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A THEORY OF COMPOSIILS MODELED AS INTERPENETRATING SOLID CONTINUA

H.F., Tiersten and M. Jahanmir
Department of Mechanical Engincering,
Aeronautical Engineering & Mechanics

Rensselaer Polytechnic Institute
Troy, New York 12181

ABSTRACT

The differential egquations and bcundary conditions describing the behavior
of a finitely deformable, heat-conducting composite material are derived by means
of a systematic application of the laws of continuum mechanics to a well-defined
macroscopic model consisting of interpenetrating solid continua. Each continuum
represents one identifiable constituent of the N-constituent composite. The
influence of viscous dissipation is included in the general treatment. &lthough
the motion ¢f the combined composite continuum may be arbitrarily large, the
relative displacement of the individual constituents is required to be infinites-
imal in or
in the absence of heat conduction and viscosity is exhibited in detail for the
case of the two-constituent composite. The linear equations are written for
both the isctroiic and transversely isotropic material symmetries. Planc wave
solutions in the isotropic case reveal the existence of high-frequency (optical
type) branches as well as the ordinaxy low-frequency (acoustic type) branches,
and all waves are dispersive. For the linear isccropic equations both static
and dynamic potential representations are obtained, cach of which is shown to
be complete. The solutions for both the concentrated ordinary body force and

relacive body force are obtained from the static potential representation.

*Present Address: Departmnant of Mechanical Eungincsring, Arya-Mehr University
of Technology, P.0. Box 34006, Tehran, Iran.
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1. Introduction

A composite material is composed of a rumber of Jdistinct identifiable con-
stituents with different physical properties, which are combined to form a single
solid. In particular, fiber-rcinforced composites consist of fiber reinforcement

imbedded in a matrix. In order to obtain certain types of information, c.g the

7
actuel bond stress between the reinforcement and matrix, the individual elements
of the composite must be treated as separate entitiesl’z. Nevertheless, it must
be remembered that it would be virtually impossible to consider an cxternal

boundary of a composite while cons.dering the individual elements in completely

separatc detail. On the other hand, in order to obtain certain other types of

information, e.g., the effective elastic constants of the single compositc ma-
terial, some sort of single continuum model can readily be employcd3’4. However,
there are numerous other situations, e.g., thc wave velocity dispersion induced
by the fiber reinforcement in the matrix and possible resonances at which the
reinforcement might separate from the matrix, for which neitlier of the aforemen-
tioned aprroaches can adequately or conveniently account but a different model
somewhere bctween the two can account, Since composite materials composcd of
reinforcement spaced uniformly densely in the matrix can be modeled as intcrpene-
trating solid continua and such a model can conveniently account ror much of the
physical phenomena that neither of the aforementioned approaches can, we employ
this medel in obtaining a description of composite materials. AL tnis point we
note that for the inte.penetrating solid continuum mcdel to be valid a charac-
teristic length, such as a wavelength, must be large compared with, say, the
spacing of the fiber reinforcement. in much the same way that the wavelcngth of

an elastic wave must be large ccmpared with a lattice spacing for the ordinary

elastic continuum description to be valid.




The interpenetrating sclid continuum model, which is cloLely related to the
model of fluid mixturesS, has been employed in the description of a vaviety of
physical phenomena such as, e.g., certain types of magnetoelastic interaction,
electroelastic interaction7 and the interaction of the electromagnetic field
with deformal:le ;nsulatorsa, In this latter case in order to consider ionic
polarization resonances, the mcdel consisted of two interpenetrating continua in
which the motion of the center of mass of the two continua was finite but the
relative motion of each of the continua with respect to the center of mass was
infinitesimal. It was felt that in order for the description to be physically
meaningful, the relative displacement of the two continua nad to be infinitesimal,
or else the solid would rupture. The application of this model to the description
of material composites should be obvious, Indeed, the idea of employing inter-
ing continua as a model of composite materials has already been intro-
duced by Bedford and Sterng’lo_ However, there are a munber of fundamental dif-
ferences between the approach of Bedford and Stern and that employed in Ref, 8,

