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In this report we discuss adaptive array performance when a

i continuous sector of interference is incident upon the array. A
. model is developed for a two-element array with an arbitrary number
' of incident signals. From this model the array weights are derived
and formulas for the array performance are developed. It is then
shown how this model is readily extended to the case of a continuous H
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From these analytical results, the array performance is then !
examined for specific cases of spatially dispersed interference. It
is seen that the array performance is not always degraded as the *

interference angular sector becomes larger.
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ABSTRACT

In this report we discuss adaptive array performance when a

. continuous sector of interference is incident wpon the array, A

model is developed for a two-element array with an arbitrary number
of incident signals. From this mode]! the array weights are derived
and formulas for the array performance are developed. It is then
shown how this model is readily extended to the case of a continuous
interference sector.

From these analytical results, the array performance is then
examined for specific cases of spatially dispersed interference. It
is seen that the array performance s not always degraded as the
interference angular sector becomes larger.
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I. INTRODUCTION

Signal processing antenna arrays have been studied for many
years. For receiving arrays used in communication and radar systems,
1t 1s important that the output signal to nofse ratio (SNR) be
optimized. It is highly desirable that this optimization be auto-
matic. That is, for each change in the antenna or signal environment
(e.g., change in direction of arrival of the signals, change in
electronic components, etc.), the system should modify 1tself until
the SNR is again optimum. One method of achieving this modification
is through intemal feedback. Antenna systems of this type are called
adaptive arrays.

Shor [1] was one of the first to suggest an adaptive process
which maximized the SNR of an array of hydraphones. Widrow [2] et
al suggested a feedback technique which minimized the mean-square
error between the array output and a reference signal. Applebaum |3)
and Griffiths [4] discussed similar concepts. An early experimental

adaptive array was built by Riegler and Compton [5].

The behavior of an adaptive array with spread spectrum
communication signals has been studied by Reinhard, Huff, Compton
and others [7,8,10,11,13,14]. Bemi [9] has suggested a method of
angle of arrival estimation using an adaptive array. A four-element

array capable of arrival angle estimation and sensor communications

has been implemented and experimental results are described by
Swamer and Berni [15].
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In this report we study the performance of adaptive arrays
based on the LMS algoritha [2,3,4) when interference is incident on
the array from an angular sector of finite width., Previous studies
have concentrated on the case of interference signals that arrive from
a single direction is space. We begin by assuming a large number of
interference signals to be incident on the array (many more than
degrees of freedom of the array). The signals are assumed to be un-
correlated and to arrive from different directions within a certain
sector. The array performance is studied as a function of the size of

the sector. The case of discrete interfering signals is generalized

to the case of radiation arriving from a continuous sector,

In section 1] certain mathematical preliminaries are investi-
gated. By analyzing a one-element array, the effect of time wvary-
ing coefficients in the differential equations for the weights is
studied. It is found that under certain conditions these time varying
components may be neglected without greatly affecting the weight
solutions. In section 111 the general solution for the weights of a
two-element array with an arbitrary number of incident (W signals is
developed. In sections IV and V this solution is used to study the
system performance. In section VI the case of many discrete signals
is extended to a continuous column of inpinging radiation. The

weight solutions are derived. Finally, in section VII numerical

examples of array performance in a many-signal environment are presented.
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Il1. THE FEEDBACK ALGORITHM AND THE ARRAY STRUCTURE

An N-element antenna array with quadrature weighting of the
input signals is shown in Fig. 1. In this figure the quadrature
signals from the first antenna are denoted x,(t) and x,(t), those
from the second are x (t) and x,(t), and so forth. The weights asso-
ciated with these 2N signals (N antenna elements) are similarly
indexed. The array output may be written as

2N
(1) s(t) = [ wyx(t) .

i=]
We define y;(t) to be the signal incident on the {-th antenna. x;(t)
will be referred to as the element signal. The error signal s

2N
(2) e(t) = R(t) - Z u‘x‘(t)
i=]

where R(t) is the reference signal. Realistically, it must be assumed
that the desired signal contains modulation components that are un-
known at the receiver. Hence, the reference signal cannot be made
exactly equal to the desired part of the incoming signal, but can only
approximate it in some sense. For correct operation in an inter-
ference rejection system, it is necessary to generate a reference
signal which resembles the desired signal and correlates poorly with
interference [1425|. The array will then act to drive the error

signal to zero in the mean-square sense. Such interference rejection

is achieved by placing spatial nulls in the direction of interfering
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transmissions. One way to obtain a reference signal is to derive it
from the array output. Certain difficulties may arise, however, in

attempting to derive the reference signal from the array output. Some
of these are discussed in detail in [8,14,25].

From Eq. (2) the squared error becomes

2N 2N 2N
(3) e2(t) = ’7(t) - 2R(t) [ wx (t)+ J Lwiw,x, () x.(t).
jop 11 ju o1 19 ;
The mean-square error is thus:
Z2H o 2N 2N ko =
(4) e2(t) = R2(t) - 2 121 wi R(t)xj(t) + 1§1 Jleiwjx,(t)xj(t)

where the overbar represents the action of a low-pass filter as will

be discussed later in this section.

Differentiating Eq. (4) with respect to Wi yields

= -2x; (t)e(t) .

2t o ac""t!
(5) v"i [e2(t)] :

%

The feedback system is based on the so called LMS algorithm
[2,3,4 |. Each weight is controlled by the relation

d —_—

(6) % .. kv"i [e2(t)] .

Then from Eq. (5), the feedback equation becomes




el Cil andid =

dw .

(7) d—t—‘ = 2 e(t)x;(t)

which leads to the feedback structure shown in Figs. 2a and 2b. When
Eq. (2) is used to substitute for (t) in Eq. (7), and all the terms
involvingw; are collected on the left, it is found that the weights

satisfy the system of differential equations given by

dui 2N

(8) prade 2k jzl (xi (thxg(t)Iwy = 2k[R(t)x;(t)] .
The system of Eq. (8) may be solved (under certain simplifying ,
conditions) to yield the time response of the weighting coefficients
wj(t). From the weight solutions, the performance of the system
under various conditions may be studied.
Before examining the method of solution we discuss the meaning

of the overbar. We have stated previously that the overbar represents

the action of an ideal low-pass filter. For example, if x‘(t) and

R(t) in Eq. (4) each contain two CW signals of different frequency,
their product will contain d.c. terms along with components at the
sum and difference frequencies. Typically, multipliers used in an
adaptive array will not pass the sum frequencies. For example, in
one array implemented at Ohio State [15], the array processing was

done at 70 M-Hz. Trans-conductance multipliers were used, which did

b 400 St hRiet b

not pass frequencies higher than 100 M-Hz. Therefore, sum frequency

terms (at 140 M-Hz) were not passed.
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The difference frequency terms, however, were within the pass-
band. In previous studies of adaptive arrays with CW signals, the effects
of these difference frequency terms have been neglected[5-11,13,15,16,21-25].
In this section, we discuss the conditions under which these terms may be
neglected without affecting the solutions of the weights. It will be
shown that there exists a cutoff frequency beyond which the effect of
these difference terms may be neglected. It will also be demonstrated
that the power contained in frequency components below this cutoff fre-
quency will be small compared to the power in the d.c. component. These
conditions will allow us to neglect all but the d.c. terms in Eq. (8).

Let us suppose that a one-element array has two CW signals

incident upon it. The signal is
(9) y(t) =J§'al cos(w t) +/2 a, cos(u,t).

We assume ideal reference signal processing is available
(i.e., the reference signal is perfectly coherent with the desired
signals and is unaffected by the weights), and the reference signal

R(t) is given by

(10) R(t) = cos(w t) + cos(u,t).

