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ABSTRACT

A "étgin producer"ggroduces and stores a grain, say wheat or corn, and
after each crop must decide how much to sell and how much to store. He
faces a T period planning horizon, a downwards sloping demand and a
storage cost, an increasing function of the amount stored. On the
supply side we will assume that the area planted, the inputs such as
fertilizers, labor etc. are fixed. The weather with all the unfavorable
damage by frost, bugs, and burning sun will determine the final yield

of the crop, i.e. we are assuming that the crop of each year is a random
variable. The objective of the producer is to ,maximize the total
expected accumulated profit. The concept of “Elquid stock"’Is introduced.
A sensitivity analysis is carried studying the effect of changes in the
parameters of the problem on the optimal policy.
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A GRAIN STORAGE PROBLEM, WITH RANDOM PRODUCTION
by

Jack Schechtman

0. INTRODUCTION

Ever since Joseph laid up corn in the land of Egypt for storage
against the seven years of famine to come, men have kept on hand a carry-
over, large or small, of food. Traders have tried to make a gain by a
change in the supply or demand. Storage always has been an important
factor in smoothing the supply. In this paper we will consider a simple
model in which a "grain producer'" produces and stores a grain, say wheat or
corn, and after each crop must decide how much to sell and how much to
store. He faces a T period planning horizon, a downwards sloping demand,
and a storage cost, an increasing function of the amount stored. On the
supply side we will assume that the area planted, the inputs such as
fertilizers, labor, etc. are fixed. The weather with all the unforseeable
damage by frost, bugs, and burning sun will determine the final yield of
the crop, i.e. we are assuming that the crop of each year is a random
variable. The objective of the producer is to maximize the total expected
accumulated profit. This model is similar to the one considered by
Samuelson [ 4 ] except that we consider the yield of a crop a random variable
as opposed to a yield known with certainty.

In this paper we will use the basic concepts of competitive prices
and policies developed in [5].

Section 1 contains the basic facts and theorems that will be used in
this paper and it is included for sake, of completeness. The deterministic

case is considered in Section 2. Section 3 considers the stochastic case,




and it is shown that when we follow the optimal policy the stock level
will stay in an interval [a,?] forming a renewal process. The level
y will be important in the definition of "liquid stock," an analogue
to "liquid excess capital" considered by Keynes in "A Treatise on Money,
Vol. II." 1It's basic property is that if the stock level is above vy
the producer will sell an amount of grain such that the stock available
in the next period will be smaller than the previous one no matter what
happens with the crop yield. A discussion of this concept and related
ones is given in Section 5. The question of how a "liquid stock" can
appear after the process has reached its normal course is discussed in
Section 6, where the effect of changes in the demand schedule, crop

yield, storage cost and deterioration factor are considered.
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1. THE MODEL

In this section we will introduce the model and state the basic
definitions and results. For proofs of these results the reader could
refer to [ 5] and for a discussion of the concepts for deterministic
case to [1].

A grain producer manages the production and storage of a grain.
The area planted, labor and physical inputs are constant, with a fixed
cost K . The storage cost is an increasing function of the amount
stored. The demand is a downwards sloping function and the supply at
each period is a random variable. The producer problem is to decide
how much to sell, how much to store at each period in order to maximize
the total expected profit accumulated during T periods. A period is
defined as the time between crops and we will simply call it "year."
It is assumed that the yield is available at the beginning of the year
and that the decision of how much to store and how much to sell are

done at the same time.

1.1 Finite Time Horizon Problem

The problem is divided in T periods that are numbered as

1,2, ..., T -1,T in that order. We denote by:

Y, ¢ amount of grain available at the beginning of period ¢t .

¢, : amount that is decided to be sold at the beginning of
period t .

x, : amount that is decided to be stored at the beginning of
period t .

W, : the yield that is produced during period t but is available

only at the beginning of period t + 1 .
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A : deterioration factor, i.e. if x 1is the amount stored for
the next period, then the amount available at the beginning
of it is Ax , 0 < A < i
§ : discount factor that actualizes the profits in different
periods.
P(c) : demand function, a decreasing and continuous function of the
amount sold c .
p(x) : storage cost function, an increasing and continuous function

of the amount stored x .

u(c) : the revenue function, i.e., u(c) = P(c)c .
The problem can now be formulated as

T
max E ) (u(ey) - p(x.))
t=1

subject to Ce + Xy o™ ¥y

and Yot * Axt + Wt

where E 1s the expectation operator. The random variable wt

*
t=1, ..., T will be assumed to be i.i.d.

1.2 Dynamic Programming Formulation of the Model

1f Vt(y) is the maximum present value of the expected profit that
can be achieved by using an initial amount of grain y optimally through
t periods, then the usual Dynamic Programming formulation leads us to

the following functional equations:

*
The constant cost k , is not included since it will not affect the optimal
policies.




V[(y) = max {u(c) - p(x)+-6EVt-1(Ax + wt)}

1.2.1) s.t. c+x =y

¢ > L0 R S

Definition:

A policy for a T period problem is a sequence of pair of functions

{ct(y),xt(y)}t=1 4 such that xt(y) + ct(y) =y, xt(y) >0,

T
ct(y) > 0.

