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Abst rac t

Seeding/tagg ing estimates of the number of software e r ro rs  are computed

from s ,t andc w h e r e : t  is the number  of e r r o r s  eithe r inser teddel ibera te ly

in a program (seeded)  or found by debugging (tagged); s is the number found

by a debugger  unaware  of the contents of the f i rs t  set; and c is the numbe r

V appearing in both sets .

Two types of ques t ions ca n be ra ised . One type relates to the method V

and procedure :  the introduction of new e r r o r s , the changing of a program

by debugging, etc. The other relates to possible estimates , a~ d their

eva luation and comparison. This report concerns itself with questions of

the second type. Estimates based on 3 models are  discussed.  The models

a r e de f ined by assumptions regarding  the equal or unequal difficulty of un-

covering individual e r ro r s .  Model 1 assumes all e r r o r s  equally open to

discovery  at all t imes.  Models 2 and 3 assume that categories  of d i f f icu l ty

exist and that any e r ro r  which appears  can be a s s i gned to the prope r cate-

gory. Model 2 does not assume that the relative d is t r ibut ion  of e r ro r s  in a

program among categories is known , but Model 3 does.  Estimates for

Models 2 and 3 are  shown to be closely related to those for  Model 1.

The mean and mean-squared  e r r o r  of a maximum-likel ihood estimate

and a modif ied  maximum likel ihood es t imate  a re  g iven.  It is shown how

these quant i t ies  vary  with certain relations among the total number of

er rors , size of tagged or seeded set and size of accompanying sample set .

Curves  are  drawn which can be used to determine optimum values for  s

and t and a p rocedure  is outlined fo r  doing so.

More p rec i se  est imates can be obtained with severa l  t rials ra ther

than one as d e s c r i b e d  above. Several such estimates a r e  examined and

I
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discussed .

It is concluded in general terms that a reasonable investment of time

will produce adequate estimates .
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SEEDING! TAGGING ESTIMAT 101’ OF SOFTWARE ERRORS:

MODELS AND ESTIMATES

1. 0 Introduction

1. 1 Tagging/seeding census methods

V It has been suggested that tagging/seeding census methods , used for

many years to estimate the size of animal and fish populations , be borrowed

from the arsenal of wildlife specialists for the purpose of estimating the

number of bugs in a computer program. The initial seed ing  su g g e s t i o n

came from H. D. Mills~ ; the tagging alternative was proposed by

M. Hyman~ .

The ‘ tagg ing ’ and “seed ing 1 labels a r e  d e s c r i p t i v cV  of two ways  in

which the marked  ind iv idua l s  r e q u i r ed  by the p r o c e s s  a r e  in t roduced  into

4 the population . In the  tagg ing va r i an t , also cal led  a c a p t u r e - r e c a p t u r e

census , a sample of the population is cap tu red , t agged  and re tu rned ;  a

• second sample , pr ’~sumabl y containing some tagged  individuals , is then

V cap tured . U n d e r  ce r ta in  assumpt ions  one can est imate the  total population

f r o m  the n u m b e r  of an imals  in each  of the  two c a p t u r e s , and the number

r e c a p t u r e d, i. e . , common to both . Seeding d i f f e r s  onl y in that  the initial

capture and re lease  a r e  rep laced by the p r o c e d u r e  of a c d i n g  o ther  marked

individuals to the or ig ina l  population . If a u n i f o r m  population is assumed,

the two p r o c e s s e s  a re  statistically identical: the est imates  used for  the

total ori g inal population in the tagging vers ion  are  used  for  the augmented

population in the seed ing  v e r s i o n . It is onl y n e c e s s a r y ,  in the la t ter  case .

to subtract the numbe r of seeded i ndiv idua l s  f rom the resul t . If u n i f o r m i ty

I
In in t e r n a l  m e m o r a n d a.
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-• is not  assumed , di f f e r e n c e s  may a r i se ;  these are  d i scussed  in Chapter  8 in

V the contex t of application to computer p rograms .

1. 2 Application to software e r ro r s

We can describe a process analogous to the foregoing animal census

method for  estimating the number of e r ro r s  in a computer program at any

• point of its debugging life beyond the initial phase of correctin g compiler-dis-

covered e r rors .  Suppose we give the program to two people to debug

(or to cont in ue debug g ing) independently, ar ranging that there be no

• contac t between them. Each person tabulates and corrects  e r r o r s  as they

appear .  Af ter  an a rb i t ra ry  period of time — which may differ for the two

d e b ug ge r s  — we look at the results, i. e., the two sets of tabulated e r rors .

Some e r r o r s  will occu r on bo th lis t s and some on only one. Consider one

set to corres pond to the animals f i r s t  captured , tagged and re leased , and

t he other  set to correspond to the second captu r e . The e r r o r s  common to

bot h l ists co r r e spond  to the tagged animals included in the second capture.

~ rh at  we have described is a tagging analogue. For the seeding variant we

would e l iminate  one d e b ug g e r  and instead inse r t  an a r b i t r a ry  n u m b e r  of

known e r r o r s  into the program. How many errors are seeded and which

they a re  is not known to the remaining debu gg er . Most of this repor t  is

writ ten with the tagging case in mind; howeve r , t rans lation t o th e seeding

case is direct , in the manner described in Section 1. 1.

It is hardly necessary to say that the tagging/seeding application to

software errors raises more questions than can be answered readily.

(Some, in fact , app ly with equal validity to the original  wi ldl i fe  census

process and have provoked many long discourses in the statistical journals.

For example , new e r r o r s  may be in t roduced  in the course  of correct ing

2
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those  f o un d . Al so  two d e b u g ger s  may c o r r e c t  er r o r s  d i f f e r e n t l y,  leading

eventually to two quite different programs and different error counts.

We will , however, neither answer  nor  in fact  examine all the questions

one mi g ht ask. Instead we will start with the rash assumption that basically

the p rocess  wor ks . Our objective is to describe various models and to

evaluate a collection of estimates which they suppo rt. If the approach

described is feasible at all, one wants to know how good the results are

likely to be , which e s t ima tes  produce  the most accura te  and precise results,

arid under what conditions.

A subsequent report  will d e s c r i b e  an expe riment which should reveal

how well the technique works, what the problems are, perhaps what the

an3v. i~rs to some of th e questions ar e, and of course how our estimates

c omp ar e  if , inneed , it is possible to make them.

V It will be a s s u m e d  h e r e  tha t  no new e r r o r s  a r e  in t roduced  and that

d if f e r e n t  dehu~~.~ers do not change the prog ram in d if f e r e n t  ways  in cor-

r e c t i n g  the same e r r o r .

1. 3 N V t a t io1~

The fol lowing symbols will be used  unifo rml y:

N total number of errors initiall y I resent in a computer

Pro~~r~ m (1. e. p r e s e n t  when the tes t  is begun) .  N m i  ~u h :~

sceded e r r o r s  if the seeding variant is used .

N = any es t imate  of N

t nu m b e r  of tagged e r r o r s ;  ‘h ese  a r c -  all the e r r o r s  d i s c o v V

e , k V d  by the  f i r s t  d e bu g g e r  ( the t a g g e r)  in t h e  ta~~~ing  cap . : ,

or  the  numbe r of s eeded  e r r o r s  in the  seeding  case .

3
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V s number  of sampled e r r o r s ;  these  a re  all the e r r o r s  dis-

covered by the second d e b u g ger  (the sampl e r )  in the tagg ing

case;  or by the only debu gger  in the seeding case .

c = number of e r ro r s  common to the tagged and sampled se ts ;

• i. e . ,  the number found by both debu g g e r s  in th e tag g ing

case, or the number of seeded er rors  found by the sole

debugger in the seeding case.

I n
= — 

~~ 
c . = ave rage of n values of c

i= l

V(N) = E[ (N-N)
2
] = mean-squared variation of a biased estimate

about the t rue value N, as distinguished from

var (N)=E{[N - E(N)J
2
)

=

b(N)  = bias of estimate N = E(N) - N

[x] = greatest integer <x

P P(0) = probability that c 0

Estimates

= ad hoc estimate

N =~~~~~~0 c

N — ( s + 1 ) (t + 1J - 11 — c + 1

N = the .th 
of several estimates of the form of Noi 0

N 1. = the .th of several  estimates of the fo rm of N 1

4
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• i n
N — V N = average of n estimates of the form of N

0 n oi 0
1= 1

-~ n
= ~~ N1. = average of n estimates of the form of N 1

• i= i

(s+ 1) (t+ 1)

c + 1

5
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2. 0 Model 1 - Equal Probabi lit y Assumpt ion

2 . 1 Description

The simplest model on which to base an estimate is that which assumes

debugging to be completely random: that is , e r r o r s  are  said to be indistin-

guishable , each being found with probability 1/N where  N = number of

e r r o r s  in the p rog ram at the time.

2.2 Discussion

The basic assumption that all e r ro rs  have equal probabili ty of discov-

e r :  may not re f lec t  the facts of life in computerland. Althoug h th ere is

little hard  data , the general impression is that some e r ro r s  are  easy to

f ind  and would quickly be tu rned  up by any debugger  while some consistently

resist descovery.

One ~an re adil y conceive of several factors  which may make for  van -

able d i f f i c u l t y .  For example: type of instruction; particular test data;

debugger  techni que; location (beginning or end of the program, within a loop,

4 hidde n by othe r e r r o r s , etc. ).

Individually some such factors would cause underestimation by an esti-

mate based on the equal probability assumption and some would cause over-

est imati on. As an example of the latter , variation due to debugger  tech-

niqu e would tend to make the overlap, c - - which appears in the denomina-

tor  of estimates - - too small because the t agge r  and sampler are , so to

speak , f ishing in di f fe ren t  wate rs .  On the other hand , a va:iation more

closely related to the na ture  of the e r r o r  i tself  would cause an underest ima-

tion since the sampler would in a p rac t i ca l  sense have available only the

easier  bugs and the estimate would actuall y be of that subset.

It is not known whethe r some pa rticula r f ac to r s  of this na tu re  have an

6
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- ove r riding e f fec t , or whethe r all would be well enough served by throwing

them into the statistical mash of equal probability.
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3. 0 Ad Hoc Estimate N

A reasonable estimate is suggested directly by the equal p robabil i ty

assumption. We have a program with N bugs initially; let , f or exa mple , the

unknown number N be 100. Ifthefirst debugger,the tagger ,finds t =20  bugs , t / N

or 1/5 of the total e r r o r s  are tagged . The second debugger , the sampler ,

finds s = 25 bugs. If the tagged and untagged bugs can be found with equal

ease (or dif f i cu lty ) , both s hould appear in the s-element sample in about the

same pro portion as in the ent i re  set of e r ro r s :  t / N  c/ s . where  c is th e

number of tagged bugs turning up in the sample.

Since t, s and c are known, N is approximately det ermined by the

ratio. This is our f i r s t  estimate: ~~~ = ~~~~~ (or the nearest  integer to s t/ c ) .