In other words, R(t) is coherent with both signals (i.e., we have

chosen both signals to be desired). Upon quadrature splitting we 4
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obtain for the element signals

(11) xl(t) -a cos(ult) ta, cos(uzt)
and
(12) xz(t) =a sin(wlt) +a, sin(wzt).

Since the cverbar represents an ideal low-pass filter with a

cutoff frequency higher than w -w, but Tower than 2w, and 2u,, the

terms x;{t)x;{t) are

BTy T
(13) x (t)x (t) = = + aa, cos((w-w,)t]
——— a2 e a3
(14) x,(t)x,(t) = e F cos[(w, -w,)t]
and
(15) X, (t)x,(t) = x (t)x (t) = 0.

We also find

(16) R(t)x (t) =

cos[(w,-w,)t].




and

+a

(17) R(t)x, () = - a'z ?sin[(u,-u,)t] .

When Eqs. (13) - (17) are substituted into Eq. (8), the

differential equations describing the weights can be written in

matrix form as

24 2

. w,(t) aé a; + a,a,c08(aut) 0 \ 1;(t)\

(18) Ge\w,(t) ) * 2 aj+a; L )
- —— + a,3, cos(aut) [W,(t)

a*a, + (a+a,)cos(aut)

-(a;*a,)sin(awt)

where
(19) b = 0w,

Let us examine the equation for weightwl(t). We notice that the
system of Eqs. (18) is uncoupled, so we can solve for the weights
independently of one another. The equation describing the reponse of
the in-phase weight (w,(t)) is then

dw(t)

(20)  —— + [A + B-cos(aut)uy(t) = [C + D-cos(but)] u(t)

10




(24) D=k - (a; + a,)

and u(t) is the unit step function. We arbitrarily choose the initial
value ofwl(t) to be zero at t = 0-. The Fourier transform ofwl(t) k

exists and Eq. (20) may be written in the frequency domain as

(25) (Ju) = Wy(w) + A Wy(w) + 5 [Wy(wtbo) + Wy (w-to)] =

C o [r- 6(0) + 3= 1+ 75+ [6(u-tu) + 6(uwhtw)] + L—

(80) 2-07




where W,(w) is the Fourier transform of w,(t), ¢(«) is the Dirac

delta function and

(26) i=J/-.

Solving Eq. (25) for W,(w) and taking the inverse Fourier

transform shows

(27) W,(t) = [e'At < u(t)]* [C - u(t)] + [e'At « u(t)) * [D - cos(awt) -

- [B - wy(t) - cos(aut)] * [e™At . u(t)]

where "*" represents convolution in the time domain, defined by

(28)  £(t) * g(t) = f Blkoe) « glnhie = J £(r) - glt-t)dz = Flu) - 6

w -

The first two convolutions of Eq. (27) are easily performed. The

third may be written in integral form yielding as an expression for

w(t):

(29) wy(t) = & - & oAt 4 ADie™ , 0:[A-cos(tut)e(t)-sin(aut)]

A2+(A“)2 A2 + (M)Z

>

u(t)]

(v).




t
-B - I e A(t-1) cos(dwr) « w,(1)dr .

-

We can generate an asymptotic expansion for u,(t) valid for
large (Aw). Continually integrating the final term of Eq. (29) by
parts will yield a solution of the form

t o _are- a,(t,aw) a,l(t,a)
(30) B - J e At T)'COS(Mt)'W,(t)‘dr . w,(t) + 2—2-_ w, (

a,(t, o)
+ —— ¢ wl(t) +oeee
(A24+(80)?)?

When this result is used in Eq. (29), the solution for w, (t) may be
approximated by the first term of the series if aw is high enough.
Integrating Eq. (30) by parts we find

t
(31) B - I e-A(t-r)'COS(MT)°Nl(T)dT = IA'B'QOS‘Mt!*B"MI'S“\‘Mﬁ)I - “l(t)

- AZ + (8w)?

B'e-At

t
3 Nr(ba)? J eAT(A'cos(A“”)*(A@)‘Siﬂ‘AwT))\'ll(t)dt A

Recall from Eq. (20) that




(32)  w,(x) = [C+D-cos(bur)Ju(t) - [A+B-cos(twr)] * wi(1).

Substituting for W(tr) into the last integral of Eq. (31) only those
terms of Eq. (32) which contribute to a (t,sw) (i.e., W (1) =

D cos(awr) u(t) - B cos(awr) W, (1)) yields

Be-At

(33) =——r
A2+ (Aw)?

t .
I eA'(A'cos(Aur)+(Au)-sin(Amt))'wl(t)dx-

B-e-At t Ar
| .+ (AD-A-B-w,(x))dx .

e
A2+(M)2 0 2

Continued integration by parts of Eq. (34) again results in
integrals containing *l(r). Substituting in each case for (1)
only those terms of Eq. (32) which contribute to al(t.Aw) enables us
to write Eq. (33) as

-At t A
B-e e = B:D -
(38) ¥ +(0a)? jo ; (A-D-A+B+w, (1)) dv AR (1-e™")

-B -w,(t) At

+ B C-te

Ale(sw)® A%+ (M) . y
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We can then substitute the result of Eq. (34) for the integral
expression in Eq. (31). Upon substituting Eq. (31) into Eq. (29), we

Jl find
]
(38)  wy(t) = & - & oAt L ADe” ", D (A-cos(fut)+(bu)-sin(dut))

-] 1 ‘ A A2+(Aw)2 Az + (M)z

)

J (A+B-cos (awt)+B- (aw)-sin(swt))-w (t) B*D-ﬂ-e'“‘)

3 A+ (8w)? R + (20)?

R

2
MLl L S s

A2 + (8w)? A%+ (Mw)?

We can now solve Eq. (35) for w,(t). After a long period of time

(i.e., after the transients have died out), we obtain for w,(t):

(36)
i A-D-cos (But)+D- (8w)-sin(Aut)-C+B-cos (aut) - BLLlC . gip(aut)

Ei R Xt (8w)2+ A-B-cos (Awt)+B* (dw)+sin(Awt) + B2

The first term on the right side of Eq. (36) is the steady-state term
which would occur if Becos(Awt) and D-cos(awt) were neglected in

Eq. (20). Eq. (36) is bounded by

15
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r‘r*“ﬂ -

o AD + D-(84)-C-BB - (4) C/A
A +(8u) +B -AB-B- (4)

(37) w,(t) < §
tre

In other words we have replaced the sin (Awt) and cos(Awt) terms with
unity in the numerator and minus one in the denominator. From Eq. (37)
we notice that the second term will be small compared to C/A when

> A:D _ { 2 2\ o
(38) 4w > C k (a1+a2)

w .
0

In other words, when the difference frequency Aw is much larger than
the product of the loop gain constant (k) and the sum of the signal
powers, the steady-state solution for Eq. (20) will be approximately
C/A. We see then, that when the inequality given in Eq. (38) is
satisfied, the difference frequency terms (B-cos(awt) and D-cos(awt))
in Eq. (20) may be neglected. For example, in one adaptive array
built at Ohio State [15] , the value of w, was typically between

100 Hz and 1 k-Hz. In this array, difference frequencies greater
than 1lk-Hz did not affect the weight solution.

In an adaptive array for communications, the signal "i(t) will
be a bandlimited process centered at some non-zero carrier frequency.
(For example, the Ohio State adaptive array [15| operated at 70 M-Hz
with a 10 M-Hz bandwidth.) It will be adequate for the present
discussion to assume that x;(t) has a flat power spectral density of
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height a and bandwidth b, as shown in Fig. 3a. The power spectral
density of x;2(t) will then be as shown in Fig. 3b* [26]. The multi-
pliers remove the frequencies centered about ch. Hence the signal
X{Z(t] has spectral density shown in Fig. 3c.

