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ABSTRACT

The near field pressure and the radiation impedance for
an infinite phased array of circular pistons (with the same velo-
city magnitude) in a rigid plane baffle are calculated. A slowly
convergent infinite series expression for the pressure, obtained
from the appropriate Green's function, is transformed by the use
of the Poisson's sum formula into a more rapidly convergent in-
finite series expression. Numerical results are presented. A
rough estimate of the location and value of the maximum pressure
in the near field is obtained under certain restrictions. The
radiation impedance of a piston in the infinite array agrees
well with the average radiation impedance of a piston in a large

finite array.
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A. INTRODUCTION

A sonar designer is frequently faced with the task of
calculating or estimating the peak pressure in the near field of
a phased array because the usable power output of an acoustic
underwater transducer is limited by the requirement that the
acoustic pressure in water should not exceed the value at which
cavitation begins. The computation of the peak pressure can be
a rather formidable job because the summation of the pressures
due to each array element usually cannot be reduced to anything
simple analytically, and the location of the maximum pressure is
not known a priori. Furthermore, to choose the optimum sonar
design one would like to know how the pressure maximum changes
when the sonar array parameters (size of elements, spacing bet-
ween elements, number of elements, direction to which the array
is steered in the far field, etc.) are varied, which might mean
that the computation of the near field pressure has to be per-
formed for a large number of arrays. Thus any simplifications
are welcome as long as the simplifications permit to study the
effects of some of the sonar parameters on the near field

pressure.

Several calculations of the near field pressures for
special distributions of elements in arrays are available.l'lo
For an infinite array two advantages in the representation of the

near field pressure are attained:lo 1) one has to consider the




pES—

WP22-1-42011

pressure in front of one element only, because due to symmetry
all elements are the same, except for a phase factor; 2) the
infinite sum of pressures due to each array element can be trans-
formed by the use of the Poisson's sum formula into amore ra-
pidly convergent series of terms which resemble waveguide mode

terms in the theory of electromagnetic waves.

One hopes that the inferences drawn from the infinite
array calculations about the effects on the near field due to
changes in the element sizes or spacings between elements will
also apply to arrays with a finite number of elements. The two-
dimensional problem of an infinite array of infinite vibrating
strips in a rigid plane baffle has been studied before;lo we
will now consider the three-dimensional problem of an infinite
phased array of circular pistons in a rigid plane baffle. The
radiation impedances of the pistons will also be calculated. The
velocity magnitudes of the pistons are assumed all to be equal,
but the phases are adjusted so as to steer the far field pressure

maximum in a specified direction.
B. THE PRESSURE FIELD

Let the infinite array and baffle occupy the plane

z = 0, (see Fig. 1). The piston centers are located at x = nd1

y = mdz, n= 0,11,12,...; m = o.tl,tz,... . The velocity (in

h th

the z-direction) of the piston in the nt® row and n*" column is
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assumed to be

iot + iy
mn
Vmn = V€ (1)

where v is a complex constant, ® the radian frequency,t the time,

and

VYoo = -mkdzéineosinGO - nkdlsineocos¢o, (2)
where k = w/c, ¢ is the velocity of sound in water, and 90,
¢o are angles in spherical coordinates which determine the di-
rection to which the far field pressure maximum is steered.
If the actual pressure at the observation point due to
th _th

the m™, n~ piston alone is P let P n Pe a dimensionless

pressure,

iot
Pm == pm/pcve ’ (3)

where p is the density of water. Similarly let P be the tota!
dimensionless pressure at the observation point due to all pis-

tons,

o © j_'y
P = Z Z Pme — (4)
‘h-

m=-o
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By the use of a Green's function P, can be written

as11,12
(ik/2r) de . "R
Y. = U ‘[. a j'dr r.e /&
m o (o] o o o m (5)
th _th
where R 1is the distance from a point on the m~, n~ piston

at r_, a, to the observation point at x, y, z; see Fig. 1;

R = (xﬁ + yi 4 22)1/2’ (6)
‘ X, = X - nd1 - rcosag, (7)
| Y = ¥ - Wy - r sinag. (8)
‘ We now use the following integral representation for spherical
! waves13

