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Abstract

Most variance reduction techniques encountered in simulations
are designed to operate with stationary models. However, many simula-

tions are nonstationary in character, population growth models being
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an example. One way to facilitate statistical inference in a nonsta-

tionary simulation is to interchanie the order of replication collecticn

and time evolution. That is, at each time point several replicaticns

are performed to emahle a user to estimate parameters at that point in

time. This paper describes three variance reduction technigues that use §
this interchange between collectior and evolution to induce negative cor-
relation between replications, thereby producing estimates with smaller
variances. Model 1 describes a procedure that occasionally relies on the
soiution of a linear program to develop an optimal sampliing plan. Model
2 offers an alternative that apnlies when the populations in stratz are
large. Model 3 applies when survival probabilities are functions of an
exogenous random vzrciable such as rainfall. A fenale elephant population

simulation illustrates the success one can expect with model 1.
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1. Introduction

Among the tools available to the simulation user, variance reduction
techniques have from their incention held considerable attraction. Broac y
speaking a variance reduction technique is a samplirg planr that enables a user
to achieve a specified level of statistical accuracy for less cost than pure
random sampling permits or, conversely, it allows a user to realize greater
accuracy for specified cost. Hammersley and Handscomb [2] describe variance
reduction techniques applicable in Monte Carlo simulation. Fishman [1],
Kleijnen [3] and Mihram [4] describe the extension of these methods to dis-
crete event digital simulation.

In reviewing the techniques and the problems for which they are appro-
priate one notes an emphasis on tiheir use in simulations of stationary
models. A stationary model describes an environment 1in which means and
covaiiance structures remain constant in time. However, the simulation
method also applies to nonstationary systems of which population growth
models form a substantive share. In a population model each year or period
begins with 3 frequency distribution of population by stratum based on age
sex, etc. In advancing time by one period the simulation exposes each
member of each stratum to the risk of death so that at the :nd of the period
2 new distribution by strata appear<. If the expected frequency in each
stratum is constant through time, then stationarity prevails. However, this

stationarity requires a fortuitous balance vetween birth rates, age specific

"This work was motivated vy discussions on the construction of population
simulations for long-lived species with Professor Daniel Botkin of the
Ecosystems Center of the Marine Biological Laboratory at Woods Hole, Massa-
chusetts and Praofessors Richard Miller and Matthew Sobel of Yaie University.
I am grateful to ther: for introducing me to the problem and Yor their
valuable ir.ights. I am also grateful to William Kwapil and Mark Miller
for providing computat “nal assistance in preparing Tables 1 und 2.
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1 survival rates and other rates More commanly, the shape of the strata
frequency distrivution, the mean number of members in the population or
bocth change 2 time evolves so that nonstationarity prevaiis.

Now the difficulty with nonstationarity in practice is that one can

DU oY

not appiy the statistical metiods developed for analycing simulation output

for statiorary models. These latter techniques take two principal forms.

The first analyzes data within a single run to estimatc parameters of interest
that are time independent and the second uses averages formed on inaividual
replications to estimate the parameters [1]. Because nonstationarity implies
time dependent parawaters one has to look elsewhere for analysis techaiques.
One approach is to use the data on sample frequency distributions collected
on several replications at the sam~ time point to estimcte the true fre-
quency distribution at that time. This technique is legitimate, provided
that all replications begin with the same initia) strata frequercy distri-
bution and population.

Analysis zcross replications can proceed in at leait two ways. One
way has the simulation user run replications serially, store the sample

frequency data at each time point in each run and then combine correspond-

ing dats, after all runs are completed, to estimate the mean rtrata

frequ- cy distribution at each point. For a model with many strata run for

a long .“riod of time the raw data may require substantial storag:. Moreover,
the simulation user must wait f-.» coupletion of all runs before learning
about interim estimates.

