CORPS OF ENGINEERS NEW YORK NORTH ATLANTIC DIV NORTH ATLANTIC REGIONAL WATER RESOURCES STUDY. ANNEX 2.(U) MAY 72 AD-A036 618 F/G 8/6 UNCLASSIFIED NL

North Atlantic Regional
Water Resources Study

Annex 2. May 72 (/)

ADA 036618

DECOMMENDED 1971

Appending public prisons
District Dilluted

Annex 2 to Report

406 959

NORTH ATLANTIC REGIONAL WATER RESOURCES STUDY COORDINATING COMMITTEE

4B

The North Atlantic Regional Water Resources (NAR) Study examined a wide variety of water and related land resources, needs and devices in formulating a broad, coordinated program to guide future resource development and management in the North Atlantic Region. The Study was authorized by the 1965 Water Resources Planning Act (PL 89-80) and the 1965 Flood Control Act (PL 89-298), and carried out under guidelines set by the Water Resources Council.

The recommended program and alternatives developed for the North Atlantic Region were prepared under the direction of the NAR Study Coordinating Committee, a partnership of resource planners representing some 25 Federal, regional and State agencies. The NAR Study Report presents this program and the alternatives as a framework for future action based on a planning period running through 2020, with bench mark planning years of $19\,80$ and $2000\,_{\circ}$

The planning partners focused on three major objectives -- National Income, Regional Development and Environmental Quality -- in developing and documenting the information which decision-makers will need for managing water and related land resources in the interest of the people of the North Atlantic Region.

In addition to the NAR Study Main Report and Annexes, there are the following 22 Appendices:

- A. History of Study
- B. Economic Base
- C. Climate, Meteorology and Hydrology
- D. Geology and Ground Water
- E. Flood Damage Reduction and Water Management for Major Rivers and Coastal Areas
- F. Upstream Flood Prevention and Water Management
- G. Land Use and Management
- H. Minerals
- I. Irrigation
- J. Land Drainage
- K. Navigation
- L. Water Quality and Pollution
- M. Outdoor Recreation
- No Visual and Cultural Environment
- 0. Fish and Wildlife
- P. Power
- Q. Erosion and Sedimentation
- R. Water Supply
- S. Legal and Institutional Environment
- T. Plan Formulation
- U. Coastal and Estuarine Areas
- V. Health Aspects

Annex 2 to Report

DISTRIBUTION STATEMENT A

Approved for public release, Distribution Unlimited Prepared by

North Atlantic Regional Water Resources Study Group
North Atlantic Division
Corps of Engineers, U.S. Army

for the

NORTH ATLANTIC REGIONAL WATER RESOURCES STUDY COORDINATING COMMITTEE

TABLE OF CONTENTS

	Page No.
TABLE OF CONTENTS	i
LIST OF FIGURES	111
LIST OF TABLES	v
CHAPTER 1. INTRODUCTION	1
CHAPTER 2. METHODOLOGY NOTES FOR TABLES OF ALL STATE PROGRAMS	3 26
CHAPTER 3. STATE PROGRAMS	27
MAINE NEW HAMPSHIRE VERMONT MASSACHUSETTS RHODE ISLAND CONNECTICUT NEW YORK NEW JERSEY PENNSYLVANIA MARYLAND DELAWARE VIRGINIA WEST VIRGINIA DISTRICT OF COLUMBIA	29 45 55 65 81 89 97 113 123 133 141 149 159 167

LIST OF FIGURES

STATE	MAPS
MITTI	PIACO

State	
	Page No.
MAINE	28
NEW HAMPSHIRE	44
VERMONT	
MASSACHUSETTS	54
RHODE ISLAND	64
CONNECTICUT	30
	38
NEW YORK	96
NEW JERSEY	112
PENNSYLVANIA	122
MARYLAND	
DE LAWARE	132
VIRGINIA	140
	148
WEST VIRGINIA	158
DISTRICT OF COLUMBIA	166

PRECEDING PAGE BLANK-NOT FILMED

LIST OF TABLES

		Page No.
	F PERCENTAGE DISTRIBUTION REAS AMONG STATES	
Area		
AREA 1	ST. JOHN RIVER BASIN	11
AREA 2	PENOBSCOT RIVER BASIN	11
AREA 3	KENNEBEC RIVER BASIN	11
AREA 4	ANDROSCOGGIN RIVER BASIN	12
AREA 5	MAINE COASTAL BASINS	13
AREA 6	SOUTHERN MAINE AND COASTAL NEW HAMPSHIRE	13
AREA 7	MERRIMACK RIVER BASIN	14
AREA 8	CONNECTICUT RIVER BASIN	15
AREA 9	SOUTHEASTERN NEW ENGLAND	16
AREA 10	THAMES AND HOUSATONIC RIVER BASINS	17
AREA 11	LAKE CHAMPLAIN AND ST. LAWRENCE RIVER DRAINAGE	18
AREA 12	HUDSON RIVER BASIN	19
AREA 13	SOUTHEASTERN NEW YORK METROPOLITAN AREA	20
AREA 14	NORTHERN NEW JERSEY	20
AREA 15	DELAWARE RIVER BASIN	21
AREA 16	COASTAL NEW JERSEY	21
AREA 17	SUSQUEHANNA RIVER BASIN	55
AREA 18	CHESAPEAKE BAY AND DELMARVA PENINSULA DRAINAGE	23
AREA 19	POTOMAC RIVER BASIN	24
AREA 20	RAPPAHANNOCK AND YORK RIVER BASINS	25
AREA 21	JAMES RIVER BASIN	25

	Page No.
TABLES OF NEEDS	
States	
MAINE	32
NEW HAMPSHIRE	48
VERMONT	58
MASSACHUSETTS	68
RHODE ISLAND	82
CONNECTICUT	90
NEW YORK	100
NEW JERSEY	116
PENNSYLVANIA	126
MARYLAND	134
DELAWARE	142
VIRGINIA	152
WEST VIRGINIA	160
DISTRICT OF COLUMBIA	168
TABLES OF DEVICES	
States	
MAINE	36
NEW HAMPSHIRE	50
VERMONT	60
MASSACHUSETTS	72
RHODE ISLAND	84

	Page No.
TABLES OF DEVICES (CONT.)	
States	
CONNECTICUT	92
NEW YORK	104
NEW JERSEY	118
PENNSYLVANIA	128
MARYLAND	136
DELAWARE	144
VIRGINIA	154
WEST VIRGINIA	162
DISTRICT OF COLUMBIA	170
TABLES OF COSTS	
States	
MAINE	40
NEW HAMPSHIRE	52
VERMONT	62
MASSACHUSETTS	76
RHODE ISLAND	86
CONNECTICUT	94
NEW YORK	108
NEW JERSEY	120
PENNSYLVANIA	130
MARYLAND	138

	Page No.
TABLES OF COSTS (CONT.)	
<u>States</u>	
DELAWARE	146
VIRGINIA	156
WEST VIRGINIA	164
DISTRICT OF COLUMBIA	172

CHAPTER 1 INTRODUCTION

Fourteen State Programs are presented in this Annex and each is a reformulation along state boundaries of the appropriate Area Programs of Annex 1. The procedures used for these reformulations were agreed to by the personnel of the agencies responsible for the appendices to the NAR Report.

These are mixed objective State Programs and the reformulations were done in a manner that would insure no changes in the plan formulation decisions on alternative planning elements: objectives, needs, devices, benefits and costs.

CHAPTER 2 METHODOLOGY

These State programs are rearrangements of the Area Programs along state boundaries. Each portion of a state within a given Area is designated as a state-area sector and the mixed objective information for that Area's Program has been distributed to the state-area sectors found within the Area. Thus, Area 4 has been divided into two state-area sectors: the Maine-4 sector composed of all of Area 4 which lies in Maine and the New Hampshire-4 sector for the portion that lies in New Hampshire. Planning elements (needs, devices and costs) of each Area have been distributed among the state-area sectors in that Area according to various methodologies that, with the available information, best describe the distribution of the elements in the Area.

This Annex is written in conjunction with the Report and Annex 1 to the Report and detailed definitions, descriptions and methodologies presented in those volumes have not been repeated. Chapters 2, 4, 5, 6 and 7 of the Report and chapters 2 and 3 of Annex 1 are of particular value to the understanding of this Annex. Chapters 6 and 7 of the Report are of special significance as they give detailed definitions of the planning elements and brief descriptions of the methodologies used in determing projections. Of particular value in Annex 1 is Chapter 2, which gives detailed methodologies used in writing the Area programs, and Chapter 3, which gives comparisons between the Area programs and other published basin studies.

Each State Program consists of four sectors and contains similar information presented in the following order:

State Map
State Description
State Program - needs
devices
costs
State Tables - needs
devices
costs

CONTENTS OF EACH SECTION

State Map. A map of each state is included showing the boundaries of the state and the state-area sectors within the state as well as the location of the more important cities.

State Descriptions. Each State Program is introduced by a brief description which indicates the major physical and economic characteristics of the state such as area, topography, population, major industries and per capita income levels.

State Program. A program for each state is given which highlights the significant needs, devices and costs within the state. Each state-area sector in the state is examined in relation to the other sectors and the state as a whole, for large, important and key planning elements. An element is considered large or small as it related to other sectors of the state. An important need is one which must be fulfilled before the mixed objective of the sector in which it is located can be achieved. An important device is on that is essential for fulfilling a particular need(s) of a sector. A key need is one which must be fulfilled in order that other needs of the sector can be fulfilled and a key device must be used for the successful use of other devices in the sector.

State Tables. All of the mixed objective information that is presented in the Area Program tables of Annex 1 is included in the State Program tables by state total and by state-area sectors. An exception to this is that the devices the uses of which are indicated by check marks rather than by figures in the Annex 1 device tables, could not be allocated to state-area sectors and are not included in the tables of Annex 2. All of the needs and costs which were similarly check marked in the Area tables when they occured, are assumed to apply to all sectors in an Area and are included in the Annex 2 tables.

DETAILED METHODOLOGIES

Needs. The following fifteen major need catagories are included in the State Programs.

Publicly Supplied Water
Industrial Self-supplied Water
Rural Water Supply
Irrigation Water
Power Plant Cooling Water
Hydroelectric Power Generation
Navigation
Water Recreation
Fish and Wildlife
Water Quality Maintenance
Flood Damage Reduction
Drainage Control
Erosion Control
Visual and Cultural Environment
Health

The methodologies for distributing these needs from Area to state-area sectors are given in the following paragraphs.

The need for Publicly Supplied Water in each Area was allocated to the state-area sectors in accordance with the population distribution on the assumption that the distribution of the Publicly Supplied Water is directly related to the population distribution in the Area. The Industrial Self-supplied Water need was distributed according to the distribution of the economic value added for the six major water using industries. It was assumed that the total self-supplied water use in each sector of an Area for all industries would be proportional to the present total value added of the major water using industries: food, textiles, paper, chemicals, petroleum and primary metals.

The Rural Water need was assumed proportional to the rural population and was distributed in this manner.

The need for agriculture Irrigation Water was assumed to be proportional to the amount of irrigated land in each sector and the Area need was distributed according to these percentages. The location of non-agriculture Irrigation Water was allocated by the percentage of total non-agriculture irrigated land in each sector as determined by the staff of the Department of Agriculture.

Distribution of the needs for Power Plant Cooling Water -- saline, brackish and fresh withdrawal and brakish and fresh consumption -- were obtained from the staff of the Federal Power Commission (FPC). The original sources for determing the needs of Annex 1 were evaluated by the FPC staff to determine the assumed location of the power needs by sectors.

The presumed need for Hydroelectric Power Generation was distributed by the FPC in the same manner as for Power Plant Cooling Water.

The needs for Navigation were distributed to the appropriate statearea sectors on the basis of the present location of navigational facilities: commercial navigation according to present commercial ports and recreational boating according to present recreational boating sites.

All the needs for Water Recreation -- visitor days, stream or river miles, water surface, beach and pool areas and acreage for land facilities -- were allocated primarily by population. This assumption, that Water Recreation needs are proportional to population, was modified in some instances to account for the location of available recreational sites. The distribution of these needs was done by the staff of the Bureau of Outdoor Recreation, Department of the Interior.

The Fish and Wildlife needs were distributed by various methods. The man-day requirements for sport fishing, hunting and nature study were allocated to the state-area sectors according to the total population distribution on the assumption that the needs were proportional to population distribution on the assumption that the needs were proportional to population. The lake and stream surface areas, and the sport fishing access for anadromous and freshwater fish were distributed by the percentage of water area in each sector as these needs would be proportional to the available resources. Piers and salt water fishing access needs were

determined by estimating the approximate miles of coastline in each sector and distributing the needs in proportion to these figures. Hunting access was assumed proportional to land suitable for game animals and was apportioned by the percentages of total forest, crop and pasture land in each sector. Nature study access, the primary need for which was assumed to occur only in urban areas, was allocated by the percentage of urban and other land in the sectors.

The non-industrial portion of the Water Quality Maintenance need was assumed to be proportional to the total population distribution. The industrial portion of the Water Quality Maintenance need consists of the summation of the needs of eight major categories of industries. The population equivalent loading (PE's) from each of these industries, as identified in Appendix L, was allocated to the state-area sectors according to the distribution of the economic value added for each industry. In each sector the needs of each industrial category -- food, textiles, paper, chemicals, petroleum, primary metals, mining, and miscellaneous industries -- were added together for the sector total.

The upstream Flood Damage Reduction needs were obtained from the sources originally used to determine upstream damages for Annex 1 which were site specific and readily identified. The mainstream and tidal and hurricane Flood Damage Reduction needs were determined by identifying the state-area sectors in which these land areas occur.

The needs for Drainage Control on cropland, forest land and wet land were obtained from the percentages of total land area in each sector.

The Erosion Control needs in each sector were determined by the staff of the Department of Agriculture from the original sources used for the Area needs of Annex 1. The needs are based on the actual location of the sites which are most likely to receive erosion protection.

The needs for Health were assumed to occur in each state-area sector in the Region.

The Visual and Cultural needs were determined by locating on the original maps used for the preparation of Appendix N the actual sites considered for improvement and, thus, the proportion of the total need in each sector.

Devices. The devices considered in this Annex are described in the following eleven categories:

Storage facilities
Withdrawal facilities
Conveyance facilities
Quality control facilities
Desalting facilities
Flood plain management
Local flood protection
Watershed management
Land controls
Flood controls storage
Waste water

The devices used for storage facilities are upstream reservoirs (storage less than 5000 sq. ft.) and mainstream reservoirs (storage greater than 5000 sq. ft.). The upstream reservoirs were allocated on the assumption that the devices would be distributed among the state-area sectors in proportion to the available sites which are suitable for upstream storage facilities. The locations of proposed mainstream reservoirs sites were noted and estimates were made as to the projects most likely to be completed. The required devices were then distributed to sectors which contained these most probable project sites.

The device used for withdrawal facilities are fresh water intakes and pumping, brackish water intakes and pumping and wells. The fresh water intakes and pumping devices were distributed in two ways: those used to meet the Publicly Supplied Water needs and those used to meet the Industrial Self-supplied Water needs. The first set of fresh water intakes and pumping devices were distributed in proportion to the total population and the second set according to the value added percentages for industry. Brackish water intakes and pumping devices were also apportioned according to the value added percentages for industry. The distribution of wells was based on the actual location of available ground water sources. It was assumed that well utilization would be approximately proportional to the available supplies.

Conveyance facilities for interbasin diversions were known to be located in specific Areas and state-area sectors.

Potable water treatment plants and waste water treatment plants are the devices used for water quality control facilities. The first type of plan is used primarily for Publicly Supplied Water needs and is apportioned to the state-area sectors according to the distribution of total population. Waste treatment plants (secondary treatment with both 85% and 90% PE removal and advanced treatment with 95% PE removal) were directly distributed to state-area sectors according to the distribution of Water Quality Maintenance needs in each sector and the degree of treatment required.

Site locations for desalting facilities were known and these facilities distributed to state-area sectors according to these locations.

The use of upstream flood plain management in each state-area sector was determined from the amount of flood plain in each sector and the mixed objective of the Area. The amount of flood plain in each sector was determined from the original sources used to locate the upstream flood control devices for Appendix F. The distribution to state-area sectors of local flood protection projects was made on the basis of available sites in each sector for upstream river protection projects and on the basis of the actual location of the projects for mainstream river and coastal protection projects. Flood control channels were distributed on the basis of available sites as determined from the sources originally used to determine the upstream flood damage control devices of Appendix F.

Watershed management devices were also distributed according to the percentage of available sites in each state-area sector, as determined from the sources used for Appendix F.

Land control devices are primarily used to meet Visual and Cultural needs. The amount and type of land control devices used in each state-area sector are distributed in direct relationship to the amount and type of Visual and Cultural needs in each sector and the mixed objective chosen for the Area. A need for a specific amount of land for a particular purpose and a given objective require specific devices for that same amount of land.

Upstream flood control reservoirs were distributed according to the percentage of available sites in each state-area sector. Sites for mainstream flood control reservoirs were identifiable in each Area and state-area sector.

Waste water is used to help fulfill the Industrial Self-supplied Water needs and was distributed according to the percentage of industrial need in each state-area sector as determined from the value added for industry.

<u>Costs</u>. Methodologies used to allocate costs in each area are described in thirteen catagories:

Water Development
Water Withdrawal and Conveyance
Power Plant Cooling Water
Hydroelectric Power Generation
Navigation
Water Recreation
Fish and Wildlife
Water Quality Maintenance
Flood Damage Reduction
Drainage Control
Erosion Control
Health
Visual and Cultural

Water development costs were derived from the supply model and allocated according to differing methodologies. Upstream reservoir costs were allocated on the basis of the percentage of available upstream reservoir sites as determined from Appendix F. Mainstream reservoir costs were distributed according to differing methodologies. Upstream reservoir costs were allocated on the basis of the percentage of available upstream reservoir sites as determined from Appendix F. Mainstream reservoir costs were distributed according to the percentage of mainstream reservoir projects in each state-area sector and informed estimates of the projects most likely to be constructed. Costs for well development were assumed proportional to the available resource and were distributed according to the percent of ground water development in each state-area sector. As the possible location by state-area sector of the desalting devices are known their costs were allocated to the sectors containing the devices.

Water withdrawal and conveyance costs were allocated by different methods. The conveyance costs for inter-basin transfers were allocated to the state-area sectors identified as receiving the benefits of the transfers. The withdrawal and conveyance costs for Public Water Supply were allocated according to the percentage of total population in each sector. These devices costs for Industrial Self-supplied Water were distributed according to the distribution of the industrial need as determined by the distribution of value added for industry. The Rural Water Supply costs were unknown. The costs for agricultural Irrigation Water were distributed according to the percent of irrigated land in each sector. The non-agriculture Irrigation Water costs were allocated according to the percent of total land in each sector.

The costs for Power Plant Cooling Water were provided by the staff of the Federal Power Commission from the original sources used for Appendix P. Power.

Hydroelectric Power Generation costs are unknown.

Navigation costs were distributed according to device locations in the case of commercial navigation and according to the location of present recreational boating for recreational boating needs.

Water Recreation costs were distributed according to the percentages of total population in each state-area sector.

Only fishing access costs for Fish and Wildlife needs are known and these were distributed according to total population.

Water Quality Maintenance costs for secondary and advanced treatment are directly proportional to the waste load and the degree of treatment used in each state-area sector. It was assumed that "other costs", which were for combined sewer overflow control, occur in the major urban centers and that these costs were allocated to the sectors containing these centers in each Area. The "other costs" for acid mine drainage control were distributed to the sectors which contain coal mining.

Each of the structural devices used for fulfilling upstream and mainstream Flood Damage Reduction needs have an associated cost and each statearea sector containing the devices carries the associated costs.

Drainage Control costs were distributed according to the percentage of total land area in each state-area sector.

Erosion Control costs were distributed by the staff of the Department of Agriculture to those state-area sectors which would receive the erosion control devices.

Costs for Health were unknown.

Visual and Cultural costs in each state-area sector depend on the location and amount of land associated with each of the land control devices.

Visual and Cultural needs and devices for meeting these needs were located on maps so that the sector containing the needs also contain the devices and the associated costs.

DISTRIBUTION PERCENTAGES

Many of the planning elements were distributed among the state-area sectors according to percentages derived from various sources. These percentage distributions are displayed in Tables of Percentage Distribution of Areas Among States, pages to . The sources and methodologies used to determine these percentages are described in the following section.

Population. The population of each county in the NAR region was determined from the 1967 County and City Data Book, U.S. Bureau of the Census. Counties were located in the appropriate state-area sectors (see Table B-7, Appendix B, Economic Base) and percentages of total area population in each state-area was determined. The County and City Data Book gives percentages of urban population for each county which was used to determine the percentage of urban and rural population in each state-area sector. (It was assumed that the percent rural was equal to one hundred minus the percent urban.) For urban and rural population each county with a few exceptions was considered to be located in one of the 21 Areas depending upon the location of major population concentrations. For total population, the population of counties in two or more Areas were distributed to those Areas in proporation to surface area on the assumption of uniform population density within the county. It was assumed that these methods of determining population distribution would give the best overall distribution of the planning elements dispite the fact that discrepencies occured which would indicate that a state-area sector could have a given percentage of total population but zero urban and rural populations.

Area. All of the area distribution percentages with the exception of irrigated land area was obtained from Table G-11 page G-38 of Appendix G, Land Use Management. The irrigated area percentages were obtained by the staff of the Department of Agriculture from sources used in developing irrigation requirements for Appendix L, Irrigation.

Value Added. The value added percentages were obtained from the economic value added of selected industries as determined from the 1963 Census of Manufactures, U.S. Department of Commerce, Bureau of the Census. Six major water using industries were used to determine the percentages of value added for each state-area sector for Industrial Self-supply. These industries were Food and Kindred products, Textile Mill products, Paper and Allied products, Petroleum and Coal products, and Primary Metal industries. For Water Quality Maintenance the product of the percentage of value added in each sector for each industry and the before treatment waste load of the industry (obtained from Tables L-6, Appendix L, Water Quality and Pollution) was used to determine an approximate distribution of the pollution loading for that industry. The population loading of all industries considered (the six for Industrial Self-supplied plus mining and miscellanous) were then used

to determine percentage distribution for Water Quality Maintenance.

Recreational Boating. The recreational boating percentages were determined from the present distribution of recreational boating which was used in the development of Appendix K, Navigation, by the NAR Study staff.

Storage. The upstream storage percentages were based on the storage capacity of all available upstream storage sites as determined from material obtained by the Department of Agriculture for the development of Appendix F, Upstream Flood Prevention and Water Management. The mainstream storage distribution is based on the location of storage projects most likely to be completed of all projects identified in Appendix E, Flood Damage Reduction and Water Management for Major River and Coastal Areas.

Groundwater Development. The percentage distribution of ground water development was based on the location and capacities of the available groundwater fields as determined from material used in developing Appendix D, Geology and Ground Water.

TABLES OF PERCENTAGE DISTRIBUTION
OF AREAS AMONG STATES

AREA 1 - ST. JOHN RIVER BASIN

100 percent of all needs, devices, and costs in Area 1 are allocated to Maine.

AREA 2 - PENOBSCOT RIVER BASIN

100 percent of all needs, devices, and costs in Area 2 are allocated to Maine.

AREA 3 - KENNEBEC RIVER BASIN

100 percent of all needs, devices, and costs in Area 3 are allocated to Maine.

AREA 4 - ANDROSCOGGIN RIVER BASIN

		1 1		
		New		
	Maine	Hampshi r e		
Percent of:				
Population				
Total	95	18		
Urban ·	79	21		
Rural	70	24		
Area				
Total	79	21		
Land	79	21		
Water	84	16		
Forest, Crop,				
and Pasture	78	22		
Urban and Other	91	9		
Irrigated	100	0		
Value Added				
for Industrial				
Self-Supply	100	0	1	
for Water Quality.				
Maintenance	80	20		
Recreational Boating	97	3		
Storage				
Upstream	66	34		
Mainstraam	0*	0*		
Groundwater Development	87	13		

^{*} No mainstream storage in Area 4.

AREA 5 - MAINE COASTAL BASINS

100 percent of all needs, devices, and costs in Area 5 are allocated to Maine.

AREA 6 - SOUTHERN MAINE AND COASTAL NEW HAMPSHIRE

1		New		1
	Maine_	Hampshire	Mass.	
Percent of:				
Population				
Total	60	37	3	
Urban	66	34	0	
Rural	55	45	O	
Area				
Total	60	40	0	
Land	57	43	0	
Water	90	10	0	
Forest, Crop,				
and Pasture	55.2	44.6	0.2	
Urban and Other	68.0	31.3	0.7	
Irrigated	70	30	0	
Value Added				
for Industrial				
Self-Supply	89	11	0	
for Water Quality				
Maintenance	58	42	0	
Recreational Boating	58 80	50	0	
Storage				
Upstream	39	61	0	
Mainstream	0*	0*	0*	
Groundwater Development	72	28	0	

^{*} No mainstream storage in Area 6.

AREA 7 - MERRIMACK RIVER BASIN

	New Hampshire	Mass.		
Percent of:				
Donulation				
Population Total	20	60		
	32	68	 	
Urban	28	72	 	
Rural	46	54	 	
Area				
Total	76	24	 	
Land	76	24		
Water	82	18		
Forest, Crop,				
and Pasture	81	19		
Urban and Other	47	53		
Irrigated	33	67		
Value Added				
for Industrial				
Self-Supply	31	69		
for Water Quality				
Maintenance	35	65		
Recreational Boating	80	20		
Storage				
Upstream	79	21		
Mainstream	100	0		
Groundwater Development	71	29		

AREA 8 - CONNECTICUT RIVER BASIN

	New				
	Hampshire	Vermont	Mass.	Conn.	
	TICMPOTITIC	VCIMOTIO	1.1622	com.	
Percent of:					
Population					
Total	9	7	25	1,0	
Urban	5	7	3 5	49 53	
Rural	17	19	28	36	
Area		19	20	20	
Total	27	35	25	13	
Land	27	36	24 ′	13	
Water	24	15	40	21	
Forest, Crop,					
and Pasture	29	37	23	11	
Urban and Other	12	16	34	38	
Irrigated	1	4	29	66	
Value Added					
for Industrial					
Self-Supply	4	1	61	34	
for Water Quality					
Maintenance	2	4	83	11	
Recreational Boating	25	15	30	30	
Storage					
Upstream	30	35	13	22	
Mainstream	50 *	50 *	0*	0*	
Groundwater Development	26	28	26	20	

^{* 1980} and 2000. In 2020, 3% N. H., 0% Vt., 52% Mass., 9% Conn.

AREA 9 - SOUTHEASTERN NEW ENGLAND

	Vana	Rhode	0.000	
- Daniel de la constant de la consta	Mass.	Island	Conn.	
Percent of:				
Population				
Total	83	17	0	
Urban	82	18	0	
Rural	83	17	0	
Area				
Total	74	25	1	
Land	73	25	2′	
Water	64	36	0	
Forest, Crop,				
and Pasture	73	25	2	
Urban and Other	78.4	21.2	0.4	
Irrigated	92	8	0	
Value Added				
for Industrial				
Self-Supply	78	22	0	
for Water Quality				
Maintenance	82	18	0	
Recreational Boating	_ 75	25	0	
Storage				
Upstream	84	11	5	
Mainstream	0	100	0	
Groundwater Development	83	17	0	

AREA 10 - THAMES AND HOUSATONIC RIVER BASINS

	Mass.	Conn.	Rhode Island	New York	
Percent of:					
Population					
Total	7	82	2	8	
Urban	3	97	0	Ö	
Rural	9	91	0	0	
Area					
Total	17	76	1	6	
Land	17	76	1	6	
Water	17	83	0	0	
Forest, Crop,					
and Pasture	17	75	2	6	
Urban and Other	12.6	82.4	0.4	4.6	
Irrigated	2	98	0	0	
Value Added					
for Industrial					
Self-Supply	7	93	0	0	
for Water Quality					
Maintenance	24	76	0	0	
Recreational Boating	8	90	1	1	
Storage					
Upstream	43	57	0	0	
Mainstream	0*	100*	0*	0*	
Groundwater Development	29	71	0	0	

^{* 1980} and 2000. In 2020, 49% Mass., 23% Conn., 0% R. I., 28% N. Y.

AREA 11 - LAKE CHAMPLAIN AND ST. LAWRENCE RIVER DRAINAGE

	Vermont	New York		
Percent of:				
Population				
Total	48	52 48		
Urban	52	48		
Rural	52 46	54		
Area				
Total	44	56	İ	
Land	1414	56		
Water	45	55		
Forest, Crop,				
and Pasture	44	56		
Urban and Other	40	60		
Irrigated	54	46		
Value Added				
for Industrial				
Self-Supply	7	93		
for Water Quality				
Maintenance	10	90		
Recreational Boating	26	74		
Storage				
Upstream	79	21		
Mainstream	0	100		
Groundwater Development	27	73		

AREA 12 - HUDSON RIVER BASIN

	New Jersey	Vermont	Mass.	Nov. Youls	Conn
Percent of:	INCW DELBEY	Vermone	Mass.	New York	Conn.
Population					
Total	15	1	1	81	2
Urban	Ó	0.7	0	99.3	0
Rural	0	2.2	0	97.8	0
Area				71.0	
Total	2	3	2	93	0
Land	2	4	1 ′	93	0
Water	6	0	2	92	0
Forest, Crop,					
and Pasture	1.4	3.8	1.5	93.0	0.3
Urban and Other	4.0	1.3	1.0	93.6	0.1
Irrigated	0	0	0	100	0
Value Added					
for Industrial					
Self-Supply	0	0	0	100	0
for Water Quality				100	
Maintenance	0	0	0	100	0
Recreational Boating	2	1	1	96	0
Storage					
Upstream	0	0.1	3.7	96.2	0
Mainstream	0	0	0	100	0
Groundwater Development	4	16	5	75	0

AREA 13 - SOUTHEASTERN NEW YORK METROPOLITAN AREA

100 percent of all needs, devices, and costs in Area 13 are allocated to New York.

AREA 14 - NORTHERN NEW JERSEY

			•	
	New Jersey	New York		
Percent of:				
Population				
Total	98	2		
Urban	100	0		
Rural	100	0		
Area				
Total	93	7	İ	
Land	24	6		
Water	73	27		
Forest, Crop,				
and Pasture	93	7		
Urban and Other	95	5		
Irrigated	100	0		
Value Added				
for Industrial				
Self-Supply	100	0		
for Water Quality				
Maintenance	100	0		
Recreational Boating	90	10		
Storage				
Upstream	100	0		
Mainstream	100	0		
Groundwater Development	100	0		

AREA 15 - DELAWARE RIVER BASIN

		, ,			
	New York	New Jersey	Penn.	Delaware	Maryland
Percent of:					
Population					
Population				,	
Total	1	20	73	6	0
Urban	0.4	19.7	74.5	5.4	0
Rural	6	23	63	8	.0
Area					
Total	19	23	50	8	0
Land	19	23	51 ′	7	0
Water	17	22	36	25	0
Forest, Crop,					
and Pasture	21.2	22.4	49.8	6.5	0.1
Urban and Other	8.2	26.9	54.0	10.8	0.1
Irrigated	1	78	8	13	0
Value Added					
for Industrial					
Self-Supply	0.4	19.0	78.6	2.0	0
for Water Quality					
Maintenance	0.3	16.1	80.5	3.1	0
Recreational Boating	5	35	40	20	0
Storage					
Upstream	30	35	30	5	0
Mainstream	0	0	100	Ó	0
Groundwater Development	1.4	38	42	6	0

AREA 16 - COASTAL NEW JERSEY

100 percent of all needs, devices, and costs in Area 16 are allocated to New Jersey.

AREA 17 - SUSQUEHANNA RIVER BASIN

	New York	Penn.	Maryla nd	
Percent of:				
Population				
Total	20	7 8	2	
Urban	20	80	0	
Rural	21	79	0	
Area				
Total	23	76	1	
Land	23	76	1	
Water	22	74	24	
Forest, Crop,				
and Pasture	22	77	1	
Urban and Other	27.8	71.7	0.5	
Irrigated	24	76	0	
Value Added				
for Industrial				
Self-Supply	6	94	0	
for Water Quality				
Maintenance	5	95	0	
Recreational Boating	20	70	10	
Storage				
Upstream	19	80	1	
Mainstream	14*	86*	0*	
Groundwater Development	23.2	76.2	0.6	

^{* 1980} only. In 2000, 25% N. Y., 75% Penn., 0% Md.; in 2020, 49% N. Y., 51% Penn., 0% Md.

AREA 18 - CHESAPEAKE BAY AND DELMARVA PENINSULA DRAINAGE

	D. 1				
	Delaware	Penn.	Maryland	Virginia	
Percent of:					
Population					
Total	4	1	93	2	
Urban	0.9	0	99.1	0	
Rural	9	0	83	8	
Area					
Total	13	1	74	12	
Land	15	1	75	9	
Water	l	0	68	31	
Forest, Crop,					
and Pasture	16	1	76	7	
Urban and Other	9.2	0.7	70.0	20.1	
Irrigated	21	0	42	37	
Value Added					
for Industrial					
Self-Supply	3.1	0	96.5	0.4	
for Water Quality					
Maintenance	4.1	0	95.4	0.5	
Recreational Boating	0.4	0	95.3	4.3	
Storage					
Upstream	0.4	0	99.6	0	
Mainstream	0*	0*	0*	0*	
Groundwater Development	18	0	67	15	

^{*} No mainstream storage in Area 18.

AREA 19 - POTOMAC RIVER BASIN

	District					
			of		West	
	Penn.	Maryland	Columbia	Virginia	Virginia	
Percent of:						
Population						
Total	5	35	26	30	4	
Urban	2.2	36.6	39.5	20.5	1.2	
Rural	12	38	0	38	12	
Area						
Total	11	26	0	39	24	
Land	11	26	0	39 31	24	
Water	4	56	0	31	9	
Forest, Crop,						
and Pasture	11_	26	0	37	26	
Urban and Other	10	22	14	56	8	
Irrigated	20	24	0	43	13	
Value Added						
for Industrial						
Self-Supply	16	31	29	21	3	
for Water Quality						
Maintenance	8	63	15	9	5	
Recreational Boating	0	53.2	15 14.9	30.0	1.9	
Storage						
Upstream	0	48	0	41	11	
Mainstream	0*	35*	0*	23*	42*	
Groundwater Development	2.8	23.4	0.2	44.9	28.7	

^{* 1980} only. In 2000, 8% Penn., 14% Md., 0% D. C., 50% Va., 28% W. Va.; in 2020, 14% Penn., 19% Md., 0% D. C., 43% Va., 24% W. Va.