For one thing, Bedford and Steru assume independent finite motions of ecach con-
stituent while in Ref,8, as already stated, although the motion of the center
of mass is taken to be finite, the relative motion of the separate constituents

is taken to be anfinitesimal. 1t is feit that the procedure empleyc n Ref 9
is physically unrealistic because the solid composite would rupture long before
the relative displacements became large. Secondly, in Ref.9 a conservation of
energy relatvion is written separately for each constituent while in Ref. 8 a
single conservation of energy relation is written for the entire composite,

When a separate conservation of energy relation is written for each constituent,
the energy of interaction between the constituents is not included in the defi-

nition of the stored energy density nor do the associated rate terms appear in

vhe formal expression for the first law of thermodynamics. AS a consequence,

T b 28 e e s N

T TNy NN

et Beas

.y

oo ..,



in Ref.9 different temperatures and entropy densities are defined and a separate
rate of entropy production inequality is postulated for each constituent, wherecas
in Ref.8 one encrgy density, one temperature and oae cntropy density are defined
and one rate of entropy production ineguality is employed in the usual manner.
As a result, in Ref. 9 with the exception of the defined volumetric interaction
terms which are taken to depend on the constitutive variables associated with
all the constituents, the othier Jdependeni conctitutive variables for each con-
stituent are taken to depend on the constitutive variables associated with that
constituent only. On the other hand, in Ref.B the resulting single thermodynamic
equation for the combined continuum takes a form that indicates that all dependent
constitutive variables, including the relative stresscs associated with all the
different combinations of constituents, should depend on the constitutive
variables associated with all the combinations of constituents, Clearly, when
the theory of Bedford and Stern is linearizedlc, the aforementioned physical ob-
jection concerning the large relative motion of the constituents vanishes.
However, it should be clear frem the above discussion that certain intrinsic
differences in the descriptions remain,

In this paper the above discussed model of interpenetrating solid continua
is applied in obtaining a description of a three-constituent composite
material, In the two-constituent case the model is identical to the onc em-
ployed in Ref, 8 provided the electronic charge and spin continua are omitted
and the ionic charqe is ignored. In the three-constituent case the model is a
straightforward generalization of the two-constituent case, and from there the
generalization to N ccnstituents is obvious. For obvious reasuns, the general
eguations are determined only in the three-and N-constituent cases. Thre pro-
cedure employed in obtaininy the description is e:zaclly the same as in Ref.8 ,

but in the absence of the electromagnetic field. However, in this treatment




simple Kelvin-type viscous dissipation is included. As already indicated, the
motion of the center of mass of any point of the cntire composite may be finite
while the relative displacement of any constituent from the mass center must be
infinitesimal. Each constituent interacts with neighboring elements of the sawe
constituent by mecans of a traction vector associated with that constituent. 1In
addition, each constituent interacts with all other constituents al that point
by means of volumetric interaction forces and couples, both of which are equal
and opposite in pairs.

The application of the appropriate equations of balance of mass and momentum
to the respective continua yields the material equations of motion, which, as
usual, constitutes an underdetermincd system, The application of the eguation
of the conservation of encrgy to the combined material continuum results in the
first law of thermodynamics, whisch; with the aid of the secoud law of thermo
dynamicsll’lzandthe principle of material objectivity13’l4, cnables the deter-
mination of the: constitutive equations of our nonlinear description of ccmposive
materials, Thesc constitutive equations along with the aforementioned equations
of motion and the thermodynamic dissipation egquation result in a properly de-
termined system, which can readily be reduced to (3N+ 1) cquations in (3N + 1)
dependient variables. In order to complete the system of equations, jump (or
boundary) conditions across moving, not necessarily material, surfaces of dis-
continuity are determined from the appropriate integral forms of the field
equations, It should be mentioned at this point that the resulting system of
nonlinear differential equations and boundary conditions is considered to be
valid ifor fiber reinforced type composites, as well as some other types, but
not for laminated composites unless the thickness of a lamina is small compared
to a critical dimension or wavelongth., It is fclt hat the cquations provide

a reasonable description of such materials as, say, fiber reinforced rubber.
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If in a fiter reinforced compesite the fiber is not continuous (chopped {iber),
the description is simplified by neglecting the traction in the constitvent of
the model representing tlie discontinuous (chopped) fiber reinforcament and in-
cluding only the volumetric interaction between this constituent and the matrix.

