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ABSTRACT

This report examines the effects of multiplier offset voltages
in adaptive arrays. Multiplier offset voltages arise when active
circuits are used to implement the error-by-signal multipliers re-
quired in an array based on the LMS algorithm. These offset voltages
are known from experimental work to have a strong effect on array
performance.

It is first shown how multiplier offset voltages may be included
in the differential equations for the array weights. Then their effect
on weight behavior is studied. It is found that the offset voltages
affect the final values of the weights, but not the time constants.
Furthermore, the effect they have is influenced by the amount of
element noise in the array. An adequate amount of noise is necessary
to minimize weight errors due to offset voltages.

An example is treated to show the effect of offset voltages on
the final array weights and the output SNR. With offset voltages
present, it is found that there is a maximum SNR that can be obtained
from the array. A specific input SNR is required to obtain this maxi-
mum output SNR.

Finally, it is shown that a finite operating range for the weights
places a further restriction on the acceptable values of offset volt-
ages and noise.
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INTRODUCT ION

Adaptive arrays have been under investigation for several years.
Widrow, et.al.[1], suggested the LMS algorithm and did computer simu-
lations of arrays based on this concept. Shor[2] and Applebaum[3]
have also discussed closely related concepts. An early experimental
adaptive array was built by Riegler and Compton[4]. Recently, a 4-
element adaptive array was constructed and used to perform extensive
pattern measurements with elements on an irregularly shaped surface
[5,6]. Adaptive array techniques applicable to spread spectrum com-
munication systems are also under study[7,8,9,10,11].

Adaptive arrays based on the LMS algorithm require the signal
on each channel of the array to be multiplied by the error signal
(the difference between the array output and a reference signal). It
has been found experimentally that the design of these multipliers is
a critical factor in obtaining good performance from the array.
Specifically, the problem centers around the presence of small d-c off-
set voltages at the outputs of the multipliers. These offset voltages
are unrelated to the signals; they arise because the multipliers are
implemented with active circuit devices. (For example, in an array
under study at Ohio State, transconductance multipliers have been used.
The offset voltages are due to imperfect balancing in the devices and
the associated circuits.) Since the output from each multiplier gqoes
directly into an integrator that controls an array weight, the offset
voltages cause the array weights to be in error and thus can have a
strong effect on array performance. Furthermore, it has been found that
the effect of the offsets depends on the amount of noise present in

the array. A certain amount of noise seems to be necessary to counter-
act the offsets.

The purpose of this report is to study these effects from a
theoretical standpoint. In Section II, we show how the offset voltages
may be included in the differential equations for the weights, and what
their effect on the weight behavior is. It is found that the form of
the weight transients depends on whether the array is underconstrained
or not. In Section III, it is shown that the array is underconstrained
only when the number of signals incident is fewer than the number of
elements and when there is no noise. In Section IV, a 2-element array
with one signal incident and with noise is analyzed to show the effects
of the offset voltages. Finally, in Section V, we discuss the fact
that the array weights have only a finite operating range, and show
how this Timitation imposes a further restraint on the acceptable
values of the offsets and noise.




II. THE ANALYTICAL SOLUTION

The general configuration of an N-element adaptive array is shown
in Fig. 1. The signal from each element, y;(t), is split into in-phase
and quadrature components x;(t). Each xi(ts is weighted by a real co-
efficient w; and then summed to produce the array output s(t). The
difference between the array output and a reference signal R(t), which

is called the error signal e(t), forms the input to a feedback system
that adjusts the wj.
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Fig. 1. Adaptive array structure.

The feedback system is based on the so-called LMS algorithm[1,4].
Each weight is adjusted according to

dw
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where VWi[ez(t)] denotes the i-th component of the gradient of the
mean-square error signal ez(t). Since the error signal is given by

(2) e(t) = R(t) - Z] wi xj(t)

the mean-square error is

2N
(3)* e2(t) = R¥(t) - 2 L wi XTORE
i=

2N 2N
g lz] z] Win' X.iztj)(jzt’
=1 j=

Differentiating Eq. (3) with respect to w; yields

—_— 2
(4) Vw.i[ez(t)] = Bca(t =- 2 xi‘t’ctt, $

Wi

so Eq. (1) becomes
(5) gg = 2k (0% (t)

Equation (5) leads to the feedback loop structure shown in Fig. 2.

This feedback structure has been the basis for much of the recent work
in adaptive arrays[5,6,7,8,9]. .

*The overbar here represents the action of a low-pass filter, as dis-

cussed in Reference 10, page 5. For the present discussion, it is
also the same as an infinite time average.
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Fig. 2. Adaptive array feedback loop.

When the feedback system shown in Fig. 2 is implemented, it is
found that the error-by-signal multiplier is the most critical part
of the design problem. Ideally, this multiplier should generate the
product ¢(t)xj(t). In practice, a multiplier using active circuit
devices is found to be subject to leakage effects. nonlinearities, and
circuit imbalances. As a result, the multiplier output may contain
terms such as the following:

Multiplier OQutput = &; + eZthiitS * Ty x;(t) + cp e(t)

+ 3 x2(8) + g c2(t) + cg X (D)e(t) + -

The term e{t)xi(t) is the desired output from the multiplier, and in

a well-designed circuit is the dominant term. The term & is a small
d-c voltage unrelated to the signals xj(t) or e(t). We refer to &

as a Multiplier Offset Voltage. We will see below that this term can
have a strong effect on array performance. The physical mechanism
responsible for &; depends on the type of multiplier used. A trans-
conductance mu1t1p11er is one type that has been used[5,7], for example,
and in this case the offset voltages are due to 1nadequate balancing

of the transistor cells.