-islxn-iszym-is3z

‘ -1 0o 00 00
e kRmn o o ds d Jf ds, =
5 el W 1 Mo & Wy v o™ RS SR

(9

which, when integrated over S3» becomes

A A O SRR N TP s 35
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e-ikRmn . P : ; e-islxn-iszym-qz
= S S
o lji . 1 (10)
where
k" s gt < gy M2 g oig? o o2 <32
Bt 1 2 ]! 2 =
2 2 2

If we combine Eqs. (4), (5), and (10), and interchange

summation and integration, we obtain

ik 2T a "o g

P =(;—72- f daofdroro Z Z j-dslf dSz
i o (o] M==® N==0<=0n S

(L/a)exp(ivy, - isyx - is,y_ - qz)

(12)
We now apply Poisson's sum formulal%»15
00 oo 00
z j’ ds f(s)e?Tins_ Z £ (n)
N==0 Y~ n=-o (13)

twice toEqs. (12), which yields
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-T(n,m)kz 21r a

S V) v % [ 4%

N==-% Mm=-o

exp [ih(n) (krocosa0 - kx) + ig(m) (krosinao - ky)] ’ (14)
h(n) = sinGocos¢ + 27rn/kd1 (15)
g(m) = sinGosin¢o + 21rm/kd2 (16)

w(n,m)

{[h(n)]  + [e@)] 2}” : ()

i{1-[w(n,m)]2}1/2 « 0 < winm) < 1;

T(n,m) =
{[W(n,m)]z 4 1}1/2, wn,m) >1. (18)

Since16

2

f da, exp {ikr‘)[h(n)cosao + g(m)sinczo]}
o

= 2r J, [w(n,m)kro] . (19)
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where Jo is a Bessel function of order zero, and since17

a
]droro J,(wkr ) = (a/wk)J,(wka) (20)
o

where J, is a Bessel function of order one, we finally obtain

from Eq. (14)

2 o e VA | [w(n,m) ka] -ih(n)kx-ig(m)ky-T(n,m)kz
ira 1
ro- 3:32 E E : w(n,m)ka g T(n,m)
= =00 p==00 (21)

which is the desired exact expression for the pressure at x,y,z
(either near field or far field) due to the infinite array.

The form of Eq. (21) is similar to the expansions of

electromagnetic fields in waveguide modes.18

The double series
in Eq. (21) ic¢ more rapidly convergent than the original series
from Eqs. (4) and (5); for z > 0 the terms in the sum are de-
creasing exponentially with increasing m and n, and for z = 0

the terms are decreasing as [(n/dl)2 4 (m/d2)2]5/4.

Let us now consider some special cases of Eq. (21).
If kz >> 1 and kdy <7, kd, <, all the terms are exponentially

decreasing except the one for n = m = 0. Since

w(0,0)

sin@, (22)
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and

T(0,0) = icoseo, (23)

if we neglect the exponentially attenuated terms, we obtain a

single-term approximation for the pressure

Waz ZJl(kasinGO)
P e Pl = 311-5 . kasineo . PC’ kz >> 1, (26)

where B, is the dimensionless pressure which one would have in

the water if the whole z = 0 plane were vibrating continuously

with the normal velocity

iot-ikx sin®_ cos@,-iky sin®_ sing ;
v = ve e ° : (25)

¢
i.e., if instead of a plane partially filled with pistons (each of
which move with the same velocity as a rigid body) we would have
a plane on which each infinitesimal area element moves with the

velocity given by Eq. (25), then the pressure would be10

P, = (1/cos8 ) exp (-ikx sin@ cos@ - iky sin® sin@ - ikz coseo126)
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Thus the approximate P, as compared to Pc for kz >> 1 is re-
duced by the ratio of the piston area vaz to the area of the
array per piston d1d2 (because only the fraction Wazldldz of the
plane z = 0 is vibrating in the piston array, while the whole
plane is vibrating for the continuous plane radiator) and by the
directivity of the circular piston 2J1(kasin90)/(kasin9°) £ 1
(because the piston vibrates as a rigid body, therefore in a
direction 90 # 0 the wavelets arriving from different portions
of the same piston are not quite in phase, which results in par-
tial cancellation; all the waves are in phase for the continuous

plane radiator).

