


-WP11=2-41006 ١. n INTERIM REPORT, MATHE/SURFACE-DUCT PROPAGATION MODEL FOR C/P SONAR PREDICTIONS. by /NOVICK, R./SEEGAL ... and S./GINSBERG р*G--*023-тм-66-24 ADDESSION IN Contract No. Nobsr-93023 11 **1**3 Watte Section rit 15 Butt Section 📋 . 22 Providence 17576 Pex Hr. on file 4. APRILABILITY CODES Submitted to: War SPECIAL U. S. Navy Electronics Laboratory San Diego, California Approved; Approved: 1. Laurdann W GRAHAM Walton Graham Marvin Baldwin Department Head, TRG Project Technical Director, NEL Isidore Cook Deputy Project Technical Director, DTMB  $\Box \mathbf{C}$ Submitted by: ന്നാവം TRG Incorporated MAR 7 1971 A Subsidiary of Control Data Corporation Route 110  $|\mathcal{G}_{j}|$ 501 Melville, New York 11746 D 353415 **\*10**66 DISTRIBUTION STATEMENT A Approved for public release; Distribution Unlimited

in sineta sini in anno a stari in

# CHANGE SHEET

l

| CHANGE NUMBER | PAGE NUMBER | EFFECTIVE DATE |  |
|---------------|-------------|----------------|--|
|               |             |                |  |
|               |             |                |  |
|               |             |                |  |
|               |             |                |  |
|               |             |                |  |
|               |             |                |  |
|               |             |                |  |
|               |             |                |  |
|               |             |                |  |
|               |             |                |  |
|               |             |                |  |
|               |             |                |  |
|               |             |                |  |
|               |             |                |  |
|               |             |                |  |
|               |             |                |  |
|               |             |                |  |
|               |             |                |  |
|               | 1           |                |  |
|               |             | i              |  |
|               |             |                |  |

# TABLE OF CONTENTS

| Section |     |                                    | Page |
|---------|-----|------------------------------------|------|
|         | Cha | inge Page                          | i    |
|         | Lis | t of Illustrations                 | iii  |
| I       | INT | RODUCTION                          | 1-1  |
|         | A.  | Surface Duct Propagation           | 1-3  |
|         | в.  | The Echo Level Determination       | 1-7  |
|         | c.  | Surface Reverberation              | 1-8  |
|         | D.  | <b>Biological Reverberation</b>    | 1-8  |
| II      | ILL | USTRATIVE CALCULATION              | 2-1  |
|         | A.  | Array and Environmental Parameters | 2-1  |
|         | в.  | Source Level                       | 2-2  |
|         | c.  | Surface Loss (Specular Reflection) | 2-3  |
|         | D.  | Absorption Loss                    | 2-3  |
|         | Е.  | Spreading Loss                     | 2-3  |
|         | F.  | Bottom Loss                        | 2-4  |
|         | G.  | DSL Reverberation                  | 2-4  |
|         | H.  | Bottom Reverberation               | 2-5  |
|         | ı.  | Surface Reverberation              | 2-5  |
|         | J.  | Flow Noise Level                   | 2-5  |
|         | к.  | Background Level                   | 2-6  |
|         | L.  | Echo Level                         | 2-6  |
|         | м.  | Results                            | 2-6  |
|         | N.  | Conclusion                         | 2-8  |
|         | REF | ERENCES                            | R-1  |

i i

ويقوقون فالمحاف

# LIST OF ILLUSTRATIONS AND TABLES

| <u>Figure</u>       |                                 | Page                    |
|---------------------|---------------------------------|-------------------------|
| 1                   | Direct Path Geometry            | 1-2                     |
| 2<br>through<br>11  | Relative Levels vs. Range       | 2-9<br>through<br>2-18  |
| 12<br>through<br>23 | Echo/Background Level vs. Range | 2-19<br>through<br>2-30 |
| 24                  | DSL Propagation Loss vs. Range  | 2 - 31                  |
| 25                  | Depression Angle Sweep          | 2 - 32                  |
| 26                  | Sweep in Azimuth                | 2-33                    |
| 27                  | Depression Angle Sweep          | 2 - 34                  |
| 28                  | Azimuthal Sweep                 | 2 - 35                  |
| 29                  | Depression Angle Sweep          | 2-36                    |
| 30                  | Azimuthal Sweep                 | 2 - 37                  |

# <u>Table</u>

\*

| . 1          | Echo/Background | Levels | for | 81 | х | 150' | Array | 2 - 38  |
|--------------|-----------------|--------|-----|----|---|------|-------|---------|
| through      |                 |        |     |    |   |      |       | through |
| <b>3</b> 0 Ŭ |                 |        |     |    |   |      |       | 2-67    |

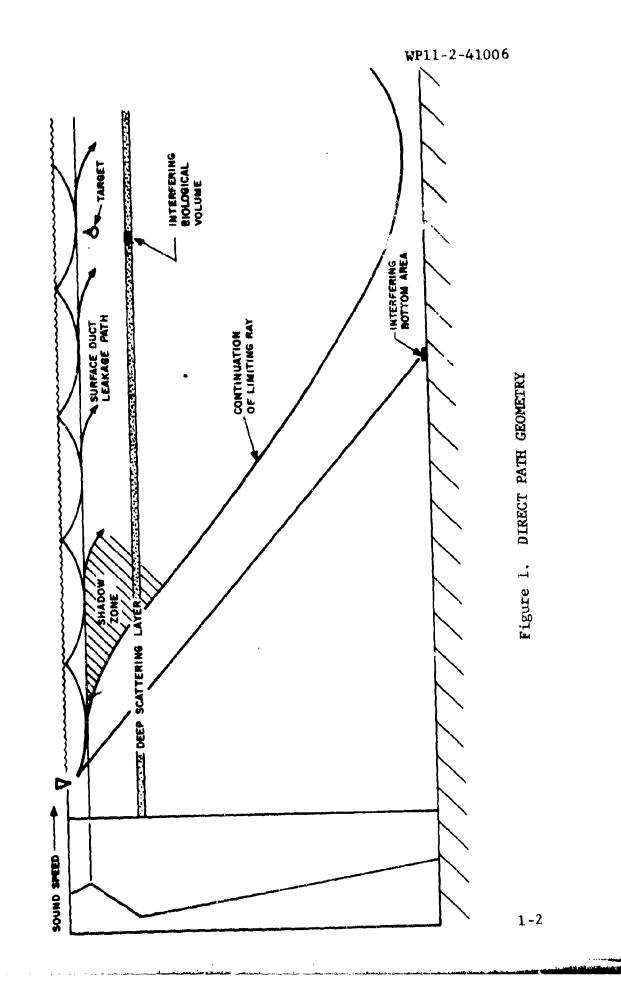
an Andread States and the States of the Stat

100

iii

#### SECTION 1

#### INTRODUCTION


This report is an extension of TRG's previous surface ship bottom bounce sonar prediction model (Reference 1) to include the case of direct path propagation both to the potential target and reverberation sources. The tenets of valid sonar prediction are unchanged: in addition to an accurate estimate of the target echo level, one must include <u>all</u> significant reverberation components and sonar noise level to successfully forecast the sonar performance. The scattering sources for the surface duct problem are the same as for the bottom bounce mode (it's the same ocean!); their relative importance depends upon the mode of operation.

Using moderate depression angles (near 20°) in the bottombounce mode, the dominant reverberation source is, generally, the sea surface, followed in importance by the bottom, and then, by biological scatterers. On the other hand, in the surface duct mode, sea surface reverberation is usually negligible after a few seconds; this rapid decay in time results from the sea-surface grazing angle which must quickly approach zero for rays propagating in the surface duct. Since the surface back-scattering strength drops off rapidly with decreasing grazing angle, surface reverberation is, in general, not a limiting factor for surface-duct sonars.

Accordingly, the dominant reverberation sources are the bottom and the biological scatterers. At short ranges, the biological component dominates, since bottom reverberation begins at a time corresponding to target range equal to the water depth. At longer ranges, the predominant reverberation depends upon the particular circumstances. Figure 1 is a sketch of the direct path detection problem, illustrating some of the reverberation paths to be considered.

A comparison of the surface duct and bottom bounce reverberation calculations reveal the following important differences:

The phrases "direct path" and "surface duct" are used interchangeably in this report.



- 1. Surface reverberation is negligible for the surface-duct problem.
- 2. The deep-scattering layer (abbreviated DSL), lumped as a small addition to the surface reverberation in bottombounce calculations, must be considered explicitly in the surface duct calculation because of the critical relation between the propagation losses to the biological scattering layer and to the target.
- 3. Ray solutions are often invalid (or non-existent, as in the shadow zone). The propagation losses must be computed by an alternative method over paths where ray-tracing may lead to difficulties.

The bottom reverberation calculations for these two modes of sonar operation are identical. The reader is referred to the bottom-bounce report (Reference 1) for the details of the bottombounce calculations. This report will emphasize the direct-path echo and DSL reverberation calculations which differ from the corresponding work in the bottom-bounce discussion. After a discussion of the theoretical background for these calculations, illustrative calculations are performed for a conformal/planar (C/P) sonar.

## A. SURFACE DUCT PROPAGATION

Thermal processes and mixing near the surface often create a layer adjacent to the surface in which the temperature and sound velocity of the water increases with depth (isothermal water will show a positive sound velocity gradient due to the effect of hydrostatic pressure,) until the thermocline, a region characterized by a negative velocity gradient. Acoustic rays with source angles less than the limiting ray angle (see Figure 1) vertex before reaching the thermocline boundary and return to the surface, where they are reflected; these processes of reflection and refraction repeat as these rays propagate. This combination of the reflective surface and the positive velocity gradient ducts the sound, producing propagation conditions quite different from those experienced in the bottom-bounce mode. Direct path propagation losses could be derived from the exact solution to the wave equation with appropriate boundary conditions. A truncated expansion of the solution in terms of the normal-mode eigenfunctions provides a good approximation to the propagation loss (Reference 2). However, this method is computationally inconvenient for system performance calculations; furthermore, the boundary conditions are difficult to express in terms applicable to a normal - mode calculation and are not accurately known.

On the other hand, refractive ray-tracing, using the constant gradient approximation, involves simple calculations, but has a restricted domain of applicability. Ray-tracing yields valid results only where conditions are slowly varying over a distance measured by a wavelength. Ray acoustics will not be a good approximation to the propagation whenever:

- The radius of curvature of the rays is near the order of one wavelength. The ray direction must change slowly over distances measured with respect to the wavelength.
- 2. The velocity of sound changes appreciably over the distance of one wavelength.
- 3. There is a large percentage change in the amplitude over the distance of a wavelength.

At short ranges, before the first vertex, normal mode theory, ray-tracing, and the empirical AMOS formulae (Reference 4) give essentially identical results. At longer ranges, however, ray-tracing may lead to spurious results. For example, ray theory predicts caustics, at which the intensity becomes infinite, which are not observed in practice, and fails to indicate caustics which are observed. The sharp shadow zone, predicted by ray acoustics, is not observed. (Understandably, since conditions at the boundary of the surface layer with the thermocline violate the conditions for validity of ray acoustics.) Thus, surface duct ray path loss computations beyond the first vertex are subject to question.

\*See Reference 6, Section 3.6 "Validity of Ray Acoustics".

Accordingly, an empirical method of calculating propagation losses in the surface duct seems desirable. Since the loss equations resulting from Project AMOS are based on a large volume of experimental data, they provide a good alternative to loss calculations based on refractive ray-tracing, which have the limitations discussed above. The AMOS formulae take into account the following oceanographic factors:

- 1. Depth of the isothermal (positive gradient) layer.
- 2. Sea State.
- 3. Water temperature.
- 4. Acoustic frequency.
- 5. Target geometry.

The AMOS equations consider the propagation as broken into three zones. The first, the near zone, is bounded by the limiting ray which leaves the source, touches the bottom of the surface channel, and returns to the surface. In the near zone, the energy travels by a direct path, spreading spherically. The third zone, the far zone, is bounded by the same limiting ray after two or more surface skips. In the far zone, cylindrical spreading, thermal absorption, and a surface scattering loss describe the energy loss.

The second zone, the middle zone, is a region of transition between the near zone with spherical spreading, and the far zone with cylindrical spreading and a surface scattering loss. For a target in the layer, the AMOS equations give the propagation loss directly. A target below the layer is insonified by energy penetrating the surface duct by the following mechanisms:

- 1. Diffuse scattering from the rough sea surface.
- 2. Diffractive leakage from the surface channel. (Recall that ray-tracing assumes that there are no changes in the medium over a distance the order of the wavelength. Diffraction effects account for the failure to meet this requirement).
- 3. Diffractive leakage into the shadow zone from rays

This discussion of the AMOS equations is based on a discussion appearing in Ref. 3.

downward out of the layer.

The first two mechanisms are accounted for by a depth dependent loss factor. Diffractive leakage from the direct beam is handled separately. For a given situation, the dominant mechanism may be of any of the three mentioned above. Loss calculations are made following both routes; the one yielding the least loss is retained. Because the AMOS formulae result from an evaluation of a large amount of data, they are a reasonable alternative to refractive ray tracing for propagation loss calculations. These empirical formulae are valid to a depth of about 600 feet.

The propagation loss is given by the sum: Propagation loss = spreading loss + reflection losses + absorption loss.

When valid, ray-acoustics predicts the spreading loss. The empirical AMOS formulae account for a spreading loss, and handle reflection losses and absorption losses explicitly.

The absorption loss accounts for energy lost through dissipative mechanisms. This loss is clearly proportional to the distance traveled through the water. The constant of proportionality is given by a temperature-dependent constant times some power of the frequency. (For example, the absorption formula for leakage out of the duct varies as  $f^{3/2}$ ; while the AMOS dissipative absorption formulae, at low frequencies, represents the loss as proportional to  $f^2$ .)

On reflection from the boundaries, some portion of the incident energy is lost from the signal. For operation in the surface duct mode, losses on specular reflection from the surface are represented by empirical formulae since there is no definitive theoretical work in this area. Contradictory reports in the current literature do not permit a reliable estimate of the surface reflection coefficient at the frequencies of interest for conformal sonars.

However, the surface may act in three ways to reduce the propagated signal:

See bibliography in Ref. 1

:1

- 1. It can scatter energy out of the propagation path.
- 2. It can absorb energy from the signal through the action of entrapped air bubbles.
- 3. Reflections from the faceted sea surface can degrade the phase coherence along the wavefront. (A potentially serious loss for highly-directional sonars, this loss applies only to the echo level, since the reverberation is considered to be incoherent.)

The AMOS FORMULATION represents the scattering attenuation coefficient (db/kyd) as a constant (depending on sea state) times (Frequency/Layer depth) 1/2, accounting separately for leakage loss from the sound channel. Where ray-tracing is used, the loss on specular reflection from the surface (in db) is given by a constant times the number of surface contacts. (Ray-tracing is not used when leakage from the sound channel is of concern.)

B. THE ECHO LEVEL DETERMINATION

With the propagation losses to the target calculated as specified above, the echo level calculation is essentially identical to the bottom-bounce model except that the signal processing gain has not been included in the echo levels in this report. The equation is:

Echo Level = Source Level + Target Strength

- Two-Way Propagation Loss

- Transmission Deviation Loss

- Reception Deviation Loss

(all in db).

(See Reference 1 for the definitions not appearing in this report). Often in surface duct echo-ranging, the cone angle of rays which usefully insonify potential targets is very small (on the order of a degree or so). Since most sonars have vertical beamwidths of 10 or 20 degrees, the corresponding transmission and reception deviation losses are negligible in this mode.

## C. SURFACE REVERBERATION

Propagation conditions peculiar to the surface duct influence the relative sizes of the components of the total reverberation. With the sonar trained to take advantage of surface duct propagation, bottom reverberation encounters a large deviation loss (Ray paths to the bottom are general! well off the main beam.) However, propagation conditions often a such that the losses for paths to the bottom are much less than propagation losses to the target and DSL. The favorable propagation conditions to the bottom compensate for the large deviation losses, and bottom reverberation can become a significant background component. The determination of the bottom reverberation level is detailed in the bottom-bounce report.

Because of the characteristics of ray paths in the surface duct, and the shallow grazing angles involved, surface reverberation considered as a function of target range, falls off quite rapidly and does not usually present a problem for surface duct sonars. However, when a deep layer is present (very good sonar conditions), the duct can support ray paths which strike the surface at moderate grazing angles (on the order of 10°) and return an appreciable amount of surface reverberation to the sonar. This reverberation is only significant over the relatively small regions of time (or equivalent target ranges) when the ducted rays strike the surface at these sizable cycles. On a scope, this reverberation shows up as a series of annular rings, which may be readily identified and discounted by a trained operator. Accordingly, one may omit surface reverberation in the surface duct mode.

#### D. BIOLOGICAL REVERBERATION

The main source of biological (or volume) scatterers at frequencies of interest to bottom bounce sonars are fish with air bladders. These scatterers are generally observed in well defined layers (50 to 100 yards thick), exhibit diurnal movement, and are commonly referred to as the deep scattering layers. The characteristics of the DSL are discussed and additional references given in Reference 1. Propagation paths to the deep scatto ing layer have the same losses (or often lower) as the echo path. (Note, for example, that the shadow region occurs later for the DSL in Figure 1 than for the target submarine.) The calculation of the DSL reverberation level follows the method described in Reference 1; energy accounting leads to the general expression for the differential reverberation intensity:

$$dI = \mu(\theta_t', \theta_t') \kappa(\theta_t) \kappa(\theta_t) I_e(\theta_t, \emptyset) V_r(\theta_r, \emptyset) \cdot dA$$

- where:  $\mu$  is the scattering coefficient, per unit area, characteristics of the deep scattering layer,
  - θ' is a grazing angle at the deep scattering layer (determined by ray-tracing),
  - V<sub>r</sub> is the receiving intensity pattern function,
  - I<sub>e</sub> is the transmitting source intensity function, which, for a single pulse, is given by

$$I_e(\theta_t, \emptyset) = I_o V_t(\theta_t, \emptyset)$$

with  $\theta_{ot}$ ,  $\phi_{ot}$  fixed; and for RDT, is given by

$$I_{e}(\theta_{t}, \emptyset) = \max_{\substack{\emptyset \\ 0 \\ t}} [I_{o}(\emptyset_{ot}) V_{t}(\emptyset_{ot}, \theta_{t}, \emptyset)]$$

for  $\theta_{ot}$  fixed,

where V<sub>+</sub> is the transmitting intensity pattern function,

 $I_{o}$  is the peak source intensity function, and

dA is the differential area of concern.

The propagation losses on the transmission and reception paths are determined from ray tracing, where valid, or from the AMOS formulae as discussed earlier. The propagation factor for each path, including spreading, reflection and absorption losses, is denoted by  $\kappa$ .

To obtain the total reverberation, the differential DSL reverberation is integrated by numerical methods. The contributing area of the DSL is the locus of points on the DSL surface that have two-way travel times to the source and receiver equal to the echo travel time. For computational purposes, the specification of the contributing area of the deep-scattering layer is identical to the method used for bottom reverberation. It is generally assumed that the DSL scattering coefficient is omnidirectional hence, independent of the incident and scattering angles. The DSL reverberation integral completes the calculation of the echo-to-background ratio for systems using the surface duct mode.

The next section presents a numerical example, illustrating the methods discussed in the section.

#### SECTION II

#### ILLUSTRATIVE CALCULATION

This section presents the details of an illustrative calculation for the prediction of surface-duct performance for a C/P array. The numerical values of the input parameters used in this section were specified by Code 2110 of NEL. Some of the intermediate quantities required for this analysis were determined from various computer programs at TRG.

# A. ARRAY AND ENVIRONMENTAL PARAMETERS

The following is a brief summary of the array and environmental parameters assumed. Sound velocity profile:

| Depth (ft) | Speed (ft/sec) |
|------------|----------------|
| 0.0        | 4900.0         |
| 100.0      | 4901.8         |
| 200.0      | 4892.0         |
| 315.0      | 4880.0         |
| 700.0      | 4840.0         |
| 1100.0     | 4824.0         |
| 2000.0     | 4820.0         |
| 3000.0     | 4828.0         |
| 5000.0     | 4845.0         |
| 6000.0     | 4860.0         |
| 12000.0    | 4960.0         |
|            |                |

Bottom scattering coefficient: -27 db (Lambert's Law) Bottom porosity: 0.69 (Watson's formula) DSL coefficient: -45db Absorption coefficient: .033  $f_{kc}^{3/2}$ Pulse Length: 500ms. Frequency: 2500 cps. Bandwidth: 100 cps. Array dimensions: 8' (height) x 150' (length) Array tilt: 20°

Beam depression angle: 1° Ship speed: 25 knots Single ping operation

**B.** SOURCE LEVEL

Based on a power output of 0.6 watts/cm<sup>2</sup> x .556 kw/ft<sup>2</sup> of effective area the source level of this array was found to be 155.6 db re 1  $\mu$ bar<sup>2</sup> at 1 yd. It was computed as follows :

The source level equation is

Source level (db re 1 µbar<sup>2</sup> at 1 yd) = 101.6 + 10 log(Power out, kw) + Transmitting directivity index, db.

Based on the prescribed power density and an array factor

 $= \frac{\text{total active area}}{\text{aperture area}} \text{ of 100\%, the power out is .556 kw/ft}^2 \times 1200 \text{ ft}^2$ = 670 kw.(28.3 db). The broadside directivity index (DI) is 10 log(4 $\pi$  x aperture area in wavelengths) using a nominal wavelength of 2 feet at 2.5 kc, the DI is 35.7 db.

For this illustrative example, the variation in source level which occurs when the array is steered away from broadside was ignored and the above source level was used for all beams. For a 100% array factor, the source level is 165.6. The actual value used; 155.6 db, corresponds to an array factor of 10% and a power output of 67 kw. While the intent of this investigation was for a 100% array factor, the results and conclusions will not be altered greatly by using this lower value for the source level. This insensitivity to the source level is due to the rapid increase in propagation loss with range in the shadow zone. This source level discrepancy was found after all of the calculations had been performed and since the essential conclusions would be unaffected, the calculations were not rerun. Also note that when one is in a reverberation-limited condition (which was generally true in this study), the echo-to-background ratios are independent of source level.

# C. SURFACE LOSS (SPECULAR REFLECTION)

A prescribed loss of 7.11 db per surface contact was used in evaluating propagation losses from ray tracing calculations.

#### D. ABSORPTION LOSS

An absorption coefficient of  $.033f_{kc}^{3/2}$  (= 0.13 db/kyd) was used to account for all absorption losses.

The absorption loss calculation was controlled by input in the TRG computer programs using ray tracing and the correct absorption losses were automatically included in the calculations. However the AMOS propagation losses, which were used were calculated by a separate program. A fixed absorption coefficient (proportional to  $f_{\rm kc}^2$ ) and different from that given above is incorporated into this program. A simple hand-calculation sufficed to make all absorption losses used consistent.

#### E. SPREADING LOSS

The spreading losses to the targets at various depths were computed by interpolating smoothed data of propagation loss vs range produced from ray-tracing calculations performed on the IBM 7094. Ray solutions could not be found at target ranges beyond 3 to 5 kyd (depending on depth) and, for consistency, the AMOS equations to calculate propagation loss were for all target ranges beyond 3 kyd. This transition from ray tracing to AMOS is indicated by a dathed segment in the echo level curves plotted in Figures 2 through 11. A surface layer depth of 100 feet was used for this velocity profile.

The TRG OCEAN SWEEPER program, an IBM 7094 program used to compute bottom bounce echo and reverberation levels, was used to compute the bottom and DSL reverberation levels. This program automatically computes the spreading loss where a ray path exists. For the DSL at 600 feet, AMOS losses were used for ranges beyond the limiting ray path.

F. BOTTOM LOSS

募

122.0

à

The bottom losses used for the higher order bottom reverberation calculations were obtained from the empirical equation developed by Dr. W. Watson of NEL (see Reference 1). A bottom porosity of 0.69 was assumed.

G. DSL REVERBERATION

The general reverberation intensity equation is given in Section 1. For convenience, it is rewritten below in decibel form:

DSL Level = (source level) + (DSL coefficient) -  $2N_W$ + (integral of pattern functions) + 10 log R + 10 log  $\Delta R$ 

where R = range in yards,  $\Delta R$  = width of reverberation annulus, in yards, and  $N_w$  = one way propagation loss.

(All quantities are in decibels, unless specified)

The integral of the pattern function and the width of the reverberation annulus were evaluated by the OCEAN SWEEPER program.

For this study two DSL depths were considered: 600 and 1200 feet; these depths correspond to typical night and daytime DSL depths, respectively. Propagation losses to the deepscattering layer were computed by ray-acoustics techniques where permissible. It was found that, for the 600 foot layer, ray-tracing was valid for times corresponding to target ranges out to 4 kyds, while the 1200 ft. layer allowed ray-tracing to 6 kyds. Otherwise the AMO3 propagation losses for a path equivalent to the path length to the DSL were used in hand calculations in the above equation for DSL reverberation. However, in the region in which it is valid, ray-tracing is preferred to AMOS values since the ray-path allows

an accurate computation of the deviation losses yielding generally lower, more realistic, values for the reverberation level.

The effects of the array pattern are reflected in the E/B ratio. At near ranges, the convoluted Echo/Background curves (Figures 12 through 23) are due, in part to the characteristics of the DSL reverberationas determined by the deviation losses.

#### H. BOTTOM REVERBERATION

Bottom reverberation is computed directly, by the OCEAN SWEEPER program as described in Reference 1.

For this velocity profile, first and second order bottom reverberation do not exist beyond 30 kyds. Where the trailing edge of the first order bottom reverberation curve cannot be plotted exactly, the curve has been extended with a dot-dash-dot line to fall off just below 30 kyds.

Second order bottom reverberation is evident only for an azimuth steering angle of 90 degrees. The low values of second order bottom reverberation at the other steering azimuths is due partially to an effect dubbed C/P "beam skewing" (See Reference 1 for discussion of C/P beam pattern behavior.)

#### 1. SURFACE REVERBERATION

High initial values of the background-level curve are due to surface reverberation, which, in some instances, dominates the background level at 1 kyd. Beyond this range, it is negligible.

J. FLOW NOISE LEVEL

The equivalent isotropic spectral flow noise level was calculated from the formula supplied to TRG by NEL:

Spectrum level = -41.8 - 16.67f + .857v

where f = frequency in kc/sec and

v = ship speed in knots.

The spectral noise level was calculated as -27.1 db re 1 microbar/cps., for all cases considered here.

The equivalent plane wave noise level (see Reference 1) for the array is then given by:

L<sub>epw</sub> = Equivalent isotropic-spectrum level - Receiver directivity index + 10 log(bandwidth).

For this array, at a ship speed of 25 knots, the flow noise level was -43 db re 1 microbar.

K. BACKGROUND LEVEL

This quantity is a power level summation of flow noise, surface, bottom and DSL reverberation. In Figures 2 through 11, the background level has been sketched in as a dashed line only where it does not rollow the contour of the highest of its component levels.

L. ECHO LEVEL

The echo level is calculated from the formula presented earlier; viz.,

Echo Level = Source level + Target strength -2N<sub>w</sub>. - Reception deviation loss - Transmission Deviation loss.

A random aspect target strength of 15 db was assumed. Target depths of 80, 150 and 300 feet were investigated; these are typical best, average and worst case target depths for this layer depth.

#### M. RESULTS

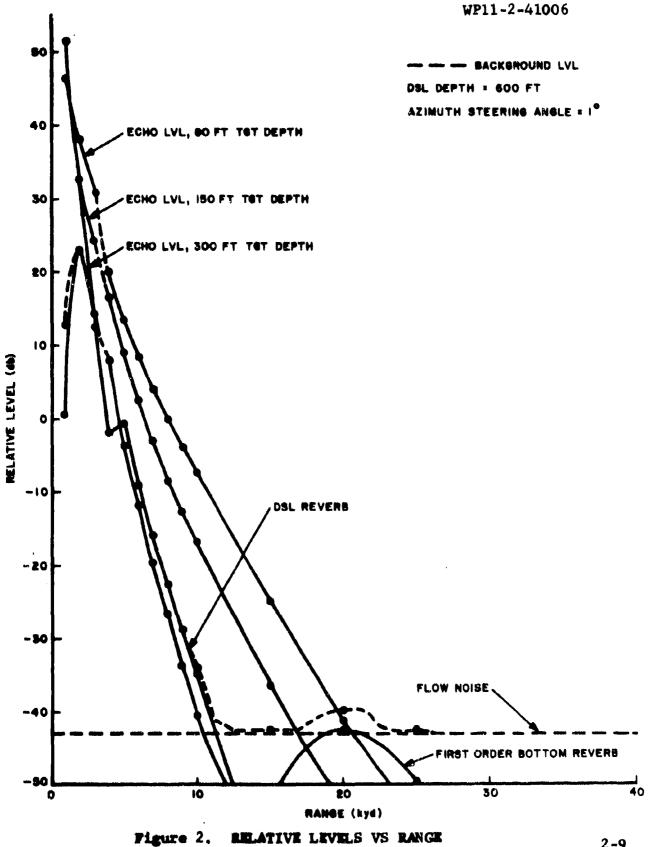
Figures 2 through 11 present curves of echo level vs range for the three target depths and also show the corresponding background components. Figures 2 through 6 are for a DSL depth of 600 feet and for azimuthal steering angles of 1, 10, 30, 45, and 90° (broadside), respectively. Figures 7 to 11 are corresponding graphs for a DSL depth of 1200 feet. This latter set of curves is not physically correct in the decay of the DSL; this is due to the lack of an alternative propagation loss equation once ray tracing was invalid. (Recall AMOS is valid only to a depth of about 600 feet.) However, it is interesting to note the change in the shape of the background curves for the two DSL depths at the shorter ranges. For the shallower DSL, the background peaks sooner and higher; it also dies off sooner. Figures 12 to 23 are the corresponding plots of echo-to-background (E/B) ratio vs azimuth and range. The lack of smoothness in some of the plots is due to a discontinuity between the AMOS and ray tracing losses at the transition ranges. (See Figure 24).