Suppose the 25 sampled bugs included 6 tagged bugs. Then f~~~Z 5 x 2 O  
= 83.

c would have to be 5 to make the ratio exactly true and the estimate exactly

right.

In the seeding version , the original errors. N , would have numbered

80, t = 20 would have been seeded ; N = N + t = 100 would have been esti-x

mated by FT = 83 as above , and the estimate of the ori ginal numbe r of e r ro rs

would have been FT = - t = 63.x

The example also illustrates a concomitant of all estimates considered,

which we will call integer error :  c = 4, 5, 6 give respectively FT = 125, 100,

83; no in-between values are possible. Clearly the integer constraint on c

can cause a large error in the estimate to arise from a small - - even the

smallest possible - - deviation in c from its “ideal” value. Integer e r r o r

will be discussed again in Section 6.

8

~~~~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i: ~ 

-- 

V1~ V V V  

V V V V ~



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

4. 0 Maximum likelihood estimate N

4. 1 Distribution of data values

For a more formal derivation of estimates, we recognize that the

tagging/seeding procedures outlined describe a standard experiment in sam-

pling without replacement [1]. The collection of N error s is analogous to

an urn of balls , identical except fo r  color: t balls - - the tagged e r ro r s  - -

are red while the N-t  remaining a re  white. The debugging experiment is

equivalent to having a blindfolded sampler reach in and withdraw s balls.

Some balls in the samp led g roup will be red and some white. The number

of red balls sampled is a ~...tscrete random variable c which can assume

only integ ral , non-negative values. The probability that will have some

particula r value c is given by the hypergeometr ic  distribution:

1 t~~1N-t~ js~~,N— s~
p ,  1 

~ 
N1 — ‘c’ts—c ’ = ~c / t t _ c /  a ! t !  ( N — s ) ! ( N — t ) !

— 

1N~ 
— 

(N~ N !c! (s-c)!(t-c)! (N-s- t t c )!

The mean and variance of the distribution are respectively [2]:

E(c !s , t , N) =

t N1 — at ( N — s ) ( N — t )var~c a , , I — N N (N -1)

The distribution is symmetrical with respect to s and t , implying reason-

ably enough, that it does not matter which debugger  we call the sampler

and which the tagger , nor whethe r a or t is larger.

A lower bound on c is certainly 0. However , if s + t > N, small

positive values are impossible. For example, if 55 of a total of 100 bugs

are tagged , and the samp ler find s 50, there must be an overlap of at least

* The tilde will gene rally be omitted in this report ; it should be clear f rom
the context whethe r the random variable or a particular valu e is intended .

9
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S i n  the tagged and sampled sets; the re fore  P (c 150 , 55 , 10 0 ) = O f o r c 0, i ,... , 4 .

The d i s t r ibu t ion  as given does not exist fo r  those values s ince  the fac to r ia l

of a negat ive  number is undefined;  howeve r , if we re place the factorials  by

the cor responding  gamma functions , we do get P 0  for  0< c -( 5 .

SinLe the n u m b e r  of common bugs can exceed nei ther  the number tagged

V nor t l .~ number  sampled , the limits of c are  descr ibed by

max (0 , a + t - N) K c < m m  (s , t).

Figure 1 shows the distribution for different  values of a , t and N , con-

tinuous lines replacing point probabilities for readability.

4. 2 Maximum Likelihood Estimate

In the ca se  at hand s and t are known parameters, c is experimentally

determined , and the problem is to estimate the unknown parameter N. The

maximum likelihood estimate N is shown in [l~ to be

V 

N = ~~!~J 
. -

N 0 
is essent ia l ly equal to the ad hoc estimate N . Since — does not exist

for  c = 0 , we a rb i t ra r i ly define N0 to be Zst when c 0 . It is a reasonable

choice since it amounts to replacing c 0  by c 1/2 .

The proper t ies  of N0 
are  derived and examined in Chapman [3]. It is

shown there that N0 is a consistent * but positively biased estimate, the

bias and variance decreasing with inc reasing ~~~~~~~, 1. e. ,  with increasing

mean of the distribution. Because of the bias , the mean-squared e r r o r

V ( N ) = E [ ( N - N ) 2
] rathe r than the variance was taken as a measure of dispe r-

sion. Both bias and mean-squared error have rather unwieldy expressions

° Consistency here means that the estimate approaches N in probabili ty in
eithe r of two circumstances: eithe r (1)  N increases while s/ N  and t / N
remain constant or (2 )  N remains constant and the product at increases.

10
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FIG. 1. HYPERGEOMETRIC DISTRIBUTION FOR VARIOUS PARAMETER VALUES.
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and Chap man gives much simpler approximate f o r m s , d er i v e d  f o r  s t / N y  10.

The w o r k  covered  in this repor t  had been subs t an t ia l l y completed when

i n c o n s i s t e n c i e s  in ce r t a in  resul ts  led to a check of the simplified formulas

f o r  bias and d i spe r s ion. It was d iscovered that cer ta in approximations used

in der iving the formulas introduced seriou s e r ro r  unless N , a and t were

ac tua l ly v e r y  l a rge  numbers;  the condition large was not suff ic ient .

Table 1 lists 3 cases , f o r  all of which s t / N  = 13. 33, giving percent error in

the original approximation formula for  E(N 0). Clearl y the e r r o r  dec reases

as the magnitudes inc rease . The ni ean-squarecl  e r r o r  formula shows an

even larger deviation.

( s t /N  = 13. 3) e r ro r  in
approximate

N , s , t fo rmula for E(N )

30 , 20 , 20 7 , 9
270 , 60 , 60 3 .5

3000 , 200 , 200 1. 1

Table 1. Percent  e r r o r  in f i r s t  approximation formula for  E(N 0 )
for  several  examples with s t / N =  13. 33

The fi gu re  fo r  bias resulting f rom the approximate formula was , f o r

small N , not much larger  than the e r r o r , indicating that both bias and dis-

pers ion mig ht actually be considerably lower than appeared . Consequently,

There  were  actually 2 sources of inconsistency. Since Chapman ’s ap-
proach did not apply in the mult i- tr ial  case (Sec . 6) anothe r approach was
used and a new for mula de r ived whic h, with the number  of trials reduced
to one , should have given about the same result as was obtained with
Chapman ’s formula. However , the f igures  for  dispers ion in the example
tested were  f a r  d i f fe ren t .  The second inconsis tency was noted when com-
par ison was made with some specifi c t a s e s  in a tabulation containing
means and var iances  computed direct l y f r o m  probabilities [4].

12
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it \ V d S  ~1C (V f~V s ~~~r y  to derive sccond_ ord~~r approximations for bias and m~~an-

squared  e r r n r  which ~~V (~~~1d be fl u m e  a c c u r a t e  than Chapman~ s f i r s t - o r d &  r ap-

p rox imat ions  ~ ut -
~~ dl s imp ler than the exact e x p r e s s i o n s .  Such appro :-:~n~~ -

ti ons would permit  quick calculation , provide insig ht into the manner  j~~V~ w h i c h

bias and dis pers ion  change with chang ing parameter  values , an d fac i l i tat e

compar ison with other estimates.

Two s et s  of bias and mean-squared  e r r o r  fo rmulas  we me obtained , one

using the me~ hod app lied by Chapman but e l iminat ing the o f fend ing  approxi-

mations , and the ot her  based  on a Tay lor ’s ser ies  ex p an s ion  of . The

f i r s t  derivation is desc r ibed  in Appendix 1 and th~ S C ~ ond i~ Appendix 2 .

The Tay lor ’s ser ies approach was initially applied to f~ id tn ( -  m€ a n  and

dispersion of estimates based on several data values ( s~ e Sec. 6), a prob-

lem to which the Chapman method is not appl icable . A lt h o u g h  such was not

the i m raison ~~~~~~~ the result ing fo rmulas  can be used  to ve r i f y the calcula-

tions for  N as well .
0

On the basis of the new approximations, additiona l in te res t ing  informa-

tion was obtained on the manner  in which bias and mean-squared e r r o r

change with the pa rameters, info rmation which would be u s e f u l  in designing

an actual estimation effort .

4, 3 Bias

The new approximation for  the expected valu e of N
0 

derived from

Chapman~s exac t res u lt is

E(N ) st + a2 + 2a 3 + a4 
+ ~~~~ + (rn-i)! 

~m
1

where N+ 1
a

1 
= 
(s+I) (t+1)

N + i
a. = ~~~~ 1 (s+i ) (t+ i) ~ = 2 , 3,,

13
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The r e q u i r e m e n t s  fo r  a~ cu r a cy  (see  Appendix 11 a r e  the fo l lowing:

1. Enoug h t e r m s  n i n s t  be inc luded in the sum , which  is a t ru n c at e d

ve rsion of an inf in i te  sum , to leave the re mainder insignif icant .  Four  or

five terms have been found suff ic ient .

2 . The probability that c 0  must be very small. By r e f e r r i n g  to

th e examples of hypergeometric distribution in Fig. 1 , one sees that this

occurs  when the peak is far  f rom 0, i. e. ,  when th e mean of the dis t ribu tion ,

s t/N , is large.  In fact , common sense tells us that large samples a re

almost ce r ta in  to have elements in common; i.e., P(0) 0. s t/N  > 3 seems

to be suff ic ient  for  accuracy unless N is very large (in which case the vari-

ance of the distribution and there fore  P0 is large) .