The terms cyx;(t) and cpe(t) represent leakage of the input sig-
nals into the mu1t1p]1er output. Since the output of the multiplier
goes directly into an integrator, only those multiplier output components
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centered around zero frequency are important. In adaptive arrays for
radio communications, the signals xj(t) and e(t) are bandlimited signals
at a nonzero carrier frequency and thus their effect on the multiplier
output can be ignored.*

Terms such as c3x12(t), C4€2(t), c5x12(t)e(t), and similar higher
order terms, result from nonlinearities in the circuit devices used
in the nultiplier. Although C3xi2(t) has a d-c component, this term
has been found to be negligible in practice. If it were not negligible,
however , it could be lumped together with 6; for purposes of the present
analysis. The term c4e2(t) also has a d-c component, but since the

error signal is small when the array is in steady-state, this term has
no effect on the steady-state performance. Higher-order terms such as

c5xiz(t)e(t) have been found to be negligible in practice.

Thus, we model the error-by-signal multiplier by the equation
(6) Multiplier Output = §; + e(t)xi(t)

Our purpose in this section of the report is to show how the effects
of the offset voltages &; may be analyzed.

We begin by examining the differential equations for the weights.
If the output of each error-by-signal multiplier in the array is of
the form in Eq. (6) , the array weights satisfy the differential equations

(7) idw_‘t_ = 2k [e(t)xi(t) + 651 1<i <N

When Eq. (2) is used to substitute for e(t) in Eq. (7), and all terms
involving w; are collected on the left, it is found that the weights
satisfy the system of differential equations

dw. 7 [ N el i
(8) —p + 2 _Z] [xi(t)xj(t)] wj = 2k [R(t)xi(t) + 61]
J:

*In adaptive arrays for sonar or seismic applications where baseband
signals are processed however, these terms could be important.




We define the matrices

x(thx(t)  xq(thel(t) - - - -

(9) ¢ = [ x2(t)xy(t) s
R(t)x7(t)

(10) S = | R(t)xa(t) s
%

(]]) W= Wz ’

and

(12)

Then Eq. (8) may be written in matrix form as

(13) %Vti + 2kow = 2k[S + 4]

Clearly s (which we call the "offset voltage vector") plays the same
role in the differential equations for the weights as does the vector
S, the correlation between the reference signal and the array signals.
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Let us consider the transient response of Eq. (13). First, we
make a rotation of coordinates into the principal axes of ¢. Let

(14) w=Rn ,

where R is a 2N x 2N orthogonal coordinate rotation matrix,

b & e - S
(15) R ={r ;
and

m
(]6) 0 = no

represents a new system of coordinates for the weights. By substituting
Eq. (14) into Eq. (13) and multiplying on the left by R-1, Eq. (13)
be comes

(17) dn + 2k [R°1 o Rln = 2 R[S + ]

If R is chosen so R™14R is diagonal,

M 0 0 ---
(18) RIR=n=]0 2 0 :
0 0 A3
7




then the components of n lie along the principle axes of ¢ and the
system of equations (17) is uncoupled. We define

P
(19) P=RTs= |p, .
and

N
(200  Q=RrRTa= |q :

and Eq. (17) becomes simply

(21) %%-* 2kAn = 2k [P + Q]

We refer to the components of n as the "normal weights" in the array.

The form of the general solution to Eq. (21) depends on the matrix
. Since ¢ is real and symmetric, its eigenvalues are necessarily real.
Furthermore, ¢ is non-negative definite. To see this, we note that the
mean-square error in Eq. (3) may be written in matrix form as

(22) e2(t) = R2(t) - 2w'S + w'low

(Superscript T denotes the transpose.) This may be rearranged[10] into
the form

(23) e2(t) = edin + (w - Wmin) T @ (W - Wmin) ’




where

(24) 2. =@(y) -sTels

and

(25) Wpin = 071S

(e%in is the minimum value ez(t) for any weight w, and wg;, is the

value of w yielding e2(t) = 2. ) Since e2(t) is the square of a
real quantity, it cannot be nP§3tive, and thus the eigenvalues of o
cannot be negative. Otherwise, large enough values of w-wpj, would

yield negative ¢2(t).

Since none of the eigenvalues of ¢ can be negative, the solutions
to Eq. (21) will not contain any exponentially growing terms. Some of
the eigenvalues can be zero (¢ can be singular), however, when there
is no noise in the array. The solutions to Eq. (21) will be differ-
ent with zero eigenvalues (@ singular) than with all nonzero eigen-
values (o nonsingular).

When some of the eigenvalues are zero, the system in Eq. (21)
will contain two types of differential equations. The ny associated
with nonzero x; will satisfy equations of the type

These have solutions of the form

-2kagt P; * Gj
(27)  ngt) =Aje 4

i

The constants of integration A; are found from the initial values of
nj(t) at t=0:




|

p. +q.'
(28) Aj = ni(0) - .

For these n;(t), the effect of the offset voltages §; (which are trans-
forued into the q4) is to alter the steady-state solutions of the
weights, given by

p- +q.
(29) ni(=) = 'J‘er;L
i

The n; associated with zero eigenvalues, on the other hand,
satisfy equations of the form

dn_i
(30) —& = %*(pi +qi)
for which the solutions are simply
(31) ﬂi(t) = Ai + 2k(Pi + qi)t

Again, the constants A; are determined from the initial values of the
nj(t):

(32) Ai oy ﬂi(O)

The effect of the q; terms here is to alter the slope of the ramp
functions in nj(t).

Thus, the offset voltages affect the final values of the normal
weights associated with nonzero eigenvalues, and affect the slopes of
the ramp response terms for normal weights associated with zero eigen-
values. We note that if any of the eigenvalues are zero, the array
weights never reach a steady-state condition, because the ramp functions
continue indefinitely. Since w is related ton by Eq. (14), we see
that in general each of the weights w; will contain both damped expon-
ential terms and linear ramp function terms.