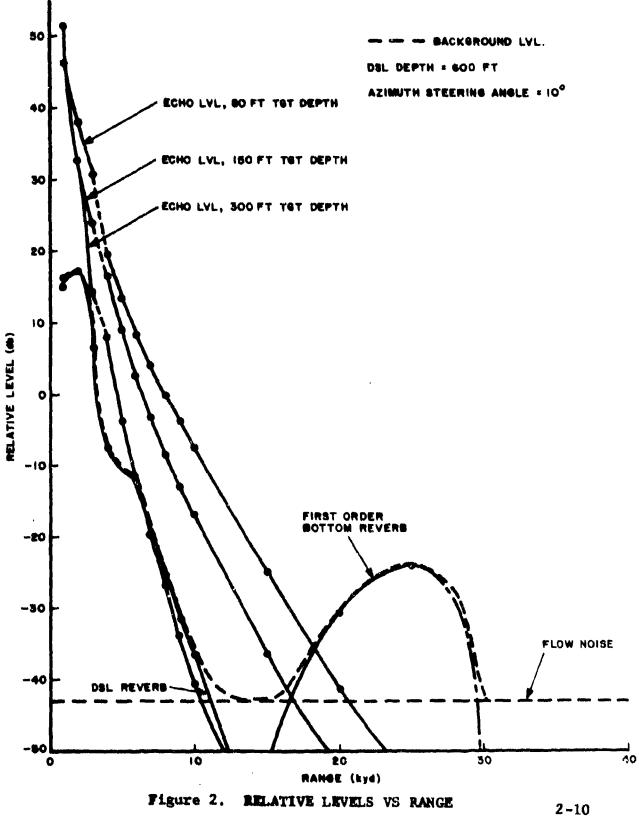
In Section I, it was noted that propagation conditions often favor paths to the bottom over paths to the DSL and the target. This situation overcomes the discrimination against bottom reverberation provided by the array pattern, and bottom reverberation becomes a significant component of the background. Figure 13 provides a good illustration of the effect of bottom reverberation. The local minimum in the E/B ratio for steering azimuths away from endfire is due to the sudden appearance of first order bottom reverberation just as the DSL reverberation is dying off around 9 kyd (target range). The peak in the E/B near 15 kyd, is due to a reduction in the limiting bottom reverberation, due to a minimum in the vertical pattern of the array. (Figures 4 to 6 show the corresponding relative levels of the background vs. target range.) Typical azimuthal and vertical cuts through the beam patterns are shown in Figures 25 to 30. Near endfire, the vertical pattern is quite narrow. whereas near broadside, the vertical beam is relatively wide. The narrow vertical beams of the pattern for azimuthal steering angles near endfire provide more discrimination against bottom reverberation than the wide broadside beams. Consequently, higher E/B ratios are obtained for the azimuths near dead-ahead.

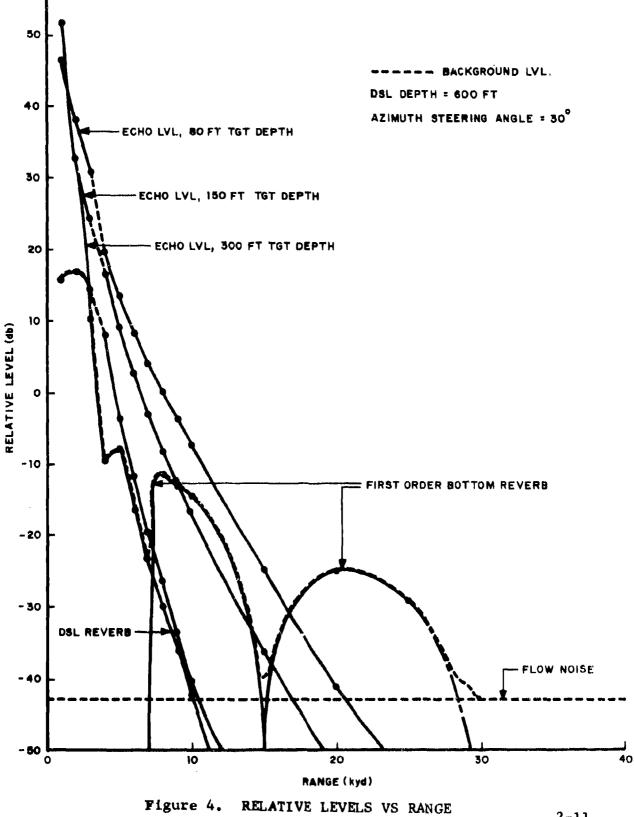
The tabular data for the sonar calculations are presented in Tables 1 through 30 which follow the figures.

The maximum detection range<sup>\*</sup> in this mode (assuming a recognition differential<sup>\*\*</sup> of 12 db) corresponds to an echo-tobackground ratio of -5 db (-5 + 17 db of processing gain = +12 db.) For the 150 ft target depth, one may observe that the maximum detection range increases as the beam is steered away from broadside. In this region, the limiting background component is bottom reverberation.

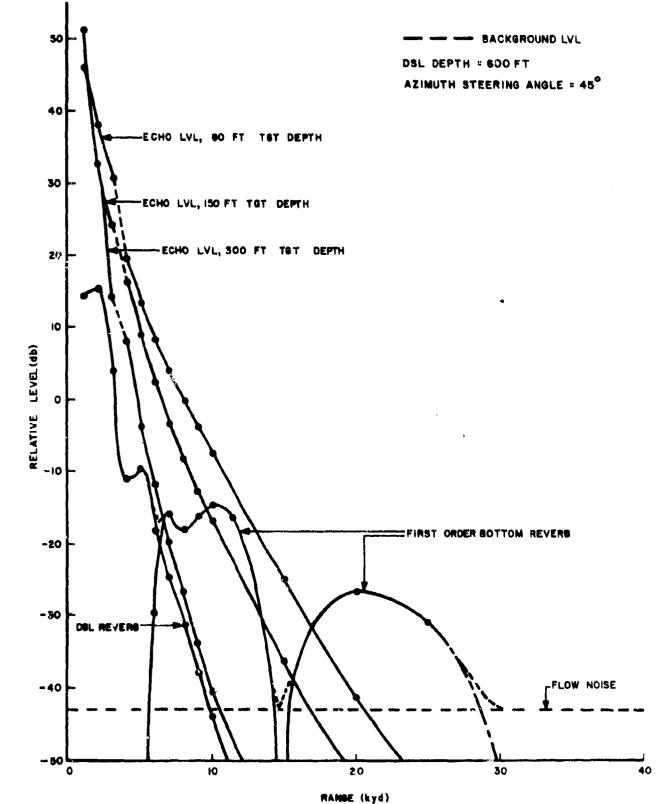
#### N. CONCLUSION

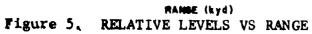

The particular example considered here involved too many simplifying assumptions to be realistic. For example, it would not be possible to use single-ping and a half-second pulse in a sonar of this size and still have a high enough data rate for successful detection. Another major limitation was the assumption of constant source level, independent of steering angle.

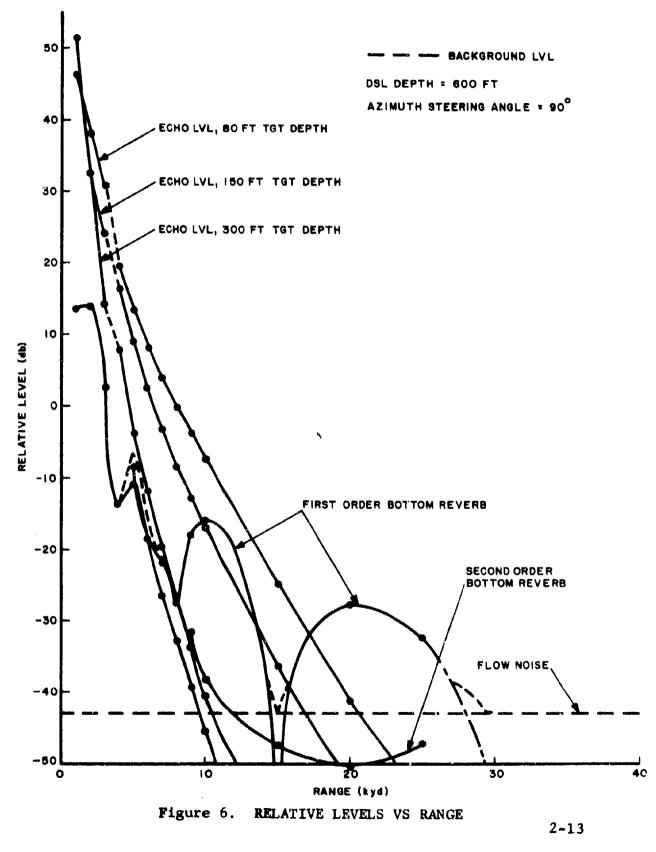

One may observe, from these calculations, the general characteristics of a C/P sonar using the surface duct mode, particularly the relatively good performance which can be achieved towards dead-ahead.


This model will be used for forthcoming C/P design and trade-off analysis. The simplifying assumptions made for this analysis were made for convenience. In the final design, a more general analysis will be performed.

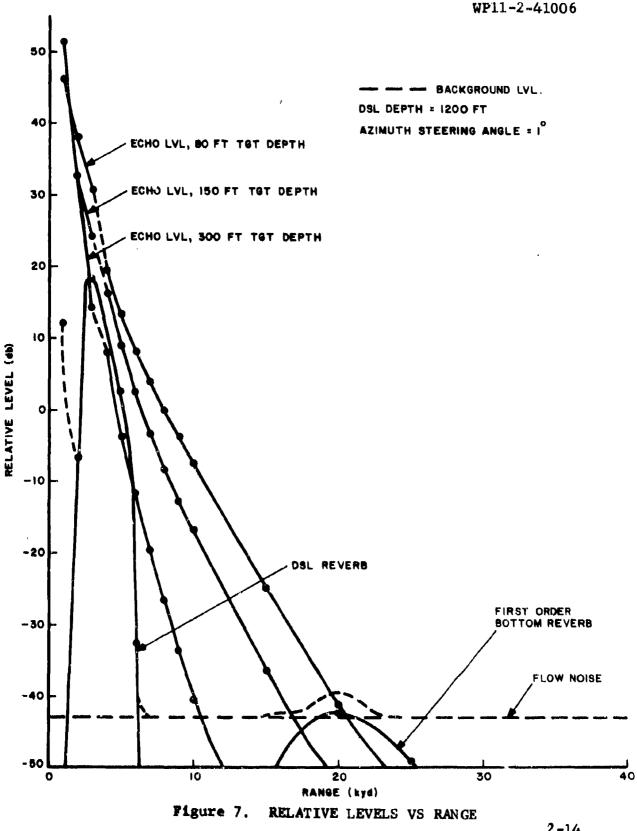
<sup>&</sup>quot;Defined as maximum range at which one obtains 50% probability of detection.


<sup>\*\*</sup>Required echo-to-background for 50% probability of detection.







2-11





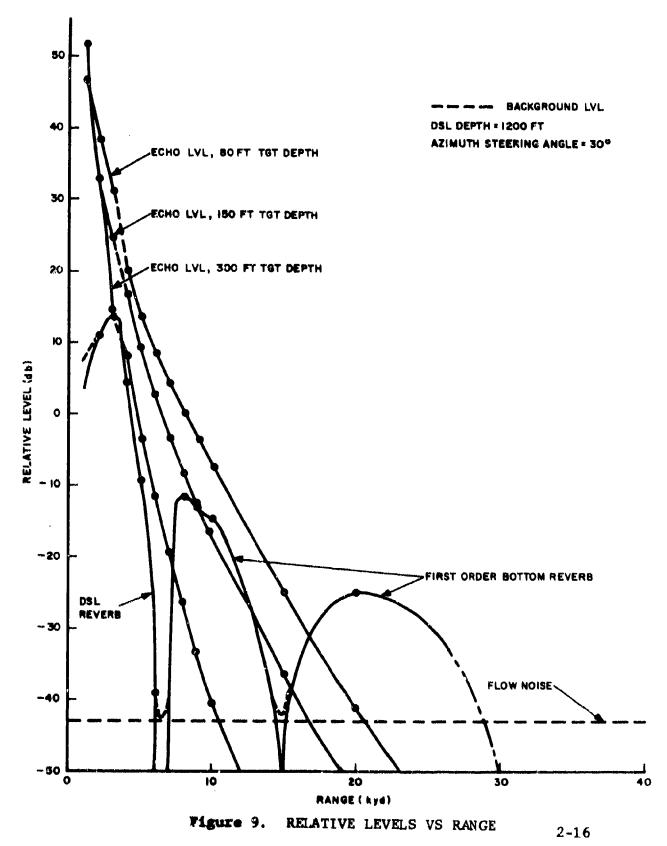


and the second second

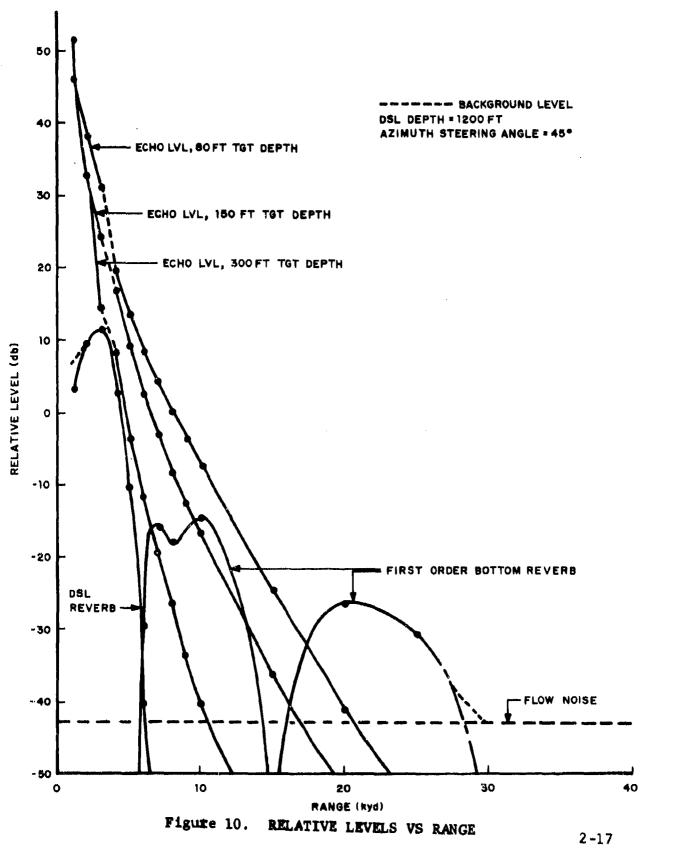


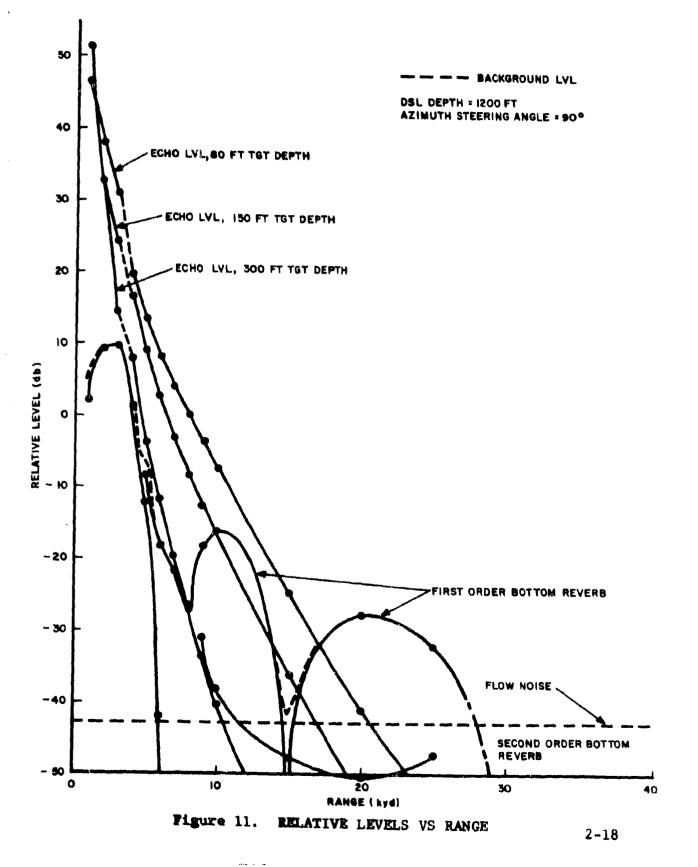
and a second of

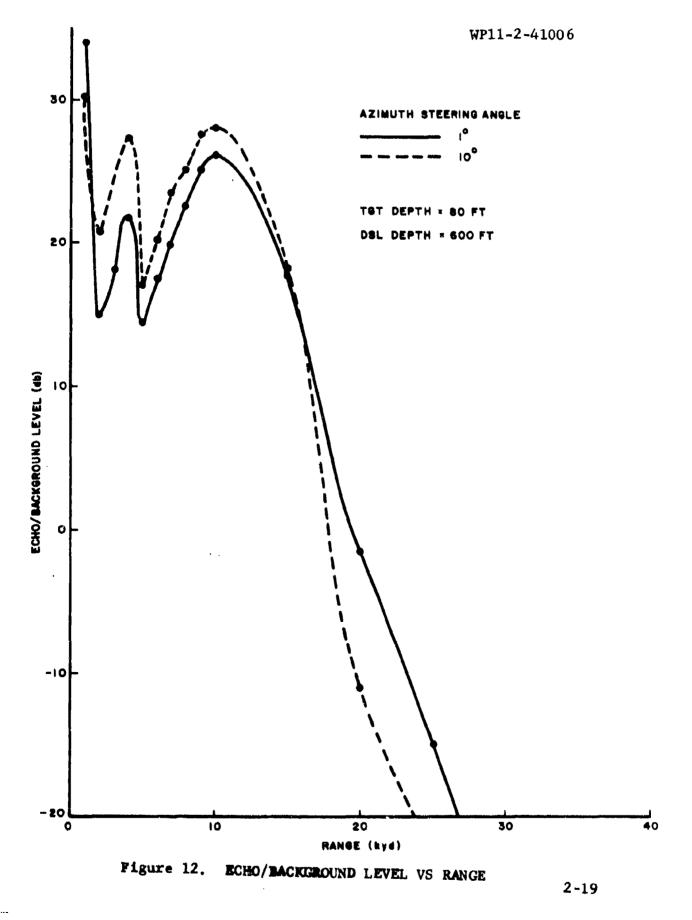
i'


ł

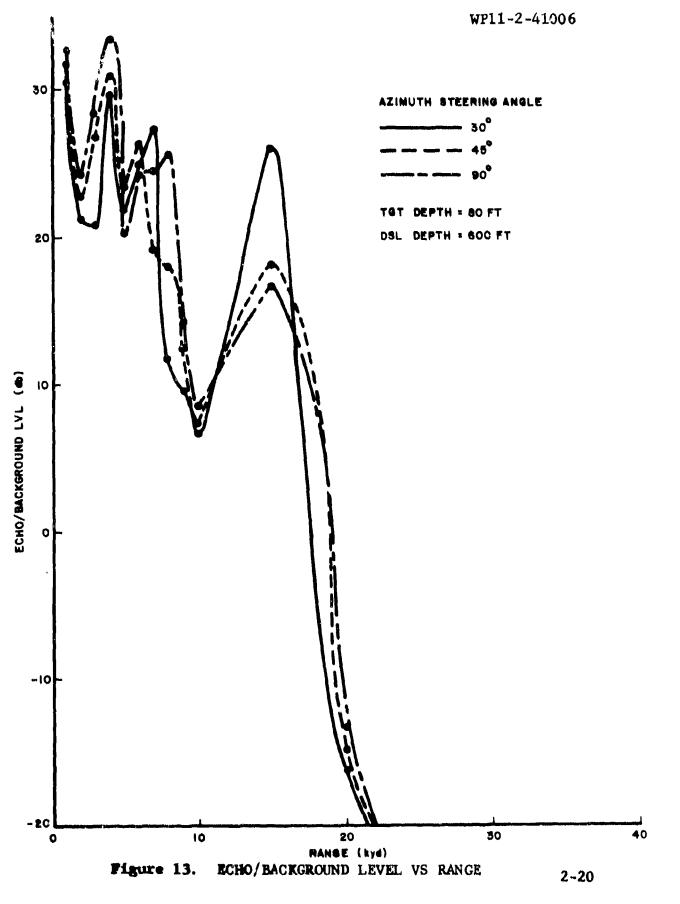



あじず キャン

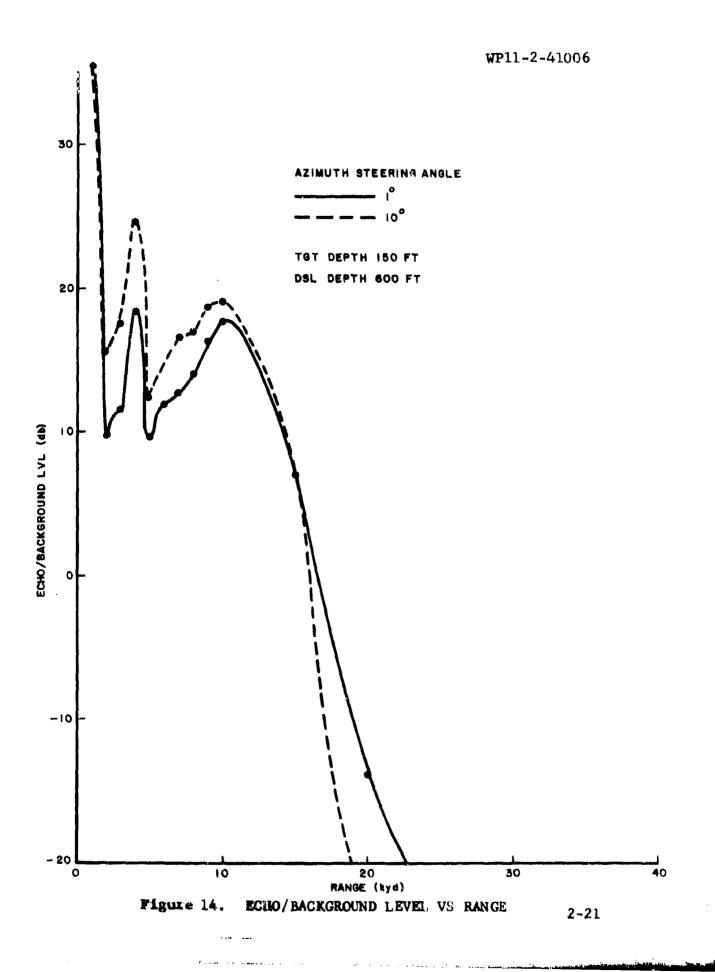

1

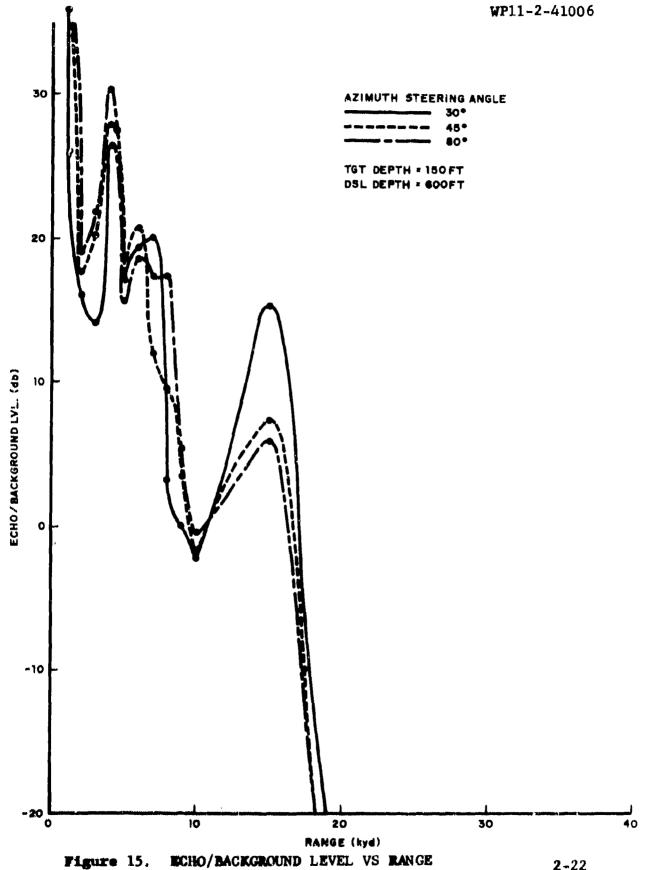

したいで、このではな

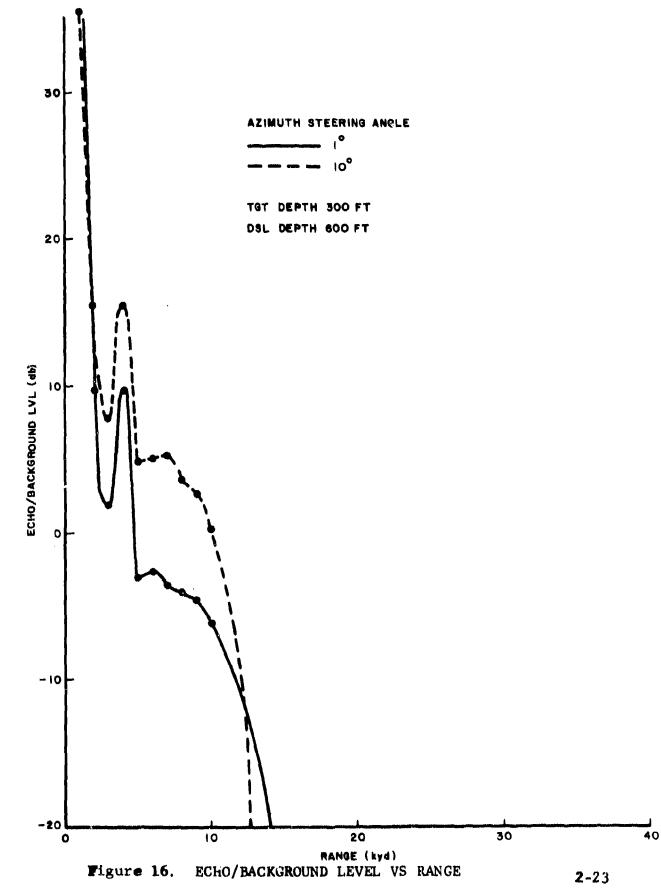



.......

