CORPS OF ENGINEERS NEW YORK NORTH ATLANTIC DIV NORTH ATLANTIC REGIONAL WATER RESOURCES STUDY. ANNEX 2.(U) MAY 72 AD-A036 618 F/G 8/6 UNCLASSIFIED NL North Atlantic Regional Water Resources Study Annex 2. May 72 (/) ADA 036618 DECOMMENDED 1971 Appending public prisons District Dilluted Annex 2 to Report 406 959 NORTH ATLANTIC REGIONAL WATER RESOURCES STUDY COORDINATING COMMITTEE 4B The North Atlantic Regional Water Resources (NAR) Study examined a wide variety of water and related land resources, needs and devices in formulating a broad, coordinated program to guide future resource development and management in the North Atlantic Region. The Study was authorized by the 1965 Water Resources Planning Act (PL 89-80) and the 1965 Flood Control Act (PL 89-298), and carried out under guidelines set by the Water Resources Council. The recommended program and alternatives developed for the North Atlantic Region were prepared under the direction of the NAR Study Coordinating Committee, a partnership of resource planners representing some 25 Federal, regional and State agencies. The NAR Study Report presents this program and the alternatives as a framework for future action based on a planning period running through 2020, with bench mark planning years of $19\,80$ and $2000\,_{\circ}$ The planning partners focused on three major objectives -- National Income, Regional Development and Environmental Quality -- in developing and documenting the information which decision-makers will need for managing water and related land resources in the interest of the people of the North Atlantic Region. In addition to the NAR Study Main Report and Annexes, there are the following 22 Appendices: - A. History of Study - B. Economic Base - C. Climate, Meteorology and Hydrology - D. Geology and Ground Water - E. Flood Damage Reduction and Water Management for Major Rivers and Coastal Areas - F. Upstream Flood Prevention and Water Management - G. Land Use and Management - H. Minerals - I. Irrigation - J. Land Drainage - K. Navigation - L. Water Quality and Pollution - M. Outdoor Recreation - No Visual and Cultural Environment - 0. Fish and Wildlife - P. Power - Q. Erosion and Sedimentation - R. Water Supply - S. Legal and Institutional Environment - T. Plan Formulation - U. Coastal and Estuarine Areas - V. Health Aspects # Annex 2 to Report DISTRIBUTION STATEMENT A Approved for public release, Distribution Unlimited Prepared by North Atlantic Regional Water Resources Study Group North Atlantic Division Corps of Engineers, U.S. Army for the NORTH ATLANTIC REGIONAL WATER RESOURCES STUDY COORDINATING COMMITTEE # TABLE OF CONTENTS | | Page No. | |---|---| | TABLE OF CONTENTS | i | | LIST OF FIGURES | 111 | | LIST OF TABLES | v | | CHAPTER 1. INTRODUCTION | 1 | | CHAPTER 2. METHODOLOGY NOTES FOR TABLES OF ALL STATE PROGRAMS | 3
26 | | CHAPTER 3. STATE PROGRAMS | 27 | | MAINE NEW HAMPSHIRE VERMONT MASSACHUSETTS RHODE ISLAND CONNECTICUT NEW YORK NEW JERSEY PENNSYLVANIA MARYLAND DELAWARE VIRGINIA WEST VIRGINIA DISTRICT OF COLUMBIA | 29
45
55
65
81
89
97
113
123
133
141
149
159
167 | # LIST OF FIGURES | STATE | MAPS | |-------|-------| | MITTI | PIACO | | State | | |----------------------|----------| | | Page No. | | MAINE | 28 | | NEW HAMPSHIRE | 44 | | VERMONT | | | MASSACHUSETTS | 54 | | RHODE ISLAND | 64 | | CONNECTICUT | 30 | | | 38 | | NEW YORK | 96 | | NEW JERSEY | 112 | | PENNSYLVANIA | 122 | | MARYLAND | | | DE LAWARE | 132 | | VIRGINIA | 140 | | | 148 | | WEST VIRGINIA | 158 | | DISTRICT OF COLUMBIA | 166 | | | | PRECEDING PAGE BLANK-NOT FILMED # LIST OF TABLES | | | Page No. | |---------|--|----------| | | F PERCENTAGE DISTRIBUTION REAS AMONG STATES | | | Area | | | | AREA 1 | ST. JOHN RIVER BASIN | 11 | | AREA 2 | PENOBSCOT RIVER BASIN | 11 | | AREA 3 | KENNEBEC RIVER BASIN | 11 | | AREA 4 | ANDROSCOGGIN RIVER BASIN | 12 | | AREA 5 | MAINE COASTAL BASINS | 13 | | AREA 6 | SOUTHERN MAINE AND COASTAL NEW HAMPSHIRE | 13 | | AREA 7 | MERRIMACK RIVER BASIN | 14 | | AREA 8 | CONNECTICUT RIVER BASIN | 15 | | AREA 9 | SOUTHEASTERN NEW ENGLAND | 16 | | AREA 10 | THAMES AND HOUSATONIC RIVER BASINS | 17 | | AREA 11 | LAKE CHAMPLAIN AND ST. LAWRENCE RIVER DRAINAGE | 18 | | AREA 12 | HUDSON RIVER BASIN | 19 | | AREA 13 | SOUTHEASTERN NEW YORK METROPOLITAN AREA | 20 | | AREA 14 | NORTHERN NEW JERSEY | 20 | | AREA 15 | DELAWARE RIVER BASIN | 21 | | AREA 16 | COASTAL NEW JERSEY | 21 | | AREA 17 | SUSQUEHANNA RIVER BASIN | 55 | | AREA 18 | CHESAPEAKE BAY AND DELMARVA PENINSULA DRAINAGE | 23 | | AREA 19 | POTOMAC RIVER BASIN | 24 | | AREA 20 | RAPPAHANNOCK AND YORK RIVER BASINS | 25 | | AREA 21 | JAMES RIVER BASIN | 25 | | | Page No. | |----------------------|----------| | TABLES OF NEEDS | | | States | | | MAINE | 32 | | NEW HAMPSHIRE | 48 | | VERMONT | 58 | | MASSACHUSETTS | 68 | | RHODE ISLAND | 82 | | CONNECTICUT | 90 | | NEW YORK | 100 | | NEW JERSEY | 116 | | PENNSYLVANIA | 126 | | MARYLAND | 134 | | DELAWARE | 142 | | VIRGINIA | 152 | | WEST VIRGINIA | 160 | | DISTRICT OF COLUMBIA | 168 | | | | | TABLES OF DEVICES | | | States | | | MAINE | 36 | | NEW HAMPSHIRE | 50 | | VERMONT | 60 | | MASSACHUSETTS | 72 | | RHODE ISLAND | 84 | | | Page No. | |---------------------------|----------| | TABLES OF DEVICES (CONT.) | | | States | | | CONNECTICUT | 92 | | NEW YORK | 104 | | NEW JERSEY | 118 | | PENNSYLVANIA | 128 | | MARYLAND | 136 | | DELAWARE | 144 | | VIRGINIA | 154 | | WEST VIRGINIA | 162 | | DISTRICT OF COLUMBIA | 170 | | | | | TABLES OF COSTS | | | States | | | MAINE | 40 | | NEW HAMPSHIRE | 52 | | VERMONT | 62 | | MASSACHUSETTS | 76 | | RHODE ISLAND | 86 | | CONNECTICUT | 94 | | NEW YORK | 108 | | NEW JERSEY | 120 | | PENNSYLVANIA | 130 | | MARYLAND | 138 | | | Page No. | |-------------------------|----------| | TABLES OF COSTS (CONT.) | | | <u>States</u> | | | DELAWARE | 146 | | VIRGINIA | 156 | | WEST VIRGINIA | 164 | | DISTRICT OF COLUMBIA | 172 | #### CHAPTER 1 INTRODUCTION Fourteen State Programs are presented in this Annex and each is a reformulation along state boundaries of the appropriate Area Programs of Annex 1. The procedures used for these reformulations were agreed to by the personnel of the agencies responsible for the appendices to the NAR Report. These are mixed objective State Programs and the reformulations were done in a manner that would insure no changes in the plan formulation decisions on alternative planning elements: objectives, needs, devices, benefits and costs. #### CHAPTER 2 METHODOLOGY These State programs are rearrangements of the Area Programs along state boundaries. Each portion of a state within a given Area is designated as a state-area sector and the mixed objective information for that Area's Program has been distributed to the state-area sectors found within the Area. Thus, Area 4 has been divided into two state-area sectors: the Maine-4 sector composed of all of Area 4 which lies in Maine and the New Hampshire-4 sector for the portion that lies in New Hampshire. Planning elements (needs, devices and costs) of each Area have been distributed among the state-area sectors in that Area according to various methodologies that, with the available information, best describe the distribution of the elements in the Area. This Annex is written in conjunction with the Report and Annex 1 to the Report and detailed definitions, descriptions and methodologies presented in those volumes have not been repeated. Chapters 2, 4, 5, 6 and 7 of the Report and chapters 2 and 3 of Annex 1 are of particular value to the understanding of this Annex. Chapters 6 and 7 of the Report are of special significance as they give detailed definitions of the planning elements and brief descriptions of the methodologies used in determing projections. Of particular value in Annex 1 is Chapter 2, which gives detailed methodologies used in writing the Area programs, and Chapter 3, which gives comparisons between the Area programs and other published basin studies. Each State Program consists of four sectors and contains similar information presented in the following order: State Map State Description State Program - needs devices costs State Tables - needs devices costs #### CONTENTS OF EACH SECTION State Map. A map of each state is included showing the boundaries of the state and the state-area sectors within the state as well as the location of the more important cities. State Descriptions. Each State Program is introduced by a brief description which indicates the major physical and economic characteristics of the state such as area, topography, population, major industries and per capita income levels. State Program. A program for each state is given which highlights the significant needs, devices and costs within the state. Each state-area sector in the state is examined in relation to the other sectors and the state as a whole, for large, important and key planning elements. An element is considered large or small as it related to other sectors of the state. An important need is one which must be fulfilled before the mixed objective of the sector in which it is located can be achieved. An important device is on that is essential for fulfilling a particular need(s) of a sector. A key need is one which must be fulfilled in order that other needs of the sector can be fulfilled and a key device must be used for the successful use of other devices in the sector. State Tables. All of the mixed objective information that is presented in the Area Program tables of Annex 1 is included in the State Program tables by state total and by state-area sectors. An exception to this is that the devices the uses of which are
indicated by check marks rather than by figures in the Annex 1 device tables, could not be allocated to state-area sectors and are not included in the tables of Annex 2. All of the needs and costs which were similarly check marked in the Area tables when they occured, are assumed to apply to all sectors in an Area and are included in the Annex 2 tables. #### DETAILED METHODOLOGIES Needs. The following fifteen major need catagories are included in the State Programs. Publicly Supplied Water Industrial Self-supplied Water Rural Water Supply Irrigation Water Power Plant Cooling Water Hydroelectric Power Generation Navigation Water Recreation Fish and Wildlife Water Quality Maintenance Flood Damage Reduction Drainage Control Erosion Control Visual and Cultural Environment Health The methodologies for distributing these needs from Area to state-area sectors are given in the following paragraphs. The need for Publicly Supplied Water in each Area was allocated to the state-area sectors in accordance with the population distribution on the assumption that the distribution of the Publicly Supplied Water is directly related to the population distribution in the Area. The Industrial Self-supplied Water need was distributed according to the distribution of the economic value added for the six major water using industries. It was assumed that the total self-supplied water use in each sector of an Area for all industries would be proportional to the present total value added of the major water using industries: food, textiles, paper, chemicals, petroleum and primary metals. The Rural Water need was assumed proportional to the rural population and was distributed in this manner. The need for agriculture Irrigation Water was assumed to be proportional to the amount of irrigated land in each sector and the Area need was distributed according to these percentages. The location of non-agriculture Irrigation Water was allocated by the percentage of total non-agriculture irrigated land in each sector as determined by the staff of the Department of Agriculture. Distribution of the needs for Power Plant Cooling Water -- saline, brackish and fresh withdrawal and brakish and fresh consumption -- were obtained from the staff of the Federal Power Commission (FPC). The original sources for determing the needs of Annex 1 were evaluated by the FPC staff to determine the assumed location of the power needs by sectors. The presumed need for Hydroelectric Power Generation was distributed by the FPC in the same manner as for Power Plant Cooling Water. The needs for Navigation were distributed to the appropriate statearea sectors on the basis of the present location of navigational facilities: commercial navigation according to present commercial ports and recreational boating according to present recreational boating sites. All the needs for Water Recreation -- visitor days, stream or river miles, water surface, beach and pool areas and acreage for land facilities -- were allocated primarily by population. This assumption, that Water Recreation needs are proportional to population, was modified in some instances to account for the location of available recreational sites. The distribution of these needs was done by the staff of the Bureau of Outdoor Recreation, Department of the Interior. The Fish and Wildlife needs were distributed by various methods. The man-day requirements for sport fishing, hunting and nature study were allocated to the state-area sectors according to the total population distribution on the assumption that the needs were proportional to population distribution on the assumption that the needs were proportional to population. The lake and stream surface areas, and the sport fishing access for anadromous and freshwater fish were distributed by the percentage of water area in each sector as these needs would be proportional to the available resources. Piers and salt water fishing access needs were determined by estimating the approximate miles of coastline in each sector and distributing the needs in proportion to these figures. Hunting access was assumed proportional to land suitable for game animals and was apportioned by the percentages of total forest, crop and pasture land in each sector. Nature study access, the primary need for which was assumed to occur only in urban areas, was allocated by the percentage of urban and other land in the sectors. The non-industrial portion of the Water Quality Maintenance need was assumed to be proportional to the total population distribution. The industrial portion of the Water Quality Maintenance need consists of the summation of the needs of eight major categories of industries. The population equivalent loading (PE's) from each of these industries, as identified in Appendix L, was allocated to the state-area sectors according to the distribution of the economic value added for each industry. In each sector the needs of each industrial category -- food, textiles, paper, chemicals, petroleum, primary metals, mining, and miscellaneous industries -- were added together for the sector total. The upstream Flood Damage Reduction needs were obtained from the sources originally used to determine upstream damages for Annex 1 which were site specific and readily identified. The mainstream and tidal and hurricane Flood Damage Reduction needs were determined by identifying the state-area sectors in which these land areas occur. The needs for Drainage Control on cropland, forest land and wet land were obtained from the percentages of total land area in each sector. The Erosion Control needs in each sector were determined by the staff of the Department of Agriculture from the original sources used for the Area needs of Annex 1. The needs are based on the actual location of the sites which are most likely to receive erosion protection. The needs for Health were assumed to occur in each state-area sector in the Region. The Visual and Cultural needs were determined by locating on the original maps used for the preparation of Appendix N the actual sites considered for improvement and, thus, the proportion of the total need in each sector. Devices. The devices considered in this Annex are described in the following eleven categories: Storage facilities Withdrawal facilities Conveyance facilities Quality control facilities Desalting facilities Flood plain management Local flood protection Watershed management Land controls Flood controls storage Waste water The devices used for storage facilities are upstream reservoirs (storage less than 5000 sq. ft.) and mainstream reservoirs (storage greater than 5000 sq. ft.). The upstream reservoirs were allocated on the assumption that the devices would be distributed among the state-area sectors in proportion to the available sites which are suitable for upstream storage facilities. The locations of proposed mainstream reservoirs sites were noted and estimates were made as to the projects most likely to be completed. The required devices were then distributed to sectors which contained these most probable project sites. The device used for withdrawal facilities are fresh water intakes and pumping, brackish water intakes and pumping and wells. The fresh water intakes and pumping devices were distributed in two ways: those used to meet the Publicly Supplied Water needs and those used to meet the Industrial Self-supplied Water needs. The first set of fresh water intakes and pumping devices were distributed in proportion to the total population and the second set according to the value added percentages for industry. Brackish water intakes and pumping devices were also apportioned according to the value added percentages for industry. The distribution of wells was based on the actual location of available ground water sources. It was assumed that well utilization would be approximately proportional to the available supplies. Conveyance facilities for interbasin diversions were known to be located in specific Areas and state-area sectors. Potable water treatment plants and waste water treatment plants are the devices used for water quality control facilities. The first type of plan is used primarily for Publicly Supplied Water needs and is apportioned to the state-area sectors according to the distribution of total population. Waste treatment plants (secondary treatment with both 85% and 90% PE removal and advanced treatment with 95% PE removal) were directly distributed to state-area sectors according to the distribution of Water Quality Maintenance needs in each sector and the degree of treatment required. Site locations for desalting facilities were known and these facilities distributed to state-area sectors according to these locations. The use of upstream flood plain management in each state-area sector was determined from the amount of flood plain in each sector and the mixed objective of the Area. The amount of flood plain in each sector was determined from the original sources used to locate the upstream flood control devices for Appendix F. The distribution to state-area sectors of local flood protection projects was made on the basis of available sites in each sector for upstream river protection projects and on the basis of the actual location of the projects for mainstream river and coastal protection projects. Flood control channels were distributed on the basis of available sites as determined from the sources originally used to determine the upstream flood damage control devices of Appendix F. Watershed management devices were also distributed according to the percentage of available sites in each state-area sector, as determined from the sources used for Appendix F. Land control devices are primarily used to meet Visual and Cultural needs. The amount and type of land control devices used in each state-area sector are distributed in direct relationship to the amount and type of Visual and Cultural needs in each sector and the mixed objective
chosen for the Area. A need for a specific amount of land for a particular purpose and a given objective require specific devices for that same amount of land. Upstream flood control reservoirs were distributed according to the percentage of available sites in each state-area sector. Sites for mainstream flood control reservoirs were identifiable in each Area and state-area sector. Waste water is used to help fulfill the Industrial Self-supplied Water needs and was distributed according to the percentage of industrial need in each state-area sector as determined from the value added for industry. <u>Costs</u>. Methodologies used to allocate costs in each area are described in thirteen catagories: Water Development Water Withdrawal and Conveyance Power Plant Cooling Water Hydroelectric Power Generation Navigation Water Recreation Fish and Wildlife Water Quality Maintenance Flood Damage Reduction Drainage Control Erosion Control Health Visual and Cultural Water development costs were derived from the supply model and allocated according to differing methodologies. Upstream reservoir costs were allocated on the basis of the percentage of available upstream reservoir sites as determined from Appendix F. Mainstream reservoir costs were distributed according to differing methodologies. Upstream reservoir costs were allocated on the basis of the percentage of available upstream reservoir sites as determined from Appendix F. Mainstream reservoir costs were distributed according to the percentage of mainstream reservoir projects in each state-area sector and informed estimates of the projects most likely to be constructed. Costs for well development were assumed proportional to the available resource and were distributed according to the percent of ground water development in each state-area sector. As the possible location by state-area sector of the desalting devices are known their costs were allocated to the sectors containing the devices. Water withdrawal and conveyance costs were allocated by different methods. The conveyance costs for inter-basin transfers were allocated to the state-area sectors identified as receiving the benefits of the transfers. The withdrawal and conveyance costs for Public Water Supply were allocated according to the percentage of total population in each sector. These devices costs for Industrial Self-supplied Water were distributed according to the distribution of the industrial need as determined by the distribution of value added for industry. The Rural Water Supply costs were unknown. The costs for agricultural Irrigation Water were distributed according to the percent of irrigated land in each sector. The non-agriculture Irrigation Water costs were allocated according to the percent of total land in each sector. The costs for Power Plant Cooling Water were provided by the staff of the Federal Power Commission from the original sources used for Appendix P. Power. Hydroelectric Power Generation costs are unknown. Navigation costs were distributed according to device locations in the case of commercial navigation and according to the location of present recreational boating for recreational boating needs. Water Recreation costs were distributed according to the percentages of total population in each state-area sector. Only fishing access costs for Fish and Wildlife needs are known and these were distributed according to total population. Water Quality Maintenance costs for secondary and advanced treatment are directly proportional to the waste load and the degree of treatment used in each state-area sector. It was assumed that "other costs", which were for combined sewer overflow control, occur in the major urban centers and that these costs were allocated to the sectors containing these centers in each Area. The "other costs" for acid mine drainage control were distributed to the sectors which contain coal mining. Each of the structural devices used for fulfilling upstream and mainstream Flood Damage Reduction needs have an associated cost and each statearea sector containing the devices carries the associated costs. Drainage Control costs were distributed according to the percentage of total land area in each state-area sector. Erosion Control costs were distributed by the staff of the Department of Agriculture to those state-area sectors which would receive the erosion control devices. Costs for Health were unknown. Visual and Cultural costs in each state-area sector depend on the location and amount of land associated with each of the land control devices. Visual and Cultural needs and devices for meeting these needs were located on maps so that the sector containing the needs also contain the devices and the associated costs. #### DISTRIBUTION PERCENTAGES Many of the planning elements were distributed among the state-area sectors according to percentages derived from various sources. These percentage distributions are displayed in Tables of Percentage Distribution of Areas Among States, pages to . The sources and methodologies used to determine these percentages are described in the following section. Population. The population of each county in the NAR region was determined from the 1967 County and City Data Book, U.S. Bureau of the Census. Counties were located in the appropriate state-area sectors (see Table B-7, Appendix B, Economic Base) and percentages of total area population in each state-area was determined. The County and City Data Book gives percentages of urban population for each county which was used to determine the percentage of urban and rural population in each state-area sector. (It was assumed that the percent rural was equal to one hundred minus the percent urban.) For urban and rural population each county with a few exceptions was considered to be located in one of the 21 Areas depending upon the location of major population concentrations. For total population, the population of counties in two or more Areas were distributed to those Areas in proporation to surface area on the assumption of uniform population density within the county. It was assumed that these methods of determining population distribution would give the best overall distribution of the planning elements dispite the fact that discrepencies occured which would indicate that a state-area sector could have a given percentage of total population but zero urban and rural populations. Area. All of the area distribution percentages with the exception of irrigated land area was obtained from Table G-11 page G-38 of Appendix G, Land Use Management. The irrigated area percentages were obtained by the staff of the Department of Agriculture from sources used in developing irrigation requirements for Appendix L, Irrigation. Value Added. The value added percentages were obtained from the economic value added of selected industries as determined from the 1963 Census of Manufactures, U.S. Department of Commerce, Bureau of the Census. Six major water using industries were used to determine the percentages of value added for each state-area sector for Industrial Self-supply. These industries were Food and Kindred products, Textile Mill products, Paper and Allied products, Petroleum and Coal products, and Primary Metal industries. For Water Quality Maintenance the product of the percentage of value added in each sector for each industry and the before treatment waste load of the industry (obtained from Tables L-6, Appendix L, Water Quality and Pollution) was used to determine an approximate distribution of the pollution loading for that industry. The population loading of all industries considered (the six for Industrial Self-supplied plus mining and miscellanous) were then used to determine percentage distribution for Water Quality Maintenance. Recreational Boating. The recreational boating percentages were determined from the present distribution of recreational boating which was used in the development of Appendix K, Navigation, by the NAR Study staff. Storage. The upstream storage percentages were based on the storage capacity of all available upstream storage sites as determined from material obtained by the Department of Agriculture for the development of Appendix F, Upstream Flood Prevention and Water Management. The mainstream storage distribution is based on the location of storage projects most likely to be completed of all projects identified in Appendix E, Flood Damage Reduction and Water Management for Major River and Coastal Areas. Groundwater Development. The percentage distribution of ground water development was based on the location and capacities of the available groundwater fields as determined from material used in developing Appendix D, Geology and Ground Water. TABLES OF PERCENTAGE DISTRIBUTION OF AREAS AMONG STATES #### AREA 1 - ST. JOHN RIVER BASIN 100 percent of all needs, devices, and costs in Area 1 are allocated to Maine. #### AREA 2 - PENOBSCOT RIVER BASIN 100 percent of all needs, devices, and costs in Area 2 are allocated to Maine. #### AREA 3 - KENNEBEC RIVER BASIN 100 percent of all needs, devices, and costs in Area 3 are allocated to Maine. AREA 4 - ANDROSCOGGIN RIVER BASIN | | | 1 1 | | | |-------------------------|-------|--------------------|---|--| | | | New | | | | | Maine | Hampshi r e | | | | Percent of: | | | | | | | | | | | | Population | | | | | | Total | 95 | 18 | | | | Urban · | 79 | 21 | | | | Rural | 70 | 24 | | | | Area | | | | | | Total | 79 | 21 | | | | Land | 79 | 21 | | | | Water | 84 | 16 | | | | Forest, Crop, | | | | | | and Pasture | 78 | 22 | | | | Urban and Other | 91 | 9 | | | | Irrigated | 100 | 0 | | | | Value Added | | | | | | for Industrial | | | | | | Self-Supply | 100 | 0 | 1 | | | for Water Quality. | | | | | | Maintenance | 80 | 20 | | | | Recreational Boating | 97 | 3 | | | | Storage | | | | | | Upstream | 66 | 34 | | | | Mainstraam | 0* | 0* | | | | Groundwater Development | 87 | 13 | | | ^{*} No mainstream storage in Area 4. ###
AREA 5 - MAINE COASTAL BASINS 100 percent of all needs, devices, and costs in Area 5 are allocated to Maine. AREA 6 - SOUTHERN MAINE AND COASTAL NEW HAMPSHIRE | 1 | | New | | 1 | |-------------------------|----------|-----------|-------|---| | | Maine_ | Hampshire | Mass. | | | Percent of: | | | | | | | | | | | | Population | | | | | | Total | 60 | 37 | 3 | | | Urban | 66 | 34 | 0 | | | Rural | 55 | 45 | O | | | Area | | | | | | Total | 60 | 40 | 0 | | | Land | 57 | 43 | 0 | | | Water | 90 | 10 | 0 | | | Forest, Crop, | | | | | | and Pasture | 55.2 | 44.6 | 0.2 | | | Urban and Other | 68.0 | 31.3 | 0.7 | | | Irrigated | 70 | 30 | 0 | | | Value Added | | | | | | for Industrial | | | | | | Self-Supply | 89 | 11 | 0 | | | for Water Quality | | | | | | Maintenance | 58 | 42 | 0 | | | Recreational Boating | 58
80 | 50 | 0 | | | Storage | | | | | | Upstream | 39 | 61 | 0 | | | Mainstream | 0* | 0* | 0* | | | Groundwater Development | 72 | 28 | 0 | | ^{*} No mainstream storage in Area 6. AREA 7 - MERRIMACK RIVER BASIN | | New
Hampshire | Mass. | | | |-------------------------|------------------|-------|------|--| | Percent of: | | | | | | Donulation | | | | | | Population
Total | 20 | 60 | | | | | 32 | 68 |
 | | | Urban | 28 | 72 |
 | | | Rural | 46 | 54 |
 | | | Area | | | | | | Total | 76 | 24 |
 | | | Land | 76 | 24 | | | | Water | 82 | 18 | | | | Forest, Crop, | | | | | | and Pasture | 81 | 19 | | | | Urban and Other | 47 | 53 | | | | Irrigated | 33 | 67 | | | | Value Added | | | | | | for Industrial | | | | | | Self-Supply | 31 | 69 | | | | for Water Quality | | | | | | Maintenance | 35 | 65 | | | | Recreational Boating | 80 | 20 | | | | Storage | | | | | | Upstream | 79 | 21 | | | | Mainstream | 100 | 0 | | | | Groundwater Development | 71 | 29 | | | AREA 8 - CONNECTICUT RIVER BASIN | | New | | | | | |-------------------------|-----------------|-------------|------------|----------|--| | | Hampshire | Vermont | Mass. | Conn. | | | | TICMPOTITIC | VCIMOTIO | 1.1622 | com. | | | Percent of: | | | | | | | Population | | | | | | | Total | 9 | 7 | 25 | 1,0 | | | Urban | 5 | 7 | 3 5 | 49
53 | | | Rural | 17 | 19 | 28 | 36 | | | Area | | 19 | 20 | 20 | | | Total | 27 | 35 | 25 | 13 | | | Land | 27 | 36 | 24 ′ | 13 | | | Water | 24 | 15 | 40 | 21 | | | Forest, Crop, | | | | | | | and Pasture | 29 | 37 | 23 | 11 | | | Urban and Other | 12 | 16 | 34 | 38 | | | Irrigated | 1 | 4 | 29 | 66 | | | Value Added | | | | | | | for Industrial | | | | | | | Self-Supply | 4 | 1 | 61 | 34 | | | for Water Quality | | | | | | | Maintenance | 2 | 4 | 83 | 11 | | | Recreational Boating | 25 | 15 | 30 | 30 | | | Storage | | | | | | | Upstream | 30 | 35 | 13 | 22 | | | Mainstream | 50 * | 50 * | 0* | 0* | | | Groundwater Development | 26 | 28 | 26 | 20 | | ^{* 1980} and 2000. In 2020, 3% N. H., 0% Vt., 52% Mass., 9% Conn. AREA 9 - SOUTHEASTERN NEW ENGLAND | | Vana | Rhode | 0.000 | | |--|-------|--------|-------|--| | - Daniel de la constant consta | Mass. | Island | Conn. | | | Percent of: | | | | | | Population | | | | | | Total | 83 | 17 | 0 | | | Urban | 82 | 18 | 0 | | | Rural | 83 | 17 | 0 | | | Area | | | | | | Total | 74 | 25 | 1 | | | Land | 73 | 25 | 2′ | | | Water | 64 | 36 | 0 | | | Forest, Crop, | | | | | | and Pasture | 73 | 25 | 2 | | | Urban and Other | 78.4 | 21.2 | 0.4 | | | Irrigated | 92 | 8 | 0 | | | Value Added | | | | | | for Industrial | | | | | | Self-Supply | 78 | 22 | 0 | | | for Water Quality | | | | | | Maintenance | 82 | 18 | 0 | | | Recreational Boating | _ 75 | 25 | 0 | | | Storage | | | | | | Upstream | 84 | 11 | 5 | | | Mainstream | 0 | 100 | 0 | | | Groundwater Development | 83 | 17 | 0 | | AREA 10 - THAMES AND HOUSATONIC RIVER BASINS | | Mass. | Conn. | Rhode
Island | New York | | |-------------------------|-------|-------|-----------------|----------|--| | Percent of: | | | | | | | Population | | | | | | | Total | 7 | 82 | 2 | 8 | | | Urban | 3 | 97 | 0 | Ö | | | Rural | 9 | 91 | 0 | 0 | | | Area | | | | | | | Total | 17 | 76 | 1 | 6 | | | Land | 17 | 76 | 1 | 6 | | | Water | 17 | 83 | 0 | 0 | | | Forest, Crop, | | | | | | | and Pasture | 17 | 75 | 2 | 6 | | | Urban and Other | 12.6 | 82.4 | 0.4 | 4.6 | | | Irrigated | 2 | 98 | 0 | 0 | | | Value Added | | | | | | | for Industrial | | | | | | | Self-Supply | 7 | 93 | 0 | 0 | | | for Water Quality | | | | | | | Maintenance | 24 | 76 | 0 | 0 | | | Recreational Boating | 8 | 90 | 1 | 1 | | | Storage | | | | | | | Upstream | 43 | 57 | 0 | 0 | | | Mainstream | 0* | 100* | 0* | 0* | | | Groundwater Development | 29 | 71 | 0 | 0 | | ^{* 1980} and 2000. In 2020, 49% Mass., 23% Conn., 0% R. I., 28% N. Y. AREA 11 - LAKE CHAMPLAIN AND ST. LAWRENCE RIVER DRAINAGE | | Vermont | New York | | | |-------------------------|----------|----------|---|--| | Percent of: | | | | | | | | | | | | Population | | | | | | Total | 48 | 52
48 | | | | Urban | 52 | 48 | | | | Rural | 52
46 | 54 | | | | Area | | | | | | Total | 44 | 56 | İ | | | Land | 1414 | 56 | | | | Water | 45 | 55 | | | | Forest, Crop, | | | | | | and Pasture | 44 | 56 | | | | Urban and Other | 40 | 60 | | | | Irrigated | 54 | 46 | | | | Value Added | | | | | | for Industrial | | | | | | Self-Supply | 7 | 93 | | | | for Water Quality | | | | | | Maintenance | 10 | 90 | | | | Recreational Boating | 26 | 74 | | | | Storage | | | | | | Upstream | 79 | 21 | | | | Mainstream | 0 | 100 | | | | Groundwater Development | 27 | 73 | | | AREA 12 - HUDSON RIVER BASIN | | New Jersey | Vermont | Mass. | Nov. Youls | Conn | |-------------------------|-------------|---------|-------|------------|-------| | Percent of: | INCW DELBEY | Vermone | Mass. | New York | Conn. | | | | | | | | | Population | | | | | | | Total | 15 | 1 | 1 | 81 | 2 | | Urban | Ó | 0.7 | 0 | 99.3 | 0 | | Rural | 0 | 2.2 | 0 | 97.8 | 0 | | Area | | | | 71.0 | | | Total | 2 | 3 | 2 | 93 | 0 | | Land | 2 | 4 | 1 ′ | 93 | 0 | | Water | 6 | 0 | 2 | 92 | 0 | | Forest, Crop, | | | | | | | and Pasture | 1.4 | 3.8 | 1.5 | 93.0 | 0.3 | | Urban and Other | 4.0 | 1.3 | 1.0 | 93.6 | 0.1 | | Irrigated | 0 | 0 | 0 | 100 | 0 | | Value Added | | | | | | | for Industrial | | | | | | | Self-Supply | 0 | 0 | 0 | 100 | 0 | | for Water Quality | | | | 100 | | | Maintenance | 0 | 0 | 0 | 100 | 0 | | Recreational Boating | 2 | 1 | 1 | 96 | 0 | | Storage | | | | | | | Upstream | 0 | 0.1 | 3.7 | 96.2 | 0 | | Mainstream | 0 | 0 | 0 | 100 | 0 | | Groundwater Development | 4 | 16 | 5 | 75 | 0 | ### AREA 13 - SOUTHEASTERN NEW YORK METROPOLITAN AREA 100 percent of all needs, devices, and costs in Area 13 are allocated to New York. AREA 14 - NORTHERN NEW JERSEY | | | | • | | |-------------------------|------------|----------|---|--| | | New Jersey | New York | | | | Percent of: | | | | | | | | | | | | Population | | | | | | Total | 98 | 2 | | | | Urban | 100 | 0 | | | | Rural | 100 | 0 | | | | Area | | | | | | Total | 93 | 7 | İ | | | Land | 24 | 6 | | | | Water | 73 | 27 | | | | Forest, Crop, | | | | | | and Pasture | 93 | 7 | | | | Urban and Other | 95 | 5 | | | | Irrigated | 100 | 0 | | | | Value Added | | | | | | for Industrial | | | | | | Self-Supply | 100 | 0 | | | | for Water Quality | | | | | | Maintenance | 100 | 0 | | | | Recreational Boating | 90 | 10 | | | | Storage | | | | | | Upstream | 100 | 0 | | | | Mainstream | 100 | 0 | | | | Groundwater Development | 100 | 0 | | | AREA 15 - DELAWARE RIVER BASIN | | | , , | | | | |-------------------------|----------|------------|-------|----------|----------| | | New York | New Jersey | Penn. | Delaware | Maryland | | Percent of: | | | | | | | Population | | | | | | | Population | | | | , | | | Total | 1 | 20 | 73 | 6 | 0 | | Urban | 0.4 | 19.7 | 74.5 | 5.4 | 0 | | Rural | 6 | 23 | 63 | 8 | .0 | | Area | | | | | | | Total | 19 | 23 | 50 | 8 | 0 | | Land | 19 | 23 | 51 ′ | 7 | 0 | | Water | 17 | 22 | 36 | 25 | 0 | | Forest, Crop, | | | | | | | and Pasture | 21.2 |
22.4 | 49.8 | 6.5 | 0.1 | | Urban and Other | 8.2 | 26.9 | 54.0 | 10.8 | 0.1 | | Irrigated | 1 | 78 | 8 | 13 | 0 | | Value Added | | | | | | | for Industrial | | | | | | | Self-Supply | 0.4 | 19.0 | 78.6 | 2.0 | 0 | | for Water Quality | | | | | | | Maintenance | 0.3 | 16.1 | 80.5 | 3.1 | 0 | | Recreational Boating | 5 | 35 | 40 | 20 | 0 | | Storage | | | | | | | Upstream | 30 | 35 | 30 | 5 | 0 | | Mainstream | 0 | 0 | 100 | Ó | 0 | | Groundwater Development | 1.4 | 38 | 42 | 6 | 0 | # AREA 16 - COASTAL NEW JERSEY 100 percent of all needs, devices, and costs in Area 16 are allocated to New Jersey. AREA 17 - SUSQUEHANNA RIVER BASIN | | New York | Penn. | Maryla nd | | |-------------------------|----------|------------|------------------|--| | Percent of: | | | | | | Population | | | | | | Total | 20 | 7 8 | 2 | | | Urban | 20 | 80 | 0 | | | Rural | 21 | 79 | 0 | | | Area | | | | | | Total | 23 | 76 | 1 | | | Land | 23 | 76 | 1 | | | Water | 22 | 74 | 24 | | | Forest, Crop, | | | | | | and Pasture | 22 | 77 | 1 | | | Urban and Other | 27.8 | 71.7 | 0.5 | | | Irrigated | 24 | 76 | 0 | | | Value Added | | | | | | for Industrial | | | | | | Self-Supply | 6 | 94 | 0 | | | for Water Quality | | | | | | Maintenance | 5 | 95 | 0 | | | Recreational Boating | 20 | 70 | 10 | | | Storage | | | | | | Upstream | 19 | 80 | 1 | | | Mainstream | 14* | 86* | 0* | | | Groundwater Development | 23.2 | 76.2 | 0.6 | | ^{* 1980} only. In 2000, 25% N. Y., 75% Penn., 0% Md.; in 2020, 49% N. Y., 51% Penn., 0% Md. AREA 18 - CHESAPEAKE BAY AND DELMARVA PENINSULA DRAINAGE | | D. 1 | | | | | |-------------------------|----------|-------|----------|----------|--| | | Delaware | Penn. | Maryland | Virginia | | | Percent of: | | | | | | | | | | | | | | Population | | | | | | | Total | 4 | 1 | 93 | 2 | | | Urban | 0.9 | 0 | 99.1 | 0 | | | Rural | 9 | 0 | 83 | 8 | | | Area | | | | | | | Total | 13 | 1 | 74 | 12 | | | Land | 15 | 1 | 75 | 9 | | | Water | l | 0 | 68 | 31 | | | Forest, Crop, | | | | | | | and Pasture | 16 | 1 | 76 | 7 | | | Urban and Other | 9.2 | 0.7 | 70.0 | 20.1 | | | Irrigated | 21 | 0 | 42 | 37 | | | Value Added | | | | | | | for Industrial | | | | | | | Self-Supply | 3.1 | 0 | 96.5 | 0.4 | | | for Water Quality | | | | | | | Maintenance | 4.1 | 0 | 95.4 | 0.5 | | | Recreational Boating | 0.4 | 0 | 95.3 | 4.3 | | | Storage | | | | | | | Upstream | 0.4 | 0 | 99.6 | 0 | | | Mainstream | 0* | 0* | 0* | 0* | | | Groundwater Development | 18 | 0 | 67 | 15 | | ^{*} No mainstream storage in Area 18. AREA 19 - POTOMAC RIVER BASIN | | District | | | | | | |-------------------------|----------|----------|------------|----------|----------|--| | | | | of | | West | | | | Penn. | Maryland | Columbia | Virginia | Virginia | | | Percent of: | | | | | | | | | | | | | | | | Population | | | | | | | | Total | 5 | 35 | 26 | 30 | 4 | | | Urban | 2.2 | 36.6 | 39.5 | 20.5 | 1.2 | | | Rural | 12 | 38 | 0 | 38 | 12 | | | Area | | | | | | | | Total | 11 | 26 | 0 | 39 | 24 | | | Land | 11 | 26 | 0 | 39
31 | 24 | | | Water | 4 | 56 | 0 | 31 | 9 | | | Forest, Crop, | | | | | | | | and Pasture | 11_ | 26 | 0 | 37 | 26 | | | Urban and Other | 10 | 22 | 14 | 56 | 8 | | | Irrigated | 20 | 24 | 0 | 43 | 13 | | | Value Added | | | | | | | | for Industrial | | | | | | | | Self-Supply | 16 | 31 | 29 | 21 | 3 | | | for Water Quality | | | | | | | | Maintenance | 8 | 63 | 15 | 9 | 5 | | | Recreational Boating | 0 | 53.2 | 15
14.9 | 30.0 | 1.9 | | | Storage | | | | | | | | Upstream | 0 | 48 | 0 | 41 | 11 | | | Mainstream | 0* | 35* | 0* | 23* | 42* | | | Groundwater Development | 2.8 | 23.4 | 0.2 | 44.9 | 28.7 | | | | | | | | | | ^{* 1980} only. In 2000, 8% Penn., 14% Md., 0% D. C., 50% Va., 28% W. Va.; in 2020, 14% Penn., 19% Md., 0% D. C., 43% Va., 24% W. Va. # AREA 20 - RAPPAHANNOCK AND YORK RIVER BASINS 100 percent of all needs, devices, and costs in Area 20 are allocated to Virginia. AREA 21 - JAMES RIVER BASIN | | | West | 1 | 1 | |-------------------------|----------|----------|---|---| | | Virginia | Virginia | | | | Percent of: | | | | | | | | | | | | Population | | | | | | Total | 100 | 0 | | | | Urban | 100 | 0 | | | | Rural | 100 | 0 | | | | Area | | | | | | Total | 100 | 0 | | | | Land | 100 | 0 | | | | Water | 100 | 0 | | | | Forest, Crop, | | | | | | and Pasture | 99.5 | 0.5 | | | | Urban and Other | 100 | 0 | | | | Irrigated | 100 | 0 | | | | Value Added | | | | | | for Industrial | | | | | | Self-Supply | 100 | 0 | | | | for Water Quality | | | | | | Maintenance | 100 | 0 | | | | Recreational Boating | 100 | 0 | | | | Storage | | | | | | Upstream | 100_ | 0 | | | | Mainstream | 100 | 0 | | | | Groundwater Development | 99 | 1 | | | # NOTES FOR TABLES OF ALL STATE PROGRAMS 1. The following notations are used in the tables: blank - no application in this area X - application but no figures available 0 - a value of zero 2. Need abbreviations used in the Device Tables include the following: | Publicly Supplied Water | PS | |---------------------------------|-------| | Industrial Self-supplied Water | Ind | | Rural Water Supply | Rur | | Irrigation Water | Irrig | | Power Plant Cooling | Pow | | Hydroelectric Power Generation | HPG | | Navigation | Nav | | Water Recreation | Rec | | Fish and Wildlife | FW | | Water Quality Maintenance | WQ | | Flood Damage Reduction | FDR | | Drainage Control | Drn | | Erosion Control | Ern | | Health | H1th | | Visual and Cultural Environment | VC | | | | - 3. Major tributaries are included in all mainstream figures that are under Flood Damage Reduction Needs of Table 1, Flood Plain Management and Waterway Management Devices of Table 2 and Flood Damage Reduction Costs of Table 3. - 4. All figures in the Needs Table 1 are gross; that is, each target year figure includes all previous needs. The Devices and Costs figures of Tables 3 and 4 show only increments for periods between target years. - 5. Figures for base years of Water Recreation needs in Table 1 are included in the first target year figure. - 6. Power plant cooling costs are almost all privately incurred. Those costs shown in Table 3 are additional expenses beyond those necessary for the National Income objective. - 7. Mainstream Flood Damage Reduction needs, because of the expenses that would be involved, are most completely fulfilled in any Area. - 8. The need levels shown for Industrial Self-supplied Water are for fresh water use only. The devices and costs levels are these required to meet all Industrial Self-Supplied Water needs. # CHAPTER 3 STATE PROGRAMS # MAINE #### MAINE The State of Maine covers 33,214 square miles including all of Areas 1, 2, 3 and 5, most of Area 4, and over half of Area 6. The major river drainages are the St. John, Penobscot, Kennebec and Androscoggin Rivers. Overall visual quality for this predominantly forest and wildland State is high, though some portions comprise medial quality. The topography ranges from the mountainous western sections of Areas 3 and 4, through the wilderness segments of Areas 1 and 2, to the rolling hills and coastal marshes and plains of Areas 5 and 6. Water is generally abundant in Maine, but serious pollution problems exist in the lower reaches of the major streams below industrial, manufacturing and population centers. In 1970 the State's population was just under one million, concentrated primarily around Augusta, Bangor and Portland, and is expected to increase by one-half million by 2020. Per capita income was 17 percent below the national average in 1970 but is projected to rise to only 12 percent below by 2020. Employment will continue to be highest in services and related industries, but increases are projected for manufacturing, especially paper and allied products. Employment in agriculture, fisheries and forestry is projected to decrease 50 percent by 2020. Needs to be Satisfied. The need for Publicly Supplied Water is important in Areas 1, 3, 4, 5 and 6 and is largest in Area 6. Industrial Self-supplied Water needs are largest in Area 2, and important in all Areas of the State. Rural Water Supply is important only in Area 6, and largest in Area 1. Irrigation needs are both largest and most important in Area 1, although nonagricultural Irrigation needs are relatively large in Area 6. Power Plant Cooling needs, important in Areas 4, 5 and 6 are greatest in Area 5. Hydroelectric Power Generation is large in Areas 1 through 4. Commercial navigation is large in Area 6 and recreational boating, though largest in Area 6, is important in Area 1. Water Recreation needs, largest in the portion of Area 6 contained in Maine, is important in Areas 1, 2, 4 and 5. Fish and Wildlife needs, important in Areas 1, 4 and 5, are greatest in Area 6. Water Quality needs are key in all Areas except 6, important in Areas 2 and 4 and largest in Area 2. The need for Flood Damage Reduction is both largest and important in Area 4. Drainage Control needs are of the greatest magnitude in Area 3 while Erosion Control needs are largest in Area 5. Visual and Cultural needs, key in Areas 1 and 4, are important in Areas 2 through 5, and largest in Areas 1 and 2. Devices. Storage facility devices are largest in Area 1 and withdrawal facility devices are largest in Area 2. Quality control facilities are key in Areas 3 and 4, important in Areas 1, 3 and 4 and largest in Areas 1 and 2 for waste treatment plants and in Areas 3 and 4 for potable water treatment plants. Water/land management devices are of greatest magnitude in Area 5. Land control devices are large in Areas 1 and 2, but key in Area 4 and important in Areas 1, 2 and 4. Costs. Water development costs are largest in Area 1, while water withdrawal and conveyance costs, except for Irrigation, are greatest in Area 3. The Irrigation costs are greatest for agriculture in Area 1 and for non-agriculture in Area 6. Costs for Power Plant Cooling Water are greatest in Area 5, and for Navigation in Area 2. The costs for Water Recreation are largest in Area
3. The costs are largest in Area 6 for Fish and Wildlife, in Area 2 for Water Quality Maintenance and Flood Damage Reduction, Area 3 for Drainage Control, Area 6 for Erosion Control and Area 5 for Visual and Cultural. | | | STATE | TOTAL | | | |---|--------|-----------|-----------|-----------|------| | NEEDS-cumulative | Pres. | 1980 | 2000 | 2020 | | | Publicly Supplied Water (mgd) | 88 | 115 | 164 | 243 | | | Industrial Self-Supplied Water (mgd) | 340 | 630 | 1160 | 1880 | | | Rural Water Supply (mgd) | 18 | 24 | 31 | 30 | | | Irrigation Water: agriculture (1000 afy) | 2 | 33 | 75 | 119 | | | non-agriculture (1000 afy) | 1 | 8 | 14 | 22 | | | Power Plant Cooling: withdrawal, saline (cfs) | 410 | 1550 | 10420 | 21540 | | | brackish (cfs) | 0 | 0 | 70 | 155 | | | fresh (cfs) | 76 | 57 | 1075 | 3105 | | | consumption, brackish(cfs) | 0 | 0 | 33 | 75 | | | fresh (cfs) Hydroelectric Power Generation (mw) | 1 | 1 | 11 | 110 | | | Hydroelectric Power Generation (mw) Navigation: commercial (m. tons annually) | 590 | 550 | 2820 | 7200 | ļ | | recreational boating (1000 boats) | 35 | 52 | 85 | 133 | | | Water Recreation: visitor days (m.) | 86 | 102 | 173 | 297 | | | stream or river (miles) | X | 35 | 54
420 | 76
570 | | | water surface (1000 acres) | X | 330
79 | 115 | 152 | | | beach (acres) | X
X | 930 | 1170 | 1310 | | | pool (m. sq. ft.) | X | 16 | 20 | 22 | | | land facilities (1000 acres) | X | 47 | 62 | 75 | | | Fish & Wildlife: sport fishing man-days (m.) | 7.4 | 9.1 | 10.8 | 12.9 | | | surface area, lake (acres) | | | | 1 | | | stream (acres) | | | | | | | access, fresh (acres) | х | 0.13 | 0.37 | 0.65 | | | salt (acres) | Х | 0.36 | 1.07 | 1.96 | | | anadromous (acres) | X | 0.10 | 0.13 | 0.16 | | | piers (1000 feet) | | | X | X | | | hunting, man-days (m.) | 2.8 | 3.1 | 3.7 | 4.3 | | | access (1000 sq. mi.) | X | 0.29 | 1.43 | 2.61 | | | nature study, man-days (m.) | 1.2 | 1.4 | 1.7 | 2.0 | | | access(1000 ac.) | X | 0.20 | 0.41 | 0.82 | | | Water Quality Maint.: non-industrial (m. PEs) | 940 | 1090 | 1290 | 1540 | | | industrial (m. PEs) Flood Damage Reduction: | 10300 | 20500 | 38700 | 72400 | | | avg. ann. damage, upstream (m. \$) | 0.00 | 1 10 | 2 11 | / 11 | | | mainstream (m. \$) | 0.83 | 1.19 | 2.11 | 4.11 | | | tidal and hurricane (m. \$) | 1.9 | 2.8 | 5.3 | 10.9 | | | Drainage Control: cropland (1000 acres) | 0.03 | 91 | 149 | | | | forest land (1000 acres) | 0 | 91 | 28 | 241 | | | wet land (1000 acres) | U | | 20 | 112 | 2000 | | Erosion Control: agriculture (1000 acres) | 480 | 600 | 670 | 680 | | | urban (1000 acres) | 780 | 840 | 920 | 1020 | | | stream bank (mi.) | 0 | 10 | 32 | 53 | | | coastal shoreline (mi.) | 0 | _1 | 3 | 5 | | | Health: vector control and pollution control | х | X | X | х | | | Visual & Cultural: | | | | | | | landscape maintenance, unique natural(sq. mi.) | 1300 | 8400 | 8400 | 8400 | | | unique shereline (mi.) | 90 | 540 | 540 | 540 | | | high quality (sq. mi.) | 400 | 6700 | 12200 | 17200 | | | diversity (sq. mi.) | | | 1995 | | | | agriculture (sq. mi.) | X | X | X | X | | | landscape development, quality (sq. mi.) | | | | | | | diversity (sq. mi.)