AREA 20 - RAPPAHANNOCK AND YORK RIVER BASINS

100 percent of all needs, devices, and costs in Area 20 are allocated to Virginia.

AREA 21 - JAMES RIVER BASIN

		West	1	1
	Virginia	Virginia		
Percent of:				
Population				
Total	100	0		
Urban	100	0		
Rural	100	0		
Area				
Total	100	0		
Land	100	0		
Water	100	0		
Forest, Crop,				
and Pasture	99.5	0.5		
Urban and Other	100	0		
Irrigated	100	0		
Value Added				
for Industrial				
Self-Supply	100	0		
for Water Quality				
Maintenance	100	0		
Recreational Boating	100	0		
Storage				
Upstream	100_	0		
Mainstream	100	0		
Groundwater Development	99	1		

NOTES FOR TABLES OF ALL STATE PROGRAMS

1. The following notations are used in the tables:

blank - no application in this area

X - application but no figures available

0 - a value of zero

2. Need abbreviations used in the Device Tables include the following:

Publicly Supplied Water	PS
Industrial Self-supplied Water	Ind
Rural Water Supply	Rur
Irrigation Water	Irrig
Power Plant Cooling	Pow
Hydroelectric Power Generation	HPG
Navigation	Nav
Water Recreation	Rec
Fish and Wildlife	FW
Water Quality Maintenance	WQ
Flood Damage Reduction	FDR
Drainage Control	Drn
Erosion Control	Ern
Health	H1th
Visual and Cultural Environment	VC

- 3. Major tributaries are included in all mainstream figures that are under Flood Damage Reduction Needs of Table 1, Flood Plain Management and Waterway Management Devices of Table 2 and Flood Damage Reduction Costs of Table 3.
- 4. All figures in the Needs Table 1 are gross; that is, each target year figure includes all previous needs. The Devices and Costs figures of Tables 3 and 4 show only increments for periods between target years.
- 5. Figures for base years of Water Recreation needs in Table 1 are included in the first target year figure.
- 6. Power plant cooling costs are almost all privately incurred. Those costs shown in Table 3 are additional expenses beyond those necessary for the National Income objective.
- 7. Mainstream Flood Damage Reduction needs, because of the expenses that would be involved, are most completely fulfilled in any Area.
- 8. The need levels shown for Industrial Self-supplied Water are for fresh water use only. The devices and costs levels are these required to meet all Industrial Self-Supplied Water needs.

CHAPTER 3 STATE PROGRAMS

MAINE

MAINE

The State of Maine covers 33,214 square miles including all of Areas 1, 2, 3 and 5, most of Area 4, and over half of Area 6. The major river drainages are the St. John, Penobscot, Kennebec and Androscoggin Rivers. Overall visual quality for this predominantly forest and wildland State is high, though some portions comprise medial quality. The topography ranges from the mountainous western sections of Areas 3 and 4, through the wilderness segments of Areas 1 and 2, to the rolling hills and coastal marshes and plains of Areas 5 and 6. Water is generally abundant in Maine, but serious pollution problems exist in the lower reaches of the major streams below industrial, manufacturing and population centers.

In 1970 the State's population was just under one million, concentrated primarily around Augusta, Bangor and Portland, and is expected to increase by one-half million by 2020. Per capita income was 17 percent below the national average in 1970 but is projected to rise to only 12 percent below by 2020. Employment will continue to be highest in services and related industries, but increases are projected for manufacturing, especially paper and allied products. Employment in agriculture, fisheries and forestry is projected to decrease 50 percent by 2020.

Needs to be Satisfied. The need for Publicly Supplied Water is important in Areas 1, 3, 4, 5 and 6 and is largest in Area 6. Industrial Self-supplied Water needs are largest in Area 2, and important in all Areas of the State. Rural Water Supply is important only in Area 6, and largest in Area 1. Irrigation needs are both largest and most important in Area 1, although nonagricultural Irrigation needs are relatively large in Area 6. Power Plant Cooling needs, important in Areas 4, 5 and 6 are greatest in Area 5. Hydroelectric Power Generation is large in Areas 1 through 4. Commercial navigation is large in Area 6 and recreational boating, though largest in Area 6, is important in Area 1. Water Recreation needs, largest in the portion of Area 6 contained in Maine, is important in Areas 1, 2, 4 and 5. Fish and Wildlife needs, important in Areas 1, 4 and 5, are greatest in Area 6. Water Quality needs are key in all Areas except 6, important in Areas 2 and 4 and largest in Area 2. The need for Flood Damage Reduction is both largest and important in Area 4. Drainage Control needs are of the greatest magnitude in Area 3 while Erosion Control needs are largest in Area 5. Visual and Cultural needs, key in Areas 1 and 4, are important in Areas 2 through 5, and largest in Areas 1 and 2.

Devices. Storage facility devices are largest in Area 1 and withdrawal facility devices are largest in Area 2. Quality control facilities are key in Areas 3 and 4, important in Areas 1, 3 and 4 and largest in Areas 1 and 2 for waste treatment plants and in Areas 3 and 4 for potable water treatment plants. Water/land management devices are of greatest magnitude in Area 5. Land control devices are large in Areas 1 and 2, but key in Area 4 and important in Areas 1, 2 and 4.

Costs. Water development costs are largest in Area 1, while water withdrawal and conveyance costs, except for Irrigation, are greatest in Area 3. The Irrigation costs are greatest for agriculture in Area 1 and for non-agriculture in Area 6. Costs for Power Plant Cooling Water are greatest in Area 5, and for Navigation in Area 2. The costs for Water Recreation are largest in Area 3. The costs are largest in Area 6 for Fish and Wildlife, in Area 2 for Water Quality Maintenance and Flood Damage Reduction, Area 3 for Drainage Control, Area 6 for Erosion Control and Area 5 for Visual and Cultural.

		STATE	TOTAL		
NEEDS-cumulative	Pres.	1980	2000	2020	
Publicly Supplied Water (mgd)	88	115	164	243	
Industrial Self-Supplied Water (mgd)	340	630	1160	1880	
Rural Water Supply (mgd)	18	24	31	30	
Irrigation Water: agriculture (1000 afy)	2	33	75	119	
non-agriculture (1000 afy)	1	8	14	22	
Power Plant Cooling: withdrawal, saline (cfs)	410	1550	10420	21540	
brackish (cfs)	0	0	70	155	
fresh (cfs)	76	57	1075	3105	
consumption, brackish(cfs)	0	0	33	75	
fresh (cfs) Hydroelectric Power Generation (mw)	1	1	11	110	
Hydroelectric Power Generation (mw) Navigation: commercial (m. tons annually)	590	550	2820	7200	ļ
recreational boating (1000 boats)	35	52	85	133	
Water Recreation: visitor days (m.)	86	102	173	297	
stream or river (miles)	X	35	54 420	76 570	
water surface (1000 acres)	X	330 79	115	152	
beach (acres)	X X	930	1170	1310	
pool (m. sq. ft.)	X	16	20	22	
land facilities (1000 acres)	X	47	62	75	
Fish & Wildlife: sport fishing man-days (m.)	7.4	9.1	10.8	12.9	
surface area, lake (acres)				1	
stream (acres)					
access, fresh (acres)	х	0.13	0.37	0.65	
salt (acres)	Х	0.36	1.07	1.96	
anadromous (acres)	X	0.10	0.13	0.16	
piers (1000 feet)			X	X	
hunting, man-days (m.)	2.8	3.1	3.7	4.3	
access (1000 sq. mi.)	X	0.29	1.43	2.61	
nature study, man-days (m.)	1.2	1.4	1.7	2.0	
access(1000 ac.)	X	0.20	0.41	0.82	
Water Quality Maint.: non-industrial (m. PEs)	940	1090	1290	1540	
industrial (m. PEs) Flood Damage Reduction:	10300	20500	38700	72400	
avg. ann. damage, upstream (m. \$)	0.00	1 10	2 11	/ 11	
mainstream (m. \$)	0.83	1.19	2.11	4.11	
tidal and hurricane (m. \$)	1.9	2.8	5.3	10.9	
Drainage Control: cropland (1000 acres)	0.03	91	149		
forest land (1000 acres)	0	91	28	241	
wet land (1000 acres)	U		20	112	2000
Erosion Control: agriculture (1000 acres)	480	600	670	680	
urban (1000 acres)	780	840	920	1020	
stream bank (mi.)	0	10	32	53	
coastal shoreline (mi.)	0	_1	3	5	
Health: vector control and pollution control	х	X	X	х	
Visual & Cultural:					
landscape maintenance, unique natural(sq. mi.)	1300	8400	8400	8400	
unique shereline (mi.)	90	540	540	540	
high quality (sq. mi.)	400	6700	12200	17200	
diversity (sq. mi.)			1995		
agriculture (sq. mi.)	X	X	X	X	
landscape development, quality (sq. mi.)					
diversity (sq. mi.) metro. amenities (mi.)					
metro. amenities (mi.) " (sq. mi.)			1		
(sq. m1.)					

		AREA	1			AREA	2			AREA	3			AREA	4	
	Pres	1980	2000	2020	Pres	1980	2000	2020	Pres	1980	2000	2020	Pres	1980	2000	2020
	6				11				-	21			_ 11			
	20						420		50		-	190	90	140		310
	4		7	8	3	3			3	4	5	5	$\frac{1}{\sqrt{2}}$		2	12
	0.1		40	73		1			0.1	6					10	
	- 0				V. 1			4								
	19	0	500	550	57	57	300	926	0	0	275	1285	0	0	0	304
	0			34	1	1	4			0						16
	2	0	800	1300				AND DESCRIPTION OF THE PARTY.		that your to be not the last	1720	THE RESERVE AND ADDRESS.	All in teams of the last time	160	160	1100
					2	2	5		0.03							
	9					13	24			17	40			12		
	Х	30	4	5	X	5 60	7 70	10 100	Х	5 70			Х	4	6	8 80
	X	8	40 11	50 14	X X	15	21	28	X	18	90 26	120 34		50 12	60 17	
	X X	80	90			140	180	200		170		230		120		
	X	1	2	2	X	2	3	3	X	3		4	X	2	2	3
	x	4	5	7	x	8	10		x	10		15	X	7	8	10
	0.7	0.9	1.0	1.2	1.1		1.3		0.7	1.2	water the second second			1.0		
	х	0		0.05	х	0.002			Х	0.03	0.06	0.08	х	0.02		
	х	0.004	0.01	0.01	х	0.04	0.04	0.05	х	0.02	0.03	0.03				
	0.3	0.4	0.5	0.5	0.7	0.7	0.8	0.9	0.4	0.5	0.6	0.7	0.3	0.3	0.4	0.5
	x			0.33	x			0.55			0.40				0.12	
	0.1	0.2		0.2	0.2						0.3			The state of the s		
	110	120	140	160	140	160	190	220	150	170	190	220	110	120	130	150
	2100	4500	8800	16600	3300	7200	14900	29300	1600	2700	4500	7700	2000	3400	5600	9500
	0.06	0.10			0.11								0.08 0.7			
	11	17	28		10	13	21	35	19	29	48	81	5	7	12	19
	0	0	7	29	0	0	9	36					0	0	4	16
	100	0.10	0.7	222												
	180		270	280	40	3	50		80	100	110	110	20	30	40	40
	40		60	70	110		130		100	110	110	120	80	80	80	90
. 3	0	1	4	/	0	2	7	12	0	3	9	15	0	2	5	8
-	х	X	X	x	X	X	X	x	X	X	X	x	X	X	x	X
			- A					A				. A				
	400	6400	6400	6400		1500										
					400	2000	3600	5200	х	1600	3200	4800	х	1200	2000	2600
					х	х	х	х	х	х	Х	х				

White		AREA	5		
NEEDS-cumulative	Pres.	1980	2000	2020	
Publicly Supplied Water (mgd)	13	17	23	33	
Industrial Self-Supplied Water (mgd)	50	110	210	340	
Rural Water Supply (mgd)	4	5	8	3	
Irrigation Water: agriculture (1000 afy)	0.3	1	2	3	
non-agriculture (1000 afy)		2	3	5	
Power Plant Cooling: withdrawal, saline (cfs)	150	1350	7530	15230	
brackish (cfs)	0	0	55	120	
fresh (cfs)	0	0	0	10	
consumption, brackish(cfs)	0	0	27	57	
fresh (cfs) Hydroelectric Power Generation (mw)	0	0	0	5	
Hydroelectric Power Generation (mw) Navigation: commercial (m. tons annually)	28	25	0	0	
recreational boating (1000 boats)	1	2	3	5	
Water Recreation: visitor days (m.)	13	16	24	33	
stream or river (miles)	Х		10	14	
water surface (1000 acres)	X	40	50	70	
beaches (acres)	x x	11 150	16 190	21 200	
pool (m. sq. ft.)		3	3	3	
land facilities (1000 acres)	x x	4	5	6	
Fish & Wildlife: sport fishing man-days (m.)	1.7	1.8	2.1	2.5	
surface area, lake (acres)	1.7	1.0	2.1	2.5	
stream (acres)					
access, fresh (acres)	х	0.01	0.04	0.07	
salt (acres)	x	0.10	0.30	0.55	
anadromous (acres)	X	0.02	0.03	0.04	
piers (1000 feet)		0.02	x	x	
hunting, man-days (m.)	0.5	0.5	0.6	0.7	
access (1000 sq. mi.)	х	0	0.15	0.35	
nature study, man-days (m.)	0.2	0.2	0.3	0.3	
access(1000 ac.)					
Water Quality Maint.: non-industrial (m. PEs)	160	180	210	240	
industrial (m. PEs)	1000	2000	4000	7700	
Flood Damage Reduction:					
avg. ann. damage, upstream (m. \$)	0.15	0.18	0.37	0.73	
mainstream (m. \$)		0.04	0.09	0.18	
tidal and hurricane (m. \$)	.01	.02	.04	.07	
Drainage Control: cropland (1000 acres)	11	17	28	45	
forest land (1000 acres)	0	0	8	32	
wet land (1000 acres)					
Erosion Control: agriculture (1000 acres)	110	120	130	130	
urban (1000 acres)	370	380	400	410	
stream bank (mi.)	0	1	4	7	
coastal shoreline (mi.)					
Health: vector control and pollution control Visual and Cultural:	X	X	X	Х	
	100	F.0.0	F 0 0	500	
landscape maintenance, unique natural(sq. mi.) unique shoreline (mi.)		500	500	500	
high quality (sq. mi.)	90	490 1500	490 2600	490	
diversity (sq. mi.)		1300	2000	3300	
agriculture (sq. mi.)					
landscape development, quality (sq. mi.)					
diversity (sq. mi.)					
metro. amenities (mi.)					
" (sq. mi.)					
(34.11.)					

		AREA	4 6			AREA	1			AREA	1			AREA	1	
	Pres				Pres	1980	2000	2020	Pres	1980	2000	2020	Pres	1980	2000	2020
	30	39 70	58 120	86												
	40															
	1	2														
	1	3														
	260		2890													
	0	0														
	0	0														
	0		0	14												
	58															
	32 29															
	X	12														
	х	90		160												
	х	16														
	x x	280 5	370 6													
	X	15														
	2.5	3.1														
	x	0.06	0.18	0 33												
	x		0.77													
	х		0.03													
			0.0													
	0.7 x		0.9													
	0.4		0.5													
	х	0.20	0.41	0.82												
	270		440													
	300	600	1000	1600		+										
	0.13	0.21	0.38	0.76												
	0.3	0.5	1.0	2.1												
	0.02	0.04														
	6	1	12	14												
																-
	40	60	70	70												
	90	100	140	190												
	g	1	3	-												
	х	х	х	х											-	
												,				
	100	100	100	100												
	v o	50 400	50 800	50 1300												
	^	700	000	1300										1		
													1			
and a																
1																

Water Storage Facilities φ reservoirs, upstream (1000 af) VC,Rec* 52 91 mainstream (1000 af) WQ* 13 33 Withdrawal Facilities intakes & pumping, fresh (mgd) PS,Ind,Pow,Irrig 290 520					
DEVICES - incremental	Purposes	1980	2000	2020	
. Resource Management					
A. Water					
Storage Facilities o					
reservoirs, upstream (1000 af)	VC, Rec*	52	91	89	
mainstream (1000 af)	WQ*	13	33	63	
Withdrawal Facilities					
	PS, Ind, Pow, Irrig	290	520	710	
brackish (mgd)	Ind	32	42	55	
wells (mgd)	*	38	52	44	
Conveyance Facilities					
interbasin diversions, into (mgd)					
out of (mgd)					
Quality Control Facilities					
chemical/biological					
	PS	11	17	33	
waste treatment plants					
secondary (85%) (m. PEs removed)	WQ	18400	0	0	
secondary (90%) (m. PEs removed)	WQ	0	36000	66500	
	WQ	0	2000	3700	
Desalting Facilities					
B. Water/Land					
	FDR, VC, Rec	11	151	82	_
Local Flood Protection					
ocean (projects)					
river (projects)	FDR	3.3	5.2	6.5	
flood control channels (miles)		25.5	1510		
Watershed Management (1000 acres)	FDR, VC, Drn, Rec	850	1560	1530	_
C. Land					
Controls	WO D TV	6010	500	100	
fee simple purchase (buying)(sq.mi.)	VC,Rec,FW	6940	590	490	
fee simple purchase (buying) (mi.)	VC, Rec, FW	450	0	0	
purchase lease (sq.mi.)	Wa n III	1100	1100	1100	
easements (sq.mi.)	VC, Rec, FW	1100	1100	1100	
deed restrictions (sq.mi.)	NO TH	700	150	200	
	VC, FW	700	450	300	
	VC,FW	1900	450	300	
zoning (mi.)	NC TIL D	2000	2/00	2220	
zoning and/or tax inc. subs.(sq.mi.)	vc, FW, Kec	2800	2400	2300	
zoning and/or tax inc. subs. (mi.)					
Others					
pstream Flood Control Storage (1000 af)	FDR	27	64	58	_

 $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow.

^{\$\}phi\$ Flood control storage not included.

	A	AREA I			AREA 2			AREA 3			AREA 4	
	1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
	28 13	19 33	0 63	0	16	0	4	17	0	5	4	0
	20	40	70	110	200	280	30	50	70	50	70	90
	17	17	26	2	3	1	6	15	6	3	7	3
	1 3900 0 0	3 0 8000 400	6 0 15100 800	1 6300 0 0	2 0 13600 800	4 0 26500 1500	2 2500 0 0	5 0 4200 200	8 0 7100 400	2 3000 0 0	2 0 5200 300	3 0 8700 500
	1	1	0	1	0	0	6	- 30	8	1	9	2
	1.0	0	2.0	1.0	0	4.0				0	0.5	0
	40	0	30	20	0	160	130	260	260	120	260	210
	4800	0	0	1250 500	500	0 500	300 500	300 500	300 500			
	1200 x	0 x	0 x	600	600	600	800	800	800	1200	800	600
-	8	0	16	8	0	38	300	300		0	13	0

			AREA 5		
DEVICES - incremental	Purposes	1980	2000	2020	
I. Resource Management					
A. Water					
Storage Facilities \$\Psi\$					
reservoirs, upstream (1000 af)		5	10	51	
mainstream (1000 af)	wQ^				
Withdrawal Facilities	PS,Ind,Pow,Irrig	(0	100	120	
intakes & pumping, fresh (mgd) brackish (mgd)		60 19	100	120 37	
wells (mgd)		4	4	6	
Conveyance Facilities (mgd)			-		
interbasin diversions, into (mgd)					
out of (mgd)					
Quality Control Facilities					
chemical/biological					
potable water treat. plants (mgd)	PS	4	3	6	
waste treatment plants					
secondary (85%) (m. PEs removed)	WQ	1900	0	0	
secondary (90%) (m. PEs removed)	WQ	0	3800	7200	
advanced (95%) (m. PEs removed)		0	200	400	
Desalting Facilities					
B. Water/Land					
Upstream Flood Plain Mgmt.(1000 acres)	FDR,VC,Rec	1	104	62	
Local Flood Protection					
ocean (projects)					100
river (projects)	FDR	1.3	2.7	0.5	
flood control channels (miles)		2/2	(00	(00	
Watershed Management (1000 acres)	FDR,VC,Drn,Rec	340	680	680	
C. Land					
Controls	UC Dog EU	500	200	100	
fee simple purchase (buying)(sq.mi.)	VC, Rec, FW			100	
fee simple purchase (buying) (mi.)	vc, kec, rw	400	0	0	
purchase lease (sq.mi.)	UC Dog EU				
	VC,Rec,FW				
deed restrictions (sq.mi.)	VC FU	700	450	300	Maria 1
tax incentive subsidy (sq.mi.)	VC,FW	700	450	300	
zoning (sq.mi.)		700	450	200	4. 3.5
zoning (mi.)					
zoning and/or tax inc. subs.(sq.mi.)	ro, rn, nec				
zoning and/or tax inc. subs. (mi.) V. Others			-		
Upstream Flood Control Storage (1000 af)	FDR	11	27	4	

 $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. φ Flood control storage not included.

A	AREA 6		-	AREA		1	AREA			AREA	
1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
12	25	38									
20	60	80									
13 6	7 8	18 4									
- C	0	4									
1	3	7									
800 0	0 1300	0 2000									
 0	100	100									
 1	7	9									
0	2.0	0									
200	350	190									
 200	330	190									
90	90	90									
50	0	0									
100	100	100									
200	200	200									
0	27	0									

FIRST COSTS - incremental	O.C.	AME MOD		
(\$ million 1970)	Si	TATE TO		
(\$ MIIIION 1970)	1980	2000	2020	
Water Development Costs:				
storage, upstream	5.1	7.7	5.3	
mainstream	6.8	9.5	16.1	
wells	20	29	25	
desalting				
Water Withdrawal and Conveyance Costs:				
inter-basin transfers				
public water supply	13	19	33	
industrial self-supplied water	1.7	2.9	4.0	
rural water supply	x	x	x	
irrigation, agriculture	7.8	11.3	12.6	
non-agriculture	5.5	4.5	5.6	
Power Plant Cooling Water	0	25	200	
Hydroelectric Power Generation	0	х	X	
Navigation: commercial	65	152	44	
recreational boating	4.2	5.1	8.0	
Water Recreation	218	69	81	
Fish and Wildlife: fishing	3.1	3.6	4.4	
hunting	x	x	x	
nature study	х	x	x	
Water Quality Maint.: waste treatment, secondary	500	960	1730	
advanced	0	410	760	
other ≠	190	0	0	
Flood Damage Reduction: upstream	2.3	3.3	4.9	
mainstream				
Drainage Control	1.1	2.7	4.6	
Erosion Control	15	19	16	
Health	х	х	х	
Visual and Cultural	114	47	40	
Summation of Available Estimated Costs	1200	1800	3000	

^{*} From the supply model and includes OMR costs.

Combined sewer overflows control and acid mine drainage control.

		AREA	1		AREA 2			AREA 3			AREA 4	
	1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
1	3.1	2.3	0	0	1.2	0	0.4	1.4	0	0.4	0.3	0
	6.8	9.5	16.1									
	9	10	14	1	1	1	4	8	3	2	4	1
	1	4	6	2	2	4	3	6	10	2	2	2
1	0.1	0.2	0.4	0.6	1.1	1.5	0.2	0.2	0.3	0.3	0.4	0.5
	x	х	х	х	х	х	х	x	x	x	x	x
	5.8	6.5	9.7	0	0.2	0.7	1.1	2.9	1.4	0.7	1.3	0.6
	0.4	0.4	0.4	0.4	0.5	0.4	1.0	0.6	0.6	0.8	0.7	0.8
	0	2	16	0	0	25	0	0	22	0	0	12
	0	Х	х	0	0	Х	0	Х	х	0	0	Х
				0.3	1	36						
1	0.1	0.2	0.2	0.5	0.6	0.8	0.2	0.6	1.1	0.1	0.3	0.6
	28	8	19	62	18	14	74	20	15	48	13	9
	0.1	0.3	0.3	0.5	0.5	0.5	0.4	0.4	0.4	0.5	0.3	0.5
	x	x	x	x	x	х	х	x	х	x	x	x
	х	х	х	x	х	х	х	х	х	x	x	x
	80	170	310	100	230	450	60	100	170	50	90	150
- 1	0	90	170	0	150	300	0	50	80	0	60	100
1	10	0	0	30	0	0	40	0	0	24	0	0
	0.7	0	1.4	1.1	0	3.3				0	1.6	0
	0.2	0.5	1.0	0.1	0.4	0.9	0.3	0.6	1.1	0.1	0.2	0.4
A	4	3	2.	2 !	1	1	3	2	1	1	1	1
	Х	Х	Х	Х	X	Х	Х	х	Х	Х	х	Х
	22	0	0	13	7	7	14	14	14			
	170	310	570	210	410	850	200	210	320	130	180	280

FIRST COSTS - incremental		AREA	5	
(\$ million 1970)	1980	2000	2020	
Water Development Costs:				
storage, upstream	0.2	0.4	2.1	
mainstream				
wells	2	2	3	
desalting				
Water Withdrawal and Conveyance Costs:				
inter-basin transfers				
public water supply	3	4	6	
industrial self-supplied water	0.4	0.7	0.9	
rural water supply	х	x	x	
irrigation, agriculture	0.1	0.3	0.2	
non-agriculture	1.2	0.9	1.4	
Power Plant Cooling Water	0	19	78	
Hydroelectric Power Generation				
Navigation: commercial	0	6	8	
recreational boating	0.2	0.6	0.7	
Water Recreation	0.4	0.2	0.3	
Fish and Wildlife: fishing	0.5	0.6	0.7	
hunting	X	х	x	
nature study	х	x	х	
Water Quality Maint.: waste treatment, secondary	100	200	380	
advanced	0	40	80	
other ≠	20	0	0	
Flood Damage Reduction: upstream	0.5	0.9	0.2	
mai n stream				
Drainage Control	0.2	0.5	1.0	
Erosion Control	1	1	1	
Health	х	х	х	
Visual and Cultural	38	13	7	
Summation of Available Estimated Costs	170	290	570	

^{*} From the supply model and includes OMR costs.

Combined sewer overflows control and acid mine drainage control.

		AREA 6		March 1	AREA		AREA 2 1980 2000 202				AREA	
	1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
	1.0	2.1	3.2								1	
	3	4	3									
	1	2	6									
	0.2	0.3	0.5									
	х	х	х									
	0.1	0.02	0									
	1.7	1.5	2.0									
	0	4	47									
	65	145	0									
	3.1	2.8	4.6									
	6	10	25									
	1.0	1.6	2.0									
	х	х	х							L H		
	Х	х	х							-114-		
	100	170	260									
	0	20	20									
_	60	0	0									
	0	0.9	0									
	0.2	0.4	0.2									
	4	10	12									
	Х	Х	х									
	28	13	13									
	270	390	400									

NEW HAMPSHIRE

NEW HAMPSHIRE

The State of New Hampshire contains 9,303 square miles including portions of Areas 4, 6, 7 and 8. The State's major drainages are the northeastern drainage of the Connecticut River and most of the Merrimack River drainage, while Lake Winnesquam has the State's largest water surface area. The topography is comprised of rolling hills, steep hills and mountains, and the overall visual quality is high, with only small portions being of medial quality. Water is plentiful throughout the State, but it is uniformly poor in quality with many areas of extreme pollution. The only supplies of good water are located in the extreme northern portions of the State and many of the population centers have supplies that are so degraded as to preclude the use of the water for many purposes.

The 1970 population of the State totalled 680,000 and is projected to increase to 12.5 million by 2020. The only significant concentrations are around Manchester and Concord. Per capita income was 3 percent below the national average in 1970 but it should be at that average by 2020. Employment was highest for services and is projected to more than double by 2020, and manufacturing should increase by 40 percent. Decreases are anticipated in textile mill products, agriculture and forestry and fisheries.

The State of New Hampshire comprises portions of Areas 4, 6, 7 and 8. Areas 4 and 6 occupy the northeastern, southeastern and coastal, parts of the State, respectively, and Area 8 the southwestern and northwestern portion. Area 7, in central and south-central New Hampshire, includes the State's major urban and industrial concentrations.

Needs to be Satisfied. The most significant key and important need is for Water Quality Maintenance, particularly in the Merrimack, Connecticut and upper Androscoggin Basins. Visual and Cultural landscape maintenance is key and important in Area 4, and important in Areas 7 and 8 as well. Other important needs include Water Recreation and Fish and Wildlife in Areas 4, 7, and 8; Publicly Supplied Water, Industrial Self-Supplied Water, and Power Plant Cooling Water in Areas 4 and 6; Flood Damage Reduction in Area 7 and Rural Water Supply in Area 6. The needs are largest in Area 6 for saline and brackish withdrawal and consumption for Power Plant Cooling, for Water Recreation (water surface excluded), sport fishing and hunting man-days and salt access for Fish and Wildlife, tidal and hurricane Flood Damage Reduction, coastal shoreline Erosion Control, and unique natural and unique shoreline landscape maintenance for Visual and Cultural. The needs that are largest in Area 7 are for Public Supplied Water, Industrial Selfsupplied Water, Irrigation Water and recreational boating. They are also largest in this Area for fresh withdrawal and consumption for Power Plant Cooling, stream surface area, fresh access and nature study man-days and access for Fish and Wildlife, non-industrial Water Quality Maintenance, Flood Damage Reduction (tidal and hurricane excepted), urban and stream bank Erosion Control, and quality and metropolitan amenities landscape development for Visual and Cultural. The remaining needs are largest in Area 8 except for industrial Water Quality Maintenance which is largest in Area 4.

Devices. Key devices are limited to the Androscoggin River Basin and include potable water and waste treatment plants for Water Quality Maintenance, and land controls for the Visual and Cultural need. Treatment plants are also an important device in Areas 4, 7 and 8. Other important devices include withdrawal facilities in the Merrimack Basin, and Power Plant Cooling tower and storage facilities in the Connecticut Basin. Most of the device levels are highest in Area 7. Exceptions to this are secondary (85%) and advanced waste treatment plants in Area 4, watershed management in Area 6, fee simple purchase (mi.) in Area 6 and mainstream flood control storage in Area 4.

Costs. By far the greatest cost in New Hampshire will be incurred in Water Quality Maintenance, specifically secondary waste treatment and combined sewers overflow control, particularly in Area 7. Other costs of large magnitude include upstream and mainstream storage, again chiefly in Area 7; Water Recreation, principally in Area 8; and Visual and Cultural in Areas 7 and 8. Hydroelectric Power Generation costs, initially small, will be significant by the 2020 time frame.