Definition:

A T period policy is optimal if (ct(y),xt(y)) is a solution of

(1.2:1) for €2 1.

Definition:

A T period policy is competitive if there exist a sequence of
nonnegative continuous functions {pt(y)}t=1 T such that
LR,
i) ct(y) maximize u(c) - pt(y)c

s.t. ¢ > 0

ii) xt(y) maximize - p(x)+-6Ept-1(Axt(y) + W)(Ox + W) - pt(y)x

8.t x>0
=

111) p°(y) = 0 .

Conditions i) and ii) have very natural economic interpretations,
they decentralize the producer activity in two parts, the first tells
the producer how to choose the correct amount to sell, ct(y) , by

*
maximizing the profit when he buys the grain at a price pt(y) +

*
The reader should note the difference in notation between the competitive

prices pt(y) denoted in general by lower case letter and the actual market
price P(c) denoted by a capital letter.




the second tells him how to choose the correct amount to be stored,
xt(y) , by maximizing the expected intertemporal profit obtained by the
storage activity.

The next theorem will be stated without a proof, the interested
reader might refer to [ 5] for this result and others that will be

used here.

Theorem 1.1:

If a policy {ct(y),xt(y)}t‘_l is competitive then it is
wi .

sk
optimal. Furthermore if we assume that the competitive prices

are decreasing functions then {ct(y),xt(y)} are

{pt(y)}c=1 MR |

nondecreasing and continuous functions of vy .

The last result is true without any assumption about u(c) and
p(x) except those about continuity. In order to obtain some qualitative
results and the converse of Theorem 1 it will be necessary to assume
that wu(c) 1is strictly concave, increasing and differentiable, p(x)
differentiable, nondecreasing and convex.

The following facts will be stated without a proof:

Theorem 1.2:

Whenever u(c) 1is strictly concave, increasing, differentiable
and p(x) nondecreasing, differentiable and convex, the following

statements hold.

A. The function Vt(y) is strictly concave, nondecreasing for

all t and furthermore Vt(y) is differentiable for all y > 0 .

*
In general the differentiability at y = 0 will depend on the specific
problem.




i.

w

e.

If a policy {ct(y),xt(y)}t= is optimal then it is

e O
competitive and furthermore (ct(y),xt(y)) satisfy the following
conditions:
(1) pt(y) u'(ct(y)) with equality if ct(y) L O

2) pt(y) » -p'xt(y)) + SAEpTTLOxE(y) + W) with equality 1if

v

xt(y) > 0 where pt(y) = Vt'(y) the derivative of Vt(y)
The prices pt(y) are continuous decreasing functions. The
continuity is defined on (0,*) or [0,») depending on whether
Vt(y) is differentiable or not at y = 0 .
The competitive price functions are increasing with t 1i.e.

pt—l(y) for all t > 1 and consequently

ct_l(y) and xt(y) >

pE(y)

ct(y)

v

xt—l(y) for alll e >

A

The limiting policy defined by c(y) = lim ct(y) and
oo
x(y) = lim xt(y) are continuous and nondecreasing functions.
t->c0

From now on we will assume that the conditions of Theorem 2 hold.
In general it will be interesting to compare the stochastic problem,

W ¢ [a,A] 1is a nondegenerate random variable with those in which

a,W=A,or W:=Ew. If p;(y) ’ (pi(y),pf(y)) is the price
w

for a problem in which W= a , (W=A , W =W = EW) then the following

results are true.

Theorem 1.3:

COIEMCORS (p§<y) < pt(y>) and consequently c (y) £ c"(y) ,

(ct(y) < c;(y)) ; x:(y) > "9 (":(y) < xt(y)) furthermore if

t
u'(c) and - p'(x) are convex functions then p_ < pt(y) and

consequently cf(y) 2 ct(y) and xf(y) < xt(y)
W

W

XL S NIRRT



The last theorem tells us that if we assume the pessimistic
(optimistic, average) point of view of getting always the smallest
yield (largest yield, the average yield), for the same amount of grain
available we will store a greater (smaller, greater) amount than if we

assume that W € [a,A] 1is a nondegenerated random variable.

1.3 Infinite Time Horizon Problem

In this section infinite time horizon problems are considered.

The producer problem is now:

o

max E ) Gt-l(u(ct) - 0(x))
t=1
| s.t e + x, = Axt-l = wt—l t > 2
xl + cl = yl

The stationary characteristics of the model leads us to consider
only stationary policies, i.e. the decision of how much to sell and how
much to store are only functions of the amount at hand and not of the

period considered.

Definition:

A policy is a pair of functions (c(y),x(y)) such that c(y) >0,
x(y) 2 0 and c(y) + x(y) =y . That is if y is the stock at hand
c(y) define how much to sell, and x(y) how much to store for the

next period.




o

L *
In many cases the series E z ét l(u(ct) - p(xt)) might diverge.
t=1

In order to compare policies it will be necessary to introduce the

following definitions:
Definition:
A policy (c(y),x(y)) overtakes another policy (c(y),x(y)) ,

starting with the same initial stock Yy o if there exist a To such

that

t=T

£ 1 @
e=1

W@ - 0&)) - ey - o)) > 0

for aXl . T > To .
Definition:

A policy is strongly optimal if it overtakes all the stationary

policies.