Thus, each term W in Eq. (8) contains a d.c. com-
ponent (the impulse at w = 0 in Fig. 3c) and a time-varying component
(the power contained in the continuous spectrum from 0 to b in
Fig. 3c). From the asymptotic solution to Eq. (8) given in Eq. (37),
however, it is clear that only those frequency components of
m)_xﬂ'ﬂ' that lie below the cutoff frequency w, will have an effect
on the solution to Eq. (8). We may safely ignore all frequency com-
ponents of x;{t] x;(t) above w,. Retuming to the Ohio State
adaptive array as an example (with 10 M-Hz bandwidth), we see that
the time-varying portion of mwin have baseband frequency
components from 0 to 10 M-Hz. The feedback loop bandwidth (uo) is,
however, only 1 k-Hz. Thus, the total power in the time-varying part

of x;(t) xj(tT is only about 10"' of the d.c. power. The part from 0 to

1 k-Hz need not be included in the differential equations (8). Re- |
ferring to the one-dimensional differential equation of Eq. (20), we
see that the situation is equivalent to having B<< A. In this case,
we may safely neglect the B term in constructing the solution to
Eq. (20).

' i3
*In general x;(t) = x,(t-r ). where t; is some time delay. Thus, :
xj (t) xj(t) ="x;(t) xi(t-r For thgs discussion, we assume t; = 0, R
so x;(t) xj(t) = x;2(t) the value of r; is not important for 'ime ' i
argunents dvanced here, which are only Qqualitative. -

4
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Thus we will solve Eq. (8) by including only the constant (d.c.)
terms of the products m To reiterate the arguments above,
the validity of this procedure rests on two observations. First, thev
solutions to Eq. (8) exhibit a “cutoff frequency" effect. Time-
varying terms in the products mwhose frequencies are higher
than this cutoff do not affect the solution. Second, in practical
array designs for communication systems, the value of this cutoff
frequency is very small compared to the RF bandwidth. As a result,
the power contained in the time-varying part of m below the
cutoff is extremely small compared to the power in the constant term.
For this reason, we may neglect the time-varying portion of X;(t)e
x;(t) entirely in solving Eq. (8).

When the element signals are random, the multiplier output is
the d.c. portion of the product of two random processes. We note that
this quantity is the same as the infinite time average of the product
of the two processes.

Having shown that only the constant part of x;(t) xj(t) needs
to be included in Eq. (8), we further note that the constant part
may be obtained from the infinite time average of xj(t) xj(t). More-
over, when all x;(t) are assumed to be ergodic processes, the time
average may be replaced by an ensemble average. We now retum to

the discussion of Eq. (8). If we define the matrices

19




xth)XI(t) Xl(t)xzm vae
(39) ¢= leth,lti

(40) S = m

and

Wl(t)
(41) W= Wz(t) ’

then Eq. (8) can be written in matrix form as

dw 4
(42) gt * 2ke W = 2ks.

Let us consider the response of Eq. (42). When there is more
than one antenna element, the system of equations will, in general,

be coupled in ¢. In order to solve this system, we first make a

20




rotation of coordinates into the principal axis of ¢. Let

(43) W =Rn

Gal Aoad bl Lo

where R is a 2N x 2N orthogonal coordinate rotation matrix,

[ — | —

"1 N2
(44) R=| r, .
and

n .
(45) n= | n, |

represent a new system of coordinates for the weights. By substi-
tuting Eq. (43) into Eq. (42) and multiplying on the left by R-1,
£q. (42) becomes '

- — — el Pa—y d e —

(46) 2+ 2k[R"ToRIn = 2kR"Ts .

If R is chosen so that R"1sR is diagonal,

— et it




A
(47) RVr=0=| 0
0

then the components of n lie along the principle axes of ¢ and the

system of equations is uncoupled. We define

P

1,
(48) P=R1s=p

. . . N

and Eq. (41) becomes simply

(49) 90+ 2k = 2kp .

We refer to the components of n as the "normal weights" of the array.
The form of the general solution to Eq. (49) depends on the

matrix ¢. Since ¢is real and symmetric, its eigenvalues are neces-

sarily real. Furthermore, ¢ is non-negative definite [21]. Since

none of the eigenvalues of ¢ can be negati.ve, the solutions to

Eq. (49) will not contain any exponentially growing terms. Further-

more, none of the eigenvalues can be zero when there is element

noise in the array [21]. By “element noise" we mean random noise due

to RF components behind each element of the arra&. This type of by

noise is incoherent from one channel to the next. Element noise ¢
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should not be confused with a directional noise signal received by

the array; such noise would be highly correlated between elements.

When element noise is present, the element signals (following

the quadrature hybrids) are of the form
(50)  x;(t) = ny(t) +s.(t)

where nj(t) is the noise component and sj(t) is the received signal

component of xj(t) (see Figs. 2). When this xj(t) is substituted

- into Eq. (39), ¢is found to be

a 2 g2
(81) ¢ =9 . =ol+ L
where we use ¢, to denote ¢ when both signal and noise are present

and & when only signal is present. °n2 denotes the mean-square value

ofi nj(t):

2 o 2
(52) ﬂi(t) o On
(we assume all n; (t) have the same mean-square value), and I denotes

the identity matrix. To derive Eq. (52), we have made use of the
assumption that

(53) ni(t)njzt) =0 for i#j, .f

23




and
(54) ni(t)sj(t) =0 for all i,J.

Since the matrix ¢,2I is unaffected by a transformation of
the type R”(unzl)R = 0,21, the same orthonormal matrix which diagon-
alizes & will also diagonalize ¢,,. Hence, each eigenvalue of
&4+p Must be equal too,? plus the corresponding eigenvalue of &.
The form of ¢, the eigenvalues and the rotation matrix will
also be dependent upon the number of signals incident on the array.
If we assume the incoming signals to be uncorrelated with one another

and the element signals to be of the form
) ’Z‘ (t)

55) x.(t) = n.(t) + $.4(t

( ) 1 1 j=-| 1j

then %4 will be

n

(56) Sguq it L
stn 0 G

sJ

where %j is the ¢ when only signal sj(t) is incident on the array.
Since the rotation matrix R will be made up of the eigenvectors of
tg4pn> its determination will become increasingly difficult as the
number of signals increases. A method of determining R and A for an

arbitrary number of signals is presented in Appendix I. We will,
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however, in the next section present a transformation which will

allow solutions for the weights to be determined and the order of the

system reduced by a factor of 2 with an arbitrary number of signals
present.

25
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5 IIT. THE GENERAL SOLUTION

The two-element adaptive array behaves in a manner similar to

higher order systems in that it has pattem flexibility. It is there-
fore capable of suppressing directional interference signals and its
anti-jam performance may be studied. In this section we develop the
general weight solutions for a two-element adaptive array assuming
CW signals and element noise are present at the array input.

The system of equations describing the response of a two-

- element adaptive array is from Eq. (42),

W, (t) W, (t) [ sie))

q w,(t) w,(t) s,(t) ‘\
67 & | wt) |* 2 wie) |7 | o)

w,(t) wu(t)/ s,‘(t)/

When the signals incident on the array are uncorrelated, it can be

shown that ¢ will be of the form

11 ¢12 413 d1y

(58} o =3 “%iz %1~ %13
¢31 932 33 P34

=032 431 =934 ¢33

It has been demonstrated by Compton [21] that when ¢ exhibits the type

of symmetry of Eq. (58), the system of Eq. (57) can be reduced to
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the form
Wy =jw, 114012 13tieg Wi=jw sy1-Jjs
(59) g? . *2k 4 1 2 - 2% 1=JS2
W3=Jw, $31*J032  33tid3, W3-jw, $3-JSy

(we will use "i(t) and w interchangably throughout). We have then

. formed a set of differential equations in terms of complex weighting

coefficients. Recall thatw, and w are the in-phase weights and w,
and ,, the quadrature weights of the array. The quadrature channel
represents a 90° phase delay over all frequencies. This quarter
cycle delay is symbolized mathematically by the operator -j.

