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Abstract

Seeding/tagging estimates of the number of software errors are computed
from s,t andc where:t isthe number of errors either inserted deliberately
in a program (seeded) or found by debugging (tagged); s is the number found
by a debugger unaware of the contents of the first set; and c is the number
appearing in both sets,

Two types of questions can be raised. One type relates to the method

and procedure: the introduction of new errors, the changing of a program
by debugging, etc. The other relates to possible estimates, and their
evaluation and comparison. This report concerns itself with questions of
the second type. Estimates based on 3 models are discussed. The models
are defined by assumptions regarding the equal or unequal difficulty of un-
covering individual errors. Model 1 assumes all errors equally open to
discovery at all times. Models 2 and 3 assume that categories of difficulty
exist and that any error which appears can be assigned to the proper cate-
gory. Model 2 does not assume that the relative distribution of errors in a
program among categories is known, but Model 3 does. Estimates for
Models 2 and 3 are shown to be closely related to those for .i\/lodel 1. |

The mean and mean-squared error of a maximum-likelihood estimate
and a modified maximum likelihood estimate are given. It is shown how
these quantities vary with certain relations among the total number of
errors, size of tagged or seeded set and size of accompanying sample set.
Curves are drawn which can be used to determine optimum values for s
and t and a procedure is outlined for doing so. ;

More precise estimates can be obtained with several trials rather

than one as described above. Several such estimates are examined and




discussed.

It is concluded in general terms that a reasonable investment of time

will produce adequate estimates.
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SEEDING/ TAGGING ESTIMATIOY OF SOFTWARE ERRORS:
MODELS AND ESTIMATES

1.0 Introduction

1.1 Tagging/seeding census methods

It has been suggested that tagging/seeding census methods, used for
many years to estimate the size of animal and fish populations, be borrowed
from the arsenal of wildlife specialists for the purpose of estimating the
number of bugs in a computer program. The initial seeding suggestion
came from H.D. Mills*; the tagging alternative was proposed by
M. Hyman®.

The 'tagging'' and ''seeding'’ labels are descriptive of two ways in
which the marked individuals required by the process are introduced into

the population. In the tagging variant, also called a capture-recapture

second sample, presumably containing some tagged individuals, is then

¢
§
! census, a sample of the population is captured, tagged and returned; a
i
4
i

captured, Under certain assumptions one can estimate the total population
i from the number of animals in each of the two captures, and the number
recaptured, i.e., common to both, Seeding differs only in that the initial
capture and release are replaced by the procedure of adding other marked

individuals to the original population. If a uniform population is assumed,

the two processes are statistically identical: the estimates used for the

|

1

!

f total original population in the tagging version are used for the augmented
§ population in the seeding version. It is only necessary, in the latter case,

to subtract the number of seeded individuals from the result, If uniformity

In internal memoranda,
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is not assumed, differences may arise; these are discussed in Chapter 8 in

the context of application to computer programs.

1.2 Application to software errors

We can describe a process analogous to the foregoing animal census
inethod for estimating the number of errors in a computer program at any
point of its debugging life beyond the initial phase of correcting compiler-dis-
covered errors. Suppose we give the program to two people to debug
(or to continue debugging) independently, arranging that there be no
contact between them. Each person tabulates and corrects errors as they
appear. After an arbitrary period of time — which may differ for the two
debuggers — we look at the results, i.e., the two sets of tabulated errors.
Some errors will occur on both lists and some on only one. Consider one
set to correspond to the animals first captured, tagged and released, and
the other set to correspond to the second capture. The errors common to
both lists correspond to the tagged animals included in the second capture.
What we have described is a tagging analogue. For the seeding variant we
would eliminate one debugger and instead insert an arbitrary number of
known errors into the program. How many errors are seeded and which
they are is not known to the remaining debugger. Most of this report is
written with the tagging case in mind; however, translation to the seeding
case is direct, in the manner described in Section 1. 1.