Definition:

A stationary policy (c(y),x(y)) 1is optimal if

T
lim inf E ] u(@) - p(x,) - (ulcy) - px,)) 20
i AL t=1

for any stationary policy (c(y),x(y))

The next definition and the following theorem will play a fundamental

role in the rest of the paper.

*
In general given a policy we will denote by Ye the corresponding stock
available at the beginning of period ¢t , c, = c(yt) « Ry @ x(yt) the

corresponding amount that will be sold at that period and stored for the
next period, respectively.

e
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Definition:
A policy (c(y),x(y)) is competitive if there exist a nonnegative,

nonincreasing function p(y) such that

i) c(y) maximize u(c) - p(y)c
c:O

i1) x(y) maximize - p(x) + SEp(Ax(y) + W) (Ax + W) - p(y)x
x>0

An immediate consequence of the definition of competitive policy

is the following theorem:

Theorem:

If a policy is competitive then the following conditions hold.
(1.3.1) p(y) > u'(c(y)) with equality if c(y) > 0

(1.3.2) p(y) 2 =o' (x(y)) + SXEp(Ax(y) + w) with equality if x(y) > 0 .

For finite time horizon problem, we stated a theorem that tells us
that if a policy is competitive then it is also optimal, for infinite
time horizon problems this result is not necessarily true. The next
theorem give us a sufficient condition for a competitive policy to be

optimal.
Theorem:

If a policy (c(y),x(y)) 1is competitive and

(1.3.3) lim E {th(yt)yt} = 0 then

o

the policy is also optimal.




ihal

The question of finding optimal solutions for infinite time horizon
problems is in general very difficult. Good candidates, are the policies
obtained by taking the limit as t » = of (ct(y),xt(y)) , which are
well defined functions. Conditions i) and ii) will be immediately
satisfied whenever we can show that pt(y) converges as t + ® to a
function p(y) , and for this it will suffices to show that there exist
a bound for pt(y) , since pt(y) 2 pt—l(y) for all t

In general a bound will be obtained by comparing the stochastic
case with the deterministic case in which we assume W = a . For

condition iii) it will be necessary to consider each case by itself.
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2. DETERMINISTIC CASE

In this section we will consider the case w = a . We will obtain
bounds for the prices p:(y) , study the behavior of the stock level when
we follow the limiting policy and finally it will be shown that the

limiting policy is optimal.
Lemma 2.1:

If 0<6& <1 and p(x) 20, or A =1 and p(x) > 0 then
c;(y) =y for 0<y<a and c;(y) >a for y > a.

To show that c;(y) =y for 0 <y <a it suffices to show that
x:(a) = 0 since x:(y) is a nondecreasing function. Suppose by

contradiction that x:(a) >0 . From (B.2) we have that

p:(a) = _pv(x;(a)) + éxp:’l(xx:(y) + a)

< p;-l()\x:(a) + 8)

nA

p:(xx;(a) + a) by (D)

and consequently a > Ax:(a) + a , since p:(y) is a decreasing function,

which is a contradiction. @

Corollary 2.2:

For all t , p:(y) <u'(a) if y > a, and P:(y) =u'(y) (if
0 <yg<a, and the limiting policy satisfy the following optimality

conditions if either a > 0 or u'(0) < =,
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(2.1) pa(y) = U'(ca(y))

(2.2) pa(y) > -p'(xa(y)) + kaa(kxa(y) + a)

where p_(y) = lim P;(Y)

| ]
Proof:

From Lemma (2.1) we get that

P:(Y) - U'(C;(y)) <u'(a) forall t,y>a
and
P:(y) =u'(y) for 0<yc<a.
Now taking the limit in (B.l) and (B.2) we will get (2.1) and (2.2).0

From now on whenever we consider infinite time horizon problems
*
we will assume that either a > 0 or u'(0) < = .
The next theorem tells us how the stock level changes when we

follow the limiting policy.

Theorem 2.3:

If 0<é6x <1 and p(x) 0,or =1 and p'(0) > 0 , then,

o yt » t 21 ; and if y1 is the initial

nv

for the limiting policy, y

A

stock, then there exist an integer T(yl) such that yt «a for t2 T(yl) 3

Proof:

1

First we will show that yt+ < yt for all ¢t > 1 . Of course

yt >a, for t > 1 since w=a , if yt > a and xa(yt) =0 .