In an alternative method of analysis that we plan to use here, the
simulation user perform- replications at a given time point before proceed-
ing to the next time. in effect, he reverses the order of time advance and
replication. Doing so "rables him to estimate the mean strata frequency

distributfon at a givern time point before moving forward. ;f an online
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graphics device is available, looking at successive images of this estimated
distribution may provide sufficient information to terminate the simulation
prematurely. Or the information gained may encourage the user to change
certain parameters of the simulation to see how the population responds.
Although the display and interpretive feature alone make this second
aiternative attractive, the ability to apply a variance reduction te nnique
to corresponding strata in the different replications at a given time point
offer an additional attraction. Especially since the accuracy achieved
for a given cost can be considerably greater than independent replications
allow.
In this paper we describe three methods of variance reduction applicable

to population growth models. }o>del 1 in Section 2 outlines a method appro-

TENITIT THPS. 7 AT TR N

priate for a simulation in whic’ the probability of survival in each strata
in each year randomly assumes onc of two possible values. As n the
number of replications increases, the achievable variance reduction often
increases dramatically. Occasionally the technique calls for the solution
of a moderate size linear program, perhaps an impediment today but not
necessarily so tomorrow.

Section 3 describes a second variance reduction technique that applies

for the survival probability mechanism of model 1 when the number in each
stratum is large. This technique appears most relevant when the two possible
survival probabilities per strata are close in value. Section 4 offers a
third variance reduction technique that applies when the survival

probability is a continuous function of an exogenous variable such as rain-
fall which itself follows a normal probability law. To give the reader an
appreciation of potential performance Section 5 describes the application of
model 1 in Section 3 to a simulation cf female elephant population growth.

The results are encouraging.




2. Model }
Let W denote a random ,ariable whose distribution is rectangular on
(0,1). Then W defines a uniform deviate and U(0,1), its distribution. Let
B(N,0) denote the binomial distribytion with integral parameter N and probability
0. Define X and Y as random variables from B(N,a) and B(N,8), respectively,

and Tet I denote the binary random variable

] O<W<p
(1) I=
0 p<W<li

To illustrate the use of these concepts, assume that in a given year a
member of a particular age stratum of a population has a survival probability «
with probability p or g with probability 1-p. For example, in an animal
population the different survival rates arise as a consequence of favorable {(q)
or unfavorable (B8) weather conditions. Then one expects a>g . If the stratum
has N members then the number who survive to enter the next age stratum the
next year is

(2) R=1IX+ (1-1)Y = I{(X-Y) + Y.

Define the operator 4 to mean deviation from expectation. Then

(3) aR = N{a-g)al + p (aX -aY) + al{aX-aY) + a¥

which, provided W 1is independent of X and Y, has mean zero and variance
(4) V= var (R) = p(1-p) N (a-8)° + N[a(1-0) + (1-p)s(1-g)].

Applying the procedure to each stratum with its corresponding p, M, o and g,
one can construct a sampie age distribution for the year following the one in
which sampling occurred. Repeated application through successive years allows
one to see how the sample age distributions change over time.

Since our principal interest concerns nonstationary features of the

distribution, it is important that the variance of the ordinates in each
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sample age distribution in each year remain within acceptable limits for meaning~
ful inference. If in each year one performs & independent replications for
each age stratum, then the sample mean ordinata for a givern stratum has variance
V/n, V being determined by the stratum. The chjective of the present research

is to devise a sampling plan among the n replicetions tnat not only produces a

smaller variance but actually produces the smallest possible for n replications.

Although an attempt at variance reduction is always desirable, it assumes par-
ticular importance in the present case. Notice that the leading term in (4)

2, not N as would occer in the biromial case («=8). This

is proportional to N

source of variation provides additional impetus in the search for s sampling plan

that will lead to acceptable estimates of the ordinates of an agn Jiuiribution.
Let a subscript on I, N, X, Y, V and W denote replicatisn nuber.

Define W, as

{5) W

[1£]

8t U (mod 1)

0 20, < ] i=1,...,n

so that H],..., un are uniform, but not independent, deviates. Then for a

particular age stratum replication i yields

{7) 8R; = Ny (a-g)aly + plaX;-aY,) + AL, (aX;-a%;) + a¥y .

flere Ri denotes the number of survivors on replication i and

denotes the sample mean number of survivors over the n replications.