An al ternat ive form of Eq. (1),  derived by simple manipulations (see

Appendix 1) is:

E(N ) N [k~ + k2 (
~~

) + 2k
3 

~~~~~~~
)

2 
+ ,~~ + (m~~l) ! k (~~ )m~~~] ( l a )

h k - 1 + 1/ Nw ere 1 — 

( 1  + 1/ a )  ( 1 +  l/ t )

1+  i/N
= k . 1  (1 + u s )  (1 + i / t )  , ~ = 2 , 3, . . .

The quanti t ies  Ic. are close to I and increase to 1 as a limit as s , t and N

inc rease.  If we set all k . l , we arr ive at Chapman ’s approximate formula

A method descr ibed in [51 for  deriving the expected value of a func t ion
of a ra ndom va ri able bymeans  of a Tay lor ’s ser ies expansion was applied (see
A p p e n d i x  7 )  lead ing t o

(2 )

~~
V he r (V  q = 

(N-s) (N-t)

14
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This  is s u b j e c t  t V ~ the  same caveat  as Eq. ( 1 ) :  t r u n c a t i o n  e f f e c t  and

P �  0 a re  possible  so u r c e s  of e rr o r .  Both tend to show up fo r  small

and fo r  la rge  values of N, s, t , i . e . ,  va lues f or  which mm (s , t )~~ -‘

The bias , b , of an estimate N is defined by E(N) N + b. The quantity

of greatest interest is the ratio (or percent bias x 100%) since to

estimate N = 100 as N = 120 is clearly a g r os s e r  e r r o r  than t m estimate

N= 1000 as 1020.

The percent bias of N0 
varies in 3 different ‘~~ays:  ( 1 )  with size of

tagged and sampled sets relative to total number of e r r o rs , quaflt if ied by

the ratio ; (2 )  with the total number  of e r r o r s  N; and (3) with size of

sampled set relative to s ize of tagged set , . The na tu re  of each variation ,

with the other 2 sources held constant, is considered next.

- b st s
1 . d e c r e a s e s  as ~~~~

- inc reases , f or  N and ~~
- constant.

The cons i s t ency  of the est imate, shown by Chapman , impl ies  that th i s

is so in the l imit . F or  f in i t e  N , s and t , Eq. ( I a )  shows tha t variation in

F(N ), with N Qn s t a n t , depends principally on the factors . While the

k . f a c t o r s  inc -c ease  with inc r e a s i n g  s and t , all a re  less  than and c lose  to

I and v a r y  v e r y  l i t t le  over  l a r g e  change s  in s and t . (See Fi g. 2 ( a ) ) .

b .  - - - st s .
2 , inc r ea se s  - v i t t ~ ~~ f o r  ~~~

- and ~~
- f ixed .

In this  case , the onl y v a r i a t i o n  in F ( N ) is wi th  the quantit ies k. ( see

Eq. ( l a ) )  whi h i n c r e a s e  with i n c r e a s i ng  N u n d e r  the  g iven condit ions .

The common uppe r l imi t  of the k. ’s is 1 which  o c c u r s  only f o r  in f in i te  s , t

• and N. Chapman ’s f o r m u l a , w h i c h  r e su l t s  if a l l  k. 1 , t h e r e f o r e  g iv c~ :~n

upper  l imi t  tu  the hias  r a t i o , h o l d i n g  f o r  ~ er ~ l a r g e  N. (See Fi g. 2 ( b ) ) .
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a
st b .  a3. For ~~~~

- and N fixed , is grea tes t  when ~~
- = 1.

- For and N fixed , the product at is fixed, and I implies

s = t 
~~~ 

We can show (see Appendix 4) that

-~ 1 -1- i/N 
_ _ _ _ _ _ _ _

-4 (1 + i/s) (1+i/t) — 

( 1+ i / , [~~~)2

- . f rom whi ch it fol lows that k , and therefore  b / N , are  maximum f o r  s t.
1

(See Fig. 2 ( c ) .

• The first property states the unsurprising fact that , g iven a pa r t icular

pro g ram , large samples produce accurate estimates. The th i r d  p rope r ty

says that if, in addition , we make s and t unequal , we increase  the ace u-

racy of N0 still more. However in both cases , the increased  accuracy  is

paid fo r  in time: l a rge r  sets of e rr o r s  take longer  to find , and s + t in-

cr e a s e s  as ~ departs f rom 1.

The second property says that under the same conditions of ~~~~- and

we get better result s fo r  programs with fewer  e r r o r s , e. g. by estimating N

after some debugging has been done. However, as N increases , keeping

constant requires relatively smaller samples. For N =  1000 , for  example ,

s = t  100 gives -
~~~~ = 10 , while fo r  N 250 , we get the same value of

with s t = 50. That is , in the second case, 100 bugs must be found while in

the f i r s t , wi th N fou r times as large , only 200 , or twice as many bugs must

he found . If we spend the same time relative to N and find 400 bugs in the

f i r s t  case , we inc rease  by a fac tor  of 2 and decrease bias considerably.

To sum up the argument , if we keep th e debu gg ing t ime , as measured  by

ç s + t , propor t ional  to N, then N0 has small er bias f or la rge  N . (See Fi g.

(Zd).

18

_ _  - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

V V : ~~~~ ~~~V~~~~~~~~~~~~~~~~

_ _:--  

~~~~~~



-- V -~~~ V- V

a
4.4 Mean-squared Error

New approximate formulas for  V(N 0), the variation about the true value

N , were  derived using Chapman ’s method (Appendix I )  and the Tay lor ’s

series method (Appendix 2) . They are  respectively,

V(N N 2 1 1 + ~~~~f - 2a 1 + ( ~~~~- 2)a 2 + ( ~~~ - 4 )o 3 + ...
(3)

± {A 1~~~ — 2  (m_1)!}arn}}

where the a ’
~ 

a re  def ined as in Eq. ( 1 )

j and

r n - I l
V A —

m- 1 (m- 1) !  ‘I’
- V 

j = 1

V(N 0 )~~ N 2 [ q ( N / s t )  + 9q2 (N / s t ) 2 ] (4)

where q is defined as in Eq. (2).

An alternative form for  Eq. (3) is

2

V(N 0) N2 [(1 + k2 - 2k
1 ) + (3k3 

- 2k
2

) ~~~~ + ( i l k
4 

- 4k
3

)(~~~~~) +

( 3a)

+ (A k -2(m -2) !kr n - i  m r n - i  at

where the k’s are defined as in Eq. (la).

The formulas  hold under the same conditions as the mean fo rmulas:

P 0, and low truncation error . Furthe rmore the same generalizations

can he made with respect  to the variation of V(N ) with N , a , t.
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5. 0 Modif ied Maximum Likc i i i i o ’j~ L st ima te  N

5 . 1 Bias and Mean- squa red  E r r o r

An intermediate  resul t  in Chapman ’s derivation of E N ) ,

N - s - t P for  s + t < N
E (—~-j-) = 

(s+l) (t-l - 1) (1-K), where K = 
N+1 o —

0 othe rwise

su gges t s  the modified est imate

N = 
( s+ 1)  (~jfl -V 1

as a means of r educ ing  the bias to practically zero  assuming P0 0. For

E(N 1 ) ( s + 1)  (tfl ) F(±) - 1 = (N+1)  ( 1- K )  - 1

E t N
1 

N-K (N+1) where K 0  if P 0

‘ 

: 
~~~~~~ = 

atThe bias is negat ive but very small even for  small -
~~~

- . C o n s i d e r  fo r

exam ple , the  case N =  6 , s 2 , t =  3 , with = 1 . E ( N 1 ) ,  computed exact l y,

is 5 . 8, and b/ N is 3. 3% whereas  F(N ) is 6. 6 with b / N  = 10%.

However , fo r  N 1 as fo r N , b/N increases if st/N is held fixed but N —

increases . If N 2 0 , s=4 , t 5 , is still 1 but E(N 1) is now 16 . ~ ar.d

b / N  15.5%.

An additional advantage of N
1 is the fact that its variation about N is

somewhat lower than V (N ) for N greater than about 50. Below 50, V(N0 0

is smal le r. The s e c o n d - o r d e r  approximation for  V(N
1 ), unde r  the same

approximat ion rules as E(N ) and V(N ) is (see A ppendix 1)

+ (m -2 )  !a ] -  ( N + 1 ) 2 ( 5 )
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or

V(N 1)~~ (~~~ j ) 2 ( t+ l ) 2 ( — ~~— ) 2 [( k 2 -k 1
2 ) +k 3

(—~f ) + 2 k 4 (~~~i
2 + . . .

(Sa)

+ (rn-2)t km 
(
N )m-21

Some comparative figures for N0 
and N 1 

are shown in Table 2 and in

Table 3 of Section 6. 3. The variation of ffe
(N I )/N  with relations among the

parameters , as described in detail in Sec. 4. 3, is plotted in Fig. 3.

5. 2 Useful Range

It is obvious ly possible to make accu rate and precise estimates with

large enough samples; the limiting case of a t N  produces a perfect esti-

mate. Whethe r a good estimate can be made with considerably smaller

samples is the issue. N has almost no bias so the major problem resides

in the variance (which , for  zero  bias , equals the mean-squared error). As

Eq. (5) and Fig. 3(a) show, the variance is low for the ratio st/N large

enough. But large ratios can be attained with relatively small samp
les only

for  N large. For N 3000 , for  example , st/N 13.33 can be realized with

s t Z O O , or one-fifteenth of N; but for N 3 0 , stfN 13. 3 3 requi res

s = t = 20 , two-thirds of N. Fortunately, Fig. 3(b) show s that smaller

va lues of at/N are required to give a specified value of 0 e
’N at the

30-error  level than at 3000. The 1. 0 curve in Fig. 3 (d) shows the

minimum value of a /N  which can be attained if we limit a and t to half of

N . If we are willing to accept la rger  samples , we can , of course , do better

for  the smaller values. Larger  samples mean more time. For the same

time re lat ive to N , estimates of l arge r  p rograms  will have lower

(Fig. 3(d)).  Curves such as those of Fi g. 3 can be exp loited to design an

estimation test with knowledge of the t r a de -o f f  between time and precision .
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N = 270 = 13 . 33

s =  60

t =  60

C N N
______ 

0 1

9 400 371

10 360 337

11 327 309

12 299 285

13 276 265

14 257 247

4 15 239 232

16 224 2 18

17 211 206

18 199 195

Table 2 . Comparison of N and N 1 fo r  different

experimental results: - one example.
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5. 3 Design of a Seed ing/ Tagg ing  Reliability Test

The p r o c e d u r e  is v e r y  simple. Our objective is to pick values b r

and t v..hich will be likel y to produce an es timate of the quali ty we want .

\ \ ,~V ‘ egin with a ball park estimate of the number  of e r r o r s  in the prog ram ,

based on whatever  information we have — length of p r o g r a m, amount of pre-

vious debugg ing, exper ience  wit h o ther  p rograms  of the same type , exper-

t ise of p r o g r a m m er s .  Suppose we decide that t h e r e  a re  probabl y about 150

e r r o r s .  In t hat event N 1 is the p r e f e r r e d  estimate since it is practical l y

unbiased and has a lower V than N 0 in that  range . Had the estimated N

been below 50 we would have had to check the bias and dispersion of N0

and then choose between N and N0 1
We will be content  with O~ = 30. Then o- /N  0.2 and f r o m  Fi g. 3 (b )  we

find th at the in tersec t ion  of 150 and 0.2 is on the cu r v e  fo r  ~~~~~~= 13. 33 . (I f

Fig. 3(a) contained a curve  fo r  N = 150 , we could have  found the  same infor-

mation there .  ) Then st = 13. 33 x 150 = 2000. We c an let ea~~h d~ u~~ger  f ind

about 45 e r r o r s , or let one find 50 and the othe r 40. Fi g. 3 ( c )  shows qual-

i ta t ive ly that  the  r e su l t s  will be about the same. We can also let s and t be ,

say 20 and 100 and expect a somewhat smaller but we will have to wait

cons ide r ab ly longer  fo r  the r e s u l t s .

The cos t  beyond that f o r  the debugg ing which would have to be done any -

way would he ident ical  f o r  all choices  s ince the additional cos t  is onl y f o r

the  common bugs and the expected  number  of those  is 13 . 33 .