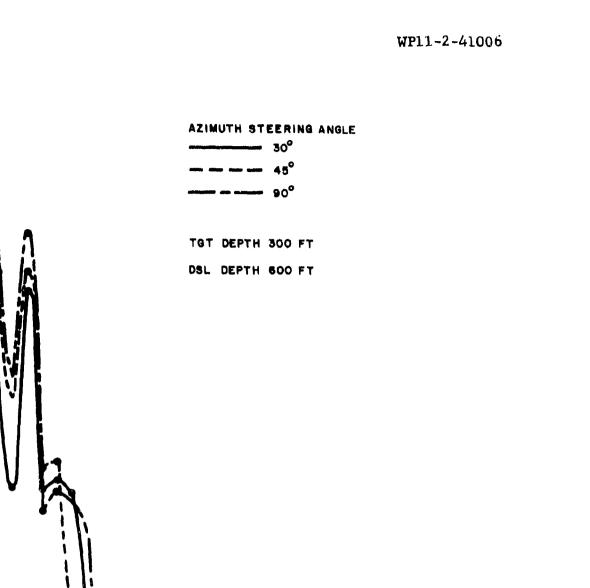






In LINE ALLER A LAR



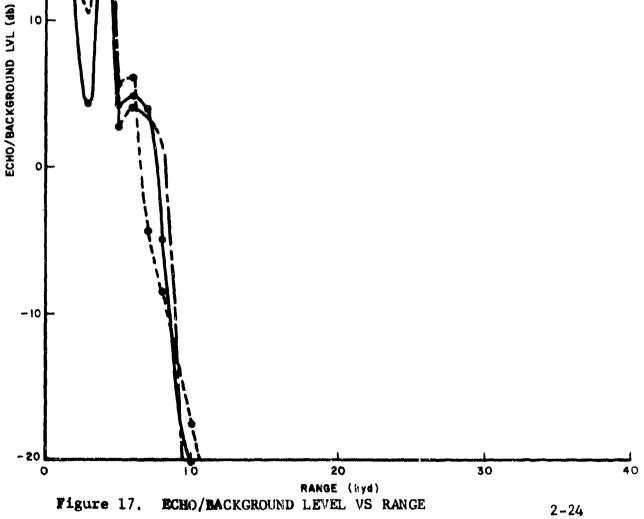

Ť

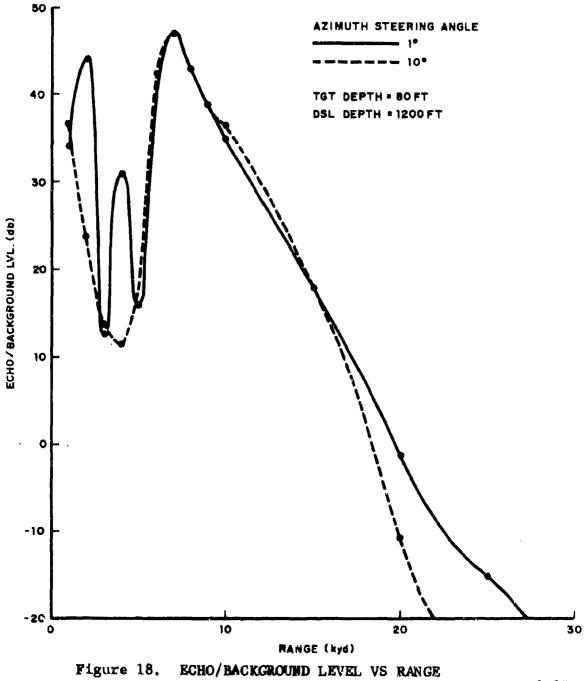




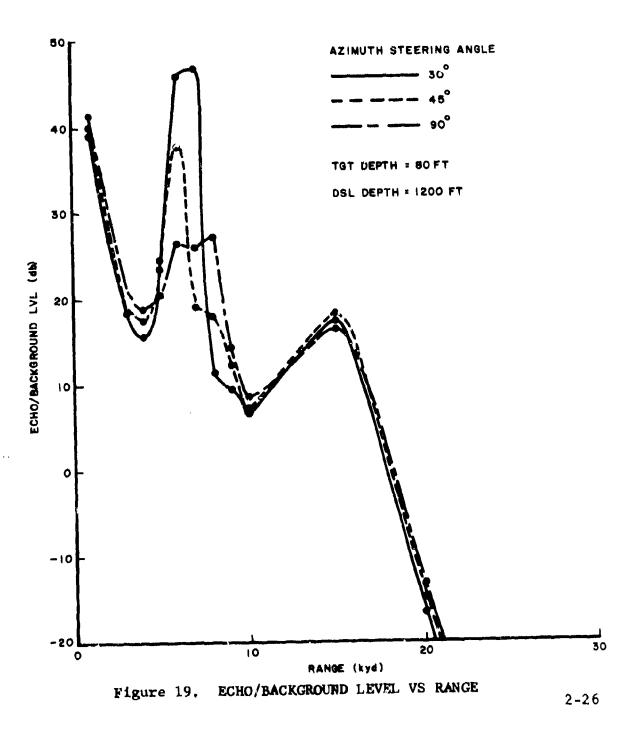


したと明にしていたいからでは



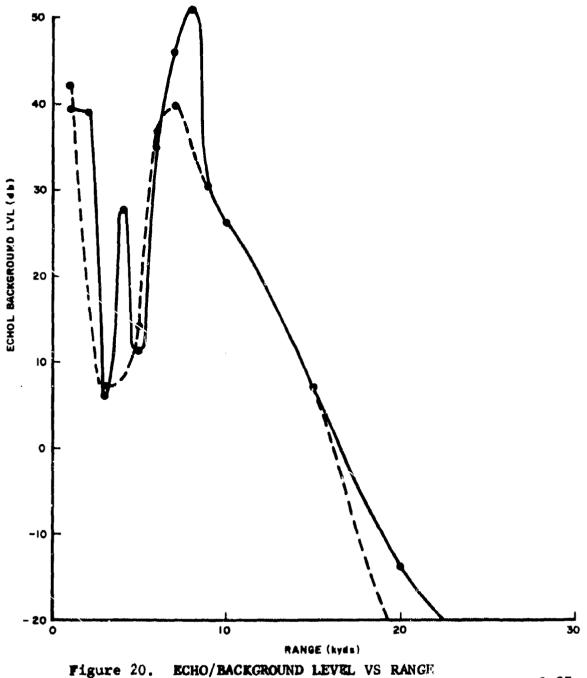


in the second second

30


20

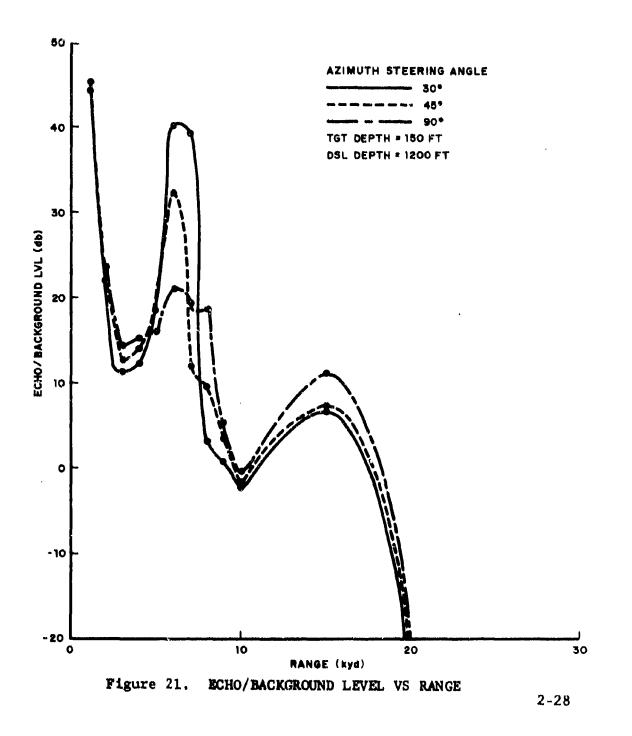
10

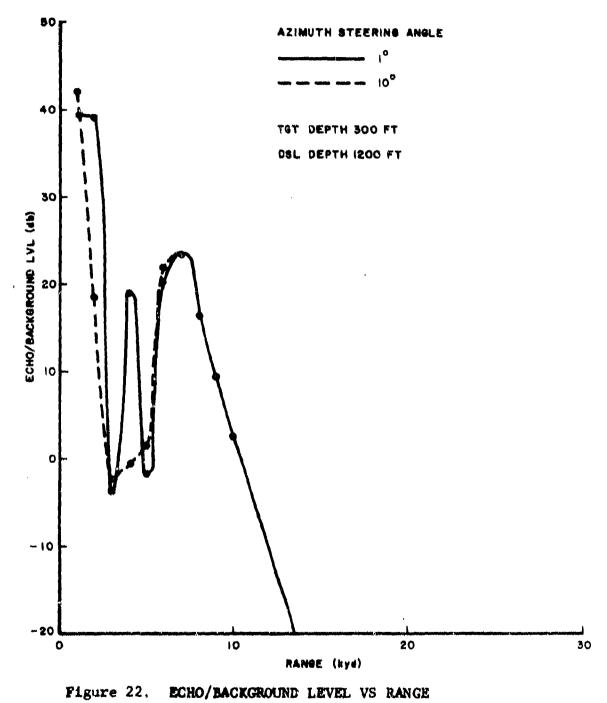





WP11-2-41006

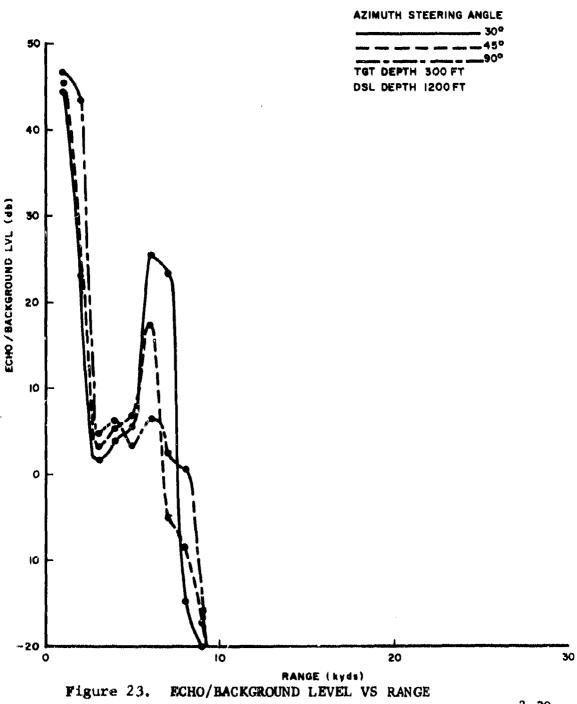


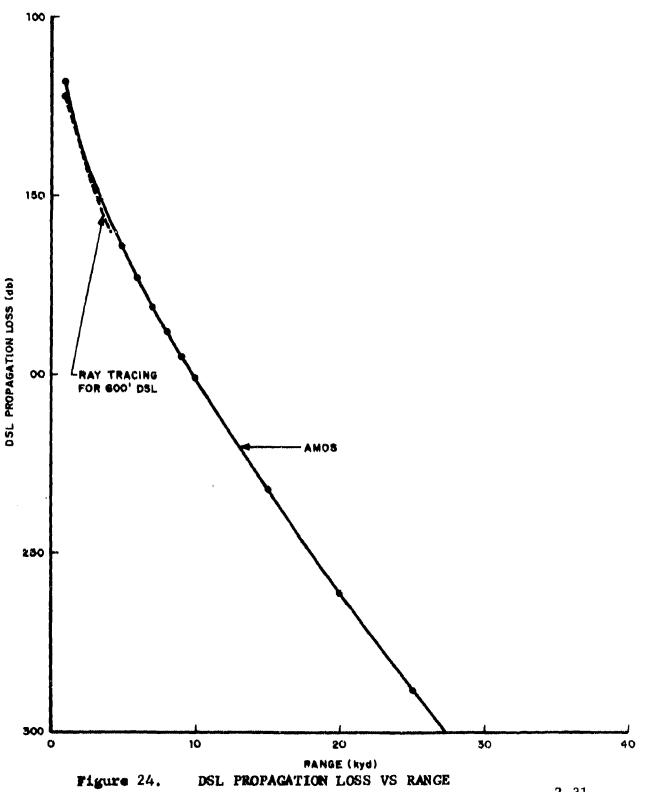





. . .....






-----

i partici della The





1.

÷.

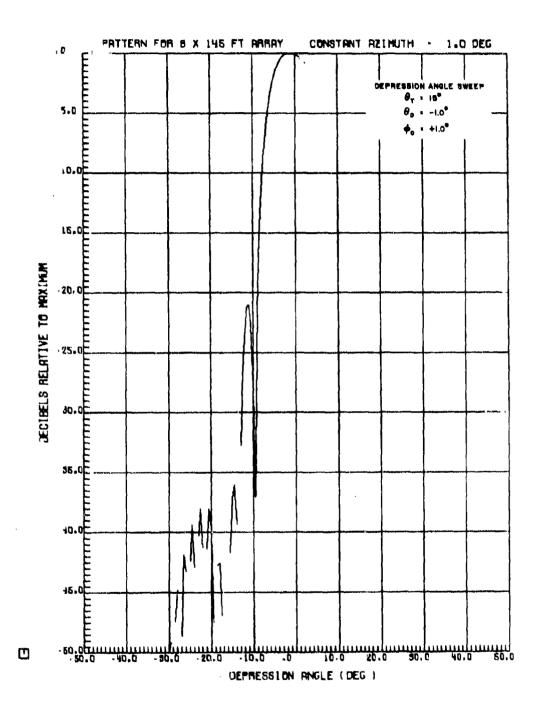



FIGURE 25

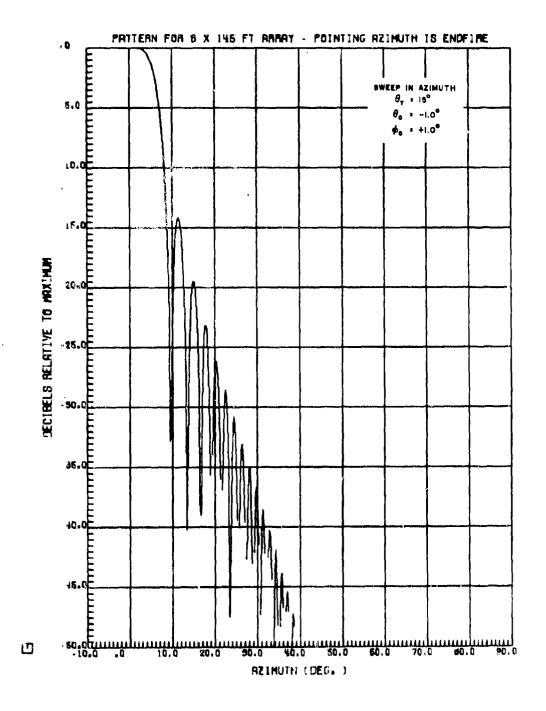
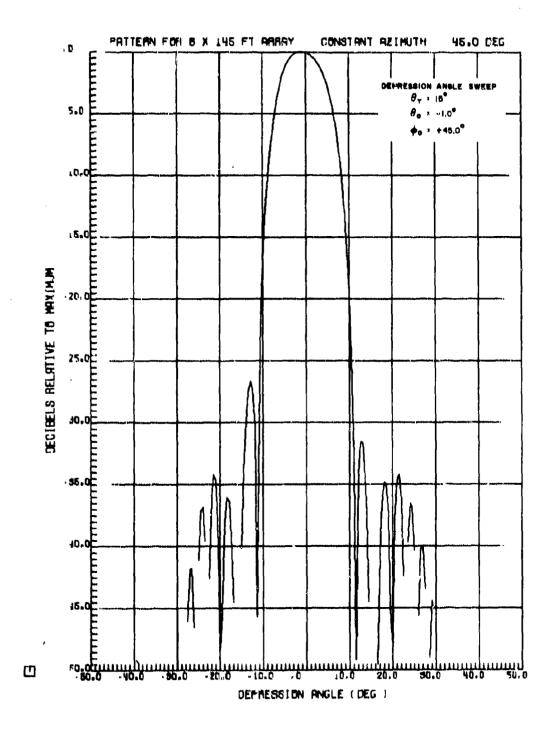




FIGURE 26

2-33

. AN IN COLUMN



r,

FIGURE 27

Addin . Water and the state of the second

2-34

6.580

te beren farten bereite bereite einen mertin stellte ihre unter beter ihren

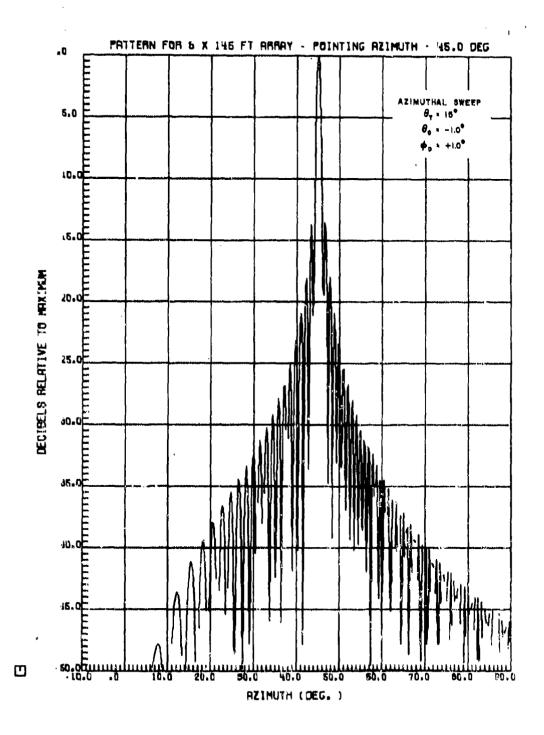



FIGURE 28

And an an in the second se

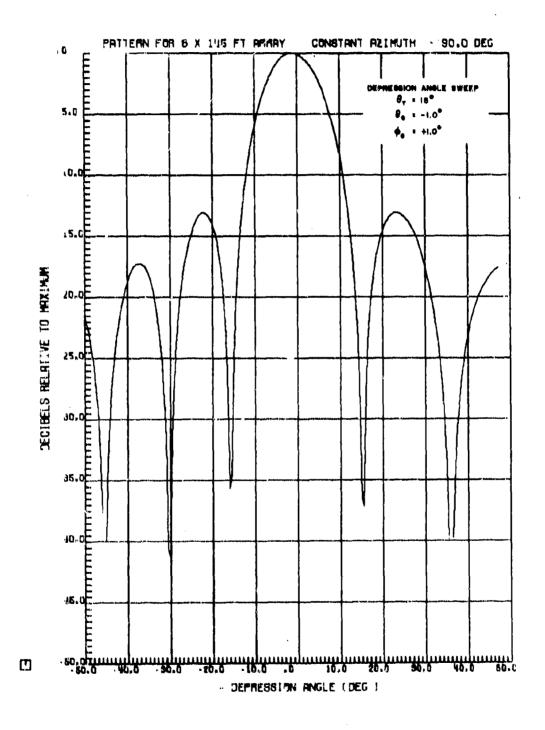



FIGURE 29

2-36

and a second second

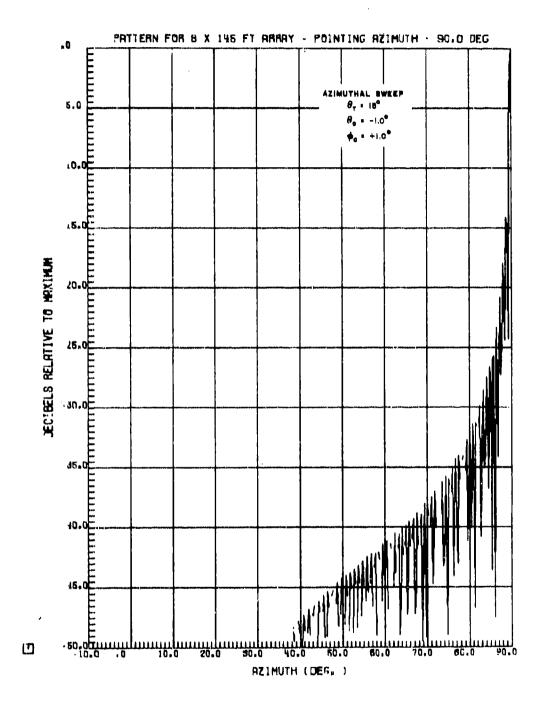



FIGURE 30

| ſ | 1                          | <br>  |        | T    | ÷       |        | ,<br>T   |           | - <u> </u>  |        | -             |           | Ť       | -      | <u> </u> | ·<br>·   | V)     | -'<br>- | : 1                                   | w <b>p</b> 1                           | 1-2                         | 2- <u>-</u> 4 | 100                   | 6                       |            |                   |
|---|----------------------------|-------|--------|------|---------|--------|----------|-----------|-------------|--------|---------------|-----------|---------|--------|----------|----------|--------|---------|---------------------------------------|----------------------------------------|-----------------------------|---------------|-----------------------|-------------------------|------------|-------------------|
|   | Ecno/Backgrows Luz .<br>23 | 34.1  | 0.51   | 18.2 | 21.12   | 14.4   | 17.6     | 20.0      | 22 . 6      | 21.2   | 26.7          | 17 . 8    | h. 1-   | -14.9  | -29.3    | - 44 . 8 | -19.6  |         |                                       |                                        | 1 600 Fr                    |               | ·<br>·<br>·<br>·<br>· |                         |            |                   |
|   | FCHO LEVEL                 | 46.4  | 38 . / | 30.9 | 19.9    | /3.8   | 9.4      | 4.1.      |             | -3.7   | -7.5          | -24.8     | -41,2   | 1.12-  | -72.3    | - 87 . 8 | -102.6 |         |                                       |                                        | DSL DEPTH :                 |               | 150' ARRAY            |                         |            |                   |
|   | BKGRUD L.11.<br>DB         | 12.3  | 23.1   | 12.7 | -1.9    | -0.6   | -9.2     | -15-9     | -22.6       | - 28.9 | - 34.2        | - 42.6    | - 39, 8 | - 42.2 | - 43.0   | -43.0    | -43.0  |         |                                       |                                        | •                           | •             | FOR 8' x              |                         |            |                   |
|   | Taran Rever                | 12.3  | 23.1   | 12.7 | 5.1-    | -0.6   | - 9 . 2  | - 15 .9   | - 22 . 6    | -29 69 | -34 .8        | 5.3 .2    | - 42.6  | -49,2  |          | - 79 - 7 | 1.01.  |         |                                       | ····· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· |                             |               | KGROUND LEVELS        | NOTE: TABLES 1 Thru 30: | ALLE STATE | <b>BUN AVAILA</b> |
| i | DSL REVERS                 | 6.0.  | 23,1   | 12,7 | - / . & | - 0.6  | - 9 . 2  | -15-9     | -22.06      | -29.9- | 34,8          | -64.2     | - 91.2  | -117.9 | - 143.9  | -169.6   | 0-181- |         |                                       | D DB RE I NBAR                         |                             |               | 1. ECHO/BACKGROUND    | NOTE: IAB               |            |                   |
| · | Juzz & Borray Rorers       | 12,23 |        | -    |         | - 95.8 | - 78 , 7 | . 1° 2/ - | 8 87-       | -63,7  | -66.3         | -23 مر    |         | -49,2  | - 90 . 1 | - 79, 7  | -70,6  |         | · · · · · · · · · · · · · · · · · · · | Fiew Norse AT 25 XIS = -43.0 28        | PRIMUTH STEERING ANGLE = 1. |               | Table 1.              | ·<br>·<br>·             | · .        |                   |
|   | RANG                       | <br>` | ~      | ~    | 2       |        | 7        | ~         | 0           | 0      | \$            | 2 2       | 20.     | 2,5    | 30       | 35       | 40     |         |                                       | FIEW Ners                              | REIMUTH                     | :             |                       |                         |            |                   |
|   |                            | <br>  |        |      |         |        |          |           |             |        |               | •         | 1       | •      | i -      |          |        | ı       |                                       |                                        | ,                           |               | 2                     | -38                     |            |                   |
|   |                            |       |        |      |         | 1      | : :      |           | г<br>1<br>1 | :      | •<br>•<br>• • | <br> <br> | 1       |        | ۱        |          | I      |         |                                       |                                        |                             |               |                       |                         | •          |                   |

| 9.7     11.4     17.4     17.4     8.1       7     6.7     8.1     8.1       7     6.7     8.1       7     6.7     8.1       7     6.7     8.1       7     6.7     8.1       7     6.7     8.1       7     6.7     8.1       7     6.7     8.1       7     6.7     8.1       7     7.6     7.1       7     7.6     7.1       7     7.6     7.1       7     7.6     7.1       7     7.6     7.1       7     7.6     7.1       7     7.6     7.1       7     7.1     7.1       7     7.1     7.1       7     7.1     7.1       7     7.1     7.1       7     7.1     7.1       7     7.1     7.1       7     7.1     7.1       7     7.1     7.1       7     7.1     7.1       7     7.1     7.1       7     7.1     7.1       7     7.1     7.1       7     7.1     7.1       7     7.1     7.1 <t< th=""><th></th><th>Range</th><th>JURF. &amp; BOTTON</th><th>DSL Revers</th><th>Torne Revers Bugano Lue</th><th>Brganb Lut</th><th>ECHO LEVEL</th><th>E CHO LEVEL ECHO/BACKFROMP LUL.</th></t<>                                                                                                                                                                                                                                                                                |                       | Range     | JURF. & BOTTON   | DSL Revers    | Torne Revers Bugano Lue | Brganb Lut | ECHO LEVEL   | E CHO LEVEL ECHO/BACKFROMP LUL. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|------------------|---------------|-------------------------|------------|--------------|---------------------------------|
| 11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     <                                                                                                                                                                                                                                                                                                                                                       |                       | 6771V     |                  | 0             | 2                       | 5          |              |                                 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                     |           | 9.7              | 14.9          | 16.1                    | 161        | 46.4         | •                               |
| $\frac{1}{7}$                                                                                                    |                       | ~         |                  | 17 .4         | 17.4                    | 17.4       | 39.1         |                                 |
| 4       -       -       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                | - ,                   | a         | 1.               | 2.2.          | 6,7                     | 6,7        | 30 .9        | •                               |
| 7     7     7     7     7     7       7     7     7     7     7     7     7       7     7     7     7     7     7     7       7     7     7     7     7     7     7       7     7     7     7     7     7     7       7     7     7     7     7     7     7       7     7     7     7     7     7     7       7     7     7     7     7     7     7       7     7     7     7     7     7     7       7     7     7     7     7     7     7       7     7     7     7     7     7     7       7     7     7     7     7     7     7       7     7     7     7     7     7     7       7     7     7     7     7     7     7       7     7     7     7     7     7     7       7     7     7     7     7     7     7       7     7     7     7     7     7     7       7 <th></th> <td>· /</td> <td>  •</td> <td>~</td> <td>- 7,5</td> <td>-2,5-</td> <td>- 6- 6/</td> <td>27.4</td>                                                                                                                                                                                                                                                                                                                                                                                              |                       | · /       | •                | ~             | - 7,5                   | -2,5-      | - 6- 6/      | 27.4                            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | 5         | ~                | · 1           | E. E.                   | E1 E -     | /3 .3        | 17 .1                           |
| 7 $-74/5$ $-26.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | 2         | - 76 .6          |               |                         | -// .9     |              |                                 |
| 1       11.05       25.3       25.3       25.3       25.3       27.3         1       1       1       1       1       1       1       1       1         1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 </td <th></th> <td>7</td> <td>-74,7</td> <td>-19.6</td> <td>-19.5</td> <td>- 19.6</td> <td>4.1</td> <td></td>                                                                                                                                                                                   |                       | 7         | -74,7            | -19.6         | -19.5                   | - 19.6     | 4.1          |                                 |
| 9       -41.1       -31.2       -31.5       -31.5       -31.5       -31.5       -31.5       -31.5       -31.5       -31.5       -21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1       21.1 <th>,<br/>,<br/>,</th> <td>8</td> <td>. T</td> <td>5.25-</td> <td>-25.3</td> <td>-21.3</td> <td>• 0</td> <td>25.03</td> | ,<br>,<br>,           | 8         | . T              | 5.25-         | -25.3                   | -21.3      | • 0          | 25.03                           |
| n       -10.6       -31.5       -31.5       -31.6       -11.6       21.1         K       -53.1       -10.1       -31.5       -31.6       -11.6       21.1         Z       -53.1       -10.1       -31.5       -31.6       -71.6       21.1         Z       -53.1       -10.1       -12.5       -30.1       -71.8       -71.1       -23.3         Z       -71.1       -73.0       -77.1       -73.2       -73.1       -73.3       -74.4       -73.1       -73.2       -74.4       -77.4       -74.4       -77.4       -74.4       -77.4       -74.4       -77.4       -74.4       -77.4       -74.4       -77.4       -74.4       -77.4       -74.4       -77.4       -74.4       -77.4       -74.4       -77.4       -74.4       -77.4       -74.4       -77.4       -74.4       -77.4       -74.4       -77.4       -77.4       -77.4       -77.4       -77.4       -77.4       -77.4       -77.4       -77.4       -77.4       -77.4       -77.4       -77.4       -77.4       -77.4       -77.4       -77.4       -77.4       -77.4       -77.4       -77.4       -77.4       -77.4       -77.4       -77.4       -77.4       -77.4       -77.4 <th></th> <td>6</td> <td>2027-</td> <td>-31.6-</td> <td>- 3/ 0 6</td> <td>8.12-</td> <td>-3.2</td> <td>27.6</td>              |                       | 6         | 2027-            | -31.6-        | - 3/ 0 6                | 8.12-      | -3.2         | 27.6                            |
| K       -53.1       -6.5       -3.5       -3.6       -3.16       -3.4       71.8         20       -70.1       -93.5       -30.3       -41.4       -70.4       71.4         27       -24.6       -77.6       -37.1       -33.1       -33.1         26       -91.9       -72.6       -24.0       -72.3       -44.4         26       -91.4       -12.5       -91.5       -33.1       -33.1         27       -91.1       -72.3       -42.0       -72.3       -44.8         40       -101.1       -79.7       -73.0       -72.3       -44.8         41       -101.1       -79.1       -73.0       -72.6       -74.4         40       -101.1       -79.7       -73.0       -72.6       -74.6         41       -11.1       -73.0       27.14       -73.6       -74.6         7       -11.1       -73.0       27.14       -74.6       -74.6         7       -11.1       -74.5       27.2       27.1       -74.6         7       -11.1       -73.0       27.1       -74.6       -74.6       -74.6         7       -11.1       -74.5       -74.6       -74.6                                                                                                                                                                                                                               |                       | 9/        | -60.6            | -36.5         | -36.5                   | -3156      | -7.5         | 28.1                            |
| 20       -30.6       -30.3       -41.8       -70.4         21       -24.0       -72.5       -34.6       -71.1       -33.1         21       -24.0       -72.6       -34.6       -71.1       -33.1         21       -24.0       -72.6       -34.6       -71.2       -33.1         21       -91.6       -191.0       -191.0       -191.0       -33.1         21       -101.1       -192.3       -94.4       -43.0       -72.3       -29.3         21       -101.1       -192.1       -192.1       -192.1       -192.1       -74.6       -74.6         21       -101.1       -192.1       -192.1       -192.1       -192.1       -74.6       -74.6         21       -101.1       -192.1       -192.1       -192.1       -192.1       -743.0       -77.6         21       -101.1       -192.1       -192.1       -192.1       -743.0       -77.6       -743.0       -77.6         21       -101.1       -192.1       -192.1       -192.1       -79.1       -79.1       -79.1         21       -101.1       -101.1       -192.1       -192.1       -79.1       -79.1       -79.1       -79.1       -                                                                                                                                                                                   | • .                   | 15        | -53.1            | ۲             | -53.0                   | 9.24-      | 2 42-        | 17.8                            |
| 1       -24,0       -71,0       -77,1       -33,1         30       -97,4       -97,6       -91,6       -72,3         31       -94,4       -172,3       -94,4       -72,3         37       -94,4       -172,3       -94,4       -72,5         37       -94,4       -73,0       -72,3       -94,4         40       -101,1       -172,3       -94,4       -43,0       -44,5         40       -101,1       -192,1       -92,5       -92,5       -92,5         40       -101,1       -192,1       -192,1       -192,1       -73,6         5       5       5       5       5       5       5         7       7       -101,1       -192,1       -73,0       5       5         7       5       5       -192,1       -73,0       5       5       5         7       7       -101,1       -101,1       -73,0       7       5       5       5         7       7       -101,1       -101,1       -101,1       -73,0       7       5       5       5       5       5       5       5       5       5       5       5       5                                                                                                                                                                                                                                                                   |                       | 20        | -30 .6           | 5             | -30,6                   | 5108-      | -41 .2       | •                               |
| 30     -97.6     -146.6     -87.6     -72.3     -94.4     -72.3       37     -94.4     -172.3     -94.4     -42.0     -97.6     -44.6       40     -101.1     -197.1     -101.1     -197.6     -72.3     -44.6       40     -101.1     -197.1     -197.1     -101.1     -73.0     -92.6     -44.6       40     -101.1     -197.1     -197.1     -73.0     -92.6     -74.6       7     7     -101.1     -73.0     36.1     -73.0     -73.6       7     7     -101.1     -701.1     -73.0     50.1     -74.6       7     7     -101.1     -701.1     -73.0     70.1     -74.6       7     7     -101.1     -701.1     -701.1     -73.0     70.1       7     7     -101.1     -75.0     26.7     -74.6       7     7     -101.1     -25.1     -70.1     -70.1       7     7     -25.1     -70.1     -73.0     70.1       7     7     -74.1     -75.0     70.1     -74.0       7     7     -75.0     26.1     -77.0     70.1       7     7     -75.0     27.2     27.2     27.2    <                                                                                                                                                                                                                                                                                                 |                       | 210       |                  | -120 . 5      | -24,0                   | -24 ,0     | 57.1         | - 33, /                         |
| 3r     -91,4     -172.3     -84,4     -43.0     -97.8     -44.8       40     -101,1     -197.1     -101,1     -43.0     -97.6     -44.8       Flau Noise Ar series = 43.0 D8 Rr 1 pistit     -101,1     -43.0     -43.0     -77.4     -57.1       Armury Sreeking Angre = 10°     351. Deprive 10°     251. Deprive 10°     551. Deprive 10°     51.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | 30        | -87.8            | -146 . 6      | - 87.8                  | -43.0      | -72.3        | -29.3                           |
| 40     -191 •1     -197.7     -101.1     -43.0     -102.6     -59.6       Flaw Nose AT 25 x15 = -43.0 D8 AF.1 µ8AT     -108.4     -53.6     20.5     778401 b5.6     20.5     7774 = 600 FT       Armura Steesing Angue = 10°     35.6     25.6     26.0     56.7     35.6     20.5     77       Table 2.     ECHO/BACKGROUND LEVELS FOR 8' x 150' ARRAY     25.6     20.5     77.7     20.5     77.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | 35        | •                | -172.3        | - 84 . 4                | -42,0      | - 8- 28-     | -44.8                           |
| Figur Muse AT RE KIS = -42.0 DB RE 1 JUBAN<br>ATIMUTH STEERING ANGLE - 10° JSL DEPTH = 10° JSL DEPTH = 10°<br>Table 2. ECHO/BACKGROUND LEVELS FOR 8° × 150° ARRAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 40        | 1.101-           | - 7227-       | 1.101-                  | - 43,0     | -102 .6      | -59.6                           |
| Fim Noise at as wis = -43.0 DB AF 1 JUBAT<br>Atimutal Steering Angle = 10° DSL DEPTH = 600 FT<br>Table 2. ECHO/BACKGROUND LEVELS FOR 8' & 150' ARRAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |           |                  |               |                         |            |              |                                 |
| Flow Noise ar RCKIS = -43.0 DB Re 1 JUBAN<br>Armury Steeping Angle = 10° DSA DEPTH = 60° Fr<br>Table 2. ECHO/BACKGROUND LEVELS FOR 8° x 150° ARRAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -<br>-<br>-<br>-<br>- |           |                  |               |                         |            |              |                                 |
| Azimury Greening Angue = 10° Depty = 10° FILMURY Steering Angue = 10° FILMURY Table 2. ECHO/BACKGROUND LEVELS FOR 8' x 150' ARRAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | FLOW Nor. |                  | 23 RE         | <b>}</b>                | 1<br>1<br> | TARGET DEPTH | - <u>90</u> . FT                |
| Table 2. ECHO/BACKGROUND LEVELS FOR 8' x 150' ARRAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | AZIMUTH   | I STEEPING ANGLE |               | •                       | •••        | 256 DEPTH :  | 600 Fr                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                     |           | ТаНа             |               |                         |            |              | 2-4                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>39</b>             |           |                  | •.            |                         |            |              | 100                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |           | ,<br>,           | . ,<br>,<br>, | ,                       | •          | •            | 96                              |
| · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |           |                  |               |                         | •          |              | •                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |           |                  |               |                         |            |              |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |           |                  |               |                         |            |              |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |           |                  |               |                         |            |              |                                 |

ł !