metro. amenities (mi.) | | | | | | | metro. amenities (mi.) " (sq. mi.) | | | 1 | | | | (sq. m1.) | | | | | | | | | AREA | 1 | | | AREA | 2 | | | AREA | 3 | | | AREA | 4 | | |-----|--------|-------|----------|----------|--------|---------|---------|-------------------------------|------|------------------------------|-------------------------|--------------------------|-------------------------------|--|----------|---------| | | Pres | 1980 | 2000 | 2020 | Pres | 1980 | 2000 | 2020 | Pres | 1980 | 2000 | 2020 | Pres | 1980 | 2000 | 2020 | | | 6 | | | | 11 | | | | - | 21 | | | _ 11 | | | | | | 20 | | | | | | 420 | | 50 | | - | 190 | 90 | 140 | | 310 | | | 4 | | 7 | 8 | 3 | 3 | | | 3 | 4 | 5 | 5 | $\frac{1}{\sqrt{2}}$ | | 2 | 12 | | | 0.1 | | 40 | 73 | | 1 | | | 0.1 | 6 | | | | | 10 | | | | - 0 | | | | V. 1 | | | 4 | | | | | | | | | | | 19 | 0 | 500 | 550 | 57 | 57 | 300 | 926 | 0 | 0 | 275 | 1285 | 0 | 0 | 0 | 304 | | | 0 | | | 34 | 1 | 1 | 4 | | | 0 | | | | | | 16 | | | 2 | 0 | 800 | 1300 | | | | AND DESCRIPTION OF THE PARTY. | | that your to be not the last | 1720 | THE RESERVE AND ADDRESS. | All in teams of the last time | 160 | 160 | 1100 | | | | | | | 2 | 2 | 5 | | 0.03 | | | | | | | | | | 9 | | | | | 13 | 24 | | | 17 | 40 | | | 12 | | | | | Х | 30 | 4 | 5 | X | 5
60 | 7
70 | 10
100 | Х | 5
70 | | | Х | 4 | 6 | 8
80 | | | X | 8 | 40
11 | 50
14 | X
X | 15 | 21 | 28 | X | 18 | 90
26 | 120
34 | | 50
12 | 60
17 | | | | X
X | 80 | 90 | | | 140 | 180 | 200 | | 170 | | 230 | | 120 | | | | | X | 1 | 2 | 2 | X | 2 | 3 | 3 | X | 3 | | 4 | X | 2 | 2 | 3 | | | x | 4 | 5 | 7 | x | 8 | 10 | | x | 10 | | 15 | X | 7 | 8 | 10 | | | 0.7 | 0.9 | 1.0 | 1.2 | 1.1 | | 1.3 | | 0.7 | 1.2 | water the second second | | | 1.0 | | | | | х | 0 | | 0.05 | х | 0.002 | | | Х | 0.03 | 0.06 | 0.08 | х | 0.02 | | | | | х | 0.004 | 0.01 | 0.01 | х | 0.04 | 0.04 | 0.05 | х | 0.02 | 0.03 | 0.03 | | | | | | | 0.3 | 0.4 | 0.5 | 0.5 | 0.7 | 0.7 | 0.8 | 0.9 | 0.4 | 0.5 | 0.6 | 0.7 | 0.3 | 0.3 | 0.4 | 0.5 | | | x | | | 0.33 | x | | | 0.55 | | | 0.40 | | | | 0.12 | | | | 0.1 | 0.2 | | 0.2 | 0.2 | | | | | | 0.3 | | | The state of s | 110 | 120 | 140 | 160 | 140 | 160 | 190 | 220 | 150 | 170 | 190 | 220 | 110 | 120 | 130 | 150 | | | 2100 | 4500 | 8800 | 16600 | 3300 | 7200 | 14900 | 29300 | 1600 | 2700 | 4500 | 7700 | 2000 | 3400 | 5600 | 9500 | | | 0.06 | 0.10 | | | 0.11 | | | | | | | | 0.08
0.7 | | | | | | 11 | 17 | 28 | | 10 | 13 | 21 | 35 | 19 | 29 | 48 | 81 | 5 | 7 | 12 | 19 | | | 0 | 0 | 7 | 29 | 0 | 0 | 9 | 36 | | | | | 0 | 0 | 4 | 16 | | | 100 | 0.10 | 0.7 | 222 | | | | | | | | | | | | | | | 180 | | 270 | 280 | 40 | 3 | 50 | | 80 | 100 | 110 | 110 | 20 | 30 | 40 | 40 | | | 40 | | 60 | 70 | 110 | | 130 | | 100 | 110 | 110 | 120 | 80 | 80 | 80 | 90 | | . 3 | 0 | 1 | 4 | / | 0 | 2 | 7 | 12 | 0 | 3 | 9 | 15 | 0 | 2 | 5 | 8 | | - | х | X | X | x | X | X | X | x | X | X | X | x | X | X | x | X | | | | | - A | | | | | A | | | | . A | | | | | | | 400 | 6400 | 6400 | 6400 | | 1500 | | | | | | | | | | | | | | | | | 400 | 2000 | 3600 | 5200 | х | 1600 | 3200 | 4800 | х | 1200 | 2000 | 2600 | | | | | | | х | х | х | х | х | х | Х | х | | | | | | White | | AREA | 5 | | | |--|--------|-------------|-------------|--------|-------------| | NEEDS-cumulative | Pres. | 1980 | 2000 | 2020 | | | Publicly Supplied Water (mgd) | 13 | 17 | 23 | 33 | | | Industrial Self-Supplied Water (mgd) | 50 | 110 | 210 | 340 | | | Rural Water Supply (mgd) | 4 | 5 | 8 | 3 | | | Irrigation Water: agriculture (1000 afy) | 0.3 | 1 | 2 | 3 | | | non-agriculture (1000 afy) | | 2 | 3 | 5 | | | Power Plant Cooling: withdrawal, saline (cfs) | 150 | 1350 | 7530 | 15230 | | | brackish (cfs) | 0 | 0 | 55 | 120 | | | fresh (cfs) | 0 | 0 | 0 | 10 | | | consumption, brackish(cfs) | 0 | 0 | 27 | 57 | | | fresh (cfs) Hydroelectric Power Generation (mw) | 0 | 0 | 0 | 5 | | | Hydroelectric Power Generation (mw) Navigation: commercial (m. tons annually) | 28 | 25 | 0 | 0 | | | recreational boating (1000 boats) | 1 | 2 | 3 | 5 | | | Water Recreation: visitor days (m.) | 13 | 16 | 24 | 33 | | | stream or river (miles) | Х | | 10 | 14 | | | water surface (1000 acres) | X | 40 | 50 | 70 | | | beaches (acres) | x
x | 11
150 | 16
190 | 21 200 | | | pool (m. sq. ft.) | | 3 | 3 | 3 | | | land facilities (1000 acres) | x
x | 4 | 5 | 6 | | | Fish & Wildlife: sport fishing man-days (m.) | 1.7 | 1.8 | 2.1 | 2.5 | | | surface area, lake (acres) | 1.7 | 1.0 | 2.1 | 2.5 | | | stream (acres) | | | | | | | access, fresh (acres) | х | 0.01 | 0.04
 0.07 | | | salt (acres) | x | 0.10 | 0.30 | 0.55 | | | anadromous (acres) | X | 0.02 | 0.03 | 0.04 | | | piers (1000 feet) | | 0.02 | x | x | | | hunting, man-days (m.) | 0.5 | 0.5 | 0.6 | 0.7 | | | access (1000 sq. mi.) | х | 0 | 0.15 | 0.35 | | | nature study, man-days (m.) | 0.2 | 0.2 | 0.3 | 0.3 | | | access(1000 ac.) | | | | | | | Water Quality Maint.: non-industrial (m. PEs) | 160 | 180 | 210 | 240 | | | industrial (m. PEs) | 1000 | 2000 | 4000 | 7700 | | | Flood Damage Reduction: | | | | | | | avg. ann. damage, upstream (m. \$) | 0.15 | 0.18 | 0.37 | 0.73 | | | mainstream (m. \$) | | 0.04 | 0.09 | 0.18 | | | tidal and hurricane (m. \$) | .01 | .02 | .04 | .07 | | | Drainage Control: cropland (1000 acres) | 11 | 17 | 28 | 45 | | | forest land (1000 acres) | 0 | 0 | 8 | 32 | | | wet land (1000 acres) | | | | | | | Erosion Control: agriculture (1000 acres) | 110 | 120 | 130 | 130 | | | urban (1000 acres) | 370 | 380 | 400 | 410 | | | stream bank (mi.) | 0 | 1 | 4 | 7 | | | coastal shoreline (mi.) | | | | | | | Health: vector control and pollution control Visual and Cultural: | X | X | X | Х | | | | 100 | F.0.0 | F 0 0 | 500 | | | landscape maintenance, unique natural(sq. mi.) unique shoreline (mi.) | | 500 | 500 | 500 | | | high quality (sq. mi.) | 90 | 490
1500 | 490
2600 | 490 | | | diversity (sq. mi.) | | 1300 | 2000 | 3300 | | | agriculture (sq. mi.) | | | | | | | landscape development, quality (sq. mi.) | | | | | | | diversity (sq. mi.) | | | | | | | metro. amenities (mi.) | | | | | | | " (sq. mi.) | | | | | | | (34.11.) | | | | | | | | | AREA | 4 6 | | | AREA | 1 | | | AREA | 1 | | | AREA | 1 | | |-------|----------|-----------|-----------|------------|------|------|------|------|------|------|------|------|------|------|------|------| | | Pres | | | | Pres | 1980 | 2000 | 2020 | Pres | 1980 | 2000 | 2020 | Pres | 1980 | 2000 | 2020 | | | 30 | 39
70 | 58
120 | 86 | | | | | | | | | | | | | | | 40 | | | | | | | | | | | | | | | | | | 1 | 2 | | | | | | | | | | | | | | | | | 1 | 3 | | | | | | | | | | | | | | | | | 260 | | 2890 | | | | | | | | | | | | | | | | 0 | 0 | | | | | | | | | | | | | | | | | 0 | 0 | | | | | | | | | | | | | | | | | 0 | | 0 | 14 | | | | | | | | | | | | | | | 58 | | | | | | | | | | | | | | | | | | 32
29 | | | | | | | | | | | | | | | | | | X | 12 | | | | | | | | | | | | | | | | | х | 90 | | 160 | | | | | | | | | | | | | | | х | 16 | | | | | | | | | | | | | | | | | x
x | 280
5 | 370
6 | | | | | | | | | | | | | | | | X | 15 | | | | | | | | | | | | | | | | | 2.5 | 3.1 | x | 0.06 | 0.18 | 0 33 | | | | | | | | | | | | | | | x | | 0.77 | | | | | | | | | | | | | | | | х | | 0.03 | | | | | | | | | | | | | | | | | | 0.0 | | | | | | | | | | | | | | | | 0.7
x | | 0.9 | | | | | | | | | | | | | | | | 0.4 | | 0.5 | | | | | | | | | | | | | | | | х | 0.20 | 0.41 | 0.82 | | | | | | | | | | | | | | | 270 | | 440 | | | | | | | | | | | | | | | | 300 | 600 | 1000 | 1600 | | + | | | | | | | | | | | | | 0.13 | 0.21 | 0.38 | 0.76 | | | | | | | | | | | | | | | 0.3 | 0.5 | 1.0 | 2.1 | | | | | | | | | | | | | | | 0.02 | 0.04 | | | | | | | | | | | | | | | | | 6 | 1 | 12 | 14 | - | | | 40 | 60 | 70 | 70 | | | | | | | | | | | | | | | 90 | 100 | 140 | 190 | | | | | | | | | | | | | | | g | 1 | 3 | - | | | | | | | | | | | | | | | х | х | х | х | | | | | | | | | | | - | | | | | | | | | | | | | | | , | | | | | | | 100 | 100 | 100 | 100 | | | | | | | | | | | | | | | v o | 50
400 | 50
800 | 50
1300 | | | | | | | | | | | | | | | ^ | 700 | 000 | 1300 | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | 1 | | | | | and a | 1 | | | | | | | | | | | | | | | | | | Water Storage Facilities φ reservoirs, upstream (1000 af) VC,Rec* 52 91 mainstream (1000 af) WQ* 13 33 Withdrawal Facilities intakes & pumping, fresh (mgd) PS,Ind,Pow,Irrig 290 520 | | | | | | |--|---------------------|-------|-------|-------|---| | DEVICES - incremental | Purposes | 1980 | 2000 | 2020 | | | . Resource Management | | | | | | | A. Water | | | | | | | Storage Facilities o | | | | | | | reservoirs, upstream (1000 af) | VC, Rec* | 52 | 91 | 89 | | | mainstream (1000 af) | WQ* | 13 | 33 | 63 | | | Withdrawal Facilities | | | | | | | | PS, Ind, Pow, Irrig | 290 | 520 | 710 | | | brackish (mgd) | Ind | 32 | 42 | 55 | | | wells (mgd) | * | 38 | 52 | 44 | | | Conveyance Facilities | | | | | | | interbasin diversions, into (mgd) | | | | | | | out of (mgd) | | | | | | | Quality Control Facilities | | | | | | | chemical/biological | | | | | | | | PS | 11 | 17 | 33 | | | waste treatment plants | | | | | | | secondary (85%) (m. PEs removed) | WQ | 18400 | 0 | 0 | | | secondary (90%) (m. PEs removed) | WQ | 0 | 36000 | 66500 | | | | WQ | 0 | 2000 | 3700 | | | Desalting Facilities | | | | | | | B. Water/Land | | | | | | | | FDR, VC, Rec | 11 | 151 | 82 | _ | | Local Flood Protection | | | | | | | ocean (projects) | | | | | | | river (projects) | FDR | 3.3 | 5.2 | 6.5 | | | flood control channels (miles) | | 25.5 | 1510 | | | | Watershed Management (1000 acres) | FDR, VC, Drn, Rec | 850 | 1560 | 1530 | _ | | C. Land | | | | | | | Controls | WO D TV | 6010 | 500 | 100 | | | fee simple purchase (buying)(sq.mi.) | VC,Rec,FW | 6940 | 590 | 490 | | | fee simple purchase (buying) (mi.) | VC, Rec, FW | 450 | 0 | 0 | | | purchase lease (sq.mi.) | Wa n III | 1100 | 1100 | 1100 | | | easements (sq.mi.) | VC, Rec, FW | 1100 | 1100 | 1100 | | | deed restrictions (sq.mi.) | NO TH | 700 | 150 | 200 | | | | VC, FW | 700 | 450 | 300 | | | | VC,FW | 1900 | 450 | 300 | | | zoning (mi.) | NC TIL D | 2000 | 2/00 | 2220 | | | zoning and/or tax inc. subs.(sq.mi.) | vc, FW, Kec | 2800 | 2400 | 2300 | | | zoning and/or tax inc. subs. (mi.) | | | | | | | Others | | | | | | | pstream Flood Control Storage (1000 af) | FDR | 27 | 64 | 58 | _ | $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. ^{\$\}phi\$ Flood control storage not included. | | A | AREA I | | | AREA 2 | | | AREA 3 | | | AREA 4 | | |---|---------------------|-----------------------|------------------------|---------------------|------------------------|-------------------------|---------------------|-----------------------|-----------------------|---------------------|-----------------------|-----------------------| | | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | | | 28
13 | 19
33 | 0
63 | 0 | 16 | 0 | 4 | 17 | 0 | 5 | 4 | 0 | | | 20 | 40 | 70 | 110 | 200 | 280 | 30 | 50 | 70 | 50 | 70 | 90 | | | 17 | 17 | 26 | 2 | 3 | 1 | 6 | 15 | 6 | 3 | 7 | 3 | | | 1
3900
0
0 | 3
0
8000
400 | 6
0
15100
800 | 1
6300
0
0 | 2
0
13600
800 | 4
0
26500
1500 | 2
2500
0
0 | 5
0
4200
200 | 8
0
7100
400 | 2
3000
0
0 | 2
0
5200
300 | 3
0
8700
500 | | | 1 | 1 | 0 | 1 | 0 | 0 | 6 | - 30 | 8 | 1 | 9 | 2 | | | 1.0 | 0 | 2.0 | 1.0 | 0 | 4.0 | | | | 0 | 0.5 | 0 | | | 40 | 0 | 30 | 20 | 0 | 160 | 130 | 260 | 260 | 120 | 260 | 210 | | | 4800 | 0 | 0 | 1250
500 | 500 | 0
500 | 300
500 | 300
500 | 300
500 | | | | | | 1200
x | 0
x | 0
x | 600 | 600 | 600 | 800 | 800 | 800 | 1200 | 800 | 600 | | - | 8 | 0 | 16 | 8 | 0 | 38 | 300 | 300 | | 0 | 13 | 0 | | | | | | | | | | | | | | | | | | | AREA 5 | | | |--|------------------|----------|--------|-----------|---------| | DEVICES - incremental | Purposes | 1980 | 2000 | 2020 | | | I. Resource Management | | | | | | | A. Water | | | | | | | Storage Facilities \$\Psi\$ | | | | | | | reservoirs, upstream (1000 af) | | 5 | 10 | 51 | | | mainstream (1000 af) | wQ^ | | | | | | Withdrawal Facilities | PS,Ind,Pow,Irrig | (0 | 100 | 120 | | | intakes & pumping, fresh (mgd)
brackish (mgd) | | 60
19 | 100 | 120
37 | | | wells (mgd) | | 4 | 4 | 6 | | | Conveyance Facilities (mgd) | | | - | | | | interbasin diversions, into (mgd) | | | | | | | out of (mgd) | | | | | | | Quality Control Facilities | | | | | | | chemical/biological | | | | | | | potable water treat. plants (mgd) | PS | 4 | 3 | 6 | | | waste treatment plants | | | | | | | secondary (85%) (m. PEs removed) | WQ | 1900 | 0 | 0 | | | secondary (90%) (m. PEs removed) | WQ | 0 | 3800 | 7200 | | | advanced (95%) (m. PEs removed) | | 0 | 200 | 400 | | | Desalting Facilities | | | | | | | B. Water/Land | | | | | | | Upstream Flood Plain Mgmt.(1000 acres) | FDR,VC,Rec | 1 | 104 | 62 | | | Local Flood Protection | | | | | | | ocean (projects) | | | | | 100 | | river (projects) | FDR | 1.3 | 2.7 | 0.5 | | | flood control channels (miles) | | 2/2 | (00 | (00 | | | Watershed Management (1000 acres) | FDR,VC,Drn,Rec | 340 | 680 | 680 | | | C. Land | | | | | | | Controls | UC Dog EU | 500 | 200 | 100 | | | fee simple purchase (buying)(sq.mi.) | VC, Rec, FW | | | 100 | | | fee simple purchase (buying) (mi.) | vc, kec, rw | 400 | 0 | 0 | | | purchase lease (sq.mi.) | UC Dog EU | | | | | | | VC,Rec,FW | | | | | | deed restrictions (sq.mi.) | VC FU | 700 | 450 | 300 | Maria 1 | | tax incentive subsidy (sq.mi.) | VC,FW | 700 | 450 | 300 | | | zoning (sq.mi.) | | 700 | 450 | 200 | 4. 3.5 | | zoning (mi.) | | | | | | | zoning and/or tax inc. subs.(sq.mi.) | ro, rn, nec | | | | | | zoning and/or tax inc. subs. (mi.) V. Others | | | - | | | | Upstream Flood Control Storage (1000 af) | FDR | 11 | 27 | 4 | | | | | | | | | | | | | | | | $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. φ Flood control storage not included. | A | AREA 6 | | - | AREA | | 1 | AREA | | | AREA | |
----------|-----------|-----------|------|------|------|------|------|------|------|------|------| | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 12 | 25 | 38 | | | | | | | | | | | 20 | 60 | 80 | | | | | | | | | | | 13
6 | 7
8 | 18
4 | | | | | | | | | | | - C | 0 | 4 | 1 | 3 | 7 | | | | | | | | | | | 800
0 | 0
1300 | 0
2000 | | | | | | | | | | |
0 | 100 | 100 |
1 | 7 | 9 | | | | | | | | | | | 0 | 2.0 | 0 | | | | | | | | | | | 200 | 350 | 190 | | | | | | | | | | |
200 | 330 | 190 | | | | | | | | | | | 90 | 90 | 90 | | | | | | | | | | | 50 | 0 | 0 | | | | | | | | | | | 100 | 100 | 100 | 200 | 200 | 200 | | | | | | | | | | | 0 | 27 | 0 | FIRST COSTS - incremental | O.C. | AME MOD | | | |--|------|---------|------|--| | (\$ million 1970) | Si | TATE TO | | | | (\$ MIIIION 1970) | 1980 | 2000 | 2020 | | | Water Development Costs: | | | | | | storage, upstream | 5.1 | 7.7 | 5.3 | | | mainstream | 6.8 | 9.5 | 16.1 | | | wells | 20 | 29 | 25 | | | desalting | | | | | | Water Withdrawal and Conveyance Costs: | | | | | | inter-basin transfers | | | | | | public water supply | 13 | 19 | 33 | | | industrial self-supplied water | 1.7 | 2.9 | 4.0 | | | rural water supply | x | x | x | | | irrigation, agriculture | 7.8 | 11.3 | 12.6 | | | non-agriculture | 5.5 | 4.5 | 5.6 | | | Power Plant Cooling Water | 0 | 25 | 200 | | | Hydroelectric Power Generation | 0 | х | X | | | Navigation: commercial | 65 | 152 | 44 | | | recreational boating | 4.2 | 5.1 | 8.0 | | | Water Recreation | 218 | 69 | 81 | | | Fish and Wildlife: fishing | 3.1 | 3.6 | 4.4 | | | hunting | x | x | x | | | nature study | х | x | x | | | Water Quality Maint.: waste treatment, secondary | 500 | 960 | 1730 | | | advanced | 0 | 410 | 760 | | | other ≠ | 190 | 0 | 0 | | | Flood Damage Reduction: upstream | 2.3 | 3.3 | 4.9 | | | mainstream | | | | | | Drainage Control | 1.1 | 2.7 | 4.6 | | | Erosion Control | 15 | 19 | 16 | | | Health | х | х | х | | | Visual and Cultural | 114 | 47 | 40 | | | Summation of Available Estimated Costs | 1200 | 1800 | 3000 | | ^{*} From the supply model and includes OMR costs. # Combined sewer overflows control and acid mine drainage control. | | | AREA | 1 | | AREA 2 | | | AREA 3 | | | AREA 4 | | |-----|------|------|------|------|--------|------|------|--------|------|------|--------|------| | | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | | 1 | 3.1 | 2.3 | 0 | 0 | 1.2 | 0 | 0.4 | 1.4 | 0 | 0.4 | 0.3 | 0 | | | 6.8 | 9.5 | 16.1 | | | | | | | | | | | | 9 | 10 | 14 | 1 | 1 | 1 | 4 | 8 | 3 | 2 | 4 | 1 | | | | | | | | | | | | | | | | | 1 | 4 | 6 | 2 | 2 | 4 | 3 | 6 | 10 | 2 | 2 | 2 | | 1 | 0.1 | 0.2 | 0.4 | 0.6 | 1.1 | 1.5 | 0.2 | 0.2 | 0.3 | 0.3 | 0.4 | 0.5 | | | x | х | х | х | х | х | х | x | x | x | x | x | | | 5.8 | 6.5 | 9.7 | 0 | 0.2 | 0.7 | 1.1 | 2.9 | 1.4 | 0.7 | 1.3 | 0.6 | | | 0.4 | 0.4 | 0.4 | 0.4 | 0.5 | 0.4 | 1.0 | 0.6 | 0.6 | 0.8 | 0.7 | 0.8 | | | 0 | 2 | 16 | 0 | 0 | 25 | 0 | 0 | 22 | 0 | 0 | 12 | | | 0 | Х | х | 0 | 0 | Х | 0 | Х | х | 0 | 0 | Х | | | | | | 0.3 | 1 | 36 | | | | | | | | 1 | 0.1 | 0.2 | 0.2 | 0.5 | 0.6 | 0.8 | 0.2 | 0.6 | 1.1 | 0.1 | 0.3 | 0.6 | | | 28 | 8 | 19 | 62 | 18 | 14 | 74 | 20 | 15 | 48 | 13 | 9 | | | 0.1 | 0.3 | 0.3 | 0.5 | 0.5 | 0.5 | 0.4 | 0.4 | 0.4 | 0.5 | 0.3 | 0.5 | | | x | x | x | x | x | х | х | x | х | x | x | x | | | х | х | х | x | х | х | х | х | х | x | x | x | | | 80 | 170 | 310 | 100 | 230 | 450 | 60 | 100 | 170 | 50 | 90 | 150 | | - 1 | 0 | 90 | 170 | 0 | 150 | 300 | 0 | 50 | 80 | 0 | 60 | 100 | | 1 | 10 | 0 | 0 | 30 | 0 | 0 | 40 | 0 | 0 | 24 | 0 | 0 | | | 0.7 | 0 | 1.4 | 1.1 | 0 | 3.3 | | | | 0 | 1.6 | 0 | | | 0.2 | 0.5 | 1.0 | 0.1 | 0.4 | 0.9 | 0.3 | 0.6 | 1.1 | 0.1 | 0.2 | 0.4 | | A | 4 | 3 | 2. | 2 ! | 1 | 1 | 3 | 2 | 1 | 1 | 1 | 1 | | | Х | Х | Х | Х | X | Х | Х | х | Х | Х | х | Х | | | 22 | 0 | 0 | 13 | 7 | 7 | 14 | 14 | 14 | | | | | | 170 | 310 | 570 | 210 | 410 | 850 | 200 | 210 | 320 | 130 | 180 | 280 | | FIRST COSTS - incremental | | AREA | 5 | | |--|------|------|------|--| | (\$ million 1970) | 1980 | 2000 | 2020 | | | Water Development Costs: | | | | | | storage, upstream | 0.2 | 0.4 | 2.1 | | | mainstream | | | | | | wells | 2 | 2 | 3 | | | desalting | | | | | | Water Withdrawal and Conveyance Costs: | | | | | | inter-basin transfers | | | | | | public water supply | 3 | 4 | 6 | | | industrial self-supplied water | 0.4 | 0.7 | 0.9 | | | rural water supply | х | x | x | | | irrigation, agriculture | 0.1 | 0.3 | 0.2 | | | non-agriculture | 1.2 | 0.9 | 1.4 | | | Power Plant Cooling Water | 0 | 19 | 78 | | | Hydroelectric Power Generation | | | | | | Navigation: commercial | 0 | 6 | 8 | | | recreational boating | 0.2 | 0.6 | 0.7 | | | Water Recreation | 0.4 | 0.2 | 0.3 | | | Fish and Wildlife: fishing | 0.5 | 0.6 | 0.7 | | | hunting | X | х | x | | | nature study | х | x | х | | | Water Quality Maint.: waste treatment, secondary | 100 | 200 | 380 | | | advanced | 0 | 40 | 80 | | | other ≠ | 20 | 0 | 0 | | | Flood Damage Reduction: upstream | 0.5 | 0.9 | 0.2 | | | mai n stream | | | | | | Drainage Control | 0.2 | 0.5 | 1.0 | | | Erosion Control | 1 | 1 | 1 | | | Health | х | х | х | | | Visual and Cultural | 38 | 13 | 7 | | | Summation of Available Estimated Costs | 170 | 290 | 570 | | ^{*} From the supply model and includes OMR costs. # Combined sewer overflows control and acid mine drainage control. | | | AREA 6 | | March 1 | AREA | | AREA 2 1980 2000 202 | | | | AREA | | |---|------|--------|------|---------|------|------|----------------------|------|------|-------|------|------| | | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | | | 1.0 | 2.1 | 3.2 | | | | | | | | 1 | | | | | | | | | | | | | | | | | | 3 | 4 | 3 | 1 | 2 | 6 | | | | | | | | | | | | 0.2 | 0.3 | 0.5 | | | | | | | | | | | | х | х | х | | | | | | | | | | | | 0.1 | 0.02 | 0 | | | | | | | | | | | | 1.7 | 1.5 | 2.0 | | | | | | | | | | | | 0 | 4 | 47 | | | | | | | | | | | | 65 | 145 | 0 | | | | | | | | | | | | 3.1 | 2.8 | 4.6 | | | | | | | | | | | | 6 | 10 | 25 | | | | | | | | | | | | 1.0 | 1.6 | 2.0 | | | | | | | | | | | | х | х | х | | | | | | | L H | | | | | Х | х | х | | | | | | | -114- | | | | | 100 | 170 | 260 | | | | | | | | | | | | 0 | 20 | 20 | | | | | | | | | | | _ | 60 | 0 | 0 | | | | | | | | | | | | 0 | 0.9 | 0 | | | | | | | | | | | | 0.2 | 0.4 | 0.2 | | | | | | | | | | | | 4 | 10 | 12 | | | | | | | | | | | | Х | Х | х | | | | | | | | | | | | 28 | 13 | 13 | | | | | | | | | | | | 270 | 390 | 400 | | | | | | | | | | ## NEW HAMPSHIRE #### NEW HAMPSHIRE The State of New Hampshire contains 9,303 square miles including portions of Areas 4, 6, 7 and 8. The State's major drainages are the northeastern drainage of the Connecticut River and most of the Merrimack River drainage, while Lake Winnesquam has the State's largest water surface area. The topography is comprised of rolling hills, steep hills and mountains, and the overall visual quality is high, with only small portions being of medial quality. Water is plentiful throughout the State, but it is uniformly poor in quality with many areas of extreme pollution. The only supplies of good water are located in the extreme northern portions of the State and many of the population centers have supplies that are so degraded as to preclude the use of the water for many purposes. The 1970 population of the State totalled 680,000 and is projected to increase to 12.5 million by 2020. The only significant concentrations are around Manchester and Concord. Per capita income was 3 percent below the national average in 1970 but it should be at that average by 2020. Employment was highest for services and is projected to more than double by 2020, and manufacturing should increase by 40 percent. Decreases are anticipated in textile mill products, agriculture and forestry and fisheries. The State of New Hampshire comprises portions of Areas 4, 6, 7 and 8. Areas 4 and 6 occupy the northeastern, southeastern and coastal, parts of the State, respectively, and Area 8 the southwestern and northwestern portion. Area 7, in central and south-central New Hampshire, includes the State's major urban and industrial concentrations. Needs to be Satisfied. The most significant key and important need is for Water Quality Maintenance, particularly in the Merrimack, Connecticut and upper Androscoggin Basins. Visual and Cultural landscape maintenance is key and important in Area 4, and important in Areas 7 and 8 as well. Other important needs include Water Recreation and Fish and Wildlife in Areas 4, 7, and 8; Publicly Supplied Water, Industrial Self-Supplied Water, and Power Plant Cooling Water in Areas 4 and 6; Flood Damage Reduction in Area 7 and Rural Water Supply in Area 6. The needs are largest in Area 6 for saline and brackish withdrawal and consumption for Power Plant Cooling, for Water Recreation (water surface excluded), sport fishing and hunting man-days and salt access for Fish and Wildlife, tidal and hurricane Flood Damage Reduction, coastal shoreline Erosion Control, and unique natural and unique shoreline landscape maintenance for Visual and Cultural. The needs that are largest in Area 7 are for Public Supplied Water, Industrial Selfsupplied Water, Irrigation Water and recreational boating. They are also largest in this Area for fresh withdrawal and consumption for Power Plant Cooling, stream surface area, fresh access and nature study man-days and access for Fish and
Wildlife, non-industrial Water Quality Maintenance, Flood Damage Reduction (tidal and hurricane excepted), urban and stream bank Erosion Control, and quality and metropolitan amenities landscape development for Visual and Cultural. The remaining needs are largest in Area 8 except for industrial Water Quality Maintenance which is largest in Area 4. Devices. Key devices are limited to the Androscoggin River Basin and include potable water and waste treatment plants for Water Quality Maintenance, and land controls for the Visual and Cultural need. Treatment plants are also an important device in Areas 4, 7 and 8. Other important devices include withdrawal facilities in the Merrimack Basin, and Power Plant Cooling tower and storage facilities in the Connecticut Basin. Most of the device levels are highest in Area 7. Exceptions to this are secondary (85%) and advanced waste treatment plants in Area 4, watershed management in Area 6, fee simple purchase (mi.) in Area 6 and mainstream flood control storage in Area 4. Costs. By far the greatest cost in New Hampshire will be incurred in Water Quality Maintenance, specifically secondary waste treatment and combined sewers overflow control, particularly in Area 7. Other costs of large magnitude include upstream and mainstream storage, again chiefly in Area 7; Water Recreation, principally in Area 8; and Visual and Cultural in Areas 7 and 8. Hydroelectric Power Generation costs, initially small, will be significant by the 2020 time frame. | NEEDS-cumulative | Pres. | 1980 | TOTAL 2000 | 2020 | | |---|-------|-------|------------|-------|--| | Publicly Supplied Water (mgd) | 72 | 92 | 133 | 197 | | | Industrial Self-Supplied Water (mgd) | 38 | 65 | 118 | 197 | | | Rural Water Supply (mgd) | 7.8 | 9.9 | 12.2 | 10.6 | | | Irrigation Water: agriculture (1000 afy) | 1.4 | 2.6 | 3.3 | 3.2 | | | non-agriculture (1000 afy) | 6.4 | 14.5 | 22.7 | 33.2 | | | Power Plant Cooling: withdrawal, saline (cfs) | 190 | 1410 | 4270 | 6960 | | | brackish (cfs) | 0 | 0 | 26 | 46 | | | fresh (cfs) | 610 | 590 | 690 | 990 | | | consumption, brackish(cfs) | 0 | 0 | 14 | 22 | | | fresh (cfs) | 6 | 24 | 25 | 51 | | | Hydroelectric Power Generation (mw) | 410 | 380 | 1490 | 3840 | | | Navigation: commercial (m. tons annually) | | | | | | | recreational boating (1000 boats) | 68 | 90 | 130 | 235 | | | Water Recreation: visitor days (m.) | Х | 24 | 39 | 58 | | | stream or river (miles) | х | 150 | 200 | 280 | | | water surface (1000 acres) | х | 37 | 56 | 77 | | | beach (acres) | х | 430 | 580 | 690 | | | pool (m. sq. ft.) | X | 7.5 | 9.9 | 11.8 | | | land facilities (1000 acres) | Х | 24 | 32 | 41 | | | Fish & Wildlife: sport fishing man-days (m.) | 2.9 | 3.6 | 4.5 | 5.5 | | | surface area, lake (acres) | Х | 0.29 | 1.18 | 2.14 | | | stream (acres) | Х | 1.4 | 3.3 | 5.6 | | | access, fresh (acres) | Х | 0.11 | 0.27 | 0.46 | | | salt (acres) | Х | 0.029 | 0.085 | 0.157 | | | anadromous (acres) | Х | 0.18 | 0.25 | 0.31 | | | piers (1000 feet) | | | | | | | hunting, man-days (m.) | 0.92 | 1.02 | 1.26 | 1.56 | | | access (1000 sq. mi.) | X | 0.51 | 1.27 | 1.77 | | | nature study, man-days (m.) | 0.85 | 1.03 | 1.28 | 1.59 | | | access(1000 ac.) | X | 2.0 | 4.8 | 8.6 | | | Water Quality Maint.: non-industrial (m. PEs) | 730 | 870 | 1100 | 1350 | | | industrial (m. PEs) Flood Damage Reduction: | 1100 | 1900 | . 3200 | 5400 | | | | 2.2 | 5.0 | 0 / | 10 1 | | | avg. ann. damage, upstream (m. \$) mainstream (m. \$) | 3.2 | 5.0 | 9.4 | 19.1 | | | tidal and hurricane (m. \$) | 2.6 | 4.0 | 7.7 | 15.7 | | | Drainage Control: cropland (1000 acres) | 0.01 | 0.01 | 0.02 | 0.03 | | | forest land (1000 acres) | 0 | 1 | 1 | 65 | | | wet land (1000 acres) | U | 0 | 2.8 | 11.2 | | | Erosion Control: agriculture (1000 acres) | 160 | 210 | 240 | 250 | | | urban (1000 acres) | 440 | 640 | 850 | 1160 | | | stream bank (mi.) | 0 | 6.9 | 21.3 | 35.8 | | | coastal shoreline (mi.) | 0 | 0.1 | 0.3 | 0.5 | | | Health: vector control and pollution control | x | X | x | x | | | Visual & Cultural: | Λ | Α | Α | ^ | | | landscape maintenance, unique natural(sq. mi.) | 1400 | 1400 | 1400 | 1400 | | | unique shoreline (mi.) | X | 6 | 6 | 6 | | | high quality (sq. mi.) | X | 1300 | 2500 | 3600 | | | diversity (sq. mi.) | | | 2300 | 3000 | | | agriculture (sq. mi.) | | | | | | | landscape development, quality (sq. mi.) | x | 7 | 14 | 21 | | | diversity (sq. mi.) | | | | | | | metro. amenities (mi.) | | | | | | | | | 1 | | | | | | | AREA | 4 | | | AREA | 6 | | | AREA | 7 | | | AREA | 8 | | |---|-----------|-------|------------|----------|------------|----------------------|------------------------------|--|------------|----------|-----------|------------------------|-----------------|-----------|------------|-------------| | | Pres | 1980 | 2000 | 2020 | Pres | Contract of the last | SHOW SHAPE OF REAL PROPERTY. | Name and Address of the Owner, where the Person of | Pres | | | NAME OF TAXABLE PARTY. | Pres | 1980 | 2000 | 2020 | | | 3 | 3 | 4 | - 6 | 18 | 24 | | | 34
21 | 43
36 | 62
65 | 90
108 | $\frac{17}{12}$ | 22
21 | 31 | 48 | | | 0.4 | 0.4 | 0.5 | 0.5 | 2.2 | | | | 2.6 | | 4.3 | | 2.6 | | 4.7 | 4.0 | | | | | | | 0.4 | | - | | | 1.2 | 2.0 | | 0.1 | - | | | | | 0.1 | 0.3 | 0.5 | 0.8 | | 2.1 | | | 4.4 | 7.8 | | | 1.3 | 4.3 | 7.4 | 11.4 | | | | | | | 190 | 1410 | | | | 0 | 80 | 1000 | | | | | | | 0 | 0 | 0 | 100 | | U | 20 | 40 | 520 | 480 | 360 | 310 | 90 | 110 | 340 | 580 | | | | | | | 0 | a | 14 | 22 | 320 | ,00 | 300 | 310 | | 110 | 3-10 | 300 | | | 0 | 0 | 0 | 2 | | | | | 5 | | | | | 19 | | | | | | | | | | | | | 7.0 | 80. | 490 | 1840 | 330 | 300 | 1000 | 2000 | | | 0.1 | 0.1 | 0.2 | 0.3 | 10 | 12 | 13 | 20 | 40 | 54 | 74 | 140 | 18 | 24 | 43 | 75 | | | | | | | Х | 9 | 10 | 23 | Х | 7 | 11 | 18 | Х | 8 | 12 | 17 | | | | | | | Х | 70 | | | Х | 20 | | | Х | 60 | 80 | | | | | | | | X | 13
220 | | | | 5
50 | - | | X
X | 19
170 | 28
220 | 37
260 | | | | | | | X | 3.6 | | | X | 1.0 | | | X | 2.9 | 3.8 | 4.4 | | | | | | | Х | 12 | 17 | 21 | х | 2 | 3 | 4 | Х | 10 | | 16 | | | 0.1 | 0.2 | 0.3 | 0.3 | 1.5 | 1.9 | 2.4 | 2.9 | 0.8 | 1.0 | 1.3 | 1.6 | 0.3 | 0.5 | 0.6 | 0.7 | | | | | | | | | | | | 0.7 | 2.1 | 3.6 | X | 0.29 | | | | | x | 0.004 | 0.01 | 0.01 | x | 0.01 | 0.02 | 0.04 | X
X | | 0.15 | | X
X | | 0.09 | 0.15 | | | | | | | | 0.029 | 0.085 | 0.157 | | | | | | | | | | | | | | | Х | 0.002 | 0.003 | 0.003 | Х | 0.08 | 0.10 | 0.13 | Х | 0.10 | 0.14 | 0.18 | | 1 | 0 07 | 0.07 | 0.09 | 0.10 | 0.40 | 0 /3 | 0.54 | 0.66 | 0 32 | 0 35 | 0 44 | 0.54 | 0 13 | 0 16 | 0 20 | 0.25 | | | x | 0.01 | 0.03 | 0.07 | v.40 | | 0.25 | | | | 0.53 | | | 0.29 | | | | | 0.04 | | | | 0.22 | | | | | | | | | | | | | | | | | | X | 0.1 | | | | 1.7 | 4.2 | | Х | 0.2 | 0.4 | 0.8 | | | 20
500 | 900 | 30
1400 | | 170
200 | 220
400 | | | 390
300 | | | 700
1500 | 150
50 | | 210 | 280
300 | | | 300 | ,,,, | 1100 | 2100 | 200 | 100 | ,00 | 1200 | 300 | 300 | 200 | 1300 | 30 | 100 | 200 | 300 | | | 0.1 | 0.2 | | | 1.2 | 1.9 | | | | | | | | 1.1 | 2.1 | 4.3 | | | 0.4 | 0.7 | 1.2 | 2.5 | 0.1 | 0.2 | 0.4 | | | 2.8 | 5.5 | 11.2 | 0.2 | 0.3 | 0.6 | 1.1 | | | 1 | 2 | 3 | 5 | 4 | 6 | | 0.03 | | 10 | 16 | 20 | 12 | 16 | 26 | 29 | | | 0 | 0 | 1.1 | 4.2 | | | | | | 10 | 10 | 20 | 0 | | | 7.0 | 10
20 | 10 | 10
20 | 10
20 | 30 | 50
80 | 50
110 | 50 | 30 | 50 | 50
440 | | 90 | 110 | 120 | 130 | | | 0 | 0.5 | 1.5 | | 70 | 0.8 | 2.0 | 150 | 220 | | 10.0 | | 140 | 220 | 280
7.8 | 370
13.5 | | | | | | | 0 | 0.1 | 0.3 | 0.5 | | 3.0 | 10.0 | 10.5 | Ü | 2.0 | 7.0 | 13.3 | | | Х | х | Х | Х | Х | х | Х | Х | Х | X | Х | Х | Х | Х | Х | Х | | | 200 | 200 | 200 | 200 | 700 | 700 | 700 | 700 | /00 | 100 | 100 | / 00 | | | | | | | 200 | 200 | 200 | 200 | 700
x | 6 | 700 | 700 | 400 | 400 | 400 | 400 | | | | - 1 | | | x | 300 | 500 | 700 | | 300 | 600 | 800 | х | 300 | 600 | 900 | х | 400 | 800 | 1200 | 7 | 1/ | 0.1 | | | | | | | | | | | | | | | Х | 7 | 14 | 21 | | | | 1 | | | | | | | | | 10.14 | Х | 3 | 3. | 3 | | | | | | | STAT | E TOTAL | L | | | |--|---------------------|---------|------|------|--| | DEVICES - incremental | Purposes | 1980 | 2000 | 2020 | | | I. Resource Management | | | | | | | A. Water | | | | | | | Storage Facilities ¢ | | | | | | | | Rec, FW, VC* | 29 | 111 | 397 | | | mainstream (1000 af) | FW,VC,Rec,WQ* | 29 | 201 | 239 | | | Withdrawal Facilities | PS, Ind, Pow, Irrig | 27 | 57 | 83 | | | intakes & pumping, fresh (mgd)
brackish (mgd) | | 5 | 6 | 6 | | | wells (mgd) | | 11.9 | 11.4 | 6.4 | | | Conveyance Facilities | | 11.5 | 11.4 | 0.4 | | | interbasin diversions, into (mgd) | | | | | | | out of (mgd) | | | | | | | Quality Control Facilities | | | | | | | chemical/biological | | | | | | | potable water treat. plants (mgd) | PS | 8.7 | 17.7 | 20.7 | | | waste treatment plants | | | | | | | secondary (85%) (m. PEs removed) | | 2300 | 0 | 0 | | | secondary (90%) (m. PEs removed) | | 0 | 3800 | 6100 | | | advanced (95%) (m. PEs removed) | WQ, Rec | 0 | 210 | 340 | | | Desalting Facilities B. Water/Land | | | - | | | | Upstream Flood Plain Mgmt.(1000 acres) | FDP VC Pec | 21 | 23 | 21 | | | Local Flood Protection | rbk, vc, kec | 21 | 23 | - 21 | | | ocean (projects) | | | | | | | river (projects) | FDR | 8.0 | 10.5 | 0 | | | flood control channels (miles) | | | | | | | Watershed Management (1000 acres) | FDR, VC, Drn, Rec | 360 | 650 | 520 | | | C. Land | | | | | | | Controls | | | | | | | fee simple purchase (buying)(sq.mi.) | | 420 | 220 | 220 | | | fee simple purchase (buying) (mi.) | VC, Rec, FW | 6 | 0 | 0 | | | purchase lease (sq.mi.) | | | | | | | | VC,Rec,FW | 250 | 250 |
250 | | | deed restrictions (sq.mi.) | | | | | | | tax incentive subsidy (sq.mi.) | | | | | | | zoning (sq.mi.) | | | | | | | <pre>zoning zoning and/or tax inc. subs.(sq.mi.)</pre> | VC FW Rec | 630 | 530 | 480 | | | zoning and/or tax inc. subs. (sq.ml.) zoning and/or tax inc. subs. (mi.) | vo, rw, nec | 030 | 330 | 400 | | | V. Others | | | | | | | Upstream Flood Control Storage (1000 af) | FDR | 97 | 108 | 0 | | | Mainstream Flood Control Storage (1000 af) | FDR | 2.8 | 58.0 | 0 | | | | | | | | | $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. ϕ Flood control storage not included. | A | AREA 4 | | A | AREA 6 | | I | AREA 7 | | | AREA 8 | | |---------------|-----------------|------------------|---------------|----------------|-----------------|----------------|-----------------|------------------|---------------|----------------|----------------| | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | | 2 | 2 | 0 | 18 | 39 | 60 | 1
5 | 1
175 | 337
190 | 8
24 | 68
26 | 0
49 | | 0.1 | 0.2 | 0.3 | 3
2
2.4 | 7
1
2.9 | 10
2
1.5 | 16
3
2.1 | 35
5
4.6 | 51
4
4.5 | 7 | 15 | 21 | | | | | | | | | | | | | | | 0.4 | 0.3 | 3. 7 | 0.7 | 1.8 | 4.4 | 5.4 | 12.7 | 10.9 | 2 .2 | 2.9 | 4:7 | | 700
0
0 | 0
1200
70 | 0
2200
120 | 600
0
0 | 0
900
50 | 0
1400
80 | 800
0
0 | 0
1300
70 | 0
2000
110 | 200
0
0 | 0
400
20 | 0
600
30 | | 0.5 | 0.2 | 0.5 | 8 | 7 | 7 | 10 | 12 | 10 | 3 | 4 | 3 | | 0.5 | 0 | 0 | 2.5 | 2.5 | 0 | 4.0 | 7.0 | 0 | 1.0 | | 0 | |
30 | 70 | 60 | 130 | 230 | 120 | 90 | 180 | 180 | 110 | 180 | 170 | | | | | 60
6 | 60
0 | 60
0 | 160 | 160 | 160 | 200 | 0 | 0 | | | | | 60 | 60 | 60 | 80 | 80 | 80 | 110 | 110 | 110 | | 320 | 210 | 170 | 160 | 160 | 160 | 80 | 80 | 80 | 90 | 90 | 90 | |
6
0 | 0
58.0 | 0 | 46 | 28 | 0 | 38 | 69 | 0 | 8 2.8 | 11 | 0 | | FIRST COSTS - incremental | S | TATE TO | ΓAL | | |--|------|---------|------|--| | (\$ million 1970) | 1980 | 2000 | 2020 | | | Water Development Costs: | 1 | | | | | storage, upstream | 3.6 | 13.7 | 63.0 | | | mainstream | 12 | 46 | 46 | | | wells | 6.6 | 6.2 | 3.7 | | | desalting | | | | | | Water Withdrawal and Conveyance Costs: | | | | | | inter-basin transfers | | | | | | public water supply | 5.9 | 14.2 | 19.9 | | | industrial self-supplied water | 0.16 | 0.29 | 0.43 | | | rural water supply | X | x | х х | | | irrigation, agriculture | 0.14 | 0.17 | 0 | | | non-agriculture | 6.6 | 6.3 | 8.0 | | | Power Plant Cooling Water | 0 | 15 | 47 | | | Hydroelectric Power Generation | 1 | X | X | | | Navigation: commercial | | | | | | recreational boating | 1.7 | 1.8 | 2.7 | | | Water Recreation | 127 | 70 | 93 | | | Fish and Wildlife: fishing | 1.7 | 1.9 | 2.3 | | | hunting | х | x | x | | | nature study | х | x | x | | | Water Quality Maint.: waste treatment, secondary | 220 | 370 | 570 | | | advanced | 0 | 44 | 70 | | | other ≠ | 140 | 0 | 0 | | | Flood Damage Reduction: upstream | 15 | 12 | 0 | | | mainstream | 0.5 | 12.5 | 0 | | | Drainage Control | 0.67 | 1.82 | 1.07 | | | Erosion Control | 35 | 35 | 50 | | | Health | Х | Х | Х | | | Visual and Cultural | 84 | 82 | 82 | | | Summation of Available Estimated Costs | 660 | 730 | 1060 | | ^{*} From the supply model and includes OMR costs. # Combined sewer overflows control and acid mine drainage control. | | AREA | 4 | | AREA 6 | | | AREA 7 | | | AREA 8 | | |------|------|------|------|--------|------|------|--------|------|------|--------|---------| | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | | 0.2 | 0.1 | 0 | 1.5 | 3.3 | 5.1 | 0.2 | 0.5 | 57.9 | 1.7 | 9.8 | 0 | | 0.2 | 0.1 | 0 | 1.5 | 3.3 | 3.1 | 4 | 42 | 30 | 8 | 9.0 | 0
17 | | 0.2 | 0.5 | 0.2 | 1.3 | 1.6 | 1.1 | 1.3 | 2.5 | 2.3 | 3.8 | 1.6 | 0.1 | | | | | | | | | | | | | - | | | | | | | | | | | | | | | 0.5 | 0.4 | 0.5 | 0.7 | 1.2 | 3.4 | 3.6 | 11.0 | 13.3 | 1.0 | 1.7 | 2.6 | | | | | 0.03 | 0.04 | 0.06 | 0.09 | 0.17 | 0.24 | 0.04 | 0.08 | 0.13 | | х | х | х | х | х | х | х | х | х | x | x | х | | | | | 0.04 | 0.01 | 0 | 0.06 | 0.16 | 0 | 0.03 | 0.001 | 0 | | 0.2 | 0.2 | 0.2 | 1.3 | 1.1 | 1.5 | 2.4 | 2.7 | 3.3 | 2.7 | 2.4 | 3.0 | | | | | 0 | 8 | 47 | | | | 0 | 7 | 0 | | | | | | | | | х | х | | х | х | | | | | | | | | | | | | | | 0 | 0.01 | 0.01 | 1.0 | 0.7 | 0.8 | 0.6 | 0.6 | 1.2 | 0.1 | 0.4 | 0.7 | | | | | 5 | 8 | 24 | 25 | 17 | 20 | 98 | 45 | 49 | | 0.1 | 0.1 | 0.1 | 0.6 | 1.0 | 1.2 | 0.7 | 0.6 | 0.7 | 0.3 | 0.2 | 0.3 | | х | х | х | х | х | х | х | х | х | х | x | x | | х | х | х | х | х | x | х | х | х | х | x | х | | 10 | 20 | 40 | 70 | 120 | 180 | 120 | 210 | 320 | 20 | 20 | 30 | | 0 | 15 | 24 | 0 | 10 | 15 | 0 | 15 | 23 | 0 | 4 | 6 | | 10 | 0 | 0 | 30 | 0 | 0 | 70 | 0 | 0 | 20 | 0 | C | | 2 | 0 | 0 | 7 | 3 | 0 | 5 | 8 | 0 | 1 | 2 | 0 | | 0 | 12.5 | 0 | | | | | | | 0.5 | 0 | 0 | | 0.02 | 0.06 | 0.12 | 0.11 | 0.31 | 0.11 | 0.18 | 0.53 | 0.35 | 0.36 | 0.92 | 0.49 | | 0.3 | 0.4 | 0.2 | 2 | 5 | 7 | 20 | 20 | 29 | 13 | 10 | 14 | | х | х | х | х | х | х | х | Х | х | Х | х | х | | | | | 11 | 9 | 9 | 28 | 27 | 27 | 46 | 46 | 46 | | 24 | 49 | 67 | 130 | 170 | 300 | 280 | 360 | 530 | 220 | 160 | 170 | ### VERMONT The State of Vermont covers a total of 9,608 square miles including the north-west drainage of the Connecticut River in Area 8, the eastern drainage of Lake Champlain in Area 11, and a small portion of northeastern Area 12. The topography ranges from mountains and steep hills in and near the Green Mountains to rolling terrain and flatlands near Lake Champlain. The visual quality of the State is exceptionally good because of the variety of diverse landscapes throughout the State. Water is abundant, except on the Connecticut River during periods of low flow, and pollution is localized around industrial and population centers. The State's 1970 population was 409,000, which is projected to reach 651,300 by 2020, and the only significant concentrations are around Montpelier, in Area 11, and Burlington in Area 12. Per capital income was 17 percent below the national average in 1970, but it is expected to rise to 13 percent below by 2020. Employment in services and related industries was by far the highest in 1970 and is expected almost to double by 2020. Increases are projected for manufacturing, while a 50 percent decrease is expected in agriculture, and in forestry and fisheries. Needs to be Satisfied. The only key need is for Water Quality Maintenance in the Connecticut (and to a lesser degree, the Hudson) basin within the State. It is essential for the satisfaction of the important Water Recreation, Fish and Wildlife, and Visual and Cultural needs. The important needs in Area 11 are for Publicly Supplied Water, Industrial Self-supplied water, and Visual and Cultural (this drainage area contains, among other features, the Green Mountains National Forest). The important needs in Area 8 are Water Recreation, Fish and Wildlife, Water Quality Maintenance and Visual and Cultural needs. The needs which are important in Area 12 are Publicly Supplied Water, and Water Quality Maintenance. The needs in Vermont are largest in Area 11 except for several that are largest in Area 8, including non-agricultural Irrigation, fresh withdrawal for Power Plant Cooling, recreational boating, Fish and Wildlife (sport fishing, hunting and nature study man-days excluded), upstream Flood Damage Reduction and urban Erosion Control. Devices. Habitat management in Area 11 is the only key device in Vermont: it is an essential adjunct to land controls for preserving and developing the natural qualities of the Area for Visual and Cultural, Fish and Wildlife, and Water Recreation needs. The important devices in this State are storage facilities in Areas 8 and 12, withdrawal facilities in Area 12, temperature control in Area 8, and water quality control in all three Areas. Other important devices in Area 11 are watershed management, land facilities, and habitat management. The use of devices will also be highest in Area 11 except for storage facilities, advanced waste treatment, watershed management, zoning and/or tax incentive subsidies, and flood control storage in Area 8, and wells in Area 12. Costs. The costs will be distributed fairly equally between Areas 8 and 11. In the initial period large costs will be incurred in meeting the Visual and Cultural needs and in providing combined sewer overflow controls. Power Plant Cooling Water costs will be large in the later periods and secondary treatment costs for Water Quality Maintenance will be large in all time periods. The costs required to meet the other needs in Areas 8 and 11 and to meet the needs of area 12 will be relatively small. | | | | STATE | TOTAL | | | |-------------------|---|-------|-------------|-----------|-------|-------------| | NE | EDS-cumulative | Pres. | 1980 | 2000 | 2020 | | | Publicly Supplied | Water (mgd) | 39 | 52 | 74 | 110 | | | Industrial Self-S | upplied Water (mgd) | 11 | 16 | 28 | 44 | | | Rural Water Suppl | | 12 | 15 | 18 | 17 | | | Irrigation Water: | | 0.6 | 8.4 | 25.6 | 25.6 | | | 7 | non-agriculture (1000 afy) | 2.4 | 9.4 | 15.9 | 24.2 | | | Power Plant Cooli | ng: withdrawal, saline (cfs) | | | | | | | | brackish (cfs)
fresh (cfs) | | | 201 | | | | | consumption, brackish(cfs) | | 149 | 386 | 681 | | | | fresh (cfs) | | 10 | 10 | 10 | | | Hydroelectric Pow | | 100 | 16 | 42 | 69 | | | | ercial (m. tons annually) | 180 | 0.70 | 3100 | 8450 | | | | eational boating (1000 boats) | 18 | 23 | 40 | 65 | | | Water Recreation: | | x | 11 | 18 | 29 | | | | stream or river (miles) | | 41 | 58 | 80 | | | | water surface (1000 acres) | | 12 | 18 | 25 | | | | beach (acres) | | 130 | 180 | 230 | | | | pool (m. sq. ft.) | | 2.3 | 3.2 | 4.1 | | | | land
facilities (1000 acres) | | 4.7 | 6.5 | 8.5 | | | Fish & Wildlife: | sport fishing man-days (m.) | 2.1 | 2.4 | 2.8 | 3.3 | | | | surface area, lake (acres) | | 0.18 | 0.74 | 1.34 | | | | stream (acres) | | 0.39 | 0.83 | 1.47 | | | | access, fresh (acres) | | 0.057 | 0.126 | 0.216 | | | | salt (acres) | | | | | | | | anadromous (acres) | | 0.060 | 0.090 | 0.110 | | | | piers (1000 feet) | | | | | | | | hunting, man-days (m.)