3
Cases in which u'(0) = 4= can also be handled, but a discussion will
depend on the specific function u(c) .

R e e o b et t U U——
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+ +
Then yt 1 = a and hence yt A 5 yt 6 yt >a and x2Gy%) >0,

then

pa(yt) = o' (x3(yh)) + kaa(yt+1)

t+1

<Py )

t+1
hence, vy < yt since pa(°) is nondecreasing. Now, if yt = a

t+1

using the fact that xa(a) = 0 we will have that vy = a and

hence yt+1 < yt

The existence of T(yl) is immediate when y1 < a since Ca(yl) = yl
and so T(yl) = 1 . For y1 > 0 suppose by contradiction that for all

t xa(yt) > 0 . From the optimality condition (2.1) we will have

pa(yl) = -p'(xa(yl)) + kaa(yz)

p,(v)) = -o'(xa<y2)) + 8p, (y7)

pa(yt) . -o'(xa(yt)) + kaa(yt+1)

Adding up we get

1 $ i : t t+l
(2.3) p,(y) = 121 r o'(xa(y )) + (82 - 1) 122 Pa(y)) + &dp (y )

Since yt > a for all t then

t+l

Pa ") £ p, 0" s p (@) = ut(@ .

t

Now, since x > O , from (2.3) and using the fact that p(yt) 2 p(yl)

for all t we get




SRR e i v

a y a ] a

or, if p'(0) > 0,
1 1 ,
ply) < 2@ = §X)p (y") + 8xu'(a) - te

which is a contradiction since the last inequality cannot hold for
all t .8
Theorem 2.4:

If 0 <48 <1 the limiting policy is optimal.

Proof:

It suffices to show that 1lim tha(yt)yt = 0 . From previous
>
results we have that

étpa(yt)yt £ s%'(a)y' , for all ¢ .

The theorem now follows from the fact that 0 < 6§ <1 .0

Figures (2.1), (2.2), (2.3) and (2.4) represents the behaviour of

yt 5 e 5 xt and Pt = P(ct) , where the P® are the market prices.
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3. STOCHASTIC CASE

In this section we will study the stochastic case, i.e.
w e [0,A] 1is a nondegenerated random variable and Prob [w =a] =a > 0 .
First we will introduce the competitive condition for the limiting

policy.

Lemma 3.1:

The limiting policy satisfies the following relations:
(3.1) p(y) = u'(c(y)) - 4f y >0

(3.2) p(y) 2 -p'(x(y)) + SAEp(Ax(y) + w) with equality if x(y) > 0 .

Proof:

Using Theorem 1.3 and Lemma 2.1 we get

P (y) b p;(y) <u'(a) , forall y > a

<t y) 2 el (y)

v

a, for all y > a

ct(y) >0, for all y > 0 .

Now taking the 1limit in (B.1l) and (B.2) we get (3.1) and (3.2). 08

Theorem 3.2:

If 0< 6§ <1, the limiting policy is optimal.

Proof:

As we did in Theorem (2.4) it suffices to show that

lim th(yt)yt =0 .

too
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When 0 < A < 1 we have that

yt < At°1yl + AL+ 2+ oee 4 At-z)

)‘c-lyl + A

A

A
1 -2

So, étp(yt)yt < (Gtxt—lyl + 55k

A
e A) u'(a) now taking the limit
as t > «» and using the fact that 0 < X < 1 we get that
t T *
lim 6 p(y )y =0. @

Lo

For the deterministic case we have shown that there exist a
T(yl) < = , such that for all t > T(yl) " yt = a . That is to say,
whatsoever is the initial stock y1 , after a finite number of periods
the stock level will always be equal to a .

For the stochastic case this result is not necessarily true, but
we will try to get an analogous result for this case, i.e., we will show
that the stock level will vary randomly, but will return to the level a
with probability one, and after it reaches this level it will start
all over again going out and coming back tc this same level, and will
constitute a Renewal Process.

The next theorem tells us that there exist a stock level vy

such that for all t > 1 yt e [a,y)

Theorem 3.3:

If 0 <8 <1 or 82 =1 and p'(x) > 0 then there exist a

; such that for all y > ;, x(y) + A < ¥

*
For A = 1 we have yt < y1 + tA , so, étp(yt)yt < Gttu'(a)y1
and hence 1lim 6ttu'(a)y1 =0 since 0 < 4§ <1 .

Lt
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Proof:

First we will show that there exist a y such that x(y) + A <y .
Suppose by contradiction that not, i.e., for all y, x(y) + A >y or
y = x(y) = c(y) < A . Now, since c(y) 1is a continuous and nondecreasing

function we will have that 1im c(y) = M < » . Taking the limit in

y—»cu

p(y) = u'(c(y)) as y » » we get that lim p(y) = u'(M) . From (3.2)

y*)-m

we have

p(y) = - p'(x(y)) + SXEp(Ax(y) + w)

< AEp(x(y) + w) - o' (x(y))

Now, taking the limit and using the fact that 1lim x(y) = @ we get

y%

u'(M) < Adu'(M) - lim p'(x(y))
3o
which is a contradiction, since either 0 < A6 <1 or X6 =1 and
p'(x) > 0 . Consequently there exist a y such that x(y) + A < .
Finally as c(y) 1is a nondecreasing function it follows that
c(y) 2 c(y) > A for all y > y and consequently x(y) + A <y for

all y > y .8

Corollary 3.4:

There exist a unique y such that Ax(y) + A=y .