Th e situ ation wou ld be a l i t t le  d i f f e r e n t  if the p r o g r a m  w e r e  not to be

completel y debugged . The tes t  could , f or example , be a means of compar-

ing d i f f e r e n t  p rog ramming  t echn iques .  In that  case , it would not onl y t ake

longer but would also be more expensive to find 120 bugs than to find 00 .
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6.) Multi-Trial Estimates

6 . 1 Advantages

We have up to now been d i scuss ing  an estimation process involving two

d e b u g g e rs .  Suppose we use  3 or more and consider  the  output of each pair

to be a sepa ra te  result ;  m debuggers  will give n = 
m(rn - 1) 

poss ib le  data

values which can be combined to provide a new es t imate  with the  following

possible advantages:

1. reduced integer ~ r r o r

2 . reduced variance , or

3. smaller samples and less debugg ing t ime fo r  the samc ‘-arian ~ e.

6. 1. 1 Integer  E r r o r

It was noted in Section 3 that in any se e c ii n g ! t a gc i n g  ca lcu la t ion  an

e r r o r  a r i se s  f rom the fact that c is an i n t e g e r , as.~urn ing  one of on l y

min(s , t)  + 1 values .  Any es t imate , it fol lows , mus t  also have one of onl y so

many values despite the f act  that N may actual l y be an i n t e g e r  f rom

max(s , t) to infini ty.  This is pa rticularly bothe rsome when the numbers  a r e

- - 4relatively small . With a population of , sa y , 10 and s = t = 1000 , data

values c = 100 and c = 99 lead to maximum likelihood estimates of 10 , 000

and 10, 101 respect ivel y, a d i f fe re nce of onl y 1% of t he t rue  population. But

with a population of 100 and s = t = 25 , data values  c 6 and 7 respectivel y

prov ide est imates  of 104 and 89, a span of ~~~~ wi th  no possibil i ty that any

value obtained with the given est imate will fall  wi th in  the range.  The d i f f e r-

en~ e at the cen te r  of the d i s t r i b u t i o n  is of the o rde r  of 100% of N .

V a l u e s  of ( furth e r awa y f r o m  the mean will lead to even larger s epara t i on ’

= 1 and 5 for example give N = 156 and 125 respectively, a d i f f er e n  ( of

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ - -- -  —---
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3 1~~ of N. These  are not improbable values; 4 is about 1 standard deviat ion

away from the mean of the distribution.

Integer e r r o r  is automatically reduced when seve ral data values are

used , whether the averag ing is done on the data values themselves, or on

the several estimates derived from the individual data values. In the last

example, for instance, using 4. 5, the average of c = 4 and c = 5, in the

maximum likelihood formula gives an estimate of 138 , while averag ing the

values of N 0 obtained with c = 4 and 5 gives N0 = 140. Eit her wa y , values

are possible which cannot be obtained from a single t ria l, and increas ing the

number of trials increases the number of new values. More in-between

values are  likely to occur if the final estimates rather  than the data are

combined — the average of c = 4 and 6 is not a new value , for  example ,

while the nonlinearity of the estimates makes repeats when estimates are

averaged improbable — but such estimates may be less desirable for  other

re asons.

6. 1. 2 Variance and Mean-squared Er ror

We can reasonably expect some reduction in variance in a multi-trial

process regardless of the estimate formula. However , the bias of the new

estimate as well as the deg ree of improvement in variance do depend on the

formula.

One combining mode is to compute an estimate fo r  each data value ,

using any sing le- t r ia l  fo rmula , and average the resulting n sing le- t r ia l

est imates. Then va r(ave rage) = va r (each) . However V = var + (bias )
2~

~ If rn debuggers  are used , the n m ( m -l ) / 2  possible data values are not
statistically independent and the variance relationship is not exactly t rue.
However , to avoid complications assume the n values are  approximately
independent , or consider  that n trul y independent tests are made with Zn
debuggers .

**See Appendix 4
26
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The re fo re  the reduction in V for a mul t i - t r ia l  estimate found in this way

depends on the change , if any, in bias as well as in variance.

Alternativel y, we can ave rage the n values of c getting c ~~c1 
, and

replace c by C Ifl any single-trial estimate formula. Although

V( - c ) = var ~c )  =~~~ va r (c),  the effect of the replacement is not obvious and

must be examined anew for  each formula.

Taking another point of view, we can trade reduced variance for  a

quicke r estimate by reducing s and t. Since V varies more or less in-

versely with the product st (Eq. (3a)) ,  having tagged and sampled sets of

size —
~~ and —

~~~ respectively for an n- t r ia l  estimate will keep the variance

of the n- t r ia l  estimate approximately equal to that of the corresponding

single-trial estimate using sets of size s and t. Smaller samples mean

less time. The time saving may be more than proportional to the reduction

in s and t since errors probably becomes progressively harder to find as

the total number remaining dec reases.  That is , it takes longer for one

debugger  to find 50 e r r o r s  than for  2 to find 25 each , start ing with the pro-

gram in the same state. Howeve r , choosing t ime-sav ing  in pr e f e r e n c e  to

reduced var iance would , if t he estimate is biased, inc rease the bias which

also varies as (Eq. (la)).

It might also be borne in mind in contemplating multi -’-ria l estimating

that the multiple debugging is not all wasted;  each debugger  added to the

process  finds e r r o r s  others  do not find , t he reb y contr ibuting to the neces-

sary over-all debugging of the prog ram.

Lb . 2 Ave raging Sing le- t r ia l  Estimates:  N 0 and N 1

Let the estimate N be the average of n maximum-likelihood estimates

27
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associated with n independ’-nt experimental values c ., i = 1 , 2, . . . , n:

~~~~~~~ N . = -’ )~ ~~~~

i~~1 i=1 i

A ltho u g h the var iance  would be reduced by the expected fac to r  of ~ , the

bias would remain unchanged :  E (N 0 ) = E(N ), so V would be reduced b y

less than the v a r i a n c e .

V( N ) = var ( N0 ) + b2

-
~~ var (N) + b

2

= -
~ [V (N ) - b

2
] + b

2

= -
~~ [V ( N ) + ( n  - 1 )  b2

]

If the !;~as is large , th e r e f o r e , V(N ) may be considerably g r ea t e r  than

V(N ). In v iew of the almost zero bias of N for  3 and N not toon 0 1

large , it would make more sense to average N 1:

= 
~ i~~1 

N 1.

Here ,

E(N
1 ) = E(N 1) N

V ( N 1
) ~ V(N 1 )

6. 3 Avera g ing Data Values: N0 and N 1

Define est imate N0 by

~~~~~~~~~~~~~~~~~~~~~~~~~~~
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I

a
- 

~~~~~~~ s t  
w h e r e  C = ~~~~~~ ) 1 c .

S ince  a ~in~ 1c s appears  in the fo rmula f o r  N , a ll sa mp les must  have the

same s ize .  This  implies that s = t; N c t n  t h e r e f o r e  be w ri t ten s2
/ c .

The bias and va riance of N and N we re found direct l y f rom the bias
— 0 1

- and v a r i a n c e  of and N 
~
, the  or i g inal computation of which was based on

certain expansions of the  r ec ip roca l  of a random va riable with hypergeomet-

n c  d i s t r ibu t ion. The same method cannot apply to N because  c is not

h ype rgeomet r i c .

However ye can use the Taylor ’s series method mentioned in Section

- 4 . 3. The resul ts  (see Appendix 2) are

E(~~~) N [ 1  + ~ (~~~) +  ~~ 
N (6)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (7 )

Setting n 1 reduces N to N . Because of the factors ando o i-~ 2
E(N ) s E (N ) which equals E(N ). Similarly, because  of the —5 f a c t o r

V(N ) 
~~ 

— V(N  ) K V (N ). The conclusion is that N is a be t t e r  es t imate
0 fl 0 0 0

than N
0, as the examp le in Table 3 shows.

Finally we mention the estimate N 1 having the f o r m  of N 1, but with c

replacing c. Its bias and v a r i a n c e  can be derived in the same way as those

I of N0, Mean and m e a n - s q u a r e d  e r r o r  fo rmulas  f o r  the est imates consid-

t r ed  a r . - olic- ct ~-d in Table 4.
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Example