10
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For the case where all of the A; are nonzero (¢ nonsingular) all
of the normal weights n; will satisfy Eq. (26). The ramp response
terms will not be present in the solution for the weights.

When ¢ is nonsingu]qr , the weights a ?roach a steady-state solution
Wgs, Which may be found directly from Eq. F 3):

(33) Wes = ¢~ 1[S + 4]

(Since ¢ is nonsingular, its inverse exists.) We note that in the

absence of multiplier offset voltages , the steady-state weight vector

would be wpin = ¢~1S, as given in Eq. (25). Hence the offﬁet voltages
A

shift the weights from their optimum point by an amount ¢~ Sub-
stituting
(34) W-Wpin = o 1a

into Eq. (23) shows that the steady-state mean-square error will be

(35) ess2(t) = emint + aTo™1a

i.e., the offset voltages increase the mean-square error by an amount

AT®'TA over its value with the optimum weights. Since the steady-state

mean-square error signal is closely related to interference null depths |
and output signal-to-noise ratio (SNR), the effect of this term is to -
lower the interference rejection of the array or to lower the output

SNR. Whether this change is significant or not depends on the values

of 4 and ¢, and also the value of epin¢. We consider an example in
Section IV.

It is interesting that the steady-state weights in Eq. (33)
result in zero output voltages from the error-by-signal multipliers.
To see this, we note that the steady-state error signal is

(36) ess(t) = R(t) - X" Wss |

11




where

X](t)
(37) X = | x(t)

Since the output of the i-th multiplier is e§t5x1(t) + 85, the steady-
state output of the multipliers, expressed in vector form, is

(38) Kego(T) + & = XR(E) - XXT Weg + 4 =S -0 Wgg + 4

But substituting for wgg with Eq. (33) yields

(39) Xege(t) + 4 =S - 007! [S+a]+a=0

A11 the multiplier outputs are zero in the steady-state.*

Physically, the steady- state error signal has just the right
value that the product e(t)x;(t)_at the output of each muitiplier
cancels the offset voltage §;. This means that the residual error

signal, egg(t), is larger than its minimum possible value, by an
amount determined by the offset voltages. Of course, the larger
this residual error signal, the larger the amount of interference in

the array output, and the less the interference protection of the array.

*This analysis treats only average values. In actual fact, when there
is noise present the multiplier output is the product of two random
processes. Thus its spectrum contains an impulse function at d-c plus
continuous frequency components over a finite band. The above analysis
considers only the d-c term.

12
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Thus, to summarize, we find that when ¢ is singular, the weights
do not have a steady-state solution. They increase without limit,
owing to ramp functions in the solution. When ¢ is nonsingular, the
weights have a steady-state solution given by Eq. (33). The solution
causes the mean-square error signal to be larger than its optimum value
by an amount 2Te=1a. The residual error signal is just sufficient for
the error-by-signal product at the output of each multiplier to cancel
the offset voltage.

ITI. SINGULARITY OF ¢

Having shown that the form of the solution to Eq. (13) depends
on whether ¢ is singular or not, we next discuss the conditions under
which ¢ is singular.

For ¢ to be singular, two conditions are necessary. First, there
must be no element noise in the signals x;(t), and second, the array
must be underconstrained.

Consider first the effect of signals incident on the array. It
has been shown in a previous report[12] that in the absence of element
noise, the rank of ¢ is equal to twice the number of signals incident
on the array. In an N-element array, ¢ is of order 2N x 2N, and thus
the rank of ¢ will be less than 2N whenever there are fewer than N
signals incident on the array. In this case, ¢ is singular and we
say the array is underconstrained.

Next consider the effect of element noise. By "element noise",
we mean noise due to RF components (e.g., mixers) behind each element
of the array. This type of noise is incoherent from one element to
the next. Element noise does not refer to a directional noise signal
received by the array; such noise would be highly correlated between
elements.

When element noise is present, we have
(40) xj(t) = nj(t) + si(t)

where n;(t) is the noise component and s;(t) is the received signal
component of xj(t). When this x;(t) is substituted into Eq. (9), ¢
is found to be

13




where we use ¢s+n to denote ¢ when both signal and noise are present
and ¢? when only signal is present. 0n2 denotes the mean-square value
of nj(t):

(42) n12(t) = onz

(we assume all nj(t) have the same mean-square valuc), and I denotes
the identity matrix. To derive Eq. (41), we have made use of the
assumption that

(43) ni(t)nj(t) =0 fori#3 .
and
(44) ni(t)sj(t) = 0 for all i,j

Equation (43) follows because the noise signals are uncorrelated be-
tween elements and also two nj(t) associated with the same element have
carriers that are in quadrature. Equation (44) follows because the
noise and signal components are independent.

¢ is due to signal alone. It is singular if the array is under-
constrained, as mentioned above. It is also non-negative definite --
none of its eigenvalues can be negative. Since the matrix_opll is
unaffected by a transformation of the type R'](onZI)R = onZI, the same
orthogonal matrix that diagonalizes ¢g will diagonalize ¢g4n. Hence
each eigenvalue of ¢g+p must be equal to o2 plus the corresponding
eigenvalue of ¢g._ Since none of the eigenvalues of ¢ can be negative
(and of course opé > 0), ¢g+n Cannot be singular.

Thus, we have shown that ¢ cannot be singular except when there
is no element noise and the array is underconstrained.