Proof :

There exist one since for y =a , x(a) = 0 and Ax(a) + A > a ,

and for y >y , Ax(y) + A<y, and x(y) 1is a continuous function.

L PR ARSI E ,




To show that it is unique suppose that there exist two ;1 and ;2

say ;1 < ;2 . For ;l and ;2 we have Ax(?l) + A = ;1 :

Ax(;z) + A = ;2 and

(3.3) C(;l) = yl(x - 1)+_?
and
(3.4 Gy = v+ 2

Subtracting from (3.3) the relation (3.4) we get

N
g teetn ) ( ) ) (yz ; yl) g

or

C(Yz) < C(yl)
which is a contradiction since c(y) is nondecreasing. @

It is an immediate consequence the following corollary

Corollary 3.5:

The level y such that ix(y) + y = y satisfies the following

A
- A

inequalities A

A

Y&
We should mention that the result of Theorem 3.3 is not necessarily

true when &) =1, p'(x) =0 . In (6) we consider the case ¢ =1 ,

A =1 and p'(x) = 0 and obtain the result that 0 < c(y) < w for

3l ¥, yt ——= » (converges almost sure) and lim c(y) = v .

s.t. toro

Now, we will argue that the process {yt} is a Delayed Renewal

Process. Let X0 be the number of periods that the process takes to




21

reach for the first time the state a and let xj be the number of

periods between the (j + 1)th and the jth time the process reaches the

state a . The random variables xO,xl, e o xj, ... , are independents
and Xps cees xj identically distributed, so, the process (xj} is a

I
Delayed Renewal Process. If y = a we will have a Renewal Process. To

show that the random variables {xj} have finite expected values, we will
consider the following associated process: consider the process in which
we have T'(;) = (T(;) + 1) states, where ; is defined as in Theorem 3.3
and T(;) is the number of periods that it would take to reach the level

a 1if we make the hypothesis that w assumes always its smallest value a .
Now define two mutually exclusive events, w=a or w#a . If w=a
and we are at state j we move to state j - 1 , otherwise we go to state

T'(y) . The following figure shows how the new process behaves, where the

number in the arcs are the transition probabilities.

T' (y) T'(y)
j
j=-1
X
t t + 1

If 2z 1is the random variable that represents the number of periods
that the process takes to reach the state 1 starting from the state

T'(;) , it can be shown that

o T e L
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o g
1+(1+<12+"'+(1T(y)

“T'(§)-1

Ez

Now, observing that xj < z we will have that Exj < Bz 0,
From the property that the process {yt} constitutes a Delayed
Renewal Process and the uniqueness of y we can state the following

theorem.

Theorem 3.6:

With probability one the process {yt} will lay in the interval
[O,;] and if w = a we will have Ax(y) + a <y and if y e [a,y)

and w=A Ax(y) +A >y .

Proof:

From the fact that {yt} constitutes a Delayed Renewal Process
we have that with probability one the process {yt} will reach the
state a . From Corollary 3.5, we have that ; > A, so, in order to
get out of the interval [a,?] we must assume the existence of a
y* <y such as that: Xx(y*) + A >y . But from corollary
it follows that Ax(y*) + A > x(y) + A or x(y*) > x(y) which is a
contradiction since x(y) 1is nondecreasing.

To show that whenever w = a Ax(y) + a <y , consider the optimality

condition (3.2) and assume that x(y) > 0 .

ply) = ~p'(x(y)) + SXEpOx(y) + w)

< p(Ax(y) + a)

which implies from the monotonicity of p(y) that y > Ax(y) + a .

When x(y) =0 and y > a it i, immediate that Ax(y) + a -
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Finally to show that with probability one Ax(y) + A >y

* & *
Suppose that for some y ¢ [a,y] Ax(y ) + y <y but, this would

imply the existence of y., < ; such that Xx(;l) + A = ;1 which

I
contradicts Corollary 3.4.0

From Theorem 3.6 it will follow that a possible sample

for the process {yt} is the one represented as in Figure 3.1.

-
-

I
=

~<
=

STOCK LEVEL

=

2 3 4 5 6 7 oo time
FIGURE 3.1

*
If we agree to call w=a a bad crop and w = A a bump crop

an interesting question is about the information that the change in
the market prices between two crops gives us about the occurrence of a
bad or a good crop, namely does an increase (decrease) in prices mean
a bad (good) crop? From the previous result it will follow that this
is not necessarily true for instance as yt >y we will have that

yt+l < yt independent of the result of the crop and consequently
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The study of the sensitivity of the level ; with respect to

changes in the parameters of the problem will be done in the next

section.
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4. SENSITIVITY ANALYSIS

In this section we will study the effect of changes in the profit
schedule, crop yield, deterioration factor in the prices, policies, etc.

Whenever we compare the prices, policies of two problems one obtained
from the other by some change we will denote, in the following results,
the prices, policies, function for the new problem by p:(y) 5

(Ci(y)’x:(y)) , u,(c) etc.