ļ

.

ł

.

: | |

,

| •                | JURF. & BOTTOM           | DSL REVERS  | TOTAL REVER      | Breens KI                    | ECHO KENCL   | ECHO/BACKSROOND LUZ.                  |
|------------------|--------------------------|-------------|------------------|------------------------------|--------------|---------------------------------------|
| R. & U. E. P.    |                          | . 80        | 80               | 23                           |              | 88                                    |
|                  |                          |             |                  |                              |              | -                                     |
| ر.<br>ار         | 5,2                      | 1505        | 15.9             | 15.9                         | 46.4         | 50.5                                  |
|                  | 1.                       | 16.8        | 16.9             | 16.9                         | 38 .1        | 21.3                                  |
|                  |                          | 10.12       | 1012             | 10.2                         | 30.9         | 20.7                                  |
|                  | 1-                       | - 7,7       | -9.9.            | -9.8                         | -            | 29.7                                  |
| - 74             | - 79.6                   | 0.8.        | 0.8-             | 0 %-<br>8-                   | 13 . 8       | 21.8                                  |
| -63              | 2.9                      | 16.6        | -16 16           | -15 6                        | 9.9          | 25.0                                  |
| -52-             | 7.1                      | -23.3       | -23 23           | -23.03                       | 4 1          | 27.4                                  |
| -11-             | . 7                      | - 30 . 0    | -11 , 7          | 1. 11.                       | 0            | // • 7                                |
| - 13             | 13 . 4                   | -36 . 3     | -13,4            | -13,4                        | -3.7         | 9.7                                   |
| -14              | . 3                      | -42 .Z      | -14 .3           | -14 .3                       | -7           | 6.8                                   |
| 15-              |                          | . 71.2      | . 2. 12.         | 0115-                        | -24 8        | 26.2                                  |
| 52-              | -24.9                    | - 38. 6     | -24.9            | -24.9                        | -41 .2       | - 6.3                                 |
| -29.1            | 201                      | 1.961-      | - 29 . 1         | - 29.0                       | 1-22-        | -29.1                                 |
| 47-              |                          | -15/13      | -64 00           | - 43.6                       | -72 -3       | -29.3                                 |
| -13              | - 63 . 2                 | -177,0      | - 63 .2          | -43.0                        | -8. 78-      | -44.9                                 |
| 7.5-             | -52.66                   | -202.4      | -57 6            | -42.9                        | -102 -6      | -57.6                                 |
|                  |                          | · · ·       |                  |                              |              | •                                     |
| Frow Norse Ar 2. | AT 25 KTS = -43.0 DB     | 1 04        | X                |                              | TARLET DEPTH | - <u>69</u> - FT                      |
| 5002             | AZIMUTH STEERING ANGLE = | 30°         |                  | - 1<br>-<br>-<br>-<br>-<br>- |              | 600 55                                |
|                  |                          |             |                  |                              |              | · · · · ·                             |
|                  | Table                    | 3. ECHO,    | ACKGROUND LEVELS | I.S. FOR 8' x                | 150' ARRAY   | -410                                  |
| •                | •                        | 1<br>1<br>1 |                  |                              |              |                                       |
|                  | •<br>•                   |             |                  | •                            | :<br>•<br>•  | · · · · · · · · · · · · · · · · · · · |
|                  |                          | •           |                  |                              | •            |                                       |
|                  |                          |             |                  |                              |              |                                       |

. . . .

. . . . .

Ľ

. .

١

Harris and the second se

| <u><u></u></u> | RANGE JURF. & BOTTEN            | DSL REVERS       | TorAL REVER       | BKGRUD KIL                              | ECHC Lover    | ECHO/BACKGROWN LUL . |
|----------------|---------------------------------|------------------|-------------------|-----------------------------------------|---------------|----------------------|
|                | Rever by                        | 28               | 84                |                                         | 23            | 20                   |
|                |                                 |                  |                   | ••                                      | -             |                      |
|                | 1.7                             | 14.4             | 14.7              | 14.7                                    | 46.4          | 31.7                 |
| n<br>          |                                 | 1.3              | 15.3              | 15-3                                    | 38./          | 22.9                 |
| ~              | .<br> .                         | 4.0              | 4.0               | 4,0                                     | 30.9          | 26.9                 |
|                | - 1.                            |                  | -11.2             | -11.2                                   | .9.9          | 31.1                 |
|                | -69.2                           | -9.5             | -9.5              | - 9,5                                   | 13.8          | 23.3                 |
|                | - 25 - 3                        | 1. 8/-           | -18.0             | - 18 .0                                 | 9.9           | 26.4                 |
|                |                                 | 8.42-            | -15 -1            | -15 1                                   | 4.1           | 19.2                 |
| 0              |                                 | -31 +5           | -18 20-           | -18.0                                   | .0            | 1. 21                |
| ••             | -16 -1                          |                  | 1. 7/-            | -16.1                                   | -3.7          | 12.4                 |
|                | - 14 7                          | Į                | -14.7             | -14 2                                   | - 7 2         | 7.2                  |
|                | -7.1 - 7                        | - 72 - 7         | 4.12.             | - 43.0                                  | -24.8         | 19.2                 |
|                | -26.4                           | 1.00/-           | + - 26 - 4        | 1.75-                                   | -41.2         | - 14.9               |
|                | -30 .7                          | -126.7           | - 30 . 7          | -30.4                                   | . 57.1        | -26.7                |
| 30             | F + 7-                          | -152.8           | -64 4             | 0' EH-                                  | -72 . 3       | -29.3                |
| 2              | -63.7                           | -178 .5          | - 63 . 7          | -43.0                                   | - 97.9        | -44.8                |
| 4              | -5-8-3-                         | -203.9           | -58,3             | -43.0                                   | 7.201-        | - 19.6               |
| <br> <br>      |                                 |                  |                   | -                                       |               | -                    |
|                |                                 |                  | •                 |                                         | • • • •       |                      |
| From           | From Nevse Ar 25 xrs = -43.0 23 | 3.0 23 RE : 43AR | 91                | - 1                                     | TARGET DEPTH. | - 90 65              |
| Azim           | AZIMITU (TEEPING ANGLE = 450    |                  |                   |                                         | $\sim$        | 600 Fr               |
|                |                                 |                  |                   | •••                                     |               |                      |
| :<br>2-        | Table                           | 4, ECHO          | BACKGROUND LEVELS | FOR 8' x                                | 150' ARRAY    | 410                  |
| 41             | ,<br>,<br>,<br>,                |                  |                   | ••••••••••••••••••••••••••••••••••••••• |               |                      |
|                |                                 |                  | •                 | •                                       | •             |                      |
|                | •                               | •                |                   |                                         | •             |                      |

1 i ł

i . .

ļ i

ł

İ

. . . ł

1

• •

ļ

'

| <br>               | T         | ·        |       |      |       |        |        |          | •     |          |                  | a -                |                                               |          |        |           |        |     |     |                        | 211                   | -2                      | -41                    | 00        | <b>6</b>         |                                       |
|--------------------|-----------|----------|-------|------|-------|--------|--------|----------|-------|----------|------------------|--------------------|-----------------------------------------------|----------|--------|-----------|--------|-----|-----|------------------------|-----------------------|-------------------------|------------------------|-----------|------------------|---------------------------------------|
| EcHo/BACKGROWN LUL | 20        | 32.9     | 24.2  | 29.4 | 3.2.6 | 20.3   | 24.3   | 24.6     |       | 14 25 St | 2 <b>0</b> 1     | 1                  | 1 2 4 2 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | - 27 . 5 | -29.3  | 9. 44.    | 7. 5   | ••• | ••• | 90 FT                  | 600 Fr                |                         | · · ·                  | · · · · · |                  |                                       |
| Lever              | 63        | 46.4     | 39.1  | 30.9 | 19.9  | 3.8    | 9.9    | 4 . /    | .0    | 3.7      |                  | -24.9              | -41.2                                         | 1.12-    | -72 .5 | - 62 . 6- | -102.6 |     |     | TARGET DEPTH -         | - (\)                 |                         | ADDAV                  |           |                  |                                       |
| Brig               | . 80      | <br>13.6 | 13.9  | 2.5  | -/3,7 | -6 2   | -11-9  | -20.5-   | -25.8 | -17 - 9  | -16.1            | -41 .5             | -27.7                                         | -29:8    | -43.0  | -43,0     | -43.0  |     |     |                        |                       | · · · · ·               | TOP 81 -1501           |           |                  |                                       |
| Revers.            | 81        | 13.6     | 13.9  |      | -13.7 | -6.5-  | -15.9  | - 20 . 5 | -25.8 | -17 - 9  | 1. 7/-           | -47.0              | 27.8                                          | -32.1    | -65.05 | -64.5     | -19.2  |     |     |                        |                       | · · · ·                 | HO/RACKCROTIND I RUELS |           |                  | · · · · · · · · · · · · · · · · · · · |
| DSL Revered        | 23        | 13,3     | 13 .9 | 2    | -13.7 | 0. //- | 5. 61- | -26.3    | 3.    | -34:3-   | :-45.2:          | -74:2 <sup>1</sup> | 7.101-                                        | -129.2   | 1      | - 1 80.0  | -201.4 |     | •** | O DB RE I HEAR         | 906                   |                         | E E                    | 5         | ·<br>·<br>·<br>· |                                       |
| Juge & B           | REVERA DE | 2.2      | 1.    |      | - 1-  | 6-8-   | 5.81.  | -21,9    | -27.4 | •        | -16.1            | -47.0              | -27.8                                         | 1.22.    | -65,5  | -64.5     | -59,2  |     |     | E AT 25 X15 = -43.0 DB |                       | and the further and the | Tahlo 5                |           |                  |                                       |
| RANGE              | 59/2      |          | ~     | 67   | 7     |        | 7      | ~        |       | 0        | \$               | ~                  | 20                                            | 36       | 30     | 35        | 40     |     |     | Flow Norse             | Brue Tu               |                         |                        |           | •                | •                                     |
|                    |           | <br>     | -<br> |      |       |        |        |          | \<br> |          | ·<br>·<br>·<br>· | 1                  | •                                             | •        |        |           |        |     |     |                        | :<br>:<br>:<br>:<br>: |                         | 2-                     | 42        |                  | :                                     |

...

| WP11-2-41006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                                         |                     | ,<br>,<br>, |              |             |                                         |                                        | 1.1      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------|---------------------|-------------|--------------|-------------|-----------------------------------------|----------------------------------------|----------|
| Nilk     Aritik                                                                                          | 1                     | RANGE                                   | JURF. & BOTTOM      | R.          | ToraL REVERS |             | ECHO LEVEL                              | Echo/BackgRown Lu                      | <b>1</b> |
| 1     12.3     12.3     12.3     12.3     12.1     12.7     12.1     12.7     12.1     12.7     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1     12.1 <t< th=""><th>¦</th><th>Saix</th><th></th><th></th><th>84</th><th>80</th><th><u>88</u></th><th><b>60</b></th><th></th></t<>                                                                        | ¦                     | Saix                                    |                     |             | 84           | 80          | <u>88</u>                               | <b>60</b>                              |          |
| 2 $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$ $73.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                     |                                         | 2.01                | 0.          | 1            | 1 .         | 51.                                     | 39.5                                   |          |
| 3 $-7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :<br>                 |                                         |                     | 1           |              | 4           | {·●                                     | 6.6                                    |          |
| V $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$ $-9/4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • •<br>• •            | <u> </u>                                | <br> <br> <br> <br> | 12.7        | 12.7         |             | 24 3                                    |                                        |          |
| $(r)$ $-q_{1}q$ $-q_{1}c$                                                                                                                                                                                                                                                                                                                                                                                                                |                       | -                                       | 1.                  |             |              |             | , j <b>c</b> , j                        | 19.5                                   |          |
| L $-78.7$ $-9.2$ $-9.2$ $-9.2$ $-3.1$ $-3.5$ $-9.2$ $-3.1$ $-3.5$ $-9.2$ $-7.5$ $-9.2$ $-7.5$ $-9.4$ $-7.5$ $-9.4$ $-7.5$ $-7.5$ $-9.4$ $-7.5$ $-9.4$ $-7.5$ $-7.5$ $-9.4$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$ $-7.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                                         | - 95.8              |             | -0.6         |             | . 1. 6                                  | <b>7.9</b>                             |          |
| 7 $76.1$ $77.3$ $-15.4$ $-15.4$ $-15.4$ $-15.4$ $-15.4$ $-12.6$ $-12.6$ $71.7$ 9 $-13.7$ $-23.6$ $-34.8$ $-34.2$ $-28.6$ $-12.6$ $71.7$ 9 $-6.2$ $-34.8$ $-34.2$ $-28.6$ $-12.6$ $71.7$ 9 $-42.6$ $-34.8$ $-34.2$ $-37.6$ $-76.7$ $71.7$ 7 $-42.6$ $-37.8$ $-37.6$ $-76.7$ $-12.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ $-72.6$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | 7                                       | - 78 . 7            | - 9 . 2     |              |             |                                         |                                        |          |
| I     -(3,1     -72,1     -72,1     -72,1     -72,1     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2     -74,2                                                                                                                                                |                       |                                         | 1. 27 -             | -15-9       |              |             |                                         |                                        |          |
| 9     -63.7     -81.9     -89.9     -12.5     -11.6     7.6       10     -62.5     -11.8     -31.8     -31.2     7.6       11     -53.5     -11.8     -31.8     -31.2     7.6       12     -72.6     -72.6     -72.6     -72.6       12     -72.6     -72.6     -72.6     -72.6       12     -79.1     -71.9     -73.6     -72.6       26     -79.1     -71.9     -72.6     -72.6       27     -79.1     -73.6     -73.6     -76.6       26     -79.1     -73.6     -73.6     -76.6       27     -79.1     -73.6     -73.6     -76.6       26     -70.1     -70.6     -76.1     -73.0       26     -70.1     -70.6     -73.6     -76.7       40     -70.6     -76.6     -73.0     -79.7       40     -70.1     -70.6     -79.0     -70.9       40     -70.6     -73.0     -79.6     -66.4       40     -70.1     -70.6     -73.0     -79.7       40     -70.1     -70.6     -73.0     -79.7       41     -70.1     -70.6     -73.0     -79.7       40     -70.1 <td< th=""><th> <br/> <br/> <br/> <br/> </th><th></th><th>1.82-</th><th>: -22,56:</th><th>- 22 . 6</th><th>-22.5</th><th>· 1</th><th> I</th><th>•</th></td<>                                                                                                                         | <br> <br> <br> <br>   |                                         | 1.82-               | : -22,56:   | - 22 . 6     | -22.5       | · 1                                     | I                                      | •        |
| n     -24.2     -34.8     -34.2     -16.16     17.7       1     -53.5     -42.8     -37.6     -37.6     1.0       2     -47.4     -91.2     -42.6     -97.2     -17.6     1.16       2     -47.2     -91.2     -47.1     -39.8     -7.6     1.16       2     -47.2     -91.2     -47.2     -91.2     -17.6     1.2       3     -90.1     -17.9     -97.2     -17.0     -7.8     2.2       3     -79.1     -17.9     -79.2     -17.0     -7.8     2.2       3     -70.1     -17.9     -79.1     -17.0     -21.2     2.2       3     -70.1     -17.9     -79.1     -17.2     -21.2       3     -70.1     -17.9     -79.6     -10.2     -20.4       40     -70.6     -70.6     -79.6     -20.4       40     -70.6     -79.6     -70.6     -70.6       40     -70.6     -79.0     -70.6     -70.6       40     -70.6     -79.0     -70.6     -70.6       40     -70.6     -79.6     -79.7     -70.6       41.1     -70.6     -79.6     -79.6     -70.6       51.1     -70.6 <td< th=""><th>1.<br/></th><th>0</th><th>-63.7</th><th></th><th></th><th>- 28.9</th><th>-12.5</th><th>14 - 16.</th><th>- X.</th></td<>                                                                                                                                       | 1.<br>                | 0                                       | -63.7               |             |              | - 28.9      | -12.5                                   | 14 - 16.                               | - X.     |
| If     -33.5     -4/2     -31.6     -31.6     7.6       2     -4/2     -9/2     -4/2     -36.6     -7.6     -1/2     2       2     -9/2     -1/2     -1/2     -9/2     -7.1     -7     2       3     -90.1     -1/2     -1/2     -9/2     -7     2     -7       3     -90.1     -1/2     -9/2     -9/2     -7     2       3     -70.1     -1/2     -9/2     -7     -7       3     -70.2     -7     -7     -7     -7       3     -70.2     -7     -7     -7     -7       4     -70.2     -7     -7     -7     -2       4     -7     -7     -7     -7     -2       4     -7     -7     -7     -7     -2       4     -7     -7     -7     -7     -2       4     -7     -7     -7     -7     -2       4     -7     -7     -7     -7     -2       5     -7     -7     -7     -7     -2       7     -7     -7     -7     -7     -2       6     -7     -7     -7     -7     -7 </td <td></td> <td>8</td> <td>5. 27-</td> <td>: -34,8:</td> <td></td> <td>- 34.2</td> <td>-7. 5/-</td> <td>1. 7. 1 States</td> <td></td>                                                                                                                                                                                                                                     |                       | 8                                       | 5. 27-              | : -34,8:    |              | - 34.2      | -7. 5/-                                 | 1. 7. 1 States                         |          |
| 20 $-42$ , L $-42$ , L $-42$ , L $-32$ , R $-53$ , L $-12$ , R $-12$                                                                                                                                                                                                                                                                                                                                                                               |                       |                                         | -53 55              |             |              |             | -31.6                                   | 7.                                     |          |
| 27     -49.2     -49.2     -49.2     -49.2     -49.3       30     -90.1     -143.9     -90.1     -143.9     -49.2       35     -79.1     -143.9     -90.1     -143.0     -49.3       35     -79.1     -163.6     -79.1     -15.6     -47.3       35     -79.1     -10.6     -70.6     -70.6     -62.3       40     -70.6     -70.6     -70.6     -70.6     -62.4       40     -70.6     -70.6     -70.6     -70.6     -62.4       40     -70.6     -70.6     -70.6     70.6     -62.4       40     -70.6     -70.6     -70.6     70.6     70.7       40     -70.6     -70.6     -70.6     70.6     70.6       40     -70.6     -70.6     -70.6     70.6     70.7       160     Mass of zersis = 43.0     D3.8 r.1 µ384     20.6     70.7       17     Tabile 6 2000/BackcoorND LEVELS FUR RI x 1501 AirAr     200.6     70.6                                                                                                                                                                                                                                                                                                                                                                                                                         | -<br>                 |                                         | -42.6               |             | - 42.6       | 8 .25 .     |                                         | •                                      |          |
| 30     -90.1     -18.9     -92.1     -13.0     -99.3       35     -79.2     -19.6     -79.1     -13.0     -16.4       35     -70.6     -70.6     -70.6     -79.6     -62.4       40     -70.6     -70.6     -70.6     -79.6     -62.4       40     -70.6     -70.6     -70.6     -70.6     -62.4       40     -70.6     -70.6     -70.6     -70.6       40     -70.6     -70.6     -70.6     -70.6       40     -70.6     -70.6     -70.6     -70.6       50     -70.6     -70.6     -70.6       60     -70.6     -70.6     -70.6       7     -70.6     -70.6     -70.6       7     -70.6     -70.6     -70.6       60     -70.6     -70.6     -70.6       7     -70.6     -70.6     -70.6       7     -70.6     -70.6     -70.6       7     -70.6     -70.6     -70.6       7     -70.6     -70.6     -70.6       7     -70.6     -70.6     -70.6       7     -70.6     -70.6     -70.6       7     -70.6     -70.6     -70.6       7     -70.6     <                                                                                                                                                                                                                                                                                               | 1 .<br>1 .<br>4- 1 0- | 3,6                                     | •                   | -115.9      | .49.2        | - 42.2      | - 71 .0                                 |                                        | ·····    |
| 31     -79-7     -19-6     -79-1     -15-6     -20-6       40     -70-6     -70-6     -70-6     -43-0     -109-6     -66-9       40     -70-6     -70-6     -70-6     -43-0     -109-6     -66-9       40     -70-6     -70-6     -70-6     -70-6     -70-6     -66-9       41     -70-6     -70-6     -70-6     -70-6     -70-6       41     -70-6     -70-6     -70-6     -70-6       41     -70-7     -70-7     -70-7     -20-7       51     -70-7     -70-7     -70-7     -20-7       7     -70-7     -70-7     -70-7     -20-7       7     -70-7     -70-7     -70-7     -70-7       7     -70-7     -70-7     -70-7     -70-7       7     -70-7     -70-7     -70-7     -70-7       7     -70-7     -70-7     -70-7     -70-7       7     -70-7     -70-7     -70-7     -70-7       7     -70-7     -70-7     -70-7     -70-7       7     -70-7     -70-7     -70-7     -70-7       7     -70-7     -70-7     -70-7     -70-7       7     -70-7     -70-7     -70-7                                                                                                                                                                                                                                                                            |                       | 30                                      | 4 •                 | - 143.9     | -90.1        | - 43.0      | - 49 - 3                                |                                        |          |
| 40         -70.6         -70.6         -43.0         -103.4         -66.4           Flow Noise AT 25 xis = -43.0 DB. RF 1 yBAG         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6         700.6 |                       | 10                                      | - 79 - 7            | -169.6      | - 52         | -43.0       | P                                       | -                                      |          |
| Fiew Nase AT 25 K15 = -43.0 DB. RF 1 JUBAN<br>FirmUSA SECRANG ANGLE 1 DBAN = 100 FT<br>Table 6 20HO/BACKGROUND LEVELS FUR B' & 150' ARRAY 600 FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | - 70.6              | 0_16/-      |              | -43.0       |                                         |                                        | 2        |
| From Nuse at 25 Ars = -43.0 DB. Re 1 JUBAR<br>Armury Stermy Angle = 1 DSL DEPTH = 600 Fr<br>Table 6. ECHO/BACKGROUND LEVELS FUR B' × 150' ARRAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | .<br>                                   |                     |             |              |             |                                         | -                                      |          |
| Frow Nove at RCKIS = -43.0 DB. RF. 1 JUBAT<br>Armory Sterring Angle = 1 DSL DEPTH = 600 Fr<br>Table 6. ECHO/BACKEROUND LEVELS FUR B' & 350' ARRAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                         |                     |             |              |             | ··· • • • • • • • • • • • • • • • • • • |                                        | .1800    |
| Firmury Greching Angre = 1<br>Table 6 ECHO/BACKCROUND LEVELS FUR & 150' ARRAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                     | From Mar                                | 1                   | -           | Yb           |             | THALET DEPTH                            |                                        | WI       |
| Table 6. CHO/BACKGROUND LEVELS FUR 8' 150'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ;<br>1<br>            | Round Press                             | a Gravent Durie     |             |              | 4 10        | DSL DEPIN                               |                                        | 11       |
| Table 6. ZCHO/BACKGROUND LEVELS FUR 2 150' ARRAV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                     |                                         | and have a set of a |             |              | · · · ·     |                                         | •                                      | -2-      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-                    | ;;;                                     | Table 6.            | ZCHO/B      |              | · · · · · · | ARRAY                                   | •                                      | 41(      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 43                    |                                         |                     | -           | 1            |             | •••••                                   | •••••••••••••••••••••••••••••••••••••• | 006      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                                         | •<br>•<br>•         | ·<br>·<br>· |              |             |                                         |                                        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | -                                       | •                   |             |              |             |                                         |                                        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                                         | •                   | 1           |              |             |                                         |                                        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                                         | ſ                   |             |              |             |                                         |                                        |          |

l I:

ſ

:

i

i

i

!. :

,

:

|                     | 1         | _ |       |           |                 | · !                        | <br>    |          | -                   | ,<br>,    | <br>             |        |           |                                         |         |         | ·        |        | -   |         | ŴI                                      | <b>91</b> ]1                 | -2  | -4              |    | 56                                    | • w                                   |   |    |
|---------------------|-----------|---|-------|-----------|-----------------|----------------------------|---------|----------|---------------------|-----------|------------------|--------|-----------|-----------------------------------------|---------|---------|----------|--------|-----|---------|-----------------------------------------|------------------------------|-----|-----------------|----|---------------------------------------|---------------------------------------|---|----|
| Echo BACKSROWID LUL | 80        |   | 35.7  | ر در<br>د | 17.6            | 24.2                       | 12.4    | 14.2     | 16.5                | 16.9      | 8.8/             | 1. 6/  | 7.0       | -23.5                                   | -47.0   | -46.3   | -62.2    | -66.4  |     | -1-1 -  | -112 FT                                 | 600 FT                       |     |                 |    | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |   |    |
| Level               | <u> 1</u> | • | 51.8  | 32.5      | 24.3            | 16.7                       | 9 -1    | 2.5      | -3./                | . 6 . 9 . | -12 5            | -/6.7  | -31.6     | -13.6                                   | -7/ . 6 | -91.3   | -105.2   | 109.4  |     | ···   · | TARGET DEPTH                            | DSL DEPTH :                  | • • | ARRAY           | i  |                                       | !<br> <br> <br>                       | • | 'n |
| Brgand hu           | 22        | • | 16.1  | 17.4      | 6.7             | -7.5                       | E.E.    | -11.9    | - 19.6              | -25-3     | -31,3            | -3126- | - 42 . 6  | E10E-                                   | -24.0   | -43.0   | -43.0    | - 43,0 |     |         |                                         |                              |     | FOR 8' x 150'   |    |                                       |                                       | : |    |
| REVER               | 88        |   | 1. 21 | 17.4      | 6.7             | - 7.5'                     | 5.3     | -11.9    | -19.6               | -25.3     | -3106            | -36.5  | -53.0     | -30.6                                   | -24.0   | - 27. 8 | - 94 . 4 | 1.101- |     |         | ×                                       |                              |     | LEVELS          |    |                                       |                                       |   | •  |
| DSL REVERS          | 23        | • | 9.40  | 17 .4     | 2.7.            | -7.5                       | - 3 . 3 |          | 7 - 61-             | - 22 - 3  | -31.6            | -36.5  | -77 . 77- | - 93 . 9                                | -120.5  | _       | -122.3   |        | · . |         | 0 23. RE . 1 JUSH                       | = /0,                        | ••• | ECHO/BACKGROIND |    |                                       | •                                     | • |    |
| Jurr. & B           | REVERS DB |   | 9.7   | 1.        | 1.              | 1.                         | -82.5   | - 76 - 6 |                     | - 74 .5   | 7137-            | 7.07-  | -53.1     | -30 .6                                  | - 24.0  | - 27.8  | 4.48-    | -10/-  |     |         | FLow Norse AT 25 XIS = -43.0 DB. A.     | AZIMUTH STEERING ANGLE = 10° | •   | Table 7         | •  |                                       | · .                                   | • |    |
| Range               | X1'05     |   |       |           |                 | 2                          |         | 7        | • •                 |           |                  | Ş      | 2 2       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |         | 30      | 31       | 40     |     |         | FECH Ners                               | AZIMUTH                      |     | 1               |    | •                                     |                                       |   |    |
| •<br>•              |           |   |       | •         | ,<br>: ,<br>: . | ,<br>,<br>,<br>,<br>,<br>, |         | }<br>}   | <br> <br> <br> <br> | •         | ,<br>)<br>;<br>; |        | <br> <br> |                                         |         |         | •        |        | :   |         | , , , , , , , , , , , , , , , , , , , , | •                            |     | <b>N</b>        | 44 | i<br>I                                |                                       |   |    |

į.

