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ABSTRAC T

A grain producer produces and stores a grain , say wheat or corn, and
after each crop must decide hüw much to sell and how much to store. He
faces a T period planning hor izon , a downwards sloping demand and a
storage cost, an increasing function of the amount stored . On the
supply side we will assume that the area planted , the inputs such as
fer tilizers, labor etc . are fixed . The weather with all the unfavorable
damage by frost, bugs, and burning sun will determine the final yield
of the crop , i.e. we are assuming that the crop of each year is a random
variable. The objective of the producer is to~maximize the total
expec ted accumulated profit. The concept of ~“liquid stock”L~ introduced .
A sensitivity analysis is carried study ing the effect of changes in the
parameters of the problem on the optimal policy .

~~~~~~~~~~~~~~~~~~~ b
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A GRAIN STORAGE PROBLEM , WITH RANDOM PRODUCTION

by

Jack Schechtman

0. INTRODUCTION

Ever since Joseph la id up co rn in the land of Egypt for storage

against the seven years of famine to come, men have kept on hand a carry-

over , large or small, of food. Traders have tried to make a gai n by a

change in the supply or demand . Storage always has been an important

fac to r in smoothing the supply. In this paper we will consider a simple

model in which a “grain producer” produces and stores a grain , say wheat or

corn, and after each crop must decide how much to sell and how much to

store . Re faces a T period planning horizon , a downwards sloping demand ,

and a storage cost , an increasing function of the amount stored . On the

supply side we will assume that the area planted , the inputs such as

fertilizers, labor, etc . are fixed . The weather with all the unforseeable

damage by frost , bugs, and burning sun will determine the final yield of

the crop, i.e. we are assuming that the crop of each year is a random

variable. The objective of the producer is to maximize the total expected

accumulated profit. This model is similar to the one considered by

Samueleon [4 J except that we consider the yield of a crop a random variable

as opposed to a yield known with certainty.

In this paper we will use the basic concepts of competitive prices

and policies developed in [ 5 1.

Section 1 contains the basic facts and theorems that will be used in

this paper and it is included for sake, of complet’ness. The deterministic

case i~ considered in Section 2. Section 3 considers the stochastic case,
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and it is shown that when we follow the optimal policy the stock level

will stay in an interval [a ,y] forming a renewal process. The level

y will be important in the definition of “liquid stock,” an analogue

to “liquid excess capital” considered by Keynes in “A Treatise on Money ,

Vol. II.” It’s basic property is that if the stock level is above y

the producer will sell an amount of grain such that the stock available

in the next period will be smaller than the previous one no matter what

happens with the crop yield . A discussion of this concept and related

ones is given in Section 5. The question of how a “liquid stock” can

appear after the process has reached its normal course is discussed in

Section 6, where the effect of changes in the demand schedule, crop

yield , storage cost and deterioration factor are considered .
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1. THE MODEL

In this section we will introduce the model and state the basic

definitions and results. For proofs of these results the reader could

refer to [ 5 ] and for a discussion of the concepts for deterministic

case to [1 ].

A grain producer manages the production and storage of a grain.

The area planted , labor and physical inputs are constant, with a fixed

cost K . The storage cost is an increasing function of the amount

stored . The demand is a downwards sloping function and the supply at

each period is a random variable. The producer problem is to decide

how much to sell, how much to store at each period in order to maximize

the total expected profit accumulated during T periods. A period is

defined as the time between crops and we will simply call it “year.”

It is assumed that the yield is available at the beginning of the year

and that the decision of how much to store and how much to sell, are

done at the same time.

1.1 Finite Time Horizon Problem

The problem is divided in T periods that are numbered as

1,2, . . . ,  T — l,T in that order . We denote by:

amount of grain available at the beginning of period t

amount that is decided to be sold at the beginning of

period t

amount that is decided to be stored at the beginning of

period t

the yield that is produced during period t but is available

only at the beginning of period c + 1
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A : deter iorat ion factor , i.e. if x is the amount stored for

the nex t periôu , then the amount available at the beginning

of it is A x , 0 < A < 1

6 : discount factor that actualizes the profits in different

periods.

P(c)  demand function , a decreasing and continuous function of the

amount sold c

p (x) storage cost function , an increasing and continuous funct ion

of the amount stor ed x

u(c)  : the revenue function , i.e., u(c)  — P(c)c

The problem can now be formulated as

T
max E 

~~ 
(u(c

~
) — p (x

~
))

t— 1

subject to c~ + x~ —

c~ > 0 , x~ > 0

and ~~~~ Ax~ +

where E is the expectation operator. The random variable W~
*

t 1, . . . ,  T will be assumed to be i.i.d.

1.2 Dynamic Prograsmiing Formulation of the Model

If Vt(y) is the max imum present value of the expected profit that

can be achieved by using an initial amount of grain y optimally through

t periods, then the usual Dynamic Programming formulation leads us to

the following functional equations:

*The constant cost k , is not included since it will not affect the optimal
policies.
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Vt (y )  max ~u( c )  — p (x ) + 6EV t l (A x + W
~ ) }

(1.2.1) s .t .  c + x y

c~~~O , x > 0

Defini t ion:

A policy fo r a T period problem is a sequence of pair of functions

t t t t t{c (y),x 
~~~~~~~~~~~~~~~~ . . ,T such that x (~ ) + c ( ‘)  .‘ x ( r )  ~ 0

ct (y)  > ~

Defi ni t ion:

A T per iod policy is optimal if (c t (y ) , x t (y ))  is a solu tion of

(1.2. 1) for t > 1

Defi nition

A T per iod po licy is competitive if there exist a sequence of

nonnegative continuous functions {pt (y) ) t..i .,T 
such that

i) c t (y) maximize u(c)  — pt (y) c

s . t .  c > 0

ii) x t (y) maximize — p(x )  + 6Ep t~~~(Ax~~(y) + W )( Ax + W) — p t (y) x

s . t .  x > O

0
iii) p (y) — 0

Conditions i) and Ii) have very natural  economic interpretations,

they decentralize the producer activity in two parts, the first tells

the producer how to choose the correct amount to sell , ct (y~ , by

t *
maximizing the profit when he buys the grain at a price p (y)

*The reader should note the difference in notation between the competitive

prices ~t(y) denoted in general by lower case letter and the actual market
price P(c) denoted by a capital letter .

-
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the second tells him how to choose the correct amount to be stored ,

x
~
(y) , by max imizing the expected intertemporal profit obtained by the

storage activity .

The nex t theorem will be stated without a proof , the interested

reader might refer to [ 5 ] for this result and others that will be

used he re.

Theo rem 1.1:

If a policy (c t (y) ,x t ( y ) } t 1  . . ,~ 
is competitive then it is

op t ima l .  Furthermore if we assume that the competitive prices

{pt(y)} 
T are decreasing functions then {ct(y),xt(y)} are

nondecreasing and continuous functions of y

The last result is true without any assumption about u(c) and

p(x) except those about continuity. In order to obtain some qualitative

results and the converse of Theorem 1 it will be necessary to assume

that u(c) is strictly concave, increasing and differentiable , p(x)

differentiable , nondecreasing and convex.

The following facts will be stated without a proof:

Theorem 1.2:

Whenever u(c) Is st r i c t ly concave , inc reasing , d i f f e rentiable

and p(x) nondecreasing , differentiable and convex , the following

statements hold .

A. The function Vt (y) is st r i c t l y  concave , nondecreasing for

t *
all t and furthermore V (y) is differentiable for all y > 0

*
In general the differentiability at y 0 will depend on the specific

problem .
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B. If a policy tc t(y),xt (y)}
t T  

Is optimal then it is

competitive and furthermore (ct (y),xt(y)) satisfy the following

conditions:

(1) ~t(y) > u t (ct(y)) with equa l i t y  if c t (y) > 0

(2) pt(y) > _p t ( x t ( y ) )  + 6AE pt~~ (Ax t(y) + W) with equality if

xt(y) > 0 where pt (y) = V t (y) the derivative of Vt(y)

C. The prices ~t(y) are continuous decreasing functions. The

continuity is defined on (0,°’) or [0,ro) depending on whether

Vt (y) is differentiable or not at y = 0

D. The competitive price functions are increasing with t i.e.

p t (y) > p
t_l

(y) for all t > 1 and consequently

ct(y) < ct~~ (y) and xt(y) > xt~~(y) for all t > 1

E. The limiting policy defined by c (y) = h a  ct (y) and

x ( y )  = u r n  xt(y) are continuous and nondecreasing functions.

From now on we will assume that the conditions of Theorem 2 hold .

In general it will be interesting to compare the ~tochastic problem ,

i.e. W c [a,A] is a nondegenerate random variable with those in which

W a , W A , or W Ew . If p~ (y) , ~~~~~~~~~~~~~ is the price

for a problem in which W a , (W A , W = W EW) then the following

results are t rue .

Theorem 1.3:

pt(y) pt(y) (p
t(y) pt(y)) and consequently c~ (y) ct(y)

(c
t (y) < c~~ y)) ; x~~ y) > xt(y) , (x~(~) < x t (y)) fur thermore  if

u ’(c)  and — ø ’(x) are convex functions then P
t 
~ p

t(y) and
W

consequentl y ç t (y)  > c t (y)  and x t (y)  < x t (y)
W W
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The last theorem tells us tha t if we assume the pessimistic

(optimistic , average) point of view of getting always the smallest

yield (largest yield , the average yield), for the same amount of grain

available we will store a greater (smaller , greater) amount than If we

assume tha t  W c [a ,A] is a nondege nerated random va r i ab l e .

1.3 Inf inite Time Horizon Problem

In this section infinite time horizon problems are considered .

The prod ucer pr oblem is now:

max E 
t~1 

6t~ l ( ( )  -

s.t. c
~ 

+ x~ — Ax
~~1 

+ t > 2

x
1 

+ c
1 

=

and c
~~

:.O , x
~~~~

O t > l

The stationary characteristics of the model leads us to consider

only stationary policies , i.e. the decision of how much to sell and how

much to store are only functions of the amount at hand and not of the

period considered .

Definition:

A policy is a pair of functions (c(y),x(y)) such that c(y) > 0

x ( y )  > 0 and c(y) + x(y) = y . That is if y is the stock at hand

c(y) define how much to sell , and x(y) how much to store for the

next period .
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t—l *In many cases the series E 6 (u(c
~
) — p (x

~
)) might diverge.

t—l

In order to compare policies it will be necessary to introduce the

following definitions :

Definition:

A policy (c(y),x(y)) overtakes another policy (c(y),x( y))

starting with the same initial stock y1 
, if there exist a T

0 
such

that

E 
:~l 

6t~ l ( ( ~~) - p(s)) - (u(c
~

) - P (x
~
)) > 0

for all T > T
0

Definition:

A policy is strongly optimal if it overtakes all the stationary

policies.

Definition:

A stationary policy (c(y),x(y)) is optimal if

T
Urn inf E 

~ 
u(&

~
) — p(s) — (u(c

~
) — p (x

~
) )  ~ 0T - ~~ t-l

for any stationary policy (c(y),x( y))

The next definition and the following theorem will play a fundamental

role in the rest of the paper.

*In general given a policy we will denote by y~ the corresponding stock

available at the beginning of period t , c~ — c(y
~
) , x~ — x(y

~
) the

corresponding amount tha t will be sold at that period and stored for the
nex t period, respec tively.
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Definition:

A policy (c(y),x(y)) is competitive if there exist a nonnegative,

nonincreasing function p(y) such that

I) c (y) maximize u(c) — p(y)c
c>O

ii) x(y) maximize — p(x) + 6Ep (A x ( y) + W) (Ax + W) — p (y)x
x>0

An immediate consequence of the definition of competitive policy

is the following theorem:

Theorem:

If a policy is competitive then the following conditions hold .

(1.3.1) p(y) > u’(c(y)) with equality if c(y) > 0

(1.3.2) p(y) > —p ’(x(y)) + 6AEp(Ax(y) + w) with equality if x (y)  > 0

For finite time horizon problem , we stated a theorem that tells us

that if a policy is competitive then it is also optimal, for infinite

time horizon problems this result is not necessarily true. The next

theorem give us a sufficient condition for a competitive policy to be

optimal.

Theorem:

If a policy (c(y),x(y)) is competitive and

(1.3.3) Urn E f5
tp(y~ )y~

} 
— 0 then

the policy is also optimal.
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The question of finding optimal solutions for infinite time horizon

problems is in general very difficult. Good candidates , are the policiea

obtained by taking the limit as t -
~ of (c

~
(y),x

~
(y)) , which are

well defined functions. Conditions i) and ii) will be immediately

satisfied whenever we can show that 
~~~~ 

converges as t + to a

function p(y) , and for this it will suffices to show that there exist

a bound for , since > p~_1(y) for all t

In general a bound will be obtained by comparing the stochastic

case with the deterministic case in which we assume W a . For

condition iii) it will be necessary to consider each case by itself.

— — -
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2. DETERMINISTIC CASE

In this section we will consider the case w a . We will obtain

bounds for the prices p~ (y) , study the behavior of the stock level when

we follow the limiting policy and finally it will be shown that the

limiting policy is optimal.

Lemma 2 . 1 :

If 0 < 6A ~
‘ 1 and p (x) > 0 , or 6A 1 and p (x) > 0 then

c~ (y) y for 0 < y < a and c~ (y) > a f or y > a

Proof:

To show that c~ (y) y for 0 < y < a it suffices to show that

x~ (a) = 0 since xt(y) is a nondecreasing function . Suppose by

contradiction that x~~(a) > 0 . From (B.2) we have that

p~~(a) = _Q ’(x ~~(a)
) + 6xP~

’
~
.
(xx

t(Y) + a)

t— l/  t
< 1’a ~Ax5(a) ÷ a

~ P~ (Ax~~(a) + a) by (D)

and consequently a > Ax~ (a) + a , since p~~(y) is a decreasing function ,

which is a contradiction.U

Corollary 2.2:

For all t , p~ (y) 
~ u’(a) if y > a , and p~ (y) — u ’(y) if

O < y < a , and the limiting policy satisfy the following optimality

conditions if either a > 0 or u’(O) <



13

(2.1) 
~~~~ 

— u ’(c~~(y ) )

( 2 . 2 )  
~~~~~ 

> _P ’(X
a
(y)) + óA p5

(Ax~~(y) + a)

where 
~~~~ 

liin p
~
(y)

Proof:

From Lemma (2.1) we get tha t

p
t(y) — u’(c~ (y)) < u’(a) for all t , y > a

and

p~ (y) = u ’(y) for 0 < y < a

Now taking the limit in (B.1) and (B.2) we will get (2.1) and (2.2).U

From now on whenever we consider infinite time horizon problems

*
we will assume tha t either a > 0 or u ’(O) <

The next theorem tells us how the stock level changes when we

follow the limiting policy.

Theorem 2.3:

If 0 < 6A < 1 and p (x) > 0 , or 6A — 1 and ø ’ (O) > 0 , then,

for the limiting policy, yt+~ < yt , t > 1 ; and if y~
’ is the initial

stock, then there exist an integer T(y’) such that y~ • a for t > T(y1)

Proof:

First we will show that yt+l < yt for all t > 1 . Of course

a , for t > 1 since w — a , if yt > a and xa(yt) — 0

*Cases in which u ’ (O) — +~ can also be handled, but a discussion will
depend on the specif ic function u(c)

- 

- 

• - • — . . _
~~~~~~~~