IV. AN EXAMPLE

Now let us consider a simple example. Suppose we have a 2
element array, as shown in Fig. 3. Suppose there is one CW signal

14
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Fig. 3. A two-element array.

incident on the array from angle 67 with respect to broadside. Initially,
we will assume there is no noise. The element signals are given by*

(45) y1(t) = /2 a cos[ut - ¢]]
(46) y2(t) = /2 a cos[w;t]
where

*The factor v2 is included to make the in-phase and quadrature signals
in Eqs. (48) - (51) have unit amplitude.

15
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(47) . l;i sindy
0

(L is the element spacing and A, is the free-space wavelength.) The
in-phase and quadrature signals are

(48) x1(t) = s1(t) = a cos[wyt - 671
(49) xp(t) = sp(t) = a sinfmt - &1
(50) x3(t) = s3(t) = a cos[wyt]

and

(51) xg(t) = sq(t) = a sinfwt]

Substituting these into Eq. (9) yields for ¢:

£ P 2 2
a a a .
V 0 7 coS¢] E—-s1n¢]
al al { al
0 5~ -3~ sing) 7 COSd
(52) ¢ = 0g =
Vs 2 2
a - L i L
E—-cos¢1 > singy 2 0
2 2 Z
a : a a
é—-s1n¢1 > cos¢y 0 >

16




(The subscript s indicates that this matrix applies when only signal
is present.) This matrix has been studied previously in Reference 10.

An orthogonal coordinate rotation matrix that diagonalizes ¢g is given
by
- €0S9q -sindy COS9q singq
singj - C0s¢] - singy COS¢q |
(53)  R=-— h
V2 1 0 1 0 }

0 1 0 1 //

The product R']¢SR is found to be

0 0 0 0
1 0 0 0 0
(58)* R7'¢.R = A, =
® + 0 0 al 0
0 o0 o0 a2
so the eigenvalues of ¢g are 0, O, a2, and a®. Since ¢ has two zero *
eigenvaiues and two nonzero eigenvalues, it is of rank 3 (twice the
number of signals). 1

Suppose furthermore that the reference signal is given by
(55) R(t) = coswyt

In other words, R(t) is a signal coherent with the incoming signal.
(The incoming signal is "desired".) Then the vector S in Eq. ?10) is
found to be i

*Since R is an orthogonal matrix, RT = R-1,

17




s1'n¢>-l

~j

(56) S

N o

The weights w; satisfy the system in Eq. (13):

(57) QU+ 2kogw = 2k[S + 4]

Making the coordinate rotation in Eq. (14) yields the equivalent system

of Eq. (21)
(58) 4+ 2kgn = 2kRT[S + ] = 2k[P + Q]
or
n 0 @ 0 0\ /n
(59) E%' 2 | +2¢] 0 O 0 O np
n3 0 0 a 0 n3
ng 0 0 0 a?/ \ng

The vector P = RTS is found to be

18
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P+ q
P2~ S
P3 * Q3
Py * G




(60)

-coséy singp 1 0 22c05¢] 0 \
i i -3 si !
g -singy; -cos¢y; 0 1 2_S1n¢] _ 0
2 cosgy -singy 1 0 23_ a/Z ,, .
sing; cos¢; 0 1 0 & 4

so the system in Eq. (59) yields the four uncoupled equations,

(61)

(62)

(63)

and

(64)

dn-l
dt = 2kqq ,
dnz
.d—t—_ = quz ’

dn
o+ 2kalng = 2 [_a. + q3J ;

dn
_4 4+ 2ka?
at "4

The solutions are

(65)

(66)

(67)

n](t) = n](o) + 2kq]t

n2(t) = np(0) + 2kgpt

n3(t)

19
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and

—

q ol Qq
(68)  nglt) = \:14(0) h Tt ,
a a

where the terms n;(0) denote the initial values of nj(t) at t=0.

These initial values are found from the initial values of the wj,
according to the inverse relation to Eq. (14):

(69) n = Rlw

In order to be specific, let us assume that the initial values of the
W; are
i

w1(0) 1
0 0
(70) b .
W3(0) 0
W4(O) 0

Then we find from Eq. (69)

/
n1(0) {=COS¢
n,(0) -sing
n3(0) 73 €os ¢
ng(0) sing,

Thus, Eqs. (65) - (68) become

COS¢]
V2

(72) n(t) = - + 2kqqt ;

20




(73) np(t) = - + 2kgot -
2 /r 2
Casdy 1 a 2kal ]
(74) n(t)=[ -—(————+q)}e' act (a__+q) ,
8 FA R Y R 2\
and
sing q E q
(75) ng(t) = [ ] -'€§] e 2Kkalt —%
V2 a a

The array weights Wi can now be found by applying the transformation

of Eq. (14) again:

/
w](t) /- cos ¢y
wo(t) sing
(76) el L ]
ws(t) V2 1

The result is

-sing;  coséq sin¢{\ n](t)
-cos¢y -sinéy  cos¢; : ﬂz(t)
0 ] 0 || ngtt)
] 0 1/ \nglt)

(77) W](t) =;— * K((S] = COS¢] 53 - S'.ln(p] 54)t
+ | L i o e (85 - SOB TR % B0 ) e‘Zk‘i‘:Zt
g 242 1 ¥ COS¢163 19
COS .
+ 53 + ;;5' (6] + COSq8g + s1n¢164) .




i
i

I P TN e

(78) wa(t) = K(ép + singié3 - cosgyég)t

-

sing; : -2kalt

+
2
sin¢>] ] )
= ;;2- (-62 * sing 6, - €OS$q6,) ’
COS¢]
(79) w3(t) 5. e + K(-cos¢ysy + singysy + 63) t
cos¢ -2kal
+ [ > L iz— (a + C0S¢167 = singy sy + 63):] e i
1 :
* —5 (a + cos¢y8y - singyep + 83) "
2a
and
sin¢] i
(80) wa(t) = - =t K(- sing16y - Cos$18y + 64)t

ol malll (O -2kalt
+ [ ok 2~a2’ (s1n¢]5] + Ccos¢y8, + 64)] e

=

1 . .
57 (s1n¢]6] + cos¢ys, + 64) .
where we have used Eq. (20)

(81) Q = R'a

to substitute for the q; in Egs. (72) - (75).
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The effect of the multiplier offset voltages can now be seen.