The general configuration of a two-element adaptive array is
shown in Fig. 4. Let us suppose these are n CW signals incident
upon this array from angles 6 off braodside. We will assume m of
these signals to be desired and (n-m) to be directional CW jammers.
This situation is illustrated for n=2, m=1 in Fig. 5.

We define

(60) W, = wy-jw,
and

(61) Wy = wa-jw,
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where "~" indicates a complex variable. We also denote the colum
vector
W
- 1
(62) W=
%
L)

The complex correlation matrix Q, will be defined as

v v
A B
(63) {-=
v \
C D
where
(64) A= ¢, * it
v . .
(65) B = d13 * Jogy
’\l 3
(66) C = ¢3; + jos3,

v
(67) D = ¢33 + joa,

Finally, if we define the vector S to be

o s1- Js;
(68) S = =
2 S3= Jsy / 4

fhds o st TR b L o




then Eq. (57) can be written in matrix form as

N v
(69) 9 W+ 2kQ W = 2kS

Assuming CW signals are present, the received signals will be

of the form

(70) s;(t) = J2 - o ; - cos(u;t)

where

o5y = the signal amplitude
and

wj = the signal radian frequency.

Specifically, at the second antenna (see Fig. 5), the signal is given

by

n
(71) y,(t) = 1‘21‘/—2— * g, + cos(ut)

and at the first anténna,

n
(72)y (t) = iZIJZ_' I cos (w; t-a, )
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where ay is the phase shift between antennas due to the propagation
delay,

: _ 2nL "
(73) a = 7;; sin o,

(L is the element spacing and A\yj is the free-space wavelength at

frequency w;.)

With element noise present, the in-phase and quadrature

element signals are

(78)  x;(t)

n
s1(t) + mi(t) = ] o5, - cos(ut-a;) + ny(t)

(75)  x(t) = s5(t) + ny(t) = E 05, * sin(w;t-a,) + ny(t)

n
(78) x3(t) = s3(t) + ni3(t) = z Og.

’ cos(wit) + n3(t)
i

n
(77)  xy(t) = syu(t) + ny(t) = 1 o

g sin(mit) + ny(t).
i

The factor /2 was included in Eqs. (71) and (72) to make the in-phase
and quadrature signals in Eqs. (74) - (77) have unit amplitude.
Substituting Eqs. (74) - (77) into Eq. (39) yields for ¢:
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] 2 8= 3 0
0 a + 0 o’ +$ina 2 0. cosa,
R T O i BT T
1 q 1 1 2 1 2
ed = ) o> .cosa; -z ) 0 sina;, 3 ) 0. +o 0
4o 4 V0 Zqn 8y 1 C4qmy % W
g R e 2 1 & 2
= of .sina. = o cosa 0 o o +o
& T 121 H z b0

We observe ¢ exhibits the symmetry of Eq. (58).

Suppose furthermore that the reference signal is given by

(79) R(t) =A - 'f cos(wit)

i=1
where A is some non-zero constant. In a practical system where the
reference signal is derived from the desired part of the array output,
A will be chosen to have a value compatible with the equipment. This
fixed operating level is generally achieved by inserting a limiter
somewhere in the reference signal generating network |_15.25] o AT
Eq. (79), the reference signal is coherent with the first m signals.

If Eqs. (74) - (77) and Eq. (79) are substituted into Eq. (40), we
find

32

ra. . M rmr

e . rs




m n
s izl cos(uﬁt) 2] osi cos(akt-ai) + n(t)
= - = i=
(80) S $s A

n
Sy 'f cos (w; t) ) o sin(uit-ui) + ny(t)
i=1 i=1 7§

Since the reference signal is uncorrelated with the directional

Jammers and element noise, we obtain

'f
o CoS a.
1S i




We can also obtain the reduced form of ¢. From Eqs. (64) ~-

(67) and Eq. (78) we obtain

! '21 o gt L 3 o? eJa1 ]
o | 2451 85000 245 8 I
(83) Q= 3 ”
1 g o2 mJo%y ] 2 2
e e o + 0
21 84 s H O

The system of equations describing the response of the array
may now be determined. Making the appropriate substitutions into
Eq. (69) yields

n ja m Ja
n %‘ ) ol +o? ';- oe ! " Zose '
w1 i=1 % =1 59 Wi i=1 % |
d |
(84) < 2k y k
L Bl 0 o fe T
2 421 Sy 218 " i=1 S

We notice that the equations are coupled in Q. Solving the system

will require a rotation into the principal axes of Q. Had the order
of the system not been reduced, we would have a system of four
coupled differential equations to solve. The coordinate rotation to
uné:oup]e the system would be extremely tedious. Diagonalizing the
system of Eq. (84) will be obviously much simpler.

We begin by determining the eigenvalues of Q. Since b is

Hermitian, its characteristic values are necessarily real. Let
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(-
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n -
1 g 2 o % % ) 52 eju1
0 i=1 Sy i=1 3§ ;
(85) ‘Q'AII = ‘ - o
- 1 1, Sy L o
z o, e 5 L 0. +g% -]
= 121 S “qxy g 0

n
Hereafter } will be represented by ;. Expanding Eq. (85)
i=1
yields

1 2 I% 2 39
1 2 2., - —-(Z ol e Jol e = 0.
(8) (2 §°si+°n )2 AT s TS

Solving the above quadratic equation for A gives for the eigenvalues
of 6:

1/2
1 2 1 y )
(87) M=ol+5 Jo +—(Zo +2 ) Jel s .

no2 3sy 2 Fos; i3 S S cos(ai aj)

itj
and
1/2

Rk e S 4 1l o2
88 Ay = 0"+ = )o - = g +2 0. © CO,S(a--u-))
(88) 12 =g, 2 g sy 2 (g S5 1378; 8y 30

it

From Eqs. (87) and (88) we can now determine the eigenvectors

- of Q. Let E; denote the eigenvector associated with Aj. We require

5 % S

(89) (- AI)(E;) = o.
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Substituting Eqs. (83) and (87) into Eq. (89) yields

(90)

1/2 ja,
-1 Yot +2 V) o2 a2 cos(a.-a.)\‘ 1 Jo2 e !
2 i S i35 SiSj R 2 F S5
i#]
i
=3 1/2
] z‘ 02 Ja1 ](Z [N 7 2
= e - > 2o% +2 § Jo2 02 cos(a.-a.)
2 i S 2 iS5 i3 S; 84 i ] ;
i#j s j
€13 |
A = 0,
€21

We then obtain two equations of the form

Vnny Y

(9]) F€11 +G€21 =0
and

v
(92) @*¢); + Fep, = 0

where
1/2

1
(93) ?=-—(Zo" +2) ) 022 cos(a.—a.)) X

2 i S i3 S5 sj T

it]
v 2 39

(94) G-E gosie

and superscript "*" denotes the complex conjugate. However, if we
notice
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]
)
]
]
]
]
]
]
]

el b

", ‘vu
(95) F2 = BB*

then the eigenvectors can be chosen to be

2 (Hae s 2y eostepmep )
= -F e .
(96} Br=| o 5 i)
G -ja.