If these replications are independent then ﬁh has variance V/n.
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Consider the case in which X,,..., X, are i.id., Yy,..., Y, are i.i.d.

and {Xi} and {Yi} are independent. Then ﬁh has variance

(M) my = w(1)oy(1)
(8) var'' (R) = (viT/+20 ) )/n
(1) 2 N, n
(9) nV."’ = p(1-p) (a-8)" =z Ny + [pa(l-a) + (1-p) 8{1-8)] L
i= 1=
i1) 2 n-1 n
(10) ny "’ = (x-B) L I N, N. cov (Ii’Ij)
i=]  j=i+l J
where the superscript(])denotes the medel niumber. Let
(6)" < max (0,0) .
Since a little thought shows that for (65 298, 45 i=2,..., n}
. = - \+ R + 8 dne +\+ i
(11) E(T, IJ-) (p 650 + (p-1-04%0;)" + (p+o, 2;5-(p ej) ) J-i,

one can show that the optimal 81s---» 8 for minimizing Ugl)emerqe

from the solution of the linear program:
n-1 n

(12} Cgl) =min ¢ x N; N,

{(D. + E.. + F_.) ¢ g
8 =1 j=iHl by

J 1 -

subject to the n{n+l) constraints

0]_>_0

(13)

>
v
3
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E.. > p-] -Lsiﬂ;j
J=i+l,..., n; i=1,..., n-]

-
v

> p+0i'6j'oj

with a, 8, Nys.oos N specified. Notice that the optimal 6 is independent of « and 8.

To measure the extent cf variance reduction with a pa~ticular model,
one can use
(14) wﬁk) = Vﬁk)/n mln [var(k)(ﬁh)]

The quantity nhék) denotes the number of replications that independent
sampling requires to achieve the same variance that results from using the
optimal sampling plan for model k. For model 1 one has

2 n"] n

(IR VR SIS N OO L (AR A /vﬁl);
! =1 j=iel I )
which for large Nyseoon N is
(]) n-1 % n
(16) T R (2 R L T S I VL TA R Y 5
j=] ' j=isl I j=]
(1-p)/(1-np + 2c{1) /NZnp)
where the upper bound obtains when k]= NZ = ... = Nn =N .

Since large N],..., Nn lead to a large variance for ﬁh when using

independent replications, we explore this case in more detail, In rarticular

this allows us to ignore linear terms in N, in (). Supprse that p < 1/n.

If o, (i-1)e , where p < ¢ < 1/n for i=1,..., n, then cov (Ii’ Ij) = -p2

so that Cél) = 0 and

PENTIN




(1) n-1 n n 4
g ' v U/L1-20 z Ng oz N/(1-p) T N§]
i=1 ! j=isl J i=1

n 2 n 2 .
= (l-p)/[l-p(igl N,) /ig] N;J < (1-p)/(1-np) .

This case avoids the need to solve the linear program in (13 ) and (14 ).
Moreover it applies equally well for p > 1 - 1/n since one can substitute
(1-p), B and a for p, a and 8, respectively,without loss of generality.

Solutions of the linear program for 1/n< p< 1/2 with Ny = ... = Nn= N

also yield worthwhile insights. Perusal of Table 1 for

i/n < p < (i*1)/n, i = 1,..., | n/2-1_| showed that for large N
(18) var(])(ﬁh) = N2 (a-e)2 q(1-nq)/n

for q = p-i/n so that

(19) ol = p(1-p)/q(1-nq)

Th. variance in (18 ) vanishes for q=0 and 1/n and has a maximum

Nz (a-8)2/4n2 for q =1/2n . This implies that

(20) min var(]) (R—n) < Nz(m-B)2 /4n2 0<p<i/2
]

so that

(21) w{1> 4n p(1-p) .

For examples, n=2 and p=.25 Tleads to wél)i 1.5 whereas n=10 and p=.4

leads to wél)z 9.6 .
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The linear program solution for Ny = .. =N, =N also reveals that the
optimal 6 need not have distinct entries. For example, n =8 and p = .45
g'iVES 61 = 62 = 0, 63 = -‘0’ 64 = 035, 05 = 045’ 66 = 67 = .55, 68 = .90

Here one forms §é as

(22) Rg = (2Ry + Ry + Ry + R + 2Rg + Rg)/8.