First, if these voltages were zero, the solution would be simply

(82) wi(t) = %+ (;— 5:—:31) o-2kalt f_;ﬁ ’
(83)  walt) = s;:¢‘ (e-2ka2t _ 7y

(84) wa(t) = (C:S¢] . 5%) (e'2ka2t - 1) :

and

(85)  wylt) = Si:"‘ (e-2kalt _ 1)

In the steady-state, after the transient has died out, the weights
would have the values

) CoSéq

(86) W] (°°) = —2— o+ "Z‘a_h )
sin¢]

(87)  wp(e) = - =5 .
Cos¢

(83)  wale) = - —ptt sk,

and
sin¢1

(89)  wl=) = - —
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The array output signal would be

CoS¢
Wil
w]x](t) = (JZ_ + Tr) a COS(m‘]t - «:\])

(90) s(t) = ,
;

e~
-

sino] \ ) C0S¢ 1

+ (- 5 j a s1n(w]t - 9) *+ |- . ok coswyt
singy

-~y a sinut = coswyt

This matches the reference_signal in Eq. (55) exactly, so the steady-
state mean-square error egsé(t) is zero.

When multiplier offset voltages are present, each of the weignhts
in Eqs. (77) - (80) contains a term that is linear with tine. In that
case, there is no steady-state solution. Each of the weights increases
without limit. (In a practical array, each weight has a finite oper-
ating range over which it can vary. A weight will increase until it
hits its maximum or minimum value. More will be said of this later.)

Next let us suppose that noise is present on each of the signals
xj(t). Instead of Egs. (48) -~ (51), we write

(91) x1(t) = ny(t) + a cos[wyt - ¢1]
(92) xa(t) = np(t) + a sinfwyt - ¢1]
(93) x3(t) = n3(t) + a cos[uyt]
(94) xg(t) = ng(t) + a sinfegt]

The noise signals have average power onz,
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and are uncorrelated from one channel to the next,
(96) ni(t)ni(t) =0 for i # j

When Eqs. (91) - (94) are substituted into Eq. (9), 3 is found to be
the same as in Eq. (52) except that an extra term o,¢I is added to the
diagonal terms, as discussed in Section III.

(97) Osep = opll + og

where I is the identity matrix. The subscript "s+n" indicates that
both signal and noise are present.

Since the matrix 0,21 will be unaffected by the diagonalization
transformation R-]¢s+ R, the same matrix R as given in Eq. (53) will
also diagonalize ¢gin: The result is

onz 0 0 0
2
0 o 0 0
2
(98) RToc, R = RT[0p214+0c R = 0nl1+Ae =
s+n n S n S 0 0 0n2+a2 0
0 0 0 On +a

Because of the noise terms, this matrix is no longer singular.

The differential equation for the weights, Eq. (13), becomes

(99) g%-+ 2kog W = 2k[S + 4]
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Applying the transformation in £q. (14) yields Eq. (21), which now has

the form,

(100)

Making use of Eqs. (60)

(101)

(102)

(103)

and

(104)

g.tm 2k[on2l + Agn = 2k[P + Q]

Ezl + 2kop2ny = 2kq
dt n M 1
dn

2 2
-d-—t-—-+ 2k0n n2 = 2kq2
dn3

@ * 2k(on?+al)ng

dn
a-t—a-; + 2k(on2*32)n4

The solutions are

(105)

(106)

(107)

a

(o

ni(t) = [n1(0) s

n

nz(t) onl
n

n3(t)

and (98) yields for the four ny equations,

; -2kop2t q
E,Z(O)-i?-i_] b, +L2 i
o
n

[ s]

] -2kap?t  qq
e + s
0n2

ag*ta/v2] -2k(0,2+a2)t q3ta/vZ
[“3(0) et |® +

a

. |
op ta |
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-
-

and

(108) ng(t) = [nq(o) s,

Assuming the same
(71)), we find

Finally, using Eq. (14)
replace the q; with the

oy

initial conditions as before (see Egs. (70)

to calculate the wy's
8i)» we obtain for the complete solution for

Q4
Jn2+62

+

J -2k(on2+a2)t
e

and

cos¢y  qq -2kon2t q
(109) n(t) = |- i i + — .
o SR ol
sing; % | -Zkop2t g,
cos q3+a//?'} “2k(on+a?)t qgta//Z
(111) () = v L oy .
: and
- sing g -2k(0n2+a2)t q
(112) (1) = [--l - -——-——-] e .
V2 on+al 0n2+82

(and using fq. (20) to

27

the w;'s,
-2ko,2t
(113) wi(t) =L+ 1 5 (- 81+63 COS¢1+64 sinmﬂ e
2 20, J
a cos¢ 1 1
+ %._ | (8+63 cose *84 singq)|
2(0n%+a2)  2(0,2+a2) . ]
~2k(0,2+a?)t
e
1 ( ) a COSO]
- - 81+ COS¢y +64 singy) + ——8—
20n2 3 2(on2+82)




(113)

cont.