1 z 2 1
e o e
2 ;S

n n
We hereafter denote ] J by J J.
i=1 j=1  i#]
i#J

Similar calculations show the second eigenvector to be

Mo e e e )
- o + 2 o< o cos(a., =-a.
2 ( 3 S. i3 Si S s 1 J

1 J
u
(97) E, =
S e |
2 g %8, © |
If from the eigenvectors we form the matrix
~, Voo
(98) = (E}»E,)
then
ValV Vv
(99) Z QZ=A

37




where A is a diagonal matrix composed of the eigenvalues of Q and

superscript "~1" denotes the inverse matrix. If from 7 we construct

v
a unitary matrix R given by

(100) K = J]=
then

3 n
(101) R = R

where "t" represents transpose conjugation. We require

XY

(102) ‘R=1

where I is again the identity matrix. From Egs. (96) - (98) and
Eq. (100), we obtain for R:

1
/2 5
%-(Zo“ +2 Z Zc o2 cos(a -, )) %-(Zo“ +2 Z Zc o? cos(ai-ajﬁz\

1 1 i S SJ
(103) R = L
dk

-ja

N —
-
Q
mh
(4]

1

Performing the operation indicated in Eq. (102) yields for the

normalization constant k:
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From Eqs. (103) and (104) the final expression for the coordinate

rotation matrix becomes

1
Jot +27 Jo2 o2 cos(a.-a.))? (Zo“ +2 ] Jo2 o2
(i S'i 'ifj S‘i Sj L i S-i ifj S.i SjCOS(Gi-Gj)

If we now multiply Eq. (74) on the left by R and insert R R'

into the second term, we obtain

N, “t
(106) g—t R'W + 2k[R'§ RIR'W = 2k R'S

By defining the relations

n
Y

(107) T

ny
Y,




and using the cor;éspondence of Eq. (99), we can rewrite Eq. (106)

conveniently as

N (¥}
(109) Jo 1 + 2knk = 2k v,

The elements of rwill be referred to as the “unitary weights" of the
array. This is analogous to the "normal weights" of the array
represented by n in Eq. (49), when all the elements are real.

Recall that A is a real diagonal matrix and is composed of the
eigenvalues of 6. Specifically from Eqs. (87), (88) and (99), we
find
(110)

Since T and V represent colum vectors, the equations are no longer
coupled. If we now carry out the indicated operation of Eq. (108), we

obtain for V

(111) e e
i=1 % i=1 54

/2
(Z %, +2 ) Jo2 o2 cos(up-a.))
T i3 S1 53 iy

(o] g e
Si 1' SO

i=1 =1 7
L
(g osi v211 o2 o cos(ai-cj)
143 71 73

)1/2




We are now in a position to obtain the equations describing the

unitary weights of the array. Making the appropriate substitutions

» into Eq. (109) yields a set of separate equations which may be

written as
(112)

4 g L.
at Yi(t)+2k[o?+ 5 go '

1
(Za“ +2 Z Zo 02 cos(ai-aj)>2

(113)

1 1 2
‘ 4y (t) + 2k[o2+ o Jo2 - -(Zo“ +2 ) Jo2 o2 cos(a.-a.))zlv (t) =
dt’ 2 2 S 2 i S it S5 sj i 2

e $o, 3o
4 (o}
} K A ? & eJai 4 i=] Sl i=]_ Sj
i=1 5§ (z ot +J 20 o2 )%
cos(a,-a.)
] S P hysy 10

The solution of Eq. (57) has essentially been reduced to solving two

first-order differential equations of the form

d v v n
(114) gt Yi(t) + Ay (t) = kv, .




Equations (112) and (113) are then easily solved, yielding as

solutions:
(115) : . \
m ja.
9 1
-XAt m Ja. ;Z_ %. Z %%, £
yi(t) - ke -, A y o @ 1 . =] "1 =] 7§
N 1
A o2+ 2] 421 T [ . vi
Jod +2) Jo2 o2 cos(ai-u.))
\T 51 181 %1 %5 5
and

—~
—
-]
(=]

~

/

e, Jozs™
a? e
-2k 1 m Jo s o 0S. s o
:2(t) - ke 2", A ,Z o e T . el i q=) 74 . .
A?ozl 2 1=] 1 (Z g 22 z 2 2 ( ) 2-
. ot + o< 0% CoS\a.-a. )
Iy gy e

where k, and k, are the constants dependent upon the initial weight
values and ) and A, are the eigenvalues of q given in Egs. (87) and

(88). It is apparent that the complex weights w, and g, may be ob-

tained from the unitary weights {] and ?2 by the simple transformation
n . {
(117) W=RT . t

Then from Eq. (105), we find

L +'\,
¥ Y,
(118) Cj = .ﬁ...z_._z__
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O 0

T

E 2 0

and

(119)

o 1 Jasa, ~ja.

W, = '(Zasz. @ lyx - Zag' e 1';2 .
T4

\K]—‘

ﬁ o + 2§ Jo2 o2 cos(a;-a.)
(é % ifg e ML R

i

Substituting Egs. (115) and (116) into Eq. (118) results in

(120),

i, -2knt o =2kt A m jo,
oL e TR, (("1“2) '.2]"5. £
= 1

lf Z Z e ( )
+ g e e (A=A
j=1 j i=1 Sy e

1
o + 2 2 52
(Z ) Z“ % $; COS(a_i-aj) )2

1 £

and from Eq. (119)

(121) e
o2 e
% ; s 2K\t -2kA_t
2 Jof +2 ) Yo2 02 cos(a;-a.) 2
g SR ety
m n 5 ,]'oti
2 B s (iZ?Si iy % ) S
i PR .Z]"s.e o ]
A =1 7 (z a;‘ +2) ] og og cos(ui-aj)):?_
g e




The following relations are easily verified:

1

2

[

]
—
o1
Q
w =
+
N
o~
~—
Q

w

(123) A2

[}
nN
Q

N

+

‘S~
Q
N

and

2 i ol
i (1 cos(m‘i aj)) <

124) 4-A,-A = 402(c2 + Jo2 ) +2 ) | o?
() 1 "2 nnis. 'ijS'IJ

i

Using the foregoing results, Eq. (120) readily reduces to

~ : -2kA t -2KkAt
(125) wl(t) =— ke +ke

Jai
(o]

m Jos\ 7 n m \
Jao.e 1)( 02 + 202 )- ( ) o )( e
(151 5 izl 5 00 ME CviGer :

402(02 + Jo2 ) + 2 - ) Jo2 o2 (1-cos{a,-a.))
n‘'n 1251 ;%sisj i)

I~

+A -

Eq. (121) may be simplified in a similar manner. We obtain for

:4t):
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bl

]
1
i

-2kAt -ZkA?t)

(126)  w(t) = © (ke -k e

nN|—

2 20“1+2 §f§° chos(a - )

(iglosi) (; 02 +202 ) ( o2 e-Ja )( ) os_eJai)

402(02 + Zcz ) + 2 Z Zo 02 (T-cos(a;-a;)
1 "IJ SJ T |

+A -

From Eqs. (60) and (61) it is seen that the real array weights
can simply be found from the complex weighting coefficients by means
of the following relations:

N
(127) wl(t) = Real (w,(t))
(128)  w,(t) = -Imag (w,(t))
(129)  w,(t) = Real (W,(t))
(130)  w,(t) =-Imag(w,(t)).
To summarize, then, we have developed expressions for the

weighting coefficients of a two-element adaptive array with an s

arbitrary number of jamming and desired CW signals incident upon it.