. ,-. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
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Then yt+l — a and hence ~t+l < y~ . If y~ > a and Xa (Y t) > 0

then

+ oA pa(y t+l)

t+l<
~~a~~

’ ~

hence , yt+l < yt since 
~~~~~ 

is nondecreasing . Now , if yt — a

using the fact that xa(a) = 0 we will have that yt+l — a and

t+l thence y < y

The existence of T(y1’) is immediate when y1’ < a since ca(y
1)

and so T(y
1
) 1 . For y1’ > 0 suppose by contradiction that for all

t x ( y
t
) > 0 . From the optimality condition (2.1) we will have

= _p~~(x a
(y l

)) +

= _p~ (x5(y
2
)) + ~5A p~ (y

3)

p5
(y t) — _P

~(xa(y
t
)) + ~Ap (yt+l)

Adding up we get

(2.3) p5(y
1
) - — P ’(X (Y~ )) + ( 6A - 1) ~ pa~~

t) + 6 t+1)
i—i i—2

Since y
~ 

> a for all t then

< p (yt+l) 
~ “a~~~ 

— u ’(a)

Now, since x~ > 0 , from (2.3) and using the fact that p(yt) >

for all t we get
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< t (A6 — 1)pa(y’) + 6Au ’ (a) — 

i-l 
p~ (x~ (yl))

or , if p ’ (O) > 0

< -t(l — 6A)p (y
1) + 6Au ’(a) — tc

which is a contradiction since the last inequality cannot hold for

all t .•

Theorem 2 .4 :

If 0 < 6 < 1 the limiting policy is optimal.

Proof:

It suffices to show that u r n  6tpa(y t)y t 0 . From previous

results we have that

6
t
pa

(y t)y t 
< 6t,jt (a)y

l 
, for all t .

The theorem now follows from the fact that 0 < 6 < 1 .U

Figures (2.1), (2.2), (2.3) and (2.4) represents the behaviour of

yt , c~ , x~ and pt — P(c t) , where the pt are the market prices.
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y
~~~~~~~~~

c (y )

a - a 

— 0 1 — 
0 1

T(y ) T( y )

FIGURE 2.1 FIGURE 2 .2

P(c°)

x(y°) 
P(a) 

1_fl,- it1J ~O~~~ —

T(y°) T(y°)

FIGURE 2.3 FIGURE 2.4
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3. STOCHASTIC CASE

In this section we will study the stochastic case, i.e.

w c [0 ,A) is a nondegenerated random variable and Prob [w = a] = a > 0

First we will introduce the competitive condition for the limiting

policy.

Lemma 3.1:

The limiting policy satisfies the following relations:

(3.1) p(y) = u ’(c (y)) if y > 0

(3.2) p(y) > —p ’(x(y)) + 6AEp(Ax (y) + w) with equality if x(y) > 0

Proof:

Using Theorem 1.3 and Lemma 2.1 we get

p
t(y) < p (y) < u’(a) , f or all y > a

ct (y) > c~ (y) > a , fo r all y > a

c
~

(y) > 0 , for all y > 0

Now taking the limit in (B.l) and (B.2) we get (3.1) and (3.2). •

Theorem 3.2:

If 0 < 6 < 1 , the limiting policy is optimal.

Proof:

As we did in Theorem (2.4) it suffices to show that

urn  6tp(y t)y t 
— 0
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When 0 < A < I, we have that

y
t 

< ~t l
y
l + A(l + A + ... + A

t 2
)

t—l 1 A< A  y

So, 6tp(yt)yt < (6
tA

t_l
y
l + ótA 1 

~ 
)
~ 

u ’ (a) now taking the limit

as t • and using the fact that 0 < A < 1 we get that

u r n  o
t
p(y

t
)y

t 
0 .*.

For the deterministic case we have shown that there exist a

T(y
1) < , such that for all t > T(y~’) yt E a . Tha t is to say,

whatsoever is the initial stock y
1 

, after a finite number of periods

the stock level will always be equal to a

For the stochastic case this result is not necessarily true, but

we will try to get an analogous result for this case, i.e., we will show

that the stock level will vary randomly, but will return to the level a

with probability one, and after it reaches this level it will start

all over again going out and coming back to this same level, and will

constitute a Renewal Process.

The next theorem tells us that there exist a stock level y

such tha t for  all t > ~ yt ~ [a ,~ ]

Theorem 3.3:

If 0 < 6A < 1 or t5A — 1 and p ’(x) > 0 then there exist a

y such that for all y > y, x(y)  + A < y

*For A — 1 we have y
~ ~ 

y
1 

+ tA , so, 6tp(yt)y t 
< 6ttu t (a)yl

and hence u r n  6ttu~ (a)y l — 0 since 0 < 6 < 1

0
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Proof:

First we will show that there exist a y such that x(y) + A < y

Suppose by con tradic tion tha t no t , i.e., for all y , x(y) + A > y or

y — x(y) = c(y) < A . Now, since c(y) is a continuous and nondecreasing

function we will have that lirn c(y) — M < w Taking the limit in
y-*
~

p(y) = u’(c(y)) as y -
~ ~ we get that u r n  p(y) u ’(M) . From (3.2)

we have

p(y) — — p ’ ( x ( y ) )  + 6AE p(Ax(y) + w)

< 6 A E p ( A x (y) + w) — p ’(x(y))

Now, taking the limit and using the fact that him x(y) = we get
y-,.
~

u ’(M) < Aóu ’ (M) — lim p ’(x (y) )

which is a contradiction , since either 0 < A 6 < 1 or A S = 1 and

p ’(x) > 0 . Consequently there exist a y such that x (~) + A < y

Finally as c(y) is a nondecreasing function it follows that

c(y) > c(~) > A for all y > y and consequently x(y) + A < y for

all y ~ y .U

Corollary 3.4:

There exist a unique y such that Ax (y )  + A — y

Proof:

There exist one since for y — a , x (a)  = 0 and A x ( a) + A > a

and f or y > y , Ax(y) + A < y , and x(y) is a continuous function.
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To show that it is unique suppose that there exist two and

say < 

~
‘2 

For and we have Ax(y
1
) + A =

A x ( y 2
) + A 

~
‘2 

and

(3.3) c(~~) = y (A - l)+~~

and

(3.4) c(
~2
) = y2 (A 

~ ~
)+ 

~
Subtracting from (3.3) the relation (3.4) we get

IA - i~~ I- -

c(y2) 
— c(y

1
) = 

~ I ~~ 
— Y1) 