access (1000 sq. mi.) | 1 | 1.2 | 1.4 | 1.7 | | | | nature study, man-days (m.) | X | 0.39 | 1.04 | 1.70 | | | | access(1000 ac.) | | 0.61 | 0.72 | 0.87 | | | Water Quality Mai | nt:: non-industrial (m. PEs) | 400 | 0.32
460 | 0.83 | 1.45 | | | "acci quarity imi | industrial (m. PEs) | 190 | 340 | 610 | 660 | | | Flood Damage Redu | | 130 | 340 | 010 | 1110 | | | avg. ann. damag | | 1.6 | 2.3 | 4.1 | 7.9 | | | | mainstream (m. \$) | | 8.9 | 16.5 | 33.5 | | | | tidal and hurricane (m. \$) | 3.0 | 0.7 | 10.5 | 33.3 | | | Drainage Control: | cropland (1000 acres) | | 116 | 191 | 227 | | | | forest land (1000 acres) | 0 | 0 | 8.7 | 34.9 | | | | wet land (1000 acres) | | | | | | | Erosion Control: | agriculture (1000 acres) | | 550 | 640 | 660 | | | | urban (1000 acres) | | 400 | 500 | 660 | - 12-7, (SY | | | stream bank (mi.) | 0 | 18 | 54 | 89 | | | Health: vector c | coastal shoreline (mi.) | | | | | | | Visual & Cultural | ontrol and pollution control | х | X | × | x | | | | enance, unique natural(sq. mi.) | 5/0 | 25.00 | 2500 | 2500 | | | zanaocape marite | unique shoreline (mi.) | | 3580 | 3580 | 3580 | | | | high quality (sq. mi.) | | 460 | 920 | 1380 | | | | diversity (sq. mi.) | | 25 | 50 | 75 | | | | agriculture (sq. mi.) | | 1600 | 1600 | 1600 | | | landscape devel | opment, quality (sq. mi.) | | 1000 | 2000 | 1000 | | | | diversity (sq. mi.) | | | 30-13-1 | | | | | metro. amenities (mi.) | | 100 | William ! | | | | | " (sq. mi.) | | | | | | | | | | | | | | | | AREA | 8 | | | AREA | 11 | | | AREA | 12 | | | AREA | 1 | | |------------|------------|---------|-------------------|-----------|-----------|------------|-------------|-------|-------|---------------|------|------|------|------|--------| | Pres | | | | | | | | Pres | 1980 | 2000 | 2020 | Pres | 1980 | 2000 | 2020 | |
13 | 17 | | | 24 | | | | | 3 | 5 | 8 | | | | | |
4 | 6 | 11 | 18 | 7
8 | | | 26
11 | | 1 | 2 | 1 | | - | | | | 0.3 | 1.0 | 1.0 | 1.0 | | | 24.6 | | | 1 | 2 | | | | | | | 1.8 | | | | 0.4 | | 5.2 | | | 0.6 | 1.0 | 1.4 | 100 | 226 | 501 | 10 | / 0 | 50 | 00 | | | | | | | | | | 0 | 109 | 336 | 591 | 40 | 40 | 30 | 90 | | | | | | | | | | 0 | 15 | 19 | 20 | 1 | 1 | 23 | 49 | | | | | | | | | | 110 | | 1000 | | 70 | 70 | 2100 | | | | | | | | | | | | | 2.4 | | | | 1.00 | | | | | | | | | | |
11 | 15 | | | 6 | 8 | | 17
24 | | 1 | $\frac{2}{1}$ | 3 | | | | | | x
x | 1
10 | 2
13 | | x
x | 29 | | | | 2 | 3 | 4 | | | | | | x | 3 | 5 | | x | 8 | 12 | 18 | | 1 | 1 | 1 | | | | | | х | 30 | | | х | 90 | | 170 | x | 10 | | | | | | | | х | 0.5 | | | х | 1.6 | | | | 0.2 | | | | | | | |
0.3 | 0.4 | | | 1.8 | 2.7 | 3.9
2.3 | 5.3
2.7 | | 0.2 | | | | | | | | v. 3 | | 0.74 | | 1.0 | 2.0 | 2.3 | 2.1 | 0.03 | 0.03 | 0.03 | 0.04 | | | | | | x | | | 1.25 | 0 | 0 | 0.05 | 0.23 | | | | | | | | | | х | | | 0.093 | х | 0.028 | 0.068 | 0.123 | х | 0.060 | 0.090 | 0.110 | | | | | | | | | | | | | | 0.1 | 0.1 | 0.2 | 0.2 | 1.0 | 1.1 | 1.2 | 1.5 | 0.01 | 0.01 | 0.02 | 0.02 | | | | | | x | | | 0.87 | | | | | X | | | | | | | | | 0.15 | 0.20 | 0.26 | 0.32 | 0.34 | 0.38 | 0.43 | 0.50 | 0.02 | | | | | | | | |
X | | 0.58 | The second second | 2=2 | | 25.0 | /10 | | 0.10 | | | | | | | | 120
100 | 130
190 | | | 270
90 | | | | | 20 | 30 | 30 | | | | | |
100 | 190 | 360 | 690 | 90 | 130 | 250 | 420 | | | | | | | | | | 0.8 | 1.3 | 2.5 | 5.2 | 0.7 | 1.0 | 1.5 | 2.7 | 0.003 | 0.004 | 0.01 | 0.01 | | | | | | 0.3 | 0.5 | 1.0 | 2.0 | 5.4 | | 15.5 | 31.5 | | | | - | | | | | |
1.6 | - 20 | | | (1 | 0.1 | 150 | 100 | | | | | | - | | | | 16
0 | | | | 61
0 | | | 182
24.6 | 0 | 0 | 0.4 | 1.4 | | | | | | 9 | 9 | 2.4 | 0.0 | J | 9 | 0.2 | 24.0 | ď | 9 | 0.4 | 1 | | | | | | 120 | 150 | 160 | 170 | 250 | 350 | 410 | 420 | 50 | 60 | 70 | 70 | | | | | | 190 | 290 | 370 | 500 | 70 | 90 | 110 | 130 | 20 | 20 | 20 | 30 | | | | 10 41 | | q | 4 | 11 | 18 | 0 | 13 | 40 | 66 | O | 1 | 3 | 5 | | | | | |
x | x | x | x | x | x | x | x | х | x | x | x | 240 | 1680 | 1680 | 1680 | 300 | 1900 | 1900 | 1900 | | | | | | | | | | | | , , | | | 250 | | 750 | | | | | | | | | | x | 210 | 420 | 630 | x
x | 250
25 | 500
50 | 750
75 | | | | | | | | | | | | | | x | 1600 | A Fr | 5-11/1 | STAT | TE TOTAL | | | | |--|-------------------|----------|------|------|---| | DEVICES - incremental | Purposes | 1980 | 2000 | 2020 | | | I. Resource Management | | | | | | | A. Water | | | | | | | Storage Facilities φ | D TIL 1104 | 10 | 122 | 22 | | | reservoirs, upstream (1000 af) | Rec, FW, VC* | 18
24 | 133 | 23 | | | | FW,Rec,WQ* | | 20 | 24 | | | Withdrawal Facilities | PS,Ind,Pow,Irrig | 8.5 | 13.5 | 20.3 | | | intakes & pumping, fresh (mgd)
brackish (mgd) | 10,111d,10w,1111g | 0.5 | 13.3 | 20.5 | | | wells (mgd) | * | 12.6 | 18.6 | 8.9 | | | Conveyance Facilities | | 12.0 | 10.0 | 0.5 | | | interbasin diversions, into (mgd) | | | | | | | out of (mgd) | | | | | | | Quality Control Facilities | | | | | | | chemical/biological | | | | | | | potable water treat. plants (mgd) | PS | 5.3 | 11.1 | 20.6 | | | waste treatment plants | | | | | | | secondary (85%) (m. PEs removed) | | 660 | 0 | 0 | | | secondary (90%) (m. PEs removed) | | 21 | 1074 | 1596 | | | advanced (95%) (m. PEs removed) | WQ | 0 | 26 | 47 | | | Desalting Facilities | | | | | | | B. Water/Land | The Ha | 1.5 | | 16 | | | Upstream Flood Plain Mgmt.(1000 acres) Local Flood Protection | FDR, VC | 15 | 23 | 16 | - | | ocean (projects) | | | | | | | river (projects) | EIDD | 3.5 | 1.0 | 4.0 | | | flood control channels (miles) | | 0.5 | 1.5 | 9.0 | | | Watershed Management (1000 acres) | | 250 | 440 | 460 | | | C. Land | ibit, to, bringin | | | 100 | | | Controls | | | | | | | fee simple purchase (buying)(sq.mi.) | VC,FW | 3380 | 140 | 140 | | | fee simple purchase (buying) (mi.) | | | | | | | purchase lease (sq.mi.) | | | | | | | easements (sq.mi.) | VC,FW | 200 | 200 | 200 | | | deed restrictions (sq.mi.) | | | | | | | tax incentive subsidy (sq.mi.) | | | | | | | zoning (sq.mi.) | VC,FW | 1500 | 0 | 0 | | | zoning (mi.) | | | | | | | zoning and/or tax inc. subs.(sq.mi.) | VC,FW | 45 | 45 | 45 | | | zoning and/or tax inc. subs. (mi.) | | | | | | | V. Others | FDD | 24 6 | 2 2 | 15.0 | | | Upstream Flood Control Storage (1000 af)
Mainstream Flood Control Storage (1000 af) | FDR
FDR | 24.6 | 2.3 | 15.0 | | | Harnstream Flood Control Storage (1000 al) | LDK | | 0 | 0 | | | | | | | | | $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. φ Flood control storage not included. | | A | REA 8 | | A | AREA 11 | | A | AREA 12 | | | AREA | | |---|---------------|----------------|----------------|------------|------------|------------|---------|---------|---------|------|------|------| | | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | | | | | | | | | | | | | | | | | 9
24 | 79
26 | 0
24 | 9 | 53 | 22 | 0.1 | 0.1 | 1 | | | | | | 2.3 | 3.7 | 6.0 | 6.0 | 9.2 | 13.4 | 0.2 | 0.6 | 0.9 | | | | | | 7.8 | 3.3 | 0 | 4.3 | 6.3 | 1.9 | 0.5 | 9.0 | 7.0 | 1.7 | 2.3 | 3.7 | 3.2 | 7.7 | 14.7 | 0.4 | 1.1 | 2.2 | | | | | | 280
0
0 | 0
469
26 | 0
815
45 | 390
0 | 0
580 | 0
750 | 21
0 | 25
0 | 31
2 | | | | | - | | | | | | | | | | | | | | | 4 | 6 | 3 | 11 | 17 | 13 | 0.1 | 0.04 | 0.1 | | | | | | 1.5 | 0.5 | 1.5 | 2.0
0.5 | 0.5
1.5 | 2.5
9.0 | | | | | | | | | 140 | 230 | 210 | 110 | 200 | 230 | 10 | 10 | 10 | | | | | | 1550 | 0 | 0 | 1840 | 140 | 140 | | | | | | | | | 60 | 60 | 60 | 140 | 140 | 140 | | | | | | | | | | | | 1500 | 0 | 0 | | | | | | | | | 45 | 45 | 45 | | | | | | | | | | | | 17.6 | 0.3 | 6.5 | 7.0 | 2.0 | 8.5 | | | | | | | | - | 24 | 0 | 0 | | | | | | | | | | | FIRST COSTS - incremental | S' | TATE TO | ΓAL | | |--|------|---------|-------|--| | (\$ million 1970) | 1980 | 2000 | 2020 | | | Water Development Costs: | | | | | | storage, upstream | 3.6 | 21.0 | 3.5 | | | mainstream | 8.4 | 4.6 | 0 | | | wells | 10.4 | 10.1 | 1.8 | | | desalting | | | | | | Water Withdrawal and Conveyance Costs: | | | | | | inter-basin transfers | | | | | | public water supply | 5.2 | 9.1 | 15.4 | | | industrial self-supplied water | 0.03 | 0.05 | 0.07 | | | rural water supply | х | x | x | | | irrigation, agriculture | 1.7 | 3.6 | 0.002 | | | non-agriculture | 6.1 | 5.0 | 6.4 | | | Power Plant Cooling Water | 0 | 20 | 46 | | | Hydroelectric Power Generation | х | х | х | | | Navigation: commercial | | | | | | recreational boating | 0.22 | 0.70 | 0.95 | | | Water Recreation | 30 | 29 | 29 | | | Fish and Wildlife: fishing | 0.67 | 0.83 | 1.08 | | | hunting | х | x | x | | | nature study | x | x | x | | | Water Quality Maint.: waste treatment, secondary | 55 | 71 | 110 | | | advanced | 0 | 5.4 | 10.1 | | | other ≠ | 63 | 0 | 0 | | | Flood Damage Reduction: upstream | 6.85 | 0.95 | 4.25 | | | mainstream | 10 | 0 | 0 | | | Drainage Control | 2.6 | 5.6 | 3.4 | | | Erosion Control | 30 | 24 | 24 | | | Health | х | х | х | | | Visual and Cultural | 299 | 41 | 41 | | | Summation of Available Estimated
Costs | 530 | 250 | 300 | | ^{*} From the supply model and includes OMR costs. # Combined sewer overflows control and acid mine drainage control. | | | AREA | 8 | | AREA 1 | 1 | | AREA 1 | 2 | | AREA | | |---|------|-----------|-------------|-------------|-------------|---------------|------|--------|------|------|------|------| | | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | | | 2.0 | 11.4 | 0 | 1.6 | 9.6 | 3.4 | 0 | 0 | 0.1 | | | | | | 4.2 | 1.8 | 0.1 | 2.4 | 3.4 | 1.2 | 3.8 | 4.9 | 0.5 | 0.8 | 1.3 | 2.0
0.03 | 4.1
0.02 | 6.9
0.03 | 12.0 | 0.3 | 0.9 | 1.3 | | | | | | 0.1 | x
0.01 | 0.002 | x
1.5 | 3.6 | x
0 | х | х | х | | | | | | 3.5 | 3.2 | 4.0 | 2.2 | 1.6 | 2.0 | 0.4 | 0.3 | 0.4 | | | | | | 0 | 3 | 16 | 0 | 17 | 30 | | | | | | | | | Х | Х | Х | | X | Х | | | | | | | | | 0.08 | 0.26 | 0.44 | 0.10 | 0.36 | 0.39 | 0.04 | 0.08 | 0.12 | | | J . | | | 17_ | 8 | 9 | 4 | 17 | 14 | 9 | 4 | 6 | | | | | | 0.22 | 0.19 | 0.23 | 0.44 | 0.62 | 0.83 | 0.01 | 0.01 | 0.02 | | | | | | Х | х | х | Х | Х | х | х | х | X | | | | | | X | X | X | X | X | X | X | X | X | | | | | | 20 | 27
5.4 | 46
9.2 | 33 | 43 | 62 | 2 0 | 2 | 0.9 | | | | | | 14 | 0 | 9.2 | 47 | 0 | 0 | 2 | 0 | 0.9 | | | | | | 6.05 | 0.05 | 2.55 | 0.8 | 0.9 | 1.7 | | - | | | | | | | 5 | 0 | 0 | 6 | 0 | 0 | | | | | | | | - | 0.5 | 1.2 | 0.7 | 2.0 | 4.3 | 2.6 | 0.1 | 0.1 | 0.1 | | | | | | 18 | 13 | 19 | 11 | 10 | 5 | 1 | 1 | 1 | | | | | | Х | X | Х | Х | Х | Х | Х | Х | Х | | | | | | 171 | 24 | 24 | 128 | 16 | - 16 | | | | | | | | | 270 | 100 | 130 | 240 | 130 | 150 | 19 | 13 | 12 | | | | #### MASSACHUSETTS The Commonwealth of Massachusetts covers a total of 8,256 square miles including small portions of Areas 6, 10 and 12, part of south-central Area 8, the southern tip of Area 7 and most of Area 9. The only significant drainages are those for the south-central portion of the Connecticut River and the extreme southern Merrimack River. The topography of the Commonwealth varies from coastal plain to rolling hills with some steep hills and mountains. The visual quality is medial. Water pollution is extensive; the Connecticut River suffers from periods of low flow, and supplies must be imported to the eastern metropolitan centers. The "megalopolis" of the North Atlantic Region starts in Massachusetts and population concentrations are particularly heavy along and south of a line stretching from Springfield to Boston. In 1970 the population totalled 5.6 million and this figure should surpass 9 million by 2020. Per capita income was 8 percent above the national average in 1970, but is expected to decline to average by 2020. Employment was highest in services and related industries in 1970 and should almost double by 2020. Increases are also projected for chemicals and allied products, paper and allied products and primary metals. Employment is expected to decline for textile mill products, agriculture, forestry and fisheries, and food and kindred products by the end of the Study period. Needs to be Satisfied. Publicly Supplied and Industrial Self-Supplied Water are important needs in Areas 9 and 10, with Publicly Supplied being largest in Areas 9 and Industrial Self-Supplied largest in Area 8. Irrigation needs, both agricultural and non-agricultural, are greatest in Area 9. Power Plant Cooling needs are largest in Areas 8 and 9 and important in Area 9. Hydroelectric Power Generation is very large in Area 8. Commercial Navigation exists only in Area 9 and Recreational Boating, which exists throughout the State, is both very large and important in that Area. Recreation and Water Quality Maintenance are important in Areas 7 through 9 and largest in Area 9. In addition, Water Quality Maintenance is key in Areas 7, 8, and 9. Fish and Wildlife and Erosion Control needs are key and largest in Area 9 while Fish and Wildlife is important in Areas 7 and 8. Needs for Drainage Control are greatest in Area 8 and Flood Damage Reduction needs are important in Area 7 and largest in Area 9. Visual and Cultural Needs are important in Area 7 and 8 but largest in Area 9. Health is important in Area 9. Devices. Storage facilities are important in Area 8 and 10, withdrawal facilities in Area 7, conveyance facilities in Area 8 and 9, temperature control facilities in Area 8 and water quality control devices in all Areas. Other important devices, all in Area 9, are watershed management, land controls, habitat management and water demand and allocation changes. All devices are largest in Area 9 except watershed management, largest in Area 8, and out of basin diversions in Area 7 (diverted to Area 9). The key devices are in Area 9 and are quality control and erosion protection. Costs. The cost involved in meeting the needs of the State are largest in Area 9. Visual and Cultural and combined sewer overflow control costs are very large in the first time period and advanced waste treatment in the second and third time periods. Interbasin transfers, Water Recreation, secondary waste treatment and Erosion Control costs are large in all time periods. | Pres. 1980 2000 2020 Euchicly Supplied Mater (mgd) 670 870 1240 1920 1700 17 | | T | STATE | TOTAL | | | |---|-------------------------------------|------------|-------|-------|-------|--| | Industrial Self-Supplied Water | NEEDS-cumulative | Pres. | | | 2020 | | | Industrial Self-Supplied Water | Publicly Supplied Water (mgd | | 870 | 1240 | 1920 | | | Irrigation Water: agriculture (1000 afy) 15 41 43 43 43 43 43 43 43 | Industrial Self-Supplied Water (mgd | | | | | | | Irrigation Water: agriculture (1000 afy) 11 29 48 72 | |) 17 | 20 | 28 | | | | Power Plant Cooling: withdrawal, saline (cfs) brackish (cfs) brackish (cfs) fresh (cfs) | | | 41 | | | | | brackish (cfs) fresh (cfs) consumption, brackish(cfs) fresh (cfs) 8 8 25 59 | | | 29 | 48 | 72 | | | Firesh | | | 11200 | 23900 | 38700 | | | Consumption, brackish(cfs) 8 8 8 25 59 | | | | | | | | Hydroelectric Power Generation | | | 570 | 440 | 1100 | | | Hydroelectric Power Generation (mw) | | | | | | | | Navigation: commercial (m. tons annually) | | | | | | | | Tecreational boating (1000 boats) 170 230 520 880 | | 200 | | | | | | Water Recreation: visitor days stream or river (miles) x 750 990 1400
1400 | | | | 1 | | | | Stream or river (miles) | | 7 | | | | | | water surface (1000 acres) x 260 390 540 beach (acres) x 2000 2600 3000 pool (m. sq. ft.) x 34 45 54 land facilities (1000 acres) x 130 170 220 Fish & Wildlife: sport fishing man-days (m.) 12 15 18 22 surface area, lake (acres) x 1.9 7.8 20.9 stream (acres) x 2.0 4.8 7.6 access, fresh (acres) x 0.17 0.39 0.66 salt (acres) x 0.78 2.07 3.59 anadromous (acres) x 0.20 0.26 0.34 piers (1000 feet) x 22 58 102 hunting, man-days (m.) 2.5 2.9 3.5 4.3 access (1000 sq. mi.) x 0.68 1.39 1.81 nature study, man-days (m.) 6.8 8.0 10.0 12.3 access (1000 acr.) x 11 28 50 Water Quality Maint: non-industrial (m. PEs) 5200 6300 7800 9600 industrial (m. PEs) 5200 6300 7800 9600 flood Damage Reduction: avg. ann. damage, upstream (m. S) 7.9 12.3 23.8 48.6 tidal and hurricane (m. S) 2.6 4.0 7.6 15.4 Drainage Control: cropland (1000 acres) 19 26 41 46 forest land (1000 acres) 160 210 230 240 urban (1000 acres) 650 900 1190 1650 Stream bank (mi.) 0 8.6 25.3 41.0 coastal shoreline (mi.) 0 470 950 980 Health: vector control and pollution control x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) x 16 16 16 high quality (sq. mi.) x 63 126 189 diversity (sq. mi.) x 63 126 189 diversity (sq. mi.) x 640 640 diversity (sq. mi.) x 210 430 640 diversity (sq. mi.) metro. amenities (mi.) | | ` | | | | | | beach (acres) x 2000 2600 3000 2601 3000 2601 3000 2601 3000 2601 3000 2601 3000 2601 3000 2601 3000 2601 3000 2601 3000 2601 3000 2601 2000 2000 | | | | | | | | Dool | | \ | | | | | | Land facilities (1000 acres) | | | | | | | | Fish & Wildlife: sport fishing man-days (m.) surface area, lake (acres) x 1.9 7.8 20.9 stream (acres) x 2.0 4.8 7.6 access, fresh (acres) x 0.17 0.39 0.66 salt (acres) x 0.78 2.07 3.59 anadromous (acres) x 0.78 2.07 3.59 anadromous (acres) x 0.78 2.07 3.59 anadromous (acres) x 0.78 2.07 3.59 anadromous (acres) x 0.78 2.07 3.59 anadromous (acres) x 0.20 0.26 0.34 piers (1000 feet) x 22 58 102 hunting, man-days (m.) 2.5 2.9 3.5 4.3 access (1000 sq. mi.) x 0.68 1.39 1.81 nature study, man-days (m.) 6.8 8.0 10.0 12.3 access (1000 ac.) x 11 28 50 industrial (m. PEs) 5200 6300 7800 9600 industrial (m. PEs) 5200 6300 7800 9600 industrial (m. PEs) 5400 9600 17200 31300 Flood Damage Reduction: avg. ann. damage, upstream (m. \$) 7.9 12.3 23.8 48.6 tidal and hurricane (m. \$) 7.9 12.3 23.8 48.6 tidal and hurricane (m. \$) 7.9 12.3 23.8 48.6 tidal and (1000 acres) forest land (1000 acres) forest land (1000 acres) set land (1000 acres) forest land (1000 acres) set land (1000 acres) set land (1000 acres) set land (1000 acres) forest land (1000 acres) set la | | 1 | | | 1 | | | Surface area, lake (acres) Stream (a | | _ | | | | | | Stream (acres) X 2.0 4.8 7.6 access, fresh (acres) X 0.17 0.39 0.66 salt (acres) X 0.78 2.07 3.59 anadromous (acres) X 0.78 2.07 3.59 anadromous (acres) X 0.20 0.26 0.34 piers (1000 feet) X 2.2 58 102 hunting, man-days (m.) 2.5 2.9 3.5 4.3 access (1000 sq. mi.) X 0.68 1.39 1.81 nature study, man-days (m.) 6.8 8.0 10.0 12.3 access(1000 ac.) X 11 28 50 Water Quality Maint.: non-industrial (m. PEs) 5200 6300 7800 9600 industrial (m. PEs) 5200 6300 7800 9600 Industrial (m. PEs) 5200 6300 7800 9600 Industrial (m. PEs) 5400 9600 17200 31300 Flood Damage Reduction: avg. ann. damage, upstream (m. \$) 9.9 15.2 28.4 56.4 mainstream (m. \$) 7.9 12.3 23.8 48.6 tidal and hurricane (m. \$) 2.6 4.0 7.6 15.4 Drainage Control: cropland (1000 acres) 19 26 41 46 forest land (1000 acres) 160 210 230 240 urban (1000 acres) 650 900 1190 1650 stream bank (mi.) 8.6 25.3 41.0 coastal shoreline (mi.) 470 950 980 Health: vector control and pollution control x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) x 63 126 189 diversity (sq. mi.) x 63 126 189 diversity (sq. mi.) x 10 20 30 agriculture (sq. mi.) x 10 20 30 landscape development, quality (sq. mi.) x 210 430 640 diversity (sq. mi.) metro. amenities (mi.) | | 1 | | | | | | access, fresh | | \ | | | | | | Salt | | 1 | | | | | | anadromous (acres) piers (1000 feet) hunting, man-days (m.) access (1000 sq. mi.) access (1000 sq. mi.) access (1000 sq. mi.) access (1000 ac.) | | 1 | | 1 | 1 | | | Piers | | | | 1 | | | | hunting, man-days (m.) access (1000 sq. mi.) x 0.68 1.39 1.81 nature study, man-days (m.) 6.8 8.0 10.0 12.3 access (1000 ac.) x 11 28 50 Water Quality Maint: non-industrial (m. PEs) 5200 6300 7800 9600 industrial (m. PEs) 5400 9600 17200 31300 Flood Damage Reduction: (m. \$\frac{1}{2}\$ y 9.9 15.2 28.4 56.4 mainstream (m. \$\frac{1}{2}\$ y 9.9 12.3 23.8 48.6 tidal and hurricane (m. \$\frac{1}{2}\$ y 2.6 4.0 7.6 15.4 Drainage Control: cropland (1000 acres) forest land (1000 acres) wet land (1000 acres) wet land (1000 acres) stream bank (mi.) 0 8.6 25.3 41.0 coastal shoreline (mi.) 0 470 950 980 Health: vector control and pollution control x x x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) x 63 126 189 diversity (sq. mi.) agriculture (sq. mi.) agriculture (sq. mi.) agriculture (sq. mi.) agriculture (sq. mi.) agriculture (sq. mi.) diversity (sq. mi.) agriculture (sq. mi.) metro. amenities (mi.) | | \ | | | 1 | | | access (1000 sq. mi.) x 0.68 1.39 1.81 1.00 12.3 26 25 26 27 27 27 27 27 27 27 | | , • | 1 | 1 | | | | nature study, man-days | access (1000 sq. mi. | 1 | (| 1 | 1 | | | Second Control: agriculture (1000 acres) wet land (1000 acres) wet land (1000 acres) stream bank (mi.) coastal shoreline (mi.) wished Ealth: vector control and pollution control (mi.) wished Ealth: vector control and pollution control (mi.) wished Ealth: landscape maintenance, unique natural(sq. mi.) landscape development, quality (sq. mi.) metro. amenities (mi.) wetro. amenities (mi.) metro. amenities (mi.) (asoo (asoo (mi.)) by 0,000 (asoo (asoo (mi.)) by 0,000 (asoo (asoo (mi.)) by 0,000 (asoo (asoo (mi.)) by 0,000 (asoo (asoo (mi.)) by 0,000 (asoo (asoo (mi.)) by 0,000 | nature study, man-days (m. | 6.8 | | | | | | Water Quality Maint:: non-industrial (m. PEs) 5200 6300 7800 9600 17200 31300 Flood Damage Reduction: avg. ann. damage, upstream (m. \$) 7.9 12.3 23.8 48.6 | | | 11 | | | | | Flood Damage Reduction: avg. ann. damage, upstream | | | 6300 | | | | | avg. ann. damage, upstream | |) 5400 | 9600 | 17200 | 31300 | | | mainstream (m. \$) 7.9 12.3 23.8 48.6 tidal and hurricane (m. \$) 2.6 4.0 7.6 15.4 Drainage Control: cropland (1000 acres) 19 26 41 46 forest land (1000 acres) wet land (1000 acres) 160 210 230 240 urban (1000 acres) stream bank (mi.) coastal shoreline (mi.) o 8.6 25.3 41.0 41.0 470 950 980 Health: vector control and pollution control x value x | | | | | | | | tidal and hurricane (m. \$) 2.6 4.0 7.6 15.4 Drainage Control: cropland (1000 acres) 19 26 41 46 forest land (1000 acres) 26 41 46 forest land (1000 acres) 27 28 28 28 28 28 28 28 28 28 28 28 28 28 | | | 15.2 | 28.4 | 56.4 | | | Drainage Control: cropland (1000 acres) forest land (1000 acres) wet land (1000 acres) wet land (1000 acres) Erosion Control: agriculture (1000 acres) 160 210 230 240 urban (1000 acres) 650 900 1190 1650 stream bank (mi.) 0 8.6 25.3 41.0 coastal shoreline (mi.) 0 470 950 980 Health: vector control and pollution control x x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) x 16 16 16 high quality (sq. mi.) x 63 126 189 diversity (sq. mi.) x 10 20 30 agriculture (sq. mi.)