N = 270 = 13 . 33

s = 6 0
-
~ t = 6 0  n =  3

N N N N N N N
-~~ 0 0 0 0 1 1 0

E( ) 274 284 284 284 270 270 284

V (  ) 1 2 5 3  1 6 8 3  4 6 5 8  4 5 1 9  3 6 05  1202  1 6 3 7

-

: a ( ) 35.4 41.0 68. 3 67.2 60.0 34.7 40. 5
- - e

~~~~~~~~~ io~~~~~~~~ ie~~~~~
’ 

Non-Ta~ i~~~~~~ser ies
calculations calculations

Table 3. Compa rison of mean and dispers ion of single- and
mult i - tes t  estimates for one example.

I
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S

Estimate E (  ) V (

1. N =  st{a1÷a 2 +2a 3+...+ (xn-1)~a~~J 
N 2

~~1+~~~ {~Za j +(~~ ~~~~~~~~

- 

+ (A -1  ~~~ -2 (r n - I )

2 . N 1= ~~tj~
.1) _ 1 N ( s — 1 ? ( t + 1 )2[a2 +a 3+2a 4+...

• + ( m-2 ) !a J- (N+ 1) 2

3. ~~~~~~~~~~~~~ E(N ) N-~-b 1{V(N0
) + ( n _ 1) b 2}

4. N - ~~’N .  N I V(N )
i n .  11 n 1

1.

N 2
[9-(-.~~)+9a~.(-~~) )

• 6. ~~ L s + l ) ( t + l ) 11
n .  i

1

N+ 1where a =1 ( s+ 1)( t+ 1)

N+i -
a

1 
= a1_ 1 (s+ i)( t+j ) , i = 2 , 3 , .

— (N - s) ( N -t )
q - 2• N

rn-i
Am i  = (zn — 1)! ~~ 1/ j

3~~1

Table 4. Approximate fo rmulas f o r  means and m e a n - s q u a r e d
e r r o r s  of est imates.
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7.0 Confid ence Intervals

Some measure of the dispersion of an estimate is necessa ry  to provide

information on the range within which, given the outcome of any pa rticular

trial, the tru e value of the quantity soug ht may be expected to lie. If the

estimate is biased and has a la rge variance we have no great faith that the

true value is close to the estimated value. Inserting the variance of the

estimate in Chebyshev ’s inequality affords us one way of quantif ying the

spread. Anothe r is available if we know the distribution of the estimate.

Still another method, useful when the distribution and variance of the esti —

mate are not known, involves the calculation of confidence intervals based

- 
: only on the known distribution of data values , and on the particular value

found expe rimentally.

Confidence limits a 1 and a2 are two random functions of the estimate

unde r stud y and of an arbitrary non -negative constant € ~ 1 for  which we

make the following claim: If the tru e valu e of the quanti ty being es timated

is in the interval [a 1, a2 1, then the estimate actually computed , or else

some value closer to the true value, would occur in (1-c ) 100% of trials

made.

Each estimate is a function of one or more data values. Consequently

any function of an estimate can be expressed as a function of the data van-

able c , or the set {c~} in a multi-trial procedure. The probability that a

particular value of an estimate will occu r is idenUcal with the probability

that the data points giving rise to that valu e will occur. Since the calcula-

j tion of the confidence limits depends on the distribution of the data va riable ,

the limits for  all estimates depending on a single value are identical , and

can be found by means of Eq. (9) in Section 7 . 1.
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7 . 1 Confid~~n-. ~ Limits for  the  Es t imates  N and N
0 1

For  a 100€ ~ c o n f i d en c e  l ev e l  o u r  f i r s t  r eq u i r e m e n t  is to find an in-

terval  enc 1osin ~ a set of da ta values o c c u r r i n g  in ( 1 - C )  100% of trials. One

way to do t h i s  is to replace the hype rgeornet r i c  d i s t r ibu t ion  which desc r ibes

the p robab i l i t y  of c b y its nor mal approximation (mean = s t/ N , v a r i a n c e

= . i~L~s ) ( N -t) ) . This done , we determine X such that ( 1- c  ) 100% ofN

all occurrent es of c will be within a distance of Xo f rom the mean. A is

tab ulated direct l y in [6] p. 558 , o r can be found using a table of e r ro r  func-

t ions .  An in te rva l  on the c—axis  s a t i s f y ing the stated condition is desc r ibed

by

P {~~~~- X ~~~~ c s~~~~+ Ao- }~~~~1 - €  (8 1

Our  objec t ive  is to f ind  the two values of N , N an d  N , f o r  wh ich  thea b

value of c fo und experimental ly is at the ends of th e  allowed in te rva l  ( s e t -

Fi g u r e  4).  The lef t  inequality should p rov ide  the 1ar ~~est  mean = s t/ N  f o r

which c is st i l l  in the  i n t e rva l , and t h e r e f o r e  the smallest N, i. e. , the
- / (s+l)(t+ 1)lower confidence limit. We mig ht replace c by st , N 0 o r  b y N 1 + 1 

- 1

de pending on the est imate of i nt e r e s t ;  e i t he r  N 0 or N 1. c omputed f r o m  c

would then be the  f ixed  q u a n t i t y r a t h e r  that c . The p r o c e d u r e  and res~~i~s

wou Ld  be ident ical , as noted previously ,  s ince  we are s t i l l  governed by 101-

as sumed  normal  d is t r ibut ion  of c as e x p r e s s e d  in (8)  r a the r  than by the

d i s t r ibu t ion  of N or N 1, n e i th er  of which  is known .

If cr were  constant  we could  immedia te ly so lve  the  two inequa l i t i e s  f o t

N , t h e r e b y f i n d i n g  the  c o n f i d e n c e  1~rnits w i t h  no d i f f i c u l ty .  Since is ,

ins t ead , a function of N , the procedure is  not  q u i t e  so s t r a i g h t - f o r w a r d .

D t ~~ 1s appea r in A~~~~~C n d i X  3 in wh ich  it is shown tha t  the  c on f i d en c e  l i : n - ’  ~.

33

- 1 
__________

~~~~~~~~~~~~ , ~~~~~~~~~~~~~~~~~~~~~~~ . ~iTi.’ ~~~~~~~~~~~~~~ -
- ~~~~~~~~~~~~~~~~~~~ -



—p-- — - - - - — - -  --- -- - -

P(c/s,t,N)
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FIG. 4. CONFiDENCE INTERVAL,

I
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at the 100€ ¶
~ level  a r e  the 2 l arges t  roots of g(N ) 0 , w h e r e

g(N ) = N 3 
- (2 + L) N 2 + ~~~ [st  + A 2 (s+ t ) ]  N - (~~~~~~X ) 2 , (9)

and A depends on the preselecte d c

Exampie 5:

s = t 25

1) c = 4

N St 156
0 C

N = 
(s + 1) ( t + 1 )  

- 1 = 134
1 c + 1

10% c o n f id e n c e  level: € = 0. 1, A = 1. 6449

g (N )  = N 3 - 4 18N 2 + 29, 699N = 66 , 064

Confidence in terval  [88 , 328]

50% conf idence  level: € 0. 5, A . 6745

g(N ) = N 3 - 330N 2 
+ 25 , 303N - 11 , 107

Confidence interval = [12 1, 209]

2) c 7

N = 8 9
0

N = 8 41

10% confidence level:

g(N ) = N 3 - 21 3N 2 
+ 9 7 01 N  - 2 1 , 575

Confidence in terval  [62 , 148]

Confidence intervals  are  not unique. We can obtain limits more s >

metrically placed about the estimate b y choosing dif f e ren t  values f o r  the

35 
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l e f t  - and rig ht-hand ot. c’~ rrences of A in (8) and modi fy ing  the p r o c ed u r e

ac c o r d i n g ly. In any event , the r es u l t s  a re  approximate  s i n ce  t h e y  a r e  based

on the norma l approximation to the d is t r ibut ion of c .

7 . 2 Confidence Limits for  the Estimates W and
0 1

n
The random variable in the expressions for  N and N is C -

~
- 

~~ c .
0 1

c is an asymptotically normal random variable (central  limit theorem) with

mean equal to the mean of each individual c , o r  s t / N ;  and va riance equal to

1/n times the variance of each:

— 2 — st ( N - s ) ( N - t )
= var  ( c )  —

~~~~ N (N-1)

Determining A as b e f o r e , we have

which leads  us to anothe r version of g(N) :

2 2 2 2
- i 1 +!! (2 +~ ._)JN 2+!! f 2 + !. ~+ X t) 

JN ~~(~!l (l+ ~ — )  ( 1 0 )

Exa mple 3

s t 25

c 4 , 11 , 6 ; c = 7

N 89

Fo r e  0 . 1

~ (N)  = N 3 
- 192 N 2 

+ 8727 N-15 , 165

10~ conf idence  limits are  70 and 120.

3€

- 

~~~~~~~~~~~~~~~ ~~~~~~~~~~~ _.. .~1.



The ‘.cidt ~. of the interval  is cons ide rab ly less f o r  N than fo r  N
0 0

computed w i t h  c 7 , as anticipated f r o m  its smaller mean-squared  e r r o r .

in fact, except for the effect of bias, the two widths should be proportional

to the respective standard  deviations , the ratio being l/ J~~ . In this case

it is almost exac tly that , the bias apparently playing a small role .
I

If , instead of using the central limit theorem, we use the normal ap-

proxirriation fo r  each c~ we have a slight ly d i f ferent  variance
—

~ 2 ~~ tN - s ) ( N )~~~ (see [1]) leading to slightly d i f ferent  results:

2 2 2
g(N) N 3 - -~-~ ( 2 + ~ --- ) N 2 +~~~ [s t +~~j - ( s + t )  ] N  ( lO a)

The same example now gives limits of 7 1 and 118 , almost identical with the

above.
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8. 0 Othe r Models - A ss ump t i o n  of Variable In t r i n s~~~ Dif i1~~~~

All  t i i c  e S t 1~ca t-:~- - vh ~~ h h a v e  b e en  e x u m in e d  i ’-ere  based on the assurnp-

t i on  of pu : c l - . r a n d  nii choi e: all t- r r o r s  we  r - , o n e  .~~ a y ,  laid out be —

f or t  any du b u  or  w h o  had bu t  to c l os e  his ey e s  and choose .  The dis U S S i O f l

on equal  p r o b ab i l i t y  in Sect ion  ~ noted St  v er a l  v a r iet i e s  of cha l l enge  which

mig ht he l a u n .  hcd a ga i n s t  t ha t  h ypo thes i s . In thi s s e c t i o n  we at tempt to

des  n b c  ~n o c h - l s  n r o v i d i n g  f o r  v a r i a b l e  ~nt  r i n s i c  d i f f i c u l t y .

~~ . 1 Mod -i 2 - Variable  D i f f i c u l ty .  P r o g r a m  Distr ibut ion Unknown

\ I a k e  t O t -  f o i 1 o wh i i ~ a s s u m p t i o n s :

11 .\1i YO t4 t ax .  be ass i gned at sigh t  to c a t e g o r i e s  based on d i f f i c ul t y

of d i s c o v e r y .

2 W i t h i n  - a c h  c a t t g o r y ,  e r r o r s  a r c  u n d i f f e r e n t i a t e d  - -  sub j e c t  to

r a i ;n  d i~~ cove  ry i’ : th  equal p robab il i t y.

Suppose t h e re  a r e  Ic d i f f i c u l t y  ca t eg o r i e s .  Tag ~or  s eed )  and sample

as b e f o r e .  B y v i r t ue  of a s sumpt ion  2 , c / s .  t / N . w h e r e  t . ,  s . ,  c.  a r e  t h e

t a g g e d , sampled and common bugs r e s p e c t i v e ly in th t :  1th 
cat  ~ o r~ son~e

n~ ay  be 0 . N.  is th~ u n k n o w n  n u m ber  of p r o g r a m  bug s in th e ~th 
cate~~ury .

In p r in c i D l e , one may app ly all  Model 1 i n f o r m a t i o n  to each c a te~~n r y  sepa-

r a t el y , d e r i v i n g  c a t e g o r y  e s t i m a t e s  u s i n g  any e s t ima to r  p rc -v iou  sl y d i scu s s e d .

F u r  examp le , using N0 fo r  simp l i c i ty , we have c a t e g o r y  e s t ima tes

N . = s t / c  , i 1, . .. , k , wh ich  can be found w h e n e v e r  s. and t .  a r e  n o n -
01 1 1  1 1 1

z e r o . ‘ Since the  more  d i f f i c u l t  c a t ego r i e s  will probabl y be empty at f i r s t ,

we w i l l  not in genera l  have an es t imate  of the total  population . We can , in

t h e o r y  at least , continue to t e s t  unt i l  enoug h e r r o r s  in all c a t e g o r i e s  a re

We retain the  convention that N - = Zs . t. when c. = 0.
01 1 1 1
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a v a d ab l e .  Howe - c r , a pos sibl y m ar e  e f f i c i e n t  w~~ ’ is ~u e s t i m a t e  wh a t e~ er

c a t e g o r ie s  ap p e ar  in s u f f i c i e n t  n u m b e r s  a f t e r  a b r i e f  t e s t  to make the  esti-

m a te  i- ’-lia ble nt  t i u e  d e b u g g ing wi thou t  t e s t i ng ’ (1. e . , wi th  one d e b u g g e r )

but keeping e u c n t  of the  n u m b e r  of bugs found  in each  c a t e g o r y  w h i c h  has not

yet been es t ima ted ;  and f inal ly conduct  s imi la r t e s t s  to es t imate  the miss ing

ca tegor ies  w hen thei r  appearance is f r e c u e n t  enoug h , adding  the  pre-~~st imate

ount in each  .a s~ to ge t  a n u m b e r  c o m p a r a b l e  wi th  the  i n i t i a l  es t imates .  If

the reason for making  the o r i g nu l  e s t ima te  is to gauge i- eJ~ nb i l i t y  at t he  end

of a f i n i t  debugg ing p roces s , an e r r o r  count  - - thoug h not by c a t e g o r y  - -

would be r e q u i r d in any eve -nt  in o r d e r  to e s t i m a t e  how n ,~~ny remain still

undis cove re- ’~.

As an examp le con& i der  Table 5 where  3 c a t .  go r i e s  of d i f f i cu l ty a r~

a s s n a~ed. The t r u e  f igures  in the total column a re  of c o u r s e  unknown. Two

sets of ex p er i men t a l  values for  c . a r e  shown . In a) t h e  c . we t- - c h o s e n  at

t h e i r  e x p e c t e d  values for  the t r u e  data 1~h c . ) s 1t . / N . ;  t h e  c at e g o ry  e s t i ma te s

are  th e r e f o r e  exactl y rig ht. In b) the values a re  not i dea l . The r column

and the remaining estimates will be def ined  in connect ion  with Model 3 .

A ma jo r  d i f f i c u l t y is that n u m ber s  may  he small ; ge t t ing  la r g e  enoug h

samp les wi th in  each ca tegory  f o r  low bi a s  and v a r i a n c e  may require exte~ -

sive tes t in g.

8. 2 Model 3 - Variable -  D i f f ~~~~~~y~~ Prog ram Dis t r ibu t ion  Known

A t h i r d  a s sumpt ion  makes it possible to complete the estimate w i t h  o n ’-

t n i~d , f r o m  incomple te  c a t e g o r y  es t imates :

3) The d i s t r i b u t i o n  ra t io  of p rogram e r r o r s  by ca tegory  is known .

Thi s is s u g g e s t e d  in orde r to avoid the cost of continued dup licate
debugging.
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Categor y Tagged Sampled Total  
c 1

— — t .  s .  r. N .
- 1 1 1 1
1 T ype a) Ideal b) N o n - i d e a l

1 easy 400 480 . 6 1200 160 150

2 medium 60 100 . 3 600 10 12

3 hard  40 0 . 1 200 0 0

total 500 580 2000 170 162

Model 2

a) N 1 
480 x 400 

1 2 0 0  b)  N
1 

= 480 x 400 _ 1280

N 100 x 60 — 600 N — 100 x 60 
= 500

o2 10 - 
o2 12

N no est imate N no es t imateo3 o3

Model 3 - f i r s t  p r o c e d ui e

N (r 1) 1200 2000 N (r 1) 
1280 =2133

N ( r 2 ) 2000 N (r 2 ) 1667

A v e r a g e  N 2000 Average  N~~~ 1900

T able 5 . Example with e r r o r s  d i f fe ren t i a t ed  by
d i f f i cu l ty  (Models 2 and 3) .
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~i . 2 . 1 F i r s t  E s t i m a t i n g  P r oc e d u r e  - f o r  ‘lagging  or  Se e d i n g

The new as sumpt ion  pro~~id~~s u s  w i th  the rat io  r .  = ~‘. ./ N for  all i.

U s i n g  any one of t i e  c a t eg o r y  c - s t in i a t e - - of ~~e C t 1 u n  8. 1 we f ind  N 0 
N 0~ / r j .

In f at  t we have as many es t ima tes  of N as wt. have c a t e gory  e s t i m a t e s .

Table 5 con ta ins  an example of this estimating procedure.

N has the same rat io of bias and s tandard  dev ia t ion  to mean as N - :
0 

01

F (N ) = -~
--- E ( N .)

v a r ( N  ) = - -a r (N  . )  , ~ (~~~ ) = -~
- ~ (N . )

o 2 oi 0 r. 01
r .  1

1

V(N ) = —4- V(N . )  , 
e~~~ O~ 

= + e~~~oi~

8. 2. 2 Second Estimating Procedure - For  Se e d i i t c  ( )nP

With the t h i r d  a s s u m p t i o n  we can  also u s e  the  s ( - o n i n g  v a r i a n t  to est ~ -

mate N d i r e c t ly  wi thout  f i n d i n g  c a t e g o r y  e s t im a t e - s .  Let t h t -  p r o g r a m  h av e

- - th
E = F 1 + , . . + E

k 
e r r o r s , F1 r e p r e s e n t i n g  the  n u m b e r  in the i c a t e g o r y .

C o n s t r u c t  and in s e i t  a ma tch ing  set  of t = t
1 

+ . . . + t 1, e r r o r s , t~~/ t  = E~/ l ’ ,

t. ~ 0. The  total  number  of e r r o r s  a f t er  s e e d i n g  is N = N 1 + . . . +

w h e r e  N .  E. + t .
1 1 1

N. E. t .
and -