The n = m = 0 term dominates,and we obtain P1 from
Eq. (24) as an approximation for P also when d, -0, dy, ~ 0,
a >0, i.e., when the piston array consists of small pistons
close together, because such an array approximates the continuous

plane radiator.

Fig. 2 shows 'PI vs. kz for equal spacings between rows
and columns, kd1 = kd2 = 3, and three values of the piston radii,
ka = 0.5, 1.0, and 1.5; the pressure is evaluated on the axis
through the center of a piston, kx = ky = 0, and the array radiates
in the broadside direction normal to the plane containing the
array, 8 = @ = 0°. For ka = 1.5 the pistons are touching each
other. For large values of kz |P| approaches the constant 'Pll

given by Eq. (24).
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Fig. 3 shows |[P| vs. kx for @_ = 0°, 60°, and 80°,
and ¢o = 0°; the other parameters are: kd; = kd, = 3, ka = 1,
ky = kz = 0. For 9, = 0° the pressure distribution is relatively
smooth, while for larger angles it becomes more undulatory. As
90 increases, the maximum |P| increases because the leading n =
m = 0 term in Eq. (21) is proportional to 1/T(0,0) = 1/1coseo.

For 8 > 90° we would have |P| > «.

The single-term approximation P, does not show any
undulatory behavior; therefore let us obtain a two-term approxi-
mation P, to explain the maxima and minima in Fig. 3. For
simplicity let ¢o = 0°, kd1 <, kdy < kd;, and 8 _ > 0°, then
the next largest term after the n = m = 0 term is the n=-1,
m=0 term. Let us call the approximation consisting of the two
terms n=-1, 0 and m=0 the pressure P,. Let us further assume
that ka is small enough so that 2J1 [w(n,m)ka]/w(n,m)ka =] for
both terms. Thus we obtain an approximation which for @, = 0°

is independent of the y-coordinate:

2 -ikx sin @ -ikz coseo
2 3132 cosGb

ieizvr(x/dl)-kz{[(zvr/kdl)-sineo]Z_l:}l/z

iy - oo )2 - 372 o

+

Consider the case kz = 0, then

10
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y ei [21r(x/d1) +1r/2]

cosg, * {[(27r/kd1) - sing ]° - 1}1/ -

2
|7| = g:crz

(28)

The two terms in Eq. (28) can be considered as vec-
tors in the complex plane. Thus we will have a maximum when the
phase 27 (x/dl) + m/2 of the second term becomes zero, or when

the x-coordinate is

Xpax = ~91/4» (29)
independent of 90, d,, or a.
Similarly a minimum will be obtained at
Bt = Ayl (30)

The positions of the minima and the maxima agree well
with the data in Fig. 3 for ¥, 0°. For the values at the maxi-
mum and at the minimum Eq. (28) yields 1.19 and 0.21 at @ = 60°;
and 2.74 and 1.29 at @ = 80°, which are in a reasonable agree-

ment with the values shown in Fig. 3.

Eq. (28) yields the maximum pressure

11
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lP l . vaz 1 " 1
2| max cf]_d2 cosGo {[(21r/kd1) _ sineo]z " ]31/2

(31)

under the condition kz = 0. However, for kz > 0 the second term
in the more general Eq. (27) is exponentially decreased; there-
fore, even if we consider all values of x,y, and z, the absolute
maximum of ‘P2| must be on the plane kz = 0, and its value is
given by Eq. (31), when ¢o = g, 8, g%, kd; <, and kd, < kd, .