7 ! · + :

----

· · · · · · · · · · · · · · · ·

li

|              |                               |                  |                     |                  | · · ·             |                     |                           |                |          | WP           | 11-2-                       | 41006                 |
|--------------|-------------------------------|------------------|---------------------|------------------|-------------------|---------------------|---------------------------|----------------|----------|--------------|-----------------------------|-----------------------|
|              | Еснь/Вяскухоши) - Luz .<br>Дд | 35.9             | 1. 1. 1             | 19.4             | 50<br>50<br>10    | -2.2                | -2 <b>8 .</b> 7<br>:42 .6 | -47-3<br>-62.2 | -66.4    | - 10 FT      | - 600 Er                    |                       |
|              | FCHO Lover                    | 32.9             | 24.3                | -3.1             | -12.5             | -35.5               | -13.6                     | 0. 99          | 1. 601-  | TARLET DEPTH | DSL DEPTH                   | ARRAY                 |
|              | Bryan h u                     | 15.9             | 2.0/                | -16.6            | -13.4             | 6. h1-              | -24.9                     | - 43.6         | - 42 . 9 | · · · · ·    |                             | FOR 81 x 1501         |
|              | Torn. Rever                   | 15.9<br>16.8     | -9.9                | -16 cé<br>-23 23 | -13.4             | -14 = 3<br>- 51 = 6 | -24.9                     | -64.6          | -57.6    |              |                             | BACKGROUND LEVELS FOR |
|              | DSL REVERS                    | /5 . 5<br>16 . 8 | 10.2<br>-7.7<br>0.0 | 4 4 4            | -30 • 0           | -42.2               | -129.6                    | -157.3         |          |              |                             | ECHO/                 |
|              | Juzz & Borroy<br>Revers bb    | 5.2              | - 10 /              | -69.9<br>-57.1   | -11 e7.<br>-13 ef | -14 23              | -24.9                     | -64 00         | -57.66   |              | ALMUTH STEPRING ANGLE = 30° | Table 8.              |
|              | RANGE                         |                  | <i>m z '</i>        | ~ ~ ~            |                   | 0/                  | 20                        | 30             | 40       |              | ALIMUTH -                   |                       |
| · · · ·<br>· |                               |                  |                     |                  | -                 | f                   |                           |                |          |              |                             | 2-45                  |

a shi a santi at a fallan aan

|                                                                                             | •        |                                        |                                       | •                                       |                                                                                           | •••  <br>•••  <br>••• |                                                                                             |                   |
|---------------------------------------------------------------------------------------------|----------|----------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------|-------------------|
| •                                                                                           |          |                                        | '<br> <br>                            | <br> <br> <br> <br>                     | - 4 4 4 1<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 |                       |                                                                                             |                   |
|                                                                                             |          |                                        |                                       |                                         |                                                                                           | ••••                  |                                                                                             | ŗ                 |
| 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 |          |                                        |                                       |                                         |                                                                                           | East Level            | Ecus Baenchand LVL                                                                          | . ]               |
|                                                                                             | RANGE    | JURE & BOTTON                          | DSL REVERS                            | TOTAL KENTR                             | BKGRID LA                                                                                 |                       | A CARACTER STATE                                                                            |                   |
|                                                                                             | Sala     | RING Và                                | 28                                    | 86                                      | 98                                                                                        |                       | 語を認                                                                                         |                   |
|                                                                                             |          |                                        |                                       |                                         | 1 1                                                                                       |                       |                                                                                             | ing<br>Stat       |
|                                                                                             |          | 3.2                                    | 14.4                                  | 14.2                                    | 비.                                                                                        | 5.02                  |                                                                                             |                   |
|                                                                                             | . 6      | 1.                                     | 15.3                                  | 15.3                                    |                                                                                           |                       |                                                                                             | , stal            |
|                                                                                             |          | 1.                                     | 4,0                                   | 4.0                                     | 9.9                                                                                       |                       |                                                                                             | -2°18<br>-2-14    |
|                                                                                             | ×        | 1.                                     | 5.11-                                 | - T                                     |                                                                                           | 1.0                   |                                                                                             | ាក្ត<br>រប្រដំរាំ |
|                                                                                             | <b>ر</b> | -69.2                                  | -9.5                                  | -9.5                                    | - 1                                                                                       |                       |                                                                                             |                   |
|                                                                                             | ~        | - 29 . 9                               | 1 . 81-                               | 0.81-                                   | -/8.0                                                                                     |                       | 「「「「「「「」」」                                                                                  |                   |
|                                                                                             | •        | -15.66                                 | 8. 42-                                | -15-1-                                  | 2                                                                                         | 13                    |                                                                                             | .<br>             |
|                                                                                             |          | -16.01                                 | -31 .5                                | -18.0:                                  | -19.0                                                                                     |                       |                                                                                             |                   |
|                                                                                             |          | / //                                   | -37 -8-                               | 10 7/-                                  | -16.1                                                                                     | -12.5                 |                                                                                             |                   |
|                                                                                             |          |                                        | - 42 7                                | -14 -7                                  | 1.11                                                                                      | -16.5                 |                                                                                             | +                 |
|                                                                                             | 8        | 4                                      | - 73 - 7                              |                                         | - 43.0                                                                                    |                       |                                                                                             | 1                 |
|                                                                                             | Y        | 4                                      |                                       | 1 4                                     | 1-26.4                                                                                    | -53.6                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                       |                   |
| •                                                                                           | 20       | 1                                      | / 00/-                                | 1.                                      | - 20 -                                                                                    | • 1/ •                |                                                                                             | 33¥<br>171        |
| •                                                                                           | 21       | -30 .7                                 | 4                                     | <b>4</b> •                              | 0 6/1-                                                                                    | -91.3                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                       |                   |
| -                                                                                           | 30       | k + 2-                                 | -152.8                                |                                         |                                                                                           | ~ ~ ~ ~ ~ ~           | 1                                                                                           |                   |
|                                                                                             | 35       | -63,7                                  | -171 25                               | 4                                       | •                                                                                         | 2000                  |                                                                                             |                   |
|                                                                                             | 40       | -19 .3                                 | -203.9                                | 5. 35-                                  | -73.5                                                                                     |                       |                                                                                             |                   |
|                                                                                             |          |                                        |                                       |                                         |                                                                                           |                       | •<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>• | r e               |
|                                                                                             |          |                                        |                                       | •••                                     | • • • • • • • • • • • • • • • • • • •                                                     |                       |                                                                                             | • • •             |
|                                                                                             | Fron N   | Frow Nerse Ar 25 xrs = -43.0 23        |                                       | 1894                                    |                                                                                           | K a                   | - / on Er                                                                                   | 7P1               |
| · · · · · · · · · · · · · · · · · · ·                                                       | RUMIT    | ALMUTH STEERING ANGLE = 450            | E = 450                               |                                         |                                                                                           |                       |                                                                                             | 1                 |
| •                                                                                           |          | •                                      |                                       | · • • • • • • • • • • • • • • • • • • • | · · · · · ·                                                                               |                       |                                                                                             |                   |
| 2                                                                                           | 1        | Table 9.                               | 1                                     | ECHO/BACKGROUND LEVELS                  | FOR 8' ×                                                                                  | 150' ARRAY            | 41.0                                                                                        | 610               |
| -4                                                                                          |          |                                        |                                       | ь.                                      | -<br>-                                                                                    | ••••                  |                                                                                             |                   |
| 6                                                                                           |          | ······································ | · · · · · · · · · · · · · · · · · · · |                                         |                                                                                           | •                     |                                                                                             | 1<br>47 1<br>6 1  |
| J                                                                                           |          | · · · · · · · · · · · · ·              | • • • • • • • • •                     |                                         |                                                                                           | · · · ·               |                                                                                             | : .               |
| ۱.                                                                                          |          |                                        | •                                     |                                         |                                                                                           |                       |                                                                                             |                   |
|                                                                                             |          |                                        |                                       |                                         |                                                                                           | •<br>•                |                                                                                             |                   |
|                                                                                             |          |                                        |                                       |                                         |                                                                                           |                       |                                                                                             |                   |
|                                                                                             |          |                                        |                                       |                                         |                                                                                           |                       |                                                                                             |                   |

------

| Four Rouge Pants L.V.  | CR CR          |      | 31.2        | 0 6 /                 | 21.9 | 30.4    | 12.6        | 19.7   | 11.4   | 17.9    | 1.4        | -0.4   |          | -21.9  | -41.2   | -41.63   | -12.2       | -66.4  |      | (P)                             | 600 Fr                      | -4        | 100                    | •  |       | · · ·                                  |   |
|------------------------|----------------|------|-------------|-----------------------|------|---------|-------------|--------|--------|---------|------------|--------|----------|--------|---------|----------|-------------|--------|------|---------------------------------|-----------------------------|-----------|------------------------|----|-------|----------------------------------------|---|
| Edito Isual            | -              | 077  | 57.9        | 2.9                   | 24.3 | 16.7    | 6,1         | 2.8    | -3.1   | -8.4    | -12.5      | -16.5  | -31.6    | -53.6  | 0.12-   | - 86 : 3 | -105.2      | 109.4  | <br> | TARGET DEPTH .                  | - HIdol 750                 | •••<br>•• | 150' ARRAY             | •  |       | •                                      | ł |
| Rurbustu               | -12 042614     | 97   | 13.6        | /3.9                  | 2.5  | -/3,7   | -6.5        | -15.9  | -20,5- | -25.8   | -17 . 9    | -16.1  | -41 .5   | -27,7  | - 29.8. | -43.0    | -43.0       | -43.0  | •••  |                                 |                             | •••<br>•• | FOR 8 <sup>1</sup> x   |    |       | •                                      |   |
| Torn Princes Runnan In | 41 AL 115 1212 | 0    | 13.6        | 13.9                  | 2,5  | -13.7   | -6.5        | -15,9  | -20.5  | 1       | -17 - 9    | -16 .1 | -47.0    | -27.9  | -32.1   | -65.57   | -64,5       | -19.2  |      |                                 |                             | •         | ECHO/BACKGROUND LEVELS |    |       |                                        |   |
| DCI RAUNE              | ovar at        | 07   | 13 . 3      | <b>۱</b>              | 2.5  | -/3 . 7 | 0' //-      | - 19.6 | -26.3  | -33 . 0 | -39.3      | -45°2  | -74.2    | -101.6 | -129.2  | -15-4.3  | - / 90,0    | -201.4 | ·    | 0 23 RE 1 1345                  | ```                         |           |                        |    | · · · |                                        |   |
| L'PE & POTTON          | Jose + 1000 4  |      | 5.6         | 1.                    | 1    | 1.      | -8.4        | -18.3  | -21.9  | -27.4   | -17 . 9    | -16.1  | - 47 , 0 | -27.8  | -32.1   | - 4505   | -64.5       | -59.2  |      | FLOW NOISE AT 25 XTS = -43.0 23 | ALIMUTH STEERING ANGLE = 90 | ••<br>•   | Table 10.              |    | •     | •••••••••••••••••••••••••••••••••••••• | 1 |
| Danto                  | - South        | 67/0 |             |                       |      | 3       |             | 7      | 4      | •       | 6          | 0      | ~        | 20     | 20      | 30       | 35          | 40     |      |                                 | -                           |           |                        |    |       |                                        |   |
| : .                    | •              |      | •<br> -<br> | ,<br>,<br>,<br>,<br>, |      | ••      | -<br>-<br>- |        |        |         | 1<br> <br> |        | •<br>•   |        |         |          | :<br>:<br>: |        |      |                                 |                             |           | 2-                     | 47 | ·     |                                        |   |

| Ringt     Terrer     Dis.     Remain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51. Review Torn. Review Review Lin.     File                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | -                | <br> <br> <br>                        |                                       |                            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|---------------------------------------|---------------------------------------|----------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rinki     Lur.     Fanor     Dis.     Rinki     Lur.     Fanor       1     1     1     2     2     2     2     2       1     1     1     2     2     2     1     2     2       2     1     2     2     2     2     1     2     1       2     1     2     2     2     1     2     1     2       2     1     2     2     2     2     2     2     2       2     1     1     1     1     2     1     2     2       2     1     1     1     1     2     1     2       2     1     1     1     2     1     2     2       1     1     1     1     2     1     2     1       1     1     1     1     2     1     1     2       1     1     1     1     2     1     1     1       1     1     1     1     2     1     1     1       1     1     1     1     1     2     1     1       1     1     1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rank     Jorr I, Borror     Dist. Reveal     Farme     Farme     East     East     East     East       1     12.4     20.8     13.4     3.5     3.4     9     9       2     2     3     7.3     13.7     13.7     14.6     33.5       3     7     3.5     3.1     12.7     12.7     12.7     12.7       3     7     2.5     2.1     12.7     12.7     12.7       1     7     -1.1     12.7     12.7     12.7       1     -1.1     12.7     12.7     12.7     12.7       1     -1.1     12.7     12.7     12.7     12.7       1     -1.1     12.7     12.7     12.7     12.7       1     -1.1     12.7     12.7     12.7     12.7       1     -1.1     12.7     12.7     12.7     14.6       1     -1.1     12.4     12.9     14.6     14.6       1     -1.1     12.4     12.9     14.6     14.6       1     -1.1     14.2     14.2     14.6       1     -1.1     14.2     14.6     14.6       1     -1.1     14.2     14.6     14.6    <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                  |                                       |                                       | · · · ·                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Kills         Mar         bb         bb </th <th>Kills       Rime       bb       b2       b3       b3       b3       b3         1       12       20.5       13.3       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5</th> <th>Range</th> <th></th> <th>2</th> <th>TorAL REVERS</th> <th>דא אלצאוס צינד</th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Kills       Rime       bb       b2       b3       b3       b3       b3         1       12       20.5       13.3       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5       24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Range       |                  | 2                                     | TorAL REVERS                          | דא אלצאוס צינד             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1     12.13     20.5     12.3     22.5     23.1     12.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1     12.13     22.53     12.13     22.53     12.13     22.5       2     -     -     12.1     12.1     12.1     12.1     23.1       2     -     -     12.1     12.1     12.1     12.1     23.1       2     -     -     12.1     12.1     12.1     12.1     12.1       1     -     -     -     12.1     12.1     12.1     12.1       1     -     -     -     -     -     12.1     12.1       1     -     -     -     -     -     12.1     12.1       1     -     -     -     -     -     -     12.1       1     -     -     -     -     -     -     -       1     -     -     -     -     -     -     -       1     -     -     -     -     -     -     -       1     -     -     -     -     -     -     -       2     -     -     -     -     -     -     -       2     -     -     -     -     -     -     -       2     -     -     - <td< th=""><th><i>Kibs</i></th><th>Rine</th><th>80</th><th>29</th><th>84</th><th></th><th>4</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>Kibs</i> | Rine             | 80                                    | 29                                    | 84                         |                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1     12.3     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     23.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1     24.1 <t< td=""><td>1     71.4     70.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>аналана<br/>1 страна<br/>1 с</td></t<></td></t<> | 1     71.4     70.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     73.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5     74.5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>аналана<br/>1 страна<br/>1 с</td></t<> |             |                  |                                       |                                       |                            |                                          | аналана<br>1 страна<br>1 с |
| 3     7     73,1     73,1     73,1     73,1     73,1     73,1     73,1     73,1     73,1     74,2     74,2     74,2     74,2     74,2     74,2     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     74,1     7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 $ 33/1$ $23/1$ $23/1$ $23/1$ $23/1$ $23/1$ $23/1$ $23/1$ $23/1$ $23/1$ $23/1$ $23/1$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ $-11/2$ <td></td> <td>12.3</td> <td>-0.3</td> <td>•</td> <td>12,3</td> <td>51.4</td> <td>1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | 12.3             | -0.3                                  | •                                     | 12,3                       | 51.4                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2           | ~                | 23.1                                  | 23,1                                  | 23.F                       | 32.9                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1     -1.8     -1.8     -1.9     1.6     -3.1       1     -71     -7.1     -7.1     -7.1     -7.1       1     -71     -7.1     -7.1     -7.1     -7.1       1     -7.1     -7.1     -7.1     -7.1     -7.1       1     -7.1     -7.1     -7.1     -7.1     -7.1       1     -7.1     -7.1     -7.1     -7.1     -7.1       1     -7.1     -7.1     -7.1     -7.1     -7.1       1     -7.1     -7.1     -7.1     -7.1     -7.1       2     -7.1     -7.1     -7.1     -7.1     -7.1       2     -7.1     -7.1     -7.1     -7.1     -7.1       2     -7.1     -7.1     -7.1     -7.1     -7.1       2     -7.1     -7.1     -7.1     -7.1     -7.1       2     -7.1     -7.1     -7.2     -7.1     -7.1       2     -7.1     -7.2     -7.1     -7.1     -7.1       2     -7.1     -7.2     -7.1     -7.1     -7.1       3     -7.1     -7.2     -7.1     -7.1     -7.1       3     -7.1     -7.2     -7.2     -7.1     -7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | ŀ                | 12.7                                  | 12.7                                  |                            | 14.5                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7     -97.6     -0.6     -0.6     -0.6     -15.9     -15.9     -3.7     -3.7     -3.1       7     -7.1     -7.7     -15.9     -15.9     -7.9     -3.1     -3.1     -3.1       1     -6.1     -7.7     -7.5     -2.2     -2.2     -3.1     -3.1       1     -6.1     -7.7     -7.1     -7.1     -7.1     -4.6       1     -6.1     -7.2     -7.2     -7.1     -4.6       9     -5.3     -3.1     -3.2     -7.1     -4.6       9     -5.4     -7.2     -7.2     -7.2     -4.6       1     -7.1     -7.2     -7.2     -7.1     -7.1       1     -7.1     -7.2     -7.2     -7.2     -7.1       1     -7.1     -7.2     -7.2     -7.2     -7.1       1     -7.1     -7.2     -7.2     -7.2     -7.1       1     -7.1     -7.2     -7.2     -7.2     -7.1       2     -7.1     -7.2     -7.2     -7.1     -7.1       2     -7.1     -7.2     -7.2     -7.1     -7.1       2     -7.1     -7.2     -7.2     -7.1     -7.1       2     -7.1     -7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7     -97.6     -0.6     -0.6     -1.6     -3.7     -3.7       7     -7.1     -7.7     -7.6     -9.2     -1.6     -3.1       7     -7.1     -7.7     -7.6     -7.6     -3.7     -3.7       1     -6.1     -7.7     -7.7     -7.6     -3.7     -4.0       1     -6.1     -7.7     -7.7     -7.7     -4.0       1     -6.1     -7.7     -7.7     -7.1     -4.0       9     -6.3     -3.7     -3.7     -4.0     -4.0       9     -6.1     -7.1     -7.1     -4.0     -4.0       10     -4.7     -7.2     -7.1     -4.0     -4.1       20     -9.1     -7.1     -7.2     -7.1     -4.2       21     -7.1     -7.2     -7.2     -7.2     -7.1       21     -7.1     -7.2     -7.2     -7.2     -7.1       21     -70.6     -7.0     -7.2     -7.2     -7.2       22     -7.1     -7.2     -7.2     -7.2     -7.2       21     -7.2     -7.2     -7.2     -7.2     -7.2       22     -7.2     -7.2     -7.2     -7.2     -7.2       22     -7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4           | 1.               | -1.8                                  |                                       | . 1                        | ٩. ٥                                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| I $-79$ $-76$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$ $-77$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1       -79       -7       -9       2       -15       -3       -3       -3       -3       -3       -4       -3       -4       -3       -4       -3       -4       -3       -4       -3       -4       -3       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4       -4 <td< td=""><td>•</td><td>- 32 -</td><td>7"0-</td><td>.0.6-</td><td>9<br/>4)<br/>1</td><td>·•• 🖸</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •           | - 32 -           | 7"0-                                  | .0.6-                                 | 9<br>4)<br>1               | ·•• 🖸                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7 $-76.4$ $-15.4$ $-15.4$ $-15.4$ $-15.4$ $-15.4$ $-15.4$ $-14.0$ 9 $-63.7$ $-28.6$ $-34.6$ $-28.6$ $-34.6$ $-4.6$ $-4.6$ 9 $-63.7$ $-28.6$ $-34.6$ $-28.6$ $-34.6$ $-4.6$ $-4.6$ 9 $-63.7$ $-28.6$ $-34.6$ $-34.6$ $-34.6$ $-4.6$ $-4.6$ 10 $-53.5$ $-47.6$ $-37.6$ $-73.6$ $-76.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ $-4.6$ <t< td=""><td>7       <math>-7L</math>, <math>1</math> <math>1/7</math>, <math>9</math> <math>1/5</math>, <math>9</math> <math>1/5</math>, <math>1/5</math> <math>-1/5</math>, <math>1/5</math> <math>-1/5</math></td><td>7</td><td>- 79 . 7</td><td>¥* 5 -</td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7 $-7L$ , $1$ $1/7$ , $9$ $1/5$ , $9$ $1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$ , $1/5$ $-1/5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7           | - 79 . 7         | ¥* 5 -                                |                                       |                            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| I $-4_{1.6}$ $-2_{7.6}$ $-2_{7.6}$ $-2_{7.6}$ $-4_{1.6}$ $-4_{1.6}$ B $-6_{1.7}$ $-2_{1.8}$ $-3^{1.8}$ $-3^{1.8}$ $-3^{1.8}$ $-4_{1.6}$ $-4_{1.6}$ B $-6_{1.3}$ $-3^{1.8}$ $-3^{1.8}$ $-3^{1.8}$ $-3^{1.8}$ $-4_{1.6}$ $-4_{1.6}$ IC $-5_{3.5}$ $-3^{1.8}$ $-3^{1.8}$ $-3^{1.2}$ $-4_{1.5}$ $-4_{1.6}$ ZO $-4_{2.6}$ $-3^{1.8}$ $-3^{1.8}$ $-3^{1.8}$ $-3^{1.6}$ $-4_{1.6}$ ZO $-4_{2.6}$ $-4_{1.6}$ $-3^{1.8}$ $-3^{1.8}$ $-3^{1.6}$ $-4_{1.6}$ $-4_{1.6}$ ZO $-4_{2.6}$ $-4_{1.6}$ $-4_{1.6}$ $-4_{1.6}$ $-4_{1.6}$ $-4_{1.6}$ $-4_{1.6}$ ZO $-7_{2.6}$ $-4_{2.6}$ $-4_{2.6}$ $-4_{1.6}$ $-4_{1.6}$ $-4_{1.6}$ $-4_{1.6}$ $-4_{1.6}$ $-4_{1.6}$ $-4_{1.6}$ $-4_{1.6}$ $-4_{1.6}$ $-4_{1.6}$ $-4_{1.6}$ $-4_{1.6}$ $-4_{1.6}$ $-4_{1.6}$ $-4_{1.6}$ $-4_{1.6}$ $-4_{1.6}$ $-4_{1.6}$ <t< td=""><td>I       <math>-\zeta_{8,1}</math> <math>-\gamma_{7,1}\zeta</math> <math>-\gamma_{7,1}\zeta</math> <math>-\gamma_{6,1}\zeta</math> <math>-\gamma_{1,1}\zeta</math> /td><td></td><td>1. 27 - 1</td><td></td><td></td><td>\ <b>1</b></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I $-\zeta_{8,1}$ $-\gamma_{7,1}\zeta$ $-\gamma_{7,1}\zeta$ $-\gamma_{6,1}\zeta$ $-\gamma_{1,1}\zeta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 1. 27 - 1        |                                       |                                       | \ <b>1</b>                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 9       -63.7       -28.9       -29.9       -29.9       -24.9       -24.9       -24.9       -24.6       -24.6       -24.6       -24.6       -24.6       -26.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -46.7       -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9       -63.7       -28.9       -28.9       -28.5       -4.6         16       -53.5       -47.6       -77.8       -47.6       -76.7         17       -53.5       -47.6       -77.9       -6.7         20       -47.6       -72.6       -72.7       -6.7         20       -47.6       -47.6       -72.6       -71.4         20       -47.6       -47.2       -47.6       -71.4         21       -19.6       -47.2       -47.6       -71.4         22       -79.1       -13.6       -47.6       -71.6         21       -79.1       -79.6       -71.6       -71.6         22       -79.1       -79.6       -71.6       -71.6         21       -79.6       -71.6       -71.6       -71.6         22       -79.6       -71.6       -71.6       -71.6         26       -79.6       -71.6       -71.6       -71.6         26       -79.6       -71.6       -71.6       -71.6         26       -79.6       -71.6       -71.6       -71.6         26       -79.6       -71.6       -71.6       -71.6         26       -79.6       -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                  | - 22 . 6 -                            | 1                                     | - 22.6                     | -26.6                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| B     -66.7     -34.8     -34.2     -4.2     -4.2       1C     -53.5     -4/2     -4/2     -7/2     -7/2     -7/2       2c     -4/2     -4/2     -3/2     -4/2     -7/2     -7/2       2c     -4/2     -4/2     -4/2     -7/2     -7/2     -7/2       2c     -4/2     -4/2     -4/2     -4/2     -7/2     -7/2       3c     -90.1     -1/2     -4/2     -4/2     -1/2     -1/2       3c     -90.1     -1/2     -7/2     -1/2     -1/2     -1/2       3c     -90.1     -1/2     -1/2     -1/2     -1/2     -1/2       3c     -70.2     -1/2     -7/2     -1/2     -1/2     -1/2       3c     -70.2     -1/2     -1/2     -1/2     -1/2     -1/2       40     -70.6     -7/2     -1/2     -1/2     -1/2     -1/2       40     -7/2     -1/2     -1/2     -1/2     -1/2     -1/2       40     -7/2     -7/2     -1/2     -1/2     -1/2     -1/2       40     -7/2     -7/2     -1/2     -1/2     -1/2     -1/2       1     -7/2     -7/2     -1/2     -1/2     0 <td>0     -6.1     -34.8     -34.8     -34.8     -41.6     -70.8     -6.7       1r     -53.5     -47.6     -71.6     -70.7     -70.6     -71.6       20     -92.1     -112.9     -47.2     -47.6     -70.6     -71.6       20     -92.1     -113.9     -47.2     -47.6     -71.6     -71.6       20     -92.1     -113.9     -49.2     -47.0     -71.6     -71.6       30     -92.1     -113.9     -70.6     -71.6     -71.6       31     -70.6     -71.7     -71.6     -71.6       32     -70.6     -70.6     -71.6     -71.6       32     -70.6     -70.6     -71.6     -71.6       40     -70.6     -71.7     -71.6     -71.6       32     -70.6     -70.6     -71.6     -71.6       40     -70.6     -71.7     -71.7     -71.6       41     -70.6     -71.7     -71.6     -71.6       41     -70.6     -71.7     -71.6     -71.6       41     -70.6     -71.7     -71.7     -71.6       42     -71.0     -71.6     -71.7     -71.6       43     -71.7     -71.0     -71.7     -71.7   <!--</td--><td>6</td><td>-63.7</td><td>-29.9</td><td>·•• •</td><td>- 28.9</td><td>-33.5</td><td>-4,6</td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0     -6.1     -34.8     -34.8     -34.8     -41.6     -70.8     -6.7       1r     -53.5     -47.6     -71.6     -70.7     -70.6     -71.6       20     -92.1     -112.9     -47.2     -47.6     -70.6     -71.6       20     -92.1     -113.9     -47.2     -47.6     -71.6     -71.6       20     -92.1     -113.9     -49.2     -47.0     -71.6     -71.6       30     -92.1     -113.9     -70.6     -71.6     -71.6       31     -70.6     -71.7     -71.6     -71.6       32     -70.6     -70.6     -71.6     -71.6       32     -70.6     -70.6     -71.6     -71.6       40     -70.6     -71.7     -71.6     -71.6       32     -70.6     -70.6     -71.6     -71.6       40     -70.6     -71.7     -71.7     -71.6       41     -70.6     -71.7     -71.6     -71.6       41     -70.6     -71.7     -71.6     -71.6       41     -70.6     -71.7     -71.7     -71.6       42     -71.0     -71.6     -71.7     -71.6       43     -71.7     -71.0     -71.7     -71.7 </td <td>6</td> <td>-63.7</td> <td>-29.9</td> <td>·•• •</td> <td>- 28.9</td> <td>-33.5</td> <td>-4,6</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6           | -63.7            | -29.9                                 | ·•• •                                 | - 28.9                     | -33.5                                    | -4,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| IC $-33.5$ $-42.6$ $-32.6$ $-32.6$ $-32.6$ $-32.6$ $-32.6$ $-32.6$ $-32.6$ $-32.6$ $-32.6$ $-32.6$ $-32.6$ $-32.6$ $-32.6$ $-32.6$ $-32.6$ $-32.6$ $-42.6$ $-32.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$ $-42.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | If     -53 i 5     -4/1 8     -53 i 2     -4/2 i 6     -7/2 i 7     -7/2 i 7       20     -4/2 i 6     -4/2 i 7     -4/2 i 0     -4/2 i 7     -4/2 i 7     -4/2 i 7       21     -4/2 i 7     -4/2 i 0     -4/2 i 0     -4/2 i 7     -4/2 i 7     -4/2 i 7       21     -9/2 i 1     -1/1 i 9     -9/2 i 1     -4/2 i 0     -4/2 i 7     -4/2 i 0       21     -9/2 i 1     -1/3 i 0     -4/3 i 0     -4/3 i 0     -4/3 i 0     -4/2 i 0       21     -1/2 i 1/2 i 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2           | -66.3            | -31.9                                 | . •                                   | -34.2                      | -40.3                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 20     -42.4     -42.4     -42.4     -42.4     -42.4       31     -90.1     -117.9     -49.2     -42.0     -161.9     -161.7       32     -90.1     -113.9     -70.1     -43.0     -116.6     -161.1       31     -70.6     -70.1     -13.0     -116.6     -116.6       40     -70.6     -70.1     -13.0     -116.6     -116.6       40     -70.6     -70.6     -70.6     -72.6     -13.0       40     -70.6     -70.6     -70.6     -72.6     -143.0       40     -70.6     -70.6     -70.6     -72.6     -166.6       41     -70.6     -70.6     -70.6     -70.6     -166.6       42     -70.6     -70.6     -70.6     -70.6     -166.6       40     -70.6     -70.6     -70.6     -70.6     -166.6       41     -70.6     -70.6     -70.6     -70.6       51     -70.6     -70.6     -70.6     -70.6       51     -70.6     -70.6     -70.6     -70.6       51     -70.6     -70.6     -70.6     -70.6       51     -70.6     -70.6     -70.6     -70.6       51     -70.6     -70.6     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20 $-42.6$ $-91.2$ $-42.6$ $-32.8$ $-91.4$ $-57.6$ $26$ $-92.1$ $-17.6$ $-47.2$ $-47.2$ $-47.6$ $-45.6$ $36$ $-79.1$ $-193.9$ $-70.1$ $-43.0$ $-168.7$ $-166.6$ $36$ $-79.1$ $-123.6$ $-79.1$ $-43.0$ $-106.6$ $-106.6$ $40$ $-79.6$ $-79.6$ $-79.6$ $-72.6$ $-126.6$ $-106.6$ $40$ $-79.6$ $-70.6$ $-76.6$ $-12.6$ $-106.6$ $-106.6$ $40$ $-79.6$ $-76.6$ $-75.6$ $-43.0$ $-106.6$ $-106.6$ $40$ $-79.6$ $-76.6$ $-76.6$ $-43.0$ $-106.6$ $-106.6$ $40$ $-79.6$ $-76.6$ $-75.6$ $-12.6$ $-106.6$ $-106.6$ $41000000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | بر<br>بر    | -53 ,5           | -51.2-                                | <b>4</b>                              | - +2.6                     |                                          | -29.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 26     -49.2     -111.8     -49.2     -42.2     -161.7     -46.1       36     -90.1     -103.9     -90.1     -43.0     -186.1     1.00.0       37     -79.7     -123.6     -73.0     -186.0     -106.0       36     -79.1     -103.6     -73.0     -186.0     -106.0       40     -70.6     -70.6     -73.0     -116.6     -106.0       40     -70.6     -70.6     -73.0     -116.6     -106.0       40     -70.6     -70.6     -70.6     -73.0     -116.6       40     -70.6     -70.6     -70.6     -70.6     -70.6       41     -70.6     -70.6     -70.6     -70.6     -70.6       42     -70.6     -70.6     -70.6     -70.6     -70.6       43     -70.6     -70.6     -70.6     -70.6     -70.6       44     -70.6     -70.6     -70.6     -70.6     -70.6       45     -70.6     -70.6     -70.6     -70.6     -70.6       46     -70.6     -70.6     -70.6     -70.6     -70.6       47     -70.6     -70.6     -70.6     -70.6     -70.6       48     -70.6     -70.6     -70.6     -70.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2C $-49.2$ $-42.2$ $-42.2$ $-16.7$ $-42.2$ $-16.7$ $-42.2$ $-16.7$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$ $-10.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20          | - 42 .6          | - 9/ . 2                              |                                       | - 35.8                     | -91.4                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 30     -90.1     -113.9     -90.1     -113.6     -113.6     -114.6       31     -79.2     -123.6     -73.6     -114.6     -116.6       40     -70.6     -70.6     -70.6     -13.0     -117.6     -116.6       40     -70.6     -70.6     -70.6     -70.6     -117.6     -116.6       50     Muse AT 26 km3 = -43.0 DB AF 1 JuBA4     DS.1 DEPM - 306 ET     54       7     Timury Sreezming Huge = 1     DS.1 DEPM - 306 ET     54       7     Table 11. ECHO/BACKCROUND LEVELS FOR 8: ± 150! ARMAF     60     56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30     -90.1     -143.0     -43.0     -486.1     -101.0       31     -79.7     -169.6     -79.6     -79.6     -101.0       40     -70.6     -79.6     -79.6     -13.0     -101.6     -101.6       40     -70.6     -70.6     -79.6     -79.6     -101.6     -101.6       40     -70.6     -70.6     -70.6     -70.6     -101.6     -101.6       74     -70.6     -70.6     -70.6     -70.6     -70.6     -101.6       75     -70.6     -70.6     -70.6     -70.6     -70.6       75     -70.6     -70.6     -70.6     -70.6       75     -70.6     -70.6     -70.6     -70.6       75     -70.6     -70.6     -70.6     -70.6       75     -70.6     -70.6     -70.6     -70.6       75     -70.6     -70.6     -70.6     -70.6       75     -70.6     -70.6     -70.6     -70.6       75     -70.6     -70.6     -70.6     -70.6       7     -70.6     -70.6     -70.6     -70.6       7     -70.6     -70.6     -70.6     -70.6       7     -70.6     -70.6     -70.6     -70.6    <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 210         | - 49 . 2         | -117.9                                |                                       | - 42.2                     | - 108. 9                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 31     -19.1     -10.1     -10.1     -10.1       40     -10.1     -10.1     -10.1     -10.1       10.1     -10.1     -10.1     -10.1       11.     21.     21.     21.       11.     20.1     21.     21.       11.     20.1     21.     21.       11.     20.1     21.     21.       11.     20.1     21.     21.       11.     20.1     21.     21.       11.     20.1     21.     21.       11.     20.1     21.     21.       11.     20.1     21.     21.       11.     20.1     21.     21.       11.     20.1     21.     21.       11.     20.1     21.     21.       11.     20.1     21.     21.       11.     20.1     21.     21.       11.     20.1     21.     20.1       12.     21.     21.     21.       13.     20.1     21.     21.       14.     20.1     21.     21.       15.     21.     21.     21.       15.     21.     21.     21.       15.     21.     21. <td>37     -79.7     -19.1     -10.6     -10.6       40     -70.6     -70.6     -73.0     -17.6     -116.6       Flow Nuse AT 25 xrs = -43.0 28 Ar 1 Ju844     -13.0     -17.6     -116.6       Flow Nuse AT 25 xrs = -43.0 28 Ar 1 Ju844     -15.0     -17.6     -116.6       Flow Nuse AT 25 xrs = -43.0 28 Ar 1 Ju844     -15.0     35.1     35.2     35.7     5.0       Flow Nuse Ar 26 xrs = 1.     BCHO/BACKEBOUND LEVELS FOR 8. * 150. AREAT     -00.6     5.0</td> <td>30</td> <td>_</td> <td>-143.9</td> <td></td> <td>- 43.0</td> <td>-126. 1</td> <td>1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37     -79.7     -19.1     -10.6     -10.6       40     -70.6     -70.6     -73.0     -17.6     -116.6       Flow Nuse AT 25 xrs = -43.0 28 Ar 1 Ju844     -13.0     -17.6     -116.6       Flow Nuse AT 25 xrs = -43.0 28 Ar 1 Ju844     -15.0     -17.6     -116.6       Flow Nuse AT 25 xrs = -43.0 28 Ar 1 Ju844     -15.0     35.1     35.2     35.7     5.0       Flow Nuse Ar 26 xrs = 1.     BCHO/BACKEBOUND LEVELS FOR 8. * 150. AREAT     -00.6     5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30          | _                | -143.9                                |                                       | - 43.0                     | -126. 1                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| In         -70.6         -70.6         -13.0         -116.6         -116.6           Flow Muss AT 25 xrs = -13.0 DB AF 1 JBAF         -113.0         -116.6         -116.6         -116.6           Flow Muss AT 25 xrs = -13.0 DB AF 1 JBAF         -13.0         -116.6         -116.6         -116.6           Plow Muss AT 25 xrs = -13.0 DB AF 1 JBAF         -10.6         -10.6         -116.6         -116.6           Plow Visite Balle 11. ECHO/BACKEROUND LEVELS FOR 81 x 1501. ARRAT         -1501. ARRAT         -100.6         -116.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | In     -70.6     -70.6     -73.0     -17.6     -11.6       Flow Music AT 25 xrs = -43.0 28. Mr     -11.0     -11.0     -11.0     -11.0       Flow Music AT 25 xrs = -43.0 28. Mr     -11.0     -11.0     -11.0     -11.0       Annutry Steckuly Music = 1     -11.0     20.6     -11.0     -11.0       Annutry Steckuly Music = 1     -10.0     20.6     -11.1       Annutry Steckuly Music = 1     -0.0     -1.0     -1.0       Annutry Steckuly Music = 1     -0.0     -0.0     -1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35          | - 79 = 7         | -169.6                                | - 79 . 7                              | -43.0                      | -/42.0                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Yew Nuse AT RY RTS = -43.0 DB AF 1 JBAF<br>Atimutal Stetaning Angle = 1 DSA DEPH = 200 FT<br>Table 11. BCHO/BACKCROUND I EVELS FOR 8 = # 150! ARGAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tow Nuse AT REATS = -43.0 DB AF 1 JUBAN<br>ATIMUTH STEERMY ANGLE = 1 DEPIN = 20 ET<br>DSL DEPTN = 600 ET<br>Table 11. ECHO/BACKCROUND I. EVERS FOR 81 # 1501 ARBAT = 600 ET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - <b>a</b>  | - 70,6           | -181-                                 | - 70 . 6                              | -43,0                      | -10.6                                    | -114.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Flow Nuse AT 25 KTS = -43.0 28 AF 1 JUBAR<br>ATIMUTY STEERING ANGLE = 1 DSL DEPTH = 600 FT<br>Table 11 BCHO/BACKCROUND LEVELS FOR 81 = 1501 ARGAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fundruse AT 25 x13 = -43.0 DB AF 1 JUBAR<br>Atimutri Stechnig Angle = 1<br>Table 11. BCHO/BACKCBOUND I BYERS FOR 8 = 150! ARRAY = 600 FT<br>Table 11. BCHO/BACKCBOUND I BYERS FOR 8 = 150! ARRAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                  | •                                     |                                       |                            | N                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| From Nuse AT 25 XIS = -43.0 28 AF 1 JUBAN<br>ATIMUTH STEERING ANGLE = 1 DEPTH = 600 ET<br>Table 11. ECHO/BACKCROUND I. EVELS FOR 81 # 150' ARRAY = 600 ET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Flow Nuse AT 25 KIS = -43.0 28 Ar 1 JARA I JARA I TARIET DEPTH = 20 ET ATIMUTH STEERING ANGLE = 1 - 354 Arguit = 20 ET ATIMUTH STEERING ANGLE = 150 ARGAT = 600 ET Table 11 - BCHO/BACKCBOUND LEVELS FICK 81 = 150 ARGAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                  |                                       | 1                                     | 11 ar                      | ·· []                                    | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Armury Stermy Angle -1. DSHO/BACKCROUND LEVELS FOR 8: = 150! ARRAY : 600 Fr<br>Table 11. BCHO/BACKCROUND LEVELS FOR 8: = 150! ARRAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ATIMUTH STECKING ANGLE DSL DEPTH - 600 Fr<br>Table 11. ECHO/BACKCROUND LEVELS FOR 81 * 150' ARRAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FLOW NA     |                  | 201                                   | X                                     | н.                         |                                          | ) . ET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AIMUTI      | N STEEPING ANGLE | •                                     | · · · · · · · · · · · · · · · · · · · | ·                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Table 11. ECHO/EACKGROUND LEVELS FOR 81 * 150 FOR 810 FOR 81 * 150 FOR 81 * 150 FOR 81 * 150 FOR 81 * 150 FOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                  | ••••<br>•••<br>•••                    | • • • •                               |                            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2           | Tahle            | FCHO/                                 |                                       | •                          |                                          | -41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                  |                                       |                                       | <b>H</b> -                 |                                          | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •           | ······           |                                       |                                       |                            |                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | •<br>•           | · · · · · · · · · · · · · · · · · · · | 1                                     | •<br>•<br>•<br>•<br>•<br>• | )<br> <br> <br> <br> <br> <br> <br> <br> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                  |                                       | <b>,</b>                              | -<br>-<br>-<br>-<br>-<br>- |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Range      | 1 JURE & BOTTON         | DSL REVERS     | TOTAL REVER       | Brgand ha     | ECHO LEWEL   | ECHO/BACKEROWN LUZ . |
|------------|-------------------------|----------------|-------------------|---------------|--------------|----------------------|
| X/DS       |                         | 22             | 28                | 22            | 23           | 22                   |
| <u> </u>   |                         |                |                   |               |              |                      |
|            | 9.7                     | 9.41           | 16.1              | 16.1          | 57.8         | 31 . 7               |
|            |                         | 17.4           | 17.4              | p. Li         | 32.9         | 15.5                 |
| "          | 1.                      | 2.7            | 6.7               | 6.7           |              | 7.8                  |
|            | 1.                      | -7.5           | - 7.5             | -7.5          | 0.8          | ア・ア                  |
|            | -82 .5                  | . 3            | 5.5               | E .           | -3.7         | 1.0-                 |
| <b>~</b>   |                         | -11.9          | -11.9             | -11.9         | -11 . 8      | 1.0                  |
|            | L - 7                   | 7.61-          |                   | -19.6         | -19.4        | 0.1                  |
|            | - 74 .5                 | 52.3           | -25.3             | -21-3         | -26.6        | -1 .3                |
| 6          |                         | -31.6          | -3106             | E'18-         | -33.5        | -2.2                 |
| 9          | -60.6                   | -36.5          | ا كرويكي.         | -3166         | -40.3        | -4.7                 |
| ~          | -23.1                   | 1 - 66 . 5-    | -33.0             | -42.6         | -71.9        | - 29.2               |
| 20         | -30 .6                  |                | 2.02-             | -3013         | - 131.2      | -61.01               |
| 26         |                         | -120.5         | -21.0             | -24 0         | -101.9       | - 6d. 9 - ·          |
| 30         | -87.8                   | -146.6         | - 27.8            | -43.0         | -124.6       |                      |
| <u>]</u>   | - 84.4                  | -172.3         | 4.42-             | -43.0         | -143.0       | -100.0               |
| 40         | 4                       |                | -101-             | - 43.0        | 7.65/-       | -16.6                |
|            |                         |                |                   |               |              |                      |
| .<br> <br> |                         |                | •                 |               | 4 * *<br>* * | •                    |
| FLOW NOISE | loise AT 25 X75 = -43.0 | .0 23 AF 1 434 |                   | • • •         | TARLET DEPTH | - 3th FT             |
| Azim       |                         | - /o           |                   | •             | DSL. DEPTH   | 600 FT               |
| -          |                         | •              |                   | · • • •       | · · · ·      | • •                  |
| 2-4        | Table 12                | ECHO/B         | ACKGROUND LEVELS. | FOR 8' x 150' | I ARRAY      | 410                  |
| 9          |                         |                |                   | •             | •            | <u>)</u> U(          |
| 1          |                         |                |                   |               |              |                      |
|            |                         | 1<br>•<br>•    | <br>              | ·<br>·<br>·   |              |                      |
|            |                         | I              |                   | 1<br>1<br>1   |              |                      |
| ·.         | :                       |                |                   |               |              |                      |