~~~~ = -~~ f r o m  t h e  m a t c h i ng  c ondi t ion .

The  d e b u g g e r  t~ nc is s = s
~ 

+ . . + s~ bc c s , w h e r e  s.  may  be 0.

- I f  t ti e s ee d i n g  a p p r o a c h  is used , t h e  r a t io  r 1 is computed  w i t h  the  see
hu . s  i nc l u d e d  in N~ . The- s c & d  ci b u g s  iu- ci n o t  be d i s t r i b u te d  among t h ’

c a t e g o r i e s  in the  same p r o p o r t i on  as t i n  o n i g i t i t I  p r o g r a m  ~- r r o r ~~.
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Since the 8eeded bugs are assumed indistinguishable from the original , we

can again reasonably expect that

C. t.
1 1

s . N.
1 1

whe re now c1 and s. may jointly be 0, but t. ~ 0.

The total number of seeded bugs uncovered is

t.
i c’ t st

= /,, c~ = Li 5
j ~~ /_~ 

8
1N W

1 1 j

We are  t h e r e f o r e  led to the same ad hoc estimate as for  the equal probability

st
case , N = —

C

The c~ are hype rgeometric by virtue of assumption 2 , but the distri-

bution of their sum c is unknown, although asymptotically normal. The

Taylor ’s series method (Appendix 2) with normal approximation for  c1 (or

only for  c if k is large) can be used to find the mean and mean-squared

error of the estimate ~~~. Mean and variance of c are the sum of the means

and variances of c.:
I

s.t. k s. t.
E(c.) = E(c) 

~ 

11

. t . (N -. .)(N . -t )
var(c .)  = ~ ~ var (c)  = ~~~ var(c.)

1 N~

Higher momen ts ar e found from the normal approximation

p 3 ( c )  = 0

3 [var(c~~
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Table  ~ shows an example of th is  app roach  w i t h  ideal and n o n- i d e a l

experimental values . (Both are ideal in the sense that the seeded set

.~a tc h e s  the  t r u e  d i s t r i b u t i o n  e x a c t l y.

Cate .gory Seeded Sampled Total
i Type t. s. N.  ______  

I
i - st 580x1 00

______  _____  _______  — 
a) Ideal b) Non-idea l  a) N = — =  29

I easy 60 480 1. 200 24 20 2000

2 mediun 30 100 600 5 6 b) ~ 580x 100

3 hard  10 0 200 0 0 = 22 31

total 100 580 2000 29 26

Table 6. Propor t iona l  seeding example with e r r o r s
d i f f e r e n t i a t e d  by diff icul ty  (Model 3) .
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9. 0 Conclusions

The modified maximum likelihood estimate onsj dered u n d e r  the

equal-probabili ty assumption is the estimate of choice in a sing le-trial test

if the total number of e r ro r s  exceeds about 50; its bias is pract ical ly zero

and its variance reasonable. Its variance was found , fu r the rmore , to va ry

in predictable ways with various ratios among er ror  population, sample

size and size of tagged or seeded set. As a consequence it is possible to

design a seeding/tagg ing test optimally fo r  the desired precision . Graphs

make the choice of s and t a simp le procedure.  Estimates of l a rger  values

can b e made in r elatively less time.

For N < 50 a decision must be made between N , and N with its1 0

higher bias but lower mean-squared error.

Multi- tr ial  procedures can decrease the dispersion still fu r ther , Of

the two types considered, the better one replaces the random variable c by

its average over the several trials .

A brief treatment of estimates for models othe r than equal probability

indicates that the estimates are closely related to those for  equal probability.

In summary, estimates of adequate accuracy and precision are avail-

able. The viability of seeding/tagging reliability tests rests on the answers

to the practical  questions which can be raised.
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Appendix 1. De r iva t ion  of Second O r d e r  Approx ima t ions  f o r  E (N ), V ( N )

and V(N
1
).

A. De r iva t i on  of Eq. (1 )

The exact e x p r e s s i o n  icr  E(N ) der ived by Chapman cons is t s  essen-

tially of t he  f i r s t  m t e rms, i-n a r b i t r a ry ,  of an in f in i t e  s er i e s  p lus a

remainder  t e r m . It can be w r i t t e n  in th e following fo rm:

E(N ) = st ~ (1 -K) [a +~~~~a + 2~~~~a ÷ 6~~~~a +. . . + ( m - i ) !  ~~~~a Jo I r 2 r 3 r 4 r 1 m

P r r r
+— ~~[1- ---~~a -2--i a - . , .  ~ (m~ 1 ) ! ~~m a ]

— a r 2 r 3 r m

+ ( 1 - P ) E ( R I s ~~~0) }

N - s - t  
P for  s+t < N

where  K =

4 0 othe rwise

N+ 1a 1 — (s-I- i ) ( t + j )

N+ia. (S+~) ( t+i) aI l  for  i > 2

r. = 1 - ~~ P(c IN+i , s+i , t+ i )
1 c 0

R = remainder term

To d e r i v e  his  f i r s t  o rde r  approximation Chapman assumes  that for  ~~ >1 0 ,

t i . - f o l l o w i n g  a p p r o x i m a t i o n s  hold:

N ’
P 0 , K 0 , R 0, all r. 1 , all a. ( — )

0 m 1 1 st
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The resu l t  is

E ( N ) N [1  + (~~ ) + 2 N

- - . - N stf r o m  which it appears that the bias depends onl y on the ratio ~~~, or -
~~~

The cr i t ica l  assumption is a. (—i) which  is close for  N , s and t v e r y

large but othe rwise introduces considerable positive e r ro r , incre asing as N

gets smal er.

The remaining assumptions seem just if ied:

1. Since the series converges , R — 0 .

2. P0 is generally small except fo r  N very large and ~~ ve ry small

simultaneously.
N . -small means that the mean of the distr ibution of c is close to the or ig in ,

and N large means that for  a given value of the va riance is large sinc e
(N - s ) ( N - t )  

— 1. Large va riance implies re lative ly hi g h probabi lity at c 0.

Some o r d e r - o f - m a g n i t u d e  values are:

N Po

is  ioo

13 . 75 200 10
_ s

13 . 75 100 l O ~~~

13 . 33 27 , 000 io _ 6

t o  ioo io~~
6. 25 100

1 100 , 000 0. 4

1 6 0 . 2
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W e  can t h e r e f o r e  assume, except  w h e r e  si gnalled by ~~iiall , that  P 0.

3. it f u t I o v ~ s that K, which is less  t 1~ n - i  P
~

, is ap p roximately 0 and

1 -K r  1.

4 . For  i small the probabil i t ies  in the exp res s ions  f o r  r
~ 

a re in the

tai l  of the d i s t r i b u t i on , and a r e  small f o r  r e a s o n a b l e  (see F i g u r e  1) .

T h e r e f ore r . I and —i- 1.
1 r 1

• 5. In most cases , the second  t e r m  is  v e r y  much less than the f i r s t

t e r m  and can s a f e l y be i gno red . The  f i r s t  t e r m  is dominated by a~ fo r

reasonable values  of -
~~~~ as the defini t ion of sbc~ws .  The ra t i o of tb-