NEEDS-cumulative	Pres.	1980	TOTAL 2000	2020	
Publicly Supplied Water (mgd)	72	92	133	197	
Industrial Self-Supplied Water (mgd)	38	65	118	197	
Rural Water Supply (mgd)	7.8	9.9	12.2	10.6	
Irrigation Water: agriculture (1000 afy)	1.4	2.6	3.3	3.2	
non-agriculture (1000 afy)	6.4	14.5	22.7	33.2	
Power Plant Cooling: withdrawal, saline (cfs)	190	1410	4270	6960	
brackish (cfs)	0	0	26	46	
fresh (cfs)	610	590	690	990	
consumption, brackish(cfs)	0	0	14	22	
fresh (cfs)	6	24	25	51	
Hydroelectric Power Generation (mw)	410	380	1490	3840	
Navigation: commercial (m. tons annually)					
recreational boating (1000 boats)	68	90	130	235	
Water Recreation: visitor days (m.)	Х	24	39	58	
stream or river (miles)	х	150	200	280	
water surface (1000 acres)	х	37	56	77	
beach (acres)	х	430	580	690	
pool (m. sq. ft.)	X	7.5	9.9	11.8	
land facilities (1000 acres)	Х	24	32	41	
Fish & Wildlife: sport fishing man-days (m.)	2.9	3.6	4.5	5.5	
surface area, lake (acres)	Х	0.29	1.18	2.14	
stream (acres)	Х	1.4	3.3	5.6	
access, fresh (acres)	Х	0.11	0.27	0.46	
salt (acres)	Х	0.029	0.085	0.157	
anadromous (acres)	Х	0.18	0.25	0.31	
piers (1000 feet)					
hunting, man-days (m.)	0.92	1.02	1.26	1.56	
access (1000 sq. mi.)	X	0.51	1.27	1.77	
nature study, man-days (m.)	0.85	1.03	1.28	1.59	
access(1000 ac.)	X	2.0	4.8	8.6	
Water Quality Maint.: non-industrial (m. PEs)	730	870	1100	1350	
industrial (m. PEs) Flood Damage Reduction:	1100	1900	. 3200	5400	
	2.2	5.0	0 /	10 1	
avg. ann. damage, upstream (m. \$) mainstream (m. \$)	3.2	5.0	9.4	19.1	
tidal and hurricane (m. \$)	2.6	4.0	7.7	15.7	
Drainage Control: cropland (1000 acres)	0.01	0.01	0.02	0.03	
forest land (1000 acres)	0	1	1	65	
wet land (1000 acres)	U	0	2.8	11.2	
Erosion Control: agriculture (1000 acres)	160	210	240	250	
urban (1000 acres)	440	640	850	1160	
stream bank (mi.)	0	6.9	21.3	35.8	
coastal shoreline (mi.)	0	0.1	0.3	0.5	
Health: vector control and pollution control	x	X	x	x	
Visual & Cultural:	Λ	Α	Α	^	
landscape maintenance, unique natural(sq. mi.)	1400	1400	1400	1400	
unique shoreline (mi.)	X	6	6	6	
high quality (sq. mi.)	X	1300	2500	3600	
diversity (sq. mi.)			2300	3000	
agriculture (sq. mi.)					
landscape development, quality (sq. mi.)	x	7	14	21	
diversity (sq. mi.)					
metro. amenities (mi.)					
		1			

		AREA	4			AREA	6			AREA	7			AREA	8	
	Pres	1980	2000	2020	Pres	Contract of the last	SHOW SHAPE OF REAL PROPERTY.	Name and Address of the Owner, where the Person of	Pres			NAME OF TAXABLE PARTY.	Pres	1980	2000	2020
	3	3	4	- 6	18	24			34 21	43 36	62 65	90 108	$\frac{17}{12}$	22 21	31	48
	0.4	0.4	0.5	0.5	2.2				2.6		4.3		2.6		4.7	4.0
					0.4		-			1.2	2.0		0.1	-		
	0.1	0.3	0.5	0.8		2.1			4.4	7.8			1.3	4.3	7.4	11.4
					190	1410				0	80	1000				
	0	0	0	100		U	20	40	520	480	360	310	90	110	340	580
					0	a	14	22	320	,00	300	310		110	3-10	300
	0	0	0	2					5					19		
									7.0	80.	490	1840	330	300	1000	2000
	0.1	0.1	0.2	0.3	10	12	13	20	40	54	74	140	18	24	43	75
					Х	9	10	23	Х	7	11	18	Х	8	12	17
					Х	70			Х	20			Х	60	80	
					X	13 220				5 50	-		X X	19 170	28 220	37 260
					X	3.6			X	1.0			X	2.9	3.8	4.4
					Х	12	17	21	х	2	3	4	Х	10		16
	0.1	0.2	0.3	0.3	1.5	1.9	2.4	2.9	0.8	1.0	1.3	1.6	0.3	0.5	0.6	0.7
										0.7	2.1	3.6	X	0.29		
	x	0.004	0.01	0.01	x	0.01	0.02	0.04	X X		0.15		X X		0.09	0.15
						0.029	0.085	0.157								
					Х	0.002	0.003	0.003	Х	0.08	0.10	0.13	Х	0.10	0.14	0.18
1	0 07	0.07	0.09	0.10	0.40	0 /3	0.54	0.66	0 32	0 35	0 44	0.54	0 13	0 16	0 20	0.25
	x	0.01	0.03	0.07	v.40		0.25				0.53			0.29		
	0.04				0.22											
					X	0.1				1.7	4.2		Х	0.2	0.4	0.8
	20 500	900	30 1400		170 200	220 400			390 300			700 1500	150 50		210	280 300
	300	,,,,	1100	2100	200	100	,00	1200	300	300	200	1300	30	100	200	300
	0.1	0.2			1.2	1.9								1.1	2.1	4.3
	0.4	0.7	1.2	2.5	0.1	0.2	0.4			2.8	5.5	11.2	0.2	0.3	0.6	1.1
	1	2	3	5	4	6		0.03		10	16	20	12	16	26	29
	0	0	1.1	4.2						10	10	20	0			7.0
	10 20	10	10 20	10 20	30	50 80	50 110	50	30	50	50 440		90	110	120	130
	0	0.5	1.5		70	0.8	2.0	150	220		10.0		140	220	280 7.8	370 13.5
					0	0.1	0.3	0.5		3.0	10.0	10.5	Ü	2.0	7.0	13.3
	Х	х	Х	Х	Х	х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х
	200	200	200	200	700	700	700	700	/00	100	100	/ 00				
	200	200	200	200	700 x	6	700	700	400	400	400	400				- 1
	x	300	500	700		300	600	800	х	300	600	900	х	400	800	1200
										7	1/	0.1				
									Х	7	14	21				1
							10.14									
									Х	3	3.	3				

	STAT	E TOTAL	L		
DEVICES - incremental	Purposes	1980	2000	2020	
I. Resource Management					
A. Water					
Storage Facilities ¢					
	Rec, FW, VC*	29	111	397	
mainstream (1000 af)	FW,VC,Rec,WQ*	29	201	239	
Withdrawal Facilities	PS, Ind, Pow, Irrig	27	57	83	
intakes & pumping, fresh (mgd) brackish (mgd)		5	6	6	
wells (mgd)		11.9	11.4	6.4	
Conveyance Facilities		11.5	11.4	0.4	
interbasin diversions, into (mgd)					
out of (mgd)					
Quality Control Facilities					
chemical/biological					
potable water treat. plants (mgd)	PS	8.7	17.7	20.7	
waste treatment plants					
secondary (85%) (m. PEs removed)		2300	0	0	
secondary (90%) (m. PEs removed)		0	3800	6100	
advanced (95%) (m. PEs removed)	WQ, Rec	0	210	340	
Desalting Facilities B. Water/Land			-		
Upstream Flood Plain Mgmt.(1000 acres)	FDP VC Pec	21	23	21	
Local Flood Protection	rbk, vc, kec	21	23	- 21	
ocean (projects)					
river (projects)	FDR	8.0	10.5	0	
flood control channels (miles)					
Watershed Management (1000 acres)	FDR, VC, Drn, Rec	360	650	520	
C. Land					
Controls					
fee simple purchase (buying)(sq.mi.)		420	220	220	
fee simple purchase (buying) (mi.)	VC, Rec, FW	6	0	0	
purchase lease (sq.mi.)					
	VC,Rec,FW	250	250	250	
deed restrictions (sq.mi.)					
tax incentive subsidy (sq.mi.)					
zoning (sq.mi.)					
<pre>zoning zoning and/or tax inc. subs.(sq.mi.)</pre>	VC FW Rec	630	530	480	
zoning and/or tax inc. subs. (sq.ml.) zoning and/or tax inc. subs. (mi.)	vo, rw, nec	030	330	400	
V. Others					
Upstream Flood Control Storage (1000 af)	FDR	97	108	0	
Mainstream Flood Control Storage (1000 af)	FDR	2.8	58.0	0	

 $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. ϕ Flood control storage not included.

A	AREA 4		A	AREA 6		I	AREA 7			AREA 8	
1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
2	2	0	18	39	60	1 5	1 175	337 190	8 24	68 26	0 49
0.1	0.2	0.3	3 2 2.4	7 1 2.9	10 2 1.5	16 3 2.1	35 5 4.6	51 4 4.5	7	15	21
0.4	0.3	3. 7	0.7	1.8	4.4	5.4	12.7	10.9	2 .2	2.9	4:7
700 0 0	0 1200 70	0 2200 120	600 0 0	0 900 50	0 1400 80	800 0 0	0 1300 70	0 2000 110	200 0 0	0 400 20	0 600 30
0.5	0.2	0.5	8	7	7	10	12	10	3	4	3
0.5	0	0	2.5	2.5	0	4.0	7.0	0	1.0		0
 30	70	60	130	230	120	90	180	180	110	180	170
			60 6	60 0	60 0	160	160	160	200	0	0
			60	60	60	80	80	80	110	110	110
320	210	170	160	160	160	80	80	80	90	90	90
 6 0	0 58.0	0	46	28	0	38	69	0	8 2.8	11	0

FIRST COSTS - incremental	S	TATE TO	ΓAL	
(\$ million 1970)	1980	2000	2020	
Water Development Costs:	1			
storage, upstream	3.6	13.7	63.0	
mainstream	12	46	46	
wells	6.6	6.2	3.7	
desalting				
Water Withdrawal and Conveyance Costs:				
inter-basin transfers				
public water supply	5.9	14.2	19.9	
industrial self-supplied water	0.16	0.29	0.43	
rural water supply	X	x	х х	
irrigation, agriculture	0.14	0.17	0	
non-agriculture	6.6	6.3	8.0	
Power Plant Cooling Water	0	15	47	
Hydroelectric Power Generation	1	X	X	
Navigation: commercial				
recreational boating	1.7	1.8	2.7	
Water Recreation	127	70	93	
Fish and Wildlife: fishing	1.7	1.9	2.3	
hunting	х	x	x	
nature study	х	x	x	
Water Quality Maint.: waste treatment, secondary	220	370	570	
advanced	0	44	70	
other ≠	140	0	0	
Flood Damage Reduction: upstream	15	12	0	
mainstream	0.5	12.5	0	
Drainage Control	0.67	1.82	1.07	
Erosion Control	35	35	50	
Health	Х	Х	Х	
Visual and Cultural	84	82	82	
Summation of Available Estimated Costs	660	730	1060	

^{*} From the supply model and includes OMR costs.

Combined sewer overflows control and acid mine drainage control.

	AREA	4		AREA 6			AREA 7			AREA 8	
1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
0.2	0.1	0	1.5	3.3	5.1	0.2	0.5	57.9	1.7	9.8	0
0.2	0.1	0	1.5	3.3	3.1	4	42	30	8	9.0	0 17
0.2	0.5	0.2	1.3	1.6	1.1	1.3	2.5	2.3	3.8	1.6	0.1
											-
0.5	0.4	0.5	0.7	1.2	3.4	3.6	11.0	13.3	1.0	1.7	2.6
			0.03	0.04	0.06	0.09	0.17	0.24	0.04	0.08	0.13
х	х	х	х	х	х	х	х	х	x	x	х
			0.04	0.01	0	0.06	0.16	0	0.03	0.001	0
0.2	0.2	0.2	1.3	1.1	1.5	2.4	2.7	3.3	2.7	2.4	3.0
			0	8	47				0	7	0
							х	х		х	х
0	0.01	0.01	1.0	0.7	0.8	0.6	0.6	1.2	0.1	0.4	0.7
			5	8	24	25	17	20	98	45	49
0.1	0.1	0.1	0.6	1.0	1.2	0.7	0.6	0.7	0.3	0.2	0.3
х	х	х	х	х	х	х	х	х	х	x	x
х	х	х	х	х	x	х	х	х	х	x	х
10	20	40	70	120	180	120	210	320	20	20	30
0	15	24	0	10	15	0	15	23	0	4	6
10	0	0	30	0	0	70	0	0	20	0	C
2	0	0	7	3	0	5	8	0	1	2	0
0	12.5	0							0.5	0	0
0.02	0.06	0.12	0.11	0.31	0.11	0.18	0.53	0.35	0.36	0.92	0.49
0.3	0.4	0.2	2	5	7	20	20	29	13	10	14
х	х	х	х	х	х	х	Х	х	Х	х	х
			11	9	9	28	27	27	46	46	46
24	49	67	130	170	300	280	360	530	220	160	170

VERMONT

The State of Vermont covers a total of 9,608 square miles including the north-west drainage of the Connecticut River in Area 8, the eastern drainage of Lake Champlain in Area 11, and a small portion of northeastern Area 12. The topography ranges from mountains and steep hills in and near the Green Mountains to rolling terrain and flatlands near Lake Champlain. The visual quality of the State is exceptionally good because of the variety of diverse landscapes throughout the State. Water is abundant, except on the Connecticut River during periods of low flow, and pollution is localized around industrial and population centers.

The State's 1970 population was 409,000, which is projected to reach 651,300 by 2020, and the only significant concentrations are around Montpelier, in Area 11, and Burlington in Area 12. Per capital income was 17 percent below the national average in 1970, but it is expected to rise to 13 percent below by 2020. Employment in services and related industries was by far the highest in 1970 and is expected almost to double by 2020. Increases are projected for manufacturing, while a 50 percent decrease is expected in agriculture, and in forestry and fisheries.

Needs to be Satisfied. The only key need is for Water Quality Maintenance in the Connecticut (and to a lesser degree, the Hudson) basin within the State. It is essential for the satisfaction of the important Water Recreation, Fish and Wildlife, and Visual and Cultural needs. The important needs in Area 11 are for Publicly Supplied Water, Industrial Self-supplied water, and Visual and Cultural (this drainage area contains, among other features, the Green Mountains National Forest). The important needs in Area 8 are Water Recreation, Fish and Wildlife, Water Quality Maintenance and Visual and Cultural needs. The needs which are important in Area 12 are Publicly Supplied Water, and Water Quality Maintenance. The needs in Vermont are largest in Area 11 except for several that are largest in Area 8, including non-agricultural Irrigation, fresh withdrawal for Power Plant Cooling, recreational boating, Fish and Wildlife (sport fishing, hunting and nature study man-days excluded), upstream Flood Damage Reduction and urban Erosion Control.

Devices. Habitat management in Area 11 is the only key device in Vermont: it is an essential adjunct to land controls for preserving and developing the natural qualities of the Area for Visual and Cultural, Fish and Wildlife, and Water Recreation needs. The important devices in this State are storage facilities in Areas 8 and 12, withdrawal facilities in Area 12, temperature control in Area 8, and water quality control in all three Areas. Other important devices in Area 11 are watershed management, land facilities, and habitat management. The use of devices will also be highest in Area 11 except for storage facilities, advanced waste treatment, watershed management, zoning and/or tax incentive subsidies, and flood control storage in Area 8, and wells in Area 12.

Costs. The costs will be distributed fairly equally between Areas 8 and 11. In the initial period large costs will be incurred in meeting the

Visual and Cultural needs and in providing combined sewer overflow controls. Power Plant Cooling Water costs will be large in the later periods and secondary treatment costs for Water Quality Maintenance will be large in all time periods. The costs required to meet the other needs in Areas 8 and 11 and to meet the needs of area 12 will be relatively small.

			STATE	TOTAL		
NE	EDS-cumulative	Pres.	1980	2000	2020	
Publicly Supplied	Water (mgd)	39	52	74	110	
Industrial Self-S	upplied Water (mgd)	11	16	28	44	
Rural Water Suppl		12	15	18	17	
Irrigation Water:		0.6	8.4	25.6	25.6	
7	non-agriculture (1000 afy)	2.4	9.4	15.9	24.2	
Power Plant Cooli	ng: withdrawal, saline (cfs)					
	brackish (cfs) fresh (cfs)			201		
	consumption, brackish(cfs)		149	386	681	
	fresh (cfs)		10	10	10	
Hydroelectric Pow		100	16	42	69	
	ercial (m. tons annually)	180	0.70	3100	8450	
	eational boating (1000 boats)	18	23	40	65	
Water Recreation:		x	11	18	29	
	stream or river (miles)		41	58	80	
	water surface (1000 acres)		12	18	25	
	beach (acres)		130	180	230	
	pool (m. sq. ft.)		2.3	3.2	4.1	
	land facilities (1000 acres)		4.7	6.5	8.5	
Fish & Wildlife:	sport fishing man-days (m.)	2.1	2.4	2.8	3.3	
	surface area, lake (acres)		0.18	0.74	1.34	
	stream (acres)		0.39	0.83	1.47	
	access, fresh (acres)		0.057	0.126	0.216	
	salt (acres)					
	anadromous (acres)		0.060	0.090	0.110	
	piers (1000 feet)					
	hunting, man-days (m.) access (1000 sq. mi.)	1	1.2	1.4	1.7	
	nature study, man-days (m.)	X	0.39	1.04	1.70	
	access(1000 ac.)		0.61	0.72	0.87	
Water Quality Mai	nt:: non-industrial (m. PEs)	400	0.32 460	0.83	1.45	
"acci quarity imi	industrial (m. PEs)	190	340	610	660	
Flood Damage Redu		130	340	010	1110	
avg. ann. damag		1.6	2.3	4.1	7.9	
	mainstream (m. \$)		8.9	16.5	33.5	
	tidal and hurricane (m. \$)	3.0	0.7	10.5	33.3	
Drainage Control:	cropland (1000 acres)		116	191	227	
	forest land (1000 acres)	0	0	8.7	34.9	
	wet land (1000 acres)					
Erosion Control:	agriculture (1000 acres)		550	640	660	
	urban (1000 acres)		400	500	660	- 12-7, (SY
	stream bank (mi.)	0	18	54	89	
Health: vector c	coastal shoreline (mi.)					
Visual & Cultural	ontrol and pollution control	х	X	×	x	
	enance, unique natural(sq. mi.)	5/0	25.00	2500	2500	
zanaocape marite	unique shoreline (mi.)		3580	3580	3580	
	high quality (sq. mi.)		460	920	1380	
	diversity (sq. mi.)		25	50	75	
	agriculture (sq. mi.)		1600	1600	1600	
landscape devel	opment, quality (sq. mi.)		1000	2000	1000	
	diversity (sq. mi.)			30-13-1		
	metro. amenities (mi.)		100	William !		
	" (sq. mi.)					

	AREA	8			AREA	11			AREA	12			AREA	1	
Pres								Pres	1980	2000	2020	Pres	1980	2000	2020
 13	17			24					3	5	8				
 4	6	11	18	7 8			26 11		1	2	1		-		
0.3	1.0	1.0	1.0			24.6			1	2					
1.8				0.4		5.2			0.6	1.0	1.4				
	100	226	501	10	/ 0	50	00								
0	109	336	591	40	40	30	90								
0	15	19	20	1	1	23	49								
110		1000		70	70	2100									
		2.4				1.00									
 11	15			6	8		17 24		1	$\frac{2}{1}$	3				
x x	1 10	2 13		x x	29				2	3	4				
x	3	5		x	8	12	18		1	1	1				
х	30			х	90		170	x	10						
х	0.5			х	1.6				0.2						
 0.3	0.4			1.8	2.7	3.9 2.3	5.3 2.7		0.2						
v. 3		0.74		1.0	2.0	2.3	2.1	0.03	0.03	0.03	0.04				
x			1.25	0	0	0.05	0.23								
х			0.093	х	0.028	0.068	0.123								
х	0.060	0.090	0.110												
0.1	0.1	0.2	0.2	1.0	1.1	1.2	1.5	0.01	0.01	0.02	0.02				
x			0.87					X							
0.15	0.20	0.26	0.32	0.34	0.38	0.43	0.50	0.02							
 X		0.58	The second second	2=2		25.0	/10		0.10						
120 100	130 190			270 90					20	30	30				
 100	190	360	690	90	130	250	420								
0.8	1.3	2.5	5.2	0.7	1.0	1.5	2.7	0.003	0.004	0.01	0.01				
0.3	0.5	1.0	2.0	5.4		15.5	31.5				-				
 1.6	- 20			(1	0.1	150	100						-		
16 0				61 0			182 24.6	0	0	0.4	1.4				
9	9	2.4	0.0	J	9	0.2	24.0	ď	9	0.4	1				
120	150	160	170	250	350	410	420	50	60	70	70				
190	290	370	500	70	90	110	130	20	20	20	30				10 41
q	4	11	18	0	13	40	66	O	1	3	5				
 x	x	x	x	x	x	x	x	х	x	x	x				
240	1680	1680	1680	300	1900	1900	1900								
		, ,			250		750								
x	210	420	630	x x	250 25	500 50	750 75								
				x	1600										
			A Fr												
															5-11/1

	STAT	TE TOTAL			
DEVICES - incremental	Purposes	1980	2000	2020	
I. Resource Management					
A. Water					
Storage Facilities φ	D TIL 1104	10	122	22	
reservoirs, upstream (1000 af)	Rec, FW, VC*	18 24	133	23	
	FW,Rec,WQ*		20	24	
Withdrawal Facilities	PS,Ind,Pow,Irrig	8.5	13.5	20.3	
intakes & pumping, fresh (mgd) brackish (mgd)	10,111d,10w,1111g	0.5	13.3	20.5	
wells (mgd)	*	12.6	18.6	8.9	
Conveyance Facilities		12.0	10.0	0.5	
interbasin diversions, into (mgd)					
out of (mgd)					
Quality Control Facilities					
chemical/biological					
potable water treat. plants (mgd)	PS	5.3	11.1	20.6	
waste treatment plants					
secondary (85%) (m. PEs removed)		660	0	0	
secondary (90%) (m. PEs removed)		21	1074	1596	
advanced (95%) (m. PEs removed)	WQ	0	26	47	
Desalting Facilities					
B. Water/Land	The Ha	1.5		16	
Upstream Flood Plain Mgmt.(1000 acres) Local Flood Protection	FDR, VC	15	23	16	-
ocean (projects)					
river (projects)	EIDD	3.5	1.0	4.0	
flood control channels (miles)		0.5	1.5	9.0	
Watershed Management (1000 acres)		250	440	460	
C. Land	ibit, to, bringin			100	
Controls					
fee simple purchase (buying)(sq.mi.)	VC,FW	3380	140	140	
fee simple purchase (buying) (mi.)					
purchase lease (sq.mi.)					
easements (sq.mi.)	VC,FW	200	200	200	
deed restrictions (sq.mi.)					
tax incentive subsidy (sq.mi.)					
zoning (sq.mi.)	VC,FW	1500	0	0	
zoning (mi.)					
zoning and/or tax inc. subs.(sq.mi.)	VC,FW	45	45	45	
zoning and/or tax inc. subs. (mi.)					
V. Others	FDD	24 6	2 2	15.0	
Upstream Flood Control Storage (1000 af) Mainstream Flood Control Storage (1000 af)	FDR FDR	24.6	2.3	15.0	
Harnstream Flood Control Storage (1000 al)	LDK		0	0	

 $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. φ Flood control storage not included.

	A	REA 8		A	AREA 11		A	AREA 12			AREA	
	1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
	9 24	79 26	0 24	9	53	22	0.1	0.1	1			
	2.3	3.7	6.0	6.0	9.2	13.4	0.2	0.6	0.9			
	7.8	3.3	0	4.3	6.3	1.9	0.5	9.0	7.0			
	1.7	2.3	3.7	3.2	7.7	14.7	0.4	1.1	2.2			
	280 0 0	0 469 26	0 815 45	390 0	0 580	0 750	21 0	25 0	31 2			
-												
	4	6	3	11	17	13	0.1	0.04	0.1			
	1.5	0.5	1.5	2.0 0.5	0.5 1.5	2.5 9.0						
	140	230	210	110	200	230	10	10	10			
	1550	0	0	1840	140	140						
	60	60	60	140	140	140						
				1500	0	0						
	45	45	45									
	17.6	0.3	6.5	7.0	2.0	8.5						
-	24	0	0									

FIRST COSTS - incremental	S'	TATE TO	ΓAL	
(\$ million 1970)	1980	2000	2020	
Water Development Costs:				
storage, upstream	3.6	21.0	3.5	
mainstream	8.4	4.6	0	
wells	10.4	10.1	1.8	
desalting				
Water Withdrawal and Conveyance Costs:				
inter-basin transfers				
public water supply	5.2	9.1	15.4	
industrial self-supplied water	0.03	0.05	0.07	
rural water supply	х	x	x	
irrigation, agriculture	1.7	3.6	0.002	
non-agriculture	6.1	5.0	6.4	
Power Plant Cooling Water	0	20	46	
Hydroelectric Power Generation	х	х	х	
Navigation: commercial				
recreational boating	0.22	0.70	0.95	
Water Recreation	30	29	29	
Fish and Wildlife: fishing	0.67	0.83	1.08	
hunting	х	x	x	
nature study	x	x	x	
Water Quality Maint.: waste treatment, secondary	55	71	110	
advanced	0	5.4	10.1	
other ≠	63	0	0	
Flood Damage Reduction: upstream	6.85	0.95	4.25	
mainstream	10	0	0	
Drainage Control	2.6	5.6	3.4	
Erosion Control	30	24	24	
Health	х	х	х	
Visual and Cultural	299	41	41	
Summation of Available Estimated Costs	530	250	300	

^{*} From the supply model and includes OMR costs.

Combined sewer overflows control and acid mine drainage control.

		AREA	8		AREA 1	1		AREA 1	2		AREA	
	1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
	2.0	11.4	0	1.6	9.6	3.4	0	0	0.1			
	4.2	1.8	0.1	2.4	3.4	1.2	3.8	4.9	0.5			
	0.8	1.3	2.0 0.03	4.1 0.02	6.9 0.03	12.0	0.3	0.9	1.3			
	0.1	x 0.01	0.002	x 1.5	3.6	x 0	х	х	х			
	3.5	3.2	4.0	2.2	1.6	2.0	0.4	0.3	0.4			
	0	3	16	0	17	30						
	Х	Х	Х		X	Х						
	0.08	0.26	0.44	0.10	0.36	0.39	0.04	0.08	0.12			J .
	17_	8	9	4	17	14	9	4	6			
	0.22	0.19	0.23	0.44	0.62	0.83	0.01	0.01	0.02			
	Х	х	х	Х	Х	х	х	х	X			
	X	X	X	X	X	X	X	X	X			
	20	27 5.4	46 9.2	33	43	62	2 0	2	0.9			
	14	0	9.2	47	0	0	2	0	0.9			
	6.05	0.05	2.55	0.8	0.9	1.7		-				
	5	0	0	6	0	0						
-	0.5	1.2	0.7	2.0	4.3	2.6	0.1	0.1	0.1			
	18	13	19	11	10	5	1	1	1			
	Х	X	Х	Х	Х	Х	Х	Х	Х			
	171	24	24	128	16	- 16						
	270	100	130	240	130	150	19	13	12			

MASSACHUSETTS

The Commonwealth of Massachusetts covers a total of 8,256 square miles including small portions of Areas 6, 10 and 12, part of south-central Area 8, the southern tip of Area 7 and most of Area 9. The only significant drainages are those for the south-central portion of the Connecticut River and the extreme southern Merrimack River. The topography of the Commonwealth varies from coastal plain to rolling hills with some steep hills and mountains. The visual quality is medial. Water pollution is extensive; the Connecticut River suffers from periods of low flow, and supplies must be imported to the eastern metropolitan centers.

The "megalopolis" of the North Atlantic Region starts in Massachusetts and population concentrations are particularly heavy along and south of a line stretching from Springfield to Boston. In 1970 the population totalled 5.6 million and this figure should surpass 9 million by 2020. Per capita income was 8 percent above the national average in 1970, but is expected to decline to average by 2020. Employment was highest in services and related industries in 1970 and should almost double by 2020. Increases are also projected for chemicals and allied products, paper and allied products and primary metals. Employment is expected to decline for textile mill products, agriculture, forestry and fisheries, and food and kindred products by the end of the Study period.

Needs to be Satisfied. Publicly Supplied and Industrial Self-Supplied Water are important needs in Areas 9 and 10, with Publicly Supplied being largest in Areas 9 and Industrial Self-Supplied largest in Area 8. Irrigation needs, both agricultural and non-agricultural, are greatest in Area 9. Power Plant Cooling needs are largest in Areas 8 and 9 and important in Area 9. Hydroelectric Power Generation is very large in Area 8. Commercial Navigation exists only in Area 9 and Recreational Boating, which exists throughout the State, is both very large and important in that Area. Recreation and Water Quality Maintenance are important in Areas 7 through 9 and largest in Area 9. In addition, Water Quality Maintenance is key in Areas 7, 8, and 9. Fish and Wildlife and Erosion Control needs are key and largest in Area 9 while Fish and Wildlife is important in Areas 7 and 8. Needs for Drainage Control are greatest in Area 8 and Flood Damage Reduction needs are important in Area 7 and largest in Area 9. Visual and Cultural Needs are important in Area 7 and 8 but largest in Area 9. Health is important in Area 9.

Devices. Storage facilities are important in Area 8 and 10, withdrawal facilities in Area 7, conveyance facilities in Area 8 and 9, temperature control facilities in Area 8 and water quality control devices in all Areas. Other important devices, all in Area 9, are watershed management, land controls, habitat management and water demand and allocation changes. All devices are largest in Area 9 except watershed management, largest in Area 8, and out of basin diversions in Area 7 (diverted to Area 9). The key devices are in Area 9 and are quality control and erosion protection.

Costs. The cost involved in meeting the needs of the State are largest in Area 9. Visual and Cultural and combined sewer overflow control costs are very large in the first time period and advanced waste treatment in the second and third time periods. Interbasin transfers, Water Recreation, secondary waste treatment and Erosion Control costs are large in all time periods.

Pres. 1980 2000 2020 Euchicly Supplied Mater (mgd) 670 870 1240 1920 1700 17		T	STATE	TOTAL		
Industrial Self-Supplied Water	NEEDS-cumulative	Pres.			2020	
Industrial Self-Supplied Water	Publicly Supplied Water (mgd		870	1240	1920	
Irrigation Water: agriculture (1000 afy) 15 41 43 43 43 43 43 43 43	Industrial Self-Supplied Water (mgd					
Irrigation Water: agriculture (1000 afy) 11 29 48 72) 17	20	28		
Power Plant Cooling: withdrawal, saline (cfs) brackish (cfs) brackish (cfs) fresh (cfs)			41			
brackish (cfs) fresh (cfs) consumption, brackish(cfs) fresh (cfs) 8 8 25 59			29	48	72	
Firesh			11200	23900	38700	
Consumption, brackish(cfs) 8 8 8 25 59						
Hydroelectric Power Generation			570	440	1100	
Hydroelectric Power Generation (mw)						
Navigation: commercial (m. tons annually)						
Tecreational boating (1000 boats) 170 230 520 880		200				
Water Recreation: visitor days stream or river (miles) x 750 990 1400				1		
Stream or river (miles)		7				
water surface (1000 acres) x 260 390 540 beach (acres) x 2000 2600 3000 pool (m. sq. ft.) x 34 45 54 land facilities (1000 acres) x 130 170 220 Fish & Wildlife: sport fishing man-days (m.) 12 15 18 22 surface area, lake (acres) x 1.9 7.8 20.9 stream (acres) x 2.0 4.8 7.6 access, fresh (acres) x 0.17 0.39 0.66 salt (acres) x 0.78 2.07 3.59 anadromous (acres) x 0.20 0.26 0.34 piers (1000 feet) x 22 58 102 hunting, man-days (m.) 2.5 2.9 3.5 4.3 access (1000 sq. mi.) x 0.68 1.39 1.81 nature study, man-days (m.) 6.8 8.0 10.0 12.3 access (1000 acr.) x 11 28 50 Water Quality Maint: non-industrial (m. PEs) 5200 6300 7800 9600 industrial (m. PEs) 5200 6300 7800 9600 flood Damage Reduction: avg. ann. damage, upstream (m. S) 7.9 12.3 23.8 48.6 tidal and hurricane (m. S) 2.6 4.0 7.6 15.4 Drainage Control: cropland (1000 acres) 19 26 41 46 forest land (1000 acres) 160 210 230 240 urban (1000 acres) 650 900 1190 1650 Stream bank (mi.) 0 8.6 25.3 41.0 coastal shoreline (mi.) 0 470 950 980 Health: vector control and pollution control x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) x 16 16 16 high quality (sq. mi.) x 63 126 189 diversity (sq. mi.) x 63 126 189 diversity (sq. mi.) x 640 640 diversity (sq. mi.) x 210 430 640 diversity (sq. mi.) metro. amenities (mi.)		`				
beach (acres) x 2000 2600 3000 2601 3000 2601 3000 2601 3000 2601 3000 2601 3000 2601 3000 2601 3000 2601 3000 2601 3000 2601 3000 2601 2000 2000						
Dool		\				
Land facilities (1000 acres)						
Fish & Wildlife: sport fishing man-days (m.) surface area, lake (acres) x 1.9 7.8 20.9 stream (acres) x 2.0 4.8 7.6 access, fresh (acres) x 0.17 0.39 0.66 salt (acres) x 0.78 2.07 3.59 anadromous (acres) x 0.78 2.07 3.59 anadromous (acres) x 0.78 2.07 3.59 anadromous (acres) x 0.78 2.07 3.59 anadromous (acres) x 0.78 2.07 3.59 anadromous (acres) x 0.20 0.26 0.34 piers (1000 feet) x 22 58 102 hunting, man-days (m.) 2.5 2.9 3.5 4.3 access (1000 sq. mi.) x 0.68 1.39 1.81 nature study, man-days (m.) 6.8 8.0 10.0 12.3 access (1000 ac.) x 11 28 50 industrial (m. PEs) 5200 6300 7800 9600 industrial (m. PEs) 5200 6300 7800 9600 industrial (m. PEs) 5400 9600 17200 31300 Flood Damage Reduction: avg. ann. damage, upstream (m. \$) 7.9 12.3 23.8 48.6 tidal and hurricane (m. \$) 7.9 12.3 23.8 48.6 tidal and hurricane (m. \$) 7.9 12.3 23.8 48.6 tidal and (1000 acres) forest land (1000 acres) forest land (1000 acres) set land (1000 acres) forest land (1000 acres) set land (1000 acres) set land (1000 acres) set land (1000 acres) forest land (1000 acres) set la		1			1	
Surface area, lake (acres) Stream (a		_				
Stream (acres) X 2.0 4.8 7.6 access, fresh (acres) X 0.17 0.39 0.66 salt (acres) X 0.78 2.07 3.59 anadromous (acres) X 0.78 2.07 3.59 anadromous (acres) X 0.20 0.26 0.34 piers (1000 feet) X 2.2 58 102 hunting, man-days (m.) 2.5 2.9 3.5 4.3 access (1000 sq. mi.) X 0.68 1.39 1.81 nature study, man-days (m.) 6.8 8.0 10.0 12.3 access(1000 ac.) X 11 28 50 Water Quality Maint.: non-industrial (m. PEs) 5200 6300 7800 9600 industrial (m. PEs) 5200 6300 7800 9600 Industrial (m. PEs) 5200 6300 7800 9600 Industrial (m. PEs) 5400 9600 17200 31300 Flood Damage Reduction: avg. ann. damage, upstream (m. \$) 9.9 15.2 28.4 56.4 mainstream (m. \$) 7.9 12.3 23.8 48.6 tidal and hurricane (m. \$) 2.6 4.0 7.6 15.4 Drainage Control: cropland (1000 acres) 19 26 41 46 forest land (1000 acres) 160 210 230 240 urban (1000 acres) 650 900 1190 1650 stream bank (mi.) 8.6 25.3 41.0 coastal shoreline (mi.) 470 950 980 Health: vector control and pollution control x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) x 63 126 189 diversity (sq. mi.) x 63 126 189 diversity (sq. mi.) x 10 20 30 agriculture (sq. mi.) x 10 20 30 landscape development, quality (sq. mi.) x 210 430 640 diversity (sq. mi.) metro. amenities (mi.)		1				
access, fresh		\				
Salt		1				
anadromous (acres) piers (1000 feet) hunting, man-days (m.) access (1000 sq. mi.) access (1000 sq. mi.) access (1000 sq. mi.) access (1000 ac.) access (1000		1		1	1	
Piers				1		
hunting, man-days (m.) access (1000 sq. mi.) x 0.68 1.39 1.81 nature study, man-days (m.) 6.8 8.0 10.0 12.3 access (1000 ac.) x 11 28 50 Water Quality Maint: non-industrial (m. PEs) 5200 6300 7800 9600 industrial (m. PEs) 5400 9600 17200 31300 Flood Damage Reduction: (m. \$\frac{1}{2}\$ y 9.9 15.2 28.4 56.4 mainstream (m. \$\frac{1}{2}\$ y 9.9 12.3 23.8 48.6 tidal and hurricane (m. \$\frac{1}{2}\$ y 2.6 4.0 7.6 15.4 Drainage Control: cropland (1000 acres) forest land (1000 acres) wet land (1000 acres) wet land (1000 acres) stream bank (mi.) 0 8.6 25.3 41.0 coastal shoreline (mi.) 0 470 950 980 Health: vector control and pollution control x x x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) x 63 126 189 diversity (sq. mi.) agriculture (sq. mi.) agriculture (sq. mi.) agriculture (sq. mi.) agriculture (sq. mi.) agriculture (sq. mi.) diversity (sq. mi.) agriculture (sq. mi.) metro. amenities (mi.)		\			1	
access (1000 sq. mi.) x 0.68 1.39 1.81 1.00 12.3 26 25 26 27 27 27 27 27 27 27		, •	1	1		
nature study, man-days	access (1000 sq. mi.	1	(1	1	
Second Control: agriculture (1000 acres) wet land (1000 acres) wet land (1000 acres) stream bank (mi.) coastal shoreline (mi.) wished Ealth: vector control and pollution control (mi.) wished Ealth: vector control and pollution control (mi.) wished Ealth: landscape maintenance, unique natural(sq. mi.) landscape development, quality (sq. mi.) metro. amenities (mi.) wetro. amenities (mi.) metro. amenities (mi.) (asoo (asoo (mi.)) by 0,000 (asoo (asoo (mi.)) by 0,000 (asoo (asoo (mi.)) by 0,000 (asoo (asoo (mi.)) by 0,000 (asoo (asoo (mi.)) by 0,000 (asoo (asoo (mi.)) by 0,000 (asoo (mi.))	nature study, man-days (m.	6.8				
Water Quality Maint:: non-industrial (m. PEs) 5200 6300 7800 9600 17200 31300 Flood Damage Reduction: avg. ann. damage, upstream (m. \$) 7.9 12.3 23.8 48.6			11			
Flood Damage Reduction: avg. ann. damage, upstream			6300			
avg. ann. damage, upstream) 5400	9600	17200	31300	
mainstream (m. \$) 7.9 12.3 23.8 48.6 tidal and hurricane (m. \$) 2.6 4.0 7.6 15.4 Drainage Control: cropland (1000 acres) 19 26 41 46 forest land (1000 acres) wet land (1000 acres) 160 210 230 240 urban (1000 acres) stream bank (mi.) coastal shoreline (mi.) o 8.6 25.3 41.0 41.0 470 950 980 Health: vector control and pollution control x value x x x x						
tidal and hurricane (m. \$) 2.6 4.0 7.6 15.4 Drainage Control: cropland (1000 acres) 19 26 41 46 forest land (1000 acres) 26 41 46 forest land (1000 acres) 27 28 28 28 28 28 28 28 28 28 28 28 28 28			15.2	28.4	56.4	
Drainage Control: cropland (1000 acres) forest land (1000 acres) wet land (1000 acres) wet land (1000 acres) Erosion Control: agriculture (1000 acres) 160 210 230 240 urban (1000 acres) 650 900 1190 1650 stream bank (mi.) 0 8.6 25.3 41.0 coastal shoreline (mi.) 0 470 950 980 Health: vector control and pollution control x x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) x 16 16 16 high quality (sq. mi.) x 63 126 189 diversity (sq. mi.) x 10 20 30 agriculture (sq. mi.) landscape development, quality (sq. mi.) x 210 430 640 diversity (sq. mi.) metro. amenities (mi.)				23.8	48.6	
forest land (1000 acres) wet land (1000 acres) Erosion Control: agriculture (1000 acres) urban (1000 acres) 650 900 1190 1650 stream bank (mi.) 0 8.6 25.3 41.0 coastal shoreline (mi.) 0 470 950 980 Health: vector control and pollution control x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) 210 2030 2030 2030 unique shoreline (mi.) x 16 16 16 high quality (sq. mi.) x 63 126 189 diversity (sq. mi.) x 10 20 30 agriculture (sq. mi.) landscape development, quality (sq. mi.) x 210 430 640 diversity (sq. mi.) metro. amenities (mi.)					15.4	
Wet land (1000 acres) Erosion Control: agriculture (1000 acres) 160 210 230 240 240 25			26	41	46	
Erosion Control: agriculture (1000 acres) urban (1000 acres) 650 900 1190 1650 stream bank (mi.) 0 8.6 25.3 41.0 coastal shoreline (mi.) 0 470 950 980 Health: vector control and pollution control x x x x x Visual & Cultural: 1andscape maintenance, unique natural(sq. mi.) x 16 16 16 high quality (sq. mi.) x 63 126 189 diversity (sq. mi.) x 10 20 30 agriculture (sq. mi.) 1andscape development, quality (sq. mi.) x 210 430 640 diversity (sq. mi.) metro. amenities (mi.)						
urban (1000 acres) 650 900 1190 1650 stream bank (mi.) 0 8.6 25.3 41.0 coastal shoreline (mi.) 0 470 950 980 Health: vector control and pollution control x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) 210 2030 2030 2030 unique shoreline (mi.) x 16 16 16 high quality (sq. mi.) x 10 20 30 agriculture (sq. mi.) x 10 20 30 agriculture (sq. mi.) x 210 430 640 diversity (sq. mi.) x 210 430 640 metro. amenities (mi.) x 210 430 640			010	000	0.10	
Stream bank						
Coastal shoreline		1				
Health: vector control and pollution control						
Visual & Cultural: landscape maintenance, unique natural(sq. mi.) 210 2030 2030 2030 unique shoreline (mi.) x 16 16 16 high quality (sq. mi.) x 63 126 189 diversity (sq. mi.) x 10 20 30 agriculture (sq. mi.) x 210 430 640 diversity (sq. mi.) x 210 430 640 metro. amenities (mi.) metro. amenities (mi.) x 20 30		-				
landscape maintenance, unique natural(sq. mi.) 210 2030 2030 2030 unique shoreline (mi.) x 16 16 16 16 16 189 diversity (sq. mi.) x 10 20 30 30 agriculture (sq. mi.) x 210 20 30 430 640 diversity (sq. mi.) metro. amenities (mi.)		X	X	X	X	
unique shoreline (mi.) x 16 16 16 16 high quality (sq. mi.) x 63 126 189 diversity (sq. mi.) x 10 20 30 agriculture (sq. mi.) 1andscape development, quality (sq. mi.) x 210 430 640 diversity (sq. mi.) metro. amenities (mi.)		210	2030	2030	2020	
high quality (sq. mi.) x 63 126 189 diversity (sq. mi.) x 10 20 30 agriculture (sq. mi.) x 210 430 640 diversity (sq. mi.) metro. amenities (mi.)						
diversity (sq. mi.) x 10 20 30 agriculture (sq. mi.) x 210 430 640 diversity (sq. mi.) metro. amenities (mi.)						
agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.)						
landscape development, quality (sq. mi.) x 210 430 640 diversity (sq. mi.) metro. amenities (mi.)			10	20	30	
diversity (sq. mi.) metro. amenities (mi.)		\	210	430	640	
metro. amenities (mi.)				430	040	
			76	77	77	