landscape development, quality (sq. mi.) x 210 430 640 diversity (sq. mi.) metro. amenities (mi.) | | | | 23.8 | 48.6 | | | forest land (1000 acres) wet land (1000 acres) Erosion Control: agriculture (1000 acres) urban (1000 acres) 650 900 1190 1650 stream bank (mi.) 0 8.6 25.3 41.0 coastal shoreline (mi.) 0 470 950 980 Health: vector control and pollution control x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) 210 2030 2030 2030 unique shoreline (mi.) x 16 16 16 high quality (sq. mi.) x 63 126 189 diversity (sq. mi.) x 10 20 30 agriculture (sq. mi.) landscape development, quality (sq. mi.) x 210 430 640 diversity (sq. mi.) metro. amenities (mi.) | | | | | 15.4 | | | Wet land (1000 acres) Erosion Control: agriculture (1000 acres) 160 210 230 240 240 25 | | | 26 | 41 | 46 | | | Erosion Control: agriculture (1000 acres) urban (1000 acres) 650 900 1190 1650 stream bank (mi.) 0 8.6 25.3 41.0 coastal shoreline (mi.) 0 470 950 980 Health: vector control and pollution control x x x x x Visual & Cultural: 1andscape maintenance, unique natural(sq. mi.) x 16 16 16 high quality (sq. mi.) x 63 126 189 diversity (sq. mi.) x 10 20 30 agriculture (sq. mi.) 1andscape development, quality (sq. mi.) x 210 430 640 diversity (sq. mi.) metro. amenities (mi.) | | | | | | | | urban (1000 acres) 650 900 1190 1650 stream bank (mi.) 0 8.6 25.3 41.0 coastal shoreline (mi.) 0 470 950 980 Health: vector control and pollution control x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) 210 2030 2030 2030 unique shoreline (mi.) x 16 16 16 high quality (sq. mi.) x 10 20 30 agriculture (sq. mi.) x 10 20 30 agriculture (sq. mi.) x 210 430 640 diversity (sq. mi.) x 210 430 640 metro. amenities (mi.) x 210 430 640 | | | 010 | 000 | 0.10 | | | Stream bank | | | | | | | | Coastal shoreline | | 1 | | | | | | Health: vector control and pollution control | | | | | | | | Visual & Cultural: landscape maintenance, unique natural(sq. mi.) 210 2030 2030 2030 unique shoreline (mi.) x 16 16 16 high quality (sq. mi.) x 63 126 189 diversity (sq. mi.) x 10 20 30 agriculture (sq. mi.) x 210 430 640 diversity (sq. mi.) x 210 430 640 metro. amenities (mi.) metro. amenities (mi.) x 20 30 | | - | | | | | | landscape maintenance, unique natural(sq. mi.) 210 2030 2030 2030 unique shoreline (mi.) x 16 16 16 16 16 189 diversity (sq. mi.) x 10 20 30 30 agriculture (sq. mi.) x 210 20 30 430 640 diversity (sq. mi.) metro. amenities (mi.) | | X | X | X | X | | | unique shoreline (mi.) x 16 16 16 16 high quality (sq. mi.) x 63 126 189 diversity (sq. mi.) x 10 20 30 agriculture (sq. mi.) 1andscape development, quality (sq. mi.) x 210 430 640 diversity (sq. mi.) metro. amenities (mi.) | | 210 | 2030 | 2030 | 2020 | | | high quality (sq. mi.) x 63 126 189 diversity (sq. mi.) x 10 20 30 agriculture (sq. mi.) x 210 430 640 diversity (sq. mi.) metro. amenities (mi.) | | | | | | | | diversity (sq. mi.) x 10 20 30 agriculture (sq. mi.) x 210 430 640 diversity (sq. mi.) metro. amenities (mi.) | | | | | | | | agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.) | | | | | | | | landscape development, quality (sq. mi.) x 210 430 640 diversity (sq. mi.) metro. amenities (mi.) | | | 10 | 20 | 30 | | | diversity (sq. mi.) metro. amenities (mi.) | | \ | 210 | 430 | 640 | | | metro. amenities (mi.) | | | | 430 | 040 | | | | | | | | | | | | | | 76 | 77 | 77 | | | | AREA | | | | AREA | | | | AREA | 8 | | | AREA | 9 | | |-------|------|-------|------|----------|-----------|------|-----------|--------|------|------|-------------|------|----------|------------|-------------| | Pres | 1980 | 2000 | 2020 | | | | | | | | 2020 | Pres | 1980 | 2000 | 2020 | |
2 | 2 | 3 | 4 | 70 | | | | 70 | | | | | | | | |
 | | | | 50 | 80 | | 240 | 180 | | | | | | | | |
- | - | | - | 3
2 | 3 | | 3 | 4 | 6 | 7 | | | | 13 | | | | | | | 2 | 2 | | 4 | 2 | 7 4 | 7 7 | | | 31
19 | 32
32 | | | | | | | 0 | 0 | | 2400 | | 4 | | 10 | | | 22900 | | | | | | | | | 200 | 2400 | | | 4 | | 4300 | 10900 | 22300 | 54400 | | | | | | 40 | 20 | 20 | 0 | 690 | 560 | 420 | 1080 | 1 | 1 | 1 | 0 | 7 | 7 | 19 | 49 | | | | | | | | | | | | | | 200 | 1800 | 1880 | 2960 | | | 0 | 0 | | | | | - | | | | | | | | | 33 | 43 | 73 | 124 | |
 | | | | 10 | 10 | 20 | 30 | | 30 | 50 | 90 | | 170 | 420 | 710 | | | | | | х | 40 | 70 | 110 | - | 20 | 30 | | | 70 | | 150 | | | | | | х | 110 | | 200 | | 150 | 200 | 290 | | 460 | | | | | | | | X | 30
300 | 50 | .70 | | 50 | 70 | | | 160 | 250 | 340 | | | | | | X
X | 300 | 400 | 500 | X
X | 400 | 600 | 700
12 | | 1100 | 1500
25 | 1700 | | | | | | x | 10 | | 20 | | 20 | 30 | 40 | | 90 | 110 | | | 0.1 | 0.2 | 0.2 | 0.2 | 2 | 2 | 3 | 3 | 1 | 2 | 2 | 3 | 8 | 10 | 13 | 15 | | | | | | | | | | х | 0.5 | | _ | _ | 1.3 | | (340,00) | | | | | | х | 0.2 | 0.5 | 0.8 | | 1.0 | 2.1 | 3.3 | | 0.5 | 1.3 | | | | | | | x | 0.01 | 0.03 | 0.06 | х | 0.08 | | 0.25 | х | 0.07 | 0.18 | | | | | | 100 | | | | | | | | | x | 0.78 | 2.07 | 3.59 | | | | | | x | 0.02 | 0.02 | 0.03 | х | 0.17 | 0.23 | 0.30 | х | 0.004 | 0.01 | 0.01 | | | | | | | | | | | | | | х | 22 | 58 | 102 | | 0.03 | 0.04 | 0.04 | 0.05 | 0.7 | 0.7 | | | 0.5 | | | | | 1.4 | | 2.0 | | 0.00 | 0 00 | 0 00 | 0.00 | x | 0.04 | | | X | 0.23 | 0.37 | | | 0.37 | 0.73 | | | | 0.02 | | | 0.8 | 1.0 | 1.2 | 1.5 | 0.8 | | 1.3 | 1.6 | 4.9 | 5.8 | 7.1 | 8.7 | | 10 | | 20 | | 800 | | 1300 | 1500 | 600 | 700 | 800 | 1100 | 3600 | 4400 | 5400 | 6700 | | 10 | 20 | 20 | 30 | 500 | | 1600 | | | | | | | | 8000 | | | | | | | | | | | | 1000 | 7500 | 1300 | 2000 | 4700 | 0000. | 23700 | | | | | | 1.2 | 1.8 | 3.4 | 7.0 | 0.6 | 1.0 | 1.9 | 3.8 | 6.0 | 9.2 | 17.1 | 33.8 | | | | | | 2.2 | 3.5 | 6.7 | 13.7 | 3.0 | 4.7 | 9.2 | 19.1 | 2.4 | 3.8 | 7.2 | 14.5 | | | | | | | | | | | | | | 2.6 | 4.0 | 7.6 | 15.4 | | | | | | | | | | 11 | 14 | 23 | 26 | 5 | 6 | 10 | 11 | | | | | | 8 3 | | | | | | | | | | | | |
 | | | | 10 | 10 | 20 | 20 | 0.0 | 100 | 110 | 110 | 10 | 5.0 | | | | | | | | 10
70 | 10
100 | 20 | 20
190 | 80 | 100 | 110 | 110 | 40 | 50 | 60 | 60 | | | | | | 0 | 1.0 | 140 | 5.5 | 130 | 190 | 250 | 330
12.0 | 400 | 510 | 690 | 970 | | | | | | 0 | 1.0 | 10 | 10 | U | 2.3 | 7.3 | 12.0 | 0 | 4.0 | 950 | 18.0
970 | |
x | x | х | х | x | x | x | x | х | х | x | x | x | x | x | x | | | | | | | | | | | | | | | | ^ | | | | | | | | | | | 160 | 1180 | 1180 | 1180 | 50 | 850 | 850 | 850 | | x | 1 | 1 | 1 | | | | - 1 | | | | | х | 15 | 15 | 15 | | | | | | | | | | x | 63 | 126 | 189 | l | х | 60 | 130 | 190 | | | | | х | 150 | 300 | 450 | 4 T X | | | 22 | 20 | 20 | | | | | | 1.0 | 1.0 | | | | | | | Х | 32 | 32 | 32 | | | | | X | 40 | 40 | 40 | | NEEDS-cumulative Publicly Supplied Water (mgd) | Pres. | | | | | |--|-------|-------|-------|-------|--| | | ILCS. | 1980 | 2000 | 2020 | | | | 20 | 30 | 40 | 50 | | | Industrial Self-Supplied Water (mgd) | 10 | 10 | 20 | 30 | | | Rural Water Supply (mgd) | 2 | 2 | 5 | 2 | | | Irrigation Water: agriculture (1000 afy) | 0.1 | 0.3 | 0.1 | 0 | | | non-agriculture (1000 afy) | 1 | 3 | 5 | 8 | | | Power Plant Cooling: withdrawal, saline (cfs) | 0 | 300 | 800 | 2000 | | | brackish (cfs) | | | | | | | fresh (cfs) | 0 | 0 | 10 | 20 | | | consumption, brackish(cfs) | | | | | | | fresh (cfs) | 0 | 0 | 5 | 10 | | | Hydroelectric Power Generation (mw) | | | | | | | Navigation: commercial (m. tons annually) | | | | | | | recreational boating (1000 boats) | 10 | 10 | 30 | 50 | | | Water Recreation: visitor days (m.) | х | 10 | 10 | 10 | | | stream or river (miles) | x | 30 | 40 | 50 | | | water surface (1000 acres) | X | 10 | 20 | 20 | | | beaches (acres) | X | 100 | 100 | 100 | | | pool (m. sq. ft.) | X | 1 | 2 | 2 | | | land facilities (1000 acres) | X | 10 | 10 | 10 | | | Fish & Wildlife: sport fishing man-days (m.) | 0.3 | 0.3 | 0.4 | 0.5 | | | surface area, lake (acres) | х | 0.1 | 0.4 | 1.3 | | | stream (acres) | х | 0.3 | 0.9 | 1.2 | | | access, fresh (acres) | X | 0.01 | 0.02 | 0.04 | | | salt (acres) | | | | | | | anadromous (acres) | X | 0.001 | 0.001 | 0.001 | | | piers (1000 feet) | | | | | | | hunting, man-days (m.) | 0.1 | 0.1 | 0.1 | 0.1 | | | access (1000 sq. mi.) | Х | 0.03 | 0.14 | 0.22 | | | nature study, man-days (m.) | 0.2 | 0.2 | 0.3 | 0.4 | | | access(1000 ac.) | X | 0.03 | 0.1 | 0.2 | | | Water Quality Maint.: non-industrial (m. PEs) | 100 | 200 | 200 | 300 | | | industrial (m. PEs) | 100 |
100 | 200 | 400 | | | Flood Damage Reduction: | | | 2.0 | 6.0 | | | avg. ann. damage, upstream (m. \$) mainstream (m. \$) | 1.1 | 1.7 | 3.3 | 6.8 | | | | 0.2 | 0.3 | 0.7 | 1.4 | | | tidal and hurricane (m. \$) Drainage Control: cropland (1000 acres) | 3 | | 7 | 0 | | | forest land (1000 acres) | 3 | 4 | / | 8 | | | | | | | | | | wet land (1000 acres) Erosion Control: agriculture (1000 acres) | 20 | 20 | 30 | 30 | | | urban (1000 acres) | 50 | 80 | 110 | 150 | | | stream bank (mi.) | 0 | 0.8 | 2.4 | 4.0 | | | coastal shoreline (mi.) | 0 | 0.0 | 2.4 | 4.0 | | | Health: vector control and pollution control | x | × | × | × | | | Visual and Cultural: | | | | | | | landscape maintenance, unique natural(sq. mi.) | | | | | | | unique shoreline (mi.) | | | | | | | high quality (sq. mi.) | | | | | | | diversity (sq. mi.) | x | 10 | 20 | 30 | | | agriculture (sq. mi.) | ^ | 10 | 20 | 30 | | | landscape development, quality (sq. mi.) | | | | | | | diversity (sq. mi.) | | | | | | | metro. amenities (mi.) | | | | | | | metro, amenitaes (mr.) | | | 5 | | | | Pres 1980 2000 2020 Pres 1980 2000 Pres 1980 2000 Pres 1980 2000 Pres 1 | 0 2000 2020 | |--|-------------| | 2 3 10 10 | | | 0 0.2 0.3 0.5 | | | 0 0.2 0.3 0.5 | | | 01 0.21 0.31 0.51 | | | | + | 0.03 0.03 0.03 0.04 | | | 0.03 0.03 0.04 | | | | | | x 0.001b.002b.004 | | | x 0.0010.0010.001 | | | | | | 0.01 0.01 0.02 0.02
x 0.01 0.02 0.04 | | | 0.02 0.03 0.03 0.04 | | | x 0.1 0.3 0.4
20 20 30 30 | + | | 20 20 30 30 | | | | | | 1.0 1.5 2.7 5.0 | | | | | | 1 1 2 2 | | | | | | 20 20 20 20
10 10 10 10 | | | 10 10 10 10
0 0.3 0.9 1.5 | | | 0 0.3 0.9 1.3 | | | x x x x | STA | TE TOTA | L | | | |--|---------------------|----------|--|--------|------| | DEVICES - incremental | Purposes | 1980 | 2000 | 2020 | | | I. Resource Management | | | | | | | A. Water | | | | | | | Storage Facilities ¢ | n we wat | 140 | 25 | 100 | | | reservoirs, upstream (1000 af) | Rec, FW, VC* | 149 | 35 | 190 | | | | FW, VC, Rec, WQ* | 0 | 0 | 180 | | | Withdrawal Facilities | DC T1 D T | 220 | 720 | 1000 | 100 | | | PS, Ind, Pow, Irrig | 330 | 730 | 1000 | | | 0146112011 (11164) | Ind | 78
37 | 123 | 149 | | | wells (mgd) | ^ | 37 | 1 22 | 30 | | | Conveyance Facilities | * | 240 | 400 | 470 | | | interbasin diversions, into (mgd) | * | 240 | 590 | 750 | | | Quality Control Facilities out of (mgd) | | 240 | 330 | 130 | | | chemical/biological | | 10.00 | | | | | potable water treat. plants (mgd) | PS | 82 | 164 | 478 | | | waste treatment plants (mgd) | | 02 | 104 | 4,0 | | | secondary (85%) (m. PEs removed) | WO.VC.Rec | 14000 | 0 | 0 | | | secondary (90%) (m. PEs removed) | WO.Rec.VC | 20 | 23000 | 37000 | | | advanced (95%) (m. PEs removed) | WO.Rec | 0 | 1200 | 2000 | | | Desalting Facilities | | - | 1200 | 1 2000 | | | B. Water/Land | | | | 1 | | | Upstream Flood Plain Mgmt.(1000 acres) | FDR, VC, Rec | 47 | 38 | 147 | | | Local Flood Protection | | | | | | | ocean (projects) | FDR | 0 | 1 | 0 | | | river (projects) | FDR | 12 | 23 | 1 | | | flood control channels (miles) | FDR | 0 | 0.25 | 0 | | | Watershed Management (1000 acres) | FDR,VC,Drn,Rec | 600 | 1040 | 910 | | | C. Land | | | | | | | Controls | | | | | | | fee simple purchase (buying)(sq.mi.) | VC, Rec, FW | 1540 | 210 | 210 | | | fee simple purchase (buying) (mi.) | VC, Rec, FW | 16 | 0 | 0 | | | purchase lease (sq.mi.) | VC,FW | 6.5 | 3.5 | 2.5 | | | easements (sq.mi.) | VC, FW | 26 | 26 | 26 | | | deed restrictions (sq.mi.) | | | | | | | tax incentive subsidy (sq.mi.) | vo m | | | | | | zoning (sq.mi.) | VC,FW | 600 | 0 | 0 | | | zoning (mi.) | NO DII | 11 | 1. | 1. | 1177 | | zoning and/or tax inc. subs.(sq.mi.) | VC,FW | 14 | 14 | 14 | | | zoning and/or tax inc. subs. (mi.) | | | | | | | V. Others | TTO D | | 0.5 | | | | Upstream Flood Control Storage (1000 af) | FDR | 26 | 85 | 1 | | | Mainstream Flood Control Storage (1000 af) | FDR | 224.7 | 2.4 | 0 | | ^{*} From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. $\boldsymbol{\varphi}$ Flood control storage not included. | A | AREA 6 | | A | AREA 7 | | F | AREA 8 | | | AREA 9 | | |--------------|--------------|--------------|----------------|---------------|------------------|----------------|---------------|-------------------|-----------------|-------------------|--------------------| | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | | | | | 0.2 | 0.4 | 90 | 3 | 30
0 | 0
100 | 131 | 0 | 0 | | 0 | 0 | 0.1 | 30
8
1 | 80
10
2 | 110
10
2 | 100
3
7 | 210
4
3 | 320
4
0 | 190
54
24 | 430
91
8 | 560
126
7 | | | | | 120
120 | 100
490 | 10
740 | 120 | 100 | 10 | 120 | 300 | 460 | | 0.1 | 0.1 | 0.4 | 11 | 27 | 23 | 9 | 11 | 19 | 61 | 100 | 432 | | 10
0
0 | 0
20
1 | 0
30
1 | 2000
0
0 | 3000
100 | 0
4000
200 | 4000
0
0 | 7000
400 | 0
14000
800 | 8000
0
0 | 0
12000
700 | 0
18000
1000 | | | | | 7 | 8 | 45 | 6 | 6 | 8 | 28 | 17 | 80 | | | | | 2 | 7 | 0 | 0 | 1:
0.25 | 0 | 0
7 | 1
10 | 0 | | | | | 280 | 560 | 560 | 130 | 180 | 160 | 150 | 240 | 140 | | 1 | 0 | 0 | 100 | 60 | 60 | 1050 | 0 | 0 | 390
15 | 150
0 | 150
0 | | | | | | | | 18 | 18 | 18 | 600 | 0 | 0 | | | | | | | | 14 | 14 | 14 | 000 | U | J | | | | | 3 11,4 | 17
2.4 | 0 | 0
213.3 | 8 | 0 | 15 | 44 | 0 | | | | | AREA 10 | | | |--
--|------|---------|------|--| | DEVICES - incremental | Purposes | 1980 | 2000 | 2020 | | | I. Resource Management | | | | | | | A. Water | | | | | | | Storage Facilities ♥ | | | | 7.6 | | | reservoirs, upstream (1000 af) | Rec,FW,VC* | 11 | 3 | 76 | | | | FW,VC,Rec,WQ* | 0 | 0 | 80 | | | Withdrawal Facilities | | 2 | 10 | 10 | | | | PS, Ind, Pow, Irrig | 3 | 10 | 10 | | | brackish (mgd) | | 13 | 18 | 9 | | | wells (mgd) | * | 5 | 6 | 39 | | | Conveyance Facilities | | | | | | | interbasin diversions, into (mgd) | 1* | | | | | | out of (mgd) | * | | | | | | Quality Control Facilities | | | | | | | chemical/biological | | | | | | | potable water treat. plants (mgd) | PS | 1 | 24 | 2 | | | waste treatment plants | | | | | | | secondary (85%) (m. PEs removed) | WQ,VC,Rec | 300 | 0 | 0 | | | secondary (90%) (m. PEs removed) | WQ,VC,Rec | . 0 | 400 | 600 | | | advanced (95%) (m. PEs removed) | WQ,Rec | 0 | 20 | 40 | | | Desalting Facilities | | | | | | | B. Water/Land | | | | | | | Upstream Flood Plain Mgmt.(1000 acres) | FDR,VC,Rec | 4 | 4 | 10 | | | Local Flood Protection | | | | | | | ocean (projects) | FDR | | | | | | river (projects) | FDR | 2 | 6 | 1 | | | flood control channels (miles) | FDR | | | | | | Watershed Management (1000 acres) | FDR,VC,Drn,Rec | 50 | 50 | 40 | | | C. Land | | | | | | | Controls | | | | | | | fee simple purchase (buying)(sq.mi.) | VC,Rec,FW | | | | | | fee simple purchase (buying) (mi.) | VC, Rec, FW | | | | | | purchase lease (sq.mi.) | VC,FW | 6.5 | 3.5 | 2.5 | | | easements (sq.mi.) | VC,FW | 8 | 8 | 8 | | | deed restrictions (sq.mi.) | | | | | | | tax incentive subsidy (sq.mi) | | | | | | | zoning (sq.mi.) | VC, FW | | | | | | zoning (mi.) | | | | | | | zoning and/or tax inc. subs.(sq.mi.) | VC,FW | | | | | | zoning and/or tax inc. subs. (sq.mi.) | , | | | | | | V. Others | | | | | | | Upstream Flood Control Storage (1000 af) | FDR | 6 | 17 | 1 | | | Mainstream Flood Control Storage (1000 af) | the second secon | | | | | | the state of s | | | | | | | | | | | | | $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. φ Flood control storage not included. | A | AREA 12 | | 1 | AREA | | | AREA | | | AREA | | |-------|---------|---------|------|------|------|------|------|------|------|------|------| | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | | | | | | | | | | | | | | | 2 | , | 24 | | | | | | | | | | |
3 | 1 | | | | | | | | | | | | 0.2 | 1 | 1 | | | | | | | | | | | 0.2 | 3 | 2 |
 | | | | | | | | | | | | | 0.4 | 1 | 2 | 20 | 30
0 | 30
2 | | | | | | | | | | |
0 | 0 | | | | | | | | | | | | 1 | 3 | 4 | 2 | 0 | 0 | | | -b | | | | | | | | 4 | 10 | 10 |
3 | 0 | 0_ | FIRST COSTS - incremental | ST | TATE TO | ΓAL | | |--|------|---------|------|--| | (\$ million 1970) | 1980 | 2000 | 2020 | | | Water Development Costs: | | | | | | storage, upstream | 45.2 | 7.7 | 47.8 | | | mainstream | 0 | 0 | 71 | | | wells | 19.2 | 11.0 | 7.8 | | | desalting | | | | | | Water Withdrawal and Conveyance Costs: | | | | | | inter-basin transfers | 77 | 154 | 46 | | | public water supply | 25 | 66 | 120 | | | industrial self-supplied water | 1.5 | 3.0 | 4.0 | | | rural water supply | х | x | х | | | irrigation, agriculture | 3.65 | 0.49 | 0.02 | | | non-agriculture | 15 | 15 | 19 | | | Power Plant Cooling Water | 0 | 28 | 123 | | | Hydroelectric Power Generation | Х | Х | Х | | | Navigation: commercial | 20 | 110 | 59 | | | recreational boating | 3.4 | 10.9 | 13.1 | | | Water Recreation | 1170 | 700 | 780 | | | Fish and Wildlife: fishing | 6.7 | 8.8 | 10.2 | | | hunting | x | х | x | | | nature study | х | x | x | | | Water Quality Maint.: waste treatment, secondary | 830 | 1520 | 2450 | | | advanced | 0 | 260 | 420 | | | other ≠ | 1700 | 0 | 0 | | | Flood Damage Reduction: upstream | 6.1 | 17.6 | 0.2 | | | mainstream | 82 | 16 | 0 | | | Drainage Control | 0.56 | 1.44 | 0.70 | | | Erosion Control | 870 | 900 | 130 | | | Health | Х | Х | X | | | Visual and Cultural | 482 | 80 | 80 | | | Summation of Available Estimated Costs | 5400 | 3900 | 4400 | | ^{*} From the supply model and includes OMR costs. # Combined sewer overflows control and acid mine drainage control. | | | AREA 6 | 5 | | AREA 7 | | | AREA 8 | | | AREA 9 | | |---|------|--------|------|-----------|-----------|-----------|-----------|--------|-----------|-----------|------------|------------| | | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | | | | | | 0 | 0.1 | 15.4 | 0.8 | 4.2 | 0 | 39.2 | 0 | 0 | | | | | | 0.5 | 1.0 | 1.0 | 3.9 | 1.6 | 35
0.1 | 10.7 | 3.7 | 3.3 | | | | | | 77 | 49 | 4 | | | | 0.4 | 104 | 42 | | | 0.1 | 0.1 | 0.3 | 0.2 | 0.4 | 28
0.5 | 4
0.5 | 7 | 10
1.9 | 13
0.6 | 24 | 79
1.4 | | | | | | x
0.14 | x
0.30 | x
0 | x
0.92 | х | x | х | x | х | | | | | | 1 | 1 | 1 | 2 | 0.04 | 0.02 | 1.87 | 0.15 | 13 | | | | | | 0 | 0 | 12 | 0 | 6 | 16 | 0 | 20 | 90 | | | | | | | | | X | Х | Х | | | | | | | | | 0.1 | 0.2 | 0.2 | 0.2 | 0.5 | 0.9 | 20 | 110
9.4 | 59
10.9 | | - | | | | 160 | 100 | 110 | 250 | 120 | 150 | 700 | 450 | 500 | | | 0.1 | 0.1 | 0.1 | 1.6 | 1.3 | 1.5 | 1.1 | 1.0 | 1.2 | 3.9 | 6.3 | 7.2 | | | х | x | х | x | x | х | х | x | x | х | x | x | | | Х | Х | X | X | х | X | Х | Х | X | X | X | X | | | 2 | 3 | 3 | 240 | 420 | 630 | 290 | 420 | 790 | 280 | 640 | 970 | | | 0 | 0.2 | 0.2 | 0 | 30 | 50 | 0 | 90 | 160 | 0 | 140 | 210 | | | | | | 200 | 0 | 0 | 200 | 0 | 0 | 1300 | 0 | 0 | | | | | | 0.2 | 5.0 | 0 | 0 | 1.8 | 0 | 3.4 | 6.6 | 0 | | | | | | 4 | 6 | 0 | 46 | 0 | 0 | 32 | 9 | 0 | | | | | | | | | 0.32 | 0.82 | 0.44 | 0.13 | 0.36 | 0.13 | | | | | | 10 | 10 | 10 | 10 | 10 | 10 | 840 | 880 | 100 | | | X | X | X | X | X 17 | X 1.7 | X | X | X | X | X | X | | | 0.3 | 0 | 0 | 23 | 17 | 17 | 111 | 7 | 7 | 344 | 53 | 53 | | | 2.5 | 3.4 | 3.6 | 730 | 660 | 880 | 920 | 670 | 1190 | 3600 | 2500 | 2100 | | FIRST COSTS - incremental | | AREA | 10 | | |--|------|------|------|--| | (\$ million 1970) | 1980 | 2000 | 2020 | | | Water Development Costs: | | | | | | storage, upstream | 4.6 | 3.1 | 29.1 | | | mainstream | 0 | 0 | 36 | | | wells | 2.9 | 3.1 | 3.2 | | | desalting | | | | | | Water Withdrawal and Conveyance Costs: | | | | | | inter-basin transfers | | | | | | public water supply | 0.4 | 11 | 1 | | | industrial self-supplied water | 0.1 | 0.1 | 0.1 | | | rural water supply | Х | X | X | | | irrigation, agriculture | 0.72 | 0 | 0 | | | non-agriculture | 2 | 2 | 2 | | | Power Plant Cooling Water | 0 | 2 | 5 | | | Hydroelectric Power Generation | | | | | | Navigation: commercial | | | | | | recreational boating | 0.1 | 0.7 | 1.0 | | | Water Recreation | 60 | 30 | 20 | | | Fish and Wildlife: fishing | 0.1 | 0.2 | 0.2 | | | hunting | x | x | x | | | nature study | х | X | x | | | Water Quality Maint.: waste treatment, secondary | 20 | 30 | 50 | | | advanced | 0 | 5 | 10 | | | other ≠ | 10 | 0 | 0 | | | Flood Damage Reduction: upstream | 1.5 | 4.3 | 0.2 | | | mai n stream | | | | | | Drainage Control | 0.09 | 0.23 | 0.11 | | | Erosion Control | 10 | 5 | 10 | | | Health | Х | X | х | | | Visual and Cultural | 4 | 3 | 3 | | | Summation of Available Estimated Costs | 120 | 100 | 170 | | ^{*} From the supply model and includes OMR costs. # Combined sewer overflows control and acid mine drainage control. | | AREA 1 | 2 | | AREA | | | AREA | | | AREA | | |----------------
----------------|----------------|------|------|------|------|------|------|------|------|------| | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | | 0.6 | 0.3 | 3.3 | | | | | | | | | | | 1.2 | 1.6 | 0.2 | | | | | | | | | | | 0.3 | 1 | 1 | | | | | | | | | | | 0.1 | 0.1 | 0.1 | | | | | | | | | | | 0.04 | 0.1 | 0.1 | | | | | | | | | | | 0.01
x
x | 0.01
x
x | 0.02
x
x | | | | | | | | | | | 2 0 | 2 0 | 2
1 | | | | | | | | | | | 1.1 | 0 | 0 | | | | | | | | | | | 0.02 | 0.03 | 0.03 | | | | | | | | | | | Х | X | Х | | | | | | | | | | | 5.7 | 5.4 | 8.0 | | | | | | | | | | ## RHODE ISLAND ## RHODE ISLAND Rhode Island covers 1,213 square miles located primarily in Area 9, with a very small portion located in Area 10. The topography varies from coastal plain to rolling hills and the visual quality of the State is medial. The drainages are small and outlet either into Narragansett Bay or along the coast. Water must be imported because of insufficient natural supplies and the overall degradation of existing supplies. The population is concentrated around Providence and Newport and should reach 1.5 million by 2020 from the 1970 total of 94,000. Per capita income was at the national average in 1970 and is projected to remain at that level throughout the Study period. Employment in 1970 was highest in services and related industries, which is expected to double by 2020. Paper and allied products and chemicals and allied products should also double employment by 2020, while decreases are projected for textile mill products, agriculture, and forestry and fisheries. Needs to be Satisfied. The needs of the State are largest in Area 9 and either relatively small or nonexistent in Area 10. The key needs are Fish and Wildlife, Water Quality Maintenance and Erosion Control, all in Area 9. The important needs in Area 9 are Publicly Supplied Water, Industrial Self-supplied Water, Power Plant Cooling, Recreational Boating, Water Recreation, Water Quality Maintenance, and Health. The important needs in Area 10 are Publicly Supplied Water and Water Quality Maintenance. Devices. The key devices are quality control facilities and erosion protection in Area 9. The important devices are conveyance facilities, watershed management, land controls, habitat management and water demand and allocation changes in Area 9 and quality control facilities in both Areas. Due to the low need levels in Area 10 the number of devices used will be very small. Costs. The large costs in this State are in Area 9 and are incurred to meet the needs of Water Recreation, Water Quality Maintenance, Erosion Control and Visual and Cultural | | | STATE | TOTAL | | | |---|-------|-------|-------|-------|------| | NEEDS-cumulative | Pres. | 1980 | 2000 | 2020 | | | Publicly Supplied Water (mgd) | 110 | 150 | 210 | 330 | | | Industrial Self-Supplied Water (mgd) | 39 | 63 | 113 | 152 | | | Rural Water Supply (mgd) | | 1.6 | 2.5 | 1.7 | | | Irrigation Water: agriculture (1000 afy) | | 2.6 | 2.7 | 2.7 | | | non-agriculture (1000 afy) | 2.5 | 6.4 | 10.6 | 16.2 | | | Power Plant Cooling: withdrawal, saline (cfs) | 340 | 890 | 5610 | 11520 | | | brackish (cfs) | | | | | | | fresh (cfs) | | | | | | | consumption, brackish(cfs) | | | | | | | fresh (cfs) | | | | | | | Hydroelectric Power Generation (mw) | | 10.0 | | 12// | L | | Navigation: commercial (m. tons annually) | 9.9 | 12.8 | 21.0 | 34.4 | | | recreational boating (1000 boats) | 57 | 76 | 143 | 210 | | | Water Recreation: visitor days (m.) | Х | 25 | 41 | 57 | | | stream or river (miles) | Х | 170 | 230 | 320 | | | water surface (1000 acres) | X | 62 | 95 | 129 | | | beach (acres) pool (m. sq. ft.) | X | 430 | 570 | 650 | | | pool (m. sq. ft.)
land facilities (1000 acres) | X | 7.4 | 9.8 | 11.2 | | | Fish & Wildlife: sport fishing man-days (m.) | 1.8 | 2.2 | 2.7 | 3.4 | | | surface area, lake (acres) | x | 0.72 | 3.06 | 9.00 | | | stream (acres) | X | 0.72 | 0.76 | 1.30 | | | access, fresh (acres) | X | 0.038 | 0.099 | 0.171 | | | salt (acres) | X | 0.086 | 0.231 | 0.399 | | | anadromous (acres) | | 0.002 | 0.003 | 0.004 | | | piers (1000 feet) | X | 2.4 | 6.5 | 11.3 | | | hunting, man-days (m.) | | 0.31 | 0.37 | 0.45 | | | access (1000 sq. mi.) | х | 0.14 | 0.29 | 0.35 | | | nature study, man-days (m.) | 1.1 | 1.3 | 1.6 | 1.9 | | | access(1000 ac.) | х | 2.3 | 5.9 | 10.3 | | | Water Quality Maint.: non-industrial (m. PEs) | 790 | 980 | 1210 | 1500 | | | industrial (m. PEs) | 610 | 1030 | 1750 | 3010 | | | Flood Damage Reduction: | | | | | | | avg. ann. damage, upstream (m. \$) | 0.005 | 0.008 | 0.015 | 0.030 | | | mainstream (m. \$) | 0.64 | 1.00 | 1.91 | 3.84 | i | | tidal and hurricane (m. \$) | 4.2 | 6.6 | 12.6 | 25.4 | | | Drainage Control: cropland (1000 acres) | 1.6 | 2.2 | 3.5 | 3.8 | | | forest land (1000 acres) | 0 | 0 | 0.61 | 2.03 | | | wet land (1000 acres) | | | | | | | Erosion Control: agriculture (1000 acres) | 14 | 18 | 20 | 20 | | | urban (1000 acres) | 130 | 170 | 230 | 320 | | | stream bank (mi.) | Х | 0.9 | 2.3 | 4.0 | | | coastal shoreline (mi.) | X | 70 | 140 | 150 | | | Health: vector control and pollution control | X | X | X | X | | | Visual & Cultural: | | | | | | | landscape maintenance, unique natural(sq. mi.) | | - | - | - | | | unique shoreline (mi.) | X | 5 | 5 | 5 | 1 | | high quality (sq. mi.)
diversity (sq. mi.) | | | | | 1 | | | | | | | - 4 | | agriculture (sq. mi.)
landscape development, quality (sq. mi.) | | 50 | 100 | 150 | l li | | diversity (sq. mi.) | Х | 30 | 100 | 130 | 1 | | metro. amenities (mi.) | | | | | Š | | " (sq. mi.) | x | 10 | 10 | 10 | | | (54. mr.) | | 10 | 1 10 | 10 | | | | | AREA | A 9 | | _ | AREA | 10 | | | AREA | A | | | AREA | 1 | | |---|-------------|---------|--------------|----------|------|------|------|--------|------|------|------|------|------|------|------|------| | | Pres | 1980 | 2000 | 2020 | Pres | 1980 | 2000 | 2020 | Pres | 1980 | 2000 | 2020 | Pres | 1980 | 2000 | 2020 | | | 110 | | | | | 10 | 20 | 20 | | | | | | | | | | | 39 | | | | | | - | | | | | | | | | | | | 1.5 | 1.6 | | | | | | - | | | | | | | | | | | 0.9 | | 2.7 | | | 0.2 | 0.3 | 0,5 | | | | | | | | | | - | 340 | | 5610 | | | V.2 | V | _ U. J | 45.0 | | | | | | | | | | | | | | | | | 111 | | | | | | | | | - | | - | | | | - | | | | | | | | | - | 9.9 | 12.8 | 21.0 | 34.4 | | | | | | | | | | | | | | | 56 | 74 | 1 | | | 2 | 3 | 7 | | | | | | | | | | | х | 25 | 41 | 57 | | | | | | | | | | | | | | | х | 170 | | | | | | | | | | | | | | | | | х | 62 | | | | | | | | | | | | | | | | | X | 430 | | 650 | | | | | | | | | | | | | | | X
X | 7.4 | 9.8 | | | | | | | | | | | | | | | | 1.7 | 2.1 | | | 0.1 | 0.1 | 0.2 | 0.2 | | | | | | | | | | | х | | 3.06 | | | | | | | | | | | | | | | | х | | 0.76 | | | | | | | | | | | | | | | | | | 0.099 | | | | | | | | | | E M | | | | | | | | 0.231 | | | | | | | | | | | | | | | | X
X | | 0.003
6.5 | 0.02 | 0.02 | 0.03 | 0.04 | | | | | | | | | | | х | | 0.27 | | | | | 0.03 | | | | | | | | | | | 1.0 | 1.2 | 1.5 | 1.8 | | | | | | | | | | | | | | | X | 2.3 | | 10.3 | | | | | | | | | | | | | | | 740
610 | 1030 | 1110
1750 | 1380 | 60 | 80 | 100 | 120 | | | | | | | | | | | 010 | 1030 | 1730 | 3010 | | | | | | | | | | | | | | | | | 0.015 | | | | | | | | | | | | | | | | | | 1.91 | | | | | | | | | | | | | | | | 4.2 | | 12.6 | | 0.0 | 0.0 | 0 / | 0.5 | | | | | | | | | | | 1.4 | | 3.1 0.60 | | 0.2 | 0.3 | | 0.5 | | | | | | | | | | | U | U | 0.00 | 2.00 | U | U | 0.01 | 0.03 | | | | | | | | | | | 13 | 16 | | 18 | 1 | 2 | 2 | 2 | | | | | | | | | | | 130 | 160 | | 310 | 3 | 10 | 10 | 10 | | | | | | | | | | | х | 0.8 | | 3.5 | Х | 0.1 | 0.3 | 0.5 | | | | | | | | | | | X | 70
x | 140
x | 150
x | ., | | | | - | | | | | | | | | | Х | A | A | X | Х | Х | X | Х | | - | x | 5 | 5 | 5 | 4.9 | | | | | | | İ | | | | | x | 50 | 100 | 150 | | | | | | | | | | | | | | | ^ | 50 | 100 | 150 | | | | | | | | | | | | | | 1 | | | | | | | | | | | | - | | | | 1 | | | х | 10 | 10 | 10 | | | | | | | | | | | | | | | STAT | E TOTAL | | | | |---|---------------------|---------|------|------|-------| | DEVICES - incremental | Purposes | 1980 | 2000 | 2020 | | | I. Resource Management | | | | | | | A. Water | | | | | | | Storage Facilities ϕ | | | | | | | reservoirs, upstream (1000 af) | Rec, FW, VC* | 17 | 0 | 0 | | | mainstream (1000 af) | FW.VC.Rec.WQ* | 26 | 0 | 0 | | | Withdrawal Facilities | | | | | | | intakes & pumping, fresh (mgd) | PS, Ind, Pow, Irrig | 46 | 101 | 125 | | | brackish (mgd) | Ind | 16 | 26 | 36 | | | wells (mgd) | * | 4.7 | 1.7 | 1.4 | | | Conveyance Facilities | | | | | | | interbasin diversions, into (mgd) | * | 0 | 190 | 280 | | | out of (mgd) | | | | | | | Quality Control Facilities | | | | | | | chemical/biological | | | | | | | potable water treat. plants (mgd) | PS | 13 | 31 | 89 | | | waste treatment plants | | | | | | | secondary (85%) (m. PEs removed) | WQ,VC | 1700 | 0 | 0 | | | secondary (90%) (m. PEs removed) | WQ,VC | 0 | 2700 | 4100 | | | advanced (95%) (m. PEs removed) | WQ | 0 | 150 | 230 | | | Desalting Facilities | | | | | | | B. Water/Land | | | | | | | Upstream Flood Plain Mgmt.(1000 acres) | FDR,VC | 1.7 | 1.4 | 2.7 | | | Local Flood Protection | | | | | | | ocean (projects) | FDR | 0 | 2 | 0 | | | river (projects) | | | | | 1 | | flood control channels (miles) | | | | | | | Watershed Management (1000 acres) | FDR,VC,Drn | 34 | 61 | 49 | | | C. Land | | | | | 4-11- | | Controls | | | | | | | fee simple purchase (buying)(sq.mi.) | | 60 | 50 | 50 | | | fee simple purchase (buying) (mi.) | VC, FW | 5 | 0 | 0 | | |
purchase lease (sq.mi.) | | | | | | | easements (sq.mi.) | | | | | | | deed restrictions (sq.mi.) | | | | | | | tax incentive subsidy (sq.mi.) | | | | | | | zoning (sq.mi.) | | | | | | | zoning (mi.) | | | | | | | <pre>zoning and/or tax inc. subs.(sq.mi.)</pre> | | | | | | | zoning and/or tax inc. subs. (mi.) | | | | | | | V. Others | | | | | | | | | | | - | - | | | | | | | - | | | | | - | | - | $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. φ Flood control storage not included. | A | AREA 9 | | I | AREA 10 | | | AREA | | | AREA | | |----------|-------------|-------------|------|-----------|-----------|------|------|------|------|------|------| | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 17
26 | 0 | 0 | | | | | | | | | | | 46 | 101 | 125 | 0.1 | 0.1 | 0.2 | | | | | | | | 16 | 26 | 36 | 0.1 | 0.1 | 0.2 | | | | | | | |
4.7 | 1.7 | 1.4 | | | | | | | | | | | 0 | 190 | 280 | 13 | 20 | 88 | 0.2 | 10 | 1 | | | | | | | | 1600 | 0 | 0 | 100 | 0 | 0 | | | | | | | | 0 | 2600
140 | 3900
220 | 0 | 100
10 | 100
10 | | | | | | | | | 140 | 220 | 0 | 10 | 10 | | | | | | | | 1.7 | 1.4 | 2.7 | | | | | | | | | | | 0 | 2 | 0 | 34 | 61 | 49 | 60
5 | 50
0 | 50
0 | | | | | | | | | | |) | U | U | FIRST COSTS - incremental | ST | TATE TO | ΓAL | | |--|-------|---------|-------|--| | (\$ million 1970) | 1980 | 2000 | 2020 | | | Water Development Costs: | | | | | | storage, upstream | 5.2 | 0 | 0 | | | mainstream | 9.7 | 0 | 0 | | | wells | 2.1 | 0.7 | 0.6 | | | desalting | | | | | | Water Withdrawal and Conveyance Costs: | | | | | | inter-basin transfers | 0 | 67 | 16 | | | public water supply | 2.8 | 9.7 | 16.6 | | | industrial self-supplied water | 0.18 | 0.38 | 0.41 | | | rural water supply | x | x | x | | | irrigation, agriculture | 0.163 | 0.013 | 0 | | | non-agriculture | 3.4 | 3.3 | 4.4 | | | Power Plant Cooling Water | 0 | 10 | 40 | | | Hydroelectric Power Generation | | | | | | Navigation: commercial | 0 | 25 | 50 | | | recreational boating | 1.3 | 3.2 | 3.8 | | | Water Recreation | 270 | 180 | 170 | | | Fish and Wildlife: fishing | 0.83 | 1.37 | 1.58 | | | hunting | х | x | x | | | nature study | Х | X | X | | | Water Quality Maint.: waste treatment, secondary | 65 | 144 | 218 | | | advanced | 0 | 3.0 | 46 | | | other ≠ | 280 | 0 | 0 | | | Flood Damage Reduction: upstream | | | | | | mainstream | 0 | 17 | 0 | | | Drainage Control | 0.047 | 0.131 | 0.048 | | | Erosion Control | 130 | 137 | 11 | | | Health | Х | Х | Х | | | Visual and Cultural | 95 | 18 | 18 | | | Summation of Available Estimated Costs | 870 | 650 | 600 | | ^{*} From the supply model and includes OMR costs. # Combined sewer overflows control and acid mine drainage control. | | | AREA 9 | | | AREA 1 | 0 | | AREA | | | AREA | | |---|-----------------------|------------------------|-------------------------|-------|--------|-------|------|------|------|------|------|------| | | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | | | 5.2
9.7
2.1 | 0
0
0.7 | 0
0
0.6 | | | | | | | | | | | | 0
2.6
0.18
x | 67
4.8
0.38
x | 16
16.1
0.41
x | 0.2 | 4.9 | 0.5 | | | | | | | | | 0.163
3.3 | 0.013 | 0
4.3 | 0.1 | 0.1 | 0.1 | | | | | | | | | 0 | 10 | 40 | 0.1 | 0.1 | 0 | 25
3.1 | 30 | 0.00 | 0.1 | 0.1 | | | | | | | | | 1.3
270 | 180 | 3.6
170 | 0.02 | 0.1 | 0.1 | | | | | | | | | 0.79 | 1.28 | 1.47 | 0.04 | 0.09 | 0.11 | | | | | | | | | х | х | x | х | x | x | | | | | | | | - | х | х | х | X | x | x | | | | | | | | | 59
0
280 | 137
29
0 | 209
45
0 | 6 | 7 | 9 | | | | | | | | | 0 | 17 | 0 | | | | | | | | | | | | 0.042 | 0.117 | 0.042 | 0.005 | 0.014 | 0.006 | | | | | | | | | 130 | 136 | 11 | 0.4 | 0.3 | 0.4 | | | | | | | | | 95 | 18 | 18 | Х | X | X | | | | | | | | | 860 | 630 | 570 | 6.8 | 13.5 | 11.2 | | | | | | | ## CONNECTICUT Connecticut covers 5,007 square miles located primarily in Areas 8 and 10, with very small portions located in Areas 9 and 12. The topography of the State ranges from coastal plain to rolling hills with small amounts of steep hills. The visual quality of the State is medial. Water is generally abundant on the Housatonic and Thames Rivers, but the Connecticut River suffers from low flows, particularly in August and September. The quality of the water ranges from poor to extremely polluted. A portion of coastal Connecticut lies within the metropolitan suburbs surrounding New York City, and that part of the State, plus the north-south route to Springfield, Massachusetts, is very densely populated. The 1970 population stood at almost 3 million and should surpass 5.9 million by 2020. Per capita income was 23 percent above the national average in 1970 but should decline to 12 percent above by the end of the Study period. Employment in services and related industries, which are highest in 1970, should increase by 150 percent by 2020, and increases are also projected for chemicals and allied products and paper and allied products. Employment declines are expected for agriculture forestry and fisheries, textile mill products and primary metals. Needs to be Satisfied. The largest needs in this State are in Area 10 with the exception of Industrial Self-supplied Water, agricultural Irrigation, some Power Plant Cooling and Fish and Wildlife needs, forest Drainage Control, and high quality and unique natural landscape maintenance which are all largest in Area 8. The needs in Areas 9 and 12 are relatively insignificant or non-existent in size. The key needs are for Water Quality Maintenance in Area 8 and Erosion Control in Area 9. The important needs are Water Quality Maintenance in Areas 8, 10 and 12, Water Recreation in Areas 8 and 10 and Publicly Supplied Water in Areas 10 and 12. Other important needs are Fish and Wildlife and Visual and Cultural in Area 8, Health in Area 9, and Industrial Self-supplied Water in Area 10. Devices. The largest levels of device implementation are all in Area 10 except fresh water intakes and pumping which is largest in Area 8. The one key device in this State is for erosion protection in Area 9. The important devices are storage facilities in Areas 8 and 10, withdrawal facilities in Area 12, quality control facilities in Areas 8, 10 and 12, and land controls and water demand and allocation changes in Area 10. Costs. The agriculture Irrigation costs and the costs for combined sewer overflow controls are largest in Area 8. All other costs are largest in Area 10 which has the largest total cost in the State. The large expenditures are expected in Public Water Supply (2000), commercial navigation, (2020) Water Recreation (1980-2020), combined sewer overflow control (1980), Erosion Control (1980-2000), and Visual and Cultural (1980). | | | STATE | TOTAL | | | |---|---------|-------|----------|-------|---| | NEEDS-cumulative | Pres. | 1980 | 2000 | 2020 | | | Publicly Supplied Water (mgd) | 310 | 410 | 620 | 910 | | | Industrial Self-Supplied Water (mgd) | 190 | 320 | 590 | 1000 | | | Rural Water Supply (mgd) | 25 | 34 | 65 | 34 | | | Irrigation Water: agriculture (1000 afy) | 7 | 24 | 21 | 19 | | | non-agriculture (1000 afy) | 5 | 15 | 26 | 41 | | | Power Plant Cooling: withdrawal, saline (cfs) | 2100 | 5500 | 12600 | 18400 | | | brackish (cfs) | 1700 | 1500 | 2000 | 1900 | | | fresh (cfs) | 0 | 0 | 110 | 200 | | | consumption, brackish(cfs) | 16 | 15 | 19 | 20 | | | fresh (cfs) | 0 | 0 | 53 | 105 | | | Hydroelectric Power Generation (mw) | 130 | 780 | 3010 | 9010 | | | Navigation: commercial (m. tons annually) | 24 | 32 | 54 | 94 | | | recreational boating (1000 boats) | 130 | 180 | 330 | 690 | | | Water Recreation: visitor days (m.) | Х | 110 | 190 | 280 | | | stream or river (miles) | х | 680 | 910 | 1280 | | | water surface (1000 acres) | х | 220 | 340 | 480 | | | beach (acres) | х | 1800 | 2400 | 3000 | | | pool (m. sq. ft.) | Х | 31 | 41 | 51 | | | land facilities (1000 acres) | X | 120 | 170 | 220 | | | Fish & Wildlife: sport fishing man-days (m.) | 4.8 | 6.1 | 7.7 | 9.7 | | | surface area, lake (acres) | Х | 0.8 | 3.0 | 8.2 | | | stream (acres) | X | 1.8 | 5.4 | 7.6 | | | access, fresh (acres) | X | 0.08 | 0.20 | 0.34 | | | salt (acres) | Х | 0.19 | 0.63 | 1.15 | | | anadromous (acres)
piers (1000 feet) | Х | 0.10 | 0.12 | 0.17 | | | | | 5 | 18 | 33 | | | hunting, man-days (m.)
access (1000 sq. mi.) | 1.3 | 1.5 | 2.0 | 2.5 | | | nature study, man-days (m.) | X | 0.26 | 0.81 | 1.23 | | | access(1000 ac.) | 3.3 | 4.0 | 5.1 | 6.5 | | | Water Quality Maint: non-industrial (m. PEs) | X 24.00 | 0.7 | 3900 | 4900 | | | industrial (m. PEs) | 2400 | 3100 | 1 | | | | Flood Damage Reduction: | 460 | 910 | 1700 | 3200 | - | | avg. ann. damage, upstream (m. \$) | 5 | 0 | 15 | 21 | | | mainstream (m. \$) | 6 | 8 9 | 15
18 | 31 37 | | | tidal and hurricane (m. \$) | 8 | 12 | 24 | 49 | | | Drainage Control: cropland (1000 acres) | 20 | 27 | 43 | 49 | | | forest land (1000 acres) | 0 | 0 | 2.4 | 8.0 | | | wet land (1000 acres) | | | 2.4 | 0.0 | | | Erosion Control: agriculture (1000 acres) | | 160 | 170 | 180 | | | urban (1000 acres) | | 480 | 640 | 880 | | | stream bank (mi.) | | 5 | 16 | 27 | | | coastal shoreline (mi.) | 0 | 70 | 150 | 150 | | | Health: vector control and pollution control | х | X | X | X | | | Visual & Cultural: | | | | | | | landscape maintenance, unique natural(sq.