- ~ o st . N .
second term to the first is about —

~~
- . F o r  -

~~~ e x c e e d i n g ly la r ~~e o = — isa S
- : P0 - . . - -6ver y small and —--

~~
-- can be s i g nif i c a n t .  However , :t P 1 0 and -

~~~ 10 ,
P0 _

~~~ 

1
10 . That is , we make an e r r o r  of about  . 01~~ in E i~~ ) by n e -.~l ec t ir ~

the second term.

If we make onl y the assumptions d i sn u s s e d  above omitting the a .

assumption, we a re  lef t  with

E(~ . )  st [a 1 
+ a2 + 2a

3 
+ .. + ( m_ 1 ) !a

m]. ( 1)

B. D e r i v a t i o n  of E qua t i on ( 1~~~

Let a = -
~~~

- . D e f i n e  k . f o r  i = 1 2 , - . . b y u .  = k . o -0 St  i 1 1 0

R e w r i t e  E q. ( 1 )  as

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

It r e m a i n s  to be shov n t ha t

t 
k 1~~~~1 /N

1 
- 

(1 + 1 / s ) ( 1  + l / t )
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- . . Nwhich is done b y f ac to ring  a = —
~~ f ro m a 1; and that

1+ i / N  -k. = k . 1  (1 + i / s ) ( 1  + i tt) ‘ ‘ ~ ‘ ~‘ . .

• The form holds for i = 2:

N + 2  N 1 + 2 / Na2 = a1 ( s+2) ( t+ 2 )  = a k
1 st (1+2/s)(1+2/t)

2 1 + 2 / N
= a ( 1 +2 / s ) ( 1+ 2 / t )

= k 1 (1+2/  s ) ( !+ 2 / t )  , and the general  fo rm follows readily by

-
~~ induct ion .

C. Derivation of Equation (3 ) and (3a)

The exact express ion  fo r  V(n 0
) has a s t r u c t u r e  simila r to that fo r

E(N ) conta in ing  the express ions  a ., —
, (1 -K) ,  P and R ( remaindero i rj  0 m

te rm somewhat  d i f f e r e n t  f r o m  R ) ,  Chapman ’s approximations lead to

2 3
V ( N ) N 2 [-~ + 7 (-

~~
) + 3 8  (-

~~
) I

In accordance with the p reced ing  d iscuss ion, we permit all but one

approximation to stand to arr ive at Eq. (3) and , with the same transforma-

tion as before, at Equation (3a).

D. V(N
1)

An exact form for V(N 1 ), derived using Chapman ’s method , is

I
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V N 1 _ j ~j~ ) ( t ~- 1 ) ( N + l 1 ( N - ~4J 1 - K ) I ---~~+— -~ 
N + 3  

+ 2_d 
(N+4 ) (N + 3 )  +

1 — 
( s T 2 ) (t+~ I 1r 1 r 1 

( s4 - 3 ) ( t+3 )  r
1 

( s-I -4 )( t + 4 )( s + 3 ) ( t+3 )

i- (m -2 )  ! 
~~~~~~~~ I t  +3) f ~~8+1 ) 2 (t+I )

Z (j  _ K ) E ( R m ’ ‘) 1~ I- 1 ) 2 ( 1-2K)

The same approximations as before  reduce this to

N — 
(s+L)( t+ 1 )(N+i ) (N+ ~~ i + 

N+3 2 (N+4) (N+3)  +
- - 

V( i~ 
— (s+ 2 ) ( t+ 2 )  i’ ( s+ 3) (t +3 ) + (s+ 4 ) ( t + 4 ) ( s + 3 ) ( t + 3 )

+ ( m - 2 ) !  ~~~~~~~~~~ 
- (N+ 1) 2

V(N 1
) ( s + t ) 2 (t + 1) 2 

[a2 +a 3+Za 4+ . . . +(m~~
2) !a m} 

- ( N+ 1 )
2 (5)

- 
which  can also be wri t ten as

- 

V(N 1 )~ (s + I ) 2 (t + 1) 2 (~~ l [ (k 2 -k 1
) 2 + k 3~~~+2k 4 (~~ ) + . . . +(m~ 2 ) !k m (~~ )m 2 J  (5a)

_____ _______________  
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Appendix 2. Taylor ’s Series Derivation for  E ( N )  and \ - ( N )

A. Let N be any e s t ima te  of N . N is a func t ion  of c , say  w( ) .  Let

v ( c )  = [w (c )  - N i
2
. T hen E [w ( e ) i  = ~~~ ) P ( c )  and E [v ( c ) }  = \ - ( L ) P ( ~

res pect ively t he mean and th~ m e a n - s q u a r e d  e r r o r  of es t ima te  N . Conse  -

quently any method fo r  evaluating the expected value of a f u n c t i o n  of a ran-

dom var iable  can be u s eu  to f ind both E(N)  and V ( N ) .

B . Let t he mean of c be rn , its var iance be r 2 and its kth cent ra l

moment , E [ ( c _ m ) k ] ,  be ‘~k ’ Let g(c)  be a func t ion  (we wi l l  later  let it. be

both w ( c )  and v ( c ) )  which can be expanded in a Tay lor ’s ser ies  about m:

g ( c )  = g (m)  + ( c - r n )  g ’(m)  + ~~~~rn) 2 
g ”( m) ~ 

( c -r n ) 3 
g ’ ’(m) +

Multi p ly each  t erm by P(c)  and sum over all c. The resul t  is

E [ g( c ) J  = g + g ’E(c-m)  + ~~~ E [( c-m) 2 ] + ~~~ E [(c-m)~~] +

where  g and its derivatives are evaluated at c = m

E ( c - m )  = 0

2 2E[(c -m)  } n -

3E [(c -m)  } = 12 3

4 Then

E {g(c)J  g + ~~~ g ’ + g ’ t ’  + ~4 g~~~ ( 1 1 )

4 If a t r u n c at ed portion is to be a r easonable approximation of E [g ( c ) J ,

the se r i es  must converge , and rapidl y. If g (c )  does no t var y t oo muc h n e a r

m, the de rivatives will be small . But the (c~ m) k P(c)  te rms must not be
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too l a rge ;  this requires  that the domain of c not sp read  t u u  f a r  f r o m  m

a n d/ o r  that the remote points have ve ry low probabil i ty.

C. We f ind E ( N )  by replacing g ( c )  b y N

2 (2
E~N) = w + ~~— w ” + -~~~w ’ ’  + w~~~ (12)

w h e r e  w, w ” and w~~~ are  eva luated at c =m.

W e f ind  V (N ) by replacing g ( c )  and its der iva t ives  b y v (c )  and its

der ivat ives .  Evaluating at i-n gives

2v (w-N)

= 2 (w-N )w ’

v ” = 2 ( w- N ) w ” +

v” = 2 (w -N)w ” + ~~~~~~~~~~

2(w-N)w~
4
~ + 8w ’w” +

Substituting these  in Eq. ( 11)  we find

2 2 2V(N)  (w-N)  + a- [(w ’) + w ” ( w - N )]  + —i-- [3w ’w ” + w ’~’ ( w- N ) 1

2 (4)+ j -~
- [4w ’ w ’’’ +3(w ”) + w ( w - N) J .  ( 1 3 )

D. Application to Estimate N

3 The mean and var iance  of c a re  known . The hi g he r  moments a rc  net

readil y availab le bet can be calculated f r o m  the ch a r a c t e r i s t i c  furi c t i o r

of the hy p e r g e ome t r i c  d i s t r ibu t ion  or f rom the fo rmula fo r  skewness  [2 1.

p 3 was in f ac t  de r i v e d  by the  w r i t e r  and s u b s t i t u t e d  in Eqs. ( 1 2 )  and  (1 3 ) t o

wr i t e  e xp r e s s i o n s  f o r  F ( N ) and V ( N ) . However  the  results in spe.. i t i c
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cases were  unifo rml y low indicating the need for  more terms . We can

avoid der iv ing  (2 4’~ 
by using a normal  approximation fo r  c{1 I for  which

hi g her  moments  a r e  more  access ib le .

In that event

St
m~~~~~

2 — St ( N - s ) ( N - t )  — st
2N (14)

p 3 = 0  
-

4 s t Z 2
(.L 4

= 3 0 - 3(~~- ) q

( N - s ) ( N - t )
w h e r e  q =

N

F or N
0

w ( c )  = s t/ c  w E  w(m) = N

~v ’( c )  = -st/ c 2 w ’ = - N ( N / s t )

w ’ (c)  2 s t/ c 3 
w 1’ 2 N ( N/ s t ) 2

w ”(c)  - 6 s t/ c 4 w v” - 6 N ( N/ st ) 3

w~
4

~ (c)  = 4 ! s t/ c  w~~~ = 4 ! N ( N / s t ) 4

Subst i tut ing in Eqs. ( 1 2 )  and ( 1 3 ) , we obtain , f inal l y,

E~N
0

) N [1+q (~~) + 3q
2 

(~L)
2

1 (2 )

V(N ) N 2
[q (~~) + 9q

2 ( N ) 2 } (4)

u - :as found to he ~~~~ ( N - 2 ~~~(N -2 t ) but  (2 4 does not follow

‘ ,~~ )c t e :~~. of ~2 , u 3~ it i~ p roh a~.lv the  su m  of such  a t e r m  and a n o t h e r .
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F . App l ica t ion  to Es t imate

i-i
St  — I . .TIi~- lo rm of N - -  w h e r e  c — c . is identical with that of N

0 c n~~~~1 i o
The only d i f f e r e nce is that the random vai- iahle is c ra ther  than e~, the

quanti t ies in, r~~, (2 3’ (.14 in Eqs . (1 2 )  and (13 )  must t h e r e f o r e  be mean and

centra l moments of c. As the ave rage  of n random variables with identical

distributions :

E ( c )  = E ( c )  =

2 —  1 2
a- ( c )  = — o  (c )

Under  the normal assumption fo r  c , c is i tself  normal, and

2 —  1 sta ( c ) — - ~~- q

p 3( c ) = 0

— 4 —  3 s t 2  2
3a- ( c  ) = —~~ (fl- ) q

We need only rep lace q by ~ in Eqs. (2 )  and (4)  to get the c o r r e s p o n d i n g

ex press ions  fo r  N :

E(N ) N [i + 
~~ 

(~~) + ~ 
~~~~ 