	AREA				AREA				AREA	8			AREA	9	
Pres	1980	2000	2020								2020	Pres	1980	2000	2020
 2	2	3	4	70				70							
 				50	80		240	180							
 -	-		-	3 2	3		3	4	6	7				13	
				2	2		4	2	7 4	7 7			31 19	32 32	
				0	0		2400		4		10			22900	
						200	2400			4		4300	10900	22300	54400
				40	20	20	0	690	560	420	1080				
				1	1	1	0	7	7	19	49				
								200	1800	1880	2960			0	0
			-									33	43	73	124
 				10	10	20	30		30	50	90		170	420	710
				х	40	70	110	-	20	30			70		150
				х	110		200		150	200	290		460		
				X	30 300	50	.70		50	70			160	250	340
				X X	300	400	500	X X	400	600	700 12		1100	1500 25	1700
				x	10		20		20	30	40		90	110	
0.1	0.2	0.2	0.2	2	2	3	3	1	2	2	3	8	10	13	15
								х	0.5		_	_	1.3		(340,00)
				х	0.2	0.5	0.8		1.0	2.1	3.3		0.5	1.3	
				x	0.01	0.03	0.06	х	0.08		0.25	х	0.07	0.18	
			100									x	0.78	2.07	3.59
				x	0.02	0.02	0.03	х	0.17	0.23	0.30	х	0.004	0.01	0.01
												х	22	58	102
0.03	0.04	0.04	0.05	0.7	0.7			0.5					1.4		2.0
0.00	0 00	0 00	0.00	x	0.04			X	0.23	0.37			0.37	0.73	
	0.02			0.8	1.0	1.2	1.5	0.8		1.3	1.6	4.9	5.8	7.1	8.7
10		20		800		1300	1500	600	700	800	1100	3600	4400	5400	6700
10	20	20	30	500		1600								8000	
									1000	7500	1300	2000	4700	0000.	23700
				1.2	1.8	3.4	7.0	0.6	1.0	1.9	3.8	6.0	9.2	17.1	33.8
				2.2	3.5	6.7	13.7	3.0	4.7	9.2	19.1	2.4	3.8	7.2	14.5
												2.6	4.0	7.6	15.4
								11	14	23	26	5	6	10	11
				8 3											
 				10	10	20	20	0.0	100	110	110	10	5.0		
				10 70	10 100	20	20 190	80	100	110	110	40	50	60	60
				0	1.0	140	5.5	130	190	250	330 12.0	400	510	690	970
				0	1.0	10	10	U	2.3	7.3	12.0	0	4.0	950	18.0 970
 x	x	х	х	x	x	x	x	х	х	x	x	x	x	x	x
														^	
								160	1180	1180	1180	50	850	850	850
x	1	1	1				- 1					х	15	15	15
								x	63	126	189				
			l	х	60	130	190					х	150	300	450
		4 T X			22	20	20						1.0	1.0	
				Х	32	32	32					X	40	40	40

NEEDS-cumulative Publicly Supplied Water (mgd)	Pres.				
	ILCS.	1980	2000	2020	
	20	30	40	50	
Industrial Self-Supplied Water (mgd)	10	10	20	30	
Rural Water Supply (mgd)	2	2	5	2	
Irrigation Water: agriculture (1000 afy)	0.1	0.3	0.1	0	
non-agriculture (1000 afy)	1	3	5	8	
Power Plant Cooling: withdrawal, saline (cfs)	0	300	800	2000	
brackish (cfs)					
fresh (cfs)	0	0	10	20	
consumption, brackish(cfs)					
fresh (cfs)	0	0	5	10	
Hydroelectric Power Generation (mw)					
Navigation: commercial (m. tons annually)					
recreational boating (1000 boats)	10	10	30	50	
Water Recreation: visitor days (m.)	х	10	10	10	
stream or river (miles)	x	30	40	50	
water surface (1000 acres)	X	10	20	20	
beaches (acres)	X	100	100	100	
pool (m. sq. ft.)	X	1	2	2	
land facilities (1000 acres)	X	10	10	10	
Fish & Wildlife: sport fishing man-days (m.)	0.3	0.3	0.4	0.5	
surface area, lake (acres)	х	0.1	0.4	1.3	
stream (acres)	х	0.3	0.9	1.2	
access, fresh (acres)	X	0.01	0.02	0.04	
salt (acres)					
anadromous (acres)	X	0.001	0.001	0.001	
piers (1000 feet)					
hunting, man-days (m.)	0.1	0.1	0.1	0.1	
access (1000 sq. mi.)	Х	0.03	0.14	0.22	
nature study, man-days (m.)	0.2	0.2	0.3	0.4	
access(1000 ac.)	X	0.03	0.1	0.2	
Water Quality Maint.: non-industrial (m. PEs)	100	200	200	300	
industrial (m. PEs)	100	100	200	400	
Flood Damage Reduction:			2.0	6.0	
avg. ann. damage, upstream (m. \$) mainstream (m. \$)	1.1	1.7	3.3	6.8	
	0.2	0.3	0.7	1.4	
tidal and hurricane (m. \$) Drainage Control: cropland (1000 acres)	3		7	0	
forest land (1000 acres)	3	4	/	8	
wet land (1000 acres) Erosion Control: agriculture (1000 acres)	20	20	30	30	
urban (1000 acres)	50	80	110	150	
stream bank (mi.)	0	0.8	2.4	4.0	
coastal shoreline (mi.)	0	0.0	2.4	4.0	
Health: vector control and pollution control	x	×	×	×	
Visual and Cultural:					
landscape maintenance, unique natural(sq. mi.)					
unique shoreline (mi.)					
high quality (sq. mi.)					
diversity (sq. mi.)	x	10	20	30	
agriculture (sq. mi.)	^	10	20	30	
landscape development, quality (sq. mi.)					
diversity (sq. mi.)					
metro. amenities (mi.)					
metro, amenitaes (mr.)			5		

Pres 1980 2000 2020 Pres 1980 2000 Pres 1980 2000 Pres 1980 2000 Pres 1980 2000 Pres 1	0 2000 2020
2 3 10 10	
0 0.2 0.3 0.5	
0 0.2 0.3 0.5	
01 0.21 0.31 0.51	
	+
0.03 0.03 0.03 0.04	
0.03 0.03 0.04	
x 0.001b.002b.004	
x 0.0010.0010.001	
0.01 0.01 0.02 0.02 x 0.01 0.02 0.04	
0.02 0.03 0.03 0.04	
x 0.1 0.3 0.4 20 20 30 30	+
20 20 30 30	
1.0 1.5 2.7 5.0	
1 1 2 2	
20 20 20 20 10 10 10 10	
10 10 10 10 0 0.3 0.9 1.5	
0 0.3 0.9 1.3	
x x x x	

	STA	TE TOTA	L		
DEVICES - incremental	Purposes	1980	2000	2020	
I. Resource Management					
A. Water					
Storage Facilities ¢	n we wat	140	25	100	
reservoirs, upstream (1000 af)	Rec, FW, VC*	149	35	190	
	FW, VC, Rec, WQ*	0	0	180	
Withdrawal Facilities	DC T1 D T	220	720	1000	100
	PS, Ind, Pow, Irrig	330	730	1000	
0146112011 (11164)	Ind	78 37	123	149	
wells (mgd)	^	37	1 22	30	
Conveyance Facilities	*	240	400	470	
interbasin diversions, into (mgd)	*	240	590	750	
Quality Control Facilities out of (mgd)		240	330	130	
chemical/biological		10.00			
potable water treat. plants (mgd)	PS	82	164	478	
waste treatment plants (mgd)		02	104	4,0	
secondary (85%) (m. PEs removed)	WO.VC.Rec	14000	0	0	
secondary (90%) (m. PEs removed)	WO.Rec.VC	20	23000	37000	
advanced (95%) (m. PEs removed)	WO.Rec	0	1200	2000	
Desalting Facilities		-	1200	1 2000	
B. Water/Land			 	1	
Upstream Flood Plain Mgmt.(1000 acres)	FDR, VC, Rec	47	38	147	
Local Flood Protection					
ocean (projects)	FDR	0	1	0	
river (projects)	FDR	12	23	1	
flood control channels (miles)	FDR	0	0.25	0	
Watershed Management (1000 acres)	FDR,VC,Drn,Rec	600	1040	910	
C. Land					
Controls					
fee simple purchase (buying)(sq.mi.)	VC, Rec, FW	1540	210	210	
fee simple purchase (buying) (mi.)	VC, Rec, FW	16	0	0	
purchase lease (sq.mi.)	VC,FW	6.5	3.5	2.5	
easements (sq.mi.)	VC, FW	26	26	26	
deed restrictions (sq.mi.)					
tax incentive subsidy (sq.mi.)	vo m				
zoning (sq.mi.)	VC,FW	600	0	0	
zoning (mi.)	NO DII	11	1.	1.	1177
zoning and/or tax inc. subs.(sq.mi.)	VC,FW	14	14	14	
zoning and/or tax inc. subs. (mi.)					
V. Others	TTO D		0.5		
Upstream Flood Control Storage (1000 af)	FDR	26	85	1	
Mainstream Flood Control Storage (1000 af)	FDR	224.7	2.4	0	

^{*} From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. $\boldsymbol{\varphi}$ Flood control storage not included.

A	AREA 6		A	AREA 7		F	AREA 8			AREA 9	
1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
			0.2	0.4	90	3	30 0	0 100	131	0	0
0	0	0.1	30 8 1	80 10 2	110 10 2	100 3 7	210 4 3	320 4 0	190 54 24	430 91 8	560 126 7
			120 120	100 490	10 740	120	100	10	120	300	460
0.1	0.1	0.4	11	27	23	9	11	19	61	100	432
10 0 0	0 20 1	0 30 1	2000 0 0	3000 100	0 4000 200	4000 0 0	7000 400	0 14000 800	8000 0 0	0 12000 700	0 18000 1000
			7	8	45	6	6	8	28	17	80
			2	7	0	0	1: 0.25	0	0 7	1 10	0
			280	560	560	130	180	160	150	240	140
1	0	0	100	60	60	1050	0	0	390 15	150 0	150 0
						18	18	18	600	0	0
						14	14	14	000	U	J
			3 11,4	17 2.4	0	0 213.3	8	0	15	44	0

			AREA 10		
DEVICES - incremental	Purposes	1980	2000	2020	
I. Resource Management					
A. Water					
Storage Facilities ♥				7.6	
reservoirs, upstream (1000 af)	Rec,FW,VC*	11	3	76	
	FW,VC,Rec,WQ*	0	0	80	
Withdrawal Facilities		2	10	10	
	PS, Ind, Pow, Irrig	3	10	10	
brackish (mgd)		13	18	9	
wells (mgd)	*	5	6	39	
Conveyance Facilities					
interbasin diversions, into (mgd)	1*				
out of (mgd)	*				
Quality Control Facilities					
chemical/biological					
potable water treat. plants (mgd)	PS	1	24	2	
waste treatment plants					
secondary (85%) (m. PEs removed)	WQ,VC,Rec	300	0	0	
secondary (90%) (m. PEs removed)	WQ,VC,Rec	. 0	400	600	
advanced (95%) (m. PEs removed)	WQ,Rec	0	20	40	
Desalting Facilities					
B. Water/Land					
Upstream Flood Plain Mgmt.(1000 acres)	FDR,VC,Rec	4	4	10	
Local Flood Protection					
ocean (projects)	FDR				
river (projects)	FDR	2	6	1	
flood control channels (miles)	FDR				
Watershed Management (1000 acres)	FDR,VC,Drn,Rec	50	50	40	
C. Land					
Controls					
fee simple purchase (buying)(sq.mi.)	VC,Rec,FW				
fee simple purchase (buying) (mi.)	VC, Rec, FW				
purchase lease (sq.mi.)	VC,FW	6.5	3.5	2.5	
easements (sq.mi.)	VC,FW	8	8	8	
deed restrictions (sq.mi.)					
tax incentive subsidy (sq.mi)					
zoning (sq.mi.)	VC, FW				
zoning (mi.)					
zoning and/or tax inc. subs.(sq.mi.)	VC,FW				
zoning and/or tax inc. subs. (sq.mi.)	,				
V. Others					
Upstream Flood Control Storage (1000 af)	FDR	6	17	1	
Mainstream Flood Control Storage (1000 af)	the second secon				
the state of the s					

 $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. φ Flood control storage not included.

A	AREA 12		1	AREA			AREA			AREA	
1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
2	,	24									
 3	1										
0.2	1	1									
0.2	3	2									
0.4	1	2									
20	30 0	30 2									
 0	0										
1	3	4									
2	0	0			-b						
4	10	10									
 3	0	0_									

FIRST COSTS - incremental	ST	TATE TO	ΓAL	
(\$ million 1970)	1980	2000	2020	
Water Development Costs:				
storage, upstream	45.2	7.7	47.8	
mainstream	0	0	71	
wells	19.2	11.0	7.8	
desalting				
Water Withdrawal and Conveyance Costs:				
inter-basin transfers	77	154	46	
public water supply	25	66	120	
industrial self-supplied water	1.5	3.0	4.0	
rural water supply	х	x	х	
irrigation, agriculture	3.65	0.49	0.02	
non-agriculture	15	15	19	
Power Plant Cooling Water	0	28	123	
Hydroelectric Power Generation	Х	Х	Х	
Navigation: commercial	20	110	59	
recreational boating	3.4	10.9	13.1	
Water Recreation	1170	700	780	
Fish and Wildlife: fishing	6.7	8.8	10.2	
hunting	x	х	x	
nature study	х	x	x	
Water Quality Maint.: waste treatment, secondary	830	1520	2450	
advanced	0	260	420	
other ≠	1700	0	0	
Flood Damage Reduction: upstream	6.1	17.6	0.2	
mainstream	82	16	0	
Drainage Control	0.56	1.44	0.70	
Erosion Control	870	900	130	
Health	Х	Х	X	
Visual and Cultural	482	80	80	
Summation of Available Estimated Costs	5400	3900	4400	

^{*} From the supply model and includes OMR costs.

Combined sewer overflows control and acid mine drainage control.

		AREA 6	5		AREA 7			AREA 8			AREA 9	
	1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
				0	0.1	15.4	0.8	4.2	0	39.2	0	0
				0.5	1.0	1.0	3.9	1.6	35 0.1	10.7	3.7	3.3
				77	49	4				0.4	104	42
	0.1	0.1	0.3	0.2	0.4	28 0.5	4 0.5	7	10 1.9	13 0.6	24	79 1.4
				x 0.14	x 0.30	x 0	x 0.92	х	x	х	x	х
				1	1	1	2	0.04	0.02	1.87	0.15	13
				0	0	12	0	6	16	0	20	90
							X	Х	Х			
				0.1	0.2	0.2	0.2	0.5	0.9	20	110 9.4	59 10.9
-				160	100	110	250	120	150	700	450	500
	0.1	0.1	0.1	1.6	1.3	1.5	1.1	1.0	1.2	3.9	6.3	7.2
	х	x	х	x	x	х	х	x	x	х	x	x
	Х	Х	X	X	х	X	Х	Х	X	X	X	X
	2	3	3	240	420	630	290	420	790	280	640	970
	0	0.2	0.2	0	30	50	0	90	160	0	140	210
				200	0	0	200	0	0	1300	0	0
				0.2	5.0	0	0	1.8	0	3.4	6.6	0
				4	6	0	46	0	0	32	9	0
							0.32	0.82	0.44	0.13	0.36	0.13
				10	10	10	10	10	10	840	880	100
	X	X	X	X	X 17	X 1.7	X	X	X	X	X	X
	0.3	0	0	23	17	17	111	7	7	344	53	53
	2.5	3.4	3.6	730	660	880	920	670	1190	3600	2500	2100

FIRST COSTS - incremental		AREA	10	
(\$ million 1970)	1980	2000	2020	
Water Development Costs:				
storage, upstream	4.6	3.1	29.1	
mainstream	0	0	36	
wells	2.9	3.1	3.2	
desalting				
Water Withdrawal and Conveyance Costs:				
inter-basin transfers				
public water supply	0.4	11	1	
industrial self-supplied water	0.1	0.1	0.1	
rural water supply	Х	X	X	
irrigation, agriculture	0.72	0	0	
non-agriculture	2	2	2	
Power Plant Cooling Water	0	2	5	
Hydroelectric Power Generation				
Navigation: commercial				
recreational boating	0.1	0.7	1.0	
Water Recreation	60	30	20	
Fish and Wildlife: fishing	0.1	0.2	0.2	
hunting	x	x	x	
nature study	х	X	x	
Water Quality Maint.: waste treatment, secondary	20	30	50	
advanced	0	5	10	
other ≠	10	0	0	
Flood Damage Reduction: upstream	1.5	4.3	0.2	
mai n stream				
Drainage Control	0.09	0.23	0.11	
Erosion Control	10	5	10	
Health	Х	X	х	
Visual and Cultural	4	3	3	
Summation of Available Estimated Costs	120	100	170	

^{*} From the supply model and includes OMR costs.

Combined sewer overflows control and acid mine drainage control.

	AREA 1	2		AREA			AREA			AREA	
1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
0.6	0.3	3.3									
1.2	1.6	0.2									
0.3	1	1									
0.1	0.1	0.1									
0.04	0.1	0.1									
0.01 x x	0.01 x x	0.02 x x									
2 0	2 0	2 1									
1.1	0	0									
0.02	0.03	0.03									
Х	X	Х									
5.7	5.4	8.0									

RHODE ISLAND

RHODE ISLAND

Rhode Island covers 1,213 square miles located primarily in Area 9, with a very small portion located in Area 10. The topography varies from coastal plain to rolling hills and the visual quality of the State is medial. The drainages are small and outlet either into Narragansett Bay or along the coast. Water must be imported because of insufficient natural supplies and the overall degradation of existing supplies.

The population is concentrated around Providence and Newport and should reach 1.5 million by 2020 from the 1970 total of 94,000. Per capita income was at the national average in 1970 and is projected to remain at that level throughout the Study period. Employment in 1970 was highest in services and related industries, which is expected to double by 2020. Paper and allied products and chemicals and allied products should also double employment by 2020, while decreases are projected for textile mill products, agriculture, and forestry and fisheries.

Needs to be Satisfied. The needs of the State are largest in Area 9 and either relatively small or nonexistent in Area 10. The key needs are Fish and Wildlife, Water Quality Maintenance and Erosion Control, all in Area 9. The important needs in Area 9 are Publicly Supplied Water, Industrial Self-supplied Water, Power Plant Cooling, Recreational Boating, Water Recreation, Water Quality Maintenance, and Health. The important needs in Area 10 are Publicly Supplied Water and Water Quality Maintenance.

Devices. The key devices are quality control facilities and erosion protection in Area 9. The important devices are conveyance facilities, watershed management, land controls, habitat management and water demand and allocation changes in Area 9 and quality control facilities in both Areas. Due to the low need levels in Area 10 the number of devices used will be very small.

Costs. The large costs in this State are in Area 9 and are incurred to meet the needs of Water Recreation, Water Quality Maintenance, Erosion Control and Visual and Cultural

		STATE	TOTAL		
NEEDS-cumulative	Pres.	1980	2000	2020	
Publicly Supplied Water (mgd)	110	150	210	330	
Industrial Self-Supplied Water (mgd)	39	63	113	152	
Rural Water Supply (mgd)		1.6	2.5	1.7	
Irrigation Water: agriculture (1000 afy)		2.6	2.7	2.7	
non-agriculture (1000 afy)	2.5	6.4	10.6	16.2	
Power Plant Cooling: withdrawal, saline (cfs)	340	890	5610	11520	
brackish (cfs)					
fresh (cfs)					
consumption, brackish(cfs)					
fresh (cfs)					
Hydroelectric Power Generation (mw)		10.0		12//	L
Navigation: commercial (m. tons annually)	9.9	12.8	21.0	34.4	
recreational boating (1000 boats)	57	76	143	210	
Water Recreation: visitor days (m.)	Х	25	41	57	
stream or river (miles)	Х	170	230	320	
water surface (1000 acres)	X	62	95	129	
beach (acres) pool (m. sq. ft.)	X	430	570	650	
pool (m. sq. ft.) land facilities (1000 acres)	X	7.4	9.8	11.2	
Fish & Wildlife: sport fishing man-days (m.)	1.8	2.2	2.7	3.4	
surface area, lake (acres)	x	0.72	3.06	9.00	
stream (acres)	X	0.72	0.76	1.30	
access, fresh (acres)	X	0.038	0.099	0.171	
salt (acres)	X	0.086	0.231	0.399	
anadromous (acres)		0.002	0.003	0.004	
piers (1000 feet)	X	2.4	6.5	11.3	
hunting, man-days (m.)		0.31	0.37	0.45	
access (1000 sq. mi.)	х	0.14	0.29	0.35	
nature study, man-days (m.)	1.1	1.3	1.6	1.9	
access(1000 ac.)	х	2.3	5.9	10.3	
Water Quality Maint.: non-industrial (m. PEs)	790	980	1210	1500	
industrial (m. PEs)	610	1030	1750	3010	
Flood Damage Reduction:					
avg. ann. damage, upstream (m. \$)	0.005	0.008	0.015	0.030	
mainstream (m. \$)	0.64	1.00	1.91	3.84	i
tidal and hurricane (m. \$)	4.2	6.6	12.6	25.4	
Drainage Control: cropland (1000 acres)	1.6	2.2	3.5	3.8	
forest land (1000 acres)	0	0	0.61	2.03	
wet land (1000 acres)					
Erosion Control: agriculture (1000 acres)	14	18	20	20	
urban (1000 acres)	130	170	230	320	
stream bank (mi.)	Х	0.9	2.3	4.0	
coastal shoreline (mi.)	X	70	140	150	
Health: vector control and pollution control	X	X	X	X	
Visual & Cultural:					
landscape maintenance, unique natural(sq. mi.)		-	-	-	
unique shoreline (mi.)	X	5	5	5	1
high quality (sq. mi.) diversity (sq. mi.)					1
					- 4
agriculture (sq. mi.) landscape development, quality (sq. mi.)		50	100	150	l li
diversity (sq. mi.)	Х	30	100	130	1
metro. amenities (mi.)					Š
" (sq. mi.)	x	10	10	10	
(54. mr.)		10	1 10	10	

		AREA	A 9		_	AREA	10			AREA	A			AREA	1	
	Pres	1980	2000	2020	Pres	1980	2000	2020	Pres	1980	2000	2020	Pres	1980	2000	2020
	110					10	20	20								
	39						-									
	1.5	1.6						-								
	0.9		2.7			0.2	0.3	0,5								
-	340		5610			V.2	V	_ U. J								
													45.0			
												111				
			-		-				-							
-	9.9	12.8	21.0	34.4												
	56	74	1			2	3	7								
	х	25	41	57												
	х	170														
	х	62														
	X	430		650												
	X X	7.4	9.8													
	1.7	2.1			0.1	0.1	0.2	0.2								
	х		3.06													
	х		0.76													
			0.099										E M			
			0.231													
	X X		0.003 6.5													
					0.02	0.02	0.03	0.04								
	х		0.27					0.03								
	1.0	1.2	1.5	1.8												
	X	2.3		10.3												
	740 610	1030	1110 1750	1380	60	80	100	120								
	010	1030	1730	3010												
			0.015													
			1.91													
	4.2		12.6		0.0	0.0	0 /	0.5								
	1.4		3.1 0.60		0.2	0.3		0.5								
	U	U	0.00	2.00	U	U	0.01	0.03								
	13	16		18	1	2	2	2								
	130	160		310	3	10	10	10								
	х	0.8		3.5	Х	0.1	0.3	0.5								
	X	70 x	140 x	150 x	.,				-							
	Х	A	A	X	Х	Х	X	Х		-						
	x	5	5	5												
							4.9							İ		
	x	50	100	150												
	^	50	100	150												
1												-				1
	х	10	10	10												

	STAT	E TOTAL			
DEVICES - incremental	Purposes	1980	2000	2020	
I. Resource Management					
A. Water					
Storage Facilities ϕ					
reservoirs, upstream (1000 af)	Rec, FW, VC*	17	0	0	
mainstream (1000 af)	FW.VC.Rec.WQ*	26	0	0	
Withdrawal Facilities					
intakes & pumping, fresh (mgd)	PS, Ind, Pow, Irrig	46	101	125	
brackish (mgd)	Ind	16	26	36	
wells (mgd)	*	4.7	1.7	1.4	
Conveyance Facilities					
interbasin diversions, into (mgd)	*	0	190	280	
out of (mgd)					
Quality Control Facilities					
chemical/biological					
potable water treat. plants (mgd)	PS	13	31	89	
waste treatment plants					
secondary (85%) (m. PEs removed)	WQ,VC	1700	0	0	
secondary (90%) (m. PEs removed)	WQ,VC	0	2700	4100	
advanced (95%) (m. PEs removed)	WQ	0	150	230	
Desalting Facilities					
B. Water/Land					
Upstream Flood Plain Mgmt.(1000 acres)	FDR,VC	1.7	1.4	2.7	
Local Flood Protection					
ocean (projects)	FDR	0	2	0	
river (projects)					1
flood control channels (miles)					
Watershed Management (1000 acres)	FDR,VC,Drn	34	61	49	
C. Land					4-11-
Controls					
fee simple purchase (buying)(sq.mi.)		60	50	50	
fee simple purchase (buying) (mi.)	VC, FW	5	0	0	
purchase lease (sq.mi.)					
easements (sq.mi.)					
deed restrictions (sq.mi.)					
tax incentive subsidy (sq.mi.)					
zoning (sq.mi.)					
zoning (mi.)					
<pre>zoning and/or tax inc. subs.(sq.mi.)</pre>					
zoning and/or tax inc. subs. (mi.)					
V. Others					
				-	-
					-
			-		-

 $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. φ Flood control storage not included.

A	AREA 9		I	AREA 10			AREA			AREA	
1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
17 26	0	0									
46	101	125	0.1	0.1	0.2						
16	26	36	0.1	0.1	0.2						
 4.7	1.7	1.4									
0	190	280									
13	20	88	0.2	10	1						
1600	0	0	100	0	0						
0	2600 140	3900 220	0	100 10	100 10						
	140	220	0	10	10						
1.7	1.4	2.7									
0	2	0									
34	61	49									
60 5	50 0	50 0									
)	U	U									

FIRST COSTS - incremental	ST	TATE TO	ΓAL	
(\$ million 1970)	1980	2000	2020	
Water Development Costs:				
storage, upstream	5.2	0	0	
mainstream	9.7	0	0	
wells	2.1	0.7	0.6	
desalting				
Water Withdrawal and Conveyance Costs:				
inter-basin transfers	0	67	16	
public water supply	2.8	9.7	16.6	
industrial self-supplied water	0.18	0.38	0.41	
rural water supply	x	x	x	
irrigation, agriculture	0.163	0.013	0	
non-agriculture	3.4	3.3	4.4	
Power Plant Cooling Water	0	10	40	
Hydroelectric Power Generation				
Navigation: commercial	0	25	50	
recreational boating	1.3	3.2	3.8	
Water Recreation	270	180	170	
Fish and Wildlife: fishing	0.83	1.37	1.58	
hunting	х	x	x	
nature study	Х	X	X	
Water Quality Maint.: waste treatment, secondary	65	144	218	
advanced	0	3.0	46	
other ≠	280	0	0	
Flood Damage Reduction: upstream				
mainstream	0	17	0	
Drainage Control	0.047	0.131	0.048	
Erosion Control	130	137	11	
Health	Х	Х	Х	
Visual and Cultural	95	18	18	
Summation of Available Estimated Costs	870	650	600	

^{*} From the supply model and includes OMR costs.

Combined sewer overflows control and acid mine drainage control.

		AREA 9			AREA 1	0		AREA			AREA	
	1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
	5.2 9.7 2.1	0 0 0.7	0 0 0.6									
	0 2.6 0.18 x	67 4.8 0.38 x	16 16.1 0.41 x	0.2	4.9	0.5						
	0.163 3.3	0.013	0 4.3	0.1	0.1	0.1						
	0	10	40	0.1	0.1							
	0	25 3.1	30	0.00	0.1	0.1						
	1.3 270	180	3.6 170	0.02	0.1	0.1						
	0.79	1.28	1.47	0.04	0.09	0.11						
	х	х	x	х	x	x						
-	х	х	х	X	x	x						
	59 0 280	137 29 0	209 45 0	6	7	9						
	0	17	0									
	0.042	0.117	0.042	0.005	0.014	0.006						
	130	136	11	0.4	0.3	0.4						
	95	18	18	Х	X	X						
	860	630	570	6.8	13.5	11.2						

CONNECTICUT

Connecticut covers 5,007 square miles located primarily in Areas 8 and 10, with very small portions located in Areas 9 and 12. The topography of the State ranges from coastal plain to rolling hills with small amounts of steep hills. The visual quality of the State is medial. Water is generally abundant on the Housatonic and Thames Rivers, but the Connecticut River suffers from low flows, particularly in August and September. The quality of the water ranges from poor to extremely polluted.