mi.) | | 640 | 640 | 640 | | | unique shoreline (mi.) | x | 80 | 80 | 80 | | | high quality (sq. mi.) | | 28 | 56 | 84 | | | diversity (sq. mi.) | | 10 | 20 | 30 | | | agriculture (sq. mi.) | | | | | | | landscape development, quality (sq. mi.) | x | 230 | 460 | 690 | | | diversity (sq. mi.) | | | | | | | metro. amenities (mi.) | | | | | | | " (sq. mi.) | v | 40 | 50 | 50 | | | | AREA | 8 | | | AREA | 9 | | | AREA | 10 | | | AREA | 12 | | |---------|------------|--------------------|--------------------|------|------|------|------|-----------|-----------|-------|-----------|------|---------|------|------| | | | 2000 | 2020 | Pres | 1980 | 2000 | 2020 | Pres | 1980 | | | Pres | 1980 | 2000 | 2020 | | 90 | | | | | | | | 210 | | | | 5 | 6 | 11 | 17 | |
100 | | | | | | | | 90 | | | | | | | | |
6 | 8 | | 17 | | | | | 20 | | | 25 | | | | | | 5 | 16
2 | 17 | 1/ | 0.1 | 0.2 | 0.4 | 0.6 | 3 | | 1 | 35 | | | | | |
0 | 0 | 500 | 900 | -0.1 | 0.2 | U.4 | V. Q | | | 12100 | | | | | | | 1700 | | | | | | | | 0 | | | | | | | | | 0 | 0 | | | | | | | 0 | 0 | 80 | 160 | | | | | | 16 | 15 | | | | | | | 0 | 0 | - | 5 | | | | | |
0 | 0 | 15 | 20 | | | | | 0 | 0 | | | | | | | |
 | - | - | 10 | | | | | 130 | 780 | | | | | | | | 20 | 5
30 | 7
50 | 10
90 | | | | | 20
110 | 28
150 | | 84
600 | | | | | |
x | 30 | | 70 | | | | | x | 90 | | 210 | | | | | | x | 220 | | | | | | | X | 460 | | 870 | | | | | | x | 70 | 100 | 150 | | | | | x | 150 | | 330 | | | | | | х | 600 | 800 | 1000 | | | | 1 | х | 1200 | 1600 | | | | | | | х | 11 | 14 | 17 | | | | | х | 20 | | 34 | | | | | |
Х | 40 | 50 | 60 | | | | | Х | 90 | | 160 | | | | | | 1.8 | 2.5
0.3 | 3.1 | 3.9 | | | | | 3.0 | 3.6 | | 5.8 | 0.1 | 0.1 | 0.1 | 0.1 | | X
X | 0.5 | 1.0 | 1.9 | | | | | X
X | 1.2 | | 5.8 | | | | | | x | 0.04 | | | | | | | x | 0.04 | | | | | | | | | 0.0 | 0.00 | 0.13 | | | | | x | | 0.63 | | | 7-3 | | | | x | 0.10 | 0.11 | 0.17 | | | | | х | | 0.003 | | | | | | | | | | | | | | | х | 5 | 18 | 33 | | | | | | 0.7 | 0.9 | | | | | | | 0.6 | | | | 0.03 | 0.03 | 0.03 | 0.04 | | Х | | 0.18 | | | | | | X | 0.15 | | | | | | | | 1.1 | 1.4 | 1.8 | | | | | | 2.2 | 2.6 | | | 0.05 | 0.05 | 0.06 | 0.08 | |
800 | 0.5 | $\frac{1.4}{1100}$ | $\frac{2.4}{1500}$ | | | | | 1600 | 0.2 | 2800 | | | 50 | 60 | 70 | | 270 | 530 | 990 | 1900 | | | | | 190 | 390 | | 1310 | 40 | 50 | 00 | /4 | | | | | | | | | | | 3,0 | 710 | 1310 | | | | | | 2 | 3 | 6 | 12 | 0.03 | 0.04 | 0.08 | 0.16 | 3 | 5 | 10 | 20 | | | | | | 3 | 4 | 9 | 18 | | | | | 3 | 5 | | 19 | E-V4 | | | | | | | | | | | | | 8 | 12 | 24 | 49 | | | | | | 6 | 8 | 12 | | 0.06 | 1 | | | 14 | 19 | 30 | 35 | | | | | | 4 | 4 | 1.1 | 4.2 | 0 | q | 0.4 | 1.0 | a | 0 | 0.9 | 2.8 | | | | | |
40 | 50 | 60 | 60 | 1 | 2 | 2 | | 70 | 100 | 110 | 120 | | | | | | 70 | 100 | 130 | 180 | 10 | 10 | 10 | 10 | 200 | 370 | 500 | 690 | | | | | | q | 1 | 4 | 1 | 0 | 0.2 | 0.3 | 1.5 | q | 4 | 11 | 19 | | | | | | | | | | | | | | g | 70 | 150 | 150 | | | | | | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | X | X | Х | Х | X | X | | 100 | 610 | 610 | 610 | | | | | | | | | | | | | | 100 | 640 | 640 | 640 | | | | | x | 80 | 80 | 80 | | | | | | x | 28 | 56 | 84 | | | | | A | 00 | 00 | ou | | 10 5 15 | | | | | | | | | | | | x | 10 | 20 | 30 | 1 | X | 230 | 460 | 690 | 37 | 40 | 50 | 50 | | | | | |
 | _ | | | | | - | | Х | 40 | 30 | 30 | | | | | | | STA | TE TOTAL | L | | |---|---------------------|----------|------------|------| | DEVICES - incremental | Purposes | 1980 | 2000 | 2020 | | . Resource Management | | | | | | A. Water | | | | 1 | | Storage Facilities ¢ | | | | | | | Rec, FW, VC* | 28 | 55 | 10 | | mainstream (1000 af) | FW, VC, Rec, WQ* | 26 | 143 | 13 | | Withdrawal Facilities | | | | | | | PS, Ind, Pow, Irrig | 100 | 210 | 35 | | brackish (mgd) | | 180 | 250 | 12 | | wells (mgd) | | 18 | 17 | 9 | | Conveyance Facilities | | | | | | interbasin diversions, into (mgd) | | | | | | out of (mgd) | | | | | | Quality Control Facilities | | | | | | chemical/biological | | | | | | potable water treat. plants (mgd) | PS | 18 | 301 | 5 | | waste treatment plants | | | | | | secondary (85%) (m. PEs removed) | WO.VC | 3300 | 0 | | | secondary (90%) (m. PEs removed) | WO.VC | 40 | 5080 | 734 | | advanced (95%) (m. PEs removed) | WO | 0 | 280 | 41 | | Desalting Facilities | * | 0 | 0 | 0. | | B. Water/Land | | | | | | Upstream Flood Plain Mgmt.(1000 acres) | FDR.VC | 7.6 | 12.6 | 6. | | Local Flood Protection | | | | | | ocean (projects) | FDR | 2 | 0 | | | river (projects) | FDR | 10.0 | 1.0 | 2. | | flood control channels (miles) | | | | | | Watershed Management (1000 acres) | FDR, VC, Drn | 290 | 350 | 28 | | C. Land | | | | | | Controls | | | | | | fee simple purchase (buying)(sq.mi.) | VC, FW | 740 | 190 | 19 | | fee simple purchase (buying) (mi.) | | 15 | 0 | | | purchase lease (sq.mi.) | | 84 | 52 | 4 | | easements (sq.mi.) | | 16 | 16 | 1 | | deed restrictions (sq.mi.) | | | | | | tax incentive subsidy (sq.mi.) | | | | | | zoning (sq.mi.) | | | Land State | | | | VC,FW | 65 | 0 | | | zoning and/or tax inc. subs.(sq.mi.) | | 6 | 6 | | | zoning and/or tax inc. subs. (mi.) | | | | | | Others | | | | | | pstream Flood Control Storage (1000 af) | FDR | 31 | 0 | | | | | | | 1 | $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. φ Flood control storage not included. | A | AREA 8 | | 1 | AREA 9 | | I | AREA 10 | | | AREA 12 | | |----------------|------------------|------------------|------|--------|------|---------------------|-----------------------|-------------------------|---------|---------|------| | 1980 | 2000 | 2020 | 1930 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | | 6 | 50 | 0 | 8 | 0 | 0 | 15
26 | 5
143 | 101
137 | | | | | 60
1
6 | 120
2
2 | 180
3
0 | | | | 50
180
13 | 90
250
14 | 170
120
95 | 0.4 | 1 | 2 | | | | | | | | | | | | | | | 12 | | 26 | | | | 6 | 283 | 25 | 1 | 2 | 4 | | 1200
0
0 | 0
1910
110 | 0
3070
170 | | | | 2100
0
0
0 | 0
3120
170
0 | 0
4210
230
0.4 | 40
0 | 50
0 | 60 | | 2.2 | 2.5 | 4.0 | 0.4 | 0.4 | 0.5 | 5.0 | 9.7 | 2.0 | | | | | 1.0 | 0 | 0 | 0.5 | 0 | 0 | 2
8.5 | 0
1.0 | 0
2.5 | | | | | 70 | 90 | 80 | 3 | 5 | 2 | 220 | 250 | 200 | | | | | 550 | 0 | 0 | | | | 190
15
84 | 190
0
52 | 190
0
43 | | | | | 8 | 8 | 8 | | | | 8 | 8 | 8 | | | | | 6 | 6 | 6 | | | | 65 | 0 | 0 | | | | | | | | 2 | 0 | 0 | 29 | 0 | 3 | | | | | | | | | | | AND THE PARTY OF | | | | | | | FIRST COSTS - incremental | SI | TATE TO | TAL | | |--|------|---------|------|--| | (\$ million 1970) | 1980 | 2000 | 2020 | | | Water Development Costs: | | | | | | storage, upstream | 9.8 | 11.3 | 38.5 | | | mainstream | 12 | 28 | 32 | | | wells | 10.0 | 8.8 | 8.1 | | | desalting | 0 | 0 | 0.8 | | | Water Withdrawal and Conveyance Costs: | | | | | | inter-basin transfers | | | | | | public water supply | 11 | 144 | 30 | | | industrial self-supplied water | 1.5 | 2.4 | 2.6 | | | rural water supply | х | х | х | | | irrigation, agriculture | 2.11 | 0.09 | 0.03 | | | non-agriculture | 8.9 | 8.1 | 10.8 | | | Power Plant Cooling Water | 0 | 39 | 75 | | | Hydroelectric Power Generation | х | х | х | | | Navigation: commercial | 58 | 57 | 122 | | | recreational boating | 1.3 | 8.9 | 12.3 | | | Water Recreation | 1210 | 690 | 640 | | | Fish and Wildlife: fishing | 2.6 | 3.8 | 4.5 | | | hunting | х | х | х | | | nature study | x | x | х | | | Water Quality Maint.: waste treatment, secondary | 270 | 360 | 510 | | | advanced | 0 | 58 | 85 | | | other / | 510 | 0 | 0 | | | Flood Damage Reduction: upstream | 14.5 | 0 | 0.6 | | | mainstream | 88.3 | 7.7 | 0 | | | Drainage Control | 0.58 | 1.50 | 0.71 | | | Erosion Control | 148 | 143 | 46 | | | Health | х | х | х | | | Visual and Cultural | 352 | 78 | 78 | | | Summation of Available Estimated Costs | 2700 | 1600 | 1700 | | ^{*} From the supply model and includes OMR costs. # Combined sewer overflows control and acid mine drainage control. | | AREA | 8 | | AREA 9 | | | AREA 1 | .0 | | AREA 1 | .2 | |------------------------------|------------------------------|-------------------------------|-------|--------|-------|------------------------------|------------------------------|--------------------------------|--------|--------|-------------| | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | | 1.3
0
3.0 | 7.2
0
1.2 | 0
4
0.1 | 2.3 | 0 | 0 | 6.2
12
7.0 | 4.1
28
7.6 | 38.5
28
8.0
0.8 | | | | | 6
0.3
x
2.09
1.3 | 9
0.7
x
0.09
1.1 | 14
1.1
x
0.03
1.4 | 0.1 | 0.1 | 0.2 | 4
1.2
x
0.02
7.6 | 133
1.8
x
0
6.9 | 13
1.5
×
0
9.2 | 1 | 2 | 3 | |
0 | 17 | 25 | | | | 0 | 22 | 50 | | | | | 0
0.1
360
1.5 | 7
0.5
180
1.3 | 7
0.9
230
1.6 | | | | x
58
1.2
860
1.1 | x
50
8.4
520
2.4 | x
115
11.4
410
2.9 | 0.02 | 0.03 | 0.03 | | х | х | х | | | | х | х | х | х | х | х | | 90
0
270 | x
110
22
0 | 170
35
0 | | | | 180
0
250 | 250
36
0 | 330
48
0 | 3
0 | 4
0 | X
4
1 | | 42.1 | 0 | 0 | 0.4 | 0 | 0 | 14.2
46.2 | 0
7.7 | 0.6 | | | | | 0.17 | 0.44 | 0.24 | 0.002 | 0.005 | 0.002 | 0.41 | 1.05 | 0.47 | | | | |
6 | 5 | 7 | 0.2 | 0.4 | 1 | 142 | 138 | 39 | | | | |
x
58 | x | x | х | х | X | 294 | 74 | x
74 | X | Х | Х | | 840 | 370 | 500 | 3.00 | 0.51 | 1.20 | 1900 | 1300 | 1200 | 4.0 | 6.0 | 8.0 | ## NEW YORK New York State covers 30,099 square miles within the Region including all of Area 13; almost all of Area 12; over half of Area 11; parts of Area 15 and
17; and small portions of Areas 10 and 14. The major drainage of the State is the Hudson River, with other portions of the State draining into the St. Lawrence, Susquehanna and Delaware Rivers and into Lake Champlain. The topography ranges through the entire spectrum of classification from beach and coastal plain in the east to the mountains of the Catskills and Adirondacks in the west. Upstate New York is of high visual quality, central New York is rated medial, and the southern highly urbanized and metropolitan areas are classified as of low visual quality. Water is abundant in the State, but due to extreme population concentrations and considerable stretches of pollution along the major waterways, water must be imported, especially into Area 13 which is the most seriously water deficient Area in the Region. Population totalled almost 15 million in the State in 1970, with by far the greatest concentration in the south in and around New York City, and projections for 2020 put the total at over 24 million. Per capita income was 26 percent above the national average in 1970, but is expected to decline to 15 percent above that average by 2020. Employment was highest in 1970 for services and related industries which employed 4.5 million and which are expected to employ over 8 million by 2020. Significant increases are also projected for chemicals and allied products while decreases are expected for agriculture, forestry and fisheries percent (50 percent), textile mill products (almost 50 percent), mining, food and kindred products and petroleum refining. Needs to be Satisfied. The key needs in the State are Water Quality Maintenance in Areas 12, 13, 15 and 17, Publicly Supplied Water in Area 13, recreational boating in Area 15 and Visual and Cultural in Areas 13 and 14. The important needs are Publicly Supplied Water in all seven Areas, Industrial Self-supplied Water in Areas 11, 12, 15 and 17, Water Recreation in Areas 13, 15 and 17, and Water Quality Maintenance in all Areas except Area 11. Other important needs are Visual and Cultural in Areas 11 and 13, Flood Damage Reduction in Areas 12, 14, and 15, recreational boating in Area 13, and Fish and Wildlife in Area 14 and 15. Most of the needs are largest in either Area 12 or Area 13. The needs which are largest in Area 12 are Industrial Self-supplied Water, Rural Water Supply, Irrigation Water, Power Plant Cooling (except saline withdrawal) Hydroelectric Power Generation, Water Recreation (except visitor days), hunting access, upstream and mainstream Flood Damage Reduction, forest land Drainage Control, agricultural Erosion Control and Visual and Cultural (except unique shoreline and metropolitan amenities.) In Area 13 the needs are largest in Publicly Supplied Water, saline withdrawal, Navigation, Water Recreation, visitor days, and all of Fish and Wildlife (except stream surface area, fresh access, hunting man-days and hunting access). Other needs largest in Area 13 are Water Quality Maintenance, tidal and hurricane Flood Damage Reduction, urban Erosion Control and unique natural maintenance and metropolitan amenties development for Visual and Cultural. Cropland Drainage Control is largest in Area 11, stream surface for Fish and Wildlife is largest in Area 15 and fresh access and hunting man-days for Fish and Wildlife and stream bank Erosion Control are largest in Area 17. Devices. The devices which are key in the State are water quality control in Areas 13 and 15 and habitat management in Area 11. The important devices are storage facilities in Areas 10, 12, 15 and 17, withdrawal facilities in 12, 14, 15 and 17, wells in Area 15, and conveyance facilities in Area 13. Temperature control facilities are important in Areas 15 and 17, as are water quality control facilities in all Areas. Other important devices are watershed management, land facilities and habitat management in Area 11. The largest device levels occur in Area 12 with the following exceptions: mainstream flood control storage in Area 17, secondary (85%) waste treatment plants in Area 11, and brackish intakes and pumping, wells, diversions into basin, potable water treatment plants and secondary (90%) and advanced waste treatment plants in Area 13. Costs. The largest costs incurred in meeting the needs of the State are in Areas 12 and 13 with the largest total expenditure in Area 13. Water development, Water Recreation and Drainage Control costs are largest in Area 12. Publicly Supplied water, Industrial Self-supplied Water, agricultural Irrigation, commercial navigation, and upstream Flood Damage Reduction costs are also largest in Area 12. The remaining costs are largest in Area 13, except for Erosion Control which is largest in Area 17. The largest total expenditures in the State will be for inter-basin transfers (2000), Publicly Supplied Water (2020), Power Plant Cooling Water (2020) and mainstream Flood Damage Reduction (1980). In addition, the expenditures for Water Recreation, Water Quality Maintenance and Visual and Cultural will be very large in all time periods. | NEEDS-cumulative | Pres. | STATE 1980 | 2000 | 2020 | | |--|---------|------------|-------------|-------------|--| | Publicly Supplied Water (mgd) | 1700 | 2200 | 3000 | 4000 | | | Industrial Self-Supplied Water (mgd) | 430 | 720 | 1290 | 2180 | | | Rural Water Supply (mgd) | 86 | 118 | 141 | 110 | | | Irrigation Water: agriculture (1000 afy) | 31 | 82 | 128 | 134 | | | non-agriculture (1000 afy) | 25 | 64 | 106 | 162 | | | Power Plant Cooling: withdrawal, saline (cfs) | 9300 | 10900 | 18500 | 33100 | | | brackish (cfs) | 1500 | 10800 | 13300 | 5900 | | | fresh (cfs) | 630 | 1740 | 3510 | 5640 | | | consumption, brackish(cfs) | 14 | 98 | 119 | 52 | | | fresh (cfs) | 8 | 19 | 218 | 604 | | | Hydroelectric Power Generation (mw) | 1600 | 4600 | 11000 | 27500 | | | Navigation: commercial (m. tons annually) | 100 | 120 | 190 | 290 | | | recreational boating (1000 boats) | 510 | 680 | 960 | 1870 | | | Water Recreation: visitor days (m.) | х | 200 | 320 | 560 | | | stream or river (miles) | х | 510 | 740 | 960 | | | water surface (1000 acres) | x | 120 | 170 | 240 | | | beach (acres) | х | 2000 | 2900 | 4500 | | | pool (m. sq. ft.) | х | 36 | 52 | 81 | | | land facilities (1000 acres) Fish & Wildlife: sport fishing man-days (m.) | X | 57 | 80 | 121 | | | | 21 | 24 | 29 | 35 | | | surface area, lake (acres) | х | 1.8 | 7.2 | 15.3 | | | stream (acres) | х | 0.08 | 0.54 | 1.29 | | | access, fresh (acres) salt (acres) | х | 0.19 | 0.52 | 0.92 | | | | х | 1.7 | 4.6 | 7.9 | | | anadromous (acres)
piers (1000 feet) | х | 0.046 | 0.063 | 0.084 | | | hunting, man-days (m.) | X | 49 | 130 | 224 | | | access (1000 sq. mi.) | 4.8 | 5.3 | 6.4
2.69 | 7.6
4.95 | | | nature study, man-days (m.) | x
18 | 0.66 | 2.69 | 29 | | | access(1000 ac.) | | 46 | 123 | 213 | | | Water Quality Maint:: non-industrial (m. PEs) | 13000 | 16000 | 20000 | 24000 | | | industrial (m. PEs) | 19000 | 38000 | 70000 | 133000 | | | Flood Damage Reduction: | 19000 | 36000 | 70000 | 133000 | | | avg. ann. damage, upstream (m. \$) | 4.1 | 6.0 | 10.9 | 20.4 | | | mainstream (m. \$) | 13 | 19 | 37 | 75 | | | tidal and hurricane (m. \$) | 32 | 49 | 91 | 176 | | | Drainage Control: cropland (1000 acres) | 210 | 310 | 490 | 570 | | | forest land (1000 acres) | 0 | 0.8 | 24.4 | 94.6 | | | wet land (1000 acres) | | 0.0 | 2,., | , , , , | | | Erosion Control: agriculture (1000 acres) | 3200 | 4100 | 4700 | 4800 | | | urban (1000 acres) | 1700 | 2000 | 2400 | 2900 | | | stream bank (mi.) | 0 | 73 | 219 | 366 | | | coastal shoreline (mi.) | 0 | 6 | 20 | 34 | | | Health: vector control and pollution control | х | х | х | X | | | Visual & Cultural: | | | | | | | landscape maintenance, unique natural(sq. mi.) | 6200 | 6200 | 6200 | 6200 | | | unique shoreline (mi.) | х | 80 | 80 | 80 | | | high quality (sq. mi.) | 3400 | 3400 | 3400 | 3400 | | | diversity (sq. mi.) | x | 1200 | 2300 | 3400 | | | agriculture (sq. mi.) | x | 2600 | 2600 | 2600 | | | landscape development, quality (sq. mi.) | | | Part Harris | | | | diversity (sq. mi.) | | | | | | | metro. amenities (mi.) | | | 1-9-2 | | | | " (sq. mi.) | x | 110 | 110 | 110 | | | | | AREA | 10 | | | AREA | 11 | | | AREA | 12 | | | 13 | | | |---|-------|------|------|------|--------|-----------|------|--------------|--------|------------|------------|-------------|-------|-------------|-------------|------------| | | Pres | 1980 | 2000 | 2020 | Pres | 1980 | 2000 | 2020 | Pres | 1980 | 2000 | 2020 | Pres | 1980 | 2000 | 2020 | | | 20 | 30 | 40 | 100 | 30 | 30 | 50 | 100 | 200 | | | 700 | | | 2300 | 3000 | | | | | | | 100 | 150 | 240 | 350 | 290 | 490 | | 1560 | 20 | 30 | | 110 | | | - | | | | 9 | 11 | 13 | 13 | 40 | | 71 | 57 | 21 | 30 | 30 | 15 | | | 0 0 | 1 | 2 | 2 | 0.3 | 7 | 20 | 20 | 9 | | 82 | 82 | 19 | 15 | 0 | 66 | | | 0.3 | | 2 | 3 | 1 | 4 | 6 | 10 | | 18 | 30 | 46 | | 27
10900 | 19500 | 66 | | | | | | | | | | | 1500 | 10800 | 13300 | 5900 | | 10900 | 10300 | 33100 | | | | | | | 0 | 0 | 30 | 80 | | 1510 | | | | | | | | | | | | | J | Ŭ | 50 | 00 | 14 | | | 52 | | | | | | | | | | | 0 | 0 | 19 | 48 | 4 | | | 411 | | | | | | | | | | | 1200 | 1200 | 2100 | | 400 | | | 20500 | | | | | | | | | | | 1 | 1 | 1 | 2 | 30 | | 60 | 90 | 60 | 70 | | 170 | | | 1 | 2 | 3 | 10 | 20 | 20 | 30 | 50 | 70 | | | | 380 | | | 1400 | | | | | | | х | 10 | 10 | 20 | х | 70 | 110 | 200 | x | 110 | 170 | 280 | | | | | | | х | 30 | 40 | 50 | х | 210 | 310 | 430 | | 210 | | 360 | | | 5,132 | | | | X | 10
100 | 100 | 20
200 | X | 50
1000 | 80
1500 | 110
2300 | | 50
700 | 0 | 80
1500 | | | | | | | X | 2 | 2 | 3 | X | 17 | 25 | 40 | | 14 | 18 | 28 | | | | | | | x
x | 3 | 4 | 5 | x
x | 24 | | 55 | | 24 | 31 | 46 | | | 0.3 | 0.3 | 0.4 | 1 | • 2 | 2 | 2 | 3 | 2 | | 3 | 3 | 15 | 17 | 21 | 25 | | | 0.5 | 0.5 | 0.1 | - | | ~ | | | | _ | | | x | 1.2 | | | | |
 | | | x | 0 | 0.06 | 0.28 | | | | | | | | | | | 100 | | | | x | 0.03 | 0.08 | 0.15 | x | 0.03 | 0.10 | 0.20 | x | 0.03 | 0.08 | 0.12 | | | | | | | | | | | | | | | х | 1.7 | 4.6 | 7.9 | | | | | | | | | | | х | 0.029 | 0.040 | 0.053 | | | | | | | | | | | | | | | | | | | x | 49 | | 224 | | | 0.1 | 0.1 | 0.1 | 0.1 | 1.1 | 1.2 | | | | | | | | | | 1.6 | | | х | 0.01 | | 0.08 | | 0 | 0.50 | | | | 1.12 | 1.95 | | 0.10 | | | | | 0.2 | 0.3 | 0.3 | 0.4 | 0.4 | 0.4 | 0.5 | 0.5 | 2 | 700 | 3 | 3 | 14 | | | | | | 200 | 200 | 300 | 300 | 200 | 300 | 300 | 400 | 2000 | 2000 | | 3000 | 11000 | 33
13000 | 88
16000 | 153 | | | 200 | 200 | 300 | 300 | 1000 | | | The state of | | | | | | 29000 | | | | | | | | | 1000 | 1000 | 2000 | 4000 | 4000 | 0000 | 14000 | 20000 | 14000 | 27000 | 3000 | 77000 | | | | | | | 0.04 | 0.1 | 0.1 | 0.2 | 3.3 | 4.9 | 8.9 | 16.3 | | | | | | | | | | | 0.4 | 1 | 1 | 2 | 8 | | | 44 | | 1 | 2 | 4 | | | | | | | | | | | | | | | 32 | 49 | 91 | 176 | | | 1 | 2 | 2 | 3 | 80 | 120 | 190 | 230 | 60 | 90 | | | | | | | | | 0 | 0 | 0.06 | 0.2 | 0 | 0 | 7.8 | 31.4 | 0 | 0 | 11.3 | 44.2 | 10 | 10 | 10 | 10 | 300 | 400 | 500 | 500 | | | | | 100 | 100 | 100 | 100 | | | 20 | 30 | 40 | 100 | 100 | 100 | 100 | 200 | 500 | | | | 600 | 600 | 700 | 700 | | | 0 | 0.3 | 1 | 2 | 0 | 17 | 50 | 84 | 0 | 14 | 43 | 71 | 0 | 6 | 20 | 34 | | - | | | | | | · v | | х | х | x | x | х | x | x | x | - X | | | х | х | X | х | х | х | х | | | | | | ^ | | | ^ | | | | | | | 2100 | 2600 | 2600 | 2600 | 3900 | 3900 | 3900 | 3900 | | | | | | | | | | | | | | | 3,00 | | | | х | 80 | 80 | 80 | | | | | | | | | 1000 | | 3400 | 3400 | 3400 | 3400 | | | | | | | | | | | x | 30 | 100 | 100 | x | 800 | 1600 | 2400 | x | 100 | 100 | 100 | | | | | 1.1 | | | | | | х | 2600 | | 2600 | 4 | | 1 | - | | | | | | | | | | | | Х | 50 | 50 | 50 | Х | 60 | 60 | 60 | | | | AREA | 14 | | | |--|----------|-------|-------|-------|----| | NEEDS-cumulative | Pres. | 1980 | 2000 | 2020 | | | Publicly Supplied Water (mgd) | 10 | 10 | 30 | 40 | | | | 20 | 20 | | 1 | | | Rural Water Supply (mgd) | | | | | | | Irrigation Water: agriculture (1000 afy) | | | | | | | non-agriculture (1000 afy) | _ 1 | 1 | 2 | 3 | | | Power Plant Cooling: withdrawal, saline (cfs) | | | | | | | brackish (cfs) | - | 10 | 20 | 30 | | | | 10 | 20 | 30 | 40 | 1 1 | | | | 0.04 | 0.01 | 0.1 | 0.1 | | | 1 | | 0.04 | 0.1 | 0.1 | | | | | 0.08 | 0.24 | 0.43 | | | | | 0.03 | 0.03 | 0.43 | | | | ^ | 0.01 | 0.03 | 0.03 | | | | v | 0.001 | 0.001 | 0.001 | | | | A | 0.001 | 0.001 | 0.001 | | | | 0.03 | 0.03 | 0.04 | 0.05 | | | access (1000 sq. mi.) | | 0.01 | 0.03 | 0.05 | | | and the state of t | | | 0.1 | 0.1 | | | | | 0.1 | 3 | 6 | | | | 100 | 100 | 100 | 100 | | | | | | | | | | | | | | | | | | 0.004 | 0.01 | 0.01 | 0.02 | | | | | | | | | | | | | | | | | | 1 | 2 | 2 | 3 | | | | | | | | | | | | | | | | | | | 10 | 10 | 10 | | | (/ | | 50 | 100 | 100 | | | | Х | 2 | 7 | 11 | | | | | | | | | | | X | X | X | X | 1- | | | | | | | | | | Marie C. | | | | 1 | 15 | | | | 17 | | | AREA | | | AREA | | | | | |-----|--------|-----------|-----------|-----------|--|-----------|-----------|------------|------|------|--------|------|------|------|------|------|--| | | Pres | 1980 | 2000 | 2020 | Pres | 1980 | 2000 | 2020 | Pres | 1980 | 2000 | 2020 | Pres | 1980 | 2000 | 2020 | | | | 10 | 10 | _ 10 | 20 | 100 | 100 | 100 | 200 | | | | | | | | | | | | 4 | 10
5 | | | 20
13 | 40
17 | | | | | | | | | | | | | | 0.4 | 1 | | | 3 | | | | | | | | | | | | | | | 3 | 8 | | | | 5 | 23 | 15 | THE | | | | 0 | 0 | 590 | 710 | 230 | 230 | 1000 | 2590 | | | | | | | | | | | | 0 | 0 | 25 | 81 | 4 | 5 | 20 | 64 | | | | | | | | | | | | 30 | | 1000 | 2000 | 0 | 0 | 0 | - | 10 | 10 | 20
1 | | The state of s | 20 | | | | | | | | | | | | | | x
x | 1 2 | 3 | 100 | x | 20
60 | | | | | | | | | | | | | | x | 0.5 | 1 | | x | 10 | | | | | | | | | | | | | | х | 4 | 10 | 10 | | 300 | | | | | | | | | | | | | | х | 0.1 | | | | 4 | 6 | | | | | | | | | | | | - | 0.1 | 0.3 | 0.3 | 0.4 | x | | 9
2 | 15 | | | | | | | | | | | | х | 0.6 | | | 0 | | | | | | | | | | | | | | | 0 | | 0.24 | | | | | | | | | | | | | | | | | х | 0.04 | 0.11 | 0.19 | х | 0.05 | 0.12 | 0.22 | | | | | | | | | | | | v | 0.002 | 0.05 | 0.008 | v | 014 | 0.017 | 0 022 | | | | | | | | | | | | ^ | 7.002 | 0.005 | 0.000 | X | 0.014 | 0.017 | 0.022 | | | | | | | | | | | | 0.1 | 0.1 | 0.1 | 0.1 | 1.5 | 1.7 | 2.1 | 2.6 | | | | | | | | | | | | х | | | 0.82 | | 0 | 0.31 | 0.79 | | | | | | | | | | | | 0.1 | 0.1 | 0.1 | | | 1 | 1 | 2 | | | | | | | | | | | | 100 | 100 | 100 | 100 | 1000 | 1000 | 1000 | 1000 | | | | | | | | - | | | | 100 | 200 | | 1000 | | | | 1000 | | | | | | | | | | | | | | | | | | | 3000 | | | | | | | | | | | | 0.2 | 0.3 | 0.5 | | | 0.7 | | | | | | | | | | | | | | 0.5 | 1 | 1 | 3 | 3 | 5 | 10 | 22 | | | ¥ . 14 | | | | | | | | | 20 | 30 | 40 | 50 | 50 | 70 | 100 | 100 | | | | | | | | | | | | 0 | 0 | | | | | | 14.4 | 200 | 300 | 300 | 400 | | | 1600 | | | | | | | | | | | | | 200 | 300
12 | 400
37 | 500
61 | 300
x | 400
26 | 500
78 | 600
130 | | | | | | | | | | | | | | 3, | O.L. | ^ | 20 | 70 | 150 | | | | | | | | | | | | х | х | х | х | х | х | х | х | | | | | | | | | | | | 200 | 200 | 200 | 000 | | | | | | | | | | | | | |
 | 200 | 200 | 200 | 200 | | | | | 1000 | | | | | | | | | | | | | | 111 | | | | | | | | | | | | | | | | x | 300 | 600 | 800 | | | | | | | | | | | | | | | 13) | _ | _ | | _ | | _ | | | _ | | | | | | | | STA | TE TOTAL | L | | | |---|---|----------|--------------|--------|--| | DEVICES - incremental | Purposes | 1980 | 2000 | 2020 | | | I. Resource Management | | | | | | | A. Water | | | | | | | Storage Facilities ¢ | | | | | | | reservoirs, upstream (1000 af) | Rec,FW,VC* | 96 | 73 | 863 | | | | FW, VC, Rec, WQ* | 23 | 150 | 691 | | | Withdrawal Facilities | | 0.00 | 060 | 1,00 | | | | PS, Ind, Pow, Irrig | 280 | 860 | 1420 | | | | Ind | 170 | 250 | 360 | | | wells (mgd) | * | 190 | 330 | 370 | | | Conveyance Facilities | _ | | 270 | 100 | | | interbasin diversions, into (mgd) | * | 0 | 270 | 490 | | | out of (mgu) | * | 0 | 270 | 1020 | | | Quality Control Facilities | | | | | | | chemical/biological | nc. | 50 | 162 | 015 | | | potable water treat. plants (mgd) | PS | 50 | 463 | 815 | | | waste treatment plants | NO NC | 1600 | 0 | | | | secondary (85%) (m. PEs removed) | | 47000 | 80000 | 0 | | | secondary (90%) (m. PEs removed) | | | | 141000 | | | advanced (95%) (m. PEs removed) | wQ,VC | 2100 | 3500 | 7600 | | | Desalting Facilities B. Water/Land | | | | | | | | EDD AC Des EM | 13 | 93 | 114 | | | Upstream Flood Plain Mgmt.(1000 acres) Local Flood Protection | FDR, VC, DIII, FW | 13 | 93 | 114 | | | ocean (projects) | FDR | 3 | 2 | 0 | | | river (projects) | | 17.5 | 10.5 | 1.0 | | | flood control channels (miles) | TDR | 17.5 | 10.5 | 1.0 | | | | FDR, VC, Drn, FW | 360 | 770 | 710 | | | C. Land | 150,40,5111,111 | 300 | 110 | 1 /10 | | | Controls | | | | | | | fee simple purchase (buying)(sq.mi.) | VC . FW | 660 | 500 | 500 | | | | VC,FW | 80 | 0 | 0 | | | purchase lease (sq.mi.) | , | | | | | | easements (sq.mi.) | VC.FW | 550 | 500 | 500 | | | deed restrictions (sq.mi.) | | x | x | x | | | tax incentive subsidy (sq.mi.) | | | | | | | zoning (sq.mi.) | VC,FW | 500 | O. | 0 | | | zoning (mi.) | | | | | | | zoning and/or tax inc. subs.(sq.mi.) | | 2690 | 90 | 90 | | | zoning and/or tax inc. subs. (mi.) | | | | | | | V. Others | | | | | | | Upstream Flood Control Storage (1000 af) | FDR | 44.8 | 5.1 | 3.8 | | | Mainstream Flood Control Storage (1000 af) | FDR | 38 | 70 | 0 | | | | | | | | | $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. ϕ Flood control storage not included. | | A | REA 10 | | · Astronomy | AREA 11 | | | AREA 12 | 2,000 | | AREA 1 | 3 | |---|---------------|----------------|----------------|-------------|-----------|-----------|----------------|-----------------|-----------------|-----------------|-------------------|-------------------| | | 1980 | 2000 | 2020 | 1480 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | | | | | | | | | | | | | | | | | 0 | 0_ | 44 | 3
0 | 14
3 | 6
30 | 69
10 | 35
110 | 613
371 | | | | | | 0.2 | 0.4 | 0.5 | 50
10 | 80
20 | 100
10 | 200
10
3 | 420
10
40 | 660
10
30 | 5
160
150 | 310
230
210 | 560
340
290 | | | | | | 10 | 20 | 10 | 0 | 270 | 1020 | 0 | 270 | 490 | | | 1 | 28 | 3 | 4 | 8 | 16 | 31 | 87 | 179 | 5 | 309 | 562 | | | 200
0
0 | 0
200
10 | 0
300
20 | 1400 | 0
2000 | 0
4000 | 9000 | 15000 | 28000
1600 | 37000
2100 | 61000 | 106000 | | | | | | 1 | 14 | 14 | 11 | 79 | 100 | | | | | | | | | | | | 11.5 | 0.5 | 0 | 3
0 | 2 1.0 | 0 | | | | | | 130 | 250 | 260 | 200 | 390 | 390 | | | | | | | | | 10 | 10 | 10 | 450 | 400 | 400 | 110
80 | 0 | 0 0 | | | | | | 10 | 10 | 10 | 400 | 400 | 400 | 50 | 0 | 0 | | | | | | 500 | 0 | 0 | | | | | | | | 1 | | | | | | | 2600 | 0 | 0 | | | | | 1 | | | | | | | 42.0 | 1.5 | 0 | | | | | 1 | | | | | | | | | | | | | | | | | AREA 14 | | | |--|------------------|------|---------|------|---| | DEVICES - incremental | Purposes | 1980 | 2000 | 2020 | | | I. Resource Management | | | | | | | A. Water | | | | | | | Storage Facilities \$ | D THE HOA | | | | | | reservoirs, upstream (1000 af) | Rec, FW, VQ* | | | | | | | FW,VC,Rec,WQ* | | | | | | Withdrawal Facilities | PS,Ind,Pow,Irrig | 0.5 | 4 | 20 | | | | | 0.5 | 4 | 20 | | | (6-) | | | | | | | wells (mgd) Conveyance Facilities | | | | | | | interbasin diversions, into (mgd) | * | | | | | | out of (mgd) | | | | | | | Quality Control Facilities | | | | | _ | | chemical/biological | | | | | | | potable water treat. plants (mgd) | PS | 1 | 7 | 17 | | | waste treatment plants | | | | | | | secondary (85%) (m. PEs removed) | WQ,VC | | | | | | secondary (90%) (m. PEs removed) | | 100 | 100 | 100 | | | advanced (95%) (m. PEs removed) | | 10 | 10 | 10 | | | Desalting Facilities | | | | | | | B. Water/Land | | | | | | | Upstream Flood Plain Mgmt.(1000 acres) | FDR, VC, FW, Rec | 0.02 | 0.4 | 0.3 | | | Local Flood Protection | | | | | | | ocean (projects) | | | | | | | river (projects) | | 0 | 2.0 | 0 | | | flood control channels (miles) | CDD VC Deep EU | 4 | 10 | 10 | | | Watershed Management (1000 acres) | FDR,VC,Drn,FW | 4 | 10 | 10 | | | C. Land | | | | | | | Controls | NC FW | | | | | | <pre>fee simple purchase (buying)(sq.mi.) fee simple purchase (buying) (mi.)</pre> | VC,FW | | | | | | purchase lease (sq.mi.) | | | | | | | easements (sq.mi.) | VC.FW | | | | | | deed restrictions (sq.mi.) | VC.FW | | | | | | tax incentive subsidy (sq.mi.) | | | | | | | zoning (sq.mi.) | | | | | | | zoning (mi.) | | | | | | | zoning and/or tax inc. subs.(sq.mi.) | | | | | | | zoning and/or tax inc. subs. (mi.) | | | | | | | V. Others | | | | | _ | | Upstream Flood Control Storage (1000 af) | FDR | | | | | | Mainstream Flood Control Storage (1000 af) | FDR | | | | | | | | | | | | ^{*} From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. $\boldsymbol{\varphi}$ Flood control storage not included. | | A | REA 1 | 5 | A | AREA 17 | | I | AREA | | | AREA | | |---|--------------|----------------|----------------|------------|-------------|-------------|------|------|------|------|------|------| | | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | | | 13 | 18 | 234 | 11
13 | 6
37 | 11
246 | | | | | | | | | 5
3
10 | 10
10
10 | 20
10
30 | 20
20 | 40
50 | 60
10 | 1 | 3 | 3 | 9 | 22 | 36 | | | | | | | | | 200
10 | 500
30 | 1000
50 | 1000
50 | 1000
100 | 2000
100 | | | | | | | | | 1 | 0 | 0.3 | | | | | | | | | | | | 5.0 | 7.0 | 0 | 1.0 | 0 | 1.0 | | | | | | | | コ | 6 | 110 | 0 | 20 | 20 | 60 | | | | | | | | | 90 | 90 | 90 | | | | | | | | | | | | 90
x | 90
x | 90
x | | | | | | | | | | | | 90 | 90 | 90 | | | | | | | | | | | | 2.8 | 3.6 | 0 | 0 | 0
70 | 3.8 | Water Development Costs:
storage, upstream | ST. | ATE TOT
2000 | 2020 | | |---|-----|-----------------|-------|--| | Water Development Costs: storage, upstream | | 2000 | 2020 | | | storage, upstream | 26 | | | | | storage, upstream | 26 | | | | | | | 22 | 157 | | | mainstream | 13 | 91 | 189 | | | wells | 41 | 48 | 29 | | | desalting | | | | | | Water Withdrawal and Conveyance Costs: | | | | | | inter-basin transfers | 0 | 380 | 150 | | | public water supply | 44 | 171 | 262 | | | industrial self-supplied water 2 | 2.2 | 3.9 | 6.0 | | | rural water supply | x | x | х | | | irrigation, agriculture 9 | 9.1 | 13.4 | 1.1 | | | non-agriculture | 34 | 34 | 45 | | | Power Plant Cooling Water | 0 | 140 | 320 | | | Hydroelectric Power Generation | x | х | х | | | Navigation: commercial | 30 | 98 | 27 | | | recreational boating | 12 | 24 | 40 | | | | 400 | 1000 | 1900 | | | Fish and Wildlife: fishing | 19 | 31 | 35 | | | hunting | x | х | х | | | nature study | x | x | х | | | | 000 | 6100 | 10600 | | | | 430 | 720 | 1920 | | | | 700 | 0 | 0 | | | Flood Damage Reduction: upstream | 5.8 | 4.3 | 2.0 | | | | 211 | 90 | 0 | | | | 6.1 | 11.2 | 6.8 | | | | 105 | 122 | 91 | | | Health | х | х | х | | | Visual and Cultural | 760 | 210 | 210 | | | Summation of Available Estimated Costs 98 | 800 | 9300 | 16000 | | ^{*} From the supply model and includes OMR costs. # Combined sewer overflows control and acid mine drainage control. | | AREA 1 | 0 | | AREA 1 | 1 | | AREA 1 | 2 | AREA 13 | | | | |------|--------|------|----------|--------|--------|-----------|-----------|---------|---------|------|-------|--| | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | | | | | | 1 | 3 | 1 | 16 | 7 | 87 | | | | | | 0 | 0 | 21 | 0 | 4 | 24 | 2 | 69 | 74 | | | | | | | | | 6 | 9 | 3 | 17 | 23 | 3 | 4 | 6 | 1 | | | | | | Ů | | | 1/ | 25 | , | 4 | 0 | 1, | | | | | | | | | | | | 0 | 200 | 1.50 | | | 0.4 | 13 | 1 | 4 | 7 | 13 | 27 | 70 | 100 | 0 | 380 | 150 | | | 0.4 | 13 | 1 | 0.2 | 0.4 | 0.5 | 27
1.1 | 70 | 109 | 5 | 63 | 112 | | | | | | | | | | 2.1 | 3.3 | 0.9 | 1.2 | 1.8 | | | | | | x
1.4 | 3.0 | x
0 | x
5.6 | x | х | х | х | x | | | 1 | 1 | 1 | 3 | 2 | 3 | 11 | 9.4
10 | 0
12 | 11 | 1/ | 10 | | | | | | 0 | 10 | 40 | 0 | 80 | 180 | 11 | 14 | 19 | | | | | | - | x | 40 | x | x | x | | | - | | | | | | | - 1 | | 0 | 80 | 27 | 30 | 18 | 0 | | | 0.01 | 0.1 | 0.1 | 0.3 | 1 | 1 | 4 | 7 | 11 | 7 | 14 | 25 | | | | | | . 4 | 10 | 10 | 900 | 500 | 900 | 300 | 400 | 700 | | | 0.1 | 0.2 | 0.3 | 0.5 | 1 | 1 | 1 | 1 | 1 | 17 | 27 | 31 | | | х | х | х | х | х | х | х | х | х | x | x | x | | | х | х | x | х | х | х | х | х | х | x | х | x | | | 10 | 20 | 20 | 100 | 200 | 300 | 600 |
1100 | 1900 | 2100 | 4700 | 8100 | | | 0 | 3 | 3 | | | | 0 | 0 | 680 | 420 | 700 | 1210 | | | | | | 40 | 0 | 0 | 300 | 0 | 0 | 3400 | 0 | | | | | | | | | | 5.5 | 3.9 | 0 | | | | | | | | | | | | 15 | 0 | 0 | 182 | 55 | (| | | 0.03 | 0.1 | 0.04 | 2.6 | 5.4 | 3.4 | 1.6 | 2.6 | 2.6 | | | | | | 2 | 2 | 2 | 14 | 13 | 6 | 32 | 31 | 21 | 11 | 23 | 15 | | | х | Х | Х | х | х | х | х | Х | Х | х | х | х | | | | | | 2 | 2 | 2 | 160 | 140 | 140 | 530 | 0 | (| | | 14 | 39 | 48 | 180 | 270 | 410 | 2100 | 2100 | 4200 | 7000 | 6400 | 10400 | | | | T | | | | |--|------|--------|------|-----| | FIRST COSTS - incremental | | AREA] | L4 | | | (\$ million 1970) | 1980 | 2000 | 2020 | | | Water Development Costs: | | | V | | | storage, upstream | | | | | | mainstream | | | | | | wells | | | | 2-1 | | desalting | | | | | | Water Withdrawal and Conveyance Costs: | | | | | | inter-basin transfers | | | | | | public water supply | €.4 | 2 | 3 | | | industrial self-supplied water | | | | | | rural water supply | | | | | | irrigation, agriculture | | | | | | non-agriculture | 0.5 | 1 | 1 | | | Power Plant Cooling Water | | | | | | Hydroelectric Power Generation | | | | | | Navigation: commercial | | | | | | recreational boating | 1 | 1 | 1 | | | Water Recreation | | | | | | Fish and Wildlife: fishing | 0.01 | 0.02 | 0.02 | | | hunting | х | x | x | | | nature study | х | x | x | | | Water Quality Maint.: waste treatment, secondary | 10 | 10 | 10 | | | advanced | 1 | 1 | 2 | | | other 🗜 | | | | | | Flood Damage Reduction: upstream | | | | | | mai n stream | 0 | 14 | 0 | | | Drainage Control | 0.03 | 0.1 | 0.02 | | | Erosion Control | 3 | 2 | 2 | | | Health | х | х | х | | | Visual and Cultural | | | | | | Summation of Available Estimated Costs | 16 | 31 | 19 | | ^{*} From the supply model and includes OMR costs. # Combined sewer overflows control and acid mine drainage control. | | AREA 15 | | | AREA 17 | | | AREA | | | AREA | | |-------------------|----------------|----------|----------|-----------|---------------|------|------|------|------|------|------| | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | | 4 | 9 | 61 | 5
11 | 3 18 | 8
70 | | | | | | | | 2 | 2 | 2 | 11 | 9 | 4 | 1
0.03 | 2
0.1 | 2
0.1 | 6
0.1 | 14
0.2 | 22
0.3 | | | | | | | | 0.1 | x
0.1 | 0
6 | x
2.1 | x
1.0 | x
1.1
4 | | | | | | | |
<u>4</u>
0 | <u>4</u>
40 | 6
60 | <u>3</u> | 3
10 | 40 | | | | | | | | | х | х | | | х | | | | | | | | 0.02 | 0.3 | 0.5 | 0.2 | 1_ | 1 | | | | | | | | 2 | 2 | 3 | 200 | 100 | 200 | | | | | | | | 0.04 | 0.1 | 0.1 | 1 | 1 | 1 | | | | | | | | х | х | x | х | x | X | | | | | | | |
10 | 30 | 100 | 100 | 100 | 200 | | | | | | | | 0.4 | 5 | 100 | 100 | 100 | 20 | | | | | | | | 0.3 | 0.4 | 0 | 0 | 0 | 2.0 | | | | | | | |
2 | 4 | 0 | 12 | 16_ | 0 | | | | | | | |
0.5 | 1.3 | 0.5 | 32 | 1.7
37 | 0.3
30 | | | | | | | |
X | X X | X | X | x | x | | | | | | | | 60 | 60 | 60 | - | Α | - 4 | | | | | | | | 97 | 174 | 319 | 395 | 325 | 604 | | | | | | | # NEW JERSEY #### NEW JERSEY New Jersey covers 7,836 square miles including all of Area 16, most of Area 14, a significant portion of Area 15 and a small part of Area 12. The significant drainages in the State are the eastern portion of the Delaware River drainage area and all of the smaller Passaic, Raritan and Hackensack Rivers in the north. The overall visual quality is medial, though there are sections of both high and low quality. The topography ranges from flatland and coastal plain to undulating land and rolling hills. The water is seriously degraded in many sectors and it is projected that the State will soon have to import considerable quantities to augment existing supplies. Most of the State is densely populated, particularly in the northeast and southwest. The population was almost 7 million in 1970 and is expected to reach 13.3 million by 2020. Per capita income was 20 percent above by 2020. Employment is highest in services and related industries, which should increase by over 130 percent by the end of the Study period. Chemicals and allied products also has high employment and should have large increases by 2020. Other increases are projected in primary metals and paper and allied products, while decreases are projected for textile mill products, petroleum refining and agriculture, forestry and fisheries. Needs to be Satisfied. Water Quality Maintenance is a key and important need in Areas 12, 15 and 16 and an important need in Area 14. Recreational boating is key, in the Delaware basin, to the fulfillment of its important Water Recreation need. Similarly, Visual and Cultural development of quality landscapes and metropolitan amenties is key to the important Water Recreation needs in the urban, industralized and densely populated Area 14. Other important needs are Publicly Supplied Water in all Areas, Fish and Wildlife, Flood Damage Reduction and recreational boating in Area 14, Industrial Self-supplied Water, commercial navigation, Fish and Wildlife and Flood Damage Reduction in Area 15 and Industrial Self-supply in Area 16. The need for Irrigation Water is largest in Area 15 (agriculture) and in Area 14 (non-agriculture). The Hydroelectric Power Generation and Power Plant Cooling needs are largest in Area 15 except for saline and brackish withdrawals which are largest in Area 16. The Fish and Wildlife needs are largest in Area 15 except for surface area stream access and nature study man-days and access in Area 14 and sport fishing man-days, salt access, and piers in Area 16. Flood Damage Reduction is largest in Area 14 except for tidal and hurricane in Area 16. The largest Drainage Control needs are for cropland in Area 15, forest land in area 16 and wet land in Area 14. Agriculture Erosion Control is largest in Area 15, urban and stream bank Erosion Control are largest in Area 14 and coastal shoreline erosion control is largest in Area 16. The Visual and Cultural needs that are largest in Area 14 are quality development and metropolitan amenties (mi.) in Area 15 they are diversity and agricultural development and metropolitan amenties (sq. mi.), and in Area 16, unique natural and unique shoreline maintenance. The remaining needs are all largest in Area 14. Devices. The key device in the State is water quality control facilities in Area 15 which is also important in Areas 12, 14 and 15. Other important devices are storage facilities and withdrawal facilities in Areas 14 and 15, wells in Area 15, conveyance facilities in Area 14, and temperature control facilities in Area 15. The largest device levels in Area 15 are out-of-basin diversions, flood control channels, easements and zoning and/or tax incentive subsidies (sq. mi.). In Area 16 the devices which are largest are secondary (85%) waste treatment plants, desalting facilities, ocean projects, fee simple purchase (mi.) purchase lease and zoning (sq. mi. and mi.). The remaining devices are all largeest in Area 14. Cost. The largest costs incurred in the State are in Area 14 which has the largest expenditures in all categories except for the following. Area 15 has the largest expenditures for agriculture Irrigation Water, commerical navigation, and Visual and Cultural needs and for wells. The largest costs in Area 16 are recreational boating, Fish and Wildlife, Drainage Control and Erosion Control. The large expenditures in the State as a whole are for Publicly Supplied Water (2000-2020), commercial navigation (1980-2000), and mainstream Flood Damage Reduction (1980-2000). The expenditures for Water Recreation, Water Quality Maintenance and Visual and Cultural are also very large in all time periods. | | | STATE | TOTAL | | | |---|---------------|---------------------|-------|--------------|---| | NEEDS-cumulative | Pres. | 1980 | 2000 | 2020 | | | Publicly Supplied Water (mgd) | 780 | 1040 | 1800 | 2860 | | | Industrial Self-Supplied Water (mgd) | 480 | 840 | 1260 | 1960 | | | Rural Water Supply (mgd) | 30 | 41 | 57 | 51 | | | Irrigation Water: agriculture (1000 afy) | 52 | 149 | 162 | 132 | | | non-agriculture (1000 afy) | 14 | 34 | 57 | 87 | | | Power Plant Cooling: withdrawal, saline (cfs) | 5000 | 9500 | 28600 | 58500 | | | brackish (cfs) | 1100 | 800 | 3700 | 8500 | | | fresh (cfs) | 710 | 500 | 390 | 470 | | | consumption, brackish(cfs) | 9 | 13 | 47 | 114 | | | fresh (cfs) | 5 | 10 | 41 | 78 | | | Hydroelectric Power Generation (mw) | 350 | 850 | 1450 | 2400 | | | Navigation: commercial (m. tons annually) | 160 | 210 | 290 | 460 | | | recreational boating (1000 boats) | 200 | 270 | 410 | 650 | | | Water Recreation: visitor days (m.) | х | 110 | 170 | 310 | | | stream or river (miles) | х | 220 | 340 | 460 | | | water surface (1000 acres) | х | 58 | 87 | 123 | | | beach (acres) | х | 640 | 960 | 1560 | | | pool (m. sq. ft.) | х | 12 | 19 | 30 | | | land facilities (1000 acres) | x | 33 | 48 | 75 | | | Fish & Wildlife: sport fishing man-days (m.) | 11 | 13 | 16 | 20 | | | surface area, lake (acres) | х | 0.9 | 5.0 | 10.1 | | | stream (acres) | х | 0.22 | 0.97 | 1.92 | | | access, fresh (acres) | х | 0.089 | 0.242 | 0.423 | | | salt (acres) | х | 0.92 | 2.77 | 4.96 | | | anadromous (acres)
piers (1000 feet) | х | 0.008 | 0.015 | 0.022 | | | | Λ | 26 | 79 | 141 | | | hunting, man-days (m.)