It is hardly necessary to say that the tagging/seeding application to
software errors raises more questions than can be answered readily.
(Some, in fact, apply with equal validity to the original wildlife census
process and have provoked many long discourses in the statistical journals. )

For example, new errors may be introduced in the course of correcting
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those found., Also two debuggers may correct errors differently, leading

eventually to two quite different programs and different error counts,

We will, however, neither answer nor in fact examine all the questions
one might ask. Instead we will start with the rash assumption that basically
the process works. Our objective is to describe various models and to
evaluate a collection of estimates which they support. If the approach
described is feasible at all, one wants to know how good the results are
likely to be, which estimates produce the most accurate and precise results,
and under what conditions.

A subsequent report will describe an experiment which should reveal
how well the technique works, what the problems are, perhaps what the
answers to some of the questions are, and of course how our estimates
compare if, indeed, it is possible to make them.

It will be assumed here that no new errors are introduced and that
different debugzgers do not change the program in different ways in cor-

recting the same error.

The following symbols will be used uniformly:

N = total number of errors initially present in a computer
program (i.e., present when the test is begun), N includes
sceded errors if the secding variant is used.

N = any estimate of N

t = number of tagged errors; these are all the errors discov-
ered by the first debugger (the tagger) in the tagging casc,

or the number of seeded errors in the seeding case.
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s = number of sampled errors; these are all the errors dis-
covered by the second debugger (the sampler) in the tagging
case; or by the only debugger in the seeding case.

(© = number of errors common to the tagged and sampled sets;
i. e., the number found by both debuggers in the tagging
case, or the number of seeded errors found by the sole
debugger in the seeding case. ,

.

E = = Y «¢.=average of n values of c
n i

i=1

V(N) = E[(N—N)Z] = mean-squared variation of a biased estimate N
about the true value N, as distinguished from
var (N) = E{[N - EN)]?}

-~ -~ i

o (N) = [V(N)]?

b(N) = bias of estimate N = E(N) - N

[x] = greatest integer <x

Po = P(0) = probability that c=0

Estimates

N = ad hoc estimate

N = B

o c
|
o ASERYLEF 1)

Nl c+t+1 :

N s .th :

Nag o= the i of several estimates of the form of No

N S .th o

o the i” of several estimates of the form of Nl
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2.0 Model 1 - Equal Probability Assumption

2.1 Description

The simplest model on which to base an estimate is that which assumes
debugging to be completely random: that is, errors are said to be indistin-
guishable, each being found with probability 1/N where N = number of

errors in the program at the time.

2.2 Discussion
The basic assumption that all errors have equal probability of discov-

ery may not reflect the facts of life in computerland. Although there is

P A M A

little hard data, the general impression is that some errors are easy to

St

find and would quickly be turned up by any debugger while some consistently

PR

resist descovery,

One can readily conceive of several factors which may make for vari-

able difficulty., For example: type of instruction; particular test data;

debugger technique; location (beginning or end of the program, within a loop,

I — Tk

hidden by other errors, etc.).
Individually some such factors would cause underestimation by an esti-

mate based on the equal probability assumption and some would cause over-

o e e

estimation, As an example of the latter, variation due to debugger tech-

§ AR ATV OISR ol A M i

nique would tend to make the overlap, ¢ -- which appears in the denomina-
tor of estimates -- too small because the tagger and sampler are, so to
speak, fishing in different waters, On the other hand, a variation more
closely related to the nature of the error itself would cause an underestima-
tion since the sampler would in a practical sense have available only the

- easier bugs and the estimate would actually be of that subset.

It is not known whether some particular factors of this nature have an

6
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overriding effect, or whether all would be well enough served by throwing

them into the statistical mash of equal probability.
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3.0 Ad Hoc Estimate N

A reasonable estimate is suggested directly by the equal probability
assumption. We have a program with N bugs initially; let, for example,the

unknown number N be 100. If the first debugger,the tagger,finds t =20 bugs,t /N

or 1/5 of the total errors are tagged. The second debugger, the sampler,
finds s = 25 bugs. If the tagged and untagged bugs can be found with equal

ease (or difficulty), both should appear in the s-element sample in about the

oy S e A v

same proportion as in the entire set of errors: t/N= c/s, where c is the

number of tagged bugs turning up in the sample.

e el St 80 . e

Since t, s and c are known, N is approximately determined by the

ratio. This is our first estimate: N = L (or the nearest integer to st/c).