A portion of coastal Connecticut lies within the metropolitan suburbs surrounding New York City, and that part of the State, plus the north-south route to Springfield, Massachusetts, is very densely populated. The 1970 population stood at almost 3 million and should surpass 5.9 million by 2020. Per capita income was 23 percent above the national average in 1970 but should decline to 12 percent above by the end of the Study period. Employment in services and related industries, which are highest in 1970, should increase by 150 percent by 2020, and increases are also projected for chemicals and allied products and paper and allied products. Employment declines are expected for agriculture forestry and fisheries, textile mill products and primary metals.

Needs to be Satisfied. The largest needs in this State are in Area 10 with the exception of Industrial Self-supplied Water, agricultural Irrigation, some Power Plant Cooling and Fish and Wildlife needs, forest Drainage Control, and high quality and unique natural landscape maintenance which are all largest in Area 8. The needs in Areas 9 and 12 are relatively insignificant or non-existent in size. The key needs are for Water Quality Maintenance in Area 8 and Erosion Control in Area 9. The important needs are Water Quality Maintenance in Areas 8, 10 and 12, Water Recreation in Areas 8 and 10 and Publicly Supplied Water in Areas 10 and 12. Other important needs are Fish and Wildlife and Visual and Cultural in Area 8, Health in Area 9, and Industrial Self-supplied Water in Area 10.

Devices. The largest levels of device implementation are all in Area 10 except fresh water intakes and pumping which is largest in Area 8. The one key device in this State is for erosion protection in Area 9. The important devices are storage facilities in Areas 8 and 10, withdrawal facilities in Area 12, quality control facilities in Areas 8, 10 and 12, and land controls and water demand and allocation changes in Area 10.

Costs. The agriculture Irrigation costs and the costs for combined sewer overflow controls are largest in Area 8. All other costs are largest in Area 10 which has the largest total cost in the State. The large expenditures are expected in Public Water Supply (2000), commercial navigation, (2020) Water Recreation (1980-2020), combined sewer overflow control (1980), Erosion Control (1980-2000), and Visual and Cultural (1980).

		STATE	TOTAL		
NEEDS-cumulative	Pres.	1980	2000	2020	
Publicly Supplied Water (mgd)	310	410	620	910	
Industrial Self-Supplied Water (mgd)	190	320	590	1000	
Rural Water Supply (mgd)	25	34	65	34	
Irrigation Water: agriculture (1000 afy)	7	24	21	19	
non-agriculture (1000 afy)	5	15	26	41	
Power Plant Cooling: withdrawal, saline (cfs)	2100	5500	12600	18400	
brackish (cfs)	1700	1500	2000	1900	
fresh (cfs)	0	0	110	200	
consumption, brackish(cfs)	16	15	19	20	
fresh (cfs)	0	0	53	105	
Hydroelectric Power Generation (mw)	130	780	3010	9010	
Navigation: commercial (m. tons annually)	24	32	54	94	
recreational boating (1000 boats)	130	180	330	690	
Water Recreation: visitor days (m.)	Х	110	190	280	
stream or river (miles)	х	680	910	1280	
water surface (1000 acres)	х	220	340	480	
beach (acres)	х	1800	2400	3000	
pool (m. sq. ft.)	Х	31	41	51	
land facilities (1000 acres)	X	120	170	220	
Fish & Wildlife: sport fishing man-days (m.)	4.8	6.1	7.7	9.7	
surface area, lake (acres)	Х	0.8	3.0	8.2	
stream (acres)	X	1.8	5.4	7.6	
access, fresh (acres)	X	0.08	0.20	0.34	
salt (acres)	Х	0.19	0.63	1.15	
anadromous (acres) piers (1000 feet)	Х	0.10	0.12	0.17	
		5	18	33	
hunting, man-days (m.) access (1000 sq. mi.)	1.3	1.5	2.0	2.5	
nature study, man-days (m.)	X	0.26	0.81	1.23	
access(1000 ac.)	3.3	4.0	5.1	6.5	
Water Quality Maint: non-industrial (m. PEs)	X 24.00	0.7	3900	4900	
industrial (m. PEs)	2400	3100	1		
Flood Damage Reduction:	460	910	1700	3200	-
avg. ann. damage, upstream (m. \$)	5	0	15	21	
mainstream (m. \$)	6	8 9	15 18	31 37	
tidal and hurricane (m. \$)	8	12	24	49	
Drainage Control: cropland (1000 acres)	20	27	43	49	
forest land (1000 acres)	0	0	2.4	8.0	
wet land (1000 acres)			2.4	0.0	
Erosion Control: agriculture (1000 acres)		160	170	180	
urban (1000 acres)		480	640	880	
stream bank (mi.)		5	16	27	
coastal shoreline (mi.)	0	70	150	150	
Health: vector control and pollution control	х	X	X	X	
Visual & Cultural:					
landscape maintenance, unique natural(sq. mi.)		640	640	640	
unique shoreline (mi.)	x	80	80	80	
high quality (sq. mi.)		28	56	84	
diversity (sq. mi.)		10	20	30	
agriculture (sq. mi.)					
landscape development, quality (sq. mi.)	x	230	460	690	
diversity (sq. mi.)					
metro. amenities (mi.)					
" (sq. mi.)	v	40	50	50	

	AREA	8			AREA	9			AREA	10			AREA	12	
		2000	2020	Pres	1980	2000	2020	Pres	1980			Pres	1980	2000	2020
90								210				5	6	11	17
 100								90							
 6	8		17					20			25				
5	16 2	17	1/	0.1	0.2	0.4	0.6	3		1	35				
 0	0	500	900	-0.1	0.2	U.4	V. Q			12100					
1700								0							
0	0							0	0	80	160				
16	15							0	0	-	5				
 0	0	15	20					0	0						
 	-	-	10					130	780						
20	5 30	7 50	10 90					20 110	28 150		84 600				
 x	30		70					x	90		210				
x	220							X	460		870				
x	70	100	150					x	150		330				
х	600	800	1000				1	х	1200	1600					
х	11	14	17					х	20		34				
 Х	40	50	60					Х	90		160				
1.8	2.5 0.3	3.1	3.9					3.0	3.6		5.8	0.1	0.1	0.1	0.1
X X	0.5	1.0	1.9					X X	1.2		5.8				
x	0.04							x	0.04						
	0.0	0.00	0.13					x		0.63			7-3		
x	0.10	0.11	0.17					х		0.003					
								х	5	18	33				
0.7	0.9							0.6				0.03	0.03	0.03	0.04
Х		0.18						X	0.15						
1.1	1.4	1.8						2.2	2.6			0.05	0.05	0.06	0.08
 800	0.5	$\frac{1.4}{1100}$	$\frac{2.4}{1500}$					1600	0.2	2800			50	60	70
270	530	990	1900					190	390		1310	40	50	00	/4
									3,0	710	1310				
2	3	6	12	0.03	0.04	0.08	0.16	3	5	10	20				
3	4	9	18					3	5		19	E-V4			
								8	12	24	49				
6	8	12		0.06	1			14	19	30	35				
4	4	1.1	4.2	0	q	0.4	1.0	a	0	0.9	2.8				
 40	50	60	60	1	2	2		70	100	110	120				
70	100	130	180	10	10	10	10	200	370	500	690				
q	1	4	1	0	0.2	0.3	1.5	q	4	11	19				
								g	70	150	150				
Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	X	Х	Х	X	X
100	610	610	610												
100	640	640	640					x	80	80	80				
x	28	56	84					A	00	00	ou		10 5 15		
								x	10	20	30				
							1	X	230	460	690				
								37	40	50	50				
 	_					-		Х	40	30	30				

	STA	TE TOTAL	L	
DEVICES - incremental	Purposes	1980	2000	2020
. Resource Management				
A. Water				1
Storage Facilities ¢				
	Rec, FW, VC*	28	55	10
mainstream (1000 af)	FW, VC, Rec, WQ*	26	143	13
Withdrawal Facilities				
	PS, Ind, Pow, Irrig	100	210	35
brackish (mgd)		180	250	12
wells (mgd)		18	17	9
Conveyance Facilities				
interbasin diversions, into (mgd)				
out of (mgd)				
Quality Control Facilities				
chemical/biological				
potable water treat. plants (mgd)	PS	18	301	5
waste treatment plants				
secondary (85%) (m. PEs removed)	WO.VC	3300	0	
secondary (90%) (m. PEs removed)	WO.VC	40	5080	734
advanced (95%) (m. PEs removed)	WO	0	280	41
Desalting Facilities	*	0	0	0.
B. Water/Land				
Upstream Flood Plain Mgmt.(1000 acres)	FDR.VC	7.6	12.6	6.
Local Flood Protection				
ocean (projects)	FDR	2	0	
river (projects)	FDR	10.0	1.0	2.
flood control channels (miles)				
Watershed Management (1000 acres)	FDR, VC, Drn	290	350	28
C. Land				
Controls				
fee simple purchase (buying)(sq.mi.)	VC, FW	740	190	19
fee simple purchase (buying) (mi.)		15	0	
purchase lease (sq.mi.)		84	52	4
easements (sq.mi.)		16	16	1
deed restrictions (sq.mi.)				
tax incentive subsidy (sq.mi.)				
zoning (sq.mi.)			Land State	
	VC,FW	65	0	
zoning and/or tax inc. subs.(sq.mi.)		6	6	
zoning and/or tax inc. subs. (mi.)				
Others				
pstream Flood Control Storage (1000 af)	FDR	31	0	
				1

 $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. φ Flood control storage not included.

A	AREA 8		1	AREA 9		I	AREA 10			AREA 12	
1980	2000	2020	1930	2000	2020	1980	2000	2020	1980	2000	2020
6	50	0	8	0	0	15 26	5 143	101 137			
60 1 6	120 2 2	180 3 0				50 180 13	90 250 14	170 120 95	0.4	1	2
12		26				6	283	25	1	2	4
1200 0 0	0 1910 110	0 3070 170				2100 0 0 0	0 3120 170 0	0 4210 230 0.4	40 0	50 0	60
2.2	2.5	4.0	0.4	0.4	0.5	5.0	9.7	2.0			
1.0	0	0	0.5	0	0	2 8.5	0 1.0	0 2.5			
70	90	80	3	5	2	220	250	200			
550	0	0				190 15 84	190 0 52	190 0 43			
8	8	8				8	8	8			
6	6	6				65	0	0			
			2	0	0	29	0	3			
						AND THE PARTY OF					

FIRST COSTS - incremental	SI	TATE TO	TAL	
(\$ million 1970)	1980	2000	2020	
Water Development Costs:				
storage, upstream	9.8	11.3	38.5	
mainstream	12	28	32	
wells	10.0	8.8	8.1	
desalting	0	0	0.8	
Water Withdrawal and Conveyance Costs:				
inter-basin transfers				
public water supply	11	144	30	
industrial self-supplied water	1.5	2.4	2.6	
rural water supply	х	х	х	
irrigation, agriculture	2.11	0.09	0.03	
non-agriculture	8.9	8.1	10.8	
Power Plant Cooling Water	0	39	75	
Hydroelectric Power Generation	х	х	х	
Navigation: commercial	58	57	122	
recreational boating	1.3	8.9	12.3	
Water Recreation	1210	690	640	
Fish and Wildlife: fishing	2.6	3.8	4.5	
hunting	х	х	х	
nature study	x	x	х	
Water Quality Maint.: waste treatment, secondary	270	360	510	
advanced	0	58	85	
other /	510	0	0	
Flood Damage Reduction: upstream	14.5	0	0.6	
mainstream	88.3	7.7	0	
Drainage Control	0.58	1.50	0.71	
Erosion Control	148	143	46	
Health	х	х	х	
Visual and Cultural	352	78	78	
Summation of Available Estimated Costs	2700	1600	1700	

^{*} From the supply model and includes OMR costs.

Combined sewer overflows control and acid mine drainage control.

	AREA	8		AREA 9			AREA 1	.0		AREA 1	.2
1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
1.3 0 3.0	7.2 0 1.2	0 4 0.1	2.3	0	0	6.2 12 7.0	4.1 28 7.6	38.5 28 8.0 0.8			
6 0.3 x 2.09 1.3	9 0.7 x 0.09 1.1	14 1.1 x 0.03 1.4	0.1	0.1	0.2	4 1.2 x 0.02 7.6	133 1.8 x 0 6.9	13 1.5 × 0 9.2	1	2	3
 0	17	25				0	22	50			
0 0.1 360 1.5	7 0.5 180 1.3	7 0.9 230 1.6				x 58 1.2 860 1.1	x 50 8.4 520 2.4	x 115 11.4 410 2.9	0.02	0.03	0.03
х	х	х				х	х	х	х	х	х
90 0 270	x 110 22 0	170 35 0				180 0 250	250 36 0	330 48 0	3 0	4 0	X 4 1
42.1	0	0	0.4	0	0	14.2 46.2	0 7.7	0.6			
0.17	0.44	0.24	0.002	0.005	0.002	0.41	1.05	0.47			
 6	5	7	0.2	0.4	1	142	138	39			
 x 58	x	x	х	х	X	294	74	x 74	X	Х	Х
840	370	500	3.00	0.51	1.20	1900	1300	1200	4.0	6.0	8.0

NEW YORK

New York State covers 30,099 square miles within the Region including all of Area 13; almost all of Area 12; over half of Area 11; parts of Area 15 and 17; and small portions of Areas 10 and 14. The major drainage of the State is the Hudson River, with other portions of the State draining into the St. Lawrence, Susquehanna and Delaware Rivers and into Lake Champlain. The topography ranges through the entire spectrum of classification from beach and coastal plain in the east to the mountains of the Catskills and Adirondacks in the west. Upstate New York is of high visual quality, central New York is rated medial, and the southern highly urbanized and metropolitan areas are classified as of low visual quality. Water is abundant in the State, but due to extreme population concentrations and considerable stretches of pollution along the major waterways, water must be imported, especially into Area 13 which is the most seriously water deficient Area in the Region.

Population totalled almost 15 million in the State in 1970, with by far the greatest concentration in the south in and around New York City, and projections for 2020 put the total at over 24 million. Per capita income was 26 percent above the national average in 1970, but is expected to decline to 15 percent above that average by 2020. Employment was highest in 1970 for services and related industries which employed 4.5 million and which are expected to employ over 8 million by 2020. Significant increases are also projected for chemicals and allied products while decreases are expected for agriculture, forestry and fisheries percent (50 percent), textile mill products (almost 50 percent), mining, food and kindred products and petroleum refining.

Needs to be Satisfied. The key needs in the State are Water Quality Maintenance in Areas 12, 13, 15 and 17, Publicly Supplied Water in Area 13, recreational boating in Area 15 and Visual and Cultural in Areas 13 and 14. The important needs are Publicly Supplied Water in all seven Areas, Industrial Self-supplied Water in Areas 11, 12, 15 and 17, Water Recreation in Areas 13, 15 and 17, and Water Quality Maintenance in all Areas except Area 11. Other important needs are Visual and Cultural in Areas 11 and 13, Flood Damage Reduction in Areas 12, 14, and 15, recreational boating in Area 13, and Fish and Wildlife in Area 14 and 15. Most of the needs are largest in either Area 12 or Area 13. The needs which are largest in Area 12 are Industrial Self-supplied Water, Rural Water Supply, Irrigation Water, Power Plant Cooling (except saline withdrawal) Hydroelectric Power Generation, Water Recreation (except visitor days), hunting access, upstream and mainstream Flood Damage Reduction, forest land Drainage Control, agricultural Erosion Control and Visual and Cultural (except unique shoreline and metropolitan amenities.) In Area 13 the needs are largest in Publicly Supplied Water, saline withdrawal, Navigation, Water Recreation, visitor days, and all of Fish and Wildlife (except stream surface area, fresh access, hunting man-days and hunting access). Other needs largest in Area 13 are Water Quality Maintenance, tidal and hurricane Flood Damage Reduction, urban Erosion Control and unique natural maintenance and metropolitan amenties development for Visual and Cultural. Cropland Drainage Control is largest in Area 11,

stream surface for Fish and Wildlife is largest in Area 15 and fresh access and hunting man-days for Fish and Wildlife and stream bank Erosion Control are largest in Area 17.

Devices. The devices which are key in the State are water quality control in Areas 13 and 15 and habitat management in Area 11. The important devices are storage facilities in Areas 10, 12, 15 and 17, withdrawal facilities in 12, 14, 15 and 17, wells in Area 15, and conveyance facilities in Area 13. Temperature control facilities are important in Areas 15 and 17, as are water quality control facilities in all Areas. Other important devices are watershed management, land facilities and habitat management in Area 11. The largest device levels occur in Area 12 with the following exceptions: mainstream flood control storage in Area 17, secondary (85%) waste treatment plants in Area 11, and brackish intakes and pumping, wells, diversions into basin, potable water treatment plants and secondary (90%) and advanced waste treatment plants in Area 13.

Costs. The largest costs incurred in meeting the needs of the State are in Areas 12 and 13 with the largest total expenditure in Area 13. Water development, Water Recreation and Drainage Control costs are largest in Area 12. Publicly Supplied water, Industrial Self-supplied Water, agricultural Irrigation, commercial navigation, and upstream Flood Damage Reduction costs are also largest in Area 12. The remaining costs are largest in Area 13, except for Erosion Control which is largest in Area 17. The largest total expenditures in the State will be for inter-basin transfers (2000), Publicly Supplied Water (2020), Power Plant Cooling Water (2020) and mainstream Flood Damage Reduction (1980). In addition, the expenditures for Water Recreation, Water Quality Maintenance and Visual and Cultural will be very large in all time periods.

NEEDS-cumulative	Pres.	STATE 1980	2000	2020	
Publicly Supplied Water (mgd)	1700	2200	3000	4000	
Industrial Self-Supplied Water (mgd)	430	720	1290	2180	
Rural Water Supply (mgd)	86	118	141	110	
Irrigation Water: agriculture (1000 afy)	31	82	128	134	
non-agriculture (1000 afy)	25	64	106	162	
Power Plant Cooling: withdrawal, saline (cfs)	9300	10900	18500	33100	
brackish (cfs)	1500	10800	13300	5900	
fresh (cfs)	630	1740	3510	5640	
consumption, brackish(cfs)	14	98	119	52	
fresh (cfs)	8	19	218	604	
Hydroelectric Power Generation (mw)	1600	4600	11000	27500	
Navigation: commercial (m. tons annually)	100	120	190	290	
recreational boating (1000 boats)	510	680	960	1870	
Water Recreation: visitor days (m.)	х	200	320	560	
stream or river (miles)	х	510	740	960	
water surface (1000 acres)	x	120	170	240	
beach (acres)	х	2000	2900	4500	
pool (m. sq. ft.)	х	36	52	81	
land facilities (1000 acres) Fish & Wildlife: sport fishing man-days (m.)	X	57	80	121	
	21	24	29	35	
surface area, lake (acres)	х	1.8	7.2	15.3	
stream (acres)	х	0.08	0.54	1.29	
access, fresh (acres) salt (acres)	х	0.19	0.52	0.92	
	х	1.7	4.6	7.9	
anadromous (acres) piers (1000 feet)	х	0.046	0.063	0.084	
hunting, man-days (m.)	X	49	130	224	
access (1000 sq. mi.)	4.8	5.3	6.4 2.69	7.6 4.95	
nature study, man-days (m.)	x 18	0.66	2.69	29	
access(1000 ac.)		46	123	213	
Water Quality Maint:: non-industrial (m. PEs)	13000	16000	20000	24000	
industrial (m. PEs)	19000	38000	70000	133000	
Flood Damage Reduction:	19000	36000	70000	133000	
avg. ann. damage, upstream (m. \$)	4.1	6.0	10.9	20.4	
mainstream (m. \$)	13	19	37	75	
tidal and hurricane (m. \$)	32	49	91	176	
Drainage Control: cropland (1000 acres)	210	310	490	570	
forest land (1000 acres)	0	0.8	24.4	94.6	
wet land (1000 acres)		0.0	2,.,	, , , ,	
Erosion Control: agriculture (1000 acres)	3200	4100	4700	4800	
urban (1000 acres)	1700	2000	2400	2900	
stream bank (mi.)	0	73	219	366	
coastal shoreline (mi.)	0	6	20	34	
Health: vector control and pollution control	х	х	х	X	
Visual & Cultural:					
landscape maintenance, unique natural(sq. mi.)	6200	6200	6200	6200	
unique shoreline (mi.)	х	80	80	80	
high quality (sq. mi.)	3400	3400	3400	3400	
diversity (sq. mi.)	x	1200	2300	3400	
agriculture (sq. mi.)	x	2600	2600	2600	
landscape development, quality (sq. mi.)			Part Harris		
diversity (sq. mi.)					
metro. amenities (mi.)			1-9-2		
" (sq. mi.)	x	110	110	110	

		AREA	10			AREA	11			AREA	12			13		
	Pres	1980	2000	2020	Pres	1980	2000	2020	Pres	1980	2000	2020	Pres	1980	2000	2020
	20	30	40	100	30	30	50	100	200			700			2300	3000
					100	150	240	350	290	490		1560	20	30		110
	-				9	11	13	13	40		71	57	21	30	30	15
	0 0	1	2	2	0.3	7	20	20	9		82	82	19	15	0	66
	0.3		2	3	1	4	6	10		18	30	46		27 10900	19500	66
									1500	10800	13300	5900		10900	10300	33100
					0	0	30	80		1510						
					J	Ŭ	50	00	14			52				
					0	0	19	48	4			411				
					1200	1200	2100		400			20500				
					1	1	1	2	30		60	90	60	70		170
	1	2	3	10	20	20	30	50	70				380			1400
					х	10	10	20	х	70	110	200	x	110	170	280
					х	30	40	50	х	210	310	430		210		360
	5,132				X	10 100	100	20 200	X	50 1000	80 1500	110 2300		50 700	0	80 1500
					X	2	2	3	X	17	25	40		14	18	28
					x x	3	4	5	x x	24		55		24	31	46
	0.3	0.3	0.4	1	• 2	2	2	3	2		3	3	15	17	21	25
	0.5	0.5	0.1	-		~				_			x	1.2		
					x	0	0.06	0.28								
	100				x	0.03	0.08	0.15	x	0.03	0.10	0.20	x	0.03	0.08	0.12
													х	1.7	4.6	7.9
									х	0.029	0.040	0.053				
													x	49		224
	0.1	0.1	0.1	0.1	1.1	1.2										1.6
	х	0.01		0.08		0	0.50				1.12	1.95		0.10		
	0.2	0.3	0.3	0.4	0.4	0.4	0.5	0.5	2	700	3	3	14			
	200	200	300	300	200	300	300	400	2000	2000		3000	11000	33 13000	88 16000	153
	200	200	300	300	1000			The state of						29000		
					1000	1000	2000	4000	4000	0000	14000	20000	14000	27000	3000	77000
					0.04	0.1	0.1	0.2	3.3	4.9	8.9	16.3				
					0.4	1	1	2	8			44		1	2	4
													32	49	91	176
	1	2	2	3	80	120	190	230	60	90						
	0	0	0.06	0.2	0	0	7.8	31.4	0	0	11.3	44.2				
	10	10	10	10	300	400	500	500					100	100	100	100
	20	30	40	100	100	100	100	200	500				600	600	700	700
	0	0.3	1	2	0	17	50	84	0	14	43	71	0	6	20	34
-						· v		х	х	x	x	х	x	x	x	- X
	х	х	X	х	х	х	х						^			^
					2100	2600	2600	2600	3900	3900	3900	3900				
									3,00				х	80	80	80
							1000		3400	3400	3400	3400				
					x	30	100	100	x	800	1600	2400	x	100	100	100
			1.1						х	2600		2600				
		4		1												
															-	
									Х	50	50	50	Х	60	60	60

		AREA	14		
NEEDS-cumulative	Pres.	1980	2000	2020	
Publicly Supplied Water (mgd)	10	10	30	40	
	20	20		1	
Rural Water Supply (mgd)					
Irrigation Water: agriculture (1000 afy)					
non-agriculture (1000 afy)	_ 1	1	2	3	
Power Plant Cooling: withdrawal, saline (cfs)					
brackish (cfs)					
	-	10	20	30	
	10	20	30	40	
				1 1	
	0.04	0.01	0.1	0.1	
1		0.04	0.1	0.1	
		0.08	0.24	0.43	
		0.03	0.03	0.43	
	^	0.01	0.03	0.03	
	v	0.001	0.001	0.001	
	A	0.001	0.001	0.001	
	0.03	0.03	0.04	0.05	
access (1000 sq. mi.)		0.01	0.03	0.05	
and the state of t			0.1	0.1	
		0.1	3	6	
	100	100	100	100	
	0.004	0.01	0.01	0.02	
	1	2	2	3	
		10	10	10	
(/		50	100	100	
	Х	2	7	11	
	X	X	X	X	
					1-
	Marie C.				1

			15				17			AREA			AREA				
	Pres	1980	2000	2020	Pres	1980	2000	2020	Pres	1980	2000	2020	Pres	1980	2000	2020	
	10	10	_ 10	20	100	100	100	200									
	4	10 5			20 13	40 17											
	0.4	1			3												
	3	8				5	23	15									
																THE	
	0	0	590	710	230	230	1000	2590									
	0	0	25	81	4	5	20	64									
	30		1000	2000	0	0	0										
-	10	10	20 1		The state of the s	20											
	x x	1 2	3	100	x	20 60											
	x	0.5	1		x	10											
	х	4	10	10		300											
	х	0.1				4	6										
-	0.1	0.3	0.3	0.4	x		9 2	15									
	х	0.6			0												
	0		0.24														
	х	0.04	0.11	0.19	х	0.05	0.12	0.22									
	v	0.002	0.05	0.008	v	014	0.017	0 022									
	^	7.002	0.005	0.000	X	0.014	0.017	0.022									
	0.1	0.1	0.1	0.1	1.5	1.7	2.1	2.6									
	х			0.82		0	0.31	0.79									
	0.1	0.1	0.1			1	1	2									
	100	100	100	100	1000	1000	1000	1000								-	
	100	200		1000				1000									
								3000									
	0.2	0.3	0.5			0.7											
	0.5	1	1	3	3	5	10	22			¥ . 14						
	20	30	40	50	50	70	100	100									
	0	0						14.4									
	200	300	300	400			1600										
	200	300 12	400 37	500 61	300 x	400 26	500 78	600 130									
			3,	O.L.	^	20	70	150									
	х	х	х	х	х	х	х	х									
	200	200	200	000													
	200	200	200	200					1000								
				111													
	x	300	600	800													
13)																	
				_	_		_		_			_					

	STA	TE TOTAL	L		
DEVICES - incremental	Purposes	1980	2000	2020	
I. Resource Management					
A. Water					
Storage Facilities ¢					
reservoirs, upstream (1000 af)	Rec,FW,VC*	96	73	863	
	FW, VC, Rec, WQ*	23	150	691	
Withdrawal Facilities		0.00	060	1,00	
	PS, Ind, Pow, Irrig	280	860	1420	
	Ind	170	250	360	
wells (mgd)	*	190	330	370	
Conveyance Facilities	_		270	100	
interbasin diversions, into (mgd)	*	0	270	490	
out of (mgu)	*	0	270	1020	
Quality Control Facilities					
chemical/biological	nc.	50	162	015	
potable water treat. plants (mgd)	PS	50	463	815	
waste treatment plants	NO NC	1600	0		
secondary (85%) (m. PEs removed)		47000	80000	0	
secondary (90%) (m. PEs removed)				141000	
advanced (95%) (m. PEs removed)	wQ,VC	2100	3500	7600	
Desalting Facilities B. Water/Land			 		
	EDD AC Des EM	13	93	114	
Upstream Flood Plain Mgmt.(1000 acres) Local Flood Protection	FDR, VC, DIII, FW	13	93	114	
ocean (projects)	FDR	3	2	0	
river (projects)		17.5	10.5	1.0	
flood control channels (miles)	TDR	17.5	10.5	1.0	
	FDR, VC, Drn, FW	360	770	710	
C. Land	150,40,5111,111	300	110	1 /10	
Controls					
fee simple purchase (buying)(sq.mi.)	VC . FW	660	500	500	
	VC,FW	80	0	0	
purchase lease (sq.mi.)	, , , , , , , , , , , , , , , , , , , ,				
easements (sq.mi.)	VC.FW	550	500	500	
deed restrictions (sq.mi.)		x	x	x	
tax incentive subsidy (sq.mi.)					
zoning (sq.mi.)	VC,FW	500	O.	0	
zoning (mi.)					
zoning and/or tax inc. subs.(sq.mi.)		2690	90	90	
zoning and/or tax inc. subs. (mi.)					
V. Others					
Upstream Flood Control Storage (1000 af)	FDR	44.8	5.1	3.8	
Mainstream Flood Control Storage (1000 af)	FDR	38	70	0	

 $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. ϕ Flood control storage not included.

	A	REA 10		· Astronomy	AREA 11			AREA 12	2,000		AREA 1	3
	1980	2000	2020	1480	2000	2020	1980	2000	2020	1980	2000	2020
	0	0_	44	3 0	14 3	6 30	69 10	35 110	613 371			
	0.2	0.4	0.5	50 10	80 20	100 10	200 10 3	420 10 40	660 10 30	5 160 150	310 230 210	560 340 290
				10	20	10	0	270	1020	0	270	490
	1	28	3	4	8	16	31	87	179	5	309	562
	200 0 0	0 200 10	0 300 20	1400	0 2000	0 4000	9000	15000	28000 1600	37000 2100	61000	106000
				1	14	14	11	79	100			
							11.5	0.5	0	3 0	2 1.0	0
				130	250	260	200	390	390			
				10	10	10	450	400	400	110 80	0	0 0
				10	10	10	400	400	400	50	0	0
				500	0	0						
1							2600	0	0			
1							42.0	1.5	0			
1												

			AREA 14		
DEVICES - incremental	Purposes	1980	2000	2020	
I. Resource Management					
A. Water					
Storage Facilities \$	D THE HOA				
reservoirs, upstream (1000 af)	Rec, FW, VQ*				
	FW,VC,Rec,WQ*				
Withdrawal Facilities	PS,Ind,Pow,Irrig	0.5	4	20	
		0.5	4	20	
(6-)					
wells (mgd) Conveyance Facilities					
interbasin diversions, into (mgd)	*				
out of (mgd)					
Quality Control Facilities					_
chemical/biological					
potable water treat. plants (mgd)	PS	1	7	17	
waste treatment plants					
secondary (85%) (m. PEs removed)	WQ,VC				
secondary (90%) (m. PEs removed)		100	100	100	
advanced (95%) (m. PEs removed)		10	10	10	
Desalting Facilities					
B. Water/Land					
Upstream Flood Plain Mgmt.(1000 acres)	FDR, VC, FW, Rec	0.02	0.4	0.3	
Local Flood Protection					
ocean (projects)					
river (projects)		0	2.0	0	
flood control channels (miles)	CDD VC Deep EU	4	10	10	
Watershed Management (1000 acres)	FDR,VC,Drn,FW	4	10	10	
C. Land					
Controls	NC FW				
<pre>fee simple purchase (buying)(sq.mi.) fee simple purchase (buying) (mi.)</pre>	VC,FW				
purchase lease (sq.mi.)					
easements (sq.mi.)	VC.FW				
deed restrictions (sq.mi.)	VC.FW				
tax incentive subsidy (sq.mi.)					
zoning (sq.mi.)					
zoning (mi.)					
zoning and/or tax inc. subs.(sq.mi.)					
zoning and/or tax inc. subs. (mi.)					
V. Others					_
Upstream Flood Control Storage (1000 af)	FDR				
Mainstream Flood Control Storage (1000 af)	FDR				

^{*} From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. $\boldsymbol{\varphi}$ Flood control storage not included.

	A	REA 1	5	A	AREA 17		I	AREA			AREA	
	1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
	13	18	234	11 13	6 37	11 246						
	5 3 10	10 10 10	20 10 30	20 20	40 50	60 10						
	1	3	3	9	22	36						
	200 10	500 30	1000 50	1000 50	1000 100	2000 100						
	1	0	0.3									
	5.0	7.0	0	1.0	0	1.0						
コ	6	110	0	20	20	60						
	90	90	90									
	90 x	90 x	90 x									
	90	90	90									
	2.8	3.6	0	0	0 70	3.8						

Water Development Costs: storage, upstream	ST.	ATE TOT 2000	2020	
Water Development Costs: storage, upstream		2000	2020	
storage, upstream	26			
storage, upstream	26			
		22	157	
mainstream	13	91	189	
wells	41	48	29	
desalting				
Water Withdrawal and Conveyance Costs:				
inter-basin transfers	0	380	150	
public water supply	44	171	262	
industrial self-supplied water 2	2.2	3.9	6.0	
rural water supply	x	x	х	
irrigation, agriculture 9	9.1	13.4	1.1	
non-agriculture	34	34	45	
Power Plant Cooling Water	0	140	320	
Hydroelectric Power Generation	x	х	х	
Navigation: commercial	30	98	27	
recreational boating	12	24	40	
	400	1000	1900	
Fish and Wildlife: fishing	19	31	35	
hunting	x	х	х	
nature study	x	x	х	
	000	6100	10600	
	430	720	1920	
	700	0	0	
Flood Damage Reduction: upstream	5.8	4.3	2.0	
	211	90	0	
	6.1	11.2	6.8	
	105	122	91	
Health	х	х	х	
Visual and Cultural	760	210	210	
Summation of Available Estimated Costs 98	800	9300	16000	

^{*} From the supply model and includes OMR costs.

Combined sewer overflows control and acid mine drainage control.