access (1000 sq. mi.) | 3.7 | 4.2 | 5.1 | 6.2 | | | nature study, man-days (m.) | 8.1 | 0.36
9. 3 | 1.14 | 1.88
13.9 | | | access(1000 ac.) | | | | | | | Water Quality Maint:: non-industrial (m. PEs) | X 7000 | 39 | 104 | 180 | | | industrial (m. PEs) | 7000
14000 | 7700 | 9400 | 11500 | | | Flood Damage Reduction: | 14000 | 32000 | 69000 | 143000 | | | avg. ann. damage, upstream (m. \$) | 2.1 | 3.1 | 5.4 | 0.0 | | | mainstream (m. \$) | 19 | 29 | 55 | 9.9 | | | tidal and
hurricane (m. \$) | 7 | 11 | 21 | 41 | | | Drainage Control: cropland (1000 acres) | 64 | 84 | 135 | 148 | | | forest land (1000 acres) | 0 | 0 | 9.7 | 40.2 | | | wet land (1000 acres) | x | x | 7.7 | 40.2 | | | Erosion Control: agriculture (1000 acres) | 520 | 660 | 760 | 770 | | | urban (1000 acres) | 940 | 1300 | 1730 | 2130 | | | stream bank (mi.) | 0 | 59 | 177 | 295 | | | coastal shoreline (mi.) | 0 | 110 | 240 | 270 | | | Health: vector control and pollution control | X | x | X | x | | | Visual & Cultural: | | | | | | | landscape maintenance, unique natural(sq. mi.) | х | 300 | 300 | 300 | | | unique shoreline (mi.) | x | 38 | 38 | 38 | | | high quality (sq. mi.) | | | | | | | diversity (sq. mi.) | x | 280 | 560 | 850 | | | agriculture (sq. mi.) | x | 200 | 200 | 200 | | | landscape development, quality (sq. mi.) | x | 230 | 460 | 690 | 1 | | diversity (sq. mi.) | | | | | | | metro. amenities (mi.) | x | 2 | 2 | 2 | | | " " (sq. mi.) | x | 170 | 170 | 170 | | | | | 12 | | | | 14 | | | AREA | | | | AREA | | | |---------|-------|-------|-------|--------|-------|-----------|--------------|----------|------------|------------|--------------------|-----------|-----------|-----------|-----------| | Pres | 1980 | 2000 | 2020 | Pres | 1980 | 2000 | 2020 | Pres | 1980 | 2000 | 2020 | Pres | 1980 | 2000 | 2020 | | 30 | 50 | 80 | 120 | 500 | 660 | 1210 | 1980 | 160 | 200 | 280 | 410 | 90 | | 230 | | |
 | | | | 280 | | | | | | | | 10 | 10 | 30 | 40 | |
 | - | - | - | 15 | | | | 12 | | | | 3 | 4 | 5 | 6 | | 0.2 | 1 | 1 | , | 4 | 16 | | 1 - | 34 | 94 | | | 14 | 45 | 45 | 45 | | | | | - | 5000 | | | 10100 | 0 | | | $\frac{27}{12100}$ | | 2700 | 13700 | 36400 | | | | | | 0 | 0 | 0 | a management | | | | | | | 3300 | | | | | | | 0 | 0 | 10 | 60 | 710 | 500 | 370 | | | | | | | | | | | 0 | 1 | 0 | | 6 | | 1 | | 3 | 3 | 33 | 69 | |
 | | | | 0 | | 7 | 33 | 5 | | | | | | | | |
 | - | | | 130 | | | | 340 | | | | - | | | | | 1 | 2 | 4 | 10 | | | CONTRACT. | | 30
60 | | | | 0.3 | | (40) | | | | - | | 10 | x | 30 | 130 | | x | 3 | | | 20
x | 30
20 | 50
40 | 70
70 | | | | | | x | 170 | | | x | 10 | | | | 40 | 60 | 90 | | | | | | х | 48 | | 1 | х | 2 | 3 | | x | 8 | 13 | 19 | | | | | | х | 490 | 730 | 1170 | х | 20 | | | х | 120 | | | | | | | | х | 10 | 14 | | х | 0.4 | 1 | 1 | х | 2 | 4 | 7 | |
0 / | 0.1 | 0.5 | | X | 27 | 39 | 61 | х | 1 | 2 | 3 | х | 4 | 7 | 11 | | 0.4 | 0.4 | 0.5 | 1 | 2 | 2 | 3 | 3 | 2 | 2 | 3 | 3 | 7 | 8 | 10 | 13 | | | | | | x | - | | 2.0 | | 0.8 | | 6.7
0.75 | | 0.1 | 0.7 | 1.4 | | x | 0.001 | 0.007 | 0.013 | | | | 0.128 | | | | 0.73 | | 0.008 | 0.024 | 0.043 | | | | | .013 | ^ | 0.025 | 0.071 | 0.120 | x | | | 0.26 | | | 2.63 | | | х | 0.002 | 0.003 | 0.004 | х | 0.001 | 0.002 | 0.003 | | | | 0.011 | | 0.002 | | | | | | | | | | | | х | 2 | 4 | 7 | x | 25 | 75 | 134 | | 0.2 | | | | | | | | 1.5 | 1.7 | 2.1 | 2.6 | 0.6 | 0.7 | 0.9 | 1.1 | | | 0.004 | | | | | | 0.70 | | | | 0.86 | | 0 | 0.20 | 0.30 | | 0.4 | 0.4 | 0.5 | 0.6 | 4.4 | | | | 1.8 | | | | 1.6 | 1.9 | 2.3 | 2.9 | |
300 | 300 | 400 | 500 | 4000 | 4900 | 62 | 7200 | 1200 | 1600 | | 2500 | 1500 | 8 | 21 | 36 | | 300 | 300 | 400 | 500 | | | 52000 | 105000 | 2000 | 5000 | 2000 | 30000 | 1000 | 1000 | 1000 | 1300 | | | | | | - 000. | -0000 | 22000 | 105000 | 2000 | 3000 | 13000 | 30000 | 1000 | 1000 | 4000 | 8000 | | | | | | 1.0 | 1.6 | 2.9 | 5.4 | 1.0 | 1.4 | 2.3 | 4.2 | 0.1 | 0.1 | 0.2 | 0.3 | | | | | | 19 | 29 | 55 | 105 | | | | | | | | • 1 | |
 | | | | | | | | 2 | 3 | 7 | 14 | 5 | 7 | 14 | 28 | | 2 | 3 | 5 | 6 | 18 | 24 | 38 | 41 | 25 | 32 | 52 | 58 | 19 | 25 | 40 | 43 | | 0 | 0 | 0.4 | 1.4 | | | | | 0 | 0 | 1.4 | 5.8 | 0 | 0 | 8.0 | 33.0 | |
50 | 60 | 70 | 70 | 120 | 140 | 160 | 160 | 270 | 370 | 440 | 1.50 | 90 | 90 | 00 | 000 | | 20 | 20 | 20 | 30 | 460 | 710 | 920 | 1090 | 240 | 330 | 460 | 450
590 | 80
220 | 80
250 | 90
320 | 90
420 | | 0 | 1 | 2 | 3 | 0 | 35 | 104 | 174 | 0 | 16 | 47 | 78 | 0 | 8 | 24 | 420 | | | | | | | | | | 0 | 20 | 40 | 40 | 0 | 90 | 200 | 230 | | х | х | х | х | х | х | х | х | х | х | х | х | х | х | х | х | x | 300 | 300 | 300 | | | | | | | | | | x | 8 | 8 | 8 | х | 30 | 30 | 30 | | | | | | | 30 | 60 | 90 | | 250 | 500 | 760 | | | | | | | | | | х | 30 | 00 | 90 | x | 250
200 | 500
200 | 760
200 | | | | | | | | | | x | 130 | 260 | 390 | ^ | 200 | 200 | 200 | x | 100 | 200 | 300 | | | | | | | | | | | | | | ^ | 100 | 200 | 300 | | | | | | х | 2 | 2 | 2 | | | | | | | | | | | | | | х | 60 | 60 | 60 | _ x | 90 | 90 | . 90 | x | 20 | 20 | _20 | | | STAT | E TOTA | L | | | |--|---------------------|--------|-------|--------|-----------| | DEVICES - incremental | Purposes | 1980 | 2000 | 2020 | | | I. Resource Management | | | | | | | A. Water | | | | | | | Storage Facilities ϕ | | | | | | | | Rec, FW, VC* | 163 | 21 | 273 | | | | FW, VC, Rec, WQ* | 0 | 108 | 15 | | | Withdrawal Facilities | | | | | | | | PS, Ind, Pow, Irrig | 300 | 530 | 1410 | | | brackish (mgd) | | 530 | 820 | 1190 | | | wells (mgd) | * | 28 | 139 | 133 | | | Conveyance Facilities | | | 222 | | | | interbasin diversions, into (mgd) | * | 35 | 300 | 530 | | | out of (mgd) | × | 35 | 300 | 0 | | | Quality Control Facilities | | | | | | | chemical/biological | | 5.0 | 101 | 005 | | | potable water treat. plants (mgd) | PS | 50 | 421 | 925 | | | waste treatment plants | | 1000 | | | | | secondary (85%) (m. PEs removed) | | 1900 | 0 | 0 | los el la | | secondary (90%) (m. PEs removed) | | 34000 | 70000 | 139000 | | | advanced (95%) (m. PEs removed) | WQ,VC | 2100 | 3900 | 7700 | | | Desalting Facilities | * | 0 | 0 | 6.0 | | | B. Water/Land | | | | | | | Upstream Flood Plain Mgmt.(1000 acres) | FDR, VC, Drn, FW | 11 | 12 | 17 | | | Local Flood Protection | | | | | | | ocean (projects) | | 4 | 0 | 0 | | | river (projects) | | 15.5 | 23.0 | 1.0 | | | flood control channels (miles) | | 1.0 | 28.7 | 0 | | | Watershed Management (1000 acres) | FDR, VC, Drn | 57 | 310 | 109 | | | C. Land | | | | | | | Controls | NO THE | 110 | 000 | 000 | | | fee simple purchase (buying)(sq.mi.) | VC,FW | 440 | 230 | 230 | | | fee simple purchase (buying) (mi.) | | 25 | 0 | 0 | | | purchase lease (sq.mi.) | VC, FW | 220 | 100 | 100 | | | easements (sq.mi.) | | 149 | 99 | 99 | 10 15 1 | | deed restrictions (sq.mi.) | | X | X | Х | | | tax incentive subsidy (sq.mi.) | NO TH | 150 | 0 | | | | zoning (sq.mi.) | VC,FW | 150 | 0 | 0 | | | zoning (mi.) | VC,FW | 15 | 0 | 0 | | | zoning and/or tax inc. subs.(sq.mi.) | VC, FW | 224 | 84 | 84 | | | zoning and/or tax inc. subs. (mi.) | | | | | | | V. Others | | | | | | | Upstream Flood Control Storage (1000 af) | | 13 | 91 | 9 | | | Mainstream Flood Control Storage (1000 af) | FDR | 47 | 314 | 0 | | | | | | | | | $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. ϕ Flood control storage not included. | | A | REA 12 | 2 | A | REA 14 | 4 | A | AREA 15 | 5 | A | AREA 16 | 5 | |---|----------|----------|-----------|---------------|---------------|----------------|-------------|--------------|-----------------|-----------|-------------|-------------| | | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 138 | 0.4 | 0 | 15 | 21 | 273 | 10 | 0 | 0 | | - | | | | 0 | 108 | 0 | | | | 0 | 0 | 15 | | | 3 | 10 | 10 | 140 | 190 | 780 | 150 | 320 | 610 | 20 | 20 | 10 | | | 0.2 | 3 | 2 | 370
9 | 520
119 | 740
16 | 150
20 | 270
17 | 430
79 | 20
0 | 20
0 | 20
36 | | | | | | 35 | 300 | 530 | 2.5 | | | | | | | - | | | | | | | 35 | 300 | 0 | | | | | | 6 | 16 | 33 | 27 | 356 | 843 | 17 | 49 | 49 | | | | | | | | | | | | | | | 1900 | 0 | 0 | | | 300
0 | 400
0 | 500
30 | 28000
1500 | 52000
2900 | 101000
5600 | 6000
500 | 13000
700 | 29000
1600 | 0 | 4000
200 | 9000
500 | | | 0 | 0 | 30 | 1300 | 2900 | 3000 | 300 | 700 | 1000 | 0 | 0 | 6.0 | | | | | | 6 | 12 | 16 | 4 | 0 | 1 | 1 | 0 | 0 | | | | | | | | | | | | 4 | 0 | 0 | | | | | | 13.5 | 13.0 | 1.0 | 2.0
1.0 | 10.0
28.7 | 0 | | | | | | | | | 48 | 148 | 109 | 9 | 162 | 0 | | | | | | | | | 24.0 | | 1.50 | 0.0 | 0.0 | 2.2 | 150 | | | | | | | | 210 | 150
0 | 150
0 | 80
8 | 80
0 | 80 ₀ | 150
15 | 0 | 0 | | | | | | 15 | 15 | 15 | 100
134 | 0
84 | 0
84 | 120 | 100 | 100 | | | | | | | | | х | х | х | | | | | | | | | | | | | | | 150 | 0 | 0 | | | | | | | | | 224 | 84 | 84 | 15 | 0 | 0 | | - | | | | 10 | 10 | 0 | | F.1 | | | | | | | | | | 12 | 40
256 | 9 | 1
47 | 51
58 | 0 | | | | | | | | | | | | | | | | | | | FIRST COSTS - incremental | S | TATE TO | ΓAL | | |--|------|---------|-------|--| | (\$ million 1970) | 1980 | 2000 | 2020 | | | Water Development Costs: | | | | | | storage, upstream | 36 | 11 | 72 | | | mainstream | 0 | 54 | 11 | | | wells | 11.2 | 13.6 | 8.7 | | | desalting | 0 | 0 | 13 | | | Water Withdrawal and Conveyance Costs: | | | | | | inter-basin transfers | 10 | 89 | 417 | | | public water supply | 38 | 133 | 210 | | | industrial self-supplied water | 4.4 | 6.2 | 9.8 | | | rural water supply | х | x | x | | | irrigation, agriculture | 11.5 | 4.7 | 0 | | | non-agriculture | 16 | 18 | 22 | | | Power Plant Cooling Water | 0 | 24 | 50 | | | Hydroelectric Power Generation | х | х | х | | | Navigation: commercial | 249 | 230 | 5 | | | recreational boating | 15 | 26 | 32 | | | Water Recreation | 440 | 380 | 640 | | | Fish and Wildlife: fishing | 4.8 | 8.9 | 10.6 | | | hunting | х | x | x | | | nature study | х | x | x | | | Water Quality Maint.: waste treatment, secondary | 2600 | 5400 | 11000 | | | advanced | 360 | 810 | 1590 | | | other ≠ | 930 | 0 | 0 | | | Flood Damage Reduction: upstream | 5.3 | 14.9 | 0.8 | | | mainstream | 280 | 410 | 0 | | | Drainage Control | 1.6 | 4.4 | 2.2 | |
 Erosion Control | 165 | 186 | 88 | | | Health | х | х | х | | | Visual and Cultural | 580 | 180 | 180 | | | Summation of Available Estimated Costs | 5800 | 8000 | 14400 | | ^{*} From the supply model and includes OMR costs. # Combined sewer overflows control and acid mine drainage control. | | AREA | 12 | | AREA : | 14 | | AREA] | .5 | | AREA 1 | 6 | |------|------|---------------|-------|--------|-------|-------|--------|--|------|--------|------| | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | | | | | 31 | 0.2 | o. | 4 | 11 | 72 | 1 | 0 | | | | | Á | d | 54 | of | | | - | 0 | 0 | 1 | | 1.0 | 1.3 | 0.1 | 4.6 | 7.6 | 1.2 | 5.6 | 4.7 | 5.7 | 0 | 0 | 1. | | | | | | | | | | | 0 | 0 | 1 | | | | 1 | 10 | 89 | 417 | | | The state of s | | | | | 5 | 13 | 20 | 17 | 86 | 143 | 16 | 34 | 46 | 0.1 | 0.1 | | | | | i i | 2.6 | 2.8 | 4.0 | 1.5 | 3.1 | 5.6 | 0.2 | 0.3 | 0. | | | | 1 | x | х | x | x | x | X | x | x | 2 | | | | 9 | 0.3 | O | O. | 7.4 | 4.7 | 0 | 3.8 | 0 | | | 0.4 | 0.3 | 0.4 | 7 | 9 | 11 | 5 | 5 | 7 | 3 | 3 | | | | | Í | 0 | 6 | 7. | 0 | 17 | 403 | 0 | 2 | | | | | į. | х | | x ; | х | x | x | | | | | | | į, | 99 | 0 | O | 140 | 220 | Oğ | 10 | 10 | | | 0.1 | 0.1 | 0.2 | 8 | 9 | 13 | 1 | 2 | 3 | 6 | 14 | 1 | | | | è | 430 | 360 | 610 | 10 | 10 | 20 | 2 | 10 |] | | 0.1 | 0.2 | 0.3 | 0.5 | 1.0 | 1.1 | 0.8 | 1.2 | 1.4 | 3.4 | 6.6 | 7 | | X | X | X | X | х | х | х | x | X d | x | х | | | X | X | X | X | X | X | X | X | X I | х | x | | | 20 | 30 | 30; | 2200 | 3900 | 7700 | 200 | 1000 | 2200 | 200 | 500 | 100 | | 0 | 0 | 10 | 350 | 610 | 1210 | 10 | 150 | 280 | 0 | 50 | (| | | | | 910 | 0 | 0, | | | | 30 | 0 | | | | | 5 | 4.0 | 7.9 | 0.8 | 1.3 | 7.0 | 0, | | | | | A 1 | 0 1 | 0.1 | 120 | 410 | 0 | | | | 160 | 0 | | | 0.1 | 0.1 | 0.1 | 0.4 | 1.1 | 0.3 | 0.6 | 1.6 | 0.6 | 0.5 | 1.5 | 1. | | 1 | 1 | 14. | 41 | 36 | 28: | 44 | 49 | 20 | 79 | 100 | 3 | | Х | X | X | X 120 | X 701 | X i | X 220 | X | X (| X | X | | | | | j | 130 | 70 | 70 | 230 | 60 | 60 | 220 | 50 | | | 28 | 46 | 62 | 4400 | 5700 | 10200 | 680 | 1580 | 2760 | 720 | 750 | 125 | ### PENNSYLVANIA Pennsylvania covers 28,994 square miles in the NAR including approximately half of Area 15, most of Area 17 and small portions of Areas 18 and 19. The major drainages are the Susquehanna river and the western portion of the Delaware River drainage. The predominant land form is rolling hills, and the visual quality is medial. Water quality is poor, in some upstream sections, due to acid mine drainage and municipal and industrial pollution, but it is generally good throughout the State. The eastern portion of Pennsylvania is urban with heavy population concentrations east of Harrisburg. The 1970 population was almost 7.7 million and is projected to surpass 11.3 million by 2020. Per capita income was 2 percent above the national average in 1970 and is expected to decrease slightly to just over 1 percent above that average by 2020. Employment was largest in services and related industries and employment in that category and in paper and allied products and chemicals and allied products is projected to increase significantly by 2020. Decreases are expected for agriculture, forestry and fisheries (over 50 percent), petroleum (over 50 percent), textile mill products (over 50 percent) and in food and kindred products. Needs to be Satisfied. The key needs in the State are Water Quality Maintenance in all Areas, recreational boating in Area 15 and Visual and Cultural in Areas 18 and 19. The important needs are Publicly Supplied Water in Areas 15, 17, and 19, and Water Quality Maintenance in all Areas. Other important needs in Area 15 are Industrial Self-supplied Water, commercial navigation, Water Recreation, Fish and Wildlife, and Flood Damage Reduction. There are important needs for Industrial Self-supplied Water and Water Recreation in Area 17, and for Erosion Control and Visual and Cultural in Area 19. The needs are the largest in Areas 15 for Publicly Supplied Water, Industrial Self-supplied Water, Navigation, and Water Quality Maintenance. The needs are largest in Area 17 for Rural Water Supply, Hydroelectric Power Generation, Drainage Control and Erosion Control. The Irrigation Water needs are largest in Area 17 for agriculture and Area 15 for non-agriculture. The Power Plant Cooling and Water Recreation needs are largest in Area 17 except for brackish withdrawal and consumption, visitor days and land facilities, which are largest in Area 15. The needs for Fish and Wildlife and Visual and Cultural are largest in Area 15 except for anadromous access, hunting man-days, unique natural landscape maintenance and diversity landscape development which are largest in Area 17. Mainstream Flood Damage Reduction is largest in Area 15 but upstream Flood Damage Reduction is largest in Area 17. The needs in Areas 18 and 19 are either relatively small or non-existant. Devices. Water quality maintenance facilities are key devices in Area 15 and important devices in all Areas. Also important are storage facilities, withdrawal facilities and temperature control facilities in Areas 15 and 17 and wells in Area 15. All of the devices are largest in Area 15 with the following exceptions: mainstream reservoir storage, wells, watershed management, fee simple purchase (sq. mi.) and river projects and storage reservoirs for Flood Damage Reduction. These are largest in Area 17. Secondary (85%) waste treatment plants is largest in Area 18. Costs. The largest total investments for Areas are in Area 17 (1980) and Area 15 (2000 and 2020). Most of the individual need costs are largest in Area 15. The remaining costs are largest in Area 17 and include mainstream storage, wells, agricultural Irrigation, Power Plant Cooling Water, Recreation, Flood Damage Reduction, Drainage Control and Erosion Control. The significantly large expenditures are for mainstream storage (2020), Industrial Self-supplied Water (2000-2020), Power Plant Cooling (2000-2020) commercial navigation (1980-2000), and advanced waste treatment (2000-2020). The needs for Water Recreation, secondary waste treatment and Visual and Cultural are also significantly large in all time periods. | | | STATE | TOTAL | | | |---|----------|-----------|-----------|--------------|-------------| | NEEDS-cumulative | Pres. | 1980 | 2000 | 2020 | | | Publicly Supplied Water (mgd) | 870 | 1120 | 1620 | 2430 | | | Industrial Self-Supplied Water (mgd) | 1200 | 2200 | 4500 | 8300 | | | Rural Water Supply (mgd) | 86 | 123 | 164 | 154 | | | Irrigation Water: agriculture (1000 afy) | 13 | 78 | 100 | 115 | | | non-agriculture (1000 afy) | 14 | 42 | 73 | 115 | | | Power Plant Cooling: withdrawal, saline (cfs)
brackish (cfs) | 2600 | 2500 | 5100 | 10000 | | | fresh (cfs) | 0000 | 3500 | 5100 | 10800 | | | consumption, brackish(cfs) | 1300 | 5200 | 7900 | 9700 | | | fresh (cfs) | 25
47 | 10
252 | 19
458 | 47
753 | | | Hydroelectric Power Generation (mw) | 1200 | 3300 | 13300 | 32800 | | | Navigation: commercial (m. tons annually) | 73 | 106 | 147 | 237 | | | recreational boating (1000 boats) | 120 | 150 | 220 | 360 | | | Water Recreation: visitor days (m.) | х | 180 | 280 | 480 | | | stream or river (miles) | x | 640 | 930 | 1260 | | | water surface (1000 acres) | х | 150 | 220 | 310 | | | beach (acres) | х | 1700 | 2500 | 3900 | | | pool (m. sq. ft.) | х | 32 | 46 | 71 | | | land facilities (1000 acres) | х | 92 | 121 | 184 | | | Fish & Wildlife: sport fishing man-days (m.) | . 13 | 16 | 20 | 25 | | | surface area, lake (acres) | Х | 2.7 | 10.6 | 25.9 | 7 7 1 1 | | stream (acres)
access, fresh (acres) | х | 0.28 | 0.78 | 1.50 | | | access, fresh (acres)
salt (acres) | х | 0.27 | 0.68 | 1.18 | | | anadromous (acres) | | 0.052 | 0.072 | 0.000 | | | piers (1000 feet) | х | 0.053 | 0.073 | 0.096 | | | hunting, man-days
(m.) | 11 | 13 | 16 | 20 | M 1 1 1 1 1 | | access (1000 sq. mi.) | x | 0.41 | 2.42 | 5.01 | | | nature study, man-days (m.) | 10 | 12 | 15 | 19 | | | access(1000 ac.) | x | 18 | 49 | 87 | | | Water Quality Maint.: non-industrial (m. PEs) | 7300 | 9100 | 11500 | 14400 | | | industrial (m. PEs) | 11000 | 38000 | 71000 | 163000 | | | Flood Damage Reduction: | | | | | | | avg. ann. damage, upstream (m. \$) | 6.0 | 9.0 | 16.8 | 33.8 | | | mainstream (m. \$) | 17 | 26 | 52 | 108 | | | tidal and hurricane (m. \$) | | | | | | | Drainage Control: cropland (1000 acres)
forest land (1000 acres) | 240 | 330 | 470 | 480 | | | wet land (1000 acres) | 0 | 2.7 | 17.4 | 62.8 | | | Erosion Control: agriculture (1000 acres) | 4200 | 5600 | 6700 | 6900 | | | urban (1000 acres) | 1600 | 2000 | 2700 | 6800
3600 | | | stream bank (mi.) | 0 | 130 | 400 | 660 | | | coastal shoreline (mi.) | U | 130 | 400 | 000 | | | Health: vector control and pollution control | х | x | x | х | | | Visual & Cultural: | | | | | | | landscape maintenance, unique natural(sq. mi.) | 1000 | 1000 | 1000 | 1000 | | | unique shoreline (mi.) | | | | | | | high quality (sq. mi.) | | | | | | | diversity (sq. mi.) | х | 950 | 1900 | 2860 | | | agriculture (sq. mi.) | х | 1100 | 1100 | 1100 | | | landscape development, quality (sq. mi.) | | | | | | | diversity (sq. mi.)
metro. amenities (mi.) | X | 180 | 180 | 180 | | | metro. amenities (mi.)