Let us examine the temporal response of the weights. From

Eq. (125) and (126) the transient response of the complex weights are

~2kA t -ZkAZt
. e + k2 - e

L}
l-—l
—
>

(131) Wy, (t) = > (K,

and

;“é . [ St
l\kle — ze

2
2 (Zo“ + 2] Jo2 o2 cos(a--c-))
T8 k5SS i%

-Zkkyt)

(132) Wy, (t)

" We notice the transient response contains decaying exponentials. The

rate of decay of these functions is proportional to the loop gain
constant k and the eigenvalues of a, Al and Aye Recall that these
eigenvalues are functions of the signal powers osiz, the noise power

0,2 and the electrical phase shift between antenna elements aj. We

n
then observe that as the number of signals increases, the eigenvalues
also increase (See Eqs. (92) and (93).) The array response will then
become faster as the number of signals increase. Also, a larger
element noise power °n2 and loop gain constant k results in a faster
array response. The array weights then converge to their final

solution in a shorter period of time with many signals present than

“ y .
with few. Unfortunately, as it will be demonstrated, the output SNR -

degrades as the number of signals increases.
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IV. THE PERFECTLY CONSTRAINED ARRAY

The results of the previous section may be used to study the

-.performance of a two-element array when there are two signals present.

When an N-element array has N signals incident upon it, the array is
said to be "perfectly constrained." It will be shown that with
element noise present, the SNR at the array output is degraded. Not
only is the desired signal amplitude below that of the reference
signal |)6J but the interference signal is also present at the array
output.

Let us suppose two CW signals are incident upon the array
(see Fig. 5). The signal arriving at angle 8, off broadside is
chosen to be the desired signal and the other is a directional inter-

ference signal. From Eq. (125) - (130) the steady-state weights are
found to be

5 24952 B2 o
A osg(oSZZOH)COSGl o5, ° €0S a,)

(133) w (=)
- PR 2
20 (0 +0 1+osz) + 2°s1

2o o] o, (1-cos(a1-az))

’ 2 si - . si
A o§lf(05951ﬂa2) (agz*zo%) sin q4)

(138) w_()
~ 40%(o%+0§1*o§2) + 2021022(1 - COS(al'uz)) .

2
A-osl(Zoﬁ+os£ (1-cos(a1=a3)))
2y 2.9 .5 2 2
+92 + + - -
40, (c, %, osz) 2051052(1 cos(a;-a,))

(135) wa(=)

and
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C m . g

2 3
A 051052 sin(a, 02)

(136) w, () =

2052442 452 Y4252 52 (1- -
4°n(°n os1 asz) ZOS]usz(l cos(a, 02))

The output of a two-element array with n CW signals incident

upon it is

n
i . 2
(137) s(t) = igl as.((w“ +w sina +w cos )

1

1
3 2,2
+ (w3 + W, cos a; - W, sin ai) )

; > . cos(wit

tan'l( w,twWy sin o, + w) cos a,

Substituting Eqs. (133) - (136) into Eq. (137), we find that
the desired part of the array output is

A-o:1 . (4o§+20§2(1-cos(u1-a2)))-cos(mlt)

(138) Sd(t) =

24252 2 22
4on(on+osl+os ) + 203105 (1-cos(a1-u2))

We notice that because element noise is present, the desired signal
output does not match that of the reference signal given in Eq. (50).

Similar results were obtained by Compton [16]. However, this is not
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the only effect of the element noise. If we calculate the undesired

part of the array output, we find

(139) - a,=ay
< A~oslaszan-cos . o
S.(t) =
j 2 ;2 2 2 2 2 L _
40n (cn + 051 + osz) + 20sl + osz('l cos (°‘1 “2)
i sin(ap-a;)
« COS wzt-tan
1+cos(ap=a;) i ]

\

We see that the jamming signal is also present at the array
output. By changing the value of the weights, the element noise

causes the spatial null formed by the array weights to no longer 1

exactly be in the jamming signal direction. For example, in Figs. 6
and 7 we see the array pattern with one jamming and one desired {
signal present. In both cases the jamming and desired signals have
equal power. In Fig. 6, the jamming signal-to-element noise power
ratio (ojz/onz) is 20 d8. The element noise has little effect on the
array pattern. The jamming signal is well within the null. However,
as the element noise power is increased, the null moves farther away
from the jamming signal direction. For example, in Fig. 7 we see the
pattern when oj2/on2 = 6 dB (the desired signal power and interference
power are unchanged). We notice the jamming signal power is now only
18 dB below the desired signal power. This may be of serious con-
sequence when both the jamming and desired signals are low-power
signals (power levels near the element noise power). We notice from

Eq. (139)
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e

(140) 1im Sj(t) =0 .
2
an“'O

In other words, as the element noise power becomes small, the jamming
signal is no longer present at the array output.

The situation may also arise that both incoming signals are
desired |15|. Similar calculations show that the desired signal
amplitudes are again below the reference signal amplitude when element
noise is present. The phase of the desired signals is correct.

We have seen, then, that the array makes a compromise between
the contribution to €2(t) due to the element noise and those due to
the signals. Since the element noise is uncorrelated between
channels, the array is unable to remove its contribution at the

output.

52




[ —

vd

Sced e

e

Roed el

—

4

—

—

Sl Bl Bl Tl et wud

V. THE OVER-CONSTRAINED ARRAY

The results of section III may also be used to study the
performance of a two-elem’ent array when more than two signals are
present. Vhen an N-element array has more than N signals incident
upon it, the array is said to be "over-constrained."

Let us assume a two-element array has three CW signals

incident upon it. In other words, the antenna signals are from

Eqs. (71) and (72):

(141) yi(t) = 2{°sl'c°s(w1t'“1)+"52’ cos(wzt-az) +053- cos (W t-a3z)}
and

(182) y,(t) = 2{"51 - cos(w;t) + P cos(w,t) + S cos(wst)} .

First, consider the response with no element noise present.
We assume the signal at frequency w, to be desired and the others to

be CW interference signals. From Eqs. (125) - (130) we determine the
steady-state weights to be:

2 2
A %, (osz(cos @] = COS ap) + 053(cos aj= COS a3)

(143) wi(=) =

2(021-022 (1 =cos(aj-a,) )+a:202 3(1 -cos (az-a3) )+o§ 10: 3('| ~cos(a1-a3))) ‘
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2 " B .
. o + =
Ao 1(cx 2(s1n a; - sinaj) + o 3,(S'm a3 - sin a1))

(148) wa(=) =

2 2 2 2
2(02 lcsz(l-cos(al-a?))ws g 3(1 -cos(a,-a))+o, los 3(]-ccxs (a;-a)))

2

] A'csl . (oiz(l-cos(al-az)) + aza(l-cos(al-a3)))
f 145) ws(®) = :
: {5} % 2(02lciz(l-cos(ul-az))+o§205a(l-cos(az—aa))+azla:3(]-cos(al-a3)))
and A
A-osl(ogz- sin(a,~a,) + °:; sin(a;-a,))
i 146) wy(*) = : |
1 (146) Wy 2(0:1052(1-cos(a]-a2))+o§ 0: (]-cos(az-ua))+o§xo:3(]-cos(u1-a3))) :

2 3

We can substitute Eqs. (143) - (146) into Eq. (137) and

determine the array output. For the desired signal, we have

A-ogl(azz(l - cos(ul-az)) + oi3(]-cos(a1-u3)))-cos(wlt)

(147) sy4(t) =
d o:1.052(]-COS(°1'“2))+°§2°§3(]-COS(°2-°3))+°§ g

1

From Eq. (147) we notice that even though there is no element

noise, the amplitude of the desired part of the array output does not

oy

match that of the reference signal (recall the reference signal ampli-

P
y

tude is A). We do notice that the desired signal phase is correct,

et s

however.
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A similar calculation for the interference signals at the

array output may be made. When this is done, we find that both
interference signals are present at the array output. Performing
these calculations and using Eq. (147), we determine the signal-to-

jam (interference) ratio (S /J ) at the array output to be
(148)

4'021(027(1-COS(al-az))+o§3(1-cos(a1-a3)))2
SO/J0 =

5 .. G u : 4 b 4
4(052+053)+2053 cos(a;+a, 203)+2052C°S(°1+“3'2“2)+4(°s;°s3)c°5(°2'°3)

S
-2(053+osz)cos(al-as) .