Fig. 4 shows |P| vs. kx for ka = 0.5, 1.0, and 1.5,
and kd; = kd, = 3, ky = kz = 0, @ = 0°, 8, = 60°. The pressure
levels increase as ka increases because a larger fraction of the
array plane radiates. A larger fraction of the array plane radi-
ates also if ka is kept constant and kd1 and kd, are decreased.
|P| vs. kx for the latter case is shown in Fig. 5, where ka = 1,
kd; = kd, = 2; 2.5, and 3, and k2 = ky = O, ¢o = 4 9, = 60° .
Note that for kd1 = kdy < 3 in Fig. 5 more than one cycle in the
undulatory pressure is shown, because due to symmetry the pressure
values are repeated at x, x + dl’ X + 2d1, etc. The pressure dis-
tribution becomes relatively more undulatory as the spacing bet-
ween pistons is increased. When ka = 1.5 and kd1 = kd2 = 3 in
Fig. 4, and when ka = 1 and kd1 = kdy = 2 in Fig. 5, ‘then the
pistons are touching each other, and the same fraction 7/4 of

the array plane radiates in both cases. However, the maxi-

1.9 1s

Il

mum pressure in Fig. 4 for the larger piston ka

about 247 larger than for the smaller piston ka = 1l in Fig. 5.

12
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The pressure is also more undulatory (i.e., the ratio of the
maximum pressure to the minimum pressure increases) for the
larger piston. All of the above features can be explained quali-
tatively by considering the two-term approximation Py. As kd1
is increased, the magnitude of the second term in the parentheses
in P2 in Eq. (28) is increased; therefore the pressure be-

comes more undulatory as the spacing between pistons is increased.
If we keep the ratio vaz/dldz constant in Eq. (28) or Eq. (31),

then for a larger piston we have a larger kdl’ and thus a larger

maximum pressure and a more undulatory pressure distribution.

Although P, is useful as a guide to the general be-
havior of the pressure, it is of less value in the calculation of
the actual pressure magnitudes; see Table I. Furthermore, P,
does not agree with the behavior of the pressure for ka = 0.5
in Fig. 4; while the maxima and minima should be located at
iﬁl/é independent of 90, d2’ or a, the maxima and minima have
been shifted for the ka = 0.5 curve in Fig. 4. This curve is
the only one of those shown in Figs. 3, 4, and 5, for which
a < d1/4, i.e., for which Eq. (29) predicts a maximum pressure
on the adjacent baffle off the surface of the piston; however,

the actual maximum is on the surface of the piston.

Moreover, according to Eq. (27) P, is independent of
ky, while the contours of |P| in Fig. 6 for z = 0 show a ky de-
pendence. The pressure contours in the planes x = 0 and y = 0

are shown in Figs. 7 and 8, when kd; = kd, = 3, ka = 1, ¢_ = 0°,

13
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and 8 = 60°. Since @ = 0°, the pressure field is symmetric
about the x-axis, and only pressures for ky > 0 are shown. For

large values osz,lP‘ = 0.63 in Figs. 7 and 8.

C. RADIATION IMPEDANCE
th _th g
The force on the m  ,n piston divided by the velo-
city Vi is the radiation impedance pcwazz, where Z is a dim-
ensionless radiation impedance coefficient. Due to symmetry Z

is the same for all pistoms.

Z=(1/7ra)fdafdrrPL = R + iX
o o =0 (32)

where x = r cosa, y = r sina, and P is given by Eq. (21). The
integrals in Eq. (32) are the same as in Eqs. (19) and (20), thus

2
- © |2J, w(n,m)ka
_ ira 1 : e |
Z = 313; nz;w m;i; w(n,m)ka T(n,m) (33)

For kd1 < Ty kd2 < 7 the dimensionless radiation resistance R

is given by the n

]

m = 0 term,

2
o qal [Hy (ke sing )|°
dle ka Sin—go J Cosgo : (34)

14
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while the reactance X is given by the infinite sum without the

n=m= 0 term. The corresponding quantities Zc =R, + 1xc for

the continuous plane radiator arelo
R, = 1/cosOo, (35)

The fact that the radiation resistance should be proportional
to 1/coseo can also be deduced for a finite array for $. = m/2

by the use of arguments involving the array beamwidth in the

far field.®

One could also obtain the radiation impedance by
summing an infinite series of the appropriate mutual coupling
coefficientslg; however, the series in Eq. (33) converges more
rapidly than such a series of mutual coupling coefficients, and
thus is more useful. An approximate expression for Z has been
obtained beforeZ0 by the application of Poisson' s sum formula

to a summation of approximate mutual coupling coefficients, but

the exact Eq. (33) is even simpler than the approximate expression.