""(sq. mi.) | | 1/0 | 1/0 | 1/0 | | | (Sq. mr.) | Х | 140 | 140 | 140 | | | I | AREA | 15 | | | AREA | 17 | | | AREA | 18 | | | AREA | 19 | | |----------|---------|-------------|-------------|---------------|-------|-------|-------------|------|------|------|------|------|-------|-----------|-------| | Pres | 1980 | 2000 | 2020 | Pres | 1980 | 2000 | 2020 | Pres | 1980 | 2000 | 2020 | Pres | 1980 | 2000 | 2020 | | 580 | | | | | | | | 3 | 4 | 10 | 10 | 20 | 30 | 50 | 70 | |
800 | | | | | | | | | | | | 40 | 100 | 100 | 200 | |
31 | 48 | | | 49 | | 79 | | | | | | 6 | 10 | 15 | 15 | | 4 | 10 | | | 8 | 60 | | | | | | | 2 | 8 | 11 | 10 | |
 | 21 | 38 | 61 | - 5 | 18 | 31 | 48 | 0 | 0.1 | 0.2 | 0.3 | | 2 | 4 | 6 | | 2800 | 2200 | 4400 | 9600 | | | | | | | | | 900 | 1200 | 700 | 1200 | | 1800 | | | | | 3200 | 5000 | 7500 | | | | | 800 | 1300 | 700 | 1200 | | 25 | | 100.00 | | 2500 | 3200 | 3900 | 1 /300 | | | | | | | | | | 22 | 88 | | | 25 | 164 | 269 | 404 | | | | | | | | | | 40 | | | | | | | 29400 | | | | | | | | | | 73 | 106 | | | | | | | | | | | | | | | | 70 | 90 | 130 | 210 | 50 | 60 | 100 | 150 | | | | | | | | | | х | 110 | 170 | 280 | х | 60 | 100 | 180 | | | | | x | 10 | 10 | 20 | | х | 270 | 1 | | | 330 | | | | | | | х | 40 | 40 | 80 | | х | 70 | | | | 70 | | | | | | | х | 10 | 10 | 20 | | х | 700 | | | х | 1000 | | | | | | | х | 100 | 100 | 100 | | х | 13 | AUTO | | х | 18 | | | | | | | х | 1 | 1 | 2 | |
× | 45 | | - | X | 43 | 65 | | | | | | X | 4 | 6 | 9 | | / | , 8 | 10 | | 6 | | 9 | 12 | 0.1 | 0.1 | 0.1 | 0.1 | | | | 1 | | х | 1.2 | | 10.9 | | U | 2.1 | 11.6 | | | | | х | 1.4 | | | | x | 0 00 | 200 200 200 | 1.22 | | 0 16 | 0 /2 | 0.14 | | 1 | | | х | | 0.28 | | | х | 0.09 | 0.23 | 0.39 | х | 0.16 | 0.42 | 0.14 | | | | | х | 0.02 | 0.04 | 0.03 | | v | 0.005 | 0 011 | 0 018 | | 0.046 | 0 058 | 0.073 | | | | | x | 0.003 | 0.004 | 0.005 | | ^ | 0.003 | 0.011 | 0.010 | ^ | 0.040 | 0.000 | 0.073 | | | | | ^ | 0.002 | 0.004 | 0.005 | | 5 | 6 | 8 | 10 | 6 | 6 | 8 | 10 | 0.02 | 0.02 | 0.02 | 0.03 | 0.2 | 0.2 | 0.3 | 0.4 | | x | 0.38 | 1.15 | 1.95 | | d | 1.08 | 2.77 | | | 0.01 | | | 0.02 | | | | 6 | 8 | 10 | 12 | 3 | 4 | 5 | 6 | | | 0.04 | | | | 0.4 | 0.6 | | x | 15 | 39 | 70 | x | 1 | 4 | | x | 0.1 | 0.3 | 1 | x | 2 | 5 | | | | 5800 | | 9200 | | | | 4800 | 20 | 30 | 30 | 40 | 100 | 200 | 300 | 400 | |
9000 | 25000 | 65000 | 151000 | 1000 | 3000 | 6000 | 11000 | | | | | 100 | 200 | 400 | 900 | | | | | | | | | | | | | | | | | | | 2.0 | | | | 4.0 | | | 25.4 | | | | | | | | | | 9 | 14 | 28 | 57 | 8 | 12 | 24 | 51 | | | | | 0.1 | 0.1 | 0.3 | 1 | |
 | 70 | 100 | 100 | 170 | 2/0 | | 226 | | | | - 10 | 10 | | | | | 60 | 70
0 | | 130
12.8 | | | | 330
47.5 | 3 | 5 | | 0.5 | | | 20
0.6 | 20 | | 0 | 9 | 3.1 | 12.0 | U | 2.1 | 13.7 | 47.5 | q | O | 0.4 | 0.3 | 9 | q | 0.0 | 2.1 | |
600 | 800 | 1000 | 1000 | 3400 | 4400 | 5300 | 5400 | 4 | 10 | 10 | 10 | 300 | 400 | 400 | 500 | | 500 | 700 | 1000 | | 1000 1000 000 | | 1500 | | 4 | 10 | 10 | 20 | 100 | 100 | 100 | 200 | | 0 | 30 | 100 | | 0 | | 260 | | o | 0.2 | 0.6 | 1 | 0 | 10 | 30 | 50 | | | | | | | | 200 | | J | 0.2 | 0.0 | Ī | | - 7 | 39 | 30 | | х | х | х | х | х | х | х | х | х | х | х | х | х | х | x | x | 1000 | 1000 | 1000 | 1000 | 465 | x | 550 | 1100 | | х | 300 | 600 | | | | | | х | 100 | 200 | 300 | | х | 600 | 600 | 600 | х | 300 | 300 | 300 | | | | | х | 200 | 200 | 200 | | | | | | | 180 | 180 | 180 | | 100 | 100 | 100 | | | | | | | | | | х | 100 | 100 | 100 | х | 180 | 180 | 180 | | | | | | × | 90 | 90 | 90 | x | 50 | 50 | 50 | | | | | | | | | | - | | | | | | | | | | | | | | | | | | STAT | TE TOTAL | L | | | |---|------------------|----------|-------|--------|-----| | DEVICES - incremental | Purposes | 1980 | 2000 | 2020 | | | I. Resource Management | | | | | | | A. Water | | | | | | | Storage Facilities ϕ | | | | | | | | Rec, FW, VC* | 59 | 45 | 279 | 100 | | | FW, VC, Rec, WQ* | 84 | 137 | 484 | | | Withdrawal Facilities | | | | | | | intakes & pumping, fresh (mgd) | | 880 | 1860 | 3430 | | | brackish (mgd) | Ind | 610 | 1130 | 1790 | | | wells (mgd) | * | 94 | 195 | 115 | | | Conveyance Facilities | | 0.7 | | | | | interbasin diversions, into (mgd) | * | 37 | 0 | 0 | | | out of (mgd) | | | | | | | Quality Control Facilities | | | | | | | chemical/biological | D.C. | 110 | 200 | 0.50 | | | potable water treat. plants (mgd) | PS | 110 | 280 | 350 | | | waste treatment plants | HO HO D | 0.4 | | | | | secondary (85%) (m. PEs removed) | | 24 | 75000 | 160000 | | | secondary (90%) (m. PEs removed) | | 34000 | 75000 | | | | advanced (95%) (m. PEs removed) | WQ,VC | 1700 | 4200 | 8900 | | | Desalting Facilities B. Water/Land | | | - | - | | | | EDD AC EM | 6.3 | 1.0 | 2.7 | | | Upstream Flood Plain Mgmt.(1000 acres) Local Flood Protection | FDR, VC, FW | 0.3 | 1.0 | 2.1 | | | ocean (projects) | | | | | | | river (projects) | FDR | 13 | 7 | 7 | | | flood control channels (miles) | TDR | 13 | 1 | 1 | | | Watershed Management (1000 acres) | FDR, VC, Drn | 85 | 365 | 287 | | | C. Land | IDR, VC, DIII | 0.5 | 303 | 207 | | | Controls | | | | | | | fee simple purchase (buying)(sq.mi.) | VC FW | 820 | 330 | 330 | | | fee simple purchase (buying) (mi.) | ,0,11 | 020 | 330 | 330 | | | purchase lease (sq.mi.) | VC,FW | 500 | 0 | 0 | | | easements (sq.mi.) | VC,FW | 570 | 430 | 430 | | | deed restrictions (sq.mi.) | | x | x | x | | | tax incentive subsidy (sq.mi.) | , | ^ | ^ | _ ^ | | | zoning (sq.mi.) | | | | | | | zoning (mi.) | | | | | | | zoning and/or tax inc. subs.(sq.mi.) | VC,FW | 420 | 180 | 180 | | | zoning and/or tax inc. subs. (mi.) | | | | | | | V. Others | | | | | | | Upstream Flood Control Storage | FDR | 13 | 35 | 51 | | | Mainstream Flood Control Storage | FDR | 61 | 0 | 0 | | | | | 01 | | | | $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. φ Flood control storage not included. | A | AREA 15 | | I | AREA 17 | | I | AREA 18 | | | AREA 19 | | |-----------------|---------------|----------------|-------------|-------------|--------------|--------------|--------------|--------------|-----------|------------|-------------| | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | | | | | | | | | | | | | | | 13
4 | 18
19 | 234
173 | 45
79 | 27
111 | 45
260 | | | | 0 | 8 | 51 | | 600
610 | 1300
1130 | 2530
1790 | 250 | 500 | 820 | | | | 40
2 | 60 | 80 | | 37 | 19 | 87 | 67 | 175 | 24 | | | | 5 | 1 | 3 | | 60 | 180 | 180 | 40 | 80 | 140 | 0 | 0.1 | 1 | 10 | 20 | 30 | | 28000
1400 | 66000
3700 | 145000
8000 | 5000
300 | 8000
500 | 14000
800 | 24
0
0 | 0
30
0 | 0
40
2 | 300
20 | 1000
40 | 1000
100 | | 6.3 | 0 | 1.7 | 0 | 1.0 | 1.0 | | | | | | | | 6 | 4 | 0 | 7 | 3 | 7 | | | | | | | | 13 | 245 | 0 | 72 | 60 | 287 | | | | | | | | 180 | 180 | 180 | 630 | 150 | 150 | | | | 10 | 0 | 0 | | 300
330
x | 0
180
x | 0
180
x | 150 | 150 | 150 | | | | 200
90 | 0
100 | 0
100 | | 420 | 180 | 180 | | | | | | | | | | | 0 | 29 | 0 | 13
61 | 6 | 51
0 | | | | | | | | FIRST COSTS - incremental | S | TATE TO | ΤΔΤ | | |--|------|---------|-------|--| | (\$ million 1970) | 1980 | 2000 | 2020 | | | Water Paralament Caster | 1980 | 2000 | 2020 | | | Water Development Costs: | | | | | | storage, upstream | 26 | 21 | 97 | | | mainstream
wells | 25 | 55 | 207 | | | | 43 | 37 | 20 | | | desalting | | | | | | Water Withdrawal and Conveyance Costs: | | | | | | inter-basin transfers | 9.7 | 0 | 0 | | | public water supply | 87 | 192 | 271 | | | industrial self-supplied water | 7.8 | 15.6 | 27.5 | | | rural water supply | х | x | x | | | irrigation, agriculture | 8.7 | 4.6 | 3.5 | | | non-agriculture | 24 | 23 | 30 | | | Power Plant Cooling Water | 0 | 150 | 340 | | | Hydroelectric Power Generation | x | x | x | | | Navigation: commercial | 200 | 230 | 0 | | | recreational boating | 1.4 | 4.6 | 6.7 | | | Water Recreation | 1190 | 880 | 1560 | | | Fish and Wildlife: fishing | 6.4 | 8.7 | 10.6 | | | hunting | x | x | x | | | nature study | х | x | x | | | Water Quality Maint.: waste treatment, secondary | 1300 | 5900 | 12600 | | | advanced | 84 | 846 | 1540 | | | other 🗲 | 3.4 | 0 | 0 | | | Flood Damage Reduction: upstream | 5.7 | 12.7 | 27.2 | |
| mainstream | 60 | 0 | 0 | | | Drainage Control | 6.1 | 10.0 | 2.5 | | | Erosion Control | 140 | 170 | 140 | | | Health | X | x | x | | | Visual and Cultural | 690 | 220 | 220 | | | Summation of Available Estimated Costs | 3900 | 8800 | 17100 | | ^{*} From the supply model and includes OMR costs. # Combined sewer overflows control and acid mine drainage control. | 7 | | ĀREA I | 15 | | AREA 1 | .7 | | AREA 1 | 8 | | AREA 1 | 9 | |--|------------------------------|------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------|----------------|-------------------------------|----------------------|-----------------------|-----------------| | | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 1 | 1980 | 2000 | 2020 | | TANK TO BE STORY OF THE O | 4
3
6 | 9
16
5 | 61
107
6 | 22
22
36 | 12
31
31 | 35
82
13 | | | HARVES TO A COMMENT OF MARKET | 0 1 | 7
1 | 17
1 | | | 9.7
57
6.3
x
0.8 | 0
126
12.7
x
0.5 | 0
169
22.9
X | 25
1.3
x
6.8 | 56
2.6
x
3.3 | 87
4.2
x
3.5 | 0.04 | 0.1 | 0.2 | 5
0.2
x
1.1 | 11
0.3
x
0.8 | -15
0.4
x | | - | 11 0 | 12
60 | 16 | 11 0 | 10
90 | 220 | 0.1 | 0.1 | 0.1 | 1 | | 2 | | | х | х | x j | х | Х | Х | | |) | | | | | | 200 | 230
2.1 | 3.8 | 0.7 | 2.5 | 2.9 | | | | | | | | _ | 270 | 350 | 530 | 900 | 500 | 990 | | | | 20 | 30 | 40 | | | 3.0
x
x | 4.4
x
x | 5.3
x | 2.8
x
x | 3.8
x
x | 4.7
x | 0.05
x
x | 0.04
x
x | 0.04
x
x | 0.5
x
x | 0.5
x
x | 0.6
x | | | 700
21
3.4 | 4900
742
0 | 11000
1365
0 | 600
59 | 900 | 1500
162 | 3 0 | 3 0 | 0.4 | 40 | 100 | 100
13 | | | 0
19 | 11.0 | 0 | 5.7
41 | 1.7 | 27.2 | | | - Print | | | | | | 1.3 | 3.6 | 1.4 | 4.4 | 5.8 | 1.1 | 0.1 | 0.1 | 0.01; | | 0.6 | 0.1 | | | 30 | 40 | 40 | 100 | 120 | 90 (| 1 | 1 | 1 8 | 10 | 10 | 10 | | - | x
320 | 130 | 130 v | x
270 | x
70 | 70 | Х | Х | X | x
110 | x
20 | X | | | 1700 | 6700 | 13600 | 2100 | 1900 | 3300 | 4.3 | 4.3 | 5.8 | | 190 | 220 | ## MARYLAND Maryland covers 10,158 square miles including most of Area 18, part of Area 19 and a very small portion of Areas 15 and 17. The major drainages flow into chesapeake Bay or form part of the northern Potomac River drainage. The topography ranges from beach and flatland to heavily forested mountains, but in general is of low relief. Water supplies are polluted around population centers and supplies must be imported to augment the insufficient supplies around those population centers. Maryland has heavy population concentrations in the center of the State. The 1970 population totalled over 3.7 million and is expected to top 7.4 million by 2020. Per capita income was 7 percent above the national average in 1970 but is projected to decline to 4 percent above by 2020. Employment in 1970 as highest for services and related industries, which is expected to increase by 150 percent by 2020. Increases are also expected for paper and allied products, chemicals and allied products, and primary metals, while decreases are projected for food and kindred products and agriculture, forestry and fisheries. Needs to be Satisfied. The key needs in Maryland are for Water Quality Maintenance in Areas 17, 18 and 19 and for Visual and Cultural in Areas 18 and 19. The important needs are Publicly Supplied Water in Areas 17 and 19, Water Quality Maintenance in Areas 17, 18 and 19, Erosion Control in Areas 19 and Visual and Cultural in Areas 18 and 19. The needs in Area 18 are the largest with a few exceptions. These exceptions are the entire needs for Hydroelectric Power Generation, and Water Recreation and the needs for fresh withdrawal and consumption for Power Plant Cooling, surface area, access, piers and hunting man-days for Fish and Wildlife, mainstream Flood Damage Reduction, agricultural and stream bank erosion control and agricultural landscape maintenance and diversity landscape development for Visual and Cultural. All of the above needs are largest in Area 19 except for diversity landscape development which is largest in Area 17. <u>Devices</u>. There are no key devices in the State. Quality control facilities is important in Areas 17, 18, and 19. Other important devices are storage facilities, withdrawal facilities, and temperature control facilities in Area 17, and land controls in Area 18. The largest device levels are in Area 18 except for out of basin diversions in Area 17 and mainstream storage, potable water treatment plants, secondary (90%) and advance waster treatment plants, watershed management and flood control storage in Area 19. Costs. The largest total cost for an Area and most of the largest expenditures for needs are in Area 18. Area 19 has the largest costs for mainstream storage, publicly Supplied Water, Power Plant Cooling, Water Recreation, advanced waste treatment, and Flood Damage Reduction. The significantly large expenditures in the State will be for desalting (2000) inter-basin transfers (2020), Water Recreation (1980-2020), advanced waste treatment (2020) and Visual and Cultural (1980). | NEEDS-cumulative | 1200 | |---|-------| | Industrial Self-Supplied Water (mgd) 240 460 880 | 1200 | | Industrial Self-Supplied Water (mgd) 240 460 880 | | | | 1510 | | 114 | 121 | | Irrigation Water: agriculture (1000 afy) 8 36 55 | 53 | | non-agriculture (1000 afy) 4.3 12.2 22.0 | 35.3 | | Power Plant Cooling: withdrawal, saline (cfs) 200 200 12300 | 32700 | | brackish (cfs) 2600 6800 10900 | 10300 | | fresh (cfs) 400 380 990 | 1030 | | consumption, brackish(cfs) 42 96 112 | 119 | | fresh (cfs) 4 9 46 | 90 | | Hydroelectric Power Generation (mw) 440 480 980 | 2000 | | Navigation: commercial (m. tons annually) 55 70 115 | 186 | | recreational boating (1000 boats) 140 170 290 | 400 | | Water Recreation: visitor days (m.) $_{\rm X}$ 26 44 | 79 | | stream or river (miles) $_{\rm X}$ 200 270 | 440 | | water surface (1000 acres) x 38 58 | 90 | | beach (acres) x 300 460 | 720 | | pool (m. sq. ft.) x 5.2 8.0 | 12.5 | | land facilities (1000 acres) x 22 34 | 52 | | Fish & Wildlife: sport fishing man-days (m.) 8.5 10.0 13.0 | 16.6 | | surface area, lake (acres) x 38 56 | 81 | | stream (acres) $_{\rm X}$ 3.9 4.6 | 4.6 | | access, fresh (acres) \times 0.47 0.78 | 1.15 | | salt (acres) x 0.46 1.38 | 2.50 | | anadromous (acres) x 0.040 0.061 piers (1000 feet) x 13 39 | 0.089 | | (-) | 71 | | (1000 | 5.8 | | 9.7, 1 | 2.19 | | (1000 | 8.6 | | | 65.3 | | / == \ 1200 1200 3300 | 7100 | | industrial (m. PEs) 1100 2700 6600 Flood Damage Reduction: | 14200 | | , | 27 7 | | , 1 | 27.7 | | mainstream (m. \$) 4.1 7.8 16.6
tidal and hurricane (m. \$) 4.0 6.7 12.9 | 36.4 | | Drainage Control: cropland (1000 acres) 260 380 510 | 510 | | forest land (1000 acres) 0 0.04 10 | 41 | | wet land (1000 acres) | 41 | | Erosion Control: agriculture (1000 acres) 980 1460 1840 | 1910 | | urban (1000 acres) 440 830 1180 | | | stream bank (mi.) 0 39 118 | 197 | | coastal shoreline (mi.) 0 38 78 | | | Health: vector control and pollution control x x x | X | | Visual & Cultural: | | | landscape maintenance, unique natural(sq. mi.) x 140 140 | 140 | | unique shoreline (mi.) x 260 260 | 260 | | high quality (sq. mi.) | | | diversity (sq. mi.) $_{\rm X}$ 300 600 | 900 | | agriculture (sq. mi.) x 200 200 | 200 | | landscape development, quality (sq. mi.) x 200 400 | 600 | | diversity (sq. mi.) \times 120 120 | 120 | | metro. amenities (mi.) | | | " (sq. mi.) x 85 85 | 85 | | | | AREA | 15 | | | AREA | 17 | | | AREA | 18 | | | AREA | 19 | | |---|------|-------|------|------|------|-------|--------------|-------|--------|----------|------------|-----------|--------
-----------|---------------|-----------| | | Pres | 1980 | 2000 | 2020 | Pres | | | | | | 2000 | | Pres | 1980 | 2000 | 2020 | | | | | | | 10 | 10 | 10 | 20 | | | | | 130 | | | | | | | | | | | | | | 150 | 300 | | 1070 | 90 | | | | | | | | | | | | | | 29 | 27 | | | 19 | | 46 | | | | | | | | 0.1 | 0.2 | 0.4 | 0.6 | 3.3 | | 42
16.2 | 42 | 0.9 | 1 | | | | | | | | | 0.1 | 0.2 | 0.4 | 0.0 | 200 | | 10300 | | x | 0.2 | | | | | | | | | | | | | 2600 | | 10900 | | ^ | | 2000 | 3000 | | | | | | | | | | | 0 | 0 | | | 400 | 380 | 930 | 940 | | | 6 | 10 | 10 | 16 | | | | | 29 | 80 | 97 | 93 | 7 | 6 | _ | 10 | | | | | | | | | | | 0 | 0 | 26 | 45 | 4 | 9 | 20 | 45 | | | | | | | 440 | 480 | 480 | | 1 | 0 | | 0 | 0 | | 500 | 1000 | | | | | | | 0.1 | 0.1 | 0.1 | 0.2 | 53 | 68 | | 180 | 2 | | | 6 | | | | | | | 10 | 10 | 10 | 20 | | 110 | | 260 | 50 | | | | | | | | | | | | | | Х | 11
90 | | 31
190 | Х | 16 | | 48
250 | | | | | | | | | | | X
X | 18 | | | X
X | 110
20 | | 52 | | | | | | | | | | | x | 140 | | 330 | X | 160 | | | | 1 | | | | | | | | 7.72 | x | 2.4 | | 5.6 | x | 2.8 | | | | | | | | | | | | | х | 10 | | 23 | х | 11 | 19 | 29 | | | | | | | 0.2 | 0.2 | 0.2 | 0.3 | 5.7 | 6.4 | | | 2.6 | 3.3 | 4.8 | | | | | | | | х | 0 | 0.1 | 1 | X | 18 | | | Х | 20 | | | | | | | | | | 0 01 | 0.00 | 0.01 | Х | 0 | | | Х | 3.9 | 3.9 | | | | | | | | Х | 0.01 | 0.02 | 0.04 | Х | 0.18 | | | Х | 0.28 | | | | | | | | | v | 002 | 0.003 | 0.003 | X
X | 0.17 | 0.31 | | X
X | 0.29 | 0.87
0.050 | | | | | | | | ^ | 0.002 | 3.003 | 0.003 | X | 5 | | 26 | X | 8 | , | | | | | 100 | | | 0.1 | 0.2 | 0.2 | 0.3 | 1.6 | 1.9 | | 2.5 | 1.4 | 1 | | | | | | | | | х | 0 | Tarr Sarrari | | x | 0.68 | | | х | 0.05 | | | | | | | | | 0.1 | 0.1 | 0.1 | 0.2 | 2.6 | 3.0 | | 4.5 | 1.6 | | | | | | | | | | | | | | x | 6.5 | | | Х | | 11.4 | | | | | | | | 100 | 100 | 100 | 100 | 2000 | 2600 | | | 700 | | 2200 | | | | | | | | | | | | 700 | 1500 | 3400 | 7500 | 500 | 1300 | 3200 | 6700 | | | | | | | 0.03 | 0.05 | 0.1 | 0.2 | 0 0 | 11 0 | 15 0 | 22 0 | 0.0 | 1 - | 2 0 | | | | | | | | 0.03 | 0.03 | 0.1 | 0.2 | 0.7 | 1.2 | 15.9 | 4.4 | 0.9 | | 2.8 | | | | | | | | | | | | 4.0 | 6.7 | 1 | | 3.4 | 0.0 | 14.4 | 32.0 | | | | | | | 2 | 3 | 4 | 4 | 230 | 340 | | 460 | 30 | 40 | 50 | 50 | | | | | | | | 0.04 | | 0.6 | | | | 0.242000 | 40 | 70 | 100 | 100 | 280 | 530 | 730 | 760 | 660 | 860 | 1010 | | | | | | | | 10 | 60 | 80 | 130 | | 580 | | | 120 | | 290 | 410 | | | | | | | 0 | 1 | 3 | 5 | 0 | 14 | 41 | 68 | 0 | | 74 | 124 | | | ., | | | | | | | | 0 | 33 | | 71 | 0 | 5 | 9 | 10 | | | Х | Х | Х | X | X | X | X | Х | Х | X | Х | Х | Х | Х | Х | X | | | | | | | | | | | x | 140 | 140 | 140 | | | | | | | | | | RE! | | | | | x | 220 | | 220 | х | 50 | 50 | 50 | х | 200 | 400 | 600 | х | 100 | 200 | 300 | | | | | | | | | | | | | | | х | 200 | 200 | 200 | | | | | | | | | | | х | 200 | 400 | 600 | | | | | | | | | | | х | 120 | 120 | 120 | | | | | | | | | | | | - C 1 | | | | 20 | 20 | 20 | | 25 | 25 | 2.5 | | 20 | 20 | 20 | | | | | | | _ X | 30 | 30 | 30 | X | 35 | 35 | 35 | X | 20 | 20 | 20 | | | STAT | E TOTAL | L | | | |--|---------------------|------------|-------------|-------------|-------| | DEVICES - incremental | Purposes | 1980 | 2000 | 2020 | | | I. Resource Management | | | | | | | A. Water | | | | | | | Storage Facilities φ | | | | | | | | Rec, FW, VC* | 33 | 266 | 3 | | | | FW,VC,Rec,WQ* | 26 | 43 | 72 | | | Withdrawal Facilities | DC Tal Day Tania | 220 | 1.20 | 620 | | | | PS, Ind, Pow, Irrig | 220
880 | 430
1810 | 620
2770 | | | brackish (mgd)
wells (mgd) | * | 56 | 114 | 28 | | | Conveyance Facilities (mgd) | <u> </u> | 30 | 114 | 20 | | | interbasin diversions, into (mgd) | * | 162 | 38 | 530 | | | out of (mgd) | | 199 | 38 | 530 | | | Quality Control Facilities | | | 1 | 333 | | | chemical/biological | | | | | | | potable water treat. plants (mgd) | PS | 47 | 133 | 257 | | | waste treatment plants | | | | | | | secondary (85%) (m. PEs removed) | WQ,VC,Rec | 3400 | 0 | 0 | | | secondary (90%) (m. PEs removed) | WQ,VC | 2600 | 10900 | 19200 | | | advanced (95%) (m. PEs removed) | WQ,VC | 150 | 280 | 1070 | | | Desalting Facilities | * | 0 | 113 | 86 | | | B. Water/Land | | | | | | | Upstream Flood Plain Mgmt.(1000 acres) | FDR, VC, Rec | 425 | 688 | 27 | | | Local Flood Protection | | , | | | | | ocean (projects) | | 1 | 0 | 0 | | | river (projects)
flood control channels (miles) | | 24 | 23 | 0 | | | | FDR,VC,Drn,Rec | 730
859 | 270
481 | 17 | | | Watershed Management (1000 acres) C. Land | rbk, vc, brit, kec | 033 | 401 | 11 | | | Controls | | | | | | | fee simple purchase (buying)(sq.mi.) | VC Rec FW | 350 | 100 | 100 | | | | VC, Rec, FW | 150 | 0 | 0 | | | | VC, Rec, FW | 440 | 200 | 200 | | | | VC, Rec, FW | 190 | 200 | 200 | | | deed restrictions (sq.mi.) | | х | х | x | | | tax incentive subsidy (sq.mi.) | | | | | | | zoning (sq.mi.) | VC,FW,Rec | 70 | 0 | 0 | | | zoning (mi.) | VC,FW,Rec | 110 | 0 | 0 | | | zoning and/or tax inc. subs.(sq.mi.) | | | | | - 161 | | zoning and/or tax inc. subs. (mi.) | | | | | | | V. Others | | | | | | | Upstream Flood Control Storage (1000 af) | FDR | 76 | 119 | 0 | | | Mainstream Flood Control Storage (1000 af) | FDR | 36 | 0 | 700 | | | Waste Water (mgd) | Ind | 140 | 360 | 790 | | $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. φ Flood control storage not included. | | AREA 15 | | | AREA 17 | | | AREA 18 | | | AREA 19 | | |------|---------|------|------|----------|-----------|--------------------------|------------------------|-------------------------|-----------------------|--------------------|--------------------| | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | | | | | | | | | | | | | | | | | | 1 | 0.3 | 1 | 16 | 250 | 0 | 17
26 | 15
43 | 2
72 | | | | | 0.3 | 1 | 1 | 130
870 | 260
1800 | 400
2760 | 100
4 | 170
10 | 220
10 | | | | | 1 | 1 | 0.2 | 12 | 101 | 0 | 43 | 12 | 28 | | | | | 199 | 38 | 530 | 162 | 38 | 530 | | | | | | | | 1 | 2 | 4 | 3 | 8 | 55 | 43 | 123 | 198 | | | | | 100 | 100
5 | 100
10 | 3400
0
0 | 0
5900
0
113 | 0
10300
570
86 | 2500
140 | 4900
270 | 8800
490 | | | | | | | | | | - 00 | | | | |
 | | | 0.2 | 1 | 0.05 | 383 | 578 | 0 | 42 | 109 | 27 | | | | | 1 | 0 | 0 | 1
17
730 | 0
16
270 | 0 ;
0
0 | 6 | 8 | 0 | |
 | | | 9 | 17 | 17 | 278 | 371 | 0 | 573 | 93 | 0 | | x | x | x | 150 | 0 | 0 | 170
110
240
100 | 100
0
200
100 | 100
0
200
100 | 30
50
200
90 | 0
0
0
100 | 0
0
0
100 | | | | | | | | 70
110 | 0 | 0 | | | | | | | | 4 | 0 | 0 | 33 | 31 | 0 | 39 | 89 | 0 | | | | | | | | 140 | 360 | 790 | 36 | 0 | 0 | | FIRST COSTS - incremental
(\$ million 1970) | ST | TATE TO | | | |--|------|---------|------|----------| | (\$ m11110n 1970) | 1980 | 2000 | 2020 | | | Water Development Costs: | | | | | | storage, upstream | 9.7 | 43.2 | 1.3 | | | mainstream | 14.8 | 5.2 | 19.7 | NEW TOWN | | wells | 11.6 | 17.3 | 3.9 | | | desalting | 0 | 200 | 130 | | | Water Withdrawal and Conveyance Costs: | | | | | | inter-basin transfers | 2 | 30 | 194 | | | public water supply | 38 | 82 | 126 | | | industrial self-supplied water | 6.5 | 13.7 | 22.1 | | | rural water supply | x | x | x | | | irrigation, agriculture | 5.7 | 5.6 | 0 | | | non-agriculture | 6.3 | 6.8 | 8.8 | | | Power Plant Cooling Water | 0 | 10 | 47 | | | Hydroelectric Power Generation | | X | x | | | Navigation: commercial | 120 | 150 | 0 | | | recreational boating | 19 | 23 | 26 | | | Water Recreation | 110 | 110 | 150 | | | Fish and Wildlife: fishing | 8.0 | 7.3 | 8.5 | | | hunting | х | x | x | | | nature study | x | x | x | | | Water Quality Maint.: waste treatment, secondary | 660 | 1160 | 2040 | | | advanced | 30 | 57 | 218 | | | other ≠ | | | | | | Flood Damage Reduction: upstream | 17 | 32 | 0 | | | mainstream | 38 | 0 | 36 | | | Drainage Control | 7.9 | 8.8 | 1.0 | | | Erosion Control | 110 | 92 | 72 | | | Health | х | х | х | | | Visual and Cultural | 1640 | 140 | 140 | | | Summation of Available Estimated Costs | 2900 | 2200 | 3200 | | ^{*} From the supply model and includes OMR costs. # Combined sewer overflows control and acid mine drainage control. | AREA 15 | | | AREA 17 | | | AREA 18 | | | AREA 19 | | | |---------|------|------|---------|---------|---------------|--------------------|----------------------|------------------------|----------------|----------------|-----------------| | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | | | | | 0.3 | 0.1 | 0.4 | 2.7 | 36.7 | 0 | 6.7
14.8 | 6.4
5.2 | 0.9 | | | | | 0.3 | 0.2 | 0.1 | 4.4 | 13.6
200 | 0
130 | 6.9 | 3.5 | 3.8 | | | | | 1 | 1 | 2 | 2
4
6.1
x | 30
6
13.1
x | 194
16
21.3
x | 34
0.4
x | 74
0.7
x | 107
0.8
x | | | | | 0.1 | 0.1 | 0.2 | 4.3
4.5 | 4.7
5.1 | 0
6.6 | 1.3
1.7 | 1.0
1.6 | 0
2.1 | |
 | | | | | х | 0 | 0 | 7 | 0 | 10
x | 40
x | | | | | 0.1 | 0.4 | 0.4 | 120
11 | 150
13 | 0
15 | 7 | 9 | 10 | |
 | | | 0.1 | 0.1 | 0.1 | 50 | 30 | 40 | 60 | 80 | 110 | | | | | x
x | x
x | 0.1
x
x | 4.4
x
x | 3.7
x
x | 4.1
x
x | 3.5
x | 3.5
x | 4.3
x | | | | | 10 | 10
1 | 10
1 | 390
0 | 630 | 1090
117 | 280
29 | 520
56 | 930
100 | | 0 | 5 | 0 | 1 | 0 | 0 | 9
34 | 8 | 0
0 | 7 | 18
0 | 0
36 | | | | | 0.1 | 0.1 | 0.01 | 7.1
73 | 7.4
60 | 0.8 | 0.7 | 1.3 | 0.2 | | х | х | х | x
50 | x
0 | x
0 | x
1440 | x
120 | х | x | х | x | | 0 | 5 | 0 | 72 | 19 | 21 | 2200 | 1300 | 120
1800 | 150
640 | 20
840 |
20
1400 | # DELAWARE #### DELAWARE The State of Delaware covers 2,057 square miles in Area 15 and 18. The entire State is flat or undulating land and its overall visual quality is medial, being predominantly farm-forest or town-farm. The quality of the small drainage systems is degraded around the population centers and supplies must be imported. The northern portion of the State has the only significant population concentrations which are around Wilmington and Dover. The 1970 population was over a half million and is projected to increases to 1.1 million by 2020. Per capita income is expected to decrease from 18 percent to 12 percent above the national average by the end of the Study period. Services and related industries is expected to continue as the largest employer, increasing over 140 percent by 2020. Chemicals and allied products are expected to keep pace with services, but agriculture, forestry and fisheries employment is expected to decrease by 50 percent. Needs to be Satisfied. For the portion of Area 15 which is found in the State of Delaware the key needs are Water Quality Maintenance and recreational boating. Important needs are Publicly Supplied Water, Industrial Self-supplied Water, Commercial Navigation, Water Recreation, Fish and Wildlife, Water Quality Maintenance and Flood Damage Reduction. The key needs for Area 18's portion in the State is Water Quality Maintenance and Visual and Cultural. The important needs are Visual and Cultural and Water Quality Maintenance. Area 15 has the largest need levels with the exceptions of agriculture Irrigation Water, brackish withdrawal and consumption, hunting access, upstream and tidal and hurricane Flood Damage Reduction, Drainage Control, urban Erosion Control and unique natural and unique shoreline landscape maintenance. Devices. Water quality control facilities are key devices in Area 15 mnd important devices in Area 15 and 18. Other important devices are storage facilities, withdrawal facilities, wells and temperature control facilities in Area 15 and land controls in Area 18. The largest device levels are in Mrea 18 except for storage facilities, fresh water intakes and pumping, potable water treatment plants, secondary (90%) and advanced waste treatment plants, zoning (mi.) and upstream flood control storage which are largest in Area 15. Costs. The largest individual and total investments are in Area 15. Exceptions are wells, Industrial Self-supplied Water, agriculture Irrigation and Drainage Control which are largest in Area 18. The expenses which are significantly large in the State are for secondary waste treatment (2000-2020) and for Visual and Cultural (1980). | | T | STATE | TOTAL | | | |---|-------------|------------|-----------|-------|-----| | NEEDS-cumulative | Pres. | 1980 | 2000 | 2020 | | | Publicly Supplied Water (mgd) | 58 | 74 | 105 | 151 | | | Industrial Self-Supplied Water (mgd) | 25 | 48 | 101 | 184 | | | Rural Water Supply (mgd) | | 11.2 | 16.7 | 16.9 | | | Irrigation Water: agriculture (1000 afy) | | 29.0 | 39.3 | 34.8 | | | non-agriculture (1000 afy) | | 5.1 | 9.1 | 14.8 | | | Power Plant Cooling: withdrawal, saline (cfs)
brackish (cfs) | | 970 | 5340 | 11200 | | | fresh (cfs) | | 390
118 | 1220 | 3170 | | | consumption, brackish(cfs) | | 1 | 7 | 16 | | | fresh (cfs) | | 9 | 10 | 15 | | | Hydroelectric Power Generation (mw) | <u> </u> | - | 1 | 1 | | | Navigation: commercial (m. tons annually) | 14 | 20 | 25 | 34 | | | recreational boating (1000 boats) | 35 | 43 | 65 | 108 | | | Water Recreation: visitor days (m.) | | 11 | 18 | 33 | | | stream or river (miles) | | 30 | 47 | 65 | | | water surface (1000 acres) | | 7.5 | 11.4 | 17.1 | | | beach (acres) | | 69 | 106 | 166 | | | pool (m. sq. ft.) | | 1.3 | 2.1 | 3.2 | | | land facilities (1000 acres) Fish & Wildlife: sport fishing man-days (m.) | | 4.8 | 5.7 | 8.9 | | | Fish & Wildlife: sport fishing man-days (m.) surface area, lake (acres) | | 0.94 | 1.18 | 8.1 | | | surface area, fake (acres) stream (acres) | | 0 | 0.36 | 0.86 | | | access, fresh (acres) | | 0.067 | 0.164 | 0.278 | | | salt (acres) | | 0.072 | 0.191 | 0.332 | | | anadromous (acres) | | 0.004 | 0.007 | 0.013 | | | piers (1000 feet) | | 1.7 | 4.4 | 7.5 | | | hunting, man-days (m.) | 0.51 | 0.59 | 0.72 | 0.89 | | | access (1000 sq. mi.) | х | 0.20 | 0.35 | 0.59 | | | nature study, man-days (m.) | | 0.76 | 0.96 | 1.19 | | | access(1000 ac.) | | 4.0 | 11.0 | 19.9 | | | Water Quality Maint.: non-industrial (m. PEs) | | 590 | 740 | 930 | | | industrial (m. PEs) | 380 | 1010 | 2570 | 5950 | | | Flood Damage Reduction: | 2.1 | 1, 2 | () | 0.7 | | | avg. ann. damage, upstream (m. \$) mainstream (m. \$) | | 0.78 | 6.2 | 9.7 | | | tidal and hurricane (m. \$) | 191 90 1918 | 1.05 | 1.51 2.01 | 3.08 | | | Drainage Control: cropland (1000 acres) | | 80 | 109 | 111 | | | forest land (1000 acres) | | 0 | 2.3 | 9.1 | | | wet land (1000 acres) | | | 1 | | | | Erosion Control: agriculture (1000 acres) | 150 | 240 | 300 | 310 | | | urban (1000 acres) | | 290 | 380 | 550 | | | stream bank (mi.) | | 8.1 | 24.3 | 40.5 | | | coastal shoreline (mi.) | | 23 | 50 | 57 | | | Health: vector control and pollution control | х | х | x | х | | | Visual & Cultural: | | 25 | 25 | 25 | | | landscape maintenance, unique natural(sq. mi.) | | 35 | 35 | 35 | | | unique shoreline (mi.)
high quality (sq. mi.) | | 29 | 29 | 29 | | | diversity (sq. mi.) | | 220 | 440 | 660 | 1 | | agriculture (sq. mi.) | | 220 | 440 | 000 | - 1 | | landscape development, quality (sq. mi.) | | | | | - | | diversity (sq. mi.) | | | | | - 2 | | metro. amenities (mi.) | | | | | 1 | | " (sq. mi.) | | | | | | | | | | | | | | | | | 15 | | | | 18 | | | AREA | | | | AREA | | | |---|-----------|-------|------|------|-----------|----------|-------|----------|------|----------|------|-------|------|-------|------|------| | | Pres | 1980 | 2000 | 2020 | Pres | 1980 | 2000 | 2020 | Pres | 1980 | 2000 | 2020 | Pres | 1980 | 2000 | 2020 | | | 48 | 60 | 85 | 122 | 10 | 14 | 20 | 29 | | | | | | | | | | | 20 | | | | 5 | 9 | | | | | | | | | | | | | 4.0 | | | | 3.3 | | | 8.6 | | | | | | | | | | | | 15.7 | | | | | | 20.8 | | 4 - [4.] | | | | | | | | | 1.2 | | | | 0.7
40 | 1.8 | | 5.3 | | | | | | | | | | | 460 | | | | | | | 2070 | | | | | | | | | | | 122 | | | | | 120 | 720 | 2070 | | | | | | | | | | | | | 30 | 30 | 1 | 1 | 7 | 16 | | | | | | | | | | | 0 | 9 | 10 | 15 | 14 | | | | | 1 | 1 | 1 | | | | | | | | | | | 35 | | | | 0.3 | | 1 | 1 | | | | | | | | | | | х | 10 | | | x | 0.5 | 1 | 1 | | | | | | | | | | | х | 26 | | | | 4 | 6 | | | | | | | | | | | | X | 6.8 | | | | 0.7 | 1.1 | | | | | | Av H | 70.57 | | | | | x
x | 1.2 | | | | 0.1 | 0.1 | | | | | | | | | | | | X | 4.4 | 5.1 | 7.9 | | 0.1 | | | | | | | | | | | | | 0.55 | | | | 0.25 | | | 0.42 | | | | | | | | | | | х | 0.9 | | 7.6 | | | | 0.5 | | | | | | | | | | | x | 0 | 0.35 | 0.85 | | 0 | | 0.01 | | | | | | | | | | | | 0.064 | | | | | | 0.005 | | | | | | | | | | | | 0.058 | | | х | 0.014 | 0.043 | 0.077 | | | | | | | | | | | | 0.004 | | | | 0 01 | | 0.0 | | | | | | | | | | | x
o // | | 4.3 | | | | | 0.2 | | | | | | | | | | | 0.44 | | 0.63 | | | | | 0.11 | | | | | | | | | | | 0.53 | | 0.80 | | | | | 0.19 | | | | | | | | | | | v.33 | 3.1 | | 14.3 | x | 0.13 | 3.0 | | | | | | | | | | | | 380 | 480 | 610 | 760 | 90 | 110 | 140 | | | | | | | | | | | | 350 | 950 | 2430 | 5640 | 30 | 60 | 140 | 310 | 1.2 | | | 5.0 | | 2.6 | | | | | | | | | | | | | 0.3/ | 0.57 | 1.11 | 2.28 | | | | 0.80 | | | | | | | | | | - | 9 | 11 | 18 | 20 | | | | 3.99 | | | | | | | | | | | 0 | 0 | | | 0 | | | 7.1 | | | | | | | | | | | Ĭ | | 0.5 | | Ŭ | ٦ | 1.0 | | | | | | | | | | | | 90 | 130 | 150 | 160 | 60 | 110 | 150 | 150 | | | | | | | | | | | 80 | 120 | 160 | 210 | 60 | | 220 | 350 | | | | | | - | | | | | 0 | 5.4 | 16.2 | 27.0 | 0 | 2.7 | 8.1 | 13.5 | | | | | | | | | | | 0 | 22 | 47 | 52 | 0 | 1 | 3 | 6 | | | | | | | | | | | х | х | х | х | х | х | Х | х | | | | | | | | | | | No. | | | | | 25 | 35 | 25 | | | | | | | | | | | x | a | a | d | x | 35
21 | 21 | 35
21 | | | | | | | | | | | Α. | 9 | ٩ | G | ^ | 21 | 21 | 21 | 444 | | | | | | | | | 1 | x | 120 | 240 | 360 | x | 100 | 200 | 300 | 11:11 | STAT | E TOTAL | | | | |--|---|---------|--|-----------|--| | DEVICES - incremental | Purposes | 1980 | 2000 | 2020 | | | I. Resource Management | | | | | | | A. Water | | | | | | | Storage Facilities φ | | | 0.0 | 20.0 | | | | Rec, FW, VC* | 2.3 | 3.9 | 39.0 | | | mainstream (1000 af) | | | | - | | | Withdrawal Facilities | DC T-1 D T | 21 | 1.6 | 02 | | | intakes & pumping, fresh (mgd) | PS, Ind, Pow, Irrig | 21 | 46
89 | 82
133 | | | brackish (mgd) | Ind
* | 42 | | | | | wells (mgd) | × | 6.2 | 30.0 | 12.4 | | | Conveyance Facilities | | | | | | | interbasin diversions, into (mgd) | | | | | | | out of (mgd) | | | | | | | Quality Control Facilities | | | | | | | chemical/biological | PS | 5.3 | 15.1 | 17.2 | | | potable water treat. plants (mgd) | 13 | 3.3 | 13.1 | 17.2 | | | waste treatment plants | WQ,WC,Rec | 150 | 0 | 0 | | | secondary (85%) (m. PEs removed) | | 1300 | 3000 | 6200 | | | secondary (90%) (m. PEs removed) advanced (95%) (m. PEs removed) | WQ,VC | 71 | 152 | 344 | | | Desalting Facilities | 10,10 | 7 1 | 132 | 344 | | | B. Water/Land | | | | - | | | Upstream Flood Plain Mgmt.(1000 acres) | FDR VC FW Rec | 144 | 174 | 19 | | | Local Flood Protection | 1DK, 10,1 W, Kee | 144 |
177 | 1 | | | ocean (projects) | FDR | 1 | 0 | 0 | | | river (projects) | | 1.0 | 6.0 | 0 | | | flood control channels (miles) | FDR | 0 | 450 | 0 | | | Watershed Management (1000 acres) | FDR, VC, Drn, Rec | 49 | 93 | 0 | | | C. Land | , | | | | | | Controls | | | | | | | fee simple purchase (buying)(sq.mi.) | VC, Rec, FW | 108 | 90 | 90 | | | fee simple purchase (buying) (mi.) | VC, Rec, FW | 19 | 0 | 0 | | | purchase lease (sq.mi.) | | | | | | | easements (sq.mi.) | VC, Rec, FW | 90 | 90 | 90 | | | deed restrictions (sq.mi.) | | х | X | х | | | tax incentive subsidy (sq.mi.) | | | | | | | zoning (sq.mi.) | VC,FW,Rec | 18 | 0 | 0 | | | zoning (mi.) | VC,FW,Rec | 11 | 0 | 0 | | | zoning and/or tax inc. subs.(sq.mi.) | Contract Contractor | 40 | 40 | 40 | | | zoning and/or tax inc. subs. (mi.) | | | | | | | V. Others | | | | | | | Upstream Flood Control Storage (1000 af) | FDR | 0 | 23 | 0 | | | Waste Water (mgd) | Ind | 4 | 12 | 25 | | | | | | | | | $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. φ Flood control storage not included. | A | AREA 15 | | | AREA 18 | | | AREA | | | AREA | | |-----------------|-----------------|------------------|----------------|-----------------|----------------|------|------|------|------|------|------| | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | | 2.2 | 2.9 | 39.0 | 0.1 | 1.0 | 0 | | | | | | | | 17
16
3.1 | 38
29
2.7 | 70
45
12.4 | 4
26
3.1 | 8
60
27.3 | 12
88
0 | 5.2 | 14.8 | 14.8 | 0.1 | 0.3 | 2.4 | | | | | | | | 1300
71 | 2700
152 | 5800
320 | 150
0
0 | 300
0 | 0
400
24 | | | | | | | | 70 | 0 | 19 | 74 | 174 | 0 | | | | | | | | 1.0 | 6.0
350 | 0 | 1 0 | 0 | 0 | | | | | | | | 1 | 28 | 0 | 48 | 65 | 0 | | | | | | | | 40
8 | 40
0 | 40
0 | 68
11 | 50
0 | 50
0 | | | | | | | | 40
x | 40
x | 40
x | 50 | 50 | 50 | | | | | | | | 40 | 40 | 40 | 18
11 | 0 | 0 | | | | | | | | 0 | 23 | 0 | 4 | 12 | 25 | | | | | | | | | | | · · | | | | | | | | | | FIRST COSTS - incremental | ST | TATE TO | TAL | | |--|------|---------|------|--| | (\$ million 1970) | 1980 | 2000 | 2020 | | | Water Development Costs: | | | | | | storage, upstream | 0.6 | 1.6 | 10.2 | | | mainstream | 0.0 | 1.0 | 10.2 | | | wells | 2.1 | 4.5 | 1.0 | | | desalting | 2.1 | 1.5 | 1.0 | | | Water Withdrawal and Conveyance Costs: | | | | | | inter-basin transfers | | | | | | public water supply | 4.9 | 10.6 | 14.6 | | | industrial self-supplied water | 0.36 | 0.74 | 1.27 | | | rural water supply | x | x | x | | | irrigation, agriculture | 3.4 | 3.1 | 0 | | | non-agriculture | 2.7 | 2.9 | 3.8 | | | Power Plant Cooling Water | 0 | 2.0 | 20.0 | | | Hydroelectric Power Generation | | | | | | Navigation: commercial | | | | | | recreational boating | 0.85 | 1.18 | 2.06 | | | Water Recreation | 28 | 42 | 70 | | | Fish and Wildlife: fishing | 0.44 | 0.52 | 0.61 | | | hunting | х | x | x | | | nature study | х | x | x | | | Water Quality Maint.: waste treatment, secondary | 49 | 230 | 481 | | | advanced | 2.2 | 31.1 | 59.3 | | | other ≠ | | | | | | Flood Damage Reduction: upstream | | | | | | mainstream | 13 | 12 | 0 | | | Drainage Control | 1.63 | 2.05 | 0.38 | | | Erosion Control | 52 | 54 | 27 | | | Health | Х | Х | Х | | | Visual and Cultural | 178 | 47 | 47 | | | Summation of Available Estimated Costs | 340 | 450 | 740 | | ^{*} From the supply model and includes OMR costs. # Combined sewer overflows control and acid mine drainage control. | | | AREA 1 | 5 | | AREA 1 | 8 | | AREA | | | AREA | | |---|-------------|--------------|--------------|--------|--------|--------|------|------|------|------|------|------| | | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | | | 0.6 | 1.5 | 10.2 | 0 | 0.1 | 0 | | | | | | | | | 0.9 | 0.8 | 1.0 | 1.2 | 3.7 | 0 | | | | | | | | | , 7 | 10.2 | 12.0 | 0.0 | 0.0 | 0.7 | | | | | | | | | 4.7
0.16 | 10.3
0.32 | 13.9
0.58 | 0.2 | 0.3 | 0.7 | | | | | | | | | 1.2 | .8 | 0
0 | 2.2 | 2.3 | 0
0 | | | | | | | | | 1.8 | 1.9
2.0 | 2.5 | 0.9 | 1.0 | 0.73 | 1.04 | 1.90 | 0.12 | 0.14 | 0.16 | | | | | | | | | 26 | 41 | 68 | 2 | 1_ | 2 | | | | | | | | | 0.25 | 0.36 | 0.43 | 0.19 | 0.16 | 0.18 | | | | | | | | | x
x | x
x | x
x | x
x | x
x | x
x | | | | | | | | - | 33 | 203 | 435 | 16 | 27 | 46 | | | | | | | | | 2.2 | 31.1 | 54.4 | 0 | 0 | 4.9 | | | | | | | | | 2 | 12 | 0 | 11 | 0 | 0 | | | | | | | | | 0.20 | 0.57 | 0.21 | 1.43 | 1.48 | 0.16 | | | | | | | | | 37 | 43 | 14 | 15 | 11 | 14 | | | | | | | | | X | х | х | х | х | х | | | | | | | | | 140 | 28 | 28 | 39 | 20 | 20 | | | | | | | | | 250 | 380 | 640 | 89 | 69 | 98 | | | | | | | ### VIRGINIA The Commonwealth of Virginia covers 23,237 square miles in the NAR including all of Area 20, all but a tiny amount of Area 21, much of Area 19, and the lower portion of the Delmarva Peninsula section of Area 18. The major drainages of the State are the basins of the Potomac, James, Rappahannock and York Rivers. The topography ranges through all classifications from beach to mountain, but the major characteristic is undulating land. Three-quarters of the State is classified as medial visual quality while the remainder is low. Water is plentiful in Virginia but uneven population distribution may necessitate diversions downstream in the near future. Serious pollution exists in the northern drainages and on most downstream portions of rivers, but some good supplies exist in central and southern upstream reaches. The population of this section of Virginia is concentrated around Richmond, Norfolk-Virginia Beach, and the Washington, D.C., suburban areas. The population totalled over 3.4 million in 1970 and should reach 7.6 million by 2020. Per capita income was 6 percent below the nation average in 1970, but it should be at the average by the end of the Study period. Employment in 1970 was highest for services and related industries, which is expected to increase by more than 150 percent by 2020. Increases are also projected for food and kindred products, paper and allied products, chemicals and allied products and primary metals. Decreases have been projected for textile mill products and agriculture, forestry and fisheries. Needs to be Satisfied. Water Quality Maintenance is a key need in the portions of Areas 18, 19 and 21 that are located in the State, while Visual and Cultural needs are key in Areas 18 and 19. The important needs in Area 18 are Water Quality Maintenance and Visual and Cultural. In Area 19 they are Publicly Supplied Water, Water Quality Maintenance, Erosion Control, and Visual and Cultural, while in Area 20 the important needs are Publicly Supplied Water, Industrial Self-supplied Water, Rural Water Supply, Water Recreation and Fish and Wildlife. Important needs in Area 21 are Industrial Self-supplied Water, Power Plant Cooling and Commercial Navigation. In general the needs are all largest in Area 21. The needs in Area 18 are largest for coastal shoreline Erosion Control and unique shoreline landscape maintenance. Agricultural Irrigation Water, land facilities, lake surface area, fresh access, nature study access, agricultural landscape and metropolitan amenties development are largest in Area 19. Only cropland and forest land Drainage Control and unique natural and diversity landscape maintenance are largest in Area 20. The remaining needs have the highest levels in Area 21. $\frac{\text{Devices.}}{18 \text{ and } 19}, \text{ and } 1 \text{and } controls \text{ in Area } 18. \text{ The device, zoning for } 1 \text{and control, is highest in Area } 18. \text{ Upstream storage facilities, purchase}$ leases, and mainstream flood control devices are largest in Area 19. Fee simple purchases (sq. mi.), easements, and zoning and/or tax incentive subsidies are the devices which are largest in Area 20. All of the other devices have the highest level of implementation in Area 21. Costs. The significantly large investments in the State will be for desalting (2000-2020), Publicly Supplied Water (2020), Water Recreation (2020) advanced waste treatment (200-2020), Erosion Control (1980-2000) and Visual and Cultural (1980). The expenditures for commercial navigation and secondary waste treatment will also be large in all time periods. These costs are incurred primarily in Area 21 which has the largest total cost in the State as well as most of the largest individual need costs. Area 19 has the largest costs for storage, wells, agricultural Irrigation, Water Recreation and Visual and Cultural The investments in the other Areas will be relatively small. | | | | STATE | TOTAL | | Γ | |--------------------------------------|-------------------------|--------|-------------|-------------|-------------|--------------| | NEEDS-cumulative | | Pres. | 1980 | 2000 | 2020 | | | Publicly Supplied Water | (mgd) | 320 | 450 | 680 | 1040 | | | Industrial Self-Supplied Water | (mgd) | 510 | 970 | 1640 | 2230 | | | Rural Water Supply | (mgd) | 54 | 85 | 125 | 146 | | | Irrigation Water: agriculture | (1000 afy) | 12 | 50 | 71 | 68 | | | non-agriculture | (1000 afy) | 5.7 | 21.5 | 38.5 | 62.0 | | | Power Plant Cooling: withdrawal, sal | | 1200 | 1100 | 9600 | 27700 | | | fre | ckish (cfs)
sh (cfs) | 800 | 4700 | 6000 | 4200 | | | consumption, br | , , , , | 2300 | 2200 | 4200 | 5900 | | | | esh (cfs) | 24 | 108 | 210 | 357 | | | Hydroelectric Power Generation | (mw) | 44 | 1510 | 2100 | 4100 | | | | s annually) | 91 | 91 | 128 | 203 | | | | 1000 boats) | 81 | 94 | 151 | 224 | | | Water Recreation: visitor days | (m.) | X | 57 | 95 | 160 | | | stream or river | (miles) | х | 220 | 310 | 530 | | | water surface (| 1000 acres) | х | 44 | 68 | 107 | | | beach |
(acres) | х | 520 | 800 | 1130 | | | poo1 (| m. sq. ft.) | x | 9.1 | 13.9 | 19.7 | | | land facilities (| | х | 19 | 31 | 48 | | | Fish & Wildlife: sport fishing man-d | ays (m.) | 7.5 | 9.2 | 12.2 | 15.8 | | | surface area, lake | (acres) | х | 23 | 38 | 59 | | | strea | | Х | 8.3 | 8.6 | 8.6 | | | access, fresh | (acres) | Х | 0.34 | 0.57 | 0.86 | | | salt | (acres) | х | 0.82 | 2.20 | 3.87 | | | anadromous | (acres) | Х | 0.086 | 0.128 | 0.178 | | | | (1000 feet) | X | 24 | 64 | 111 | | | hunting, man-days | (m.) | 4.5 | 5.0 | 6.6 | 8.5 | | | | 00 sq. mi.) | X | 0.34 | 3.04 | 4.05 | | | nature study, man-d | ays (m.)