	AREA 1	0		AREA 1	1		AREA 1	2	AREA 13			
1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020	
			1	3	1	16	7	87				
0	0	21	0	4	24	2	69	74				
			6	9	3	17	23	3	4	6	1	
			Ů			1/	25	,	4	0	1,	
									0	200	1.50	
0.4	13	1	4	7	13	27	70	100	0	380	150	
0.4	13	1	0.2	0.4	0.5	27 1.1	70	109	5	63	112	
							2.1	3.3	0.9	1.2	1.8	
			x 1.4	3.0	x 0	x 5.6	x	х	х	х	x	
1	1	1	3	2	3	11	9.4 10	0 12	11	1/	10	
			0	10	40	0	80	180	11	14	19	
			-	x	40	x	x	x			-	
				- 1		0	80	27	30	18	0	
0.01	0.1	0.1	0.3	1	1	4	7	11	7	14	25	
			. 4	10	10	900	500	900	300	400	700	
0.1	0.2	0.3	0.5	1	1	1	1	1	17	27	31	
х	х	х	х	х	х	х	х	х	x	x	x	
х	х	x	х	х	х	х	х	х	x	х	x	
10	20	20	100	200	300	600	1100	1900	2100	4700	8100	
0	3	3				0	0	680	420	700	1210	
			40	0	0	300	0	0	3400	0		
						5.5	3.9	0				
						15	0	0	182	55	(
0.03	0.1	0.04	2.6	5.4	3.4	1.6	2.6	2.6				
2	2	2	14	13	6	32	31	21	11	23	15	
х	Х	Х	х	х	х	х	Х	Х	х	х	х	
			2	2	2	160	140	140	530	0	(
14	39	48	180	270	410	2100	2100	4200	7000	6400	10400	

	T			
FIRST COSTS - incremental		AREA]	L4	
(\$ million 1970)	1980	2000	2020	
Water Development Costs:			V	
storage, upstream				
mainstream				
wells				2-1
desalting				
Water Withdrawal and Conveyance Costs:				
inter-basin transfers				
public water supply	€.4	2	3	
industrial self-supplied water				
rural water supply				
irrigation, agriculture				
non-agriculture	0.5	1	1	
Power Plant Cooling Water				
Hydroelectric Power Generation				
Navigation: commercial				
recreational boating	1	1	1	
Water Recreation				
Fish and Wildlife: fishing	0.01	0.02	0.02	
hunting	х	x	x	
nature study	х	x	x	
Water Quality Maint.: waste treatment, secondary	10	10	10	
advanced	1	1	2	
other 🗜				
Flood Damage Reduction: upstream				
mai n stream	0	14	0	
Drainage Control	0.03	0.1	0.02	
Erosion Control	3	2	2	
Health	х	х	х	
Visual and Cultural				
Summation of Available Estimated Costs	16	31	19	

^{*} From the supply model and includes OMR costs.

Combined sewer overflows control and acid mine drainage control.

	AREA 15			AREA 17			AREA			AREA	
1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
4	9	61	5 11	3 18	8 70						
2	2	2	11	9	4						
1 0.03	2 0.1	2 0.1	6 0.1	14 0.2	22 0.3						
0.1	x 0.1	0 6	x 2.1	x 1.0	x 1.1 4						
 <u>4</u> 0	<u>4</u> 40	6 60	<u>3</u>	3 10	40						
	х	х			х						
0.02	0.3	0.5	0.2	1_	1						
2	2	3	200	100	200						
0.04	0.1	0.1	1	1	1						
х	х	x	х	x	X						
 10	30	100	100	100	200						
0.4	5	100	100	100	20						
0.3	0.4	0	0	0	2.0						
 2	4	0	12	16_	0						
 0.5	1.3	0.5	32	1.7 37	0.3 30						
 X	X X	X	X	x	x						
60	60	60	-	Α	- 4						
97	174	319	395	325	604						

NEW JERSEY

NEW JERSEY

New Jersey covers 7,836 square miles including all of Area 16, most of Area 14, a significant portion of Area 15 and a small part of Area 12. The significant drainages in the State are the eastern portion of the Delaware River drainage area and all of the smaller Passaic, Raritan and Hackensack Rivers in the north. The overall visual quality is medial, though there are sections of both high and low quality. The topography ranges from flatland and coastal plain to undulating land and rolling hills. The water is seriously degraded in many sectors and it is projected that the State will soon have to import considerable quantities to augment existing supplies.

Most of the State is densely populated, particularly in the northeast and southwest. The population was almost 7 million in 1970 and is expected to reach 13.3 million by 2020. Per capita income was 20 percent above by 2020. Employment is highest in services and related industries, which should increase by over 130 percent by the end of the Study period. Chemicals and allied products also has high employment and should have large increases by 2020. Other increases are projected in primary metals and paper and allied products, while decreases are projected for textile mill products, petroleum refining and agriculture, forestry and fisheries.

Needs to be Satisfied. Water Quality Maintenance is a key and important need in Areas 12, 15 and 16 and an important need in Area 14. Recreational boating is key, in the Delaware basin, to the fulfillment of its important Water Recreation need. Similarly, Visual and Cultural development of quality landscapes and metropolitan amenties is key to the important Water Recreation needs in the urban, industralized and densely populated Area 14. Other important needs are Publicly Supplied Water in all Areas, Fish and Wildlife, Flood Damage Reduction and recreational boating in Area 14, Industrial Self-supplied Water, commercial navigation, Fish and Wildlife and Flood Damage Reduction in Area 15 and Industrial Self-supply in Area 16. The need for Irrigation Water is largest in Area 15 (agriculture) and in Area 14 (non-agriculture). The Hydroelectric Power Generation and Power Plant Cooling needs are largest in Area 15 except for saline and brackish withdrawals which are largest in Area 16. The Fish and Wildlife needs are largest in Area 15 except for surface area stream access and nature study man-days and access in Area 14 and sport fishing man-days, salt access, and piers in Area 16. Flood Damage Reduction is largest in Area 14 except for tidal and hurricane in Area 16. The largest Drainage Control needs are for cropland in Area 15, forest land in area 16 and wet land in Area 14. Agriculture Erosion Control is largest in Area 15, urban and stream bank Erosion Control are largest in Area 14 and coastal shoreline erosion control is largest in Area 16. The Visual and Cultural needs that are largest in Area 14 are quality development and metropolitan amenties (mi.) in Area 15 they are diversity and agricultural development and metropolitan amenties (sq. mi.), and in Area 16, unique natural and unique shoreline maintenance. The remaining needs are all largest in Area 14.

Devices. The key device in the State is water quality control facilities in Area 15 which is also important in Areas 12, 14 and 15. Other important devices are storage facilities and withdrawal facilities in Areas 14 and 15, wells in Area 15, conveyance facilities in Area 14, and temperature control facilities in Area 15. The largest device levels in Area 15 are out-of-basin diversions, flood control channels, easements and zoning and/or tax incentive subsidies (sq. mi.). In Area 16 the devices which are largest are secondary (85%) waste treatment plants, desalting facilities, ocean projects, fee simple purchase (mi.) purchase lease and zoning (sq. mi. and mi.). The remaining devices are all largeest in Area 14.

Cost. The largest costs incurred in the State are in Area 14 which has the largest expenditures in all categories except for the following. Area 15 has the largest expenditures for agriculture Irrigation Water, commerical navigation, and Visual and Cultural needs and for wells. The largest costs in Area 16 are recreational boating, Fish and Wildlife, Drainage Control and Erosion Control. The large expenditures in the State as a whole are for Publicly Supplied Water (2000-2020), commercial navigation (1980-2000), and mainstream Flood Damage Reduction (1980-2000). The expenditures for Water Recreation, Water Quality Maintenance and Visual and Cultural are also very large in all time periods.

		STATE	TOTAL		
NEEDS-cumulative	Pres.	1980	2000	2020	
Publicly Supplied Water (mgd)	780	1040	1800	2860	
Industrial Self-Supplied Water (mgd)	480	840	1260	1960	
Rural Water Supply (mgd)	30	41	57	51	
Irrigation Water: agriculture (1000 afy)	52	149	162	132	
non-agriculture (1000 afy)	14	34	57	87	
Power Plant Cooling: withdrawal, saline (cfs)	5000	9500	28600	58500	
brackish (cfs)	1100	800	3700	8500	
fresh (cfs)	710	500	390	470	
consumption, brackish(cfs)	9	13	47	114	
fresh (cfs)	5	10	41	78	
Hydroelectric Power Generation (mw)	350	850	1450	2400	
Navigation: commercial (m. tons annually)	160	210	290	460	
recreational boating (1000 boats)	200	270	410	650	
Water Recreation: visitor days (m.)	х	110	170	310	
stream or river (miles)	х	220	340	460	
water surface (1000 acres)	х	58	87	123	
beach (acres)	х	640	960	1560	
pool (m. sq. ft.)	х	12	19	30	
land facilities (1000 acres)	x	33	48	75	
Fish & Wildlife: sport fishing man-days (m.)	11	13	16	20	
surface area, lake (acres)	х	0.9	5.0	10.1	
stream (acres)	х	0.22	0.97	1.92	
access, fresh (acres)	х	0.089	0.242	0.423	
salt (acres)	х	0.92	2.77	4.96	
anadromous (acres) piers (1000 feet)	х	0.008	0.015	0.022	
	Λ	26	79	141	
hunting, man-days (m.) access (1000 sq. mi.)	3.7	4.2	5.1	6.2	
nature study, man-days (m.)	8.1	0.36 9. 3	1.14	1.88 13.9	
access(1000 ac.)					
Water Quality Maint:: non-industrial (m. PEs)	X 7000	39	104	180	
industrial (m. PEs)	7000 14000	7700	9400	11500	
Flood Damage Reduction:	14000	32000	69000	143000	
avg. ann. damage, upstream (m. \$)	2.1	3.1	5.4	0.0	
mainstream (m. \$)	19	29	55	9.9	
tidal and hurricane (m. \$)	7	11	21	41	
Drainage Control: cropland (1000 acres)	64	84	135	148	
forest land (1000 acres)	0	0	9.7	40.2	
wet land (1000 acres)	x	x	7.7	40.2	
Erosion Control: agriculture (1000 acres)	520	660	760	770	
urban (1000 acres)	940	1300	1730	2130	
stream bank (mi.)	0	59	177	295	
coastal shoreline (mi.)	0	110	240	270	
Health: vector control and pollution control	X	x	X	x	
Visual & Cultural:					
landscape maintenance, unique natural(sq. mi.)	х	300	300	300	
unique shoreline (mi.)	x	38	38	38	
high quality (sq. mi.)					
diversity (sq. mi.)	x	280	560	850	
agriculture (sq. mi.)	x	200	200	200	
landscape development, quality (sq. mi.)	x	230	460	690	1
diversity (sq. mi.)					
metro. amenities (mi.)	x	2	2	2	
" " (sq. mi.)	x	170	170	170	

		12				14			AREA				AREA		
Pres	1980	2000	2020	Pres	1980	2000	2020	Pres	1980	2000	2020	Pres	1980	2000	2020
30	50	80	120	500	660	1210	1980	160	200	280	410	90		230	
 				280								10	10	30	40
 	-	-	-	15				12				3	4	5	6
0.2	1	1	,	4	16		1 -	34	94			14	45	45	45
			-	5000			10100	0			$\frac{27}{12100}$		2700	13700	36400
				0	0	0	a management							3300	
				0	0	10	60	710	500	370					
				0	1	0		6		1		3	3	33	69
 				0		7	33	5							
 	-			130				340				-			
1	2	4	10			CONTRACT.		30 60				0.3		(40)	
	-		10	x	30	130		x	3			20 x	30 20	50 40	70 70
				x	170			x	10				40	60	90
				х	48		1	х	2	3		x	8	13	19
				х	490	730	1170	х	20			х	120		
				х	10	14		х	0.4	1	1	х	2	4	7
 0 /	0.1	0.5		X	27	39	61	х	1	2	3	х	4	7	11
0.4	0.4	0.5	1	2	2	3	3	2	2	3	3	7	8	10	13
				x	-		2.0		0.8		6.7 0.75		0.1	0.7	1.4
x	0.001	0.007	0.013				0.128				0.73		0.008	0.024	0.043
			.013	^	0.025	0.071	0.120	x			0.26			2.63	
х	0.002	0.003	0.004	х	0.001	0.002	0.003				0.011		0.002		
								х	2	4	7	x	25	75	134
0.2								1.5	1.7	2.1	2.6	0.6	0.7	0.9	1.1
	0.004						0.70				0.86		0	0.20	0.30
0.4	0.4	0.5	0.6	4.4				1.8				1.6	1.9	2.3	2.9
 300	300	400	500	4000	4900	62	7200	1200	1600		2500	1500	8	21	36
300	300	400	500			52000	105000	2000	5000	2000	30000	1000	1000	1000	1300
				- 000.	-0000	22000	105000	2000	3000	13000	30000	1000	1000	4000	8000
				1.0	1.6	2.9	5.4	1.0	1.4	2.3	4.2	0.1	0.1	0.2	0.3
				19	29	55	105								• 1
 								2	3	7	14	5	7	14	28
2	3	5	6	18	24	38	41	25	32	52	58	19	25	40	43
0	0	0.4	1.4					0	0	1.4	5.8	0	0	8.0	33.0
 50	60	70	70	120	140	160	160	270	370	440	1.50	90	90	00	000
20	20	20	30	460	710	920	1090	240	330	460	450 590	80 220	80 250	90 320	90 420
0	1	2	3	0	35	104	174	0	16	47	78	0	8	24	420
								0	20	40	40	0	90	200	230
х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
												x	300	300	300
								x	8	8	8	х	30	30	30
					30	60	90		250	500	760				
				х	30	00	90	x	250 200	500 200	760 200				
				x	130	260	390	^	200	200	200	x	100	200	300
												^	100	200	300
				х	2	2	2								
				х	60	60	60	_ x	90	90	. 90	x	20	20	_20

	STAT	E TOTA	L		
DEVICES - incremental	Purposes	1980	2000	2020	
I. Resource Management					
A. Water					
Storage Facilities ϕ					
	Rec, FW, VC*	163	21	273	
	FW, VC, Rec, WQ*	0	108	15	
Withdrawal Facilities					
	PS, Ind, Pow, Irrig	300	530	1410	
brackish (mgd)		530	820	1190	
wells (mgd)	*	28	139	133	
Conveyance Facilities			222		
interbasin diversions, into (mgd)	*	35	300	530	
out of (mgd)	×	35	300	0	
Quality Control Facilities					
chemical/biological		5.0	101	005	
potable water treat. plants (mgd)	PS	50	421	925	
waste treatment plants		1000			
secondary (85%) (m. PEs removed)		1900	0	0	los el la
secondary (90%) (m. PEs removed)		34000	70000	139000	
advanced (95%) (m. PEs removed)	WQ,VC	2100	3900	7700	
Desalting Facilities	*	0	0	6.0	
B. Water/Land					
Upstream Flood Plain Mgmt.(1000 acres)	FDR, VC, Drn, FW	11	12	17	
Local Flood Protection					
ocean (projects)		4	0	0	
river (projects)		15.5	23.0	1.0	
flood control channels (miles)		1.0	28.7	0	
Watershed Management (1000 acres)	FDR, VC, Drn	57	310	109	
C. Land					
Controls	NO THE	110	000	000	
fee simple purchase (buying)(sq.mi.)	VC,FW	440	230	230	
fee simple purchase (buying) (mi.)		25	0	0	
purchase lease (sq.mi.)	VC, FW	220	100	100	
easements (sq.mi.)		149	99	99	10 15 1
deed restrictions (sq.mi.)		X	X	Х	
tax incentive subsidy (sq.mi.)	NO TH	150	0		
zoning (sq.mi.)	VC,FW	150	0	0	
zoning (mi.)	VC,FW	15	0	0	
zoning and/or tax inc. subs.(sq.mi.)	VC, FW	224	84	84	
zoning and/or tax inc. subs. (mi.)					
V. Others					
Upstream Flood Control Storage (1000 af)		13	91	9	
Mainstream Flood Control Storage (1000 af)	FDR	47	314	0	

 $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. ϕ Flood control storage not included.

	A	REA 12	2	A	REA 14	4	A	AREA 15	5	A	AREA 16	5
	1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
				138	0.4	0	15	21	273	10	0	0
-				0	108	0				0	0	15
	3	10	10	140	190	780	150	320	610	20	20	10
	0.2	3	2	370 9	520 119	740 16	150 20	270 17	430 79	20 0	20 0	20 36
				35	300	530	2.5					
-							35	300	0			
	6	16	33	27	356	843	17	49	49			
										1900	0	0
	300 0	400 0	500 30	28000 1500	52000 2900	101000 5600	6000 500	13000 700	29000 1600	0	4000 200	9000 500
	0	0	30	1300	2900	3000	300	700	1000	0	0	6.0
				6	12	16	4	0	1	1	0	0
										4	0	0
				13.5	13.0	1.0	2.0 1.0	10.0 28.7	0			
				48	148	109	9	162	0			
				24.0		1.50	0.0	0.0	2.2	150		
				210	150 0	150 0	80 8	80 0	80 ₀	150 15	0	0
				15	15	15	100 134	0 84	0 84	120	100	100
							х	х	х			
										150	0	0
							224	84	84	15	0	0
-				10	10	0		F.1				
				12	40 256	9	1 47	51 58	0			

FIRST COSTS - incremental	S	TATE TO	ΓAL	
(\$ million 1970)	1980	2000	2020	
Water Development Costs:				
storage, upstream	36	11	72	
mainstream	0	54	11	
wells	11.2	13.6	8.7	
desalting	0	0	13	
Water Withdrawal and Conveyance Costs:				
inter-basin transfers	10	89	417	
public water supply	38	133	210	
industrial self-supplied water	4.4	6.2	9.8	
rural water supply	х	x	x	
irrigation, agriculture	11.5	4.7	0	
non-agriculture	16	18	22	
Power Plant Cooling Water	0	24	50	
Hydroelectric Power Generation	х	х	х	
Navigation: commercial	249	230	5	
recreational boating	15	26	32	
Water Recreation	440	380	640	
Fish and Wildlife: fishing	4.8	8.9	10.6	
hunting	х	x	x	
nature study	х	x	x	
Water Quality Maint.: waste treatment, secondary	2600	5400	11000	
advanced	360	810	1590	
other ≠	930	0	0	
Flood Damage Reduction: upstream	5.3	14.9	0.8	
mainstream	280	410	0	
Drainage Control	1.6	4.4	2.2	
Erosion Control	165	186	88	
Health	х	х	х	
Visual and Cultural	580	180	180	
Summation of Available Estimated Costs	5800	8000	14400	

^{*} From the supply model and includes OMR costs.

Combined sewer overflows control and acid mine drainage control.

	AREA	12		AREA :	14		AREA]	.5		AREA 1	6
1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
			31	0.2	o.	4	11	72	1	0	
		Á	d	54	of			-	0	0	1
1.0	1.3	0.1	4.6	7.6	1.2	5.6	4.7	5.7	0	0	1.
									0	0	1
		1	10	89	417			The state of the s			
5	13	20	17	86	143	16	34	46	0.1	0.1	
		i i	2.6	2.8	4.0	1.5	3.1	5.6	0.2	0.3	0.
		1	x	х	x	x	x	X	x	x	2
		9	0.3	O	O.	7.4	4.7	0	3.8	0	
0.4	0.3	0.4	7	9	11	5	5	7	3	3	
		Í	0	6	7.	0	17	403	0	2	
		į.	х		x ;	х	x	x			
		į,	99	0	O	140	220	Oğ	10	10	
0.1	0.1	0.2	8	9	13	1	2	3	6	14	1
		è	430	360	610	10	10	20	2	10]
0.1	0.2	0.3	0.5	1.0	1.1	0.8	1.2	1.4	3.4	6.6	7
X	X	X	X	х	х	х	x	X d	x	х	
X	X	X	X	X	X	X	X	X I	х	x	
20	30	30;	2200	3900	7700	200	1000	2200	200	500	100
0	0	10	350	610	1210	10	150	280	0	50	(
			910	0	0,				30	0	
		5	4.0	7.9	0.8	1.3	7.0	0,			
A 1	0 1	0.1	120	410	0				160	0	
0.1	0.1	0.1	0.4	1.1	0.3	0.6	1.6	0.6	0.5	1.5	1.
1	1	14.	41	36	28:	44	49	20	79	100	3
Х	X	X	X 120	X 701	X i	X 220	X	X (X	X	
		 j	130	70	70	230	60	60	220	50	
28	46	62	4400	5700	10200	680	1580	2760	720	750	125

PENNSYLVANIA

Pennsylvania covers 28,994 square miles in the NAR including approximately half of Area 15, most of Area 17 and small portions of Areas 18 and 19. The major drainages are the Susquehanna river and the western portion of the Delaware River drainage. The predominant land form is rolling hills, and the visual quality is medial. Water quality is poor, in some upstream sections, due to acid mine drainage and municipal and industrial pollution, but it is generally good throughout the State.

The eastern portion of Pennsylvania is urban with heavy population concentrations east of Harrisburg. The 1970 population was almost 7.7 million and is projected to surpass 11.3 million by 2020. Per capita income was 2 percent above the national average in 1970 and is expected to decrease slightly to just over 1 percent above that average by 2020. Employment was largest in services and related industries and employment in that category and in paper and allied products and chemicals and allied products is projected to increase significantly by 2020. Decreases are expected for agriculture, forestry and fisheries (over 50 percent), petroleum (over 50 percent), textile mill products (over 50 percent) and in food and kindred products.

Needs to be Satisfied. The key needs in the State are Water Quality Maintenance in all Areas, recreational boating in Area 15 and Visual and Cultural in Areas 18 and 19. The important needs are Publicly Supplied Water in Areas 15, 17, and 19, and Water Quality Maintenance in all Areas. Other important needs in Area 15 are Industrial Self-supplied Water, commercial navigation, Water Recreation, Fish and Wildlife, and Flood Damage Reduction. There are important needs for Industrial Self-supplied Water and Water Recreation in Area 17, and for Erosion Control and Visual and Cultural in Area 19. The needs are the largest in Areas 15 for Publicly Supplied Water, Industrial Self-supplied Water, Navigation, and Water Quality Maintenance. The needs are largest in Area 17 for Rural Water Supply, Hydroelectric Power Generation, Drainage Control and Erosion Control. The Irrigation Water needs are largest in Area 17 for agriculture and Area 15 for non-agriculture. The Power Plant Cooling and Water Recreation needs are largest in Area 17 except for brackish withdrawal and consumption, visitor days and land facilities, which are largest in Area 15. The needs for Fish and Wildlife and Visual and Cultural are largest in Area 15 except for anadromous access, hunting man-days, unique natural landscape maintenance and diversity landscape development which are largest in Area 17. Mainstream Flood Damage Reduction is largest in Area 15 but upstream Flood Damage Reduction is largest in Area 17. The needs in Areas 18 and 19 are either relatively small or non-existant.

Devices. Water quality maintenance facilities are key devices in Area 15 and important devices in all Areas. Also important are storage facilities, withdrawal facilities and temperature control facilities in Areas 15 and 17 and wells in Area 15. All of the devices are largest in Area 15 with the following exceptions: mainstream reservoir storage, wells, watershed management, fee simple purchase (sq. mi.) and river projects and storage reservoirs for Flood Damage Reduction. These are largest in Area 17. Secondary (85%) waste treatment plants is largest in Area 18.

Costs. The largest total investments for Areas are in Area 17 (1980) and Area 15 (2000 and 2020). Most of the individual need costs are largest in Area 15. The remaining costs are largest in Area 17 and include mainstream storage, wells, agricultural Irrigation, Power Plant Cooling Water, Recreation, Flood Damage Reduction, Drainage Control and Erosion Control. The significantly large expenditures are for mainstream storage (2020), Industrial Self-supplied Water (2000-2020), Power Plant Cooling (2000-2020) commercial navigation (1980-2000), and advanced waste treatment (2000-2020). The needs for Water Recreation, secondary waste treatment and Visual and Cultural are also significantly large in all time periods.

		STATE	TOTAL		
NEEDS-cumulative	Pres.	1980	2000	2020	
Publicly Supplied Water (mgd)	870	1120	1620	2430	
Industrial Self-Supplied Water (mgd)	1200	2200	4500	8300	
Rural Water Supply (mgd)	86	123	164	154	
Irrigation Water: agriculture (1000 afy)	13	78	100	115	
non-agriculture (1000 afy)	14	42	73	115	
Power Plant Cooling: withdrawal, saline (cfs) brackish (cfs)	2600	2500	5100	10000	
fresh (cfs)	0000	3500	5100	10800	
consumption, brackish(cfs)	1300	5200	7900	9700	
fresh (cfs)	25 47	10 252	19 458	47 753	
Hydroelectric Power Generation (mw)	1200	3300	13300	32800	
Navigation: commercial (m. tons annually)	73	106	147	237	
recreational boating (1000 boats)	120	150	220	360	
Water Recreation: visitor days (m.)	х	180	280	480	
stream or river (miles)	x	640	930	1260	
water surface (1000 acres)	х	150	220	310	
beach (acres)	х	1700	2500	3900	
pool (m. sq. ft.)	х	32	46	71	
land facilities (1000 acres)	х	92	121	184	
Fish & Wildlife: sport fishing man-days (m.)	. 13	16	20	25	
surface area, lake (acres)	Х	2.7	10.6	25.9	7 7 1 1
stream (acres) access, fresh (acres)	х	0.28	0.78	1.50	
access, fresh (acres) salt (acres)	х	0.27	0.68	1.18	
anadromous (acres)		0.052	0.072	0.000	
piers (1000 feet)	х	0.053	0.073	0.096	
hunting, man-days (m.)	11	13	16	20	M 1 1 1 1 1
access (1000 sq. mi.)	x	0.41	2.42	5.01	
nature study, man-days (m.)	10	12	15	19	
access(1000 ac.)	x	18	49	87	
Water Quality Maint.: non-industrial (m. PEs)	7300	9100	11500	14400	
industrial (m. PEs)	11000	38000	71000	163000	
Flood Damage Reduction:					
avg. ann. damage, upstream (m. \$)	6.0	9.0	16.8	33.8	
mainstream (m. \$)	17	26	52	108	
tidal and hurricane (m. \$)					
Drainage Control: cropland (1000 acres) forest land (1000 acres)	240	330	470	480	
wet land (1000 acres)	0	2.7	17.4	62.8	
Erosion Control: agriculture (1000 acres)	4200	5600	6700	6900	
urban (1000 acres)	1600	2000	2700	6800 3600	
stream bank (mi.)	0	130	400	660	
coastal shoreline (mi.)	U	130	400	000	
Health: vector control and pollution control	х	x	x	х	
Visual & Cultural:					
landscape maintenance, unique natural(sq. mi.)	1000	1000	1000	1000	
unique shoreline (mi.)					
high quality (sq. mi.)					
diversity (sq. mi.)	х	950	1900	2860	
agriculture (sq. mi.)	х	1100	1100	1100	
landscape development, quality (sq. mi.)					
diversity (sq. mi.) metro. amenities (mi.)	X	180	180	180	
metro. amenities (mi.) ""(sq. mi.)		1/0	1/0	1/0	
(Sq. mr.)	Х	140	140	140	

I	AREA	15			AREA	17			AREA	18			AREA	19	
Pres	1980	2000	2020	Pres	1980	2000	2020	Pres	1980	2000	2020	Pres	1980	2000	2020
580								3	4	10	10	20	30	50	70
 800												40	100	100	200
 31	48			49		79						6	10	15	15
4	10			8	60							2	8	11	10
 	21	38	61	- 5	18	31	48	0	0.1	0.2	0.3		2	4	6
2800	2200	4400	9600									900	1200	700	1200
1800					3200	5000	7500					800	1300	700	1200
25		100.00		2500	3200	3900	1 /300								
22	88			25	164	269	404								
40							29400								
73	106														
70	90	130	210	50	60	100	150								
х	110	170	280	х	60	100	180					x	10	10	20
х	270	1			330							х	40	40	80
х	70				70							х	10	10	20
х	700			х	1000							х	100	100	100
х	13	AUTO		х	18							х	1	1	2
 ×	45		-	X	43	65						X	4	6	9
/	, 8	10		6		9	12	0.1	0.1	0.1	0.1				1
х	1.2		10.9		U	2.1	11.6					х	1.4		
x	0 00	200 200 200	1.22		0 16	0 /2	0.14		1			х		0.28	
х	0.09	0.23	0.39	х	0.16	0.42	0.14					х	0.02	0.04	0.03
v	0.005	0 011	0 018		0.046	0 058	0.073					x	0.003	0.004	0.005
^	0.003	0.011	0.010	^	0.040	0.000	0.073					^	0.002	0.004	0.005
5	6	8	10	6	6	8	10	0.02	0.02	0.02	0.03	0.2	0.2	0.3	0.4
x	0.38	1.15	1.95		d	1.08	2.77			0.01			0.02		
6	8	10	12	3	4	5	6			0.04				0.4	0.6
x	15	39	70	x	1	4		x	0.1	0.3	1	x	2	5	
	5800		9200				4800	20	30	30	40	100	200	300	400
 9000	25000	65000	151000	1000	3000	6000	11000					100	200	400	900
2.0				4.0			25.4								
9	14	28	57	8	12	24	51					0.1	0.1	0.3	1
 	70	100	100	170	2/0		226				- 10	10			
60	70 0		130 12.8				330 47.5	3	5		0.5			20 0.6	20
0	9	3.1	12.0	U	2.1	13.7	47.5	q	O	0.4	0.3	9	q	0.0	2.1
 600	800	1000	1000	3400	4400	5300	5400	4	10	10	10	300	400	400	500
500	700	1000		1000 1000 000		1500		4	10	10	20	100	100	100	200
0	30	100		0		260		o	0.2	0.6	1	0	10	30	50
						200		J	0.2	0.0	Ī		- 7	39	30
х	х	х	х	х	х	х	х	х	х	х	х	х	х	x	x
				1000	1000	1000	1000								
												465			
x	550	1100		х	300	600						х	100	200	300
х	600	600	600	х	300	300	300					х	200	200	200
					180	180	180		100	100	100				
				х	100	100	100	х	180	180	180				
×	90	90	90	x	50	50	50								
-															

	STAT	TE TOTAL	L		
DEVICES - incremental	Purposes	1980	2000	2020	
I. Resource Management					
A. Water					
Storage Facilities ϕ					
	Rec, FW, VC*	59	45	279	100
	FW, VC, Rec, WQ*	84	137	484	
Withdrawal Facilities					
intakes & pumping, fresh (mgd)		880	1860	3430	
brackish (mgd)	Ind	610	1130	1790	
wells (mgd)	*	94	195	115	
Conveyance Facilities		0.7			
interbasin diversions, into (mgd)	*	37	0	0	
out of (mgd)					
Quality Control Facilities					
chemical/biological	D.C.	110	200	0.50	
potable water treat. plants (mgd)	PS	110	280	350	
waste treatment plants	HO HO D	0.4			
secondary (85%) (m. PEs removed)		24	75000	160000	
secondary (90%) (m. PEs removed)		34000	75000		
advanced (95%) (m. PEs removed)	WQ,VC	1700	4200	8900	
Desalting Facilities B. Water/Land			-	-	
	EDD AC EM	6.3	1.0	2.7	
Upstream Flood Plain Mgmt.(1000 acres) Local Flood Protection	FDR, VC, FW	0.3	1.0	2.1	
ocean (projects)					
river (projects)	FDR	13	7	7	
flood control channels (miles)	TDR	13	1	1	
Watershed Management (1000 acres)	FDR, VC, Drn	85	365	287	
C. Land	IDR, VC, DIII	0.5	303	207	
Controls					
fee simple purchase (buying)(sq.mi.)	VC FW	820	330	330	
fee simple purchase (buying) (mi.)	,0,11	020	330	330	
purchase lease (sq.mi.)	VC,FW	500	0	0	
easements (sq.mi.)	VC,FW	570	430	430	
deed restrictions (sq.mi.)		x	x	x	
tax incentive subsidy (sq.mi.)	,	^	^	_ ^	
zoning (sq.mi.)					
zoning (mi.)					
zoning and/or tax inc. subs.(sq.mi.)	VC,FW	420	180	180	
zoning and/or tax inc. subs. (mi.)					
V. Others					
Upstream Flood Control Storage	FDR	13	35	51	
Mainstream Flood Control Storage	FDR	61	0	0	
		01			

 $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. φ Flood control storage not included.

A	AREA 15		I	AREA 17		I	AREA 18			AREA 19	
1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
13 4	18 19	234 173	45 79	27 111	45 260				0	8	51
600 610	1300 1130	2530 1790	250	500	820				40 2	60	80
37	19	87	67	175	24				5	1	3
60	180	180	40	80	140	0	0.1	1	10	20	30
28000 1400	66000 3700	145000 8000	5000 300	8000 500	14000 800	24 0 0	0 30 0	0 40 2	300 20	1000 40	1000 100
6.3	0	1.7	0	1.0	1.0						
6	4	0	7	3	7						
13	245	0	72	60	287						
180	180	180	630	150	150				10	0	0
300 330 x	0 180 x	0 180 x	150	150	150				200 90	0 100	0 100
420	180	180									
0	29	0	13 61	6	51 0						

FIRST COSTS - incremental	S	TATE TO	ΤΔΤ	
(\$ million 1970)	1980	2000	2020	
Water Paralament Caster	1980	2000	2020	
Water Development Costs:				
storage, upstream	26	21	97	
mainstream wells	25	55	207	
	43	37	20	
desalting				
Water Withdrawal and Conveyance Costs:				
inter-basin transfers	9.7	0	0	
public water supply	87	192	271	
industrial self-supplied water	7.8	15.6	27.5	
rural water supply	х	x	x	
irrigation, agriculture	8.7	4.6	3.5	
non-agriculture	24	23	30	
Power Plant Cooling Water	0	150	340	
Hydroelectric Power Generation	x	x	x	
Navigation: commercial	200	230	0	
recreational boating	1.4	4.6	6.7	
Water Recreation	1190	880	1560	
Fish and Wildlife: fishing	6.4	8.7	10.6	
hunting	x	x	x	
nature study	х	x	x	
Water Quality Maint.: waste treatment, secondary	1300	5900	12600	
advanced	84	846	1540	
other 🗲	3.4	0	0	
Flood Damage Reduction: upstream	5.7	12.7	27.2	
mainstream	60	0	0	
Drainage Control	6.1	10.0	2.5	
Erosion Control	140	170	140	
Health	X	x	x	
Visual and Cultural	690	220	220	
Summation of Available Estimated Costs	3900	8800	17100	

^{*} From the supply model and includes OMR costs.

Combined sewer overflows control and acid mine drainage control.

7		ĀREA I	15		AREA 1	.7		AREA 1	8		AREA 1	9
	1980	2000	2020	1980	2000	2020	1980	2000	2020 1	1980	2000	2020
TANK TO BE STORY OF THE STORY O	4 3 6	9 16 5	61 107 6	22 22 36	12 31 31	35 82 13			HARVES TO A COMMENT OF MARKET	0 1	7 1	17 1
	9.7 57 6.3 x 0.8	0 126 12.7 x 0.5	0 169 22.9 X	25 1.3 x 6.8	56 2.6 x 3.3	87 4.2 x 3.5	0.04	0.1	0.2	5 0.2 x 1.1	11 0.3 x 0.8	-15 0.4 x
-	11 0	12 60	16	11 0	10 90	220	0.1	0.1	0.1	1		2
	х	х	x j	х	Х	Х)			
	200	230 2.1	3.8	0.7	2.5	2.9						
_	270	350	530	900	500	990				20	30	40
	3.0 x x	4.4 x x	5.3 x	2.8 x x	3.8 x x	4.7 x	0.05 x x	0.04 x x	0.04 x x	0.5 x x	0.5 x x	0.6 x
	700 21 3.4	4900 742 0	11000 1365 0	600 59	900	1500 162	3 0	3 0	0.4	40	100	100 13
	0 19	11.0	0	5.7 41	1.7	27.2			- Print			
	1.3	3.6	1.4	4.4	5.8	1.1	0.1	0.1	0.01;		0.6	0.1
	30	40	40	100	120	90 (1	1	1 8	10	10	10
-	x 320	130	130 v	x 270	x 70	70	Х	Х	X	x 110	x 20	X
	1700	6700	13600	2100	1900	3300	4.3	4.3	5.8		190	220

MARYLAND

Maryland covers 10,158 square miles including most of Area 18, part of Area 19 and a very small portion of Areas 15 and 17. The major drainages flow into chesapeake Bay or form part of the northern Potomac River drainage. The topography ranges from beach and flatland to heavily forested mountains, but in general is of low relief. Water supplies are polluted around population centers and supplies must be imported to augment the insufficient supplies around those population centers.