With regard to the actual simulation, one would use R2 = R] and R7 = RG‘
These results imply that the suggested variance reduction technique can use

no more than six replications for opt'mality. However, the weighting
opportunities when n = 8 apparently allow a greater variance reduction 8.25
than in the case of n =6, 7.07. Some additional cases, such as n =9 and
p = .20 also need clarification. Notice that 8 = 0 and 09 = 1. Since

Wg - U+ og (mod 1) we have
(23) Rg = (2R, + 2R, + 2R, + 2R¢ + Rg)/9

Here five replications suffice for optimality.

Let us now summarize the properties of model 1.

1. The optimal @ 1is independent of « and 8. See (12).

2. For large Nl”"’ Nn' wgl) is independent of o and 8. See (16).
3. For given p mél) increases as N, ~N for i = 1,..., n. See (16).
4. For equal N, w£1)= (1 - q)/(1 - nq) where

q - p (mod 1/n). See Table 1.

5. For equal Ni the optimal solution may call for n*< n repli-
cations but with different weights for each observation. The
result is a smaller variance and larger variance reduction than
would occur for the optimal solution would yield for n*

replications with equal observation weights. See Table 1.

4 Fpew ITRIRE IR TR




3. Model 2

The assumptions in model 1 that X],..., Xn be i.i.d., Y],..., Yn be i.1.d.

and that {Xi} and {Yi} be independent are unnecessary restrictions whose re-
moval can lead to an additional varfance reduction. Assume that N is
sufficiently large for i=1,..., n so that.treating Xi and Yi as normal
variates with means Niu and Nis’ respectively, and variances Niu(]-a) and
Niu(l-e), respectively, introduces incidental error. Also assume that
Wiseoos W follow (5) . Let Z; dnote a random variable from the normal
distribution with zero mean and unit variance, denoted by N{0,1). Since

either Xi or Yi occur one can represent these quantities by

Xi = N.i“ + Zi Viiiali"a>

(24)

Then (3) -ecomes for replication i

MRy = (a-g)Ny L, + A AL Z, ol + (Ap#B) /N Z,

Az Ya(l-a -B

B = /B(1-8)
so that R has

2) 5 2 2
(25) varl(® ) = (v(2) 4 2{2)yn

where Véz) = vgl), as is expected, and

n-1 n
(26) nU£2)= A {cov (Ii’ I.) [ﬁi N, (a-B)2
i=1 j=i+l J J

3

+ A2 /ﬁi Nj corr (Z,, Zj) ] + (Ap+8)2JNi Nj corr (21.23{}

If Z],..., Zn are independent then

Al

WO
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n-1 n
(27) nuéz) =z Nz Ncov (Ii’ I.) (a”8)2 .
j=1  lj=i4] J

However, it is possible to wake Z],..., Zn negatively correlated so tiat

corr (Z;, Zj) < 0 7or all i#j. In particular, the most negative correiation

achievable 1'sJr

(28) cov (Zi, Zj) s - ]/(n"‘]) ifj

so that

(29) W@ [ (1., 1.) [(a-8)2 N. N. - A2 VIN: /(n-1)]
L P O BT TY L 1 iR

- (hp + 8)7 AR /(1) |
To induce (28 ) one proceeds as follows. Let Zi,..., Zﬁ be independent

from N(O, 1). Then form

i
- L] 3 -
(30) Z; = p hij Zj i=1,..., N
j=1
where one restricts the lower triangular matrix
h]] 0....0
h=1hp hyp
| hi n h2 n :‘hnn J
so that
oo
L h7ij =1
=i
(31, .
i
kﬁl hik hjk = =1/{(n-1) i<j, i=l,..., N .
In particular, solving (31 ) yields
h]" = ]
(32) h,ij = "]/(n']) j = 2;-.., n
hij = hi+l,j J= 2,000 1 =2,... 0=l

T This is seen by noting that any smaller covariance makes the covariance

matrix of Lyseess 2, negative definite.