< 0

or

c(y 2) < c(y1
)

which is a contradiction since c(y) is nondecreasing . I

It is an immediate consequence the following corollary

Corollary 3.5:

The level y such that Ax(y) + y = y satisfies the following

inequal i ties A < Y 1 A

We should mention that the result of Theorem 3.3 is not necessarily

true when 6A = 1 , p ’(x) = 0 . In (6) we consider the case 6 — 1

A = 1 and ~‘(x) — 0 and obtain the result that 0 < c(y) < w for

all 
~ 

~~~~ 

~ 
(converges almost sure) and u r n  c(y) = w

t-p~

Now, we will argue that the process {~~t} is a Delayed Renewal

Process. Let x0 
be the number of periods that the process takes to
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reach for the first t ime the state a and let x be the number of

per iods between the (j + 1)
th 

and the 1
th 

t ine the process rea ches the

state a . Th e random var iables  x0,x1, ..., x~ , ... , are independents

and x1, ..., x~ identicall y distributed , so, the process {X
j

} is a

Delayed Renewal Process. If y
1 

= a we will have a Renewa l Process. To

show tha t the random variables {x~~} have finite expec ted values , we will

cons ider the f ollowing assoc iated process: consid er the process in which

we have T ’( y) (T (~) + 1) states , where y is defined as in Theorem 3.3

and T(y) is the number of periods that it would take to reach the level

a if we make the hypothesis that w assumes always its smallest value a

Now define two mutually exclusive events , w = a or w a . If w = a

and we are at state j we move to state j — 1. , otherwise we go to state

T’(y) . The following figure shows how the new process behaves , where the

number in the arcs are the transition probabilities.

T’ (y) T ’ (y)

j  - 

j - l

1

t t + 1

If z is the random variable that represents the number of periods

tha t the process takes to reach the state 1 starting from the state

T ’ (y) , it can be shown that



i + ~ + 
2 

+ + 
T ’(~ )

Ez = 

~~~~~~~~ (~ )-l

Now , observing tha t Xj ~ z we will have that Ex~ ~ Ez

From the property that the process {~~
t
} constitutes a Delayed

Renewal Process and the uniqueness of y we can state the following

theorem .

Theorem 3.6:

With probability one the process {yt} will lay in the interval

[O ,y] and if w = a we will have Ax(y) + a < y and if y c Ea ,yJ

and w = A  A x ( y ) + A > y

Proof:

From th~ fa ct that {~~
t
} constitutes a Delayed Renewal Process

we have that with probability one the process ty t} will reach the

state a . From Corollary 3.5 , we have that y > A , so, in order to

get out of the interval [a,y] we must assume the existence of a

* — *
y < y such as that: Ax(y ) + A > y . But from corollary

* — *
it follows tha t Ax(y ) + A > Ax(y) + A or x(y ) > x(y) which is a

contradiction since x(y) is nondecreasing .

To show that whenever w = a \x(y) + a y , consider the optimality

condition (3 .2)  and assume that  x ( y )  > 0

p (y) — —p ’(x(y)) + 6AE p(Ax(y) + w)

(~x(y) + a)

which imp l ies t rom the monotonicitv p(y) that y > Ax(y) + a

When x(y) 0 and y ‘ a it I immediate that Ax(y) + a y
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Fina l l y to show tha t wi th probability one Ax (y) + A > y

* — *Suppose tha t for some y c [a,y ] A x ( y ) + y y bu t , this would

imp ly the existence of < y such that \x(y
1
) + A = which

contradicts Corollary 3.4.U

From Theorem 3.6 it will follow that a possible sample

for the process (y t) is the one represented as in Figure 3.1.

1
y

$

1 2 3 4 5 6 7 ... time

FIGURE 3.1

*
If we agree to call w — a a bad crop and w = A a bump crop

an interesting question is about the information that the change in

the market prices between two crops gives us about the occurrence of a

bad or a good crop, namely does an increase (decrease) in prices mean

a bad (good) crop? From the previous result it will follow that this

is not necessarily true for instance as yt > y we will have that

~t+l < yt independent of the result of the crop and consequently

t+l t
p > p

*Assurne for simplicity that  w is binary .

~~~ 
---I- -.

~
---

~=‘
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The study of the sensitivity of the level y with respect to

changes in the parameters of the problem will be done in the next

section.
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4. SENSITIVITY ANALYSIS

In this section we will study the effect of changes in the profit

schedule , crop yield , deterioration factor in the prices, policies, etc.

Whenever we compare the prices, policies of two problems one obtained

from the other by some change we will denote , in the following results,

the prices , policies , function for the new problem by p~ (y)

I t  t
~c~ (y),x~ (y)) , u~ (c) etc.

Theorem 4.1:

If p ’(x) > p,~(x) (6
~ 

> 6) then pt (y) > pt(y) 
(
pt(y) > pt (y)

if x~ (y) > o) and consequently c~ (y) < ct(y) 
(
c~ (y) < c~ (y)

if x~ (y) > o)

Proof:

The proof will be done by induction. First for t — 1 it is true

1 1 1
since 