Since the resulting general nonlinear equations are relatively intractable
fcr the treatment of many problems in their natural form, the linear version of
the equations is extracted from the general one. These linecar egquations are
specilalized to the important case of a transversely isotropic material, which
occurs very frequently in continuvous fiber reinforced composites, and the fully
isotropic case, The static potentials analogous to the Boussinesq Papkovitch
potentials of classical elasticity are obtained from the lincar eguations for
the two constituent isotropic composite. From this static potential represent a-
tion the solutions for concentrated forces in the infinite two constituent iso-
tropic composite are obtained. The dynamic potentials analogous to the Lamé
potentials of classical elasticity are obtained from the linecar equations for
the two constituent isotropic composite. Completeness is established in both
cascs. Plane wave solutions of the linear equations for the two constituent
composite are presented for the isotropic case. The solutions reveal the exi.t-
cy) ones and lownr ones, as expected.
The lower ones are dispersive and apprcach the non-dispersive velocity of
classical linear elasticity from below as the wavenumber anprvnachcz ccic and the
upper ones, which are highly dispersive, have non-zero cult-ofi frequencies cor-
responding to the aforementioned resonances at which the reinforcement might
separate Irom the matrix.

Since the defined material constants are not known for any two constituent

composite, it is suggested that plane wave measurements be made and correlated




6.

with the above-mentioned plane wave solutions in order to obtain the defined
linear elastic constants of the two constituent composite, in much the same
. . . . . . i 15-17

manney as in anisotropic elastic (or piezoelectric) matecrials . The theory
can then readily be checked by comparing calculations with measurements in addi-
tional vedundant directions. Moreover, when known material constants are
available, such things as suxrfacc wave velocity dispecrsion can be calculated and
compared with weasurement. 1In addition, systematic dispersion information can
be used for the non-destructive testing of fiber reinforced composite materials.
An analysis of surface waves in a two constituent composite has been made and
some calculations have been performed when the fiber reinforced composite material
is simplified sufficiently that some of the constants can be estimated {rom the
kncvn elastic constauts of the individual constituents of the composite. This
investigaticn will be reported in a forthcoming work,

In closing the Introduction we note that more general singlc continuum

. . . 18-21
theories, conmonly referred to as microstructure theories , can be ang,
, 22 . . . . .
indeed, have been applied to certain composites to describe some of the nae-
nemena that the model of interpenetrating solid continua descrites. However,
the resulting equations are quite different from those presented here ané we

find it difficult to idencify the physical nmeening of the microstructure

variables with any degree of certainty.

2, The Interacting Continua

As indicated in the Intrcduction, the macroscopic modcl we first consider
consists essentially of three distinct interpenetrating solid continua. Initi-
ally, all continua occupy the same region of space and, hence, have the same
material coordinates XL. The motion of the center of mass of the combined

. . s .2
continuum is described by the wmapping

b
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Y, = yi(xL,t) » ¥ = yiX,t), (2.1)

which is one-to-.ue and differentiable as often ag required. 1In (2.1) the Yy
denote the spatial (or present) coordinates and XL’ the material (or reference)

coordinates of the center of mass ard t denotes the time., We consistently use

the convention that capital indices denote the Cartesian compouents of X and
; lower case indices, the Cartesian components of Y- Thus, X and y denote the
initial position of all material points and the center of mass of the combined
continuum, respectively. Both dyadic and . «rtesian tensor notation are used

intexchangeably. A comma followed by an index denotes partial differentiation

with respect to a cocrdinate, i.e.,

-
[\
.
b9
~r

7 ay./AX 3 . R _/ay.
i FTA T AK,] = ARAY S

Yi,L

and the summation convention for repeated tensor inaices is employad. The

superscripts 1,2,3 are nsed to denote the respective continua, Since each

. cas . n
continuum possess~s a positive reference mass density :; ) (n=1,2,3) and initially

wccupies the same reyion of space, we have

1 2
p. = Cf ) + Dé ) (2.3)