Cc
25x20 _
22240 .

¢ would have to be 5 to make the ratio exactly true and the estimate exactly

Suppose the 25 sampled bugs included 6 tagged bugs. Then N= 83.

v v
P e TV

right,

In the seeding version, the original errors, Nx' would have numbered
80, t = 20 would have been seeded; N = Nx + t = 100 would have been esti-
| mated by N = 83 as above, and the estimate of the original number of errors
would have been Nx =N -t=63,

The example also illustrates a concomitant of all estimates considered,

which we will call integer error: c =4, 5, 6 give respectively N = 125, 100, L
83; no in-between values are possible. Clearly the integer constraint on c

E can cause a large error in the estimate to arise from a small -- even the

i smallest possible -- deviation in ¢ from its "ideal" value. Integer error

will be discussed again in Section 6.




(ol i

5l s Akl

¥ AR

PPTRVIS . o

— .k Qtv il

4,0 Maximum likelihood estimate No

4,1 Distribution of data values

For a more formal derivation of estimates, we recognize that the
tagging/seeding procedures outlined describe a standard experiment in sam-
pling without replacement [1]. The collection of N errors is analogous to
an urn of balls, identical except for color: t balls -- the tagged errors --
are red while the N-t remaining are white. The debugging experiment is
equivalent to having a blindfolded sampler reach in and withdraw s balls.
Some balls in the sampled group will be red and some white. The number
of red balls sampled is a uiscrete random variable ¢ which can assume
only integral, non-negative values. The probability that g* will have some
particular value c is given by the hypergeometric distribution:

L9 B | e
(3) ()

The mean and variance of the distribution are respectively [2]:

s!t! (N-s)!(N-¢t)!

P(cls,t, Fe)= Nlc! (s-c)!(t-c)! (N-s-t+c)!

-—

E(cls,t,N) = &

var(c's,t,N) = sﬁt . '(-NW-(%I\]J—)—EI

The distribution is symmetrical with respect to s and t, implying reason-
ably enough, that it does not matter which debugger we call the sampler
and which the tagger, nor whether s or t is larger.

A lower bound on c¢ is certainly 0. However, if s +t > N, small
positive values are impossible. For example, if 55 of a total of 100 bugs

are tagged, and the sampler finds 50, there must be an overlap of at least

* The tilde will generally be omitted in this rer:vort: it should be clear from
the context whether the random variable or a particular value is intended.

9
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5 in the tagged and sampled sets; therefore P(c|50, 55, 100) =0 for c=0, 1,...,4.
The distribution as given does not exist for those values since the factorial
of a negative number is undefined; however, if we replace the factorials by
the corresponding gamma functions, we do get P=0 for 0<c<5.

Since the number of common bugs can exceed neither the number tagged
nor the number sampled, the limits of ¢ are described by

max (0, s +t - N) < c <min (s, t).
Figure 1 shows the distribution for different values of s,t and N, con-

tinuous lines replacing point probabilities for readability.