Theorem 4.1:

If o'(x) > pl(x) (6, > 6) then pi(y) > pt(y) (p§<y) Sty
if x:(y) > 0) and consequently c:(y) < ct(y) (c:(y) < c:(y)

if x:(y) > 0)

Proof:

The proof will be done by induction. First for t =1 it is true
since pi(y) = pl(y) = u'(y) and xi(y) =0 for all y > 0 . Now
suppose that it is true for t - 1 , and by contradiction that it is
not for t i.e. for some y , x:(y) >0 and p:(y) :_pt(y) , 80,

c:(y) > ct(y) and consequently x:(y) < xt(y) . Now, from the optimality

condition (B.2) we get

pt(y) = =o' (x%(y)) + NEpt'l(Axt(y) + w))

< —p'(x:(y)) + AGEpt-l(Ax:(y) - w)

by the monotonicity of p:-l(y) and - p;(x) . Now using the induction

hypothesis and the fact that - p'(x:(y)) < -o'(xt(y)) we get
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pt(y) < _p;(xi(y)) 4 léEp:-](}x:(y) + u)
- p:(y)

which is a contradiction. Similar arguments will hold if we consider

*
§ <86 .8

The next theorem considers the case in which there exist a uniform
change in the revenue schedule, namely wu,(c) = ku(c) where k 1is a

real number.
Theorem 4.2:
If u,(c) = ku(c) O0<k<1l (k>1) p'(x) increasing then
Pe) < ') (pEG) 2 kpt(y))
Proof:

The proof will be done by induction. It is true for t =1 since
pi(y) = ku'(y) and pl(y) = u'(y) . Now suppose it is true for t - 1
and by contradiction that is not for t 1i.e. p:(y) > kpt(y) . Hence,
ku'(c:(y)) > ku'(ct(y)) or u'(c:(y)) > u'(ct(y)) and hence
c:(y) :_ct(y) and x:(y) > xt(y) . Now from the optimality condition

(B.1) we get

py(y) = -o'(x:(y)) + MEP:-1<>‘x:(y) + w))
< -p'(E () + BEL T OxE (y) + W)

< -p'(xt(y)) + GAkEpt-l(Axt(y) 4+ w) by induction hypothesis

-0'(xt(y))k + GAkEpt_l(Axt(y) +w) since 0 <k <1

na

A

kp® (y)

which is a contradiction.@
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The last theorem tell us that storage cost is an important factor in
explaining changes in the producer's behavior when he foresees a change in
the revenue schedule. In the absence of it no changes will occur at least
in our simplified version of the reality.

An important question is what happens with the optimality policy,
when the random variable w changes. We will be looking to effects related
in some sense to technological changes in the yield related either to a
net improvement in the crop yield, i.e., w* =w+ w' where w' 1is non-
negative random variable, or to a reduction in the probability of getting
"smaller values" for the crop yield. The mathematical concept that captures
these ideas is the one related to stochastic order; the next definition

introduces it.

Definition:

A random variable x with distribution F 1is stochastically larger
(smaller) than y with distribution G if Fx(x) < Gy(x) . This relation
will be denoted by x >y . The following facts follow immediately from

*
the definition.

Theorem 4.3:

i) If x =y + z where 2z 1is a nonnegative random variable then
Xry.
i1) If h(x) 1s a nonincreasing function and x 2 y then

Eh(x) < Eh(y) .

Theorem 4.4

*
If w » w then p:(y) < Py -

*
For a proof see for instance [2].
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Proof:

The proof will be done by induction. First it is true for ¢t =1
since p,(y) = p'(y) = u'(y) . Now let us assume that it is true for
t -1, and by contradiction that is is not for t , i.e., p:(y) > pt(y)
and consequently that x:(y) > xt(y) and ci(y) < ct(y) . Now using

the optimality condition (B.l) we get

- [ *
Py (y) = -o'(xf(y)) + 6AEP: 1(Ax*(y) +w )
(4.1)
< -p'(x:(y)) + GkEp:-l(Ax:(y) +w )
* 2
since w w and p: 1(y) is a nonincreasing function. Now from (4.1)

using the induction hypothesis and the fact that x:(y) > ut(y) we get that

Pp(y) < =o' (x"(y)) + Esxp" L x(y) + w)

nA

pt(y)

A

which is a contradiction.®

In order to study the effect to a change in the deterioration factor

we first need a lemma.

Lemma 4.5:

If u'(y)y is increasing and p'(x)x decreasing then p (y)y is

also increasing for all t .

Proof:

The proof will be done by induction. First it is true for t =1
since u'(y)y 1is increasing. Now assume that it is true for t -1 .

From the optimality conditions (B.1l) and (B.2) we get
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pt(y)xt(y) = -0 xS y))xt(y) + 6AEpt-1(Axt(y) + wxt(y)

(4.2) = o' (xS (y))xt(y) + SEOxE(y) + wpt L Oxt(y) + w)
- Bwpt "t 0t (y) + w)

and

(4.3)

pt(y)ct(y) = u' (ct(ymct(y) .