ſ

| Rauge Jore & Boroy DSL Reveals 7<br>Kluss Revea bb DB DB DB<br>1 5.2 16.6<br>2 - 79.6 - 9.0<br>1 - 5.2 16.6<br>2 - 10.2<br>2 - 10.2<br>2 - 10.6<br>2 - 10.2<br>2 - 10.2<br>2 - 10.2<br>2 - 10.2<br>2 - 10.2<br>2 - 10.2<br>2 - 12.6<br>2 - 12.7<br>2 - 12.6<br>2 - 12.7<br>2 - 12.6<br>2 - 12.6<br>2 - 12.7<br>2 - 12.6<br>2 - 12.6<br>2 - 12.6<br>2 - 12.7<br>2 - 12.6<br>2 - 12.6<br>2 - 12.6<br>2 - 12.6<br>2 - 12.6<br>2 - 12.7<br>2 - 12.6<br>2 - 12.7<br>2 - 12.6<br>2 - 12.6<br>2 - 12.6<br>2 - 12.6<br>2 - 12.7<br>2 - 12.6<br>2 - 12.7<br>2 - 12.6<br>2 - 12.6<br>2 - 12.7<br>2 - 12.6<br>2 - 12.6<br>2 - 12.7<br>2 - 12.7<br>2 - 12.6<br>2 - 12.7<br>2 - 12.7<br>2 - 12.6<br>2 - 12.7<br>2 - 12.7<br>2 - 12.7<br>2 - 12.6<br>2 - 12.7<br>2 - 12.6<br>2 - 12.7<br>2 - 12.6<br>2 - 12.6<br>2 - 12.7<br>2 - 12.7<br>2 - 12.7<br>2 - 12.6<br>2 - 12.6<br>2 - 12.6<br>2 - 12.6<br>2 - 12.7<br>2 - 12.7<br>2 - 12.6<br>2 - 12.7<br>2 - 12.6<br>2 - 12.7<br>2 - 12.7<br>2 - 12.6<br>2 - 12.6<br>2 - 12.7<br>2 - 12.7<br>2 - 12.7<br>2 - 12.6<br>2 - 12.7<br>2 - 12.7<br>2 - 12.7<br>2 - 12.7<br>2 - 12.7<br>2 - 12.7<br>2 - 12.6<br>2 - 12.6<br>2 - 12.6<br>2 - 12.6<br>2 - 12.7<br>2 - 12.7<br>2 - 12.7<br>2 - 12.6<br>2 - 12.7<br>2 - 12.7<br>2 - 12.6<br>2 - 12.7<br>2 - 12.7<br>2 - 12.7<br>2 - 12.7<br>2 - 12.6<br>2 - 12.6<br>2 - 12.6<br>2 - 12.6<br>2 - 12.7<br>2 - 12.7<br>2 - 12.6<br>2 - 1 |              | REVER BRGRND LAL ECHO LEVEL ECHO/BA | <u>98</u> <u>28</u> <u>28</u> | 15.9 15.6 57.9 45.8 | 9 16.9 32.9 16. | 2 10.2 14.5 | .9.9  | 2. h 7. E. 0. 8. 0. 8. | 9. 4. 4 | -23,3 -23,3 -19,4 3,9 | -11 .7 -26.6 -14 .9 | -13.4 -13.4 -13.5 -20.1 | • 3   ·/4 ⋅3 | -11.6 -51.0 -71.8 -20.8 | -24.9 -24.9 -91.4 -66.5 | - 29 29 - 0 - 108.9 29 .9 .9 | -64.6 -43.6 -126.6 -53.1 | - 13.3 -1/3.0 -1/43.6 -100.0 | -57.6 -42.9 -159.6 116.7 |   |         | TARGET DEPTH - 3 th FT |                | ECHO/BACKGROUND LEVELS FOR 8" x 150" ARRAYS |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------|-------------------------------|---------------------|-----------------|-------------|-------|------------------------|---------|-----------------------|---------------------|-------------------------|--------------|-------------------------|-------------------------|------------------------------|--------------------------|------------------------------|--------------------------|---|---------|------------------------|----------------|---------------------------------------------|---|
| Surres Barroy<br>Revers bb<br>Arros bb<br>5.2<br>5.2<br>5.2<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | Reverte                             | 28                            |                     | 4.              |             | 4 4   | •                      | · •     | •                     | •                   |                         | -42          |                         | -99.6                   | -129.6                       | . •                      |                              | - 202.4                  | • | · ••• • |                        | = 30°          | Ι.                                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·<br>·!<br>· | Botton                              |                               | 6.3                 |                 | - [·        | ~ ~ ~ | 7.62 -                 | - 6.9.  | -57.1                 | -11 . 1:            | -13 .4                  | E #/-        | 1                       | -24.9                   | -29.1                        | -64.0                    | -63 + 2                      | 59.66                    |   |         | E AT 25 K15 = -43.     | STEEPING ANGLE | Table 1                                     | • |

| Echo Baaks Rown Luc. |             |             | 37.1 | 17.6 | 5.01 |       |       | <b>6. X</b> | 0 0    | d         | 78      | 9. 22.         | -65,0  | -74 . 5  | - 1       | -/00, 6  | -1110.4 |   |         |                             | 2 6 00 1                              |           | <b>1</b> /OC | )6                       |                                       |     |     |
|----------------------|-------------|-------------|------|------|------|-------|-------|-------------|--------|-----------|---------|----------------|--------|----------|-----------|----------|---------|---|---------|-----------------------------|---------------------------------------|-----------|--------------|--------------------------|---------------------------------------|-----|-----|
| EAUS LOVEL           |             | •<br>•<br>• | 51.9 | 32.9 | 14.5 | 0.0   | 3.7   |             | -19.4  | -26.6     | -35.0   | - 7/ 9         |        | - 101.9  | 1.12-     | - 143.0  | -159.6  |   |         | S.,                         | DSL DEPTH                             | , n ,<br> |              | 150' ARRAY               | •                                     | •   | • , |
| a I Anani G          | BKGKNO NIL  | 94          | 14.7 | 15.3 | 4.0  | -11.2 | -9:5- | 0.8/-       | 1      | 00 8/-    | -/6 ./  | 12 0           | -26.4  | -30.4    | 0° EH-    | -43.0    | -43.0   |   |         |                             | · · · · · · · · · · · · · · · · · · · | au        |              | FOR 8' X                 | •                                     |     |     |
| 2.0                  | JOTAL KEVEK | 07          | 14.7 | 15.3 | ¢, 0 | 4 4   | -3.5- | -18.0       | -15-1  | - 0 - 8/- | -1/ 1/- | 1 - 14 -       | 4 10-  | - 20 - 7 | -14 4     | - 63 . 7 | -58,3   |   | •       | 13.45                       |                                       | · · • • · |              | ECHO/ BACKGROUND. LEVELS | · · · · · · · · · · · · · · · · · · · | ;   | *   |
|                      | ENER8       | 28          | 14.4 | 15.3 |      |       | -9.5  | -18 . 1     | 8. 42- | - 31 .5.  | -27-9-  | 43 . 7         | 1 2/   | + 10/-   | 9.511     |          | - 203.9 |   | <br>••• | ``                          |                                       |           |              | t                        |                                       |     |     |
|                      | Barton      | RUVERS DA   |      | 1    | • \  | - 1   | - 65  |             | -15-6  | 10.8/-    | 10 3/-  | <u>-14 - 7</u> | -11.07 | 4        | -30 . 1 . | 4        | -5-9-3  | 1 |         | SE AT 25 Kr5 = - 43.0 28 AB |                                       |           |              | Table 14.                |                                       | • • |     |
|                      | Range       | Sairs       |      |      |      | £ .   |       |             |        |           | 0       | 0,             |        | 20       | 2,        | 30       | 35      |   |         | From NersE                  | ALMUTH                                |           | 2            | -51                      | 1                                     |     |     |

1.000 mg

|          |                                       | ł              |                   |                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|---------------------------------------|----------------|-------------------|----------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RANGO    | Jure & Borroy.                        | DSL REVERS     | Forme Revers      | BIGRAD LIL                             | FCHO LEVEL   | EcHo/BACKGROUN LUL .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2012     |                                       | 28             | 28                | 89                                     | 20           | <u>86</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |                                       | •              |                   |                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | 2.2                                   | 13,3           | 13.6              | 13.6                                   | 51.9         | 31.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | 1.                                    |                | 13.9              | •                                      | 32.9         | 0.6/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | 1                                     |                | 2.5               | 2.5                                    | 14:5         | 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| *        | 1-                                    | -/3.7          | -13.7             | -13.7                                  | 0.8          | 31.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | -8.4                                  | -1/ .0         | -6.5              |                                        | -3.7         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | -19.3                                 | 2.91-          | -15.9             | - 1,- , 9 .                            | -11 - 8      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -        | -21.9                                 | -26.3          | -20,02-           | -20.5                                  | -13.4        | and the second sec |
| •        | •                                     | -33 . 0        | -25.8             | -25-8                                  | -26.6        | 5.0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0        | -17 - 9                               |                | -17 . 9           | -17 . 9                                | -33.5        | 7.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 9        | •                                     | 1 7            | 1 - 9/-           |                                        | -40.3        | E.15-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ~        | -47.0                                 |                | -47.0             | -41 .5                                 | -71.8        | -30.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20       | -27.8                                 | 7.101-         | -27.8             | -27.7                                  | 15-          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 26       | -32,1                                 | -128.2         | -321/             | - 29.8                                 | -6.101-      | -79.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 30       | -65.5                                 | -154.3         | -65.57            | -43.0                                  | 1.721-       | - 43.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 35       | -64.5                                 | - / 80.0       | -64.5             | -43.0                                  | - 143.0      | -100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 40       | -59.2                                 | -201.4         | -79.2             | -43.0                                  | -159.6       | -16.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |                                       |                |                   |                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                       | •              | • • •             | •••                                    | •            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FLOW Na. | FLOW Nass Ar 25 475 = -43.0 28        | 10 28 RE 1 434 | 44                | • • • • •                              | TARGET DEPTH | F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AZIMOTH  | ALIMOTH STEERING ANGLE =              | `<br>•         | -1-<br>           |                                        | 1.00         | 6.00 Fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          |                                       | · ·· ·         | · · · ·           |                                        | •            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2-       | Table 15.                             | ECHO/          | BACKGROUND LEVELS | FOR 8' x 150'                          | 0' ARRAY     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 52       |                                       |                |                   |                                        | · · · ·      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                       | ·<br>·         | •••               |                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ,        |                                       | •              |                   | •                                      | •            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| •        | · · · · · · · · · · · · · · · · · · · | •              |                   | , 1<br>, 1<br>, 1<br>, 1<br>, 1<br>, 1 | •            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| •        | •                                     |                |                   | ,                                      | ``           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

'H.