4.2 Maximum Likelihood Estimate

- In the case at hand s and t are known parameters, c¢ is experimentally
determined, and the problem is to estimate the unknown parameter N. The

maximum likelihood estimate No is shown in [1] to be

N, = [%]
o c

N is essentially equal toc the ad hoc estimate N. Since _sc_t does not exist
fo? c=0, we arbitrarily define No to be 2st when c=0, It is a reasonable
choice since it amounts to replacing c=0 by c=1/2,

The properties of N_ are derived and examined in Chapman {3}, Itis
shown there that No is a consistent* but positively biased estimate, the
bias and variance decreasing with increasing -SN-t- , i,e., with increasing
mean of the distribution, Because of the bias, the mean-squared error
V(l:l) =E[ (ICI—N)Z] rather than the variance was taken as a measure of disper-

sion. Both bias and mean-squared error have rather unwieldy expressions

Consistency here means that the estimate approaches N in probability in
either of two circumstances: either (1) N increases while s/N and t/N
remain constant or (2) N remains constant and the product st increases,

10
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E(c)=§,{l-
Wbl (N=s)(N—1)
0.25 st (N-S)N-
vorle)= 7 - T N(N=D
0.20 ;
t ] 5“
25| 100 1375
0.15 50| 200 (375
25| 100 |6.
30| 100 |I15.0
0.10 200}10,00010.0
0.05
0 —e C
25

' IG. 1. HYPERGEOMETRIC DISTRIBUTION FOR VARIOUS PARAMETER VALUES.
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and Chapman gives much simpler approximate forms, derived for st/N_~>10.

The work covered in this report had been substantially completed when
inconsistencies in certain results* led to a check of the simplified formulas
for bias and dispersion, It was discovered that certain approximations used
in deriving the formulas introduced serious error unless N, s and t were
actually very large numbers; the condition —SNE large was not sufficient.
Table 1 lists 3 cases, for all of which st/N = 13, 33, giving percent error in
the original approximation formula for E(No). Clearly the error decreases
as the magnitudes increase. The mean-squared error formula shows an

even larger deviation,

(st/N = 13, 3) % error in
approximate
N, s, t formula for E(No)
30, 26, 20 T,
270, 60, 60
3000, 200, 200 Ee ]

Table l. Percent error in first approximation formula for E(No)
for several examples with st/N=13, 33
The figure for bias resulting from the approximate formula was, for
small N, not much larger than the error, indicating that both bias and dis-

persion might actually be considerably lower than appeared. Consequently,

There were actually 2 sources of inconsistency, Since Chapman's ap-
proach did not apply in the multi-trial case (Sec. 6) another approach was
used and a new formula derived which, with the number of trials reduced
to one, should have given about the same result as was obtained with
Chapman's formula. However, the figures for dispersion in the example
tested were far different. The second inconsistency was noted when com-
parison was made with some specific cases in a tabulation containing
means and variances computed directly from probabilities [4].

12
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it was necessary to derive sccond-order approximations for bias and mean-
squared error which would be more accurate than Chapman's first-order ap-
proximations but still simipler than the exact expressions. Such approxima-
tions would permit quick calculation, provide insight into the manner in which
bias and dispersion change with changing parameter values, and facilitate

comparison with other estimates.

Two sets of bias and mean-squared error formulas were obtained, one
using the method applied by Chapman but eliminating the offending approxi-
mations, and the other based on a Taylor's series expansion of %t . The
first derivation is described in Appendix 1 and the second in Appendix 2,
The Taylor's series approach was initially applied to find the mean and
dispersion of estimates based on several data values (sce Sec, 6), a prob-
lem to which the Chapman method is not applicable, Although such was not
their raison d'étre, the resulting formulas can be used to verify the calcula-
tions for No as well.

On the basis of the new approximations, additional interesting informa-
tion was obtained on the manner in which bias and mean-squared error
change with the parameters, information which would be useful in designing

an actual estimation effort,

4,3 Bias
The new approximation for the expected value of No derived from

Chapman's exact result is

REIE Ly iy Sag Seg T S Tia ) (1)
where N+
@) =G+ 6+ 1)
- N+d .
" %1 (s+i)(t+i)’1“2’3’“-
13
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i The requirements for accuracy (see Appendix 1) are the following:

1. Enough terms must be included in the sum, which is a truncated
version of an infinite sum, to leave the remainder insignificant. Four or
five terms have been found sufficient.