(114)

(115)

and

1

F e {8y + 84 COSHy + 855 SiNG) .
Sl nagy - 10y ey ¥ B sl
: -2k, 2t
wo(t) = - 5 (62 + 63 siney - &, cosey)e
20p,
[ a sing, 1 ( ] -2k(on2+a2)~ ]
+ - + =8g+64 singy -84 cosop)l e
L2(0n4+a2) 2(on2+a2) e 3 ol ]J
+ 663 singy -84 cos¢qy) - —————
20,2 e 1 2(op2+a2)
NP (- 8p*é3 singy -8, cos¢q) '
2(on2+a2)
W3(t) = |- —5—= = —5 (-51 cosé] +6, sing +63) [ e
L 2op
+ > (=87 cos¢y +82 singy +83)
In
rcos¢ a ] =
+ _.?_l._ - (67 cos¢y = 85 sinsy + 62) |
L 2(0n2+a2) 2(0n2+a2) 1 2 1 3 J

-2k(cn2+a2)t
e

B g '—°"7f—__— (6 COS$7 =65 Singy +64)
2(0 2+a2) 2(on"+a ) P e i
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=2 - T {5 singy -82 cos¢q +54); e

20n2 g

(116)  wy(t)

( sing 1 T -2koplt
L

+ (=87 singy - &, cosgy +65) +

20n2

féin¢] 1 ] -Zk(cn2+a2}£

T - (81 singy +8, cos¢y +62) | e
2(°n2+32) 1 S 4 ]

&

1
+ ———— (&, sin¢q +3, cos¢ +8z)
2(°n2+52) 1 2 1

The effect of the noise and the offset voltages can now be seen.

First, suppose there are no offset voltages present. Then the
weights become

-2ko, 2t a cos¢ -2k({0,%+al)t
7)) =1e " +P- : ]e g

2 %)

2
op-ta

a cosoy

2(on2+82)
a sing; -2k(on2+a2)t a sin¢]
(118) wp(t) = ————e¢ e 5
2(0,2+a2) 2(0q2-22)
o, 2 Okl g Lyul
cos¢1 =-2kop‘t Cos ty 1 2k(on +al)t
(119) wa(t) = - e + - -
2 2 2(0n‘+32)_"
a
t —— )
2(0n2+82)
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singy - 2kcn2t sin¢] -2k(on2+a2)t
+ e

(120)  wyl(t) = - ——e 5

The final values of these weights are given by

a COS\’P]

2(cn2+a )

(121) W](“)

a sin¢1

(122) R
) wp(=) Yo

R SRS
2(an2+a2)

(123)  wgl=)

(124) wg ()

]
o

The desired part of the array output is then

E6) sl s T wbdeiitr s (
125 s(t) = Wi(w)s;(t) = ————[ cos(wyt - ¢7)]
i=] k 2(on2+a2) 3 !
a sing
MR B - sin(ut - 4101+ —=%—— [a cos(
2(o,2+a?) 2(op2+a?)
= a2
on2tal -
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It is interesting that because of the noise, the array output does not
match the reference signal exactly. The amplitudes differ by the factor
a2/0n2+a2. Although this is almost unity ghen the noise is small, it
can be substantially less than unity if op© is large. _Basically, the
array makes a compromise between the contri. ions to £2(t) c<ue to th
noise and those due to the signal. A weight setting that would cause
the desired output to match the reference signal exactly would resuit

in a larger totul mean-square error, because of the noise.

It is also ‘nteresting to compute the signal-to-noise ratio at
the array output and in the error signal. Since the noise signals on
each channel are incoherent, the total noise power in the array output,
Ng» is the sum of the noise powers from each element:

4
(126} Ny * gl I wid(=)

2(on2+a2)2

The signal power at the array ocutput is

( 1 84
127) S, = 5 ———5—
€ (o, 2+2%)?

Hence the signal-to-noise ratio (SNR) is

2

a

‘ (128)

Z|l wv
o

on

This is the maximum SNR it is possible to obtain with this array and
the given signals.* Hence we see that minimum e2(t) corresponds to

e R :
*The maximum SNR that can be obtained for an array of N elements is
N

.X](SNR)i, where (SNR); is the SNR on the i-th element (see Reference 13,
]:
Eq. (25)). The SNR on each element in this example is 52/20n2.
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maximum SNR, and in the absence of offset voltages, this condition is

achieved by the array. Also, we observe that the desired signal portion
of the error signal, eg(t), is

4
(029)  eglt) = R(O) - [ wile)sice)
]:
a2
= cosw,t - CoSwy t
1 L
2
o
= 10 COSw]t
0. .2+a

Hence the desired signal power in the error signal is

1 0n4

2 -
(]30) €g (t) e fm
n

Since the noise power in the error signal, e_nz(t)2 is the same as that
in the array output, the SNR in the error signal is

€ 2 T o 2
(131) -2 T e
en2(t) a

the reciprocal of the SNR at the array output. Similar SNR inversion
effects have been noted previously by Zahm{14].

Now we examine the weights when offset voltages are present. From
Egs. (113) - (116), the steady-state weights in this case will be given
by
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a cosgy 20n2+a2

(132) wy(=) = + 83
2(on2+a2) 20n2(cn2+a2)
= )
- 7 =" (84 COS¢$y t6s SING >
20n2(onz+a2) # e "
a sin¢] 20n2+a2

(133) wo (=)

u

= + 52
. 2(an2+a2) 20n2(on2+a2)

i a? (84 singy -84 COSéq)
s e Bel v D 1 = X c
20, 2(0y24a%) > :
(134) w3(x) = a - a? (6, cos¢y =6, singy)
2(on2+a2) 20n2(cn2+a2) L
20n2+a2
+ §

zanZ(anz +$ a2) 3

and
(135)  wy(e) S ) —T—T—ZG“A?‘Z
135 wale) = = —— (87 singy + &5 COS$y) + =— &
20n2(0n2+a2) L . € . 20y, (cn +a2) 4

The last two terms in each of these expressions represent the change
in the weight, away from its optimum point, because of the offset
voltages. Whether this change is significant depends, of course, on
the values of the various coefficients. Clearly, both

a

i — ..
on?* 0 2Jn2(on2+a2)

(136)

and Q
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20n2+a2
(137) Tim e S e >
onz* 0 2°n2(°n2+a2)

whereas the coefficient a/2(on2+a2) is bounded,

1
(138) lim %~——— =
2 2a

Thus, the offset voltage terms will dominate the final weights if nnz
is small enough. When the final weights are different than the values
in Egs. (121) - (124), the SNR at the array output will obvicusly be

poorer than in Eq. (128).