Ly
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Algorithm VRN computes h.

Algorithm VRM(n)

——d

. p <+ -1/(n-1) .
h“ «- 1.

~N

. For i=2(1)n hil “p .
Je 2.
s « 0.

For i=1{1)j-1 s«<s + hgi

(=2 JN 2 B R X}

7. hy; ~/T=s .

8. If j =n, deliver h.
9. s «p .
10. For i=1(1)j-1 s« s-hJ?.

1.
E ]]- h < S/hjj .

i+,
12 j«3+1.
13. If j < n, for i = j41(1)n h

14. Go to 5.
Consider the case for which cov(Ii, Ij) =0 for i#Jj. Then

i,d-1  M5,5-1 .

n
RUTAHE

-1
(33) i@ <y -2 (Ap +8)2 (n - 1) N AT
" =1 1 jeie]

is the variance reduction. Consider the case Ny = ... =N = N. Then (33) is

(30) Wl =170 - (A + YO - P)a - BN+ pall - a) + (1 - p)B(1 - BT
Expressions (33) and (34) alloy the observations:

n
2. For p close to one or zero

weh v E N LR Ny - 2(n - 1) "Ni  AN.J.
=1 17 4= j=] j=i+l 9

1. For given @, and p, variance reduction decreases as N,,..., ' increase.
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Cleariy this model is of most benefit when the mixture is heavily weighted

toward o or 8 » a result that is the :onverse of an observation for model 1

where small p leads to small variance reductions.

4. Model 3

The assumption of only two possible survival probabilities a and 8 ine

given year is an abstraction usually forced on an investigator by incomplete

knowledge. In a more realistic mvdel one can conceive of the survival probability

P being a continuous function of, say, rainfall F. For example, suppose that

(35) p=etf *D a>0, b<0

where F is from N(u,c) and pr(F > - b/a) ~ 0. Here 7P increases with F
as one might expect in an animal population where rainfall is positively
correlated with the nutritional base available to the ponulation.

Let subscripts on P and F denote replication number and assume that

F; = w+ Lo, where I, is from N(0,1). If Z 1is formed as in (30) then

corr (Fi’ Fj) = - 1/(n-1: for n replications and one can show that
E(P‘i) = f(1,1)
f(432) i=y

(36)
E(P.P.) =
(P J) {f(Z-Z/(n-l),Z) it

£(o,4) = e9a202/2 + ¢(b + au).

Let Ri denote the number of survivors out of a population of size Ni

with a randomiy selected survival probability Pi' Then
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(E(R;[Py) = N, P
E(Rifpi) =Ny Pi(1 - Py) + (N Pi)z
o ER RIPLR) =N w by b ¥
E(Ri) = £(1,1)
E(RE) = N.LF(1,1) - £(4,2) + N,F(4,2)]
(E(R; R;) = Ny Ny £(2 - 2/(n - 1), 2) i#
so that

3 2 n
(38)  nof varl3(R ) = [£(4,2) - £(2,2)] N+ IFL) - f(42)] 2N,
o‘:: ]:
A
f 22 -2 -1), 2) - F22)] g Ny N
i=1 j=i+1 ' J
Since
(39) f(2 - 2/(n-1), 2) = f(2, 2)f(- 2/(n - 1), O)

the covariance contribution in (38) is negative.

Consider the case N] = ... Nn= N for which the variance reduction is

(40) w£3)= Q0+ (n-1)[£(-2/{n-1],0) - 11/[(2,0) -1 + (F(+1,-1} -F(2,0))/N]}:
for N large this is
@) o0+ (a)IF(-2/(0-1), 0) - TVEF(2,0) - 1]

2

For given a and ¢~ (41) decreases monotonically as n increases, suggesting

the appeal of correlating replications in pairs. Moreover, variance considera-

tions indicate that for a total of n replications creating n/2 (n even)
independent sets of replications each with two replications correlated according

to model 3 yields a smaller variance than using model 3 to induce correlation

among all n replications. Also, for a given n (41) monotonically decreases
as a and 02 increase. Table 2 shows selected values of w£3). Notice that

the greatest variance reduction accrues when Pi varies little between successive
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Table 2