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12.2     12.2     12.3     31.1     34.2       -6.3     -6.3     31.1     12.1     44.4       11.1     19.9     31.1     12.1       12.1     -2.1     23.2     31.1     44.4       -2.1     -2.1     23.2     31.1     47.4       -2.1     -2.1     23.2     24.4     40.4       -2.5     -32.5     -32.5     31.4     47.4       -2.5     -47.0     -3.1     24.8     40.4       -2.5     -47.0     -3.1     25.4     40.4       -16.2     -47.0     -3.1     25.4     -1.4       -25.5     -47.2     -3.1     25.5     -1.4       -47.0     -1.5     -1.4     47.4       -16.1     -47.0     -1.5     41.2       -17.1     -47.0     -1.4     -1.4       -76.1     -47.0     -1.4     -1.4       -77.1     -47.0     -1.4     -1.4       -77.1     -47.2     -1.4     -1.4       -77.1     -47.2     -1.4     -1.4       -77.1     -47.0     -1.4     -1.4       -77.1     -47.0     -1.4     -1.4       -77.1     -47.0     -1.4       -77.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12, 2 $72, 2$ $16, 4$ $34, 3$ $-2, 3$ $31, 1$ $49, 4$ $49, 4$ $11, 12$ $19, 9$ $31, 0$ $31, 0$ $11, 12$ $19, 9$ $31, 0$ $31, 0$ $11, 12$ $19, 9$ $31, 0$ $31, 0$ $11, 12$ $19, 9$ $31, 0$ $31, 0$ $-2, 1$ $23, 1$ $23, 1$ $40, 1$ $-2, 1$ $23, 1$ $24, 1$ $40, 1$ $-32, 5$ $-32, 2$ $-32, 2$ $41, 1$ $41, 1$ $-32, 5$ $-32, 3$ $24, 1$ $40, 2$ $24, 2$ $-32, 5$ $-32, 2$ $-32, 2$ $-31, 2$ $31, 3$ $-53, 7$ $-42, 0$ $-23, 1$ $24, 3$ $24, 3$ $-42, 1$ $-72, 2$ $-14, 3$ $-14, 3$ $-14, 3$ $-70, 1$ $-42, 0$ $-12, 0$ $-12, 0$ $-14, 3$ $-70, 1$ $-10, 1$ $-10, 1$ $-12, 0$ $-14, 3$ $-70, 1$ $-10, 1$ $-10, 1$ $-12, 0$ $-14, 3$ $-70, 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -6.3     38.1     49.4       18.2     13.2     30.9     12.1       11.1     -7.1     19.9     31.0       -2.1     -2.1     49.4     40.6       -32.5     -32.3     8.4     40.6       -32.5     -32.3     8.4     40.6       -32.5     -32.3     8.4     40.6       -32.5     -32.3     8.4     40.6       -32.5     -47.0     41.     47.1       -58.9     -47.0     -1.5     31.5       -58.7     -47.0     -7.5     31.5       -51.5     -47.0     -1.5     31.5       -52.8     -47.2     -27.3     24.5       -71.5     -47.0     -1.5     17.8       -72.5     -47.0     -1.5     -1.4       -73.5     -47.0     -1.5     -1.4       -73.5     -47.0     -1.5     -1.4       -73.5     -47.0     -1.4     -1.4       -73.5     -72.3     -72.3     -1.4       -73.5     -72.3     -72.4     -1.4       -73.5     -72.3     -72.4     -1.4       -73.5     -72.3     -72.5     -1.4       -73.5     -72.3     -72.5     -1.4       -73.5 </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 18.2 19.2 30.9 12.1<br>1. 1. 1. 1. 19.9 39.0<br>2.1 -2.1 19.9 39.0<br>-2.1 -2.1 19.9 14.9<br>-2.1 -3.0 0.0 41.4 47.1<br>-76.1 -43.0 -15.0 41.4 47.1<br>-76.1 -43.0 -15.0 41.4 47.1<br>-63.7 -43.0 -15.0 41.4 47.6<br>-63.7 -43.0 -15.0 -17.9<br>-93.0 -102.6 -59.11 - 15.0<br>-16.1 -43.0 -102.6 -59.11 - 15.0<br>-16.1 -43.0 -102.6 -59.11 - 15.0<br>-16.1 -43.0 -102.6 -56.7 4<br>-16.1 -40.0 -16.1 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11     11.1     19.9     31.0       -2.1     -2.1     5.4     40.4       -3.1     -2.1     5.4     40.4       -76     -1     47.4     47.4       -76     -1     -2.5     2.1     5.4       -76     -1     -43.0     -1.4     47.4       -63     -43.0     -3.7     34.5     34.5       -63     -43.0     -7.5     -1.5     34.5       -13     -7.5     -7.5     -1.4       -13     -1.5     -1.5     -1.5       -73     -1.3     -21.2     -7.5       -73     -1.2     -7.5     -7.4       -73     -1.2     -7.5     -7.4       -73     -1.2     -7.5     -7.4       -73     -1.2     -7.5     -7.4       -73     -1.2     -7.5     -7.4       -73     -1.3     -7.2     -7.4       -73     -1.3     -7.2     -7.4       -73     -1.3     -7.2     -7.4       -73     -7.5     -7.4     -7.5       -73     -7.5     -7.5     -7.5       -73     -7.5     -7.5     -7.5       -7.5     -7.5     -7.5       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -2.1 -2.1 <b>13.8</b> 14.9<br>-32.5 -32.3 <b>1.1</b><br>-76.1 -47.0 <b>1.1</b><br>-68.9 -43.0 <b>0.0</b><br>-68.9 -43.0 <b>0.0</b><br>-63.7 -47.0 -12.5 39.3<br>-63.7 -47.0 -7.5 39.3<br>-17.9 -17.9 -17.9<br>-9.9.2 -17.9 -17.9<br>-9.13.0 -102.6 -59.11 - 16.0<br>-16.1 -47.0 -102.6 -59.11 - 16.0<br>-17.9 -47.0 -102.6 -59.11 - 16.0<br>-16.1 -47.0 -102.6 -59.11 - 16.0<br>-16.1 -47.0 -102.6 -59.11 - 12.00 FT<br>Tanager Deprin - 20 FT<br>Derrit - 12.0 FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -76 -1 -43.0 4.1 4.1 40 -6<br>-76 -1 -43.0 0.0 4.1 41.1 47.1<br>-63.7 -43.0 0.0 43.0 43.0<br>-63.7 -43.0 -3.7 34.6<br>-63.7 -43.0 -7.6 -1.6<br>-49.8 -1.6<br>-9.9 -1.6 -1.6<br>-1.7 -43.0 -102.6 -6<br>-1.6 -63.0 -102.6 -6<br>-1.6 -63.0 -102.6 -6<br>-1.6 -63.0 -102.6 -7 80 67<br>Tagger berru = 20 67<br>-1.6 -63.0 -102.6 -7 80 67<br>Tagger berru = 20 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -76 1 -43.0 41 41 47.1<br>-8. 8 -43.0 0.0 41 41.0<br>-63.7 -43.0 3.1 5.1<br>-1.1.2 -42.1 -1.5<br>-9.1 -1.5 -1.5<br>-9.2 -42.1 -1.7<br>-9.2 -42.1 -1.7<br>-9.2 -42.0 -102.6 -5<br>-13.0 -12.9 -12.9<br>-13.0 -12.9 -12.9<br>-13.0 -12.9 -12.9<br>-13.0 -12.9 -12.9<br>-13.0 -12.9 -12.9<br>-14.1 20 -15<br>-15.1 -43.0 -102.6 -5<br>-17.1 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -17.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -68. 9 -43.0 0.0 415.0<br>-63.7 -47.0 -3.7 31.4<br>-1.1 - 31.6<br>-1.2 -47.0 -1.5 31.4<br>-1.2 -47.0 -1.5 -1.4<br>-1.2 -9.5 -1.4<br>-1.2 -1.2 -47.0 -12.6<br>-1.2 -12.0 -12.6 -29.4<br>-1.1 -43.0 -102.6 -29.11 = 20 FT<br>DSL DETTH = 20 FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -63-7 -4/3.0 -3.7 -63-3<br>-6(-3 -4/2.0 -7.5 -1.5<br>-1.5 -25.9 -4/1.2 -1.5<br>-1.5 -1.5 -1.5 -1.5 -1.5<br>-1.5 -1.5 -1.5 -1.5 -1.5<br>-1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5<br>-1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -66. 3 -47.0 -7 5 36.5<br>-53.5 -47.7 -88.1 17.9<br>-42.6 -37.8 -11.2 -1.7<br>-42.6 -12.9 -14.8<br>-14.8 -14.8<br>-12.9 -12.9 -14.8<br>-14.8 -17.0<br>-13.0 -12.6 -59.4<br>-14.8 -17.0<br>-13.0 -12.6 -59.4<br>-14.8 -17.0 FT<br>-10.6 -17.0 FT<br>-10.6 -17.0 FT<br>-10.6 -17.0 FT<br>-10.6 -17.0 FT<br>-10.6 FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -53.5 -47.7 -8.8 17.9<br>-47.6 -39.9 -47.2 -1.1<br>-9.7 -43.0 -12.9 -14.5<br>-7.7 -43.0 -12.9 -14.5<br>-7.7 -43.0 -102.6 -59.11 - 29.5<br>-7.9 -17.0 -17.0 -17.0<br>-17.0 -17.0 -102.6 -57.11 - 20 FT<br>-7.9 -17.0 FT<br>-7.9 -17.0 FT<br>-7.9 -17.0 FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -42.6 -39.8 -41.2 -1.4<br>-49.2 -48.1 -57.1 -15.0<br>-50.1 -43.0 -12.3 -29.5<br>-73.7 -43.0 -12.5 -29.5<br>-73.7 -43.0 -12.5 -29.5<br>-74.5<br>-73.0 -12.5 -59.11 - 29.5<br>-59.6 -59.5<br>-59.6 -59.5<br>-59.6 -59.5<br>-59.6 -59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5<br>-59.5 |
| -49.2 -48.1 -13.0<br>-90.1 -43.0 -12.3 -19.3<br>-13.0 -13.0 -14.3 -14.3<br>-10.6 -43.0 -102.6 -59.4<br>-10.6 -59.4 - 1200 FT<br>DSL DEPTH = 20 FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -90-1 -43.0 -12.3 -19.3<br>-73.7 -43.0 -12.3 -14.5<br>-73.0 -102.6 -59.4<br>-79.5 -12.0 -59.4<br>-79.5 -12.0 FT<br>-79.5 -12.0 FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -73.7 -43.0 -97.8 -44.5<br>-10.6 -43.0 -102.6 -59.4 -<br>-59.6 -59.7 -59.7 - 59.6 -5<br>-551.54 - 1200 FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -70.6 -43.0 -102.6 -59.6 -59.6 -59.6 -59.10 FT<br>TARGET DEPTH = 80 FT<br>DSL DETTH = 1200 FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| THREET DEPTH - 80 FT<br>DSL DETEN - 1200 FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TARGET DEPTH = 80 FT<br>DSL DEFTH = 1200 FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

ļ. .

| <b>.</b>             |         |         |               | ·     |          |           |        |        |        |         |        |          |           | •        |  |                                |                      | , ·             |   |
|----------------------|---------|---------|---------------|-------|----------|-----------|--------|--------|--------|---------|--------|----------|-----------|----------|--|--------------------------------|----------------------|-----------------|---|
|                      |         |         |               |       |          | •         |        | T      | •      | -       |        | 'i       |           |          |  | WP1                            | .1-2                 | 41006           |   |
| Kone/Ruckstrouit Lor | 1.75    | 8.8/    | <b>k</b> • 11 | 6. 11 | 42.2     | 43.0      | 39.3   | 36.5   | 12.9   | 8. 0/-  | 1.85-  | 6, 95.   | . 4 4 . 8 | -59 .6   |  | 60 57                          | : 1200 Fr            |                 |   |
| ECNO Krist           | 46.4    | 30.9    | 6.51          | 13.8  |          | 0,0       | -3.7   | - 7 .5 | -20,8  | - 2017- | 1.12-  | - 22.3   | - 97.1    | 7. 201-  |  | TARGET DEPTH.                  | DSL DEPUT            | 150' ARRAY      | • |
| Prosents ha          | 9.7     | 12.1    | ه بر          |       | -33 8    | 0.54.     | .45,0  | -42,0  | -42.6  | -30.1   | -24.6- | v · 2/2- | .43,0     | 0.5%     |  | •                              |                      | FOR 8' x 150    | · |
| Torna Carta          | 9.7     | 17.1    | ۲،۲           |       | - 34,4   | 74.5      | -16 .6 | -60.6  | -3.1   | -20,6   | -24.0  | 0.72.    | - 84.4    | 1 . 101- |  | 44.                            |                      | SIZVAL          |   |
| DSL Rowing           | -34.7   | 17.1    | ~~ 0          | -1.5- | -34,4    | • ] •     | 1•     | ].     | 1 -    | 1-      | 1-     | 1-       | 1-        |          |  | OD RC INERS                    | 0                    | ECHO/BACKGROUND |   |
| Joir & Borrey        | 9.7     |         | - 1-          | -82.5 | - 1, 1/- | - 74 . 50 | -26.6  | -60.6  | 1.624- | -30.6   | -2:/.0 | \$ 2 4 - | 4.49.     | 1. 21.   |  | Fiow Norse AT 25 K15 = -12.0 0 | ALINEN STEERING PAUL | Table 17.       | • |
| RANG                 |         | ~ ~     | /             | ~     | ,        | 0         | 0      | ¢(     | ~      | 20      | 3,0    | 30       | 35        |          |  | FLOW NO.                       | America              | i               |   |
|                      | · · · · | . · · · | •             | •     |          | ,         |        |        |        |         |        |          |           |          |  |                                |                      | <b>2-5</b> 4    |   |

İ

| •                      |              |        |       | -14      |        |           |        |        | 43       | WP11-2-4                         | 100                              |
|------------------------|--------------|--------|-------|----------|--------|-----------|--------|--------|----------|----------------------------------|----------------------------------|
| ECHO/PHICKSROWS LUL    | 39.1<br>27.3 | 11.3   | 23.2  | 16.9     | 9.7    | 17.6      | -16.3  |        | - 19 . 9 | - 80 ET                          |                                  |
| E'CLIO LOVEL           | 46.9<br>38.1 | 20 19  | 13.8  | 4.1      | -3.7   | 8-12-     | 41.2   | -12.3  | -92.8    | 792455 DERIN . 80                | VADAV 1501 -                     |
| Bryano Lu              | 7.3          | 12.7   | 2.5.  | -1/2 . 8 | -12 .1 | 11 - 17 - | 9.02-  |        | P. 61/-  |                                  |                                  |
| Torrie Revis Breans Lu | 7.3          | 12 . 7 | -9.1  | 1.12-    | -12-01 | -51 .     | 20.62. | -7 4 - |          |                                  | A CURRENTIAL I THING A CURRENT A |
| DSL REVENS             | 8.01         |        | -9.4  | ]-1.     | 1 - 1  | - !\      |        |        |          | 0 00 AS 1 1000                   | Unua                             |
| RANGE Suger & Berrout  | 5.2          |        | 5-67- | -1.2.1   | -13.4  |           | 6.12.  |        | -63.2    | From Neve Nr 25 Krs = -43.0 23 A | Tahla 18                         |
| Ranse                  |              | ci, 24 | V .   | 2        | 6      |           | 20     | 30     |          | Fron News<br>Row 15%             |                                  |

|                  |                                  | 1    | -    |       | , ;          |        |        |         |         |         |            | • ;    |          | ł         |              |         | 1                                     | •                               |                              |                        |
|------------------|----------------------------------|------|------|-------|--------------|--------|--------|---------|---------|---------|------------|--------|----------|-----------|--------------|---------|---------------------------------------|---------------------------------|------------------------------|------------------------|
|                  | Ferto Lover Fello/BACKFROWS Lov. | 40.0 | 29.4 | 15.5  | 17.3         | 37.9   | i9.2   |         | 12.4    |         | 79.2       | -14.8  | -26.6    | - 29.3    | 44.8         | -59.6   |                                       | · 80 ET                         | 1200 Fr                      | 2-41006                |
| •                | ECHO LOVEL                       | 46.4 | 38.1 | 30.9  | 19.9         | 13.8   | 4.     | 0.0     | -3.7    | -7.5    | -24.5      | -41.2  | 122-     | - 72 13   | - 8 2 8 -    | 7. 201- |                                       | TARLET DEPTH                    | DSL DEPIN                    | 150' ARRAY             |
|                  | Brysna hu                        | 6.4  | 9.7  | 11.4  | 2.6          | -79.5  | -12.1  | 1-21-   | -16.1   | -14.7   | -43.0      | 1.26.4 | -30 .5   | -43,0     | -43,0        | - 43,0  | · · · · · · · · · · · · · · · · · · · | :                               |                              | FOR 8' X               |
| •                | Torn Revers                      | 6.4  | 9.7  | 11 .4 | عاد          | - 29.9 | 1 -11- | 1 . 81- | -16-01  | -14 -7  | -61.2      | -26.4  | - 30 - 7 | -64.1     | - 63.7       | 5.8.    |                                       | ₽1,                             | -                            | ECHO/BACKGROUND LEVELS |
|                  | DSL REVERS                       | 3.0  | 9.7  | 11.4  | 2.5          | -40.5  | }•     | ]•      | ,<br>]• | ]•      | 1.         | 1.     | 1-       | 1-        | 1-           | 1.      |                                       | ODB AF I HERE                   |                              |                        |
| ·<br>•<br>•<br>• | RANGE JURF. & BOTTON KIDS RELEA  | 3.7  | -    | 1-    |              | 24.2   | 20-11- | - 18 .1 | -16.1   | -/4 . 7 | - (1 . 7 . | - 2604 | -30.7    | -(. 1, 1) | - 63, 7      | -59.3   |                                       | FLON NOVSE AT 25 XTS = -43.0 DB | ARMOUTH STEEPING ANGUE = 450 | Table 19.              |
|                  | Range                            |      | ~    | 3     | 4            |        | 7      | 1       | 9       | 0/      | 7          | 20     | 21       | 30        | ر<br>بر<br>" | 43      |                                       | FZON No.                        | ALINGTH                      | •                      |
|                  |                                  |      |      |       | ;<br>-  <br> |        |        |         |         | -       |            |        |          |           |              |         | · · · · · · · · · · · · · · · · · · · | ·                               |                              | 2-56                   |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9.8 $30.4$ $21$ $1.2$ $1.2$ $1.2$ $1.2$ $-7.2$ $-9.9$ $30.4$ $21.9$ $-7.2$ $-9.9$ $19.8$ $20.2$ $-7.9$ $-7.2$ $9.4$ $26.2$ $-7.9$ $-7.2$ $9.4$ $26.2$ $-7.2$ $-7.2$ $9.4$ $26.2$ $-7.2$ $-7.2$ $-7.2$ $21.2$ $-7.7$ $-7.7$ $-3.2$ $21.2$ $-17.9$ $-7.2$ $-3.2$ $21.2$ $-17.9$ $-7.2$ $-3.2$ $21.2$ $-7.7$ $-7.2$ $-27.2$ $21.2$ $-7.2$ $-7.2$ $-27.2$ $-27.2$ $-7.2$ $-7.2$ $-27.2$ $-27.2$ $-7.2$ $-7.2$ $-27.2$ $-27.2$ $-7.2$ $-7.2$ $-7.2$ $-7.2$ $-7.2$ $-7.2$ $-7.2$ $-7.2$ $-7.2$ $-7.2$ $-7.2$ $-7.2$ $-7.2$ $-7.2$ $-7.2$ $-7.2$ $-7.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -21-9 -21.9 4.1 26.<br>-22.4 -27.3 0.0 27.<br>-27.6 -3.7 14.<br>-16.1 -16.1 -7.6 9.16.<br>-47.0 -41.5 -34.9 16.<br>-47.0 -41.5 -34.9 16.<br>-27.8 -41.2 -13.<br>-27.8 -41.2 -13.<br>-27.8 -41.2 -13.<br>-27.8 -41.0 -12.6 -59.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -12.9 -72.5 -3.7 14.<br>-12.9 -72.5 -3.7 14.<br>-12.0 -41.5 -34.9 16.<br>-27.8 -41.2 -73.6 -74.2 -73.<br>-22.8 -43.0 -71.2 -73.6 -79.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 -59.6 |
| -2111 7 7 1 1 1 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -27.5 -24.9 16.<br>-27.5 -27.8 -41.2 -73.6<br>-32.1 -31.5 -41.2 -73.6<br>-65.5 -43.0 -57.4 -44.4<br>-61.5 -43.0 -121.6 -59.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -32.1 -31.5 -57.1 -3.5<br>-65.5 -43.0 -22.3 29.<br>-61.5 -43.0 -17.8 -444.<br>-73.2 -43.0 -102.6 -59.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -61 -43.0 -22.5 29.<br>-61 - 43.0 -12.5 29.<br>-61 - 53.0 -12.6 -59.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -64, 5 -43,0 -87.8 -44.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

|                                |               |      | <u>.</u> |                                         |          | •                |         | <u>!</u>                                | ;<br>   |          |          |                                         |          | WP                                  | 11-2                 | -4100                      |
|--------------------------------|---------------|------|----------|-----------------------------------------|----------|------------------|---------|-----------------------------------------|---------|----------|----------|-----------------------------------------|----------|-------------------------------------|----------------------|----------------------------|
| FCHO LEVER FCHO/BACKGROWIS LUL | 39.6          | 37.5 | 27.8     | 31 0                                    | 46.0     | 5/10             | 26 .5   | 7.1                                     | . 5/-   | -28.9    | - 45.3   | 7.22.                                   | -66.4    | 12 61                               | 1200 Fr              |                            |
| FCHO LOVER                     | \$1.9         | 24.3 | 16.7     | 2.6                                     |          | 7.8.             |         | -356-                                   | 7.85.   | 0.12-    | - 22 . 3 | -105.2                                  | -10 2.4  | Trager Derril .                     | DSL DEPTH :          | )' ARRAY                   |
| Bryan Lu<br>DR                 | 12.2<br>-1. 2 | 18.2 | 1.2.     | -38.2                                   | -43.0    | 0.54.            | . 42. 0 | -42.7                                   | - 39. 4 | 18.01    | -43.0    | -42.0                                   | 0.54.    |                                     | <br>                 | FOR 8' x 150'              |
| Torne Rever Bugar In           | 12.2          | 12.2 | 1.1.     | -32,5                                   | - 1/ 1/- | 1.3.7            | -66 . 3 | -5:30.5-                                | -42.2   | - 49 - 2 | 1-05-    | - 19                                    | -101-    |                                     |                      | O/BACKGROUND LEVELS FOR 8' |
| DSL Revers                     | -55,00        | 18.2 | 11 11    | -32 .5                                  | 1-1      | • •              | 1.      |                                         | 1       |          | 1.       |                                         |          | DE RE I JERG                        | 0/ #                 | ECH                        |
| KANGE JUCE & BOITON            | 12.2          | 1    | - 51 - 8 | - 28 . 7                                | -76.0    | -63.2            | 6077-   | -13,5-                                  | -420%   | -12.2    | -50.01   | - 79 1                                  | 7        | FLOW AL . S.C. AT 25 X15 = -43.0 28 | Annors Sectory May - | Table 21.                  |
| KANIS                          | . ~           | 6,   | * ~      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 20       | . 0              | 9       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 20      | 5        | 30       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | <u>,</u> | FLOW N. S.                          | HINGOR               |                            |
|                                |               | •    |          |                                         |          | 1<br>1<br>1<br>1 |         | <b>t</b>                                | ••••    |          |          |                                         |          |                                     |                      | 2-58                       |

· •

Ц. Ц

| Lu2 .                 |           |               |       |        |         |          | •       |            |        |       | •       |         |        |          |               | N | <b>P11</b>                      | -2-4        | 1006                       |
|-----------------------|-----------|---------------|-------|--------|---------|----------|---------|------------|--------|-------|---------|---------|--------|----------|---------------|---|---------------------------------|-------------|----------------------------|
| Echo/BAckgRours       | 1.24      | 12.6          | 2.8   |        | 2. 7×   | 29 . 9   | 34 . 6  | 20.5       | 26.5   | 7.0   | - 23.2  | -47.0   | -463   | -62.2    | 1-11-         |   | 150 65                          | 1200 65     |                            |
| ECHO LOWEL            | 8.12      | 32.9          | 24.3  | /6.7   | 8.7     | -3./     | 1 - 8 - | -12.5      | 5.21-  | -36.6 | -22.52- | - 2/ -0 | -99 .2 | -10/2    | 1. 601-       |   |                                 | JSK DEPTH = | ' ARRAY                    |
| BKGRND! NL<br>DR      | -         | 14.3          | 12.1  |        | -33 , 8 | 0 2 /5   | -43.0   | -43.0      | -43.0  | -42.6 | -30.4   | -24 . 0 | -43 .0 | 0.24.    | 0.11.         |   |                                 |             | FOR 8' x 150'              |
| Torn. Revera Brigand. | 9.7       | /// 43        | 17.1  |        | -34.4   | - 74 . 7 | -74 .5  | 7077-      | -60.6  | -3.1  | -30.6   | -24.0   | 9.28-  | - 81 . 4 | 1 . 101-      |   | et a                            | •           | ECHO/BACKGROUND LEVELS FOR |
| DSL REVENS            | 4         | 50 4/         | 1.2.1 |        | - 34 4  | •        | 1-      |            | }      | 1     | 1.      | 1-      | 19     |          |               |   | DE RE INERS                     |             | .•                         |
| Juger & BOTTON        |           |               | 1- 1  | - 82 - | 7.71-   | - 74.7   | -24 .5  | -66.6      | -60.1. | 1.52- | -30.6   | -21/0   | 8.28-  | · 24 4 4 | 1 1 1 1 1 1 . |   | From Nerse AT 25 X75 = -43.0 28 | Pris.       | Table 22.                  |
| RANGE                 |           |               | 6     |        | <br>    | -        | -       | 6          | q      | ~     | 20      | 35      | 30     | 36       | de<br>de      |   | Frow Ners.                      | Hermon      |                            |
|                       | <br>-<br> | : •<br>•<br>• |       |        | ,<br>   |          | •       | <b>.</b> . |        | •••   | •       | -       |        | -        | ſ             | • |                                 |             | 2-59                       |

,

•

|   |                       | •                              | ;    |      |      | <i>:</i> . |        | •       | •     | • :      |        | ł      | <b>1</b> <sup>1</sup> . |        | ~       |          |           |        | <br>•      |                                 |                        |             | •.                            |
|---|-----------------------|--------------------------------|------|------|------|------------|--------|---------|-------|----------|--------|--------|-------------------------|--------|---------|----------|-----------|--------|------------|---------------------------------|------------------------|-------------|-------------------------------|
| • |                       | ECHO LEVEL ECHO/BACKGROWN LUL. | 44.5 | 22.1 | 1. 1 | 12.6       | 19.5   | 40.3    | 39.7  | ĉ, ŝ     | • • •  | - 2.5  |                         | -29.7  | -42.2   |          | - (1 - )- | P. 77- |            | Fr                              | د                      | 410         | 06                            |
| ÷ | •                     | ECHO LEVEL<br>Dis              | 57.6 | 32.9 | Erpe | 16.7       | 9 . 1  | 2.2     | -3.1  | -2.4     | -12"   | -16.5  | 372-                    | - 13.6 | -71.0   | - 88 . 3 | -105.2    | -109.4 | :          | TARGET DEPTH . 150              | DSL DEPTH = 1200       |             | P ARRAY                       |
| • |                       | Brysna hu                      | 7.3  | 10.8 | 12.7 | 4.1        | 4.9.   | -37 .5- | -42.8 | -// .7   | -13.4  | -14.3  | 42.4                    | 8 62.  | -28 . 8 | 0.2%.    | -25 0     | - 12.  |            |                                 |                        |             | FOR 8' x 150'                 |
| • | •                     | Torne Rewes Brganb hu<br>DB DR | 7.3  | 10.9 | 12.7 | 4.1        | -9.4   | -39.0   | -17.1 | -11 - 7  | -13 04 | -14 .3 | -21.2-                  | -24.9  | 0.62.   | -64.0    | -63 22    | -52.6  | •          | 7 <b>%</b>                      | -                      |             | ECHO/BACKGROUND LEVELS FOR 8' |
|   |                       | DSL R.FUER                     | 3.3  | 8.01 | 12.7 | 4.1        | -9.4   | -39.0   | J     | 1-       | 1-     | ]•     | •<br>-                  | 1-     | 1-      | 1        | 1-        | 1      | •          | ODB RE INERS                    |                        |             |                               |
| • |                       | Jure & Roman                   | 5.2  | 1.   |      |            | - 79.6 | - 69.9  | -52.1 | - 11 . 7 | -13 .4 | -14 .3 | -57.06                  | 9.12.  | 1.62-   | -6400    | -63.2     | -5726  | <b>-</b> . | 1100 Nevsr Ar 25 Krs = -13.0 08 | in Sickany Augur = 30° |             | Table 23.                     |
|   | •<br>•<br>•<br>•<br>• | Sand                           |      | ~    | 3    | *          | J      | 7       | 7     |          | 9      | 01     | ),                      | 20     | 21      | 30       | 35        |        |            | 10: Ner                         | 142 - 174              | 1<br>•<br>• |                               |
| 1 |                       |                                |      |      | -    |            | · ·    | •       |       |          |        |        | •                       |        | -       |          |           |        |            | -                               | -                      | 2-          | 60                            |

--

. .

| Ecro/Backgrowb La                   | 41.4  | 23.2 | 12.9 |        | \$2.3  | 12.0   | 6       |         | 2.6      | -27.8  | - 40.1 | - 467  | - 62. 2 | -66.4    | 150 ET<br>1200 ET                                                 |
|-------------------------------------|-------|------|------|--------|--------|--------|---------|---------|----------|--------|--------|--------|---------|----------|-------------------------------------------------------------------|
| ECNO LIVEL                          | 51.12 | 32.9 | 26.3 | 1.6    | 2.2    | -3.1   | - 8 - 9 |         | -326-    | -22.6  | 0.11.  | - 89.3 | -105.2  | -1001-   | Тадег Дерги .<br>ДSL Дерги .                                      |
| RYGAND L 12<br>DR                   | 6.4   | 2.2  | 2.6  | ./0.   | -25-52 | 7157-  | -14.1   | -14.7   | -42.0    | 1.26.4 | -30 2  | -43.0  | -45,0   | .43.0    |                                                                   |
| Toras Revies Brgand Lu.<br>28 23    | 6.4   | 9.1  | 2.6  | 70 0/- | - 29,9 | -15 0  | 1       | -14 .7  | -61.7    | -26.4  | -30 -7 | 1.42-  | : 63.2  | - 58 - 2 | 150 1 JUBAR                                                       |
| DSL Reread                          | 5.0   | 2.6  | 2.6  | -10.6  | -40.5  | •      |         | 1       | 10       |        | 1-     | 1-     |         | 24       | - 450 1 JEAS                                                      |
| RANGE JURF. & BOTTON ANDS ROUTIN DE | 3.7   |      |      | -69.2  | -29.9  | - 10 - | 1091-   | -14 . 7 | - (1 - 7 | -2604  | -30.2  | -64.4  | - 63. 7 | -510.3   | FLE: Noise AT REKIS = - 43.0 DB R<br>Arniver Stecking Anger = 450 |
| Rauge                               |       | ~ ~  | 4    | 4      | 7      |        | 6       | 9       | 4        | 20     | 26     | 30     |         | 47       | Fee Noise<br>Anniven                                              |