~~~~ — p (y) — u (y) and x~ (y) — 0 for all y > 0 . Now

suppose that it is true for t — 1 , and by contradiction that it is

not for t i.e. for some y , x~(y) > 0 and p~ (y) < pt (y) , so,

c~ (y) > ct (y) and consequently x~ (y) < x t (y) . Now, from the optimahity

condition (B.2) we get

pt(y) — _p~ (x t (y) )  + A 6Ept~~ (Ax t (y) + w) )

< ~~‘(x~(y)) + A6Ep
t~~ (Ax~ (y) +

by the monotonicity of p
~~

1(y) and — p,~(x) . Nov using the induction

hypothesis and the fact that — ~‘(x~(~)) 
< _p~ (x t (y) ) we get
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pt(y) _
~~(x~ (~ ))  + A6 E p~~ ’(;x~~(y) + w)

~ p~
(y)

which is a contradiction. Similar arguments will hold if we consider

*
5 < 6 .1

The next theorem considers the case in which there exist a uniform

change in the revenue schedule , namely u~~(c) — ku(c) where k is a

real number.

Theorem 4.2:

If u
~
(c) — ku(e) 0 < k < 1 (k > 1) p ’ (x) increasing then

p~ (y) < kp t(y) ~~ > kP
t
(y))

Proof:

The proof will be done by induction. It is true for t — 1 since

p~ (y) = ku ’ (y) and p~ (y) — u ’(y) . Now suppose It Is true for t — 1
and by contradiction that is not for t I.e. p~ (y) > kpt(y) . Hence,

ku’(c~ (y)) > ~~~~~~~~~ or u’(c~ (Y)) > u ’(c~ (y)) and hence

c~ (y) < ct (y) and x~ (y) > x t(y) . Now from the optimality condition

(B.l) we get

p~ (y) _
~~‘(x ~ (y)) + 6A Ep ~ _ l(A x~ (y) + w))

_p t(xt(y) ) + 6AEp~
4(Ax t (y) + w)

< ..p t(xt(y ) )  + 6AkEp t~~ (Ax t(y) + v) by induction hypothesis

< _p~ (x t(y))k + óAkEp t_l (Ax t
(y) + v) since 0 < k < 1

~ kpt(y)

which is a contradiction.I
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The last theorem tell us that storage cost is an important factor in

exp laining changes in the producer ’s behavior when he foresees a change in

the revenue schedule. In the absence of It no changes will occur at least

In our simplified version of the reality.

An important question is what happens with the optimahity policy,

when the random variable w changes. We will be looking to effects related

in some sense to technological changes in the yield related either to a

net improvement in the crop yield , i.e., w* — w + w’ where w’ is non-

negative random variable, or to a reduction in the probability of getting

“smaller values” for the crop yield . The mathematical concept that captures

these ideas is the one related to stochastic order; the next definition

introduces it.

Definition:

A random variable x with distribution P is stochastically larger

(smaller) than y with distribution G if F
~
(x) < G (x) . This relation

will be denoted by x >- y . The following facts follow immediately from

*the definition .

Theorem 4.3:

i) If x — y + z where z is a nonnegative random variable then

x~~~y

ii) If h(x) is a nonincreasing function and x ~ y then

Eh (x) < Eh (y)

Theorem 4.4:

If w~~- w then p~ (y) < pt (y)

*For a proof see for instance (2].

- - _ —
_J_

~~~~~
-
~ 

4— —
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Proof:

The proof will be done by induction. First It is true for t = 1

since p~,(y) = p ’ (y) = u ’( y ) . Now let us assume that it is true for

t — 1 , and by contradiction that Is is not for t , i.e., p~ (y) > pt (y)

and consequently that x~ (y) > xt(y) and c~ (y) < ct (y) . Now using

the optimality condition (B.l) we get

p~(y) = 
_
~ ‘(x~ (y) )  + 6A Ep~ 1(Ax

t (y) + w*)
(4.1) 

_
~ ‘(x~~y~) + 6AEp

~~1(Ax~ (y) + w )

* t—lsince w w and p~ (y) is a nonincreasing function. Now from (4.1)

using the Induction hypothesis and the fact that x~ (y) > ut(y) we get that

p~ (y) < —p ’ (x t (y)) + E6Ap
t l 

(Xxt (y) + v)

t
~ 

p (y)

which is a contradiction.I

In order to study the effect to a change in the deterioration factor

we first need a lemma.

Lemma 4.5:

If u’(y)y is increasing and p ’(x)x decreasing then p~ (y)y is

also increasing for all t

Proof:

The proof will be done by induction . First it is true for t — 1

since u ’(y)y Is increasing . Now assume that It is true for t — 1

From the optimality conditions (B.l) and (B.2) we get
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pt (y)xt(y) — _p t (x t (y ))x t (y) + 6AE pt_l (Ax t (y) + w)x t (y)

(4 .2) — _p~ (x t (y) )x t (y) + 6E( Ax t (y) + w) pt4(Ax t (y) + w)

t—l t
— Ewp (Ax (y) + w )

and

t t , t t(4.3) p (y)c (y) — u (c (y)c (y)

Now adding up (4.2) and (4.3) we get

p t (y)y u~ (c t (y))c t (y) — p t (xt (y) )x t(y) + 6E( Ax t (y) + w)p t
~~~(Ax t (y) + w)

(4.4) t—]. t- Ewp (Ax (y) + v )

Let y ’ > y , hence, from the monotonicity of xt (y) and ct(y) we

have that xt(y~ ) > x t(y) and ct (y t) > ct(y) with at least one strict

inequality. So from (4.4) usIng the monotonlcity of u’(y)y the

induction hypothesis and the fact that pt~~(y) Is nonincreasing we get

pt(y)y < u~ (c
t (y~ ))c t (y t) — p I(xt (y~)x t (y~)