2. The probability that ¢=0 must be very small. By referring to

i Tt e —

the examples of hypergeometric distribution in Fig. 1, one sees that this

occurs when the peak is far from 0, i.e., when the mean of the distribution,

st/N, is large. In fact, common sense tells us that large samples are

almost certain to have elements in common; i.e., P(0)= 0. st/N > 3 seems

R e

-

to be sufficient for accuracy unless N is very large (in which case the vari-

ance of the distribution and therefore Po is large).

Py P =

An alternative form of Eq. (1), derived by simple manipulations (see

Appendix 1) is:

]
i 2, N N .2 N m-1
: E(N)= N[k, +k, (gp) + 2ky ()" +... + (m-1)1k () ] (la)
i
” 1+ 1/N
| where &y = ¥ el (14 175
k; =k LS /N =2,3,...

l i~ %-1 (T+i/s) 1 +i/t) * *
J The quantities ki are close to 1 and increase to 1 as a limit as s, t and N
increase. If we set all ki=l’ we arrive at Chapman's approximate formula

B N N_2
E(No)—N[l+(st)+2( | . PP

st

A method described in [5] for deriving the expected value of a function

A ot M s

of a random variable by means of a Taylor's series expansion was applied (see

Appendix 2) leading to
- N 2 N 2
ENJ=N[Teg (<5 i+39™ (=511 (2)

;

where q = -J—(—MS)ZN-t
N

14

i e st o o o

m AR s BT WA e




This is subject to the same caveat as Eq. (!): truncation effect and
t

Po;é 0 are possible sources of error. Both tend to show up for small ; .

Zlf.",

9 and for large values of N, s, t, i.e., values for which min (s,t)> >

The bias, b, of an estimate N is defined by E(N) = N + b, The quantity

of greatest interest is the ratio % (or percent bias = bﬁ x 100%) since to

estimate N=100 as N=120 is clearly a grosser error than to estimate

T

N=1000 as 1020.

S T

21 -

-

The percent bias of No varies in 3 different ways: (1) with size of

tagged and sampled sets relative to total number of errors, quantified by

e

t
;
é

the ratio % : {2) with the total number of errors N; and (3) with size of

: : s o s
sampled set relative to size of tagged set, T The nature of each variation,

s

e iadl wial

with the other 2 sources held constant, is considered next.

A

b £ . s
1. = decreases as N increases, for N and — constant,

N t

The consistency of the estimate, shown by Chapman, implies that this

is so in the limit. For finite N, s and t, Eq. (la) shows that variation in

—— s — -k

E(No), with N constant, depends principally con the ;N? factors. While the
1 ki factors increase with increasing s and t, all are less than and close to

1 and vary very little over large changes in s and t. (See Fig. 2(a)).

|5 ik L st S ot
Pt N increases with N for ?\T and ry fixed.

In this case, the only variation in P)(NO) is with the quantities ki (see

Eq. (la)) which increase with increasing N under the given conditions.

The common upper limit of the ki's is 1 which occurs only for infinite s, t

+ AR TPETN, VORI D il A o A

and N, Chapman's formula, which results if all ki = 1, therefore gives an

upper limit to the bias ratio, holding for very large N, (See Fig. 2(b)).
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3. Feor -IS\I—t and N fixed, l%is greatest when — = 1.

Gl 1]

For SK" and N fixed, the product st is fixed, and £ = I implies

s =t =Jst . We can show (see Appendix 4) that

1 +i/N < 1+i/N
(L +ifa) (L +ifty — (1+i/J-s—t)2

from which it follows that ki' and therefore b/N, are maximum for s =t.
(See Fig. 2(c).)

The first property states the unsurprising fact that, given a particular
program, large samples produce accurate estimates. The third property
says that if, in addition, we make s and t unequal, we increase the accu-
racy of NO still more. However in both cases, the increased accuracy is
paid for in time: larger sets of errors take longer to find, and s +t in-
creases as f departs from 1.