Selected Values of w§3)

12,2 m§3) 122 wgs) 12,2 wgs) 22,2 mgs)

0.05 | 20.50 .30 | 3.86 .55 | 2.36 .80 | 1.82

.10 | 10.51 .35 | 3.39 .60 | 2.22 .85 | 1.75

15 | 7.18 40 | 3.03 .65 | 2.09 .90 | 1.69

.20 | 5.52 45 | 2.76 70 | 1.99 .95 | 1.63

25 | 4.52 .50 | 2.54 75 | 1.90 1.00 | 1.58
5. Example’

By way of illustration we describe the application of model 1 to a simula-
tion of the population dynamics of a hypothetical female elephant population.
Three aitributes characterize each strata: age, maturity and pregnancy. Only
mature elephant conceive and the gestation period is twenty-two months. Figure
1 shows how strata change from year to year. Each arc has an associated prob-
ability. In some cases this probability may be zero. For exampie, one year old
calves have zero probability of maturing. Other probabilities are unity, as in
the case of surviving pregnant elephants giving birth.

The remaining probabilities are functions of rainfall and density. In

particular, survival, maturity and conception probabilities increase as rainfall
increases but decrease as population density increases. For expository purposes

the example neglects density dependence. However it does specify explicit re-
lationships vetween the probabilities and rainfall. The variance reduction

technique of model 1 was applied to the survival probabilities. Specifically

f This model emerged from discussions with Professor Danfel Botkin at the
Ecosystems Center at the Marine Biological Laboratory at Woods Hole and wit:
Professors Richard Miller and Matthew Sobel of Yale University.
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Fig. 1. Female Elephant Population Dynamics

[
. ;
‘ ‘
* {
A;J
*
D A 4 oy 4 o o

T
wp NG

-1
LIy

It

e

oy,

e S A R AN AL LT B S AN IS s A e




let F denote rainfall in a given year and assume it has a normal distribution.

Then the survival probability is ay for strata k if F 2 F* and Bk if
F < F*, where ap > By The quantity F* is a threshold rainfall that deter-
mines survival prospects. In terms of model 1 p=pr(F 2 F*). In the
present exampiz p = 0.25.

At each point in time we performed 10 independent sets of sampling experi-
ments for each strata, where each experiment consisted of n=4 vreplications.
The independent sets enabled us to estimate the variance of the average over
the 4 replications subjected to the variance reduction technique in each strata.
For p = .25, 85 = 0, 9, = .25, 63 = ,50 and 64 = ,75 are an optimal solution.
Each simulation began with the same population profile and ran for 100 years.
For a given strata define Rij as the number of surviving elzphants on replica-

tion i of set j. Then

(43) ] 4 10 ( )2
43 S = g E E Ro s = R.t L
where

! 10 ) 4

provides an estimate of the variance of R.. if all replications were independent

and

10

(45) T £ (R.. - R..
=] J

1 )2
T0x9 .
J
provides an estimate of the variance of R.. regardless of whether or not the

replications are correlated. Then for strata k Sk/Tk provides a measure of

variance reduction. Since sampling in strata k s independent of sampling

in strata ¢ (k # £) in a given year a summary measure of variance reduction is
():Sk)/(}:Tk).+ Table 2 shows this ratio for years m = 5(5)100. In general,
+ The only contrary case occurs between pregnant elephants that give birth and

the new born calves. However, neglecting this correlation should not be a
serious issue.
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the results there suggest a halving of the cost needed to obtain the

resulting accuracy.

b i R e

Table 2

Estimated Variance Reduc:ion in
Female Elephant Population Simulation’

- year V.R. year V.R. year V.R. year V.R.
é 5 1.73 36 2.03 55 2.17 80 2.22
; 10 1.43 35 2.24 60 2.15 85 1.97
15 1.82 40 2.05 65 2.20 90 1.84
20 1.85 45 2.44 70 2.10 95 1.85
25 2.12 50 2.18 75 2.5 100 2.14

V.R. . Yariance Reduction
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