Maryland has heavy population concentrations in the center of the State. The 1970 population totalled over 3.7 million and is expected to top 7.4 million by 2020. Per capita income was 7 percent above the national average in 1970 but is projected to decline to 4 percent above by 2020. Employment in 1970 as highest for services and related industries, which is expected to increase by 150 percent by 2020. Increases are also expected for paper and allied products, chemicals and allied products, and primary metals, while decreases are projected for food and kindred products and agriculture, forestry and fisheries.

Needs to be Satisfied. The key needs in Maryland are for Water Quality Maintenance in Areas 17, 18 and 19 and for Visual and Cultural in Areas 18 and 19. The important needs are Publicly Supplied Water in Areas 17 and 19, Water Quality Maintenance in Areas 17, 18 and 19, Erosion Control in Areas 19 and Visual and Cultural in Areas 18 and 19. The needs in Area 18 are the largest with a few exceptions. These exceptions are the entire needs for Hydroelectric Power Generation, and Water Recreation and the needs for fresh withdrawal and consumption for Power Plant Cooling, surface area, access, piers and hunting man-days for Fish and Wildlife, mainstream Flood Damage Reduction, agricultural and stream bank erosion control and agricultural landscape maintenance and diversity landscape development for Visual and Cultural. All of the above needs are largest in Area 19 except for diversity landscape development which is largest in Area 17.

<u>Devices</u>. There are no key devices in the State. Quality control facilities is important in Areas 17, 18, and 19. Other important devices are storage facilities, withdrawal facilities, and temperature control facilities in Area 17, and land controls in Area 18. The largest device levels are in Area 18 except for out of basin diversions in Area 17 and mainstream storage, potable water treatment plants, secondary (90%) and advance waster treatment plants, watershed management and flood control storage in Area 19.

Costs. The largest total cost for an Area and most of the largest expenditures for needs are in Area 18. Area 19 has the largest costs for mainstream storage, publicly Supplied Water, Power Plant Cooling, Water Recreation, advanced waste treatment, and Flood Damage Reduction. The significantly large expenditures in the State will be for desalting (2000) inter-basin transfers (2020), Water Recreation (1980-2020), advanced waste treatment (2020) and Visual and Cultural (1980).

NEEDS-cumulative	1200
Industrial Self-Supplied Water (mgd) 240 460 880	1200
Industrial Self-Supplied Water (mgd) 240 460 880	
	1510
114	121
Irrigation Water: agriculture (1000 afy) 8 36 55	53
non-agriculture (1000 afy) 4.3 12.2 22.0	35.3
Power Plant Cooling: withdrawal, saline (cfs) 200 200 12300	32700
brackish (cfs) 2600 6800 10900	10300
fresh (cfs) 400 380 990	1030
consumption, brackish(cfs) 42 96 112	119
fresh (cfs) 4 9 46	90
Hydroelectric Power Generation (mw) 440 480 980	2000
Navigation: commercial (m. tons annually) 55 70 115	186
recreational boating (1000 boats) 140 170 290	400
Water Recreation: visitor days (m.) $_{\rm X}$ 26 44	79
stream or river (miles) $_{\rm X}$ 200 270	440
water surface (1000 acres) x 38 58	90
beach (acres) x 300 460	720
pool (m. sq. ft.) x 5.2 8.0	12.5
land facilities (1000 acres) x 22 34	52
Fish & Wildlife: sport fishing man-days (m.) 8.5 10.0 13.0	16.6
surface area, lake (acres) x 38 56	81
stream (acres) $_{\rm X}$ 3.9 4.6	4.6
access, fresh (acres) \times 0.47 0.78	1.15
salt (acres) x 0.46 1.38	2.50
anadromous (acres) x 0.040 0.061 piers (1000 feet) x 13 39	0.089
(-)	71
(1000	5.8
9.7, 1	2.19
(1000	8.6
	65.3
/ == \ 1200 1200 3300	7100
industrial (m. PEs) 1100 2700 6600 Flood Damage Reduction:	14200
, , , , , , , , , , , , , , , , , , , ,	27 7
, 1	27.7
mainstream (m. \$) 4.1 7.8 16.6 tidal and hurricane (m. \$) 4.0 6.7 12.9	36.4
Drainage Control: cropland (1000 acres) 260 380 510	510
forest land (1000 acres) 0 0.04 10	41
wet land (1000 acres)	41
Erosion Control: agriculture (1000 acres) 980 1460 1840	1910
urban (1000 acres) 440 830 1180	
stream bank (mi.) 0 39 118	197
coastal shoreline (mi.) 0 38 78	
Health: vector control and pollution control x x x	X
Visual & Cultural:	
landscape maintenance, unique natural(sq. mi.) x 140 140	140
unique shoreline (mi.) x 260 260	260
high quality (sq. mi.)	
diversity (sq. mi.) $_{\rm X}$ 300 600	900
agriculture (sq. mi.) x 200 200	200
landscape development, quality (sq. mi.) x 200 400	600
diversity (sq. mi.) \times 120 120	120
metro. amenities (mi.)	
" (sq. mi.) x 85 85	85

		AREA	15			AREA	17			AREA	18			AREA	19	
	Pres	1980	2000	2020	Pres						2000		Pres	1980	2000	2020
					10	10	10	20					130			
									150	300		1070	90			
									29	27			19		46	
					0.1	0.2	0.4	0.6	3.3		42 16.2	42	0.9	1		
					0.1	0.2	0.4	0.0	200		10300		x	0.2		
									2600		10900		^		2000	3000
									0	0			400	380	930	940
	6	10	10	16					29	80	97	93	7	6	_	10
									0	0	26	45	4	9	20	45
					440	480	480		1	0		0	0		500	1000
					0.1	0.1	0.1	0.2	53	68		180	2			6
					10	10	10	20		110		260	50			
									Х	11 90		31 190	Х	16		48 250
									X X	18			X X	110 20		52
									x	140		330	X	160		
1								7.72	x	2.4		5.6	x	2.8		
									х	10		23	х	11	19	29
					0.2	0.2	0.2	0.3	5.7	6.4			2.6	3.3	4.8	
					х	0	0.1	1	X	18			Х	20		
						0 01	0.00	0.01	Х	0			Х	3.9	3.9	
					Х	0.01	0.02	0.04	Х	0.18			Х	0.28		
					v	002	0.003	0.003	X X	0.17	0.31		X X	0.29	0.87 0.050	
					^	0.002	3.003	0.003	X	5		26	X	8	,	
		100			0.1	0.2	0.2	0.3	1.6	1.9		2.5	1.4	1		
					х	0	Tarr Sarrari		x	0.68			х	0.05		
					0.1	0.1	0.1	0.2	2.6	3.0		4.5	1.6			
									x	6.5			Х		11.4	
					100	100	100	100	2000	2600			700		2200	
									700	1500	3400	7500	500	1300	3200	6700
					0.03	0.05	0.1	0.2	0 0	11 0	15 0	22 0	0.0	1 -	2 0	
					0.03	0.03	0.1	0.2	0.7	1.2	15.9	4.4	0.9		2.8	
									4.0	6.7	1		3.4	0.0	14.4	32.0
					2	3	4	4	230	340		460	30	40	50	50
						0.04		0.6				0.242000				
					40	70	100	100	280	530	730	760	660	860	1010	
					10	60	80	130		580			120		290	410
					0	1	3	5	0	14	41	68	0		74	124
	.,								0	33		71	0	5	9	10
	Х	Х	Х	X	X	X	X	Х	Х	X	Х	Х	Х	Х	Х	X
									x	140	140	140				
				RE!					x	220		220	х	50	50	50
									х	200	400	600	х	100	200	300
													х	200	200	200
									х	200	400	600				
					х	120	120	120								
		- C 1				20	20	20		25	25	2.5		20	20	20
					_ X	30	30	30	X	35	35	35	X	20	20	20

	STAT	E TOTAL	L		
DEVICES - incremental	Purposes	1980	2000	2020	
I. Resource Management					
A. Water					
Storage Facilities φ					
	Rec, FW, VC*	33	266	3	
	FW,VC,Rec,WQ*	26	43	72	
Withdrawal Facilities	DC Tal Day Tania	220	1.20	620	
	PS, Ind, Pow, Irrig	220 880	430 1810	620 2770	
brackish (mgd) wells (mgd)	*	56	114	28	
Conveyance Facilities (mgd)	<u> </u>	30	114	20	
interbasin diversions, into (mgd)	*	162	38	530	
out of (mgd)		199	38	530	
Quality Control Facilities			1	333	
chemical/biological					
potable water treat. plants (mgd)	PS	47	133	257	
waste treatment plants					
secondary (85%) (m. PEs removed)	WQ,VC,Rec	3400	0	0	
secondary (90%) (m. PEs removed)	WQ,VC	2600	10900	19200	
advanced (95%) (m. PEs removed)	WQ,VC	150	280	1070	
Desalting Facilities	*	0	113	86	
B. Water/Land					
Upstream Flood Plain Mgmt.(1000 acres)	FDR, VC, Rec	425	688	27	
Local Flood Protection		,			
ocean (projects)		1	0	0	
river (projects) flood control channels (miles)		24	23	0	
	FDR,VC,Drn,Rec	730 859	270 481	17	
Watershed Management (1000 acres) C. Land	rbk, vc, brit, kec	033	401	11	
Controls					
fee simple purchase (buying)(sq.mi.)	VC Rec FW	350	100	100	
	VC, Rec, FW	150	0	0	
	VC, Rec, FW	440	200	200	
	VC, Rec, FW	190	200	200	
deed restrictions (sq.mi.)		х	х	x	
tax incentive subsidy (sq.mi.)					
zoning (sq.mi.)	VC,FW,Rec	70	0	0	
zoning (mi.)	VC,FW,Rec	110	0	0	
zoning and/or tax inc. subs.(sq.mi.)					- 161
zoning and/or tax inc. subs. (mi.)					
V. Others					
Upstream Flood Control Storage (1000 af)	FDR	76	119	0	
Mainstream Flood Control Storage (1000 af)	FDR	36	0	700	
Waste Water (mgd)	Ind	140	360	790	

 $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. φ Flood control storage not included.

	AREA 15			AREA 17			AREA 18			AREA 19	
1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
			1	0.3	1	16	250	0	17 26	15 43	2 72
			0.3	1	1	130 870	260 1800	400 2760	100 4	170 10	220 10
			1	1	0.2	12	101	0	43	12	28
			199	38	530	162	38	530			
			1	2	4	3	8	55	43	123	198
			100	100 5	100 10	3400 0 0	0 5900 0 113	0 10300 570 86	2500 140	4900 270	8800 490
								- 00			
 			0.2	1	0.05	383	578	0	42	109	27
			1	0	0	1 17 730	0 16 270	0 ; 0 0	6	8	0
 			9	17	17	278	371	0	573	93	0
x	x	x	150	0	0	170 110 240 100	100 0 200 100	100 0 200 100	30 50 200 90	0 0 0 100	0 0 0 100
						70 110	0	0			
			4	0	0	33	31	0	39	89	0
						140	360	790	36	0	0

FIRST COSTS - incremental (\$ million 1970)	ST	TATE TO		
(\$ m11110n 1970)	1980	2000	2020	
Water Development Costs:				
storage, upstream	9.7	43.2	1.3	
mainstream	14.8	5.2	19.7	NEW TOWN
wells	11.6	17.3	3.9	
desalting	0	200	130	
Water Withdrawal and Conveyance Costs:				
inter-basin transfers	2	30	194	
public water supply	38	82	126	
industrial self-supplied water	6.5	13.7	22.1	
rural water supply	x	x	x	
irrigation, agriculture	5.7	5.6	0	
non-agriculture	6.3	6.8	8.8	
Power Plant Cooling Water	0	10	47	
Hydroelectric Power Generation		X	x	
Navigation: commercial	120	150	0	
recreational boating	19	23	26	
Water Recreation	110	110	150	
Fish and Wildlife: fishing	8.0	7.3	8.5	
hunting	х	x	x	
nature study	x	x	x	
Water Quality Maint.: waste treatment, secondary	660	1160	2040	
advanced	30	57	218	
other ≠				
Flood Damage Reduction: upstream	17	32	0	
mainstream	38	0	36	
Drainage Control	7.9	8.8	1.0	
Erosion Control	110	92	72	
Health	х	х	х	
Visual and Cultural	1640	140	140	
Summation of Available Estimated Costs	2900	2200	3200	

^{*} From the supply model and includes OMR costs.

Combined sewer overflows control and acid mine drainage control.

AREA 15			AREA 17			AREA 18			AREA 19		
1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
			0.3	0.1	0.4	2.7	36.7	0	6.7 14.8	6.4 5.2	0.9
			0.3	0.2	0.1	4.4	13.6 200	0 130	6.9	3.5	3.8
			1	1	2	2 4 6.1 x	30 6 13.1 x	194 16 21.3 x	34 0.4 x	74 0.7 x	107 0.8 x
			0.1	0.1	0.2	4.3 4.5	4.7 5.1	0 6.6	1.3 1.7	1.0 1.6	0 2.1
 					х	0	0	7	0	10 x	40 x
			0.1	0.4	0.4	120 11	150 13	0 15	7	9	10
 			0.1	0.1	0.1	50	30	40	60	80	110
			x x	x x	0.1 x x	4.4 x x	3.7 x x	4.1 x x	3.5 x	3.5 x	4.3 x
			10	10 1	10 1	390 0	630	1090 117	280 29	520 56	930 100
0	5	0	1	0	0	9 34	8	0 0	7	18 0	0 36
			0.1	0.1	0.01	7.1 73	7.4 60	0.8	0.7	1.3	0.2
х	х	х	x 50	x 0	x 0	x 1440	x 120	х	x	х	x
0	5	0	72	19	21	2200	1300	120 1800	150 640	20 840	20 1400

DELAWARE

DELAWARE

The State of Delaware covers 2,057 square miles in Area 15 and 18. The entire State is flat or undulating land and its overall visual quality is medial, being predominantly farm-forest or town-farm. The quality of the small drainage systems is degraded around the population centers and supplies must be imported.

The northern portion of the State has the only significant population concentrations which are around Wilmington and Dover. The 1970 population was over a half million and is projected to increases to 1.1 million by 2020. Per capita income is expected to decrease from 18 percent to 12 percent above the national average by the end of the Study period. Services and related industries is expected to continue as the largest employer, increasing over 140 percent by 2020. Chemicals and allied products are expected to keep pace with services, but agriculture, forestry and fisheries employment is expected to decrease by 50 percent.

Needs to be Satisfied. For the portion of Area 15 which is found in the State of Delaware the key needs are Water Quality Maintenance and recreational boating. Important needs are Publicly Supplied Water, Industrial Self-supplied Water, Commercial Navigation, Water Recreation, Fish and Wildlife, Water Quality Maintenance and Flood Damage Reduction. The key needs for Area 18's portion in the State is Water Quality Maintenance and Visual and Cultural. The important needs are Visual and Cultural and Water Quality Maintenance. Area 15 has the largest need levels with the exceptions of agriculture Irrigation Water, brackish withdrawal and consumption, hunting access, upstream and tidal and hurricane Flood Damage Reduction, Drainage Control, urban Erosion Control and unique natural and unique shoreline landscape maintenance.

Devices. Water quality control facilities are key devices in Area 15 mnd important devices in Area 15 and 18. Other important devices are storage facilities, withdrawal facilities, wells and temperature control facilities in Area 15 and land controls in Area 18. The largest device levels are in Mrea 18 except for storage facilities, fresh water intakes and pumping, potable water treatment plants, secondary (90%) and advanced waste treatment plants, zoning (mi.) and upstream flood control storage which are largest in Area 15.

Costs. The largest individual and total investments are in Area 15. Exceptions are wells, Industrial Self-supplied Water, agriculture Irrigation and Drainage Control which are largest in Area 18. The expenses which are significantly large in the State are for secondary waste treatment (2000-2020) and for Visual and Cultural (1980).

	T	STATE	TOTAL		
NEEDS-cumulative	Pres.	1980	2000	2020	
Publicly Supplied Water (mgd)	58	74	105	151	
Industrial Self-Supplied Water (mgd)	25	48	101	184	
Rural Water Supply (mgd)		11.2	16.7	16.9	
Irrigation Water: agriculture (1000 afy)		29.0	39.3	34.8	
non-agriculture (1000 afy)		5.1	9.1	14.8	
Power Plant Cooling: withdrawal, saline (cfs) brackish (cfs)		970	5340	11200	
fresh (cfs)		390 118	1220	3170	
consumption, brackish(cfs)		1	7	16	
fresh (cfs)		9	10	15	
Hydroelectric Power Generation (mw)	<u> </u>	-	1	1	
Navigation: commercial (m. tons annually)	14	20	25	34	
recreational boating (1000 boats)	35	43	65	108	
Water Recreation: visitor days (m.)		11	18	33	
stream or river (miles)		30	47	65	
water surface (1000 acres)		7.5	11.4	17.1	
beach (acres)		69	106	166	
pool (m. sq. ft.)		1.3	2.1	3.2	
land facilities (1000 acres) Fish & Wildlife: sport fishing man-days (m.)		4.8	5.7	8.9	
Fish & Wildlife: sport fishing man-days (m.) surface area, lake (acres)		0.94	1.18	8.1	
surface area, fake (acres) stream (acres)		0	0.36	0.86	
access, fresh (acres)		0.067	0.164	0.278	
salt (acres)		0.072	0.191	0.332	
anadromous (acres)		0.004	0.007	0.013	
piers (1000 feet)		1.7	4.4	7.5	
hunting, man-days (m.)	0.51	0.59	0.72	0.89	
access (1000 sq. mi.)	х	0.20	0.35	0.59	
nature study, man-days (m.)		0.76	0.96	1.19	
access(1000 ac.)		4.0	11.0	19.9	
Water Quality Maint.: non-industrial (m. PEs)		590	740	930	
industrial (m. PEs)	380	1010	2570	5950	
Flood Damage Reduction:	2.1	1, 2	()	0.7	
avg. ann. damage, upstream (m. \$) mainstream (m. \$)		0.78	6.2	9.7	
tidal and hurricane (m. \$)	191 90 1918	1.05	1.51 2.01	3.08	
Drainage Control: cropland (1000 acres)		80	109	111	
forest land (1000 acres)		0	2.3	9.1	
wet land (1000 acres)			1		
Erosion Control: agriculture (1000 acres)	150	240	300	310	
urban (1000 acres)		290	380	550	
stream bank (mi.)		8.1	24.3	40.5	
coastal shoreline (mi.)		23	50	57	
Health: vector control and pollution control	х	х	x	х	
Visual & Cultural:		25	25	25	
landscape maintenance, unique natural(sq. mi.)		35	35	35	
unique shoreline (mi.) high quality (sq. mi.)		29	29	29	
diversity (sq. mi.)		220	440	660	1
agriculture (sq. mi.)		220	440	000	- 1
landscape development, quality (sq. mi.)					-
diversity (sq. mi.)					- 2
metro. amenities (mi.)					1
" (sq. mi.)					

			15				18			AREA				AREA		
	Pres	1980	2000	2020	Pres	1980	2000	2020	Pres	1980	2000	2020	Pres	1980	2000	2020
	48	60	85	122	10	14	20	29								
	20				5	9										
	4.0				3.3			8.6								
		15.7						20.8		4 - [4.]						
	1.2				0.7 40	1.8		5.3								
	460							2070								
	122					120	720	2070								
			30	30	1	1	7	16								
	0	9	10	15												
	14					1	1	1								
	35				0.3		1	1								
	х	10			x	0.5	1	1								
	х	26				4	6									
	X	6.8				0.7	1.1						Av H	70.57		
	x x	1.2				0.1	0.1									
	X	4.4	5.1	7.9		0.1										
	0.55				0.25			0.42								
	х	0.9		7.6				0.5								
	x	0	0.35	0.85		0		0.01								
		0.064						0.005								
		0.058			х	0.014	0.043	0.077								
		0.004				0 01		0.0								
	x o //		4.3					0.2								
	0.44		0.63					0.11								
	0.53		0.80					0.19								
	v.33	3.1		14.3	x	0.13	3.0									
	380	480	610	760	90	110	140									
	350	950	2430	5640	30	60	140	310								
	1.2			5.0		2.6										
	0.3/	0.57	1.11	2.28				0.80								
-	9	11	18	20				3.99								
	0	0			0			7.1								
	Ĭ		0.5		Ŭ	٦	1.0									
	90	130	150	160	60	110	150	150								
	80	120	160	210	60		220	350						-		
	0	5.4	16.2	27.0	0	2.7	8.1	13.5								
	0	22	47	52	0	1	3	6								
	х	х	х	х	х	х	Х	х								
	No.					25	35	25								
	x	a	a	d	x	35 21	21	35 21								
	Α.	9	٩	G	^	21	21	21	444							
1	x	120	240	360	x	100	200	300								
												11:11				

	STAT	E TOTAL			
DEVICES - incremental	Purposes	1980	2000	2020	
I. Resource Management					
A. Water					
Storage Facilities φ			0.0	20.0	
	Rec, FW, VC*	2.3	3.9	39.0	
mainstream (1000 af)				-	
Withdrawal Facilities	DC T-1 D T	21	1.6	02	
intakes & pumping, fresh (mgd)	PS, Ind, Pow, Irrig	21	46 89	82 133	
brackish (mgd)	Ind *	42			
wells (mgd)	×	6.2	30.0	12.4	
Conveyance Facilities					
interbasin diversions, into (mgd)					
out of (mgd)					
Quality Control Facilities					
chemical/biological	PS	5.3	15.1	17.2	
potable water treat. plants (mgd)	13	3.3	13.1	17.2	
waste treatment plants	WQ,WC,Rec	150	0	0	
secondary (85%) (m. PEs removed)		1300	3000	6200	
secondary (90%) (m. PEs removed) advanced (95%) (m. PEs removed)	WQ,VC	71	152	344	
Desalting Facilities	10,10	7 1	132	344	
B. Water/Land			 	-	
Upstream Flood Plain Mgmt.(1000 acres)	FDR VC FW Rec	144	174	19	
Local Flood Protection	1DK, 10,1 W, Kee	144	177	1	
ocean (projects)	FDR	1	0	0	
river (projects)		1.0	6.0	0	
flood control channels (miles)	FDR	0	450	0	
Watershed Management (1000 acres)	FDR, VC, Drn, Rec	49	93	0	
C. Land	, , , , , , , , , , , , , , , , , , , ,				
Controls					
fee simple purchase (buying)(sq.mi.)	VC, Rec, FW	108	90	90	
fee simple purchase (buying) (mi.)	VC, Rec, FW	19	0	0	
purchase lease (sq.mi.)					
easements (sq.mi.)	VC, Rec, FW	90	90	90	
deed restrictions (sq.mi.)		х	X	х	
tax incentive subsidy (sq.mi.)					
zoning (sq.mi.)	VC,FW,Rec	18	0	0	
zoning (mi.)	VC,FW,Rec	11	0	0	
zoning and/or tax inc. subs.(sq.mi.)	Contract Contractor	40	40	40	
zoning and/or tax inc. subs. (mi.)					
V. Others					
Upstream Flood Control Storage (1000 af)	FDR	0	23	0	
Waste Water (mgd)	Ind	4	12	25	

 $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. φ Flood control storage not included.

A	AREA 15			AREA 18			AREA			AREA	
1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
2.2	2.9	39.0	0.1	1.0	0						
17 16 3.1	38 29 2.7	70 45 12.4	4 26 3.1	8 60 27.3	12 88 0						
5.2	14.8	14.8	0.1	0.3	2.4						
1300 71	2700 152	5800 320	150 0 0	300 0	0 400 24						
70	0	19	74	174	0						
1.0	6.0 350	0	1 0	0	0						
1	28	0	48	65	0						
40 8	40 0	40 0	68 11	50 0	50 0						
40 x	40 x	40 x	50	50	50						
40	40	40	18 11	0	0						
0	23	0	4	12	25						
			· ·								

FIRST COSTS - incremental	ST	TATE TO	TAL	
(\$ million 1970)	1980	2000	2020	
Water Development Costs:				
storage, upstream	0.6	1.6	10.2	
mainstream	0.0	1.0	10.2	
wells	2.1	4.5	1.0	
desalting	2.1	1.5	1.0	
Water Withdrawal and Conveyance Costs:				
inter-basin transfers				
public water supply	4.9	10.6	14.6	
industrial self-supplied water	0.36	0.74	1.27	
rural water supply	x	x	x	
irrigation, agriculture	3.4	3.1	0	
non-agriculture	2.7	2.9	3.8	
Power Plant Cooling Water	0	2.0	20.0	
Hydroelectric Power Generation				
Navigation: commercial				
recreational boating	0.85	1.18	2.06	
Water Recreation	28	42	70	
Fish and Wildlife: fishing	0.44	0.52	0.61	
hunting	х	x	x	
nature study	х	x	x	
Water Quality Maint.: waste treatment, secondary	49	230	481	
advanced	2.2	31.1	59.3	
other ≠				
Flood Damage Reduction: upstream				
mainstream	13	12	0	
Drainage Control	1.63	2.05	0.38	
Erosion Control	52	54	27	
Health	Х	Х	Х	
Visual and Cultural	178	47	47	
Summation of Available Estimated Costs	340	450	740	

^{*} From the supply model and includes OMR costs.

Combined sewer overflows control and acid mine drainage control.

		AREA 1	5		AREA 1	8		AREA			AREA	
	1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
	0.6	1.5	10.2	0	0.1	0						
	0.9	0.8	1.0	1.2	3.7	0						
	, 7	10.2	12.0	0.0	0.0	0.7						
	4.7 0.16	10.3 0.32	13.9 0.58	0.2	0.3	0.7						
	1.2	.8	0 0	2.2	2.3	0 0						
	1.8	1.9 2.0	2.5	0.9	1.0							
	0.73	1.04	1.90	0.12	0.14	0.16						
	26	41	68	2	1_	2						
	0.25	0.36	0.43	0.19	0.16	0.18						
	x x	x x	x x	x x	x x	x x						
-	33	203	435	16	27	46						
	2.2	31.1	54.4	0	0	4.9						
	2	12	0	11	0	0						
	0.20	0.57	0.21	1.43	1.48	0.16						
	37	43	14	15	11	14						
	X	х	х	х	х	х						
	140	28	28	39	20	20						
	250	380	640	89	69	98						

VIRGINIA

The Commonwealth of Virginia covers 23,237 square miles in the NAR including all of Area 20, all but a tiny amount of Area 21, much of Area 19, and the lower portion of the Delmarva Peninsula section of Area 18. The major drainages of the State are the basins of the Potomac, James, Rappahannock and York Rivers. The topography ranges through all classifications from beach to mountain, but the major characteristic is undulating land. Three-quarters of the State is classified as medial visual quality while the remainder is low. Water is plentiful in Virginia but uneven population distribution may necessitate diversions downstream in the near future. Serious pollution exists in the northern drainages and on most downstream portions of rivers, but some good supplies exist in central and southern upstream reaches.

The population of this section of Virginia is concentrated around Richmond, Norfolk-Virginia Beach, and the Washington, D.C., suburban areas. The population totalled over 3.4 million in 1970 and should reach 7.6 million by 2020. Per capita income was 6 percent below the nation average in 1970, but it should be at the average by the end of the Study period. Employment in 1970 was highest for services and related industries, which is expected to increase by more than 150 percent by 2020. Increases are also projected for food and kindred products, paper and allied products, chemicals and allied products and primary metals. Decreases have been projected for textile mill products and agriculture, forestry and fisheries.

Needs to be Satisfied. Water Quality Maintenance is a key need in the portions of Areas 18, 19 and 21 that are located in the State, while Visual and Cultural needs are key in Areas 18 and 19. The important needs in Area 18 are Water Quality Maintenance and Visual and Cultural. In Area 19 they are Publicly Supplied Water, Water Quality Maintenance, Erosion Control, and Visual and Cultural, while in Area 20 the important needs are Publicly Supplied Water, Industrial Self-supplied Water, Rural Water Supply, Water Recreation and Fish and Wildlife. Important needs in Area 21 are Industrial Self-supplied Water, Power Plant Cooling and Commercial Navigation. In general the needs are all largest in Area 21. The needs in Area 18 are largest for coastal shoreline Erosion Control and unique shoreline landscape maintenance. Agricultural Irrigation Water, land facilities, lake surface area, fresh access, nature study access, agricultural landscape and metropolitan amenties development are largest in Area 19. Only cropland and forest land Drainage Control and unique natural and diversity landscape maintenance are largest in Area 20. The remaining needs have the highest levels in Area 21.

 $\frac{\text{Devices.}}{18 \text{ and } 19}, \text{ and } 1 \text{and } controls \text{ in Area } 18. \text{ The device, zoning for } 1 \text{and control, is highest in Area } 18. \text{ Upstream storage facilities, purchase}$

leases, and mainstream flood control devices are largest in Area 19. Fee simple purchases (sq. mi.), easements, and zoning and/or tax incentive subsidies are the devices which are largest in Area 20. All of the other devices have the highest level of implementation in Area 21.

Costs. The significantly large investments in the State will be for desalting (2000-2020), Publicly Supplied Water (2020), Water Recreation (2020) advanced waste treatment (200-2020), Erosion Control (1980-2000) and Visual and Cultural (1980). The expenditures for commercial navigation and secondary waste treatment will also be large in all time periods. These costs are incurred primarily in Area 21 which has the largest total cost in the State as well as most of the largest individual need costs. Area 19 has the largest costs for storage, wells, agricultural Irrigation, Water Recreation and Visual and Cultural The investments in the other Areas will be relatively small.