The second property says that under the same conditions of sﬁt and f—
we get better results for programs with fewer errors, e.g. by estimating N
after some debugging has been done. However, as N increases, keeping Is\Tt

constant requires relatively smaller samples. For N=1000, for example,

st
N

with s =t=50, That is, in the second case, 100 bugs must be found while in

s=t=100 gives %\% = 10, while for N=250, we get the same value of

the first, with N four times as large, only 200, or twice as many bugs must

be found. If we spend the same time relative to N and find 400 bugs in the

first case, we increase Sﬁt- by a factor of 2 and decrease bias considerably.

To sum up the argument, if we keep the debugging time, as measured by

VO R a

s tt, proportional to N, then N has smaller bias for large N. (See Fig.

¢
H
l‘:’
‘ (2d). )
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4.4 Mean-squared Error

New approximate formulas for V(No), the variation about the true value

N, were derived using Chapman's method (Appendix 1) and the Taylor's

series method (Appendix 2). They are respectively,

st

t t
+ [-Zal+(%—-2)a2+(sﬁ-4)a3 T

V(N,) = N 1+

(3)

c+{a_ B2 m-Die ]}

St i il S

) where the a's are defined as in Eq. (1)

1 and
; m-1 1
: Bn-18 -1t ¥
j=1
b 2 2
V(N_) = N% [q(N/st) + 9a° (N/st)’ ] @)
!
& where q is defined as in Eq. (2).
{ An alternative form for Eq. (3) is
: 2
~ N? N N
V(N ) =N [+ ky - 2k)) + (3k,; - 2k,) o+ (11k, - 4k, )C3) +...
(3a)
1 N m-2
‘.J Ak _-2m-2)tk )™ 7]
3 where the k's are defined as in Eq, (la),
¥
: The formulas hold under the same conditions as the mean formulas:
H
E Po = 0, and low truncation error. Furthermore the same generalizations
{

can be made with respect to the variation of V(No) with N, s, t.

» S RETN
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5.0 Modified Maximum Likelihood Fstimate l\‘l

5.1 Bias and Mean-squared Error

e An intermediate result in Chapman's derivation of E(No),
| N-s-t >
1. N4l Hil "o T SKZE

E(c+l)'(s+1) (t+1) (1-K), where K =

0 otherwise

suggests the modified estimate

<
E N1= s+lc+r+l oy
‘ as a means of reducing the bias to practically zero assuming Po = 0. For
i E(Nl)=(s+l)(t+l)E(CTl]) - 1= (N+1) (1-K) - l
E(Nl) = N-K(N+1) where K=0 if PO:O
..‘, P E(Nl)zN .
{
3 : The bias is negative but very small even for small -;Tt . Consider for
; example, the case N=6, s=2, t=3, with _Is\x_t = 1, E(Nl), computed exactly,
is 5.8, and b/N is 3.3% whereas E(N_) is 6.6 with b/N = 10%.
4 However, for Nl as for No’ b/N increases if st/N is held fixed but N ~
J increases. If N=20, s=4, t=5, sﬁt is still 1 but E(Nl) is now 16, 9 and
: b/N = 15, 5%, 1
s : An additional advantage of Nl is the fact that its variation about N is ;
: ; somewhat lower than V(No) for N greater than about 50. Below 50, V(No) ;

is smaller. The second-order approximation for V(Nl)’ under the same

approximation rules as E(No) and V(No) is (see Appendix 1)

» NREARETN ¥

e 2 2 , 2
VN =(s+ D7+ 1) [ay to g+ 20, +bag 4. +(m-2)ta_]- (N+1) (5)
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6. SN o Al

s — Vi A

RIS, BTN OISO 1D A

or

% 2 2 N .2 2 N N .2
V(Nl)— (s+1)° (t+1) (——-st ) [(kZ -kl )+k3 (—-—-St )+2k4(_st) +.0.
(52)

sm-2) k(o)™

Some comparative figures for No and Nl are shown in Table 2 and in

Table 3 of Section 6. 3. The variation of UP(NI)/N with relations among the

parameters, as described in detail in Sec. 4.3, is plotted in Fig. 3.