Now adding up (4.2) and (4.3) we get

PEy = u' c (et () - o' &xEyxE(y) + SEOxT () + Wt Oxb(y) + w)
4.4 -

(5.5 - Bwptlox(y) + W) .

Let y' >y , hence, from the monotonicity of xt(y) and ct(y) we
have that xt(y') 3_xt(y) and ct(y') z_ct(y) with at least one strict

inequality.

So from (4.4) using the monotonicity of u'(y)y the

induction hypothesis and the fact that pt'l(y) is nonincreasing we get

pE(yY < u' et "Nty - o' &y )xEly "
+ SEOxS(y") + wPt oty + w) - Bt Ot (y") + W)
= u' Nty - oy Xt + EXxE ()P Tt (v + W)
<ptly)y' . @

Corollary 4.6:

*
If u'(y)y is increasing, p'(x)x decreasing and A > A then
t
Paly) > p(y) .
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Proof:

The proof will be done by induction. First it is true for t =1

t-1

since p,(y) = p'(y) = u'(y) . Now let us assume that p:—l(y) >p (y)

and by contradiction that pi(y) < pt(y) 80N X:(Y) < Xt(y) . Now

from the optimality condition (B.l) we get

sL it el v 2 C It (3) + BROECGS 4 sint L Oatis) 4 W)
- Bt R
< ' xSyt (y) + 6E(k*xt(y) + W))pt-l(k*xt(y) + w)

L Bwpt O G )

(o' xS(y)) + & BP0 xE(y) + W)=ty

t-1

*
-p' x:(y) + 62'Ex P Atx:(y) + w xt(y)

A

A

pi(y)xt(y) which is a contradiction.®

An interesting question is the one related to the other direction
of the previous theorem, namely would u'(y)y decreasing and X* > %
implies that p:(y) i_pt(y) ; the answer is not and suffices to consider
a deterministic problem w =a > 0 and u(c) = - %- and p(x) = 0
and compute it for a two period problem.

Now we will study the effect of changes in the profit schedule,
marginal cost of storage, deterioration factor and the crop yield in
the stock level ; defined in Theorem (3.3).

First we need a lemma.

A S SRR G R R T o




Lemma 4.7:

1f p'(x) 1is increasing then p(y) 1is strictly decreasing.

Proof:

Suppose by contradiction that if not, i.e., there exists y' and

¥y ey

such that p(y') = p(y") . If x(y") = 0, the theorem
immediately follow since p(y') = u(y') , p(y") = u(y") and u'(y') >
u'(y") . Now suppose that x(y") > 0 , from the optimality condition

(3.2) we get

(4.5) p(y") = =p'(x(y")) + SXEpOx(y") + w)

But, p(y') = p(y") implies that c(y') = c(y") and x(y") = x(y') +

(1] ]

y -y . So

p(y") = —p'(x(y")) + M6Ep (Ax(y") + w)

A

-p"(x(y")) + M8Ep (Ax(y"') + w) by monotonicity of p(y)
< =p'(x(y")) + MEp(A (x(y)) + w)

ply")

A

which is a contradiction.@

Theorem 4.8:

If op(x) < p(x) (8, >68) then y, >y .

Proof:

Suppose by contradiction that if not, i.e., y, < ; . Now from

the definition of §* and y we have that

B T T

v
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A, (¥) + A <y = x(y) + A
or
X, (¥) < x(¥)

which is a contradiction. Now suppose that §* =y , hence x*(;*) =
x(y) , c*(;*) = c(y) and p*(§*) = p(y) . From the optimality condition

(3.2) we get

Pa(¥,) = -0 (x, (y)) + 6 AEp, (hx, (y) + w)
= - (x,(¥)) + § AEp(Ax,(y) + w) from Theorem By
= -, (x(y)) + S Ep(ix(y) + w)
> =p'(x(y)) + SAEp(Ax(y) + w)

= p(y)
which contradicts Theorem 4.1 if we take the limit as t - = there.

Theorem 4.9:

* * a A TET c
If p'(x) 1is increasing, w > w (w < w) then Yo € F > Y

Proof:
* - -~
Suppose by contradiction that w > w and y, >y , so, from the
. definition of §* and ; we get

Ax, (y) + A >y =2x(y) +A

or x*(§) > x(;) which is a contradiction. Now suppose that ;* - ; 3
hence x*(;*) = x(y) , c*(;*) = c(y) and p*(;*) = p(y) . Now, from

the optimality condition (3.2) we get

*Taking the limit as t » » ,




Py (74) = ="' (x,(5,)) + AEp, O\x, (3,) + w')
(4.5) : ;
< -p'(x*(y*)) + éAEp*(Ax*(y*) + w)

*
since w > w and p,(y) 1is a decreasing function. From (4.5) and

Theorem 4.4 we get

A

P(¥,) < =p'(x(y)) + SAEpOx(y) + w)

p(y)

which contradicts Theorem 4.4 if we take the limit as t » » there.l

Theorem 4.10:

M Ule) ~huley , 0< k=<1, @ %k) then 3,5y (7, >%),

p'(x) >0 .