With two signals incident on a two-element array, the signal
to-jam ratio (with o,2 = 0) may be shown from Eq. {138) and (139) to
be infinite. The additional jamming signal has caused a degradation
SN,

Suppose we now consider the first two signals at the input to
be desired signals. By again calculating the array output, we find
that not only are the desired signal amplitudes degraded and the
Jamming signal present at the array output, but the desired signal
phase no longer matches the reference signal phase. In an adaptive h
array for use with more than one desired signal, phase control of the

desired signals may not be possible. For example, the four-element

array described in |15| for use with sensors as many as four desired

signals may be present at the array input. ¥




T

It has been demonstrated in this section that when an adaptive
array is over-constrained, the array performance is degraded. We
have found that the desired signal amplitude (and possibly the phase)
no longer matches the reference signal. The interference is also
present at the output. With element noise, the performance will be
further degraded although this degradation will be small when the

element noise power is much smaller than the signal powers.
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VI. ARRAY PERFORMANCE WITH A CONTINUOUS INTERFERENCE SECTOR

The results of section VI for the array performance with
discrete signals will now be extended to the case of a continuous
sector of radiation. It has been shown in section II that when the
signals incident upon the array are such that their bandwidths are
greater than the product of the loop gain constant (k) and the signal
powers, the time-varying components may be neglected in the differ-
ential equations describing the weights. In this section we assume a
continuous sector of spatial radiation is incident upon a two-element
'array. Moreover, we assume the frequency spectrum of this radiation
the same from all angles and the bandwidth of this radiation is wide
enough that we may neglect all but the d.c. components in the weight
equations. We also assume the phase shift between antennas due to
propagation delay will be nearly constant over the entire signal

bandwidth.* Then

(149) Ay ~ A, for all i,

With this approximation we may proceed directly from the values of

6 calculated in Eq. (83). Recall, the terms of ( were of the form

(150) q=Zf(§LLsin 9.)0
1 W L

VN

1' ]

where 0512 is the power of each discrete signal. We define D( q) to

*We have neglected the effect of the wave polarization.

57




be a spatial power density defined over 6, < 6< 6. Also, define

4 to be a partition of the interval|e,6,] and [[a|| to be the "norm"
of this partition. Then let us suppose we make the number of signals
go to infinity while keeping the total power constant; i.e., as

[lal] >0 as n » =,

1im Z £ (gﬂL-sin(iAe)) - D(iae) . ine
1

A.
[1a]]~0 !

remains finite. The summation may then be replaced by a Riemann
integral. In other words, we have replaced the mode] of many discrete
signals of a relatively small difference in frequency (Aw) with
respect to the carrier by a continuous spatial distribution of
radiation.

Practically this situation arises when a waveform irradiates a
rough surface (e.g., surface of the earth, ocean, ionospheric skip,
etc.) and the reflected energy appears to be spread in angie with no
specific source of origin. Another example would also be sky noise.

With this in mind we write Eq. (150) as

%

f(i$Jsine Dle )d 6

(
(151)q =}
8, . \'w

“Specifically, from Eq. (151) and the relations of Eq. (64) - (67),

‘

the components of 6 now become:




]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

Knnd

6, i &L sin g
. )
(152) B = j D(e) e de
01
: 62 ~J z—li sin 6
(153) C =J D(e)e i de
e1
and
i B
(154) A =D =j D(e)de .
8,

The expression for Q is then

-_— 0
5 "’\\ J Aw sin
A B 8, 1 e
A
(155) Q = N f\,) g J D(e) ~J ZALL siné de.
' C D 0, % w 1

Define the relations:

(156) u = sin o v 8w etn™ fud

(157) du=cos 6 - do, de = du__ _ du ’

cose'm
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(]58) B=2%L'9
w

T

and

s =]
(159) f(u) = Asin —(u))

J1 -2

Using the previous definitions, Eqs. (152) - {154) become

Ha

(160) B(-8) j F(u)edB¥ g,
H)
P 2
(161) C(p) j fu)e I8u g,
H1

and

Gy U, "\
(162) A=0D = J f(u)du = B(0)
Hy

where B(g) is the Fourier transform of f(u). The matrix Q may con-

veniently be written as

n B(0) B(-8)
E (163) q =

: B(8)  B(0) 3

S
2
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It is worth noting here that if the incident signal is arriving

discrete angle 6 5s then we may represent this case as

(164) D(6) = o> 6(6-0,).

S5

Substituting Eq. (164) into Eqs. (160) - (162) results in

6, J Z§L sin 6 J 2§L sin 6,
" e
(165) B.= J o> e W -6(6-6,)d6 = g e ¥ :
Sk i S.
5, i i
8, J 3%5 sin 6 -J §§L_Sin 8;
G w s < s g2 w
(166) C = J osi e §(6-0, )do osi e
%
and
5,
v n, > 2
(167) A=D = J o5 8(6-0;)de = o?
5 i ot
1
Then by allowing discrete signals tc be represented by Dirac Delta

functions, the continuous channel representation readily reduces to

the discrete case previously investigated.

source,

for the

If we assume the impinging radiation sector to be a jamming
then a desired signal source must also be present in order

weights to have non-zero solutions. We define
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(171) uy = sin o

(leg) B(8) = BJ-(B) + B,(8)

where B;(8) is due to the jammer sector of radiation and By4(8) to
the desired sector. Since the interference and desired signals are
uncorrelated, we may add the contributions of the jamming and desired

signals in B(8). Using Eq. (168) we are now able to write Q as

B(0) B(-8)

N

N v
(169) Quej *+ Qg * Q =
B(B) B(0)

If we now assume the desired signal to be a CW signal at

frequency wq located at a discrete spatial angle Bgs then

JBu
o2 o2.e d
S S
(170) Q. =
Is ¢ € °§
d d

where from Eq. (156) we have

d

and °sd2 is the desired signal power. The reference signal R(t) will

~again be of the form of the desired signal, then

62




e &

3
“ 3
»

] T S PN TR T (R TR Y T ST T B |

ek Ld £l

Gad

(172)  R(t) = A - cos @ t.

From Eq. (80) the vector S is

JBu
e
d

Figure 8 shows a two-element array with a sector of jamming

radiation and a single desired signal.

DsEélRED l JAMMING
A
g RADIATION i
SECTOR

P TR
”

Fig. 8--Array signals.
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we notice that if f(u) in Eq. (156) is real, then
(174) B(-8) = B*(8)
and if f(u) is purely imaginary

(175) B(-8) = -B*(B) .

By substituting Eqs. (170) and (173) into Eq. (69), we find

that the complex weight response is determined by

! Jsu
W, B(O) B(-8)) [ W, & o
(176) %E + 2k « Keheo, s
v N Sd
W, B(8) 8(0) W, 1

The method of solution is the same as that of the previous sections.

We first determine the eigenvalues of 6 to be

N|—

M0 B(0) + (B(8)B(-8)) :

X 0 B(0)-(B(8)B(-8))%

(179 A=

Since f(u) is é power spatial density, then it is necessary

.real and 6 is Hermitian with real eigenvalues. Moreover, we note

from Eq. (177 that
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(178)  (B(8)B(-8))% = (B(8)B*(8))? = |B(8)] .

