n even)

independent sets of replications each with two replications correlated according

to model 3 yifelds a smaller variance than using model 3 to induce correlation

among all n replications. Also, for a given n (41) monotonically decreases

as a and a 2 increase. Table 2 shows selected values of W2. Notice that

the greatest variance reduction accrues when P1i varies little between successive

years.
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Table 2

Selected Values of

2 2 (3) 22 (3) ao°))2 (3)

w2  2 a2

0.05 20.50 .30 3.86 .55 2.36 .80 1.82

.10 10.51 .35 3.39 .60 2.22 .85 1.75

.15 7.18 .40 3.03 .65 2.09 .90 1.69

.20 5.52 45 2.76 .70 1.99 .95 1.63

.25 4.52 .50 2.54 .75 1.90 1.00 1.58

By way of illustration we describe the application of model 1 to a simula-

tion of the population dynamics of a hypothetical female elephant population.

Three attributes characterize each strata: age, maturity and pregnancy. Only

mature elephant conceive and the gestation period is twenty-two months. Figure

I shows how strata change from year to year. Each arc has an associated prob-

ability. In some cases this probability may be zero. For example, one year old

calves have zero probability of maturing. Other probabilities are unity, as in

the case of surviving pregnant elephants giving birth.

The remaining probabilities are functions of rainfall and density. In

particular, survival, maturity and conception probabilities increase as rainfall

increases but decrease as population density increases. For expository purposes

the example neglects density dependence. However it does specify explicit re-

lationships between the probabilities and rainfall. The variance reduction

technique of model I was applied to the survival probabilities. Specifically

This model emerged from discussions with Professor Daniel Botkin at the
Ecosystems Center at the Marine Biological Laboratory at Woods Hole and witz.
Professors Richard Miller and Matthew Sobel of Yale University.
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No. Cnevn

No. Maturing Conceiving

Surviving

Age i,
Immature

No.N.
No. No. Not! ~Dyi ng Imma ture Concei v ing !

No.No. Giving
Age i, Surviving Birth

Mature,
onPregnant

No.

Dy i uriing Conceiving

Dying No

Age , Suvivig O onceiving

Fig. 1. Female Elephant Population Dynamics
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let F denote rainfall in a given year and assume it has a normal distribution.
,

Then the survival probability is ak for strata k if F a F and k if
k k

F < F ,where k > 8k" The quantity F is a threshold rainfall that deter-

mines survival prospects. In terms of model 1 p = pr(F a F*). In the

present example p = 0.25.

At each point in time we performed 10 independent sets of sampling experi-

ments for each strata, where each experiment consisted of n=4 replications.

The independent sets enabled us to estimate the variance of the average over

the 4 replications subjecte(' to the variance reduction technique in each strata.

For p = .25, i = 0,02 = .25,03= .50 and 04 = .75 are an optimal solution.

Each simulation began with the same population profile and ran for 100 years.

For a given strata define R i as the number of surviving elephancs on replica-

tion i of set j. Then

1 4 10
(43) (Rij - R..)2

S -40 x 3 9 i=1  j=l 13

where

1 10 4
(44) R E- R.j , R.j -

provides an estimate of the variance of R.. if all replications were independent

and

1 10 2T= T (R.. - R..(45) T - j=1l

provides an estimate of the variance of R.. regardless of whether or not the

replications are correlated. Then for strata k Sk/Tk provides a measure of

variance reduction. Since sampling in strata k is independent of sampling

in strata t (k t t) in a given year a summary measure of variance reduction is

(}:Sk)/(Tk). Table 2 shows this ratio for years m = 5(5)100. In general,

i The only contrary case occurs between pregnant elephants that give birth and
the new born calves. However, neglecting this correlation should not be a
serious issue.
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the results there suggest a halving of the cost needed to obtain the

resulting accuracy.

Table 2

Estimated Variance Reduc.ion in

Female Elephant Population Simulation+

year V.R. yedr V.R. year V.R. year V.R.

5 1.73 30 2.03 55 2.17 80 2.22

10 1.43 35 2.24 60 2.15 85 1.97

15 1.82 40 2.05 65 2.20 90 1.84

20 1.85 45 2.44 70 2.10 95 1.8.

25 2.12 50 2.18 75 2.51 100 2.14

V.R. Variance Reduction
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