L) w

whee Py is the total referernce mass density of the combined continuum,
In a (finite) motion each continuum is permitted to displace with respect |

to the center of mass of the combined continuum by infinitesimal displaccment

(1)’E(2)?ﬁ(3)

fields v . A schematic diagvam indicating the motion of the model

appears in Fig.l. The infinitesimal displacement fields w(") are regarded as

n)

functions of y and t. Since the g( are infinitesimal and

La g

y(n) =y + X‘V(n) (X,f) y (2.4)




and the determinant of a matrix product is equal to the product of the deter-

minants, we have

(n)

v VA + g W)Y, (2.5)
where V(n) is the present volume of the nth constituent, V is the present volume
of the center of mass and

V=ua_, (2.6)

where V0 is the reference volume of the material and as usual

J = det. Yoy (2.7)
2

Inasmuch as mass is conserved separately for each constituent, from (2.5) ard

(2.6) we have

J = Ps o (2.8)
which enables us to write
1 2 3
o= oM 4By B (2.9)
where
pd = o, s (2 .77)

and p is the total present mass density of the combined continuum, Since y has

~

been defined as the center of mass of the combined continuum, we may write

; iy + E(l))p(l)dv + j (v + 2(2))9(?) av +
v v
i 3 Y
] (Y+E('))p(3'dv=j e + 0@ 4 Oy av, (2.11)
v v ~
and by virtue of (2.5), we have
p(l)g(l) + p(2)2(2) + p(3)E(3) =0,




In addition, because mass is conserved separately for each continuum, we

further cobtain

(1) ag (2) dz(z) (3) ay )
s} At +p 3¢t P v T o, (2.13)

vhere d/dt. denotes the material time derivative,

The interpenztrating continua interact with each other by means of defined

12 2 3 3 1. Y.
LE - _LF 1, LFl _LF 1. LF23:=_LF3A

~ -~ ~ o~ ~ ’

local equal and opposite force fields

which are located at the position y, where the first superscript denotes the
continuum being acted on and the second, the continuum pruducing the action, and

defined equal and opposite local naterial couples

. .
~ ~ -~

Ll2 L2l L3l

2
LC2”= Lc32

~ ~

.  Each continuum interacts with neighboring elements of the samn

(1) £ (2 2(3)

continuum by mears of a traction force per unit area t ’ , acting
~ el

across the surface of separation. Schematic diagrams illustrating the above-

mentioned interaction in the model are shown in Figs.2-4.

3. The Equations of Balance

In view of the discussion in Section 2, the equations of the conservation

of mass for the different continua may be written in the form

a “ (1) ar () d (3
_— A = Q0 —_— av 0 —_ ; =
qGwJ P VT, ggyr W=O,Gpy 0 V=0, (3.1
v \" v
where V is an arbitrary element of volume for which each of the continua has

the same material coordirates. From (2.3} and (3.1}, we obtain the cquation

of the conservation of mass for the combined continuum in the fornm
» dy = 0, (3.2)

a
at J F
v

The equations of the conservation of linear momentum for each of the throe

continua are, respectively




where v = dy ‘dt.

of the three contirua ae,

The equations of the conservation of angular momentum for each

respectively

Y J (1) () f 112 %13, . d
JE as+ | p £ dV-IJ(F rF yav at
S v v

I

‘]5( )ds+‘[p(2)£mdv+J (r I‘za)dv ;t
S v v '
I.S(B)ds*‘ j pm,{‘”dwj (,LE_. L 32)dv_adE
S v v

[ ) ay )

J X + dt /,dV, (3.3)

v

[ @y d"‘i(z)\-dv (3,4)

% \v dt - 4 4
. dﬂm

er v+ 35 )dv, (3.9)

v

10.

" ] 1 1 1 1 L 13
j(y+g(l))><_t(“ds+J(y+g())><p()£() [(L 2, 1)V
S v
(1)
dw
/ Lard
+“’ ¥ X (Lzl?,}LEl:S) dvg.ad_t. v{. (‘1’ + E(l))xn(l)!\x + ‘\dV; (3.6)
) 2 2
J‘ (y+z(7)),<£(z)ds+J[ o * @)y o ) ( )dv+J (L 21 L~23) av
S v v
(2)
dw
i L2l 123 a 2) ( ), 3
+ g yxd )ave= dt.,r(X‘*,‘i ) X Y+ 3T av, (3.7)
v v
P 12 &) r {2\ (3) (3) ; s
j (y + w'7)XEUTIasSH |y + wT ) Xpo RS dVE Jl‘ (Lg31 532) av
s v v
(3)
dw .
L .31 1L 32 | I (3) 3)/ ~ .
a = = e 3.8)
+-[ZX( Fhav=ar | ¥+ ¥ ) Xp v+ —3r—, av. (3.8)
\% v
Application of (3.3) - (3.5) to an elementary tetrahedron in the usual
manner yields the definition of the respective stress tensors of each cf the
three continua, thus
5(1) =n - l(l)’ 5(2) =n - 1(2), 5(3) =n - T(3: . (3.9)




11.