Using the results of Eqs. (168), (177) and (178), the

coordinate rotation matrix becomes

! g
(179) R = -
= @k pled -B(B)
|B(8) | [B(8) |

Again we transform the coordinates into the principal axes

of Q. The expressions describing the unitary weights are obtained by

evaluating
(180) ¥ = R's
and

(181) T = R'w.

Substituting Eqs. (177), (180) and (181) into Eq. (69) yields

(182) j *
" b K*A«o_ "’ eJB"d+B 8
PR RE A I L O LIOTIN v (t) ], °d
| ¥, (t) 0 s)-IB@fa(t) | V2 | Sy e
e -
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the system of Eq. (182) is easily solved yielding as solutions

JBu *
d_ B 58;

(183) ¥, (t) = k e 2k[B(0O)4 B(8) Tt ,
1 1 2-J2(8(0) + |B(8)|)

and

JBHy  px(s
A~cs (e ~ T8

~ _ ., =2k[B(0)|B(R)|]t* :
(188) 5,(t) = ke e e T )

where k, and k, are the constants dependent upon the initial condi-
tions of the system. From the inverse transformation given by
Eq. (116), the complex array weights may be obtained from the above

expressions. Again
N vy
(185) w = Rr

Making the necessary substitutions we find the expressions

for the complex weight response are

s JBu_
A-og [B(0)e: 9-B*(8)]
d

)

+

-ZkAZt)

n, ‘Zkllt
(186) w, (t) = i ke + ke

4[B2(0) - |B(8)]?]
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and

o w—(kle-Zkht i e2kA2t)
2(8(8)| ¢

jBud

A-os (B(0)-B(B)e )
d

+

4 (B2(0) -|8(8)|?)

These specific general expressions are given as a function of B(g),
the Fourier transform of f(u). f(u) is directly related to the
spatial power density (Eq. (156)). The array weights given in
Eqs. (186) and (187) then may be found from the spatial power density
D( 6) and the resulting adaptive array performance may then be examined
analytically.

In the next section we treat several specific examples of
continuous jamming radiation. For convenience we have used the results

for many discrete signals to represent this continuous sector.
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VIT. RESULTS

In the previous sections the values for the array weights of a
two-element adaptive array were calculated. For the conditions of
multiple signal interference or a continuous sector of interference,
the steady-state array weights may be found. Digital computer
programs have been written to carry out these computations. The
programs calculate not only the final weights, but also the resultant
array pattern and the signal-to-noise ratio SNR at the array output.
The programs are given in Appendix II. In this section we discuss
the results of these computations.

For a continuous interference sector it is found that when
the desired signal is separated from the interference by more than
7 degrees, the SNR degrades as the interference sector becomes larger.
dhen the separation between the desired signal becomes small (< 7°),
the SNR surprisingly increases as the interference sector becomes
wider. This result is especially interesting and will be discussed
again later.

Figures9 through15 show some typical plots of the final array
patterns. In these plots the desired signal amplitude (osl) g 1
The total interference power is then 10dB greater than the desired
signal power at each element. The element noise amplitude is .01.
From Eqs. (125) and (126) for the final weight values, the antenna
patterns are generated. The element spacing is chosen as 3/2 in each

case.




F e & In Fig. 9 the desired signal arrives at -30° off broadside.
| J The interference sector is from 0° to 1°. We notice most of the
] interference is well within the null. In Fig. 10 the interference is
increased to 5° and in Fig. 11 to 15°. (The interference power
J remains the same in each case.) We notice the center of the null
= remains at the center of the interference in each figure.
J In Fig. 12 the interference sector remains 0° to 15° while the
A"] desired signal is now at -15°. We notice no pattern change. In
Fig. 13 the desired signal arrives at -5°. A close observation shows
jj] that the null has moved slightly to the right and the pattern remains
~q beamed upon the desired signal. However, as the interference sector
~d is decreased to 5°, the desired signal suffers an attenuation of 5 dB
f - as may be seen by comparing Fig. 13 with Fig. 14.- A further attenua-
iy tion of 2 dB is also evident in Fig. 15 when the interference sector
[Tz is decreased to 1°.
e Figures 16 through 19 show the signal-to-noise ratio SNR at the
ha array output as a function of the interference sector width for various
b desired signal positions. In these figures, the interference sector h
x varies in width from 0° to ANG®. In Fig. 16 the desired signal varies ﬂ
I from -60° to =5° and in Fig. 17, -10° to 3°. When the desired signal

is within 7° of the interference sector, we notice an increase in the

1
[

SNR as the interference angle increases. The SNR increases because,
as we have seen in Figs. 13 and 15, the array causes the null to turn

away from the desired signal as the interference sector increases.
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In Fig. 18 we notice the change in SNR is small beyond

In Fig. 19 we notice that beyond 15° there is no change in the
SNR, regardless of the desired signal angle. For a jamming sector
beyond 15°, an SNR degradation of 8 dB is apparent in Fig. 19 when

the desired signal is at -60°. We, however, notice an SNR improve-

ment of 4 dB when the radiation sector is increased from .1° to 30°

for a desired signal arriving at -5°.
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VIII. CONCLUSIONS

Tiis report has presented a study of the behavior of a two-element
3 adaptive array with multiple discrete signals and a contiuous inter-
ference sector. It has been determined mathematically that when the
signal bandwidths are large compared to the feedback loop bandwidth,
3 only the d.c. terms need be considered in the weight equations. Using
this assumption, the weight solutions for a two-element adaptive array
were derived by reducing the order of the equations describing the sys-
tem. An analytical method for determinign the weight values with a
continuous spatial distribution of interference is also presented.

From the weight solutions, we have observed that the element

noise enables the jamming signal to be present at the array output

g when the array is fully constrained. When the array is over-
constrained, the interference is always present at the array output.
Also, control of the desired signal phase may be lost when many

desired signals are present.

With a continuous interference sector present, we have segn
that the SNR degrades as this sector increases, when the desired
signal is separated from the interference by more than 7°. yhen i
this separation becomes small (<7°), we find that the SNR improves

as the jamming sector width increases.
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APPENDIX I

In this appendix we discuss a method for determining the
coordinate rotation matrix R given in Eq. (57) from its reduced
form R given by Eq. (100).

The equations describing the response of a two-element adaptive
array are given in Eq. (57). It was noted by Compton |21| that when
: exhibits the type of symmetry shown in Eq. (58), the four coupled
equations of Eq. (57) may be reduced to a pair of complex equations
and the eigenvalues of may be determined from the reduced form of
¢ . It will be shown in this appendix that the eigenvectors and
hence the coordinate rotation matrix may also be found from the
reduced equations. |

It was noted in section III that by allowing
(A-1) 01 * 30y,
(A-2) 013 ¥ 3¢y,

(A‘3) = ¢31 + j¢32

s
(A-4) S5y * S0y,

a new matrix § can be formed given by




(A-5) @ =

oOc >¢
(oe)

Then by finding the eigenvalues of 6, the eigenvalues of ¢ may be

determined |21|. Specifically, if the two eigenvalues of Q are

(A-6) AQi Sy 2GR =L, A 2GR =L

then the eigenvalues of ¢ are
- * *
(A'7) A(b. . Ll, Ll, Lz. L .

i 2

Recall that it was also shown in section II that the equation

of a two-element array may be reduced to the form

W =Jw 011701,  ¢;3¥00,\[W;mdw s,=Js
(A-8) %f % ( RS Rl 1 2) .
WardNy, 317003, 0337003, /\W5mdw, S37I8,

In order to solve Eq. (A-8) we make a rotation of coordinates. Let

: n - Y n
" [ W17 T T -
(A-9) W = = 5 s Ry .
W3 = jw 21 I'22 ?2
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