------

|                                  |            |        | · .<br> |       |         |                                         |                                       |        |          |          | WP11-2                                                           | 4100                       |
|----------------------------------|------------|--------|---------|-------|---------|-----------------------------------------|---------------------------------------|--------|----------|----------|------------------------------------------------------------------|----------------------------|
| FCIIO LOTVEL FCHO/BACKGROWID LVL | 46.9       | 14 - 5 | 21 .1   |       | ×       | <b>6</b> , <i>1</i> , <b>1</b> ,        | - 27.8                                | - 4/ 2 | 7, 22-   | -cc. v   | 150 ET<br>1200 ET                                                |                            |
| ECIIO KOVEL                      | 2.12       | 24.3   | 2.2     | 1.8-  | J. 31-  | - 37.6                                  | 3. 27-                                | . 12 . | .c. 201- | -109 . 4 | Такцег Дерги .<br>Дек Дерги :                                    | 150' ARRAY                 |
| Brgand Lu                        | 5,0<br>9,4 | 9,9    | 6.2.    | -37.3 | -17.9   | .41.5                                   | 27.8                                  | -42,0  | -42.0    | -43+0    |                                                                  | 8' X                       |
| Torne Revers Brgans Lu<br>28 23  | 5.0        | 9.8    | -19.3   | -27.4 | -12 -9- | -42,0                                   | -32.6                                 | -65.05 | -64.5    | - 19.2   | <b>5</b> -                                                       | ECHO/BACKGROUND LEVELS FOR |
| DSL REVENS                       | 2,0        | 9.8    | -12.4   | •  •  | 1 1     | 17                                      | 1- 1-                                 | 1-     |          | 1.4      | 2 2 2 2 2 1 1 12 17 1                                            |                            |
| Sure & Borrory Rayers            | 2.2        | 1. 1.  | -19.3   | -22.4 | -16.1   | -47.0                                   | -21.8<br>-36.1                        | -6565  | -44.5    | .2125.   | Frow Noise Ar 25 Kis = -42.0 23 .<br>Armony Greening Mugue = 90° | Table 25.                  |
| RANG.                            | 1 7        | 4 3    |         | 1 -   | 6       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 20                                    | 30     | 31       | 4        | From Nois                                                        | ·<br>·<br>·<br>·           |
| - ,                              |            | •      |         |       |         | *                                       | · · · · · · · · · · · · · · · · · · · |        |          |          |                                                                  | 2-62                       |

| -55.0 12.2<br>-55.0 12.2<br>18.2 18.2<br>11.1<br>11.1<br>11.1<br>12.1<br>12.2<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.1<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>-2.2<br>- |                                        | RANGE          | KANGE JURF. & BOTTOM                    | DSL REVERS     | Tarne Rever Bugand Lu<br>DB DB | Bregarb 4 ru<br>DB | ECHO KOVEL | Layo/Background LV2 .<br>DB | <u> </u>                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------|-----------------------------------------|----------------|--------------------------------|--------------------|------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------|
| i $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>ير عادر</del>                     | Salu           |                                         |                |                                | •••                | ۰<br>۱۱    | а<br>1<br>1<br>1<br>1       |                                                                                                                 |
| i     i     i     i     i     i     i     i     i       i     i     i     i     i     i     i     i     i     i       i     i     i     i     i     i     i     i     i     i       i     i     i     i     i     i     i     i     i     i       i     i     i     i     i     i     i     i     i     i       i     i     i     i     i     i     i     i     i     i       i     i     i     i     i     i     i     i     i     i       i     i     i     i     i     i     i     i     i     i       i     i     i     i     i     i     i     i     i     i       i     i     i     i     i     i     i     i     i     i       i     i     i     i     i     i     i     i     i     i       i     i     i     i     i     i     i     i     i     i       i     i     i     i     i <td></td> <td></td> <td>6 61</td> <td>-55.0</td> <td>12.2</td> <td>12.2</td> <td>51.3</td> <td>٦</td> <td>in the second second second second second second second second second second second second second second second</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |                | 6 61                                    | -55.0          | 12.2                           | 12.2               | 51.3       | ٦                           | in the second second second second second second second second second second second second second second second |
| i     i     i     i     i     i     i       i     i     i     i     i     i     i     i       i     i     i     i     i     i     i     i       i     i     i     i     i     i     i     i       i     i     i     i     i     i     i       i     i     i     i     i     i     i       i     i     i     i     i     i       i     i     i     i     i     i       i     i     i     i     i     i       i     i     i     i     i     i       i     i     i     i     i     i       i     i     i     i     i     i       i     i     i     i     i     i       i     i     i     i     i     i       i     i     i     i     i     i       i     i     i     i     i     i       i     i     i     i     i     i       i     i     i     i     i     i       i <td></td> <td></td> <td></td> <td>5. %</td> <td>-6.3</td> <td>-6.3</td> <td>32.9</td> <td></td> <td>ſ</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |                |                                         | 5. %           | -6.3                           | -6.3               | 32.9       |                             | ſ                                                                                                               |
| 3 $-8/3$ $1/1$ $1/1$ $1/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ $3/1$ <th< td=""><td><b>میامر</b><br/>با با<br/>ار</td><td></td><td>•</td><td>· 01</td><td>0 0</td><td>19.2</td><td>レア</td><td>- 3 .1</td><td>in an a</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>میامر</b><br>با با<br>ار            |                | •                                       | · 01           | 0 0                            | 19.2               | レア         | - 3 .1                      | in an a                                                                                                         |
| $\pi$ $-6r$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-3$ $-1$ $-3$ $-1$ $-3$ $-1$ $-3$ $-1$ $-3$ $-1$ $-3$ $-1$ $-2$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-12$ $-2$ $-32$ $-32$ $-11$ $-2$ $-32$ $-11$ $-2$ $-32$ $-11$ $-2$ $-2$ $-32$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •••••••••••••••••••••••••••••••••••••• | <b>m</b> :     |                                         |                |                                | - // -             | 8.0        | 1. 1.                       | ·····                                                                                                           |
| (1, 1, 1) $-32.5$ $-32.5$ $-32.5$ $-32.5$ $-32.5$ $-32.5$ $-32.5$ $-32.5$ $-32.5$ $-32.5$ $-32.5$ $-32.5$ $-32.5$ $-32.5$ $-32.5$ $-32.5$ $-32.5$ $-32.5$ $-32.5$ $-32.5$ $-32.5$ $-32.5$ $-32.5$ $-10.4$ $1.5.5$ $1.5.5$ $-26.1$ $1.5.5$ $-26.1$ $1.5.5$ $-26.1$ $2.5.5$ $-32.5$ $-26.1$ $2.5.5$ $-32.5$ $-26.1$ $2.5.5$ $-26.1$ $-26.1$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ $-27.5$ </td <td>1<br/>1</td> <td>*</td> <td>0,0</td> <td></td> <td></td> <td></td> <td>-3.7</td> <td>, i</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>1                                 | *              | 0,0                                     |                |                                |                    | -3.7       | , i                         |                                                                                                                 |
| 7 $-7L \cdot I$ $-7L \cdot I$ $-72 \cdot i_0$ $-19 \cdot q$ $43 \cdot i_0$ 7 $-68 \cdot q$ $-43 \cdot i_0$ $-2L \cdot L$ $16 \cdot 4$ 9 $-7L \cdot I_0$ $-49 \cdot 3$ $-7L \cdot L$ $16 \cdot 4$ 9 $-7L \cdot 2$ $-43 \cdot i_0$ $-33 \cdot L$ $9 \cdot \Gamma$ 9 $-7L \cdot 2$ $-43 \cdot i_0$ $-33 \cdot I_0$ $-31 \cdot I_0$ 9 $-7L \cdot 3$ $-7L \cdot 3$ $-49 \cdot 3$ $-2L \cdot 3$ $-31 \cdot I_0$ 9 $-7L \cdot 3$ $-7L \cdot 3$ $-42 \cdot 4$ $-33 \cdot 1$ $-2L \cdot 3$ $-2L \cdot 3$ 20 $-72 \cdot 1$ $-72 \cdot 32 \cdot 7$ $-72 \cdot 1$ $-71 \cdot 3$ $-71 \cdot 1$ $-2L \cdot 1$ 20 $-79 \cdot 1$ $-73 \cdot i_0$ $-743 \cdot i_0$ $-71 \cdot 32$ $-2L \cdot 1$ $-2L \cdot 1$ 20 $-79 \cdot 1$ $-73 \cdot i_0$ $-77 \cdot 1$ $-21 \cdot 1$ $-21 \cdot 1$ 20 $-79 \cdot 1$ $-73 \cdot i_0$ $-77 \cdot 1$ $-21 \cdot 1$ $-21 \cdot 1$ 21 $-79 \cdot 1$ $-73 \cdot i_0$ $-77 \cdot 1$ $-21 \cdot 1$ $-21 \cdot i_0$ 21 $-70 \cdot 1$ $-43 \cdot i_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                      |                |                                         | - 22 .5        | - 32 .5                        | - 32.2             | -11 . 8    | 20.1                        |                                                                                                                 |
| r $-6r$ $-6r$ $-9r$ $-2r$ $-16r$ $16r$ <th< td=""><td></td><td>9</td><td>1 /6</td><td></td><td>- 76 - 1</td><td>-4,2 00</td><td>-19.4</td><td>23.6</td><td>Ť</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        | 9              | 1 /6                                    |                | - 76 - 1                       | -4,2 00            | -19.4      | 23.6                        | Ť                                                                                                               |
| 0     -63.7     -63.7     -43.0     -33.5     9.5       10     -61.3     -71.3     -43.0     -40.5     3.7       11     -73.5     -43.0     -40.5     -24.1       20     -42.6     -7     -35.8     -21.3       20     -42.6     -7     -43.0     -41.6     -51.6       20     -42.6     -7     -43.0     -42.1     -24.1       20     -9.1     -7     -43.0     -11.3     -116.6       30     -79.1     -7     -13.0     -113.0     -116.6       31     -70.1     -43.0     -75.6     -116.6       40     -70.1     -43.0     -75.6     -116.6       41     -70.1     -43.0     -75.6     -116.6       61     -76.1     -43.0     -75.6     -116.6       40     -72.6.4     -76.1     -43.0     -75.6       61     -72.6.1     -73.1     -73.0     -75.6       61     -72.6.1     -73.6     -716.6       7     -73.1     -73.0     -75.6       7     -72.6     -716.6       7     -73.0     -75.6       7     -73.0     -75.6       7     -73.0     -75.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •• <b>•</b> ••••                       |                | , , , , , , , , , , , , , , , , , , , , | 1.             | 1 39-                          | - 43 .0            | -26.6      | 16.4                        |                                                                                                                 |
| 10     -41.3     -42.0     -40.3     4.1       11     -11.3     -11.3     -27.1       20     -42.6     -     -23.7     -40.3     4.1       20     -42.6     -     -37.7     -40.3     4.1       20     -42.6     -     -37.7     -40.3     -27.1       20     -47.6     -     -37.7     -47.6     -71.6       21     -47.2     -27.1     -37.9     -41.6     -71.6       22     -49.3     -79.1     -37.0     -47.0     -71.6       32     -79.1     -47.0     -73.0     -75.4     -116.6       40     -70.4     -70.1     -43.0     -30.6     -716.6       40     -70.4     -70.1     -43.0     -75.6     -116.6       40     -70.4     -70.1     -43.0     -75.6     -716.6       40     -70.4     -70.4     -73.0     -75.6     -716.6       40     -76.4     -70.4     -73.0     -75.6     -716.6       41.10.77     57.6     57.0     57.0     57.0     75.6       7     -7.5     -71.6     -716.6     -716.6       7     -72.6     -72.6     -716.6       7     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                |                                         |                | -63.7                          | -43.0              | -33.1      | 7.6                         | Ť                                                                                                               |
| 17     -33.5     -42.7     -11.1     -34.1       20     -42.6     -     -37.5     -42.7     -11.1     -24.1       20     -47.2     -     -37.4     -37.4     -21.4     -71.6       21     -47.2     -     -37.4     -37.4     -24.1     -71.6       21     -47.2     -     -42.6     -42.6     -26.1       22     -79.1     -     -43.6     -143.0     -100.0       26     -79.1     -     -73.6     -143.0     -100.0       26     -79.1     -     -79.1     -43.6     -114.6       26     -79.1     -     -79.1     -43.6     -114.6       26     -79.1     -     -79.2     -143.0     -116.6       26     -79.1     -     -79.2     -143.0     -116.6       26     -79.1     -     -79.2     -143.0     -116.6       26     -79.1     -     -79.2     -79.6     -116.6       26     -79.1     -     -     -13.6     -116.6       26     -     -     -     -143.0     -116.6       27     -     -     -     -     -101.9       26     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b></b>                                | 2              | 6301                                    |                | 5-77-                          | - 43.0             | - 40 . 3   | 2.7                         | -                                                                                                               |
| $K$ $-4_{2,1}L$ $-7_{1,2}L$ $-3_{7,3}R$ $-q_{1,4}L$ $-7_{1,4}L$ $2C$ $-4_{7,6}L$ $-7_{7,2}$ $-q_{7,1}L$ $-2_{7,1}L$ $-2_{1,2}L$ $-2_{1,2}L$ $3C$ $-7_{9,1}L$ $-7_{9,1}T$ $-q_{7,5}C$ $-12L_{1,1}L$ $-83.1$ $3C$ $-7_{9,1}T$ $-7_{7,2}C$ $-12L_{1,1}L$ $-83.1$ $3C$ $-7_{9,1}T$ $-q_{7,5}C$ $-12L_{1,1}L$ $-83.1$ $4D$ $-70.L$ $-7_{1,2,0}C$ $-143.0$ $-1/6.6$ $4D$ $-70.L$ $-7_{2,0}C$ $-1/43.0$ $-1/6.6$ $4D$ $-70.L$ $-7_{2,0}C$ $-1/43.0$ $-1/6.6$ $4D$ $-70.L$ $-7_{2,0}C$ $-1/6.6$ $-1/6.6$ $4D$ $-70.L$ $-7_{2,0}C$ $-1/6.6$ $-1/6.6$ $4D$ $-70.L$ $-7_{2,0}C$ $-1/6.6$ $-1/6.6$ $4D$ $-70.6$ $-7_{2,0}C$ $-1/6.6$ $-1/6.6$ $4D$ $-70.6$ $-7_{2,0}C$ $-1/6.6$ $-1/6.6$ $4D$ $-10.6$ $-7_{2,0}C$ $-1/6.6$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        | ۹ '            |                                         |                | -254-25-                       | 7. 54-             | - 21 . 9   | -24.1                       |                                                                                                                 |
| Zo     -45.2     -47.3     -47.1     -101.9     -66.1       30     -50.1     -47.3     -126.1     -83.1       30     -50.1     -47.3     -143.0     -103.0       31     -79.7     -79.7     -47.0     -143.0       31     -70.1     -47.0     -143.0     -100.0       31     -70.1     -47.0     -143.0     -100.0       40     -70.4     -70.1     -47.0     -175.4       40     -70.4     -47.0     -175.4     -116.6       40     -70.4     -47.0     -757.4     -116.6       40     -70.4     -70.4     -47.0     55.4     -116.6       40     -70.4     -70.4     -47.0     55.4     -116.6       41     -70.4     -70.4     -47.0     55.4     -116.6       47     -70.4     -70.4     -70.4     50.6     7       47     -70.4     -70.4     -70.4     -70.6     -116.6       47     -70.4     -70.4     -70.4     -70.6     -116.6       47     -70.4     -70.4     -70.4     -70.6     -70.6       47     -70.4     -70.4     -70.6     -716.6     -716.6       47     -70.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . :                                    |                | -1200                                   | 1              | 1.24-                          | - 39 . 9           | -91.4      | -11.6                       | <u> </u>                                                                                                        |
| 26     -90,1     -93,6     -126,1     -83,1       30     -79,7     -79,7     -13,6     -143,0     -100,0       35     -79,7     -73,0     -143,0     -100,0       45     -70,4     -13,0     -13,0     -143,0     -116,6       45     -70,4     -13,0     -13,0     -15,6     -116,6       45     Noise at zense -43,0     26,1     -13,0     55,2     26,74       45     Noise at zense -43,0     26,1     -13,0     55,2     26,74       45     Noise at zense -43,0     26,1     -16,0     -16,0       46     -76,4     -13,0     26,1     -116,6       47     -76,4     -13,0     26,1     -116,6       47     -76,4     -76,4     -16,6     -116,6       47     -76,4     -13,0     26,7     -116,6       47     -76,4     -13,0     7     260,6       47     -75,6     -116,6     -116,6       47     -13,0     7     26,7     -116,6       47     -16,6     -16,6     -16,6     -16,6       47     -16,6     -16,6     -16,6     -116,6       47     -16,6     -16,6     -16,6     -16,6 <td>•<br/>•<br/>•<br/>•</td> <td>20</td> <td>-4606</td> <td></td> <td>- 49 - 2</td> <td>- 42 - 1</td> <td>-108.9</td> <td>- 66 . 9</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •<br>•<br>•<br>•                       | 20             | -4606                                   |                | - 49 - 2                       | - 42 - 1           | -108.9     | - 66 . 9                    |                                                                                                                 |
| 30       -79-7       -79-7       -13-0       -103.0       -100.0         35       -79-1       -73-0       -43.0       -143.0       -116.6         4/2       -70-6       -       -70-6       -43.0       -116.6       -116.6         4/2       -70-6       -       -73.0       -143.0       -116.6       -116.6         4/2       -70-6       -       -73.0       -754.6       -116.6       -116.6         6/7       -70-6       -       -73.0       28.6       260.77       -116.6         6/7       -70-6       -       -73.0       25.6       2607.4       -116.6         6/7       -70-6       -       -73.0       25.6       2607.4       -116.6         6/7       -       -       35.6       2607.4       -700.6       7         6/7       -       -       35.6       2607.4       -700.6       7         6/7       -       -       35.6       2607.4       -700.6       7         6/7       -       -       35.6       2607.4       -700.6       7         7       -       -       35.6       2607.6       -700.7       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        | 21             |                                         | 1              | 69 - 1                         | -43.0              | -126.1     | -83.1                       | 1                                                                                                               |
| 32     -110-1     -70-1     -43.0     -154.6     -116.6       40     -20-6     -110.6     -110.6     -110.6     -110.6       Fire News RT 25 x 25 x 25 x 25 x 25 x 25 x 25 x 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del>ریفارین ہے۔</del>                 | 30             | 1001-                                   |                | - 79 - 7                       | - 42.0             | -143.0     | 0.001-                      | -                                                                                                               |
| F. Neise at 25 kiss = 43.0 DB RE 1 JUBRY<br>F. Neise at 25 kiss = 43.0 DB RE 1 JUBRY<br>ATHADTH STERMS HINGLE = 1°<br>ATHADTH STERMS HINGLE = 1°<br>DSL DEPTH = 1200 FT<br>Table 26. ECHO/BACKGROUND LEVELS FOR 8' X 150' ARRAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        | 3              | / //-                                   | • 1            | -70.4                          | -43.0              | 7-551-     | -1/6 .6                     |                                                                                                                 |
| F. Neise at 25 Mis = 43.0 DB RE 1 JUBRY (1984) (1984) (1984) - 300 FT (1984) (1984) - 1200 FT (1984) (1984) - 1200 FT (1984) (1984) - 1200 FT (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        | 27             |                                         |                |                                |                    |            |                             |                                                                                                                 |
| F. Neise at 25 x13 = -43.0 DB RE 1 JUBRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ī                                      |                |                                         | - <del>-</del> |                                |                    | T-ree Aspr | v                           | - i W                                                                                                           |
| Table 26. ECHO/BACKGKOUND LEVELS FOR 8' x 150' ARRAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | F N<br>Armon   | erse AT REMIS = -4.                     | RE             |                                | · · ·              | DSL DEPTH  | = 1200 FT                   | P11-2                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2-                                     | <br> <br> <br> | Table 26                                |                | KOUND LEVELS                   | · <b>· · ·</b>     |            |                             | +4100€                                                                                                          |

......

i

ł

1

ļ

: · ł

;

ţ 1

:

i i

ł i

i ļ

!

63

•

÷

|                                 |       | 1     |      | <u> </u> |        |         | -      |        |        |       |         |       |        | ر<br>ا  |          |        | -                                      | WP11                                                           | -2-4             |
|---------------------------------|-------|-------|------|----------|--------|---------|--------|--------|--------|-------|---------|-------|--------|---------|----------|--------|----------------------------------------|----------------------------------------------------------------|------------------|
| ECHO LANJE FEHO/BACKGROWN LUL . | 42.1  | 19.6  |      | -0.5     | 1.4    | 22.0    | 23.6   | 16.4   | 7.6    | 2.7   | - 29.0  | -61.0 | . 14.9 | - 83.1  | 0,001-   | -116.6 |                                        | • 300 FT                                                       |                  |
| ECHO LEVEL                      | 51.8  | 2.9   | 14.5 | 8.0      | 7. 5.  | 8. 17-  | 1. 21- | 36.6   | -33.5  | -40.3 | -71 . 8 | -51.4 | 5 801- | -126 -1 | 0. 541-  | 2.22   |                                        | Тяяцет Детен - 300<br>Д54 Дерги - 1200                         |                  |
| Brgand Lu<br>DR                 | 9.7   |       | 111  | ه رر     | -562   | -33 . 8 | .43.0  | 0. 2/- | -4/5.0 | -42,0 | -42.6   | -30   | -24.0  | -43.0   | 0.2%.    | 0.8/1. |                                        | · · ·                                                          | 1<br>1<br>1<br>1 |
| Torn. Rivers Bugino Lu          | 9.7   | 14 .3 | 11.1 | 5 . 5    | 1.5.   | -34.4   | 1.12.  | 2.0%-  | -66 06 | -60.6 | -33.1   | -30.6 | -24.0  | -97.9   | - 84,4   | 1 101- |                                        |                                                                |                  |
| DSL Revens<br>DB                | -34.7 | 14,3  | 17.1 | و محر    | -5-1   | -34,4   | 1.     | 1.     |        |       | 1.      |       | je     | 1-      | 1.       | 1-     | ······································ | 0 25 25 1 JUST                                                 |                  |
| KANGE JURE & BOTTON             | 9.7   | .     | .    | 1        | - 92.5 | 7.11-   | - 74,7 | -24.5  | -662 6 | -60.6 | 14821-  | -30.6 | -2:/.0 | - 87.9  | - 84 . 4 |        |                                        | Fiew L'use Ar 25 xrs = -42.0 DE<br>Arnany Sice Ang Prair = 10° |                  |
| KANGE                           |       | ~     | 3    | 4        | J      |         | 7      | 6      | 6      | 0/    | ,<br>v  | 20    | 2,0    | 30      | 31       |        |                                        | Flew Las.<br>American                                          | 1                |
|                                 |       | •     | -    |          |        |         |        |        |        |       | •       | •     |        |         |          |        | -                                      |                                                                | 2-0              |

• • •

ţ

| Luz .         |             |             |        |         |          |          |         |         |          |                  | WP11-2                            | -41006                 |
|---------------|-------------|-------------|--------|---------|----------|----------|---------|---------|----------|------------------|-----------------------------------|------------------------|
| 3             | 24.5        | 6 · 5       | 31.1   | -14.9   | 0 72 -   | - 28 . 1 |         | 1. 29-  | 0.001-   | 71711-           | • 300 FT                          |                        |
| FCHO LEVEL    | 32.9        | 6.8<br>7.6- | 1, pr- | -36.6   | -40.3    | 1.15     | F. 16-  | [. ]21- | 0.Ehl-   | 7 . 6.57-        | TARGET DEPTIN .<br>DSI. DEPTIS    | 0' ARRAY               |
| 84%<br>84     | 7.3         | 1.121       | -42.0  | 2 · /·  | · · // - | -42.11   |         | 1.3/2-  | - 4/3 .0 | -1/2 . 8         |                                   | FOR 8' x 150'          |
| Torn. Rever   | 2.2<br>10.9 | 1.1.1.      | - 39.0 | -11 • 7 | -14 .3   |          | 9-24-9  | -64.0   | -63 .2   | -52.6            | žu                                | ECHO/BACKGROUND LEVELS |
| DSL REVERS    | 3.2         | 4.1         | -39.0  | 1.1     | •  •     |          | 1 - 1   | 1       |          |                  | 21/1 20                           |                        |
| JURE & KOTTON | 513         | - 79 /      | - 69.9 | -11-7   | -14 -3   | -171 - 6 | 6 . 42. | -64.0   | -63.2    | - <u>-</u> 7, e. | FTOW NOASE AT 25 X15 = -43.0 28 A | Table 28.              |
| Salt Salt     |             |             |        |         | 5        |          | 20      | 30      | , r,     | 1                | Flow Nor.<br>Henrich 11           | 2-65                   |

 $\mathcal{N}^{(k)}$ 

1

ł

|  | 1. 2.42         |           |   |     |       |       |     |        |       |          |          |         | 1211   |          |       |        |        | .ft     | e - 2 Pri<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>Presidente<br>P | W                           | 11                    | -2            |    | .00(                                  |          | **<br>*. <b>)</b> |     | · · · · · · · · · · · · · · · · · · · |  |
|--|-----------------|-----------|---|-----|-------|-------|-----|--------|-------|----------|----------|---------|--------|----------|-------|--------|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------|---------------|----|---------------------------------------|----------|-------------------|-----|---------------------------------------|--|
|  | Ecta Backs Rout | 1 A A     |   |     |       |       |     |        | 17.7  | 5. P - 1 | 2.8-     | 11.4    | 25.6   | 1.1.2    | 0.2.2 | 28.6   | -93. 1 | -100.0  | 2. 211-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |                       |               |    | •                                     | •        |                   | •   |                                       |  |
|  | ECHO LEVEL      |           |   | 5.1 | 22.9  | N.C   | 9.0 | -3.7   | -//.8 | -15.4    | -26.6    | -33.5   |        | -7/. 8   |       | -101.9 | 1.721- | 0. 2%/- | 7.631-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <br>Taste habre             | Act Deres             |               |    | ARRAY                                 | •        | •                 | :   |                                       |  |
|  | BUGRND LIL      | PZ        | - | 6:4 | ·f. 7 | 11.4  | 2.6 | ./0.6  | -29 5 | -15-1    | 1.81-    | -161/-  | -14.7  | -43.0    | 4132- | -30 •5 | -43.0  | -43.0   | -43,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |                       |               | •  | FOR 8 <sup>1</sup> x 150 <sup>1</sup> |          |                   |     |                                       |  |
|  | Targe Revers    | 86        |   | 6.4 | 9.7   | 11 .4 | 226 | -10 .6 | -29,9 | -15-1    | -19.1    | -11-11- | -14 .7 | -61.7    | -26.4 | -30 .7 | -64.4  | - 63.7  | -58.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             | •                     | • ••          |    | ROUND LEVELS                          | · ,<br>: |                   |     |                                       |  |
|  | DSL Revere      | - 20      |   | 30  | 9.7   | 11.4  | 2.6 | -10.6  | -40.5 | •        | 1.       | 1.      |        | 1.       | 1.    | 1-     | 1-     | 1.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 2 2 2 1 12 DV             | ,<br>,                |               |    | ECHO/BACKGROUND                       | •        |                   |     |                                       |  |
|  | Juse & Borroy   | Rovers be |   | 3.7 | 1-    |       | ]-  | - 69.2 | -29.9 | 2 12 - 1 | - 18 . 1 | -11.1   | -14 .7 | - 51 . 7 | -2604 | -30,7  | -6404  | - 63, 7 | -58.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <br>Fradare Brocks - 420 AR | Service Company Diver | and fully and |    | Table 29.                             | 1        | • •               | •   |                                       |  |
|  | Rawfo           |           |   | ~   |       |       | *   | N      |       |          |          | •       | Q      |          | 20 .  | 25     | 30     | 35      | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Eren Nor                    | General Contraction   |               |    |                                       |          |                   |     |                                       |  |
|  |                 |           |   |     |       |       |     |        |       |          |          |         | 2 × 1  |          |       |        | <br>   |         | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                       | `.            | 2- | 66                                    | نو.      | , ·               | • . |                                       |  |

ر و مدم د

÷

|                                          | <br>1  |                    |                  |      | <u> </u> | <u>}</u> |       |       | <u> </u> |        |         | 19.4<br>19.4<br>19.4 | · • •  | 1        |           |         | <u>i</u> -i | 1   | i                               |                                   |                            |                    |
|------------------------------------------|--------|--------------------|------------------|------|----------|----------|-------|-------|----------|--------|---------|----------------------|--------|----------|-----------|---------|-------------|-----|---------------------------------|-----------------------------------|----------------------------|--------------------|
| ECHO Lover Leve/Backfrows Luz.           | 16.8   | 49.5               | 4.1              | 5.2  |          |          |       |       | -15.     |        |         | 7 8 7-               |        | - 72 -   | -100.0    | -116.6  |             |     | 300 FT                          | 1200 FT                           | 2-41                       |                    |
| FCHO KAVEL<br>DR                         | 51.8   | 32.5               | 14.5             | 8.0  | 5.2.7    | -11.9    | 4.61- | -26.6 | - 23     | -40.3  | 37 16-  | 1.18-                | 6.101- | 1.24-    | - 143 . 6 | - 153.6 |             |     | TARGET DEPIN .                  | DSL DEPIN .                       |                            | ' ARRAY            |
| Brgand Lu<br>DA                          | <br>20 | 9.4                | 9.9              | 7 '5 | -6.9     | E. 81-   | 6.14. | -27.3 | -17.5    | -16 -1 | - 41 .5 | -27.8                | 3.18-  | -1/2 . 0 | -42.0     | -43.0   |             |     |                                 | <br>                              |                            | FOR 8' x 150'      |
| Torne Reverse Bryand Lue<br>28 23        | 5.0    | 9.4                | 9.8              | 1.2  | -6.9     | -19.3    | 6.15- | -27.4 | -17.9    | -15 .1 | - 47.0  | -22.0                | -32.1  | -6505    | -6% . 5   | -17.2   |             | •   |                                 |                                   |                            | /PACKGROUND LEVELS |
| DSL REVURE                               | 2.0    | 9 .4               | 9.8              | 1.2  | -12.4    | -42.2    |       | 14    | 14       | 1-     | 1-      | 1.                   | 1~     | 1~       | 15        |         |             | ••• | ODE RE I JIERS                  | . 06 #                            |                            | ECHO               |
| KANGE JURE. & BUTTON .<br>KIDS ROVERS DB | 2.2    | 1                  | 1-               |      | -8-1     | -12.3    | -21.9 | -2204 | 6-11-    | -16.1  | -47.0   | -22.8                | -32.1  | <u> </u> | -64.5     | 5.922   |             | •   | FLOW NOVSE AT 25 X75 = -43.0 23 | 11211 2011 376 6 RING VINGLE = 90 | •<br>•<br>•<br>•<br>•<br>• | Table 30.          |
| KANGE                                    |        | ~                  | -3               | #    |          |          | 7     | -     | 6        | a      | 2       | 20                   | 25     | 30       | 35        | 40      |             | 1   | FLOW NORS.                      | 11211:1121                        |                            |                    |
|                                          |        | • •<br>•<br>•<br>• | •<br>•<br>•<br>• | •    | •        |          |       | -     |          | -      | 2       | •                    |        | •        |           |         |             |     |                                 | -                                 | 2-6                        | 57                 |

;

WP11-2-41006.

## REFERENCES

2

 A. Novick and R. Seegal, INTERIM REPORT ON SONAR PERFORMANCE (U), TRG-023-TM-66-16, April 1966, CONFIDENTIAL

٠

- 2. D. F. Gorden and C.L. Allen, SURFACE CHANNEL LOSS CHARTS COM-PUTED BY USE OF NORMAL MODES (U); NEL TM-16, July 1963 CONFIDENTIAL
- 3. G. S. Sprouse, EVOLUTION OF A SONAR PREDICTION MODEL CONSONANT WITH FLEET OPERATIONAL EXPERIENCE (U), NOTS-TP-3957, November 1965, CONFIDENTIAL
- 4. H. W. Marsh and M. Schulkin, REPORT ON THE STATUS OF PROJECT AMOS, USL Research Report No. 255
- 5. M. A. Pedersen, "Acoustic Intensity Anomalies Introduced by Constant Velocity Gradients", JASA, 33-465, 1961
- 6. "Physics of Sound in the Sea", Part 1, Transmission, NDRC Summary Technical Reports, Research Analysis Group, National Research Council.

## REPRODUCED FROM BEST AVAILABLE COPY