5.2 Useful Range

It is obviously possible to make accurate and precise estimates with

large enough samples; the limiting case of s=t=N produces a perfect esti-

mate. Whether a good estimate can be made with considerably smaller

samples is the issue. Nl has almost no bias so the major problem resides
As

in the variance (which, for zero bias, equals the mean-squared error).

Eq. (5) and Fig. 3(a) show, the variance is low for the ratio st/N large

enough. But large ratios can be attained with relatively small samples only

for N large. For N=3000, for example, st/N=13,33 can be realized with

s=t=200, or one-fifteenth of N; but for N =30, st/N=13, 33 requires
s=t=20, two-thirds of N. Fortunately, Fig. 3(b) shows that smaller

values of st/N are required to give a specified value of ue/N at the

30-error level than at 3000. The EI%E = 1.0 curve in Fig, 3(d) shows the

minimum value of cre/N which can be attained if we limit s and t to half of

If we are willing to accept larger samples, we can, of course, do better

For the same

N.

for the smaller values, Larger samples mean more time.

time relative to N, estimates of larger programs will have lower -Ue/N

(Fig. 3(d)). Curves such as those of Fig. 3 can be exploited to design an

estimation test with knowledge of the trade-off between time and precision.
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N = 270 §§= 13, 33
s = 60

£ = 60
¢ N_ N,
9 400 371
10 360 337
11 327 309
12 299 285
13 276 265
14 257 247
15 239 232
16 224 218
17 211 206
18 199 195

Table 2. Comparison of N0 and N

1

experimental results: - one example.
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5.3 Design of a Seeding/Tagging Reliability Test

The procedure is very simple. Our objective is to pick values for s
and t which will be likely to produce an estimate of the quality we want,
We begin with a ballpark estimate of the number of errors in the program,

based on whatever information we have — length of program, amount of pre-

vious debugging, experience with other programs of the same type, exper-
tise of programmers. Suppose we decide that there are probably about 150 i
errors. In that event Nl is the preferred estimate since it is practically ‘
unbiased and has a lower V than No in that range. Had the estimated N
been below 50 we would have had to check the bias and dispersion of Nj
and then choose between No and Nl'

We will be content with e = 30. Then cre/N =0.2 and from Fig. 3(b) we
find that the intersection of 150 and 0.2 is onthe curve for SNL-E 13. 33, (If
Fig. 3(a) contained a curve for N =150, we could have found the same infor-
mation there.) Then st=13,33x150=2000. We can let each debugger find
about 45 errors, or let one find 50 and the other 40. Fig. 3(c) shows qual-
itatively that the results will be about the same. We can also let s and t be,
say 20 and 100 and expect a somewhat smaller T but we will have to wait
considerably longer for the results.

The cost beyond that for the debugging which would have to be done any-
way would be identical for all choices since the additional cost is only for
the common bugs and the expected number of those is -;Tt= 13, 35,

The situation would be a little different if the program were not to be

completely debugged. The test could, for example, be a means of compar-

ing different programming techniques. In that case, it would not only take

longer but would also be more expensive to find 120 bugs than to find 90.
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6.0 Multi-Trial Estimates

6.1 Advantages
We have up to now been discussing an estimation process involving two
debuggers. Suppose we use 3 or more and consider the output of each pair
to be a separate result; m debuggers will give n=-r£(x}21-—ll possible data
values which can be combined to provide a new estimate with the following
possible advantages:
1. reduced integer c¢rror

2. reduced variance, or

3. smaller samples and less debugging time for the same variance.

6.1.1 Integer Error

It was noted in Section 3 that in any seeding/taggirg calculation an
error arises from the fact that ¢ is an integer, assuming one of only
min(s, t)+ 1 values. Any estimate, it follows, must also have one of only so
many values despite the fact that N may actually be an integer from
max(s, t) to infinity., This is particularly bothersome when the numbers are
relatively small<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>