Substituting from (3.9) into (3.3) - (3.5), respectively, taking the material

time derivatives, using (3.1), the divergence theorem and the arbitrariness of V,

we obtain
dv
. L) (L) (1) (1) ~ _
Ve e £ -p T
dv
. - 2) (2) (2 2y = _
vz +p £ -0p at P
dv
5 . . (3) (3) . (3) 3) =~ _
Vexr T+ £ -0 dt

which are the stress equatior3s of motion of the three continua, and where

vV = e, b/ayi and e is a unit base vector in the ith Cartesian direction.
~o ~ e

d2w(l)
(1) ~2 +LF12+L£13 -0,
dt
c,_2",(2)
2) —uz " L521+L£23 =0,
at
2 (3)
d'w
(3) ~2 . L£31+L£32 =0,
dt

(3.10)

23.11)

(3.12)

Substituting from (3.9) into (3.6) - (3.8), respectively, taking the mate-.ial

time derivatives, using (3.1), the divergence theorem, (3.10) - (2.12) and the

arbitrariness of V, we obtain

(1) (1)_(1) (1) ) Q) L12  L_13
S00i5T55 TSk Tig ),atR Xe IT v D+ L
2 (1)
av a‘w
_x(l)xp(l)_é'_\é_x(l)xp(l) L
at
(2) (2) (2) (2) . ().()  L.21 L23
213715 * Sk Mk Tij )it R XP £+ <+t L
2 (2)
2y, @ @ @ 2F
- X xp at " ¥ooxpe 5 =0,
at
3) (3)_(3) (3) (3)_(3) L. 31 1L 32
€0%013743 * 8efmi ™Mk Tij it xe Pt L c
2 (3)
dv d"w
N N el T
at

(3.13)

{3.14)

(3.15)

which constitute the equations of the conservation of anguiar momentum of each

of the three respective continua.

Adding (3,10) - (3.12), we obtain

VT4 pf
~ La Lard

dv

=P 3

(3.10)

o WL VLR




| T T T
12,
which are the stress equations of moticn of the combined continuun, and ﬁ”
T = L(l) + 1(2) + 1(3) (3.17)
pf - p(1)5(1) " p(2)5(2) + p(3)f(3) (3.18)
where T is the total mechanical stress tensor and f is the total body force per
unit mass. WNow let us define the constants r‘l) and r(z) by
1 1 3 2 2 3
r( ) - p( )/p( ) , r( ) L p‘ )/p( ) , (3.19)
and then the subtraction of r(l) times (3,12) from (3.10) yields
2, (V)
a7
vep® 4 ,We® M= 50, (3.20)
LY ~ ~ 2 o i
dt
where
DF%) = Tfi) - r(l)Tf?) (3.21)
) i an
E(l) - LEIZ . LEl3 _ r(1) (L£31 + L§32) , (3.22)
S(l) = &(l) _ 5(3) , (3.23)
and
B(l) =-f’~f(l> ~ 5(3) - (1+r(l))5(1) + r(Z)g(Z) (3.24)
and we have employed (2.12). Similarly, subtracting L‘Z) timee (3. 12) from (3.11),
we obtain dzﬂ(z)
2
veop® 4 P @ @ Ty 2 3.25)
dt
where
a1 {
DF.) = Tf%) - r(z)Tgé) » 6(2) = LF21+-LF23—-I(2)(LF314»LF32).
1) 1] 1) ~ ~ ~ ~ ~ b
: £(2) =£(2)-£(3) , :Q(Z) _3(2)_x(3) - (1+r(2))g(2)+r(l)?ju) . (3.26)