To obtain good performance from the array, it will be necessary
to kegp the last two terms in Eqs. (132) - (135) small. If the values
of o," and a are given, the multiplier circuits must perform so that
the &5 are small enough that they have only a minor effect on the
final weight setting.

In practice, however, the opposite problem is sometimes true.
After the array is built, it is found that the offset voltage can be
held only to within certain values. One is then faced with certain
offset voltages, and the problem is to choose the noise level in the
array so good performance results. Consider, for example, the problem
of keeping the last two terms in Eq. (132) small compared with the
first term. Suppose the offset voltages can be held only to within a
value D:

(139) |s;] <D for all i

(Note that the quantity 63 cos¢q + §5 sing; s Jjust a coordinate
rotation in the offsets §3 and J,, SO we a]so assume {6 Cos¢y +

84 sin¢gy1| < D.) Therefore the last two terms of Eq. 132) are bounded
by the quantity

200 + a al cn2+a2
D= D

(140) D+
20n2(0n2+a2) 26n2(0n2*a

To keep this small compared to the first term in Eq. (132), we must
keep the ratio
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dalhat D
°c2(0n2+“2) an2+a2 20
(141) a cos¢y T 5 2 a cos¢
. e n
2(on +a2)

small. This ratio is shown plotted versus on2 in Fig. &

2
of+a? 2D A
oé a cosQa-

MINIMUM ACCEPTABLE
i;///’ SNR
|
|

OUTPUT SNR

MAXIMUM ALLOWAZSLE
VALUE OF ORDINATE

i 6354;n2>
4D
0cos¢"‘-—;>
2D A SR SE e E -

acos ¢,

Fig. 4. Tradeoff between offset voltages and
output SNR.

It is seen that keeping the offset terms small will require the Eoise
to be larger than some minimum amount. On the other hand, as op
increases, the SNR at the array output (al/o,) drops. Thus, o’ must
be chosen to compromise between these conflicting requirements. There
is a finite range of values for ond where suitable array performance
is obtained. This fact has frequently been observed experimentally
(see Reference 6, page 8). In general,_the larger the value of D, the
smaller will be the allowed range of op¢. If D is high enough, values
of on¢ yielding good weight values will result in too low an SNR for
the commynication system.

Now let us compute the SNR at the array output when offset volt-
ages are present. The desired signal output is given by

4
(142) Desired Signal Output = | wi(=)si(t)
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Using Eqs. (48) and (132) - (135) to evauate this yields

.

52 ] , 1
: wi(=)s;(t) = ;i = i[} + %—(6] COS$y =85 sing +63)} coswit
oyc+a

Hes14>

(143)
1

=

* {%‘(6] singy +8p cos¢y +4z)| sinw;t;
<

bsanaminal

We see that not only is the amplitude of the desired signal changed by
the offsets, but also a quadrature component (sinwyt) now appears at
the output as well.* The total signal power at the array output may
be computed from Eq. (143), with the result

*This fact has certain implications for adaptive array systems in which
the reference signal is generated from the array output in a bootstrap
loop[7,8,9]. In such systems, the phase shift around the reference
signal generation loop is normally adjusted so the reference signal is
in phase with the desired signal at the array output. In the presence
of offset voltages, the array may be seeking a steady-state condition
in which the array output is not in phase with the reference signal.
Thus, as the reference signal phase tracks the phase of the array
output, a cycling of the weights may result.




|
=

18 a4 Canih 12
(]44) SO e e~ T 5-(5] Cos¢y - 52 SinQ] + 53)

p 2 "
i 1 : k
|- ¥ [5»(6] singy + S cosdy + 54)] ] |

% (87 cos¢y - 62 singy + 63)

|
n
—~
Q
N
+ H
f<%)
N
N
-
+

2
(672+6,2+557 +5,2) + — (8783 cosey - 8263 singy
a

+ 6184 singy + 8264 COS¢] )}

Similarly, the total noise power at the array output is found to be:

4

= & 1 2 4 4 .

(145) N, = 0,2 b, wil(w) = _____,_____.lg oy t2aop, (87 cos¢y - 8o singy) a
SR 20p2(an2+a?)L " " o

-+

(20242020, 2+a%) (5124624632484 ) - 2a2(20,2+a2)

(8163 cosgy + 8164 singy - 6263 Singy + 6,64 coséy)

\

g |

! 7 260n463

The SNR can be calculated from these two quantities for specific values
of §i and ¢1. As an example, suppose 6] = 6 = §4 = 0 and 63 # 0.
Then we find

~n

(2]
w

O
w

a

4 20 4 §.\2
| (146) S = — {} T i g i L s ( 3
| 0 a a® 2(0n2+32)
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R e m {6126”4 + (2% + 2a%0,% + af)s,2
% 250n463}
Hence
2 T
(148) S_‘i=02a4 Jﬁ ] +z-3) e ‘,
" la%o % + (20, + 2a%,2 + a4)632 + 2a0, 83 |

This SNR is smaller than the SNR in the absence of offsets, as
expected. It is interesting that for a fixed offset voltage &2, there
is a maximum SNR that can be thained. Differentiating Eq. (1ﬂ8) with
respect to the quantity a/on® shows that So/N, is maximum when

' 2
2 63 63

(149) el =9—J1 +2(~)+2(——)
onz 43 " ]

For this value of az/onz, So/Ng is found to be

83 §3)2
s, 1+2(3) -+ (3]
(150) N~°_=

© o (@[ ()T )]

)i1-.-.--.-“---'..‘.-.'....-...-..-.....IIIII-II'.ii




Larger or smaller values of az/onz than that in Eq. (149) yield lower
overall output SNR. The maximum output SNR is larger, of course, the
smaller d3/a.