Proof:

From Theorem 4.2 taking the limit as t > = we get p,(y) < kp(y) ,
c,(y) > c(y) and x,(y) < x(y) . First suppose by contradiction
that §* >y, so, Ax*(;) +A>y = Ax(;) + A or x*(§) > x(y) which
is a contradiction. Now assume that §* =y so, x*(;*) = x(y) and
c*(;*) = c(y) and consequently p*(§*) = kp(y) . From the optimality

condition (3.2) multiplied by k we get

Px(¥y) = kp(y) = ko) (x(¥)) + k6AEp (Ax(y) + w)

= ~kp'(x,(y,) + kSAEp(Ax, (¥,) + w)

v

ko' (x,(y,) + S3Ep, O\x,(¥,) + w)
> -o'(x*(;*) + GXEp*(Xx*(§*) = w)

= p*(;'*) a contradiction. @
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Theorem 4.11:

*
If u'(y)y is increasing, p'(x)x nondecreasing ) > A then

Proof:

From Theorem 4.6 after taking the limit as t > «» we get

Px¥) 2 p(y) and c,(y) < c(y) , x,(y) > x(y)

Suppose by contradiction §* Sy . 50,

x - = i
Ax,(y) + A<y =2x(y) +A
or
R i LI
A x, (y) < ax(y) < ) x(y)
or x*(§) < x(y) which is a contradiction.

Observe that the last result is only true whenever p'(x) > 0 ,
for the case in which p'(x) = 0 we will have that §* =y, and

ce(y) = c(y) , x,(y) = x(y) .
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5. LIQUID STOCK AND RELATED CONCEPTS

s uaghe. GecBinatindlSOSl-

When we look at the data of the stock of some product for which the
production is affected by seasonal variations that are not controllable,
say a grain, one question that arises is how much of this stock is held
in order to overcome the fluctuations and how much might be in "excess."
The answer of this question is closely related to the concept of working
capital and liquid capital considered by Keynes [3]:

"Working capital has to provide for carrying stocks between

harvests (for such carrying is a form of '"process') and also

fluctuations in the 'carry-over'" from one harvest to another,

in so far as such carry-over is required by the unavoidable

variations of individual harvests around the mean harvest.

On the other hand a net prospective surplus, taking one

season with another, due to a mistake involving a relative

over-production, belongs to liquid capital."

In Section 3 we proved the existence of a stock level y such that
if the initial stock level is above y the behavior of the stock level
as a function of time we look like Figure 5.1. That is, it decreases

steadily, and after a finite number of periods it will remain below ;

changing in a random fashion.

FIGURE 5.1

A
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Motivated by that result we could define "liquid stock'" at time ¢t ,
for a given economy characterized by its demand, storage cost, and
deterioration factor and the yield by L, = max {yt - vy,0}

As we have already seen, the '"liquid stock'" will disappear after
a finite number of periods. So, when we look at the data of some product
we must be careful in considering it as a ''liquid stock.'" In general
a considerable part of it must be kept in order to overcome the variation
in the production, and should not be taken in advance as a kind of
"surplus'" that could be traded for other products without any harm to
the consumption, as usually we are led to think when we have a sequence
of "good crops."

A question that naturally arises in our simple model, is how a
"liquid stock" can appear when the process is in its normal course that
is, the stock level lies in the interval [a,y] .

Several ways can be considered in order to try to answer that question.
First let us consider when the producer foresee a slump in the market.

He expects his profifts to be a fraction of the previous profit schedule,

in mathematical terms

UI(C) = ku(c) 0 <k<l1

where UI(c) is the new profit schedule. As we have seen in Theorem 4.10
this will imply that ;I <y ,and if it happens that yt < yI we will
have a liquid stock in that situation, and the producer will reduce its

stock steadily.
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We should mention again, that the appearance of a '"liquid stock"
due to a slump in the market can only be explained in the presence
of a positive marginal storage cost.

Another important case to consider is the one related to technological
changes in the crop yield, either by a net increase in the yield or by
a reduction in the probability of smaller crops, say for instance by new
irrigation techniques. As have been seen from Theorem 4.9, again in
the presence of a positive marginal storage cost, a "liquid stock" may
appear and the society will consume more for the same level of stock
available.

Another interesting question related to price behavior is the one
related to "backwardation of prices'" considered by Keynes and Houtacker:
'We say that we have a '"backwardation in prices' when the spot price
may exceed the forward price.' 1In spite of the fact that we do not
have an explicit market for future products in our simple model, at
least we could try to answer the question of what happens in two extreme
situations, the first is when we have a '"liquid capital' and the second
a shortage of the product, say the stock level is such that x(y) = 0 .
7v the first we will have that no backwardation can occur since whatsoever
is the result of the yield a reduction in the stock held will occur;
and as a consequence an increase in the "future price." On the other
hand when we have that x(y) = 0 we always have a decrease (or at least
it does not increase) of the "future price" no matter what is the result
of the crop yield. Still left is the important question of "normal

backwardation," that we hope might be explained as soon as we introduce

in our model an explicit place for future market.

L ——— e r——
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