+ 6E (Ax t (y~ ) + w)) pt~~ (Ax t (y~) + w) — Ewpt~~ (Ax t (y I) + w)

— u I(ct (y~)ct (y~) — Q~ (x t (y~ ))x t (y~) + 6EAx t (y~)p t
~
4(Ax t(y~) + w)

< ~t (y~)y~ . I

Corollary 4.6:

If u ’(y)y is increasing , p ’(x)x decreasing and A* > A then

p~ (y) > p t (y)



30

Proof:

The proof will be done by induction. First it is true for t — 1

since p~
(y ) p ’(y) = u ’(y) . Now let us assume that p~~~(y) > p

1(y )

and by contradiction that p~ (y) < p~
(y) , so, x~ (y) < xt(y) . Now

from the optimality condition (B.l) we get

pt (y)x t(y) — _p~ (x
t (y ) )x t (y) + E6(Ax t (y) + w)pt

~~ (Ax t (y) + w)

t—1 t
- Ewp (Ax (y) + w )

t t * t  t— 1 *t
< —p ’(x (y)x (y) + 6E(A x (y) + w))p (A x (y) + w)

t—l * t— Ewp (A x (y) + w)

t t ~~~~~~~~~~~ *~~~ t
= (—p ’(x (y)) + 6A EA p (A x (y) + w) )x  (y)

< —p ’ x~ (y) + 6A tEA *pt l  A tx~ (y ) + w x t (y)

< ~~~~~~~~~ which is a contradlction.l

An interesting question Is the one related to the other direction

*
of the previous theorem, namely would u ’(y)y decreasing and A > A

implies that pt(y) < ~~~~ ; the answer is not and suffices to consider

1
a deterministic problem w — a > 0 and u(c) — — -

~~~ and ~ (x) — 0

and compute it for a two period problem.

Nov we will study the effect of changes in the profit schedule,

marginal cost of storage, deterioration factor and the crop yield in

the stock level y defined in Theorem (3.3).

First we need a lemma .

- 
~~~~~~~~~
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Lemma 4.7:

If p ’(x) is increasing then p(y) is strictly decreasing .

Proof:

Suppose by contradiction that if not , i.e., there exists y ’ and

y” y” > y’ such that p(y’) = p(y”) . If x(y”) = 0 , the theorem

Immediately follow since p(y ’) = u(y’) , p (y”) = u(y”) and u’(y’) >

u ’(y”) . Now suppose that x(y”) > 0 , from the optimality condition

(3.2) we get

(4.5)  p(y ”) — —p ’(x(y”)) + 6AEp(Ax (y”) + w)

But , p (y ’) — p(y ”) implies that c (y ’) c(y ”) and x (y ”) = x ( y ’) +

y” - y ’ . So

p(y ”) — —p ’ (x( y”)) + A6Ep (Ax(y”) + w)

< —p ’(x (y”)) +A6Ep (Ax(y ’) + w) by monotonicity of p(y)

< —p ’(x(y’)) + AsSEp (A(x(y)) + w)

~ 
p(y’)

which is a contradiction.U

Theorem 4.8:

If p,~(x) < p(x) (~~ > 6) then

Proof:

Suppose by contradiction that if not , i.e., y
~ 

< y . Now from

the definition of y
~ 

and y we have that

— --
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Ax
~
(y) + A y = ~x (~) + A

or

x
~
(
~
) < x(~)

which is a contradiction . Now suppose that = y , hence x~~~~
) —

x (~) , c~ (~~) = c(~) and = p (~) . From the optimality condition

(3.2) we get

— —p
~

(x
~

(y) )  + 6~ AE p~~(Ax~~(y) + w)
*

— —p,~
(x
~
(y)) + 6

*
AEp(Ax

~
(y) + w) from Theorem 4.1

— —p~ (x(y)) + 6~ AE p (A x ( y )  + w)

> —p ’(x(y)) + 6AE p(Ax (y) + w)

m

which contradicts Theorem 4.1 if we take the limit as t -~ there.

Theorem 4.9:

* * — —If p ’(x) is increasing , w ~ - w (w -~~ w) then y
~ 

< Y ~~ 
> y)

Proof:

*
Suppose by contradiction that w ~~- w and y,~ ~ 

y , so , from the

• definition of and y we get

Ax
~

(y) + A > y = A x ( y) + A

or x
~
(
~
) > x(~) which is a contradiction . Nov suppose that — Y

hence x~~~~
) — xG) , c

~
(
~~
) c(~) and p~

(y
~
) — PG) . Now, f rom

the optimality condition (3.2) we get

*Taking the limit as t -
~ .
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= —p ’(x
~
(
~~

)) + 6A E p
~~

(A x
~~
(
~~

) + w*)
(4. 5)

< —p ’(x~(~~ )) + 6A Ep
*

(Ax
~

(y
*

) + v)

sin ce w > w and 
~~~~~ 

is a decreasing function. From (4.5) and

Theorem 4.4 we get

< —p ’(x (
~

) )  + óAE p(~x(~ ) + w)

= pG)

which contradicts Theorem 4.4 if we take the limit as t -
~ there.I

Theorem 4.10:

If U
~
(c) = ku(c) , 0 < k < 1 , (1 < k) then y

~ 
< 

~ (~~ 
>

p ’(x) > 0

Proof:

From Theorem 4.2 taking the limit as t -
~ we get p~

(y) < kp(y)

c
~
(y) > c(y) and x~(y) < x(y) . First suppose by contradiction

that > y , so, Ax
~

(y) + A > y = Ax(y) + A or x
~
(
~
) > x(~) which

j~ a contradiction . Now assume that 
~~ 

= so, x~ (~~
) x (~) and

c
~
(
~~
) — c(~) and consequen tly 