s(1000 ac.) | 4.1 | 5.0 | 6.7 | 8.7 | | | Water Quality Maint.: non-industrial | | 1900 | 3800 | 39
5100 | 6600 | | | industrial | (m. PEs) | 2900 | 7600 | 19400 | 45600 | | | Flood Damage Reduction: | (111. 1 113) | 2300 | 7000 | 13400 | 43000 | | | avg. ann. damage, upstream | (m. \$) | 5.7 | 9.0 | 16.4 | 31.7 | | | mainstream | (m. \$) | 4.8 | 8.4 | 17.4 | 37.4 | | | tidal and hurrica | | 3.0 | 5.2 | 10.4 | 21.7 | | | Drainage Control: cropland (| 1000 acres) | 160 | 230 | 310 | 310 | | | | 1000 acres) | 0 | 0 | 34 | 135 | | | | 1000 acres) | | | | | | | | 1000 acres) | 3800 | 4600 | 5200 | 5300 | | | | 1000 acres) | 840 | 1040 | 1460 | 2100 | | | stream bank | (mi.) | 0 | 100 | 320 | 530 | | | coastal shoreline | (mi.) | 0 | 100 | 220 | 270 | | | Health: vector control and pollution | control | Х | Х | Х | X | | | Visual & Cultural: | 1/22 -1 | | 1600 | 1600 | 1600 | | | landscape maintenance, unique natur | | × | 1600
300 | 1600
300 | 1600
300 | | | unique shore
high quality | | X | 300 | 300 | 300 | | | nigh quality
diversity | (sq. mi.) | v | 600 | 1100 | 1200 | | | agriculture | (sq. mi.) | X
X | 1400 | 1400 | 1400 | | | landscape development, quality | (sq. mi.) | Α. | 1400 | 1400 | 1400 | 13 | | diversity | (sq. mi.) | | | | | | | metro. ameni | | | 100 | | | | | ıı ıı | (sq. mi.) | x | 26 | 26 | 26 | | | | | | | | | | | | | AREA | 18 | | | AREA | 19 | | | AREA | 20 | | | AREA | 21 | | |------|------|-------|-------------------|------------|----------|----------|-----------|-----------|-----------|-----------|-------|-------|----------|------------|-------|-------| | | Pres | 1980 | 2000 | 2020 | Pres | 1980 | 2000 | 2020 | Pres | 1980 | 2000 | 2020 | Pres | 1980 | 2000 | 2020 | | | 10 | 10 | 10 | 20 | 110 | 160 | 270 | 430 | 20 | | 40 | 70 | 190 | | | | | | 1 | 1 | 2 | 4 | 60 | 110 | 200 | 300 | 50 | - | | 130 | 400 | | | | | | | 24 | 37 | 37 | 18 | 31
17 | 45
24 | 45
21 | 11 | 16 | 23 | 35 | 22 | 34 | | _ | | | 0.4 | 1.1 | 2.0 | 3.2 | 2.5 | | 14.0 | | 0.4 | 2.3 | 4.7 | 8.3 | 2.4 | _ | | | | | | | | 3,1 | q | 0 | 2000 | 5800 | 400 | 400 | 3800 | 7900 | | | | 14000 | | | | | | | 800 | 1300 | 700 | 1200 | | | | | 0 | 3400 | | | | | | | | | 400 | 400 | 900 | 1000 | 0 | 100 | 200 | 100 | 1800 | | | 4800 | | | | | | | 8 | 8 | 7 | 10 | | 0.0 | 0.0 | | 0 | 35 | | | | | | | | | 5
13 | 9
10 | 24 | 55 | | 82 | | 58 | | | 96 | | | | | | | | 13 | 10 | 1 | 1000 | 5 | 8 | | 100 | 31
85 | 1500
83 | | - | | | 4 | 5 | q | 12 | 25 | 28 | 49 | 66 | | 10 | | 21 | | 51 | 78 | | | | х | 0.2 | 0.3 | 0.5 | X | 12 | 22 | 45 | x | 11 | 19 | 33 | | 34 | | - | | | х | 2 | 3 | 4 | х | 80 | 100 | 230 | x | 30 | | 70 | | 110 | | | | | х | 0.3 | 0.5 | 0.6 | х | 15 | 27 | 48 | | 5 | | 13 | | 23 | | | | | х | 3 | 4 | 6 | х | 120 | 210 | 360 | | 50 | | 110 | | 350 | | | | | Х | 0.04 | 0.1 | 0.1 | Х | 2.1 | 3.6 | 6.2 | Х | 0.9 | 1.5 | 2.1 | | 6.0 | | | | | 0.1 | 0.2 | $\frac{0.3}{0.2}$ | 0.4 | 2.2 | 2.8 | 15
4.1 | 26
5.6 | 1.0 | 1.2 | 1.6 | 2.1 | 4.1 | 5.0 | | | | | x | 9.1 | 11 | 15 | x x | 11 | 17 | 26 | | 0 | 1.0 | 2.1 | 4.1
X | 3.0 | 9 | | | | x | d | 0.3 | 0.3 | x | 2.1 | 2.1 | 2.1 | | 0.7 | 0.7 | 0.7 | | 5.4 | - | - ' | | | х | 0.08 | 0.12 | 0.17 | х | 0.15 | 0.27 | 0.41 | x | 0.03 | 0.05 | 0.08 | | 0.07 | | | | | х | 0.10 | | | х | 0.29 | 0.87 | 1.58 | x | 0.04 | 0.11 | 0.20 | х | 0.39 | 0.92 | 1.56 | | | х | 0.001 | 0.004 | 0.007 | х | 0.019 | | 0.039 | Х | 0.004 | 0.012 | 0.022 | Х | 0.062 | | 1 | | Erit | X | 3 | 9 | 17 | X | , 8 | 25 | 45 | X | 1 | 3 | 5 | Х | 11 | | 1 | | | 0.04 | 0.04 | | 0.1 | 1.2 | 1.3 | 1.9 | 2.6 | 1.0 | | | 1.8 | | | | | | | 0.1 | 0.06 | 0.08 | 0.14 0.1 | x
1.3 | 1.7 | 0.61 | 0.91 | 0.5 | | 1.25 | 0.9 | | | 1.10 | | | | x | 2 | 7 | 13 | _ x | 1.7 | 29 | 55 | x | 1 | 3 | 0.5 | x X | 0.2 | | | | | 40 | 100 | 100 | 100 | 600 | 1300 | 1900 | 2600 | 100 | 400 | 500 | 700 | 1100 | | | 3200 | | | 4 | 10 | 30 | 50 | 100 | 200 | 500 | 1000 | 200 | 600 | 1500 | 4600 | | | 17400 | 0.2 | 0.3 | 0.4 | 0.6 | 2.0 | | | 12.1 | | | | 4.6 | 2.5 | | | 14.4 | | | 0 0 | 1 / | 2 | | 1.3 | 2.5 | 5.4 | 12.1 | 0.3 | 0.5 | 76 20 | 2.3 | 3.2 | | 11.0 | | | | 0.8 | 40 | 2.6
50 | 5.2
50 | 40 | 50 | 80 | 80 | 0.5
50 | 0.8
70 | 1.7 | ·3.5 | 1.8 | | 90 | - | | | 0 | d | 1 | 4 | 0 | d | 2 | 7 | | | | 64 | | | | | | | | | | | | 1 | | | | | 10 | | | | 13 | | | | 30 | 100 | 100 | 100 | 1000 | 1300 | 1600 | 1600 | 1100 | 1200 | 1300 | 1300 | 1600 | 2000 | 2200 | 2300 | | | 40 | 100 | 120 | 180 | 210 | 340 | 520 | 720 | 160 | 170 | 200 | 260 | 430 | 440 | | | | | q | 2 | 5 | 10 | 0 | 40 | 110 | 190 | 0 | 10 | 30 | 40 | 0 | | | | | | - 0 | 50 | 130 | 160 | 0 | 20 | 40 | 40 | 0 | 1 | 3 | 5 | 0 | 30 | 60 | | | | Х | X | Х | X | Х | X | Х | X | Х | X | X | X | X | X | Х | Х | | | x | 200 | 200 | 200 | x | 300 | 300 | 300 | x | 1000 | 1000 | 1000 | x | 100 | 100 | 100 | | 1 | x | 110 | 110 | 110 | x | 50 | 50 | 50 | x | 60 | 60 | 60 | x | 80 | | 1 | х | 100 | 200 | 300 | х | 500 | 900 | 900 | | | | | | | | | | | x | 1400 | 1400 | 1400 | 10 | v | 15 | 15 | 15 | | | | | v | 11 | 11 | 1.1 | | | | | | | - ^ | | 1) | | | | | | | | | | | | STAT | E TOTAL | L | | | |--|------------------------|---------|-------|-------------|---| | DEVICES - incremental | Purposes | 1980 | 2000 | 2020 | | | I. Resource Management | | | | | | | A. Water | | | | | | | Storage Facilities φ | | 26.1 | 1 | | | | reservoirs, upstream (1000 af) | Rec, FW, VC* | 26.4 | 18.5 | 1.8 | | | | PW,VC,Rec,WQ* | 60 | 322 | 425 | | | Withdrawal Facilities | DC T-1 D- T-1 | 100 | 7/0 | 700 | | | | PS,Ind,Pow,Irrig | 490 | 740 | 700 | | | brackish (mgd) | | 84 | 163 | 255 | | | wells (mgd) | * | 110 | 110 | 330 | | | Conveyance Facilities | | 25 | | | | | interbasin diversions, into (mgd) | * | 25 | 0 | 0 | | | out of (mgd) | | | | | | | Quality Control Facilities | | | | | | | chemical/biological | PS | 85 | 235 | 380 | | | potable water treat. plants (mgd) | rs | 0.5 | 233 | 360 | | | waste treatment plants | NO NO Dec | 7600 | 0 | 0 | | | secondary (85%) (m. PEs removed) | WQ,VC,Rec | 2300 | 22100 | 47000 | | | secondary (90%) (m. PEs removed) | | | 1220 | | | | advanced (95%) (m. PEs removed) | WQ,VC | 130 | 85 | 2610
119 | - | | Desalting Facilities B. Water/Land | | 12 | 03 | 119 | - | | Upstream Flood Plain Mgmt.(1000 acres) | FDP VC Pac | 110 | 310 | 50 | | | Local Flood Protection | rbk, vc, kec | 110 | 310 | 30 | | | ocean (projects) | FDR | 0 | 1 | 0 | | | river (projects) | | 35 | 29 | 28 | | | flood control channels (miles) | FDR | 72 | 207 | 246 | | | Watershed Management (1000 acres) | | 1200 | 1500 | 1800 | | | C. Land | i bit, to, bitt, itee | 1200 | 1300 | 1000 | | | Controls | | | | | | | fee simple purchase (buying)(sq.mi.) | VC.Rec.FW | 1000 | 0 | 0 | | | fee simple purchase (buying) (mi.) | VC.Rec.FW | 210 | 0 | 0 | | | purchase lease (sq.mi.) | VC,FW | 1400 | 0 | 0 | | | easements (sq.mi.) | VC .FW | 340 | 300 | 100 | | | deed restrictions (sq.mi.) | | | | | | | tax incentive subsidy (sq.mi.) | VC,FW | x | x | x | | | zoning (sq.mi.) | VC, FW, Rec | 88 | 0 | 0 | | | zoning (mi.) | VC,FW,Rec
VC,FW,Rec | 56 | 0 | 0 | | | zoning and/or tax inc. subs.(sq.mi.) | VC, FW | 750 | 200 | 0 | | | zoning and/or tax inc. subs. (mi.) | VC,FW | 32 | 0 | 0 | | | V. Others | | | | | | | Upstream Flood Control Storage (1000 af) | FDR | 380 | 300 | 370 | | | Mainstream Flood Control Storage (1000 af) | FDR | 0 | 500 | 460 | | | Waste Water (mgd) | | 1 | | 3 | | $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. φ Flood control storage not included. | | A | REA 18 | 3 | A | AREA 19 | | 1 | AREA 20 | | | AREA 21 | | |---|--------------|---------------|----------------|-------------------------|--------------------|--------------------|------------------|-----------------|------------------|-----------------|--------------------|------------------| | | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | | | | | | 14.4
17 | 13.2
104 | 1.8
162 | 1.3 | 3.9
26 | 0
7 | 10.7 | 1.4
191 | 0
255 | | | 1
3
3 | 1
6
20 | 2
10
0 | 70
3
80 | 120
4
20 | 160
5
50 | 30
56
10 | 30
115
10 | 10
204
10. | 390
22
20 | 580
38
50 | 530
36
260 | | | | | | | | | | | | 25 | 0 | 0 | | | 0.1 | 0.2 | 1 | 37 | 106 | 170 | 5 | 14 | 18 | 43 | 116 | 191 | | 1 | 50
0
0 | 0
100
0 | 0
100
10 | 1400
80 | 2100
120 | 3200
180 | 900
50 | 1800
100 | 4800
270 | 7500
0
0 | 0
18000
1000 | 38900
2160 | | | 10 | 20 | 0 | 30 | 80 | 20 | 20 | 90 | 20 | 50 | 130 | 10 | | | 0 | 50 | 0 | 7 | 7. | 0. | 1 | 0 | 8
90 | 0
27
72 | 1
22
157 | 0
20
156 | | | 40 | 100 | | 500 | 100 | 0 | 10 | 0 | 500 | 700 | 1400 | 1400 | | | 100
60 | 0 | 0 | 300
50
1400
90 | 0
0
0
100 | 0
0
0
100 | 500
30
250 | 0
0
200 | 0 0 | 100
80 | 0 | 0
0 | | | 88
56 | 0.
0 | 0 | | | | 750
32 | 200
0 | 0 | х | х | х | | | | 1 | 3 | 100 | 60
0 | 0
460
 40 | 0
260 | 130 | 240 | 240
240 | 240 | | | 1 | | | | |--|------|---------|------|--| | FIRST COSTS - incremental | S' | TATE TO | ΓAL | | | (\$ million 1970) | 1980 | 2000 | 2020 | | | Water Development Costs: | | | | | | storage, upstream | 7.4 | 10.5 | 0.8 | | | mainstream | 44 | 60 | 87 | | | wells | 21 | 21 | 25 | | | desalting | 38 | 253 | 290 | | | Water Withdrawal and Conveyance Costs: | | | 1 | | | inter-basin transfers | 1.9 | 0 | 0 | | | public water supply | 72 | 148 | 222 | | | industrial self-supplied water | 2.8 | 4.4 | 4.5 | | | rural water supply | x | x | x | | | irrigation, agriculture | 6.9 | 6.0 | 0 | | | non-agriculture | 13 | 12 | 16 | | | Power Plant Cooling Water | 0 | 20 | 38 | | | Hydroelectric Power Generation | х | х | х | | | Navigation: commercial | 170 | 360 | 180 | | | recreational boating | 8.4 | 14.3 | 17.4 | | | Water Recreation | 60 | 108 | 231 | | | Fish and Wildlife: fishing | 7.0 | 6.7 | 8.2 | | | hunting | x | x | x | | | nature study | х | x | x | | | Water Quality Maint.: waste treatment, secondary | 1100 | 2400 | 5100 | | | advanced | 26 | 251 | 536 | | | other ≠ | | | | | | Flood Damage Reduction: upstream | 57 | 39 | 40 | | | mainstream | 17 | 71 | 0 | | | Drainage Control | 5.3 | 8.5 | 4.5 | | | Erosion Control | 180 | 200 | 140 | | | Health | Х | х | х | | | Visual and Cultural | 899 | 48 | 24 | | | Summation of Available Estimated Costs | 2700 | 4000 | 7000 | | ^{*} From the supply model and includes OMR costs. # Combined sewer overflows control and acid mine drainage control. | | AREA 18 | 8 | | AREA 19 | 9 | | AREA 20 |) | | AREA 2 | 1 | |-------------------------|------------------------|----------------------|-----------------------|-----------------------|--------------------------|---------------------------|-------------------------|-------------------------|-----------------------------------|----------------------------|--------------------------------| | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | | 1 | 3 | 0 | 5.8
18
13 | 5.5
23
7 | 0.8
42
8 | 0.2
23
3 | 5.0
7
5 | 0
2
5 | 1.4
4
4
38 | 0
30
6
253 | 0
43
13
290 | | 0.1
0.02
x
3.8 | 0.1
0.1
x
4.1 | 0.4
0.1
x
0 | 29
0.3
x
2.3 | 64
0.5
x
1.7 | 92
0.6
x
0
6 | 2
0.5
x
0.1
1 | 5
0.8
x
0
2 | 6
1.2
x
0
2 | 1.9
41
2.1
x
0.6
6 | 0
79
3.1
x
0.2 | 0
124
2.6
x
0
7 | | | | | 0 | 4 | 10 | | | | 0 | 16 | 28 | | | | | | | х | | х | | Х | Х | х | | 0.5 | 0.5 | 0.6 | 4.2 | 5.4 | 5.9 | 20
0.8
3 | 0
2.4
2 | 3.6
4 | 150
2.9
10 | 360
6.0
37 | 180
7.3 | |
0.1 | 0.1 | 0.1 | 3.0 | 3.0 | 3.7 | 0.6 | 0.5 | 0.8 | 3.2 | 3.1 | 101
3.6 | | x
x | 10 | 10 | 10 | 200
16 | 200
24 | 300
37 | 100
10 | 200
21 | 600
55 | 800
0 | 1900
205 | 4100
443 | | | | | 11
17 | 8 | 0 | 8
0 | 0
20 | 14
0 | 38
0 | 31
51 | 26
0 | | 0.9 | 0.9 | 0.1 | 1.1 | 2.0 | 0.2 | 1.3 | 3.0 | 2.2 | 2.0 | 2.6 | 2.0 | | 40 | 40 | 30 | 60 | 50 | 40 | 10 | 10 | 10 | 80 | 100 | 60 | | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | х | |
37 | 0 | 0 | 718 | 24 | 24 | 114 | 24 | 0 | 30 | 0 | 0 | | 95 | 60 | 44 | 1100 | 500 | 700 | 300 | 310 | 710 | 1200 | 3100 | 5400 | ## WEST VIRGINIA #### WEST VIRGINIA Two sections of West Virginia lie within the NAR and cover 3,535 square miles mostly in Area 19, with a very small part in Area 21. The drainage in Area 19 is the South Branch Potomac River. The topography is mostly heavily forested mountains and rolling foothills. The overall visual quality is low to medial but the free-flowing streams are of importance esthetically where they are not polluted. Water is abundant in this corner of the Region, but much of it has been degraded by acid mine pollution. The population of this small sector was just over 123,000 in 1970 and should increase to over 150,000 by 2020. Per capita income was 22 percent below the national average but is projected to rise significantly to only 5 percent below that average by 2020. Employment is largest in services and related industries which is expected to increase along with food and kindred products, paper and allied products and chemicals and allied products. Declines are expected for textile mill products and agriculture, forestry and fisheries. Needs to be Satisfied. The key needs in the State are Water Quality Maintenance and Visual and Cultural in Area 19. The important needs are Publicly Supplied Water, Water Quality Maintenance, Erosion Control and Visual and Cultural in Area 19. All the needs are largest for the State in the portion of Area 19 found within the state. Devices. The important devices are water quality control facilities in Area 19 and all devices levels are largest in the portion of Area 19 found in the State. Costs. All of the costs in the State are incurred primarily in Area 19 where they are the largest. The only expenditure that is significant in size is for Visual and Cultural in 1970. | Number 1 | | STATE | TOTAL | | | |--|---------------|-------|------------|------------|-----| | NEEDS-cumulative | Pres. | 1980 | 2000 | 2020 | | | Publicly Supplied Water (mgd) | 14 | 22 | 36 | 58 | | | Industrial Self-Supplied Water (mgd) | 8 | 17 | 29 | 46 | | | Rural Water Supply (mgd) | | 9.2 | 13.5 | 13.4 | | | Irrigation Water: agriculture (1000 afy) | | 5.0 | 7.2 | 6.3 | | | non-agriculture (1000 afy) | 1.5 | 5.1 | 8.8 | 13.7 | | | Power Plant Cooling: withdrawal, saline (cfs) | | | | | | | brackish (cfs) | | 10 | 1000 | 1/70 | | | fresh (cfs) consumption, brackish(cfs) | , , | 49 | 1092 | 1478 | | | fresh (cfs) | 18 | 23 | 44 | 50 | | | Hydroelectric Power Generation (mw) | 0 | 0 | 500 | 2000 | | | Navigation: commercial (m. tons annually) | | - | 300 | 2000 | | | recreational boating (1000 boats) | | 2.0 | 3.0 | 4.0 | | | Water Recreation: visitor days (m.) | X | 0.44 | 0.69 | 1.04 | | | stream or river (miles) | | 3 | 4 | 6 | | | water surface (1000 acres) | | 0.58 | 0.84 | 1.18 | | | beach (acres) | | 5 | 7 | 9 | | | pool (m. sq. ft.) | х | 0.079 | 0.114 | 0.155 | | | land facilities (1000 acres) | х | 0.33 | 0.49 | 0.67 | | | Fish & Wildlife: sport fishing man-days (m.) | | 0.38 | 0.54 | 0.75 | | | surface area, lake (acres) | | 3.2 | 5.0 | 7.6 | | | stream (acres) | | 0.62 | 0.62 | 0.62 | | | access, fresh (acres) | | 0.043 | 0.079 | 0.120 | | | salt (acres) | | | | | | | anadromous (acres) | | 0.006 | 0.008 | 0.011 | | | piers (1000 feet) | | 0.10 | | | | | hunting, man-days (m.) | 200 1200-1000 | 0.18 | 0.25 | 0.34 | | | access (1000 sq. mi.) | | 0.052 | 0.429 | 0.637 | | | nature study, man-days (m.) | | 0.23 | 0.32 | 0.44 | | | access(1000 ac.) Water Quality Maint.: non-industrial (m. PEs) | | 1.2 | 4.2
254 | 7.8 | | | industrial (m. PEs) | | 101 | 253 | 345
535 | | | Flood Damage Reduction: | 33 | 101 | 233 | 333 | | | avg. ann. damage, upstream (m. \$) | 3.7 | 6.1 | 11.4 | 22.7 | | | mainstream (m. \$) | | 3.1 | 6.8 | 15.1 | | | tidal and hurricane (m. \$) | | | 3.0 | 13.1 | | | Drainage Control: cropland (1000 acres) | 26 | 34 | 47 | 47 | | | forest land (1000 acres) | | 0 | 1.4 | 5.2 | | | wet land (1000 acres) | | | | | | | Erosion Control: agriculture (1000 acres) | 620 | 830 | 980 | 1010 | | | urban (1000 acres) | 140 | 220 | 330 | 450 | | | stream bank (mi.) | | 23 | 70 | 117 | | | coastal shoreline (mi.) | | | | | | | Health: vector control and pollution control | х | х | х | x | - 4 | | Visual & Cultural: | | 700 | 700 | 700 | | | landscape maintenance, unique natural(sq. mi.) | | 700 | 700 | 700 | | | unique shoreline (mi.) | | | | | | | high quality (sq. mi.) | | 100 | 200 | 300 | | | diversity (sq. mi.) | | 100 | 200 | 300 | | | agriculture (sq. mi.) landscape development, quality (sq. mi.) | | 200 | 200 | 200 | | | diversity (sq. mi.) | | | | | | | metro. amenities (mi.) | | | | | 100 | | " (sq. mi.) | | | | | | | (54. 111.) | | | | | | | | | AREA | 19 | V. 10.7 | | AREA | 21 | | <u> </u> | AREA | | | AREA | 1 | | |-----|--------|-------|---------------|-------------|------|-------|-------|-------|----------|------|------|------|------|------|------| | | Pres | | 2000 | 2020 | Pres | | | 2020 | Pres | | 2020 | Pres | 1980 | 2000 | 2020 | | | 14 | 22 | 36 | 58 | | | | | | | | | | | | | | 8 | | | | | | | | | | | | | | | | | 5.5 | | 13.5 | 6.3 | | | | | | | | | | | | | | 1.0 | 5.0 | 8.6 | 13.4 | | 0.1 | 0.2 | 0.3 | | | | | | | | | | | 210 | 0.0 | | | · · · | V. 2 | 0.5 | 79 | 49 | 1092 | 1478 | | | | | | | | | | | | | | 18 | 23 | 1. 1. | 50 | | | | 199 | | | | | | | | | | 10 | 0 | 500 | 50
2000 | | | | - | | | | | | | | | | | | | - AD V | | | | | | | | | | | | | | 1.7 | | 3.0 | 4.0 | | | | | | | | | | | | | | Х | 0.44 | 0.69 | 1.04 | | | | | | | | | | | | | | X
X | 0.58 | 0.84 | 1.18 | | | | | | | | | | | | | | X | 5 | 7 | 9 | | | | | | | | | | | | | 1-5 | | 0.079 | 0.114 | 0.155 | | | | | | | | | | | | | | х | | | 0.67 | | | | | | | | | | | | | | | | 0.54 | | | | | | | | | | | | | | | X | | | 7.6
0.62 | | | | | | | | | | | | | | | | | 0.02 | х | 0.006 | 0.008 | 0.011 | | | | | | | | | | | | | | 0.16 | 0.10 | 0.25 | 0.24 | | | | | | | | | | | | | | | | 0.25
0.429 | | | | | | | | | | | | | | | | | 0.429 | | | | | | | | | | | | | | | х | 1.2 | 4.2 | 7.8 | | | | | | | | | | | | | | 86 | | | | | | | | | | | | | | | | | 39 | 101 | 253 | 535 | | | | | | | | | | | | | | 3 7 | 6 1 | 11.4 | 22 7 | | | | | | | | | | | | | | 1.6 | | 6.8 | | n . | 26 | | | | 0.5 | 1 | 1 | 0.6 | | | | | | | | | | 0 | 0 | 1.2 | 4.6 | 0 | 0 | 0.2 | 0.6 | | | | | | | | | | 610
 810 | 950 | 990 | 20 | 20 | 20 | 20 | | | | | | | | | | 130 | 210 | 320 | 440 | 10 | 10 | 10 | 10 | | | | | | | | | | 0 | 23 | 68 | 114 | 0 | 1 | 2 | 3 | х | х | х | х | х | х | X | х | | | | | | | | | | x | 700 | 700 | 700 | | | | | | | | | | | | | | ^ | ,00 | ,00 | 700 | | | | | | | | | | | | | | | 5 | | | | | | -11 | | | | | | | | | | x | 100 | 200 | | | 4 | Carry | 77 | | | | | | | | | | х | 200 | 200 | 200 | | | | 11719 | 7.13 | _ | | | | | | _ | _ | | _ | - | - | | | | | STAT | TE TOTAL | L | | | |---|-------------------------------------|-----------|-----------|-----------|--| | DEVICES - incremental | Purposes | 1980 | 2000 | 2020 | | | I. Resource Management A. Water Storage Facilities φ | | | | | | | reservoirs, upstream (1000 af)
mainstream (1000 af) | Rec,FW,V C*
FW,VC,Rec,WQ* | 3.8
31 | 3.5
74 | 0.5
89 | | | brackish (mgd) | | 9.8 | 15.9 | 21.9 | | | wells (mgd) Conveyance Facilities interbasin diversions, into (mgd) out of (mgd) | * | 53 | 15 | 37 | | | Quality Control Facilities
chemical/biological
potable water treat. plants (mgd)
waste treatment plants | PS | 4.9 | 14.1 | 22.7 | | | secondary (85%) (m. PEs removed) secondary (90%) (m. PEs removed) advanced (95%) (m. PEs removed) Desalting Facilities | | 250
14 | 460
25 | 790
44 | | | B. Water/Land Upstream Flood Plain Mgmt.(1000 acres) Local Flood Protection | FDR,VC | 26 | 67 | 16 | | | ocean (projects) river (projects) flood control channels (miles) | FDR | 5.5 | 4.5 | 0 | | | Watershed Management (1000 acres) C. Land | FDR,VC,Drn | 465 | 76 | 0 | | | Controls fee simple purchase (buying)(sq.mi.) fee simple purchase (buying) (mi.) | VC,FW | 710 | 0 | 0 | | | purchase lease (sq.mi.) easements (sq.mi.) deed restrictions (sq.mi.) | | 200
88 | 0
100 | 0
100 | | | tax incentive subsidy (sq.mi.) zoning (sq.mi.) zoning (mi.) zoning and/or tax inc. subs.(sq.mi.) zoning and/or tax inc. subs. (mi.) | | | | | | | V. Others
Upstream Flood Control Storage (1000 af)
Mainstream Flood Control Storage (1000 af) | | 70 | 54 | 0 | | | Mainstream Flood Control Storage (1000 af) | FDR | 0 | 90 | 0 | | $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. ϕ Flood control storage not included. | A | REA 19 | | 1 | AREA 21 | | 1 | AREA | | | AREA | | |----------------|-----------------|-----------------|------|---------|------|------|------|------|------|------|------| | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | | | | | | | | | | | | | | | 3.8
31 | 3.5
74 | 0.5 | | | e e | | | | | | | | 9.8
0
53 | 15.9
1
14 | 21.9
1
34 | 0.2 | 1 | 3 | 4.9 | 14.1 | 22.7 | | | | | | | | | | | 250
14 | 460
25 | 790
44 | | | | | | | | | | | 26 | 67 | 16 | | | | | | | | | | | 5.5 | 4.5 | 0 | | | | | | | | | | | 465 | 76 | 0 | | | | | | | | | | | 710 | o | 0 | | | | | | | | | | | 200
88 | 0
100 | 0
100 | 70
0 | 54
90 | 0 | | | | | | | | | | | 0 | 70 | | | | | | | | | | | | | - | | | | |--|------|---------|------|--| | FIRST COSTS - incremental | S'. | TATE TO | TAL | | | (\$ million 1970) | 1980 | 2000 | 2020 | | | Water Development Costs: | | | | | | storage, upstream | 1.5 | 1.5 | 0.2 | | | mainstream | 20 | 11 | 22 | | | wells | 8.6 | 4.5 | 5.0 | | | desalting | | | | | | Water Withdrawal and Conveyance Costs: | | | | | | inter-basin transfers | | | | | | public water supply | 3.9 | 8.5 | 12.2 | | | industrial self-supplied water | 0.04 | 0.06 | 0.09 | | | rural water supply | х | x | х | | | irrigation, agriculture | 0.78 | 0.56 | 0 | | | non-agriculture | 3.0 | 2.8 | 3.6 | | | Power Plant Cooling Water | 0 | 10 | 20 | | | Hydroelectric Power Generation | | X | Х | | | Navigation: commercial | | | | | | recreational boating | 0.28 | 0.36 | 0.39 | | | Water Recreation | 1.7 | 1.5 | 2.0 | | | Fish and Wildlife: fishing | 0.40 | 0.40 | 0.49 | | | hunting | X | X | Х | | | nature study | X | X | Х | | | Water Quality Maint.: waste treatment, secondary | 28 | 49 | 84 | | | advanced | 2.9 | 5.1 | 9.0 | | | other / | | | | | | Flood Damage Reduction: upstream | 10.2 | 8.9 | 0 | | | mainstream | 0 | 7.0 | 0 | | | Drainage Control | 0.71 | 1.25 | 0.17 | | | Erosion Control | 29 | 28 | 22 | | | Health | Х | Х | Х | | | Visual and Cultural | 281 | 24 | 24 | | | Summation of Available Estimated Costs | 390 | 160 | 210 | | ^{*} From the supply model and includes OMR costs. # Combined sewer overflows control and acid mine drainage control. | | AREA | 19 | | AREA 2 | 1 | | AREA | | | AREA | | |------------------|------------------|------------------|------|--------|------|------|------|------|------|------|------| | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | | 1.5
20
8.6 | 1.5
11
4.4 | 0.2
22
4.9 | 0 | 0.1 | 0.1 | 3.9
0.04 | 8.5
0.06 | 12.2
0.09 | | | | | | | | | | | 0.78 | 0.56 | x
0 | | | | | | | | | | |
2.9 | 2.7 | 3.5 | 0.1 | 0.1 | 0.1 | | | | | | | | | X | x | | | | | | | | | | | 0.28 | 0.36 | 0.39 | | | | | | | | | | | 1.7 | 1.5 | 2.0 | | | | | | | | | | | 0.40 | 0.40 | 0.49 | | | | | | | | | | | Х | X | Х | | | | | | | | | | |
28 | x
49 | X
Q/ | | | | | | | | | | | 2.9 | 5.1 | 84
9.0 | | | | | | | | | | |
10.2 | 8.9 | 0 | | | | | | | | | | | 0 | 7.0 | 0 | | | | | | | | | | | 0.69 | 1.22 | 0.15 | 0.02 | 0.03 | 0.02 | | | | | | | | 29 | 28 | 21 | 0.4 | 1 | 1 | | | | | | | |
281 | 24 | x
24 | Х | Х | Х | | | | | | | | 390 | 160 | 200 | 0.52 | 1.23 | 1.22 | | | | | | | # DISTRICT OF COLUMBIA #### DISTRICT OF COLUMBIA Washington, D.C., lies wholly within Area 19 and covers 69 square miles of totally metropolitan area. The major waterways are the Potomac River flowing past the District, and the Potomac tributaries of Rock Creek and the Anacostia River. The District's population, which totalled 850,000 in 1970, is projected to reach over 1.2 million by 2020. Per capita income stood at 30 percent above the national average in 1970 but should decline to 12 percent over that average by 2020. The work force totalled almost 390,000 in 1970, over 330,000 of which were employed in services and related industries, and this total is projected to increase to more than half a million by 2020. There is some employment in food and kindred products, which is expected to decrease; some in primary metals and chemicals and allied products which are projected to rise; and a significant number of armed services personnel whose total should remain constant. The District of Columbia is unique in that it is the only "state" in the NAR located entirely within a tiny part of a single river basin, and the only one completely urban in nature. Needs to be Satisfied. The need for Water Quality Maintenance is important and key to the fulfillment of the Visual and Cultural need, which is also key and important. Other important needs include Publicly Supplied Water and Erosion Control. $\underline{\text{Devices}}.$ The important devices for meeting the needs of the District are water quality control facilities. Costs. The only expenditures of significant size in the District will be for secondary waste treatment in all time periods. | Pres. 1980 2000 2020 | NEEDC | | STATE | | | | |---|-------------------------------|--|-------|---------|------|-----| | Industrial Self-Supplied water | NEEDS-cumulative | Pres. | 1980
 2000 | 2020 | | | National | Publicly Supplied Water (mgd) | 90 | 140 | 230 | 380 | | | Irrigation Water: agriculture (1000 afy) | | | 150 | 260 | 400 | | | Non-agriculture | | | | | | | | Power Plant Cooling: withdrawal, saline (cfs) brackish (cfs) fresh (cfs) consumption, brackish (cfs) fresh | | | | | | | | brackish (cfs) fresh (cfs) consumption, brackish(cfs) fresh (cfs) (c | | | 2.3 | 4.0 | 6.2 | | | Tresh (cfs) Consumption, brackish(cfs) Fresh (cfs) | | | | 1-11-14 | | | | Consumption, brackish(cfs) Fresh (cfs) | | | | | | | | Hydroelectric Power Generation | | | | | | | | Hydroelectric Power Generation | | | | | | | | Navigation: commercial (m. tons annually) 0.70 0.70 0.70 0.80 recreational boating (1000 boats) 12 14 24 33 Water Recreation: visitor days (m.) stream or river (miles) water surface (1000 acres) beach (acres) pool (m. sq. ft.) land facilities (1000 acres) Fish & Wildlife: sport fishing man-days (m.) surface area, lake (acres) access, fresh (acres) anadromous (acres) anadromous (acres) anadromous (acres) anadromous (acres) anadromous (acres) hunting, man-days (m.) 1.0 1.1 1.6 2.2 access (1000 ac.) x 0.6 2.1 3.9 Water Quality Maint: non-industrial (m. PEs) 560 1150 1650 2240 industrial (m. PEs) 120 300 760 1610 Flood Damage Reduction: avg. ann. damage, upstream (m. S) mainstream (m. S) constant of tidal and hurricane (m. S) forest land (1000 acres) forest land (1000 acres) forest land (1000 acres) wet land (1000 acres) wet land (1000 acres) urban (1000 acres) wet land (1000 acres) forest land (1000 acres) wet land (1000 acres) wet land (1000 acres) urban (1000 acres) urban (1000 acres) wet land (1000 acres) urban (1000 acres) urban (1000 acres) urban (1000 acres) urban (1000 acres) wet land (1000 acres) urban urb | | | | | | | | Tecreational boating (1000 boats) 12 | | | 0.70 | 0.70 | 0.80 | | | Water Recreation: visitor days stream or river (miles) water surface (1000 acres) beach (acres) pool (m. sq. ft.) land facilities (1000 acres) Fish & Wildlife: sport fishing man-days (m.) surface area, lake (acres) stream (acres) access, fresh (acres) salt (acres) anadromous (acres) anadromous (acres) piers (1000 feet) hunting, man-days (m.) 1.0 1.1 1.6 2.2 access (1000 sq. mi.) nature study, man-days (m.) 1.2 1.5 2.1 2.9 access (1000 ac.) x 0.6 2.1 3.9 acces) industrial (m. PEs) 360 1150 1650 2240 access (1000 acces) acces (1000 acces) acces (1000 acces) ac | | | | | | | | water surface (1000 acres) beach (acres) pool (m. sq. ft.) land facilities (1000 acres) | | | | | | | | beach (acres) pool (m. sq. ft.) land facilities (1000 acres) | stream or river (miles) |) | | | | | | Pool | water surface (1000 acres) | | | | | | | Land facilities (1000 acres) | | | | | | | | Fish & Wildlife: sport fishing man-days (m.) surface area, lake (acres) stream (acres) access, fresh (acres) anadromous (acres) anadromous (acres) anandromous (acres) piers (1000 feet) hunting, man-days (m.) access (1000 sq. mi.) nature study, man-days (m.) access (1000 sq. mi.) nature study, man-days (m.) access (1000 sq. mi.) nature study, man-days (m.) access (1000 ac.) x 0.6 2.1 3.9 water Quality Maint: non-industrial (m. PEs) 560 1150 1650 2240 industrial (m. PEs) 120 300 760 1610 Flood Damage Reduction: avg. ann. damage, upstream (m. \$) mainstream (m. \$) mainstream (m. \$) tidal and hurricane (m. \$) mainstream (m. \$) cropland (1000 acres) forest land (1000 acres) forest land (1000 acres) wet land (1000 acres) urban | | | | | | | | Surface area, lake (acres) Stream (acres) Stream (acres) Salt S | | THE RESERVE AND ADDRESS OF THE PERSON NAMED IN | | | | | | Stream (acres) | | | 2.5 | 3.5 | 4.8 | | | access, fresh | | | | | | | | Salt | | | | | | | | anadromous (acres) piers (1000 feet) hunting, man-days (m.) access (1000 sq. mi.) nature study, man-days (m.) access (1000 ac.) x 0.6 2.1 3.9 Water Quality Maint: non-industrial (m. PEs) 560 1150 1650 2240 industrial (m. PEs) 120 300 760 1610 Flood Damage Reduction: avg. ann. damage, upstream (m. \$) mainstream (m. \$) mainstream (m. \$) tidal and hurricane (m. \$) Drainage Control: cropland (1000 acres) forest land (1000 acres) wet land (1000 acres) urban acr | | | | | | | | Piers | | | | | | | | hunting, man-days (m.) | | | | | | | | access (1000 sq. mi.) nature study, man-days (m.) 1.2 1.5 2.1 2.9 access(1000 ac.) x 0.6 2.1 3.9 | | | 1 1 | 1 6 | 2.2 | | | nature study, man-days | | | 1.1 | 1.0 | 2.2 | | | Second Control: agriculture (1000 acres) urban (1000 acres) urban (1000 acres) urban (2005 at 1) astream bank (mi.) coastal shoreline (mi.) Health: vector control and pollurion control (mi.) high quality (sq. mi.) landscape development, quality (sq. mi.) metro. amenities (mi.) (mi.) coasend (sq. mi.) diversity (sq. mi.) metro. amenities (mi.) (mi.) coasend (sq. mi.) metro. amenities (mi.) (mi.) coasend (sq. mi.) metro. amenities (mi.) (mi.) (mi.) coasend (sq. mi.) metro. amenities (mi.) (mi. | | | 1.5 | 2.1 | 2.0 | | | Water Quality Maint: non-industrial (m. PEs) industrial (m. PEs) (| | | | | | | | Industrial (m. PEs) 120 300 760 1610 | | | | | | | | Flood Damage Reduction: avg. ann. damage, upstream mainstream tidal and hurricane (m. \$) Drainage Control: cropland forest land (1000 acres) wet land (1000 acres) urban stream bank coastal shoreline coastal shoreline landscape maintenance, unique natural(sq. mi.) diversity agriculture (sq. mi.) diversity (sq. mi.) diversity diversity (sq. mi.) diversity diversity (sq. mi.) diversity diversity (sq. mi.) diversity diversity (sq. mi.) metro. amenities (mi.) 0.06 0.13 0.27 0.60 0.13 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2 | | | | | | | | avg. ann. damage, upstream | | | | | | | | tidal and hurricane (m. \$) Drainage Control: cropland (1000 acres) forest land (1000 acres) wet land (1000 acres) Erosion Control: agriculture (1000 acres) urban (1000 acres) 21 34 51 71 stream bank (mi.) coastal shoreline (mi.) Health: vector control and pollurion control x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) unique shoreline (mi.) high quality (sq. mi.) agriculture (sq. mi.) agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.) | | | | | | | | Drainage Control: cropland (1000 acres) forest land (1000 acres) wet land (1000 acres) Erosion Control: agriculture (1000 acres) urban (1000 acres) stream bank (mi.) coastal shoreline (mi.) Health: vector control and pollurion control x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) unique shoreline (mi.) high quality (sq. mi.) diversity (sq. mi.) agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) diversity (sq. mi.) metro. amenities (mi.) | mainstream (m. \$ | 0.06 | 0.13 | 0.27 | 0.60 | | | forest land (1000 acres) wet land (1000 acres) Erosion Control: agriculture (1000 acres) urban (1000 acres) stream bank (mi.) coastal shoreline (mi.) Health: vector control and pollurion control x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) unique shoreline (mi.) high quality (sq. mi.) diversity (sq. mi.) agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.) | | | | | | | | wet land (1000 acres) Erosion Control: agriculture (1000 acres) urban (1000 acres) stream bank (mi.) coastal shoreline (mi.) Health: vector control and pollurion control x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) unique shoreline (mi.) high quality (sq. mi.) diversity (sq. mi.) agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.) | | | | | | | | Erosion Control: agriculture (1000 acres) urban (1000 acres) 21 34 51 71 stream bank (mi.) coastal shoreline (mi.) Health: vector control and pollurion control x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) unique shoreline (mi.) high quality (sq. mi.) diversity (sq. mi.) agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.) | | | | | | | | urban (1000 acres) 21 34 51 71 stream bank (mi.) coastal shoreline (mi.) Health: vector control and pollurion control x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) unique shoreline (mi.) high quality (sq. mi.) diversity (sq. mi.) agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.) | | | | | | | | stream bank (mi.) coastal shoreline (mi.) Health: vector control and pollurion control x x x x
Visual & Cultural: landscape maintenance, unique natural(sq. mi.) unique shoreline (mi.) high quality (sq. mi.) diversity (sq. mi.) agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.) | | | 0.1 | | | | | coastal shoreline (mi.) Health: vector control and pollurion control x x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) unique shoreline (mi.) high quality (sq. mi.) diversity (sq. mi.) agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.) | | | 34 | 51 | 71 | | | Health: vector control and pollurion control x x x x x Visual & Cultural: landscape maintenance, unique natural(sq. mi.) unique shoreline (mi.) high quality (sq. mi.) diversity (sq. mi.) agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.) | | | | | | | | Visual & Cultural: landscape maintenance, unique natural(sq. mi.) unique shoreline (mi.) high quality (sq. mi.) diversity (sq. mi.) agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.) | | | | | | | | landscape maintenance, unique natural(sq. mi.) | | X | X | X | X | | | unique shoreline (mi.) high quality (sq. mi.) diversity (sq. mi.) agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.) | | | | | | | | high quality (sq. mi.) diversity (sq. mi.) agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.) | | | | | | | | diversity (sq. mi.) agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.) | | | | | | | | agriculture (sq. mi.) landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.) | | | | | | 125 | | landscape development, quality (sq. mi.) diversity (sq. mi.) metro. amenities (mi.) | | | | | | 10 | | diversity (sq. mi.) metro. amenities (mi.) | | | | | | 15 | | metro. amenities (mi.) | | | | | | | | " (sq. mi.) x 5 5 5 | metro. amenities (mi. | | | | | | | | " " (sq. mi. | х | 5 | 5 | 5 | | | | | AREA | 19 | | | AREA | | | | AREA | 1 | | | AREA | 1 | | |-------|------|------|--------|------|------|------|------|---------|------|------|------|------|------|------|------|------| | | Pres | | | 2020 | Pres | | | 2020 | Pres | | | 2020 | Pres | | 2000 | 2020 | | | 90 | 140 | 230 | 380 | 1105 | 1700 | 2000 | 2020 | 1103 | 1700 | 2000 | 2020 | 1105 | 1200 | 2000 | 2020 | | | 80 | 150 | 260 | 400 | | | | | | | | | | | | | | | | 200 | | 100 | 0.7 | 2.3 | 4.0 | 6.2 | 1 | 0.70 | 0.70 | 0.70 | 0.00 | | | | | | | | | | | - | | | | | 0.70 | | | | | | | | | | | | | | | | | 12 | 14 | 24 | 33 | | | | | | | - | | - | | - | - | | | | | | | | 1.9 | 2 5 | 3 5 | 4.8 | | | | | | | | | | | | | | | 1.9 | 2.5 | 3.5 | 4.0 | - 12 | | | | | | | | | | | | | | 6.4 | 1-1 | 1.0 | 1.1 | 1.6 | 2.2 | 1.2 | 1.5 | 2.1 | 2.9 | | | | | | | | | | | | | | | x | 0.6 | 2.1 | 3.9 | | | | | | | | | | | | | | | 560 | 1150 | 1650 | 2240 | | | | | | | | | | | | | | | 120 | 300 | 760 | 1610 | 0.06 | 0.13 | 0.27 | 0.60 | 100 | 0.1 | 2/ | | 7.1 | | | | (C-0.5) | | | | 1179 | | | | | | | 21 | 34 | 51 | 71 | Х | Х | х | X | - | | | | | | | | | | Lagra. | | | | | | | | | | 10 | 11.7 | - 1 | | | | | 100 | | | | | | | | | | | | | 323 | 1 | | | 7 | | | | 1 | | | | | | | | 1.2 | | | | | | | | | 17.54 | х | 5 | 5 | 5 | _ | | | | STAT | TE TOTAL | L | | | |---|----------|----------|---------------|-------------|---| | DEVICES - incremental | Purposes | 1980 | 2000 | 2020 | | | I. Resource Management | | | | | | | A. Water | | | | | | | Storage Facilities φ | | | | | | | reservoirs, upstream (1000 af) | | | | | | | mainstream (1000 af) | | | | | | | Withdrawal Facilities | | | | | | | intakes & pumping, fresh (mgd) | | 85 | 144 | 186 | | | brackish (mgd) | | 3 | 5 | 7 | | | wells (mgd) | * | 0.3 | 0.1 | 0.2 | | | Conveyance Facilities | | | | | | | interbasin diversions, into (mgd) | | | | | | | out of (mgd) | | | | | | | Quality Control Facilities chemical/biological | | | 4 1 1 1 | | | | | PS | 20 | 0.1 | 1/7 | | | <pre>potable water treat. plants (mgd) waste treatment plants</pre> | rs | 32 | 91 | 147 | | | secondary (85%) (m. PEs removed) | | | | | | | secondary (90%) (m. PEs removed) | LIO VC | 1300 | 2200 | 2500 | | | advanced (95%) (m. PEs removed) | | 73 | 2200
120 | 3500
192 | | | Desalting Facilities | wq,vc | /3 | 120 | 192 | _ | | B. Water/Land | | | | | | | Upstream Flood Plain Mgmt.(1000 acres) | | | | | | | Local Flood Protection | | | | | | | ocean (projects) | | | | | | | river (projects) | | | | | | | flood control channels (miles) | | | | | | | Watershed Management (1000 acres) | | | | | | | C. Land | | | | | | | Controls | | | | | | | fee simple purchase (buying)(sq.mi.) | VC, FW | 5 | 0 | 0 | | | fee simple purchase (buying) (mi.) | | | | | | | purchase lease (sq.mi.) | | | | | | | easements (sq.mi.) | | | | | | | deed restrictions (sq.mi.) | | | | | | | tax incentive subsidy (sq.mi.) | | | | | | | zoning (sq.mi.) | | | | | | | zoning (mi.) | | | | | | | zoning and/or tax inc. subs.(sq.mi.) | | | Maria di 1877 | | | | zoning and/or tax inc. subs. (mi.) V. Others | | | | | | | v. Others | $[\]star$ From the supply model for the following purposes: PS, Ind, Rur, Irrig, Pow. ϕ Flood control storage not included. | | AREA 19 |) | | AREA | | | AREA | | | AREA | | |--------|----------|----------|------|------|------|------|------|------|------|------|------| | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 85 | 144 | 186 | | | | | | | | | | | 0.3 | 5
0.1 | 7
0.2 | 22 | 0.1 | 1/7 | | | | | | | | | | | 32 | 91 | 147 | | | | | | | | | | | 1300 | 2200 | 3500 | | | | | | | | | | |
73 | 120 | 192 | | - | 5 | 0 | 0 | Water Development Costs: storage, upstream mainstream wells desalting Water Withdrawal and Conveyance Costs: inter-basin transfers public water supply industrial self-supplied water rural water supply irrigation, agriculture non-agriculture Power Plant Cooling Water Hydroelectric Power Generation Navigation: commercial recreational boating Water Recreation Fish and Wildlife: fishing hunting nature study Water Quality Maint .: waste treatment, secondary advanced other + Flood Damage Reduction: upstream mainstream Drainage Control Erosion Control Health Visual and Cultural Summation of Available Estimated Costs | | AREA 1 | 9 | | AREA | | | AREA | | | AREA | | |----------|--------|------|------|------|------|------|------|------|----------|------|------| | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 1980 | 2000 | 2020 | 25 | 55 | 79 | | | | | | | | | | | 0.37 | 0.61 | 0.76 | 1.5 | 1.4 | 1.8 | 0.7 | 0.0 | | | | | | | | | | |
2.1 | 2.7 | 2.9 | | | | | | | | | | |
2.6 | 2.6 | 3.1 | | | | | | | | | | | х | х | х | | | | | | | | | | |
х | х | х | | | | | | | | | | | 150 | 230 | 370 | | | | | | | E-FAIL (| | | | 15 | 25 | 39 | | | | | | | | | | |
- | 4.6 | 6.0 | 7.0 | | | | | | | | | | | х | х | х | | | | | | | | | | |
3.0_ | 0 | 0 | | | | | | | | | | | 200 | 320 | 500 | | | | | | | | | |