Fig. 9 shows X vs. kd; = kd, for three values of 6,
and ka = 0.5, Go = 0°. As the spacing between pistons is in-
creased, the radiation resistance R is decreased, which is ob-

vious from Eq. (34), and the radiation reactance X is increased,

15
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as shown in Fig. 9. The radiation resistance is proportional
to the energy which is radiated to the far field; the radiation
reactance is proportional to the energy which just fluctuates

in the near field.21

When the whole plane is vibrating, then
there is no energy fluctuating in the near field, see Eq. (36),
while for the set of parameters used in Fig. 9 the near field
fluctuating energy is increased as the ratio of ﬁhe active pis-
ton areas to the passive baffle area is decreased by increasing

kd1 = kd2 and keeping ka constant.

If the ratio of the active piston areas to the passive
baffle area is decreased by decreasing ka and keeping kd; = kd,
constant, the near field fluctuating energy may be increased or
decreased, see Fig. 10, where X vs. ka is shown for three values

of 0, and kd; = kd, = 3, §_ = 0°.

Fig. 11 shows X vs. 8, for three values of ka, and

kd1= kd2= 3, ¢o= 0°-

In Fig. 12 the radiation impedance of a piston in the
infinite array is compared with the average radiation impedance
Rav + ixav of a piston in a finite array of 12 rows (parallel
to the y-axis) and 229 columns (parallel to the x-axis). The
radiation impedance of a piston in the finite array is obtained

19 and

by summing the appropriate mutual coupling coefficients,
in general the impedances vary from piston to piston. The

average radiation impedance for the finite array is obtained

16
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by summing the impedances of all the pistons and by dividing the
sum by the total number of pistons. The agreement in Fig. 12
for kd; = kd, = 2.51, ka = 0.80, ¢o = 0°, is good except near

90 = 90° where, of course, R for the infinite array becomes in-
finite, while for the finite array B, is finite.

D. CONCLUSIONS

We have obtained more rapidly convergent infinite series
expressions for the near field pressures and the radiation im-
pedances of circular pistons in an infinite phased array. Numer-
ical results have been obtained for a limited number of cases,

and these cases indicate:

1) A single-term approximation P,, see Eq. (24), is
sufficient to represent the pressure if the distance from the
array kz is larger than 1 or if the array consists of small
(ka << 1) pistons close together.

2) A two-term approximation P,, see Eq. (27), gives
a rough estimate of the pressure when ¢o = 0%, 90 3 kd, <,
and kd2 < kdl; in particular an approximate location, see Eq. (29),
and value, see Eq. (31), of the maximum near field pressure can
be obtained, and some gross features of the pressure distribution
can be predicted.

3) For @, = 0° the pressure distribution is relatively

smooth, but as Oo increases, the pressure distribution becomes

17
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more undulatory, and the maximum pressure increases.

4) If we keep the piston radius constant and in-
crease the spacing between pistons, the pressure distribution
becomes more undulatory.

5) If we keep the ratio of the piston areas to the
baffle area constant (sometimes called the "packing factor'),
then larger pistons further apart have a larger maximum pressure
and a more undulatory pressure distribution than smaller pistons
closer together.

6) The near field pressure magnitude and the radi-
ation resistance increase without bounds as 6 - 90°, while the
radiation reactance remains finite for kd1 < 7 and kd2 < e

7) The radiation impedance of a piston in the in-
finite array agrees well with the average radiation impedance

of a piston in a large finite array, except near 0, = 90°.
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TABLE I
Comparison of |P2\ - and the actual

maximum of |P|.

kd, kd, ka 9, 1Py] oy | Maximum |P|
3 3 1 60° 1.19 1.18
3 3 1 80° 2.74 2.55
2.5 2.5 1 60° 1.39 1.26
2 2 1 60° 1.95 1.64
3 3 1.5 60° 2.67 2.04
3 3 0.5 60° 0.30 0.47
3 2 1 60° 1.78 1.59

= 0° for all cases
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FIGURE 7.

PRESSURE CONTOURS IN THE PLANE x = 0
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