~~~~~~ 
kp(~ ) . From the optimality

condition (3.2) multiplied by k we get

= kp(y) — —kp~ (x(~ ) )  + k6AEp (Ax (y)  + w)

— —kp ’(x
*
(y
~
) + k6AEp (Ax

~ G~
) + w)

> —kp ’(x
~
(
~~
) + 6A E p

~
(Ax

~
(
~~

) + w)

> 
~
p ’(x~(~~) + 6AEp

*
(Ax

~
(
~*
) — w)

— i~~
(
~~
) a contradictjon.I
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Theorem 4.11:

*If u ’ ( y ) y  is increasing , p ’(x)x nondecreasing A > A then

> y

Proof:

Fr om Theorem 4 .6 af ter taking the limit as t -
~ we get

p~~ y) p(y) and c~~(y) c(y) , x
~
(y) > x(y)

Suppose by contradiction y
~ 

< y . So,

* —

A :~~(y) + A < y = Ax(y) + A

or

* — — * —A x
~
(y) < Ax(y) < A x(y)

or x
~ G) ~ 

x (~) which is a contradiction.U

Obse rve that  the last result is onl y true whenever p ’ (x) > 0

for the case in which p ’ (x) = 0 we will have tha t y
~ 

= y , and

c
~~
(y) — c(y) , x~ (y ) = x( y)
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- 
LIqUID_STOCK ANI ) RELATED CONCEPTS

When we look at the data of the stock of some product for which the

production is affected by seasonal variations that are not controllable ,

say a grain , one question tha t arises is how much of this stock is held

in order to overcome the fluctuations and how much might be in “excess.”

The answer of this question is closely related to the concept of working

capital and Liquid capital considered by Keynes [3):

“Work in g cap ital has to provide for carry ing stocks be tween
harvests (for such carrying is a form of “process”) and also
fluctuations in the “carry—over ” from one harvest to another ,
in so far as such carry—over is required by the unavo idable
varia tions of individual harvests around the mean harvest.
On the other hand a net prospective surp lus , tak ing one
season with another , due to a mistake involving a relative
over—production , belongs to l iquid cap ital. ”

In Section 3 we proved the existence of a stock level y such that

if the initial stock level is above y the behavior of the stock level

as a function of time we look like Figure 5.1. That is , It decreases

stead ily ,  and af ter a f i n i te number of periods it will remain below y

chang ing in a random fashion .

4
y 

4

a 4

1 2 ... t

FIGURE 5.1
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Motivated by that result we could define “li qu id stock” at time t

for a given economy characterized by its demand , storage cost , and

deterioration factor and the yield by L
t 

= max — y, O}

As we have al r ead y seen , the “li quid stock” wil l  disappear af ter

a finite number of periods. So , when we look at the data of some product

we must be careful in considering It as a “liquid stock.” In general

a considerable part of it must be kept in order to overcome the variation

in the production , and should not be taken in advance as a kind of

“surp lus” tha t could be traded f or other prod ucts without any harm to

the consumption , as usually we are led to think when we have a sequence

of “good crops.”

A question that naturally ar ises in our simp le model , is how a

“liquid stock” can appear when the process is in its normal course tha t

is, the stock level lies in the interval [a ,y}

Several ways can be considered in order to try to answer that question .

Firs t le t us cons ider when the pr oducer for esee a slump in the market.

He expects his profits to be a fraction of the previous profit schedule ,

in mathematical terms

U~~(c) = ku(c) 0 k < 1

where U 1
(c) is the new profit schedule. As we have seen in Theorem 4.10

this will imp ly that ~~~~ ~ y , and if it happens tha t < y’ we will

have a li qu id stock In that situation , and the producer will reduce Its

stock steadily.
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We should mention again , that the appearance of a “liquid stock”

due to a slump in the market can only be explained in the presence

of a positive marginal storage cost.

Another important case to consider is the one related to technological

changes in the crop yield , either by a net increase in the yield or by

a reduc tion in the probability of smaller crops , say for  ins tance by new

irrigation techniques. As have been seen from Theorem 4.9, again in

the presence of a positive marginal storage cost , a “liquid stock” may

appear and the society will consume more for the same level of stock

available.

Another interesting question related to price behavior is the one

related to “backwardat ion of prices ” considered by Keynes and Houtacker:

‘We say tha t  we ha ve a “backwardat ion in prices” when the spot price

may exceed the forward price. ’ In spite of the fact that we do not

have an exp licit market for future products in our simple model , at

least we could try to answer the question of what happens in two extreme

situations , the first is when we have a “liquid capital” and the second

a shortage of the produc t, say the stock level is such that x(y) = 0

~ the f irst we will have that no backwardation can occur since whatsoever

is the result of the yield a reduction in the stock held will occur;

and as a consequence an increase In the “future price.” On the other

hand when we have that x(y) 0 we always have a decrease (or at least

it does not increase) of the “future price” no matter what is the result

of the crop yield. Still left is the important question of “normal

backwardation ,” that we hope might be explained as soon as we introduce

in our model an explicit p lace for future market.
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