			STATE	TOTAL		Γ
NEEDS-cumulative		Pres.	1980	2000	2020	
Publicly Supplied Water	(mgd)	320	450	680	1040	
Industrial Self-Supplied Water	(mgd)	510	970	1640	2230	
Rural Water Supply	(mgd)	54	85	125	146	
Irrigation Water: agriculture	(1000 afy)	12	50	71	68	
non-agriculture	(1000 afy)	5.7	21.5	38.5	62.0	
Power Plant Cooling: withdrawal, sal		1200	1100	9600	27700	
fre	ckish (cfs) sh (cfs)	800	4700	6000	4200	
consumption, br	, , , ,	2300	2200	4200	5900	
	esh (cfs)	24	108	210	357	
Hydroelectric Power Generation	(mw)	44	1510	2100	4100	
	s annually)	91	91	128	203	
	1000 boats)	81	94	151	224	
Water Recreation: visitor days	(m.)	X	57	95	160	
stream or river	(miles)	х	220	310	530	
water surface (1000 acres)	х	44	68	107	
beach	(acres)	х	520	800	1130	
poo1 (m. sq. ft.)	x	9.1	13.9	19.7	
land facilities (х	19	31	48	
Fish & Wildlife: sport fishing man-d	ays (m.)	7.5	9.2	12.2	15.8	
surface area, lake	(acres)	х	23	38	59	
strea		Х	8.3	8.6	8.6	
access, fresh	(acres)	Х	0.34	0.57	0.86	
salt	(acres)	х	0.82	2.20	3.87	
anadromous	(acres)	Х	0.086	0.128	0.178	
	(1000 feet)	X	24	64	111	
hunting, man-days	(m.)	4.5	5.0	6.6	8.5	
	00 sq. mi.)	X	0.34	3.04	4.05	
nature study, man-d	ays (m.) s(1000 ac.)	4.1	5.0	6.7	8.7	
Water Quality Maint.: non-industrial		1900	3800	39 5100	6600	
industrial	(m. PEs)	2900	7600	19400	45600	
Flood Damage Reduction:	(111. 1 113)	2300	7000	13400	43000	
avg. ann. damage, upstream	(m. \$)	5.7	9.0	16.4	31.7	
mainstream	(m. \$)	4.8	8.4	17.4	37.4	
tidal and hurrica		3.0	5.2	10.4	21.7	
Drainage Control: cropland (1000 acres)	160	230	310	310	
	1000 acres)	0	0	34	135	
	1000 acres)					
	1000 acres)	3800	4600	5200	5300	
	1000 acres)	840	1040	1460	2100	
stream bank	(mi.)	0	100	320	530	
coastal shoreline	(mi.)	0	100	220	270	
Health: vector control and pollution	control	Х	Х	Х	X	
Visual & Cultural:	1/22 -1		1600	1600	1600	
landscape maintenance, unique natur		×	1600 300	1600 300	1600 300	
unique shore high quality		X	300	300	300	
nigh quality diversity	(sq. mi.)	v	600	1100	1200	
agriculture	(sq. mi.)	X X	1400	1400	1400	
landscape development, quality	(sq. mi.)	Α.	1400	1400	1400	13
diversity	(sq. mi.)					
metro. ameni			100			
ıı ıı	(sq. mi.)	x	26	26	26	

		AREA	18			AREA	19			AREA	20			AREA	21	
	Pres	1980	2000	2020	Pres	1980	2000	2020	Pres	1980	2000	2020	Pres	1980	2000	2020
	10	10	10	20	110	160	270	430	20		40	70	190			
	1	1	2	4	60	110	200	300	50	-		130	400			
		24	37	37	18	31 17	45 24	45 21	11	16	23	35	22	34		_
	0.4	1.1	2.0	3.2	2.5		14.0		0.4	2.3	4.7	8.3	2.4	_		
				3,1	q	0	2000	5800	400	400	3800	7900				14000
					800	1300	700	1200					0	3400		
					400	400	900	1000	0	100	200	100	1800			4800
					8	8	7	10		0.0	0.0		0	35		
					5 13	9 10	24	55		82		58			96	
					13	10	1	1000	5	8		100	31 85	1500 83		-
	4	5	q	12	25	28	49	66		10		21		51	78	
	х	0.2	0.3	0.5	X	12	22	45	x	11	19	33		34		-
	х	2	3	4	х	80	100	230	x	30		70		110		
	х	0.3	0.5	0.6	х	15	27	48		5		13		23		
	х	3	4	6	х	120	210	360		50		110		350		
	Х	0.04	0.1	0.1	Х	2.1	3.6	6.2	Х	0.9	1.5	2.1		6.0		
	0.1	0.2	$\frac{0.3}{0.2}$	0.4	2.2	2.8	15 4.1	26 5.6	1.0	1.2	1.6	2.1	4.1	5.0		
	x	9.1	11	15	x x	11	17	26		0	1.0	2.1	4.1 X	3.0	9	
	x	d	0.3	0.3	x	2.1	2.1	2.1		0.7	0.7	0.7		5.4	-	- '
	х	0.08	0.12	0.17	х	0.15	0.27	0.41	x	0.03	0.05	0.08		0.07		
	х	0.10			х	0.29	0.87	1.58	x	0.04	0.11	0.20	х	0.39	0.92	1.56
	х	0.001	0.004	0.007	х	0.019		0.039	Х	0.004	0.012	0.022	Х	0.062		1
Erit	X	3	9	17	X	, 8	25	45	X	1	3	5	Х	11		1
	0.04	0.04		0.1	1.2	1.3	1.9	2.6	1.0			1.8				
	0.1	0.06	0.08	0.14 0.1	x 1.3	1.7	0.61	0.91	0.5		1.25	0.9			1.10	
	x	2	7	13	_ x	1.7	29	55	x	1	3	0.5	x X	0.2		
	40	100	100	100	600	1300	1900	2600	100	400	500	700	1100			3200
	4	10	30	50	100	200	500	1000	200	600	1500	4600			17400	
	0.2	0.3	0.4	0.6	2.0			12.1				4.6	2.5			14.4
	0 0	1 /	2		1.3	2.5	5.4	12.1	0.3	0.5	76 20	2.3	3.2		11.0	
	0.8	40	2.6 50	5.2 50	40	50	80	80	0.5 50	0.8 70	1.7	·3.5	1.8		90	-
	0	d	1	4	0	d	2	7				64				
						1					10				13	
	30	100	100	100	1000	1300	1600	1600	1100	1200	1300	1300	1600	2000	2200	2300
	40	100	120	180	210	340	520	720	160	170	200	260	430	440		
	q	2	5	10	0	40	110	190	0	10	30	40	0			
	- 0	50	130	160	0	20	40	40	0	1	3	5	0	30	60	
	Х	X	Х	X	Х	X	Х	X	Х	X	X	X	X	X	Х	Х
	x	200	200	200	x	300	300	300	x	1000	1000	1000	x	100	100	100
1	x	110	110	110	x	50	50	50	x	60	60	60	x	80		1
					х	100	200	300	х	500	900	900				
					x	1400	1400	1400								
														10		
					v	15	15	15					v	11	11	1.1
					- ^		1)									

	STAT	E TOTAL	L		
DEVICES - incremental	Purposes	1980	2000	2020	
I. Resource Management					
A. Water					
Storage Facilities φ		26.1	1		
reservoirs, upstream (1000 af)	Rec, FW, VC*	26.4	18.5	1.8	
	PW,VC,Rec,WQ*	60	322	425	
Withdrawal Facilities	DC T-1 D- T-1	100	7/0	700	
	PS,Ind,Pow,Irrig	490	740	700	
brackish (mgd)		84	163	255	
wells (mgd)	*	110	110	330	
Conveyance Facilities		25			
interbasin diversions, into (mgd)	*	25	0	0	
out of (mgd)					
Quality Control Facilities					
chemical/biological	PS	85	235	380	
potable water treat. plants (mgd)	rs	0.5	233	360	
waste treatment plants	NO NO Dec	7600	0	0	
secondary (85%) (m. PEs removed)	WQ,VC,Rec	2300	22100	47000	
secondary (90%) (m. PEs removed)			1220		
advanced (95%) (m. PEs removed)	WQ,VC	130	85	2610 119	-
Desalting Facilities B. Water/Land		12	03	119	-
Upstream Flood Plain Mgmt.(1000 acres)	FDP VC Pac	110	310	50	
Local Flood Protection	rbk, vc, kec	110	310	30	
ocean (projects)	FDR	0	1	0	
river (projects)		35	29	28	
flood control channels (miles)	FDR	72	207	246	
Watershed Management (1000 acres)		1200	1500	1800	
C. Land	i bit, to, bitt, itee	1200	1300	1000	
Controls					
fee simple purchase (buying)(sq.mi.)	VC.Rec.FW	1000	0	0	
fee simple purchase (buying) (mi.)	VC.Rec.FW	210	0	0	
purchase lease (sq.mi.)	VC,FW	1400	0	0	
easements (sq.mi.)	VC .FW	340	300	100	
deed restrictions (sq.mi.)					
tax incentive subsidy (sq.mi.)	VC,FW	x	x	x	
zoning (sq.mi.)	VC, FW, Rec	88	0	0	
zoning (mi.)	VC,FW,Rec VC,FW,Rec	56	0	0	
zoning and/or tax inc. subs.(sq.mi.)	VC, FW	750	200	0	
zoning and/or tax inc. subs. (mi.)	VC,FW	32	0	0	
V. Others					
Upstream Flood Control Storage (1000 af)	FDR	380	300	370	
Mainstream Flood Control Storage (1000 af)	FDR	0	500	460	
Waste Water (mgd)		1		3	

 $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. φ Flood control storage not included.

	A	REA 18	3	A	AREA 19		1	AREA 20			AREA 21	
	1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
				14.4 17	13.2 104	1.8 162	1.3	3.9 26	0 7	10.7	1.4 191	0 255
	1 3 3	1 6 20	2 10 0	70 3 80	120 4 20	160 5 50	30 56 10	30 115 10	10 204 10.	390 22 20	580 38 50	530 36 260
										25	0	0
	0.1	0.2	1	37	106	170	5	14	18	43	116	191
1	50 0 0	0 100 0	0 100 10	1400 80	2100 120	3200 180	900 50	1800 100	4800 270	7500 0 0	0 18000 1000	38900 2160
	10	20	0	30	80	20	20	90	20	50	130	10
	0	50	0	7	7.	0.	1	0	8 90	0 27 72	1 22 157	0 20 156
	40	100		500	100	0	10	0	500	700	1400	1400
	100 60	0	0	300 50 1400 90	0 0 0 100	0 0 0 100	500 30 250	0 0 200	0 0	100 80	0	0 0
	88 56	0. 0	0				750 32	200 0	0	х	х	х
		1	3	100	60 0	0 460	40	0 260	130	240	240 240	240

	1			
FIRST COSTS - incremental	S'	TATE TO	ΓAL	
(\$ million 1970)	1980	2000	2020	
Water Development Costs:				
storage, upstream	7.4	10.5	0.8	
mainstream	44	60	87	
wells	21	21	25	
desalting	38	253	290	
Water Withdrawal and Conveyance Costs:			1	
inter-basin transfers	1.9	0	0	
public water supply	72	148	222	
industrial self-supplied water	2.8	4.4	4.5	
rural water supply	x	x	x	
irrigation, agriculture	6.9	6.0	0	
non-agriculture	13	12	16	
Power Plant Cooling Water	0	20	38	
Hydroelectric Power Generation	х	х	х	
Navigation: commercial	170	360	180	
recreational boating	8.4	14.3	17.4	
Water Recreation	60	108	231	
Fish and Wildlife: fishing	7.0	6.7	8.2	
hunting	x	x	x	
nature study	х	x	x	
Water Quality Maint.: waste treatment, secondary	1100	2400	5100	
advanced	26	251	536	
other ≠				
Flood Damage Reduction: upstream	57	39	40	
mainstream	17	71	0	
Drainage Control	5.3	8.5	4.5	
Erosion Control	180	200	140	
Health	Х	х	х	
Visual and Cultural	899	48	24	
Summation of Available Estimated Costs	2700	4000	7000	

^{*} From the supply model and includes OMR costs.

Combined sewer overflows control and acid mine drainage control.

	AREA 18	8		AREA 19	9		AREA 20)		AREA 2	1
1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
1	3	0	5.8 18 13	5.5 23 7	0.8 42 8	0.2 23 3	5.0 7 5	0 2 5	1.4 4 4 38	0 30 6 253	0 43 13 290
0.1 0.02 x 3.8	0.1 0.1 x 4.1	0.4 0.1 x 0	29 0.3 x 2.3	64 0.5 x 1.7	92 0.6 x 0 6	2 0.5 x 0.1 1	5 0.8 x 0 2	6 1.2 x 0 2	1.9 41 2.1 x 0.6 6	0 79 3.1 x 0.2	0 124 2.6 x 0 7
			0	4	10				0	16	28
					х		х		Х	Х	х
0.5	0.5	0.6	4.2	5.4	5.9	20 0.8 3	0 2.4 2	3.6 4	150 2.9 10	360 6.0 37	180 7.3
 0.1	0.1	0.1	3.0	3.0	3.7	0.6	0.5	0.8	3.2	3.1	101 3.6
x x	x x	x x	x x	x x	x x	x x	x x	x x	x x	x x	x x
10	10	10	200 16	200 24	300 37	100 10	200 21	600 55	800 0	1900 205	4100 443
			11 17	8	0	8 0	0 20	14 0	38 0	31 51	26 0
0.9	0.9	0.1	1.1	2.0	0.2	1.3	3.0	2.2	2.0	2.6	2.0
40	40	30	60	50	40	10	10	10	80	100	60
Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х
 37	0	0	718	24	24	114	24	0	30	0	0
95	60	44	1100	500	700	300	310	710	1200	3100	5400

WEST VIRGINIA

WEST VIRGINIA

Two sections of West Virginia lie within the NAR and cover 3,535 square miles mostly in Area 19, with a very small part in Area 21. The drainage in Area 19 is the South Branch Potomac River. The topography is mostly heavily forested mountains and rolling foothills. The overall visual quality is low to medial but the free-flowing streams are of importance esthetically where they are not polluted. Water is abundant in this corner of the Region, but much of it has been degraded by acid mine pollution.

The population of this small sector was just over 123,000 in 1970 and should increase to over 150,000 by 2020. Per capita income was 22 percent below the national average but is projected to rise significantly to only 5 percent below that average by 2020. Employment is largest in services and related industries which is expected to increase along with food and kindred products, paper and allied products and chemicals and allied products. Declines are expected for textile mill products and agriculture, forestry and fisheries.

Needs to be Satisfied. The key needs in the State are Water Quality Maintenance and Visual and Cultural in Area 19. The important needs are Publicly Supplied Water, Water Quality Maintenance, Erosion Control and Visual and Cultural in Area 19. All the needs are largest for the State in the portion of Area 19 found within the state.

Devices. The important devices are water quality control facilities in Area 19 and all devices levels are largest in the portion of Area 19 found in the State.

Costs. All of the costs in the State are incurred primarily in Area 19 where they are the largest. The only expenditure that is significant in size is for Visual and Cultural in 1970.

Number 1		STATE	TOTAL		
NEEDS-cumulative	Pres.	1980	2000	2020	
Publicly Supplied Water (mgd)	14	22	36	58	
Industrial Self-Supplied Water (mgd)	8	17	29	46	
Rural Water Supply (mgd)		9.2	13.5	13.4	
Irrigation Water: agriculture (1000 afy)		5.0	7.2	6.3	
non-agriculture (1000 afy)	1.5	5.1	8.8	13.7	
Power Plant Cooling: withdrawal, saline (cfs)					
brackish (cfs)		10	1000	1/70	
fresh (cfs) consumption, brackish(cfs)	, ,	49	1092	1478	
fresh (cfs)	18	23	44	50	
Hydroelectric Power Generation (mw)	0	0	500	2000	
Navigation: commercial (m. tons annually)		-	300	2000	
recreational boating (1000 boats)		2.0	3.0	4.0	
Water Recreation: visitor days (m.)	X	0.44	0.69	1.04	
stream or river (miles)		3	4	6	
water surface (1000 acres)		0.58	0.84	1.18	
beach (acres)		5	7	9	
pool (m. sq. ft.)	х	0.079	0.114	0.155	
land facilities (1000 acres)	х	0.33	0.49	0.67	
Fish & Wildlife: sport fishing man-days (m.)		0.38	0.54	0.75	
surface area, lake (acres)		3.2	5.0	7.6	
stream (acres)		0.62	0.62	0.62	
access, fresh (acres)		0.043	0.079	0.120	
salt (acres)					
anadromous (acres)		0.006	0.008	0.011	
piers (1000 feet)		0.10			
hunting, man-days (m.)	200 1200-1000	0.18	0.25	0.34	
access (1000 sq. mi.)		0.052	0.429	0.637	
nature study, man-days (m.)		0.23	0.32	0.44	
access(1000 ac.) Water Quality Maint.: non-industrial (m. PEs)		1.2	4.2 254	7.8	
industrial (m. PEs)		101	253	345 535	
Flood Damage Reduction:	33	101	233	333	
avg. ann. damage, upstream (m. \$)	3.7	6.1	11.4	22.7	
mainstream (m. \$)		3.1	6.8	15.1	
tidal and hurricane (m. \$)			3.0	13.1	
Drainage Control: cropland (1000 acres)	26	34	47	47	
forest land (1000 acres)		0	1.4	5.2	
wet land (1000 acres)					
Erosion Control: agriculture (1000 acres)	620	830	980	1010	
urban (1000 acres)	140	220	330	450	
stream bank (mi.)		23	70	117	
coastal shoreline (mi.)					
Health: vector control and pollution control	х	х	х	x	- 4
Visual & Cultural:		700	700	700	
landscape maintenance, unique natural(sq. mi.)		700	700	700	
unique shoreline (mi.)					
high quality (sq. mi.)		100	200	300	
diversity (sq. mi.)		100	200	300	
agriculture (sq. mi.) landscape development, quality (sq. mi.)		200	200	200	
diversity (sq. mi.)					
metro. amenities (mi.)					100
" (sq. mi.)					
(54. 111.)					

		AREA	19	V. 10.7		AREA	21		<u> </u>	AREA			AREA	1	
	Pres		2000	2020	Pres			2020	Pres		2020	Pres	1980	2000	2020
	14	22	36	58											
	8														
	5.5		13.5	6.3											
	1.0	5.0	8.6	13.4		0.1	0.2	0.3							
		210	0.0			· · ·	V. 2	0.5							
	79	49	1092	1478											
	18	23	1. 1.	50				199							
	10	0	500	50 2000				-							
				- AD V											
	1.7		3.0	4.0											
	Х	0.44	0.69	1.04											
	X X	0.58	0.84	1.18											
	X	5	7	9											
1-5		0.079	0.114	0.155											
	х			0.67											
			0.54												
	X			7.6 0.62											
				0.02											
	х	0.006	0.008	0.011											
	0.16	0.10	0.25	0.24											
			0.25 0.429												
			0.429												
	х	1.2	4.2	7.8											
	86														
	39	101	253	535											
	3 7	6 1	11.4	22 7											
	1.6		6.8		n .										
	26				0.5	1	1	0.6							
	0	0	1.2	4.6	0	0	0.2	0.6							
	610	810	950	990	20	20	20	20							
	130	210	320	440	10	10	10	10							
	0	23	68	114	0	1	2	3							
	х	х	х	х	х	х	X	х							
	x	700	700	700											
	^	,00	,00	700											
		5						-11							
	x	100	200			4	Carry	77							
	х	200	200	200				11719							
													7.13		
		_						_	_		_	-	-		

	STAT	TE TOTAL	L		
DEVICES - incremental	Purposes	1980	2000	2020	
I. Resource Management A. Water Storage Facilities φ					
reservoirs, upstream (1000 af) mainstream (1000 af)	Rec,FW,V C* FW,VC,Rec,WQ*	3.8 31	3.5 74	0.5 89	
brackish (mgd)		9.8	15.9	21.9	
wells (mgd) Conveyance Facilities interbasin diversions, into (mgd) out of (mgd)	*	53	15	37	
Quality Control Facilities chemical/biological potable water treat. plants (mgd) waste treatment plants	PS	4.9	14.1	22.7	
secondary (85%) (m. PEs removed) secondary (90%) (m. PEs removed) advanced (95%) (m. PEs removed) Desalting Facilities		250 14	460 25	790 44	
B. Water/Land Upstream Flood Plain Mgmt.(1000 acres) Local Flood Protection	FDR,VC	26	67	16	
ocean (projects) river (projects) flood control channels (miles)	FDR	5.5	4.5	0	
Watershed Management (1000 acres) C. Land	FDR,VC,Drn	465	76	0	
Controls fee simple purchase (buying)(sq.mi.) fee simple purchase (buying) (mi.)	VC,FW	710	0	0	
purchase lease (sq.mi.) easements (sq.mi.) deed restrictions (sq.mi.)		200 88	0 100	0 100	
tax incentive subsidy (sq.mi.) zoning (sq.mi.) zoning (mi.) zoning and/or tax inc. subs.(sq.mi.) zoning and/or tax inc. subs. (mi.)					
V. Others Upstream Flood Control Storage (1000 af) Mainstream Flood Control Storage (1000 af)		70	54	0	
Mainstream Flood Control Storage (1000 af)	FDR	0	90	0	

 $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. ϕ Flood control storage not included.

A	REA 19		1	AREA 21		1	AREA			AREA	
1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
3.8 31	3.5 74	0.5			e e						
9.8 0 53	15.9 1 14	21.9 1 34	0.2	1	3						
4.9	14.1	22.7									
250 14	460 25	790 44									
26	67	16									
5.5	4.5	0									
465	76	0									
710	o	0									
200 88	0 100	0 100									
70 0	54 90	0									
0	70										

	-			
FIRST COSTS - incremental	S'.	TATE TO	TAL	
(\$ million 1970)	1980	2000	2020	
Water Development Costs:				
storage, upstream	1.5	1.5	0.2	
mainstream	20	11	22	
wells	8.6	4.5	5.0	
desalting				
Water Withdrawal and Conveyance Costs:				
inter-basin transfers				
public water supply	3.9	8.5	12.2	
industrial self-supplied water	0.04	0.06	0.09	
rural water supply	х	x	х	
irrigation, agriculture	0.78	0.56	0	
non-agriculture	3.0	2.8	3.6	
Power Plant Cooling Water	0	10	20	
Hydroelectric Power Generation		X	Х	
Navigation: commercial				
recreational boating	0.28	0.36	0.39	
Water Recreation	1.7	1.5	2.0	
Fish and Wildlife: fishing	0.40	0.40	0.49	
hunting	X	X	Х	
nature study	X	X	Х	
Water Quality Maint.: waste treatment, secondary	28	49	84	
advanced	2.9	5.1	9.0	
other /				
Flood Damage Reduction: upstream	10.2	8.9	0	
mainstream	0	7.0	0	
Drainage Control	0.71	1.25	0.17	
Erosion Control	29	28	22	
Health	Х	Х	Х	
Visual and Cultural	281	24	24	
Summation of Available Estimated Costs	390	160	210	

^{*} From the supply model and includes OMR costs.

Combined sewer overflows control and acid mine drainage control.

	AREA	19		AREA 2	1		AREA			AREA	
1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
1.5 20 8.6	1.5 11 4.4	0.2 22 4.9	0	0.1	0.1						
3.9 0.04	8.5 0.06	12.2 0.09									
0.78	0.56	x 0									
 2.9	2.7	3.5	0.1	0.1	0.1						
	X	x									
0.28	0.36	0.39									
1.7	1.5	2.0									
0.40	0.40	0.49									
Х	X	Х									
 28	x 49	X Q/									
2.9	5.1	84 9.0									
 10.2	8.9	0									
0	7.0	0									
0.69	1.22	0.15	0.02	0.03	0.02						
29	28	21	0.4	1	1						
 281	24	x 24	Х	Х	Х						
390	160	200	0.52	1.23	1.22						

DISTRICT OF COLUMBIA

DISTRICT OF COLUMBIA

Washington, D.C., lies wholly within Area 19 and covers 69 square miles of totally metropolitan area. The major waterways are the Potomac River flowing past the District, and the Potomac tributaries of Rock Creek and the Anacostia River. The District's population, which totalled 850,000 in 1970, is projected to reach over 1.2 million by 2020. Per capita income stood at 30 percent above the national average in 1970 but should decline to 12 percent over that average by 2020.

The work force totalled almost 390,000 in 1970, over 330,000 of which were employed in services and related industries, and this total is projected to increase to more than half a million by 2020. There is some employment in food and kindred products, which is expected to decrease; some in primary metals and chemicals and allied products which are projected to rise; and a significant number of armed services personnel whose total should remain constant.

The District of Columbia is unique in that it is the only "state" in the NAR located entirely within a tiny part of a single river basin, and the only one completely urban in nature.

Needs to be Satisfied. The need for Water Quality Maintenance is important and key to the fulfillment of the Visual and Cultural need, which is also key and important. Other important needs include Publicly Supplied Water and Erosion Control.

 $\underline{\text{Devices}}.$ The important devices for meeting the needs of the District are water quality control facilities.

Costs. The only expenditures of significant size in the District will be for secondary waste treatment in all time periods.

Pres. 1980 2000 2020	NEEDC		STATE			
Industrial Self-Supplied water	NEEDS-cumulative	Pres.	1980	2000	2020	
National National	Publicly Supplied Water (mgd)	90	140	230	380	
Irrigation Water: agriculture (1000 afy)			150	260	400	
Non-agriculture						
Power Plant Cooling: withdrawal, saline (cfs) brackish (cfs) fresh (cfs) consumption, brackish (cfs) fresh (cfs)						
brackish (cfs) fresh (cfs) consumption, brackish(cfs) fresh (cfs) (c			2.3	4.0	6.2	
Tresh (cfs) Consumption, brackish(cfs) Fresh (cfs)				1-11-14		
Consumption, brackish(cfs) Fresh (cfs)						
Hydroelectric Power Generation						
Hydroelectric Power Generation						
Navigation: commercial (m. tons annually) 0.70 0.70 0.70 0.80 recreational boating (1000 boats) 12 14 24 33 Water Recreation: visitor days (m.) stream or river (miles) water surface (1000 acres) beach (acres) pool (m. sq. ft.) land facilities (1000 acres) Fish & Wildlife: sport fishing man-days (m.) surface area, lake (acres) access, fresh (acres) anadromous (acres) anadromous (acres) anadromous (acres) anadromous (acres) anadromous (acres) hunting, man-days (m.) 1.0 1.1 1.6 2.2 access (1000 ac.) x 0.6 2.1 3.9 Water Quality Maint: non-industrial (m. PEs) 560 1150 1650 2240 industrial (m. PEs) 120 300 760 1610 Flood Damage Reduction: avg. ann. damage, upstream (m. S) mainstream (m. S) constant of tidal and hurricane (m. S) forest land (1000 acres) forest land (1000 acres) forest land (1000 acres) wet land (1000 acres) wet land (1000 acres) urban (1000 acres) wet land (1000 acres) forest land (1000 acres) wet land (1000 acres) wet land (1000 acres) urban (1000 acres) urban (1000 acres) wet land (1000 acres) urban (1000 acres) urban (1000 acres) urban (1000 acres) urban (1000 acres) wet land (1000 acres) urban urban urban urban urban urban urban urban urban urban urban urb						
Tecreational boating (1000 boats) 12			0.70	0.70	0.80	
Water Recreation: visitor days stream or river (miles) water surface (1000 acres) beach (acres) pool (m. sq. ft.) land facilities (1000 acres) Fish & Wildlife: sport fishing man-days (m.) surface area, lake (acres) stream (acres) access, fresh (acres) salt (acres) anadromous (acres) anadromous (acres) piers (1000 feet) hunting, man-days (m.) 1.0 1.1 1.6 2.2 access (1000 sq. mi.) nature study, man-days (m.) 1.2 1.5 2.1 2.9 access (1000 ac.) x 0.6 2.1 3.9 access (1000 acces) industrial (m. PEs) 360 1150 1650 2240 access (1000 acces) acces (1000 acces) acces (1000 acces) ac						
water surface (1000 acres) beach (acres) pool (m. sq. ft.) land facilities (1000 acres)						
beach (acres) pool (m. sq. ft.) land facilities (1000 acres)	stream or river (miles))				
Pool	water surface (1000 acres)					
Land facilities (1000 acres)						
Fish & Wildlife: sport fishing man-days (m.) surface area, lake (acres) stream (acres) access, fresh (acres) anadromous (acres) anadromous (acres) anandromous (acres) piers (1000 feet) hunting, man-days (m.) access (1000 sq. mi.) nature study, man-days (m.) access (1000 sq. mi.) nature study, man-days (m.) access (1000 sq. mi.) nature study, man-days (m.) access (1000 ac.) x 0.6 2.1 3.9 water Quality Maint: non-industrial (m. PEs) 560 1150 1650 2240 industrial (m. PEs) 120 300 760 1610 Flood Damage Reduction: avg. ann. damage, upstream (m. \$) mainstream (m. \$) mainstream (m. \$) tidal and hurricane (m. \$) mainstream (m. \$) cropland (1000 acres) forest land (1000 acres) forest land (1000 acres) wet land (1000 acres) urban (1000						
Surface area, lake (acres) Stream (acres) Stream (acres) Salt (acres) S		THE RESERVE AND ADDRESS OF THE PERSON NAMED IN				
Stream (acres)			2.5	3.5	4.8	
access, fresh						
Salt						
anadromous (acres) piers (1000 feet) hunting, man-days (m.) access (1000 sq. mi.) nature study, man-days (m.) access (1000 ac.) x 0.6 2.1 3.9 Water Quality Maint: non-industrial (m. PEs) 560 1150 1650 2240 industrial (m. PEs) 120 300 760 1610 Flood Damage Reduction: avg. ann. damage, upstream (m. \$) mainstream (m. \$) mainstream (m. \$) tidal and hurricane (m. \$) Drainage Control: cropland (1000 acres) forest land (1000 acres) wet land (1000 acres) urban (1000 acr						
Piers						
hunting, man-days (m.)						
access (1000 sq. mi.) nature study, man-days (m.) 1.2 1.5 2.1 2.9 access(1000 ac.) x 0.6 2.1 3.9			1 1	1 6	2.2	
nature study, man-days			1.1	1.0	2.2	
Second Control: agriculture (1000 acres) urban (1000 acres) urban (1000 acres) urban (2005 at 1) astream bank (mi.) coastal shoreline (mi.) Health: vector control and pollurion control (mi.) high quality (sq. mi.) landscape development, quality (sq. mi.) metro. amenities (mi.) (mi.) coasend (sq. mi.) diversity (sq. mi.) metro. amenities (mi.) (mi.) coasend (sq. mi.) metro. amenities (mi.) (mi.) coasend (sq. mi.) metro. amenities (mi.) (mi.) (mi.) coasend (sq. mi.) metro. amenities (mi.) (mi.			1.5	2.1	2.0	
Water Quality Maint: non-industrial (m. PEs) industrial (m. PEs) (
Industrial (m. PEs) 120 300 760 1610						
Flood Damage Reduction: avg. ann. damage, upstream mainstream tidal and hurricane (m. \$) Drainage Control: cropland forest land (1000 acres) wet land (1000 acres) urban stream bank coastal shoreline coastal shoreline landscape maintenance, unique natural(sq. mi.) diversity agriculture (sq. mi.) diversity (sq. mi.) diversity diversity (sq. mi.) diversity diversity (sq. mi.) diversity diversity (sq. mi.) diversity diversity (sq. mi.) metro. amenities (mi.) 0.06 0.13 0.27 0.60 0.13 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2						
avg. ann. damage, upstream						
tidal and hurricane (m. \$) Drainage Control: cropland (1000 acres) forest land (1000 acres) wet land (1000 acres) Erosion Control: agriculture (1000 acres) urban (1000 acres) 21 34 51 71 stream bank (mi.) coastal shoreline (mi.) Health: vector control and pollurion control x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) unique shoreline (mi.) high quality (sq. mi.) agriculture (sq. mi.) agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.)						
Drainage Control: cropland (1000 acres) forest land (1000 acres) wet land (1000 acres) Erosion Control: agriculture (1000 acres) urban (1000 acres) stream bank (mi.) coastal shoreline (mi.) Health: vector control and pollurion control x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) unique shoreline (mi.) high quality (sq. mi.) diversity (sq. mi.) agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) diversity (sq. mi.) metro. amenities (mi.)	mainstream (m. \$	0.06	0.13	0.27	0.60	
forest land (1000 acres) wet land (1000 acres) Erosion Control: agriculture (1000 acres) urban (1000 acres) stream bank (mi.) coastal shoreline (mi.) Health: vector control and pollurion control x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) unique shoreline (mi.) high quality (sq. mi.) diversity (sq. mi.) agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.)						
wet land (1000 acres) Erosion Control: agriculture (1000 acres) urban (1000 acres) stream bank (mi.) coastal shoreline (mi.) Health: vector control and pollurion control x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) unique shoreline (mi.) high quality (sq. mi.) diversity (sq. mi.) agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.)						
Erosion Control: agriculture (1000 acres) urban (1000 acres) 21 34 51 71 stream bank (mi.) coastal shoreline (mi.) Health: vector control and pollurion control x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) unique shoreline (mi.) high quality (sq. mi.) diversity (sq. mi.) agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.)						
urban (1000 acres) 21 34 51 71 stream bank (mi.) coastal shoreline (mi.) Health: vector control and pollurion control x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) unique shoreline (mi.) high quality (sq. mi.) diversity (sq. mi.) agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.)						
stream bank (mi.) coastal shoreline (mi.) Health: vector control and pollurion control x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) unique shoreline (mi.) high quality (sq. mi.) diversity (sq. mi.) agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.)			0.1			
coastal shoreline (mi.) Health: vector control and pollurion control x x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) unique shoreline (mi.) high quality (sq. mi.) diversity (sq. mi.) agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.)			34	51	71	
Health: vector control and pollurion control x x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) unique shoreline (mi.) high quality (sq. mi.) diversity (sq. mi.) agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.)						
Visual & Cultural: landscape maintenance, unique natural(sq. mi.) unique shoreline (mi.) high quality (sq. mi.) diversity (sq. mi.) agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.)						
landscape maintenance, unique natural(sq. mi.)		X	X	X	X	
unique shoreline (mi.) high quality (sq. mi.) diversity (sq. mi.) agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.)						
high quality (sq. mi.) diversity (sq. mi.) agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.)						
diversity (sq. mi.) agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.)						
agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.)						125
landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.)						10
diversity (sq. mi.) metro. amenities (mi.)						15
metro. amenities (mi.)						
" (sq. mi.) x 5 5 5	metro. amenities (mi.					
	" " (sq. mi.	х	5	5	5	

		AREA	19			AREA				AREA	1			AREA	1	
	Pres			2020	Pres			2020	Pres			2020	Pres		2000	2020
	90	140	230	380	1105	1700	2000	2020	1103	1700	2000	2020	1105	1200	2000	2020
	80	150	260	400												
		200		100												
	0.7	2.3	4.0	6.2												
												1				
	0.70	0.70	0.70	0.00											-	
		0.70														
	12	14	24	33							-		-		-	
											-					
	1.9	2 5	3 5	4.8												
	1.9	2.5	3.5	4.0												
	- 12														6.4	
				1-1												
	1.0	1.1	1.6	2.2												
	1.2	1.5	2.1	2.9												
	x	0.6	2.1	3.9												
	560	1150	1650	2240												
	120	300	760	1610												
	0.06	0.13	0.27	0.60												
				100												
	0.1	2/		7.1				(C-0.5)				1179				
	21	34	51	71												
	Х	Х	х	X												
											-					
			Lagra.										10	11.7		
		- 1					100									
		323														
												1			7	
	1								1.2							
17.54	х	5	5	5												
															_	

	STAT	TE TOTAL	L		
DEVICES - incremental	Purposes	1980	2000	2020	
I. Resource Management					
A. Water					
Storage Facilities φ					
reservoirs, upstream (1000 af)					
mainstream (1000 af)					
Withdrawal Facilities					
intakes & pumping, fresh (mgd)		85	144	186	
brackish (mgd)		3	5	7	
wells (mgd)	*	0.3	0.1	0.2	
Conveyance Facilities					
interbasin diversions, into (mgd)					
out of (mgd)					
Quality Control Facilities chemical/biological			4 1 1 1		
	PS	20	0.1	1/7	
<pre>potable water treat. plants (mgd) waste treatment plants</pre>	rs	32	91	147	
secondary (85%) (m. PEs removed)					
secondary (90%) (m. PEs removed)	LIO VC	1300	2200	2500	
advanced (95%) (m. PEs removed)		73	2200 120	3500 192	
Desalting Facilities	wq,vc	/3	120	192	_
B. Water/Land					
Upstream Flood Plain Mgmt.(1000 acres)					
Local Flood Protection					
ocean (projects)					
river (projects)					
flood control channels (miles)					
Watershed Management (1000 acres)					
C. Land					
Controls					
fee simple purchase (buying)(sq.mi.)	VC, FW	5	0	0	
fee simple purchase (buying) (mi.)					
purchase lease (sq.mi.)					
easements (sq.mi.)					
deed restrictions (sq.mi.)					
tax incentive subsidy (sq.mi.)					
zoning (sq.mi.)					
zoning (mi.)					
zoning and/or tax inc. subs.(sq.mi.)			Maria di 1877		
zoning and/or tax inc. subs. (mi.) V. Others					
v. Others					

 $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. ϕ Flood control storage not included.

	AREA 19)		AREA			AREA			AREA	
1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
85	144	186									
0.3	5 0.1	7 0.2									
22	0.1	1/7									
32	91	147									
1300	2200	3500									
 73	120	192		-							
5	0	0									

Water Development Costs: storage, upstream mainstream wells desalting Water Withdrawal and Conveyance Costs: inter-basin transfers public water supply industrial self-supplied water rural water supply irrigation, agriculture non-agriculture Power Plant Cooling Water Hydroelectric Power Generation Navigation: commercial recreational boating Water Recreation Fish and Wildlife: fishing hunting nature study Water Quality Maint .: waste treatment, secondary advanced other + Flood Damage Reduction: upstream mainstream Drainage Control Erosion Control Health Visual and Cultural Summation of Available Estimated Costs

	AREA 1	9		AREA			AREA			AREA	
1980	2000	2020	1980	2000	2020	1980	2000	2020	1980	2000	2020
25	55	79									
0.37	0.61	0.76									
1.5	1.4	1.8									
	0.7	0.0									
 2.1	2.7	2.9									
 2.6	2.6	3.1									
х	х	х									
 х	х	х									
150	230	370							E-FAIL (
15	25	39									
 -											
4.6	6.0	7.0									
х	х	х									
 3.0_	0	0									
200	320	500									