V. PRACTICAL SYSTEM LIMITATIONS

In zddition to the effect of offsets on the final weights and the
array performance, discussed above, there is another practical aspect
of the problem. In a real system the array weights have only a finite
linear operating range. Each weight is the output of an integrator,
usually implemented with an operational amplifier. The output of this
integrator will have only a certain range over which it can vary. Thus,
if the theoretical solution for the weight behavior indicates that the
weight should increase to a large value, it may not be capable of
achieving that value because of equipment Timitations.

Consider again the equations for the normal weights nj(t). Some
of these, in particular those associated with zero eigenvalues of g
(for(whgch the eigenvalue of og4, is on), satisfy the differential
Eq. (26],

dng >
(151) JEt+ 2kog%ni = 2k(pj * q3) >

whose solution is given by Eqs. (27) and (28),

7 ps + Q4 -2kon2t P; * Qy
(152) nj(t) = l'ni(O) B L 5 }e - S
Gn an

This is a transient starting at n;(0) and ending at a final value of

. * Q4
(153) ni(m) i 0n2 ’

as shown in Fig. 5.
Fog nonzero pj or qi, this final value becomes arbitrarily large as
on“> 0, so_it can easily dominate the steady-state solution for the

wi. If op¢ is small enough, these terms drive the wy to the Timits
of their operating range.
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Fig. 5. Transient response of ns(t).

For example, consider our example of the two-eleme
one signal incident and element noise present.
the weights were given in Egs. (132) - (135).

on“, the final values of the weights are given

nt array with
The final values for

We see that for small

approximately by

(154) w](w) - 2] 5 (6] = 83 COSy1 - 84 singy)
(o)

v
(155) Wo(w) = > (52 * 85 singy - 84 €os¢y)

(156)  wy(w) Y ]

7 (83 = 67 cosgq + 6 singy)

(157) Wy (w) % (84 = & singy - 63 cos¢p)

N
Q |—
: '
~N
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As long as the offsets &7 are not zero, these weianhts can be aﬂgitrarily
large for small on¢. Clearly, the larger the §;, the larger cp¢ will
nave to be to keep each of the weights within its linear operating
range.

When one of the weights hits its saturation limit during an
adaptation transient, the value of that weight remains constant from
then on. The behavior of the system after this time can be found by
setting up a new system of differential equations for the remaining
weights. If the array is noise-free and the ¢ matrix is singular,
fixing one of the weights will reduce the order of the system to 2N-1
without reducing the rank of the (new) ¢ matrix for the remaining
2N-1 weights. In general, as many weights will go into saturation as
are required to reduce the number of remaining variable weights to the
rank of ¢. Expressed another way, each weight going into saturation
uses up one of the unneeded degrees of freedom in the antenna pattern.
As many will go into saturation as there are extra degrees of freedom.

If element noise is present, so & is nonsingular, the final weight
vector obtained if one of more weights go into saturation will no longer
yield minimum error signal. Since there are no extra degrees of freedom
when noise is present, there is a unique weight vector yielding minimum

¢2(t). If this weight vector lies outside the linear operating range
for some of the weights, it cannot be attained by the array. When
certain of the weights are constrained by saturation, the remaining

weights will go to the values yielding minimum e2(t) subject to the

weight constraints. This value of £2(t) will not be as low, however,
as could have been obtained without the constraints.

VI.  CONCLUSIONS

The effects of mu]tiﬁ]ier offset voltages have been studied. The
offset voltages 87 enter tne differential equations for the array weights
as shown in Eqs. 28) or (13). These equations may be solved by making a
coordinate rotation of the weights, as shown in Eq. (14). The resulting
differential equations, Eq. (21), can be solved for the normal weights
ni(t) versus time. When the ¢ matrix in Eq. (9) is singular (which
happens only when the array is noise-free and there are fewer signals
incident than there are elements), certain of the nj(t) exhibit ramp
solutions, as given in Eq. (31). In this case, the weights w; rise to
arbitrarily high values. For the noisy case, all nj(t) have decaying
exponential solutions of the type in Eq. (27). In this case, the weights
w; can also rise to very large final values if offset voltages are pre-
sent and there is insufficient noise.

A simple example was given in Section IV to illustrate the appli-

cation of these results to a specific case -- a 2-element array with
one signal incident and noise present. The effects of the offsets may
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be seen in the resulting weight behavior. For given offsets, there
is a minimum amount of noise for which the effect of the offsets is
negligible. As the noise is reduced below this value, the offset
terms dominate the weight solutions. The output SNR from the array,
which would be optimum in the absence of the offsets, is found to be
degraded because of the offsets. Furthermore, it is shown that with
offset voltages present, there is a maximum output SNR that can be
achieved. Input noise levels that are either too high or too low re-
sult in a poorer output SNR from the array.

Finally, it is shown that the finite operating range of the

weights in real equipment imposes a further constraint on the accept-
able values of the offset voltages and the noise.
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