(
N

)
2

] ( 6 )

~~~~~ =N 2
[~ (~~) + 99~ (

N
)
2
] (7)

53

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~



-
- - 5 -  - 5 - 5 5 - - —- 5 --

Appendix 3. Confidence Intervals

A. Confidence Limits for  N and N
0 1

A s s u m e  that c has  a normal r a t h e r  than hypergeomet r ic  d is t r ibut ion .

- - stiTh.. - :~iean ol the  n o r m a l  approximation [ ii  remains ~~~~
- and the variance is

onl y sli g htl y c hanged:  = . (N- s~~N - t) 
. For a 1 00€ % confidence level,

N
le t  X i  be the h a ’f -w i d t h  of a symmetrical  interval about the mean containing

~1 -(  ) 1 00~~ of all o c c u r r e n c e s .  Then

P {
~~~~

- X a
~~. c < - M + X a - } 1  - (  (8)

Known quant i t ies  a re  s , t , A , € and the experimentally de termined c . The

onl y unknown , when a- is rep lac e-d b y the square  root of ~r
2 as given above ,

is N. From the left-hand inequality, we get

~~~~~~J s t  ( N -s ) ( N - t )  ~
N N N 2

st (N- s) (N- t )  i r St 2 2 st
N 2 2 1 (N ) c - Zc( N ) }

N A

st( N - s ) ( N - t )  > - ~~~ [(s t) 2N + c2N 3 
- 2cstN 2

]
A

2 2
£ .N 3 

- N 2 (~~~~-~ + st) + N [ (~~~) + s2 t + st 2
] - (st ) 2 < 0

A A

g(N ) E N 3 
- N 2 

~~ (2 + ~~) + N q [st + X 2
(s+t)I  - (~~~) ~ o (9)

F rom the r i g h t - h a n d  inequa l i ty ,  we have
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[(
~~~~)

Z + 
2 

- 2 L ( ~~~~ ) 1

which  is ident ica l  with the second e xp r e~~sion above and t h e r e f o re  leads to

the same resu lt , namel y g(N )~~ 0 w h er e  ~~N )  is  the pol ynomial  in Equa t ion  (9) .

Since g ( N I  -~ 0 r e p i - e sen t s  both inequa l i t ies  in (8), it is s a t i s f i ed  by all

v a l u e s  of N in the confidence i~1te r~ aL . The lower  l imit  
~‘a of the confi-

den. e int e r~-al is ch a  r a .  tc- r - i z e d  b y the fa ’. t t h a t  sm r t U e  r va l u e s  of N a re  not

in the in t e rva l  an i  t h e r e f o r e  (I ’.) not s a t i s f y g~N )  ~c 0 but  l a r gcr  values a r e

and do. T h e r e f o r e  N a is the next  i n t ege r  at or below a so lu t ion  of g ( N )  = 0

suc h that g(N ~ - 1 )  ~— 0  and g(N~ + 1)  0, i. e . n e a r  N , g(N) changes from

posi t ive  to n e g a t i v e  with i nc r e a s i n g  N . Similar ly the upper  limit N b of t h e

confidence interval i -  the integer at or l u s t  ab o v e  a l a r g e r  root of g(N)  = 0

where g(N) c h a n ge s  f r o m  negat ive  to p o s i t i ve  wi th  i n c r e a s i n g  N . In o the r

words , the conf idence  l imits ar e  approximate ly two roots of g ( N )  = 0

between which  ~JN )  is n e g a t i v e . Inspec t ion  of g (N )  tel ls  us that g (0)  is

negat ive  and that  its d e r i v a t i v e  at 0 is pos i t ive .  From D e s c a r t e s ’ rule  of

s igns , we know that  g ( N )  = 0 has no nega t ive  and e i t he r  one or th ree  p o s i t i v . .

roo ts .  From the  g e n e s i s  of the equat ion we know it h as  two posit ive roots

s ince  the  int e  rval  l imits do exist  and a r e  d i s t i n c t .  The r e f o r e  it has t h r e

real roo t s , a l l  p os i t i ve .  It is  a p p a r e n t  t h a t  g ( N )  has the  conf i g u r a t i o n

shown in Fi g.  5 and that  the  con f idence  l imit s  a r e  the  two u p p e r  roots .
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g (N)

g ( N ) K 0

_N

Figure 5. General Conf igura t io n  of g ( N)

B . Confidence Limits fo r  N and N1

We beg in with a set of experimental  values fc .~ i = 1 , . . . ,  n}. Esti -

— I fl
m a t e s  N a n d  N depend on the random va riable c = ~ c ., which is as -

0 1 f l j 1  1

- st . —2 st (N-s)(N-t)ymptoti c-all y normal  with mean = and var iance  a- = 
~~~~~ N ( N - 1)  . Or ,

- - - —2 st (N-s)(N-t)i~ we ~-e  t O  n o r m a l  approximat ion fo r  each c. ,  a = —~~~
i flJ.N N

Equation ~3 l becomes

P - X~~~~s~~~~~< + A7~ J = 1 - €

U s i n g  the f i r s t  f o rm  f o r  ~~ , the left-hand inequali ty leads to:
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-~ st~~~~~J s ~~~( N - s~~~~~t) < --
- - N ‘ ‘~J nN  N (N-1) —

A 2 S t  ~N - s ) ( N - t ) >  ( st ) + (
—

) 2 
- 2c~~~

-

. 
A 2 s t (N 2 

- s N- t N + s t )> ( s t ) 2n ( N - 1  ) + n N 2 ( N -j  )~~2 
- 2s tnN(N-1  )c

N 3 nc 2 -N 2 (nc 2 + 2  s t n c + X 2s t ) + N [ ( s t ) 2n + 2 s t n c + X 2 st(s~~~)]

- ( s t) 2 (n+A 2 ) < 0

2 2 2
g ( N ) E N 3-N [1 +~~~ ( 2 + ~ — ) J + N ~~~ 24~~~~~X (s+t )

1 - (.~~!) (1 + i_ ).( O ( 1 0 )
c nc C nc c

The right - hand inequal i ty leads to the same f o r m .  The reasoning descr ibed

in pa rt A of this appendix t h e r e f o r e  es tab l i shes  the conf idence  limits as the

two l a rges t  roots of g ( N )  0 w h e r e  g ( N )  is as de f ined  in Equation ( 10 ) .

_  _ _  
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Appendix  4. Mi sce l l aneous  Proofs

1 + i / N  1 + i / NA . Show that  (1 + i / s (1 + u t) ~ -

(1 + i / ~ J~~ ) 2

2 -,

( a - b )  = a - 2ab + b 0

a 2 
+ b 4 

> 2ab

Let a 2 
= c . h 2 

= d; then ab =

c + d > 2 , J~~~

Add I + cd to both s ides

1 + c + d + c d >  I + 2J~~~ + cd

( 1 + c)  (1 + d)  > ( 1

Let c = u s , d = u t

Then (1 + i / s I  ( 1 + u t ) ~ (1 + ~

d 1+ i / N  1 + i / NAn 
(1 + i / s ) ( l  + u t )  

~ (1 ~~ j /  ~~~~~~~ )

which  ~~as to be proved .

B . Show that V = var  + (b i a s ) 2

Let N be any estimate of quantit y N . Let m and b be the  mean a nd

bias  r e sp e c t iv e l y of N: m - N b and E(N - in) 0

V ( N )  = E [(N - N) i = E {[(N - m) + (m - N ) J
2

}

2 -)
= E [(N - m) J + ( m - N ) -t- 2 ( m - N ~~E ( N  - ni)

= va r  ( N )  + b 2

L
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METRIC SYSTEM

BASE UNITS:

Quantity - ~ n,t SI Symbol Fon

leng th metre rn - - -

mass kilogram kg .. -

time second
electric current ampere A
thermodynamic tempera ture kelv in K
amount of substance mole mol
luminous intensity candela cd

SUPPLEMENTARY UNITS :
plane angle radian rad - -

solid angle sterad ian sr - -

DERIV ED UNITS :

Acceleration metre per second squared - ~~~~

activity (of a radioactive source) disintegration per second ... (di si nte gr atio fl )/S

angular acceleration radian per second squared - - - red/s
angu lar velocity radian per second - rad)s

- 
-~ area square metre m

density ki logram per cubic metre kglm

electric capacitance farad F A’s/V
electrical conductance siemens S
electric field strength volt per metre --

electric inductance henry H V.sJA
electric potential difference volt V W A

electric resistance ohm VIA
electromotive force volt V W/A
energy joule I N-rn
entropy joule per kelvin .. ~IK

force newlon N kg.mis
frequency hertz Hz (cycle)/s
lluminance lux lx lmirn

luminance candela per square metre - -  cdfm
luminous flux lumen lm cd.sr
magnetic fie ld strength ampere per metre - - Aim
magnetic flux weber Wb V’s
magnetic flux density tesla I Wb/m
magnetoniotive force ampere A - -

power watt W J/s
pressure pascal Pa N/rn
quantity of electricity coulomb C A.s
quantity of heat joule I N’m
radiant Intensity watt per stersdian W ’sr
specifk heat joule per kilogram-kelvin - J , kg K
stress pasca l Pa N/rn
thermal conductivity watt per metre-kelvin W m - K
velocity metre per second rn
viscosity, dynamic pascal-second P0.5
viscosity. kinematic square metre per second - . -  m s

vo ltage volt V W IA
volume cubic metre m
wavenumber reciproca l metre (wave)/ m

— wor k joule I N.m

SI PREFIXES:

Multiplii.ation Fdcto rs I’ref is SI Symbo l

1 000 004/ (1(11) 000 I ~I2 t l! t a -r
1 0(11) 01)0 000 11) ’ giga

1 00(1 000 - I 0~ mega M
1 000 10’ kilo k

t 

100 — 10 hec to ’ h
10 10’ dnka~ do

0 1 1 ( ) ~~~ .1ei i~
00 1 ~~~~ t , . nt i ~

1) 00 1 J f ) ’ ,ni lli rn
Ii (1 (1 (1 0(11 t0  micro

1)11111 , 1( 0)) 11(11 11 ) nhln()
O tt O)) 1 )4 1 ) 1 IUSI 1)01 10 ‘‘ p

ii 00 (53(1 (((II) I 1110 15)1 iii - ‘ f i,mk ,
I) ((Itt) 00(1 004 ) Otto (1(1(1 1)01 10 otto C

To be avoided w here pcwoihl-
~U S  (1OV(CNU EST P0~5TING O rri c t - 14-02s , IS

________ - - - - - 
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MISSION
of

Rome Air Development Center

RM~ plans and conducts research , exploratory and advanced
development programs in command, control, and communications
(C3) activities, and in the C3 areas of informa tior~ sciences
and intelligence. The principal technical mission areas
are communications , electromagnetic guidance and control ,
surveillance of ground and aerospace objects, intelligence
data collection and handling, information system technology,
ionospherw propagation, solid state sciences , microwave
physics and electronic reliability, maintainabilitg and
compatibility.
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