Equations (3.20) and (3.25) are called the difference or relative equations of

motion, and D;l) DfZ) and B(l), ﬂ(z)

are the difference stresses and difference

SR & ~ ;




13.

displacements, respectively. Addiny (3.13) - (3.15) and employing {2.12), (3.17)},
(3.1%; ~ (3.21) and (3.23) - (3,26), we obtain

w(1) ay w(Z)D.(

kK Cij Kk ij

£1%2i5"15 ¥ S4%uks ¢ i

~

(1) 1) 1)

- w X (V*D 4 g

~ ~

@45 =0, @2,

which is the equation of th2 conservation of angular mom:ntum for the combined
continuum. Egquation (3.,27) turns out to be of considerable value and interest
when viscous type dissipation is considered. However, in the absence of viscous
'dissipation Eq, (3.27) is a direct consequence of the invariance of the stored
energy function in a rigid rotation.

Although we cannot explicitly evaluate euach of the defined couples of
interaction Lgmn between the respective continua in the description presented
here, we can readily evaluate the total internal <ouple acting on each continuum,
i.e., the Lg(n), where

12 1 1 21 L 23 31 31, 1L .32
L) | 1o12, 1013 Lo (2) [ 121 Le23 L3l B3l Lo

~ ~ sl s e o

,  (3.28)

~ ~

and that is all that is reguired in this type of description. Specifically,

)

the "¢ may be Getermined a posteriori from (3.17), (3.21), (3.26) and

(3.13) - (3.15)., ¢Similar statements hold in the case of rhe defincd forces of

. . L_mn . . .
interaction "F  between the respective continua, and we can readily evaluate

L.{(n)

Lo %]

a posteriori the total internal force acting on cach continuum from

(3.17), (3.21), (3.26), and (3.10) - (3.12), where

, LZ(Z; - LE214'L523 , LY(3) - LF311-LF32. (3.29)

Ll"(l) - L212+LEI¢

~ ~ ~ -~
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4, Thermodynamic Considerations

The conservation of cnergy for the combined material continium can be

written in the form

(1) (2)
; o cooo 9 N
Edg‘] (T+p€)dv"‘iﬁ(l)'\.¥+ at :‘:+£(2) '<X+ 3t ;o
v
(3) (1)
aw aw
£ iy S) cargas e [P (v 5) ¢
v
(2) 3)
; daw dw
p(2)'{(2) = > + p(3)£(3) . (¥+ = ):l av, 4.1)

where T is the kinetic energy per unit volume, € is the internal stored energy
aw™
—), n =123 denote the rates of working per

. {n) |,
per unit mass, E v+ at

unit area of the mechanical surface tractions acting in the three continua,

respectively, n * q is the raie of efflux of hisat per unit ared an
Ll

a oM |
aw (n)

{v+
A dt

> denotc the rates of working per unit volume of body forces acting in
three continua, respectively. In order to obtzin expressions for T, we must
return to our model of the comkbin2d material continuum.

From the model of the continuum it is clear that the kinetic energy per

unit volume is of the form

Lt ooy aw @) dx(l)\ o aw® dﬁm')
T=gle v dt>'<¥+ atc /Y P <X+ dt>.<x+~g€—/
dw(a) dw(3)
+ p(3)(v+ = > . (v+—':-—-—-\ 4.2)
~ dt ~ dat /1 7 '

Expanding terms in (4.2) and employing (2.9), (2.1%) and (3.19), we obtain

1 ) 1) dﬁ(l) dﬁ(l)
Tz'z'[pl"r‘f+p Qe Tae " Tae
oaw® g™ aw® @
(2) (2) ~ . () (2) ~__ |,
+ p (l+r ) ac St + 21 p at 3t . (4.3)
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Substituting from (2.13), (3.18), (3.23), (3.26) and (4.3) inte (4.1), we obtain

d}:!(1) dz(1)

4a (N . 1 (1) (1) .
a'zturl_sf’l' Ytz P ArrT) e at
v
(2) (2) (1) (2)
+1,@ ¥ X @rr@y ¢ D@ rL = + pelav =
2 P Tat at 3t at ]
" o d"5(1) ) clE(2)
(eryva® S+ a® S pg)ss
S +|
(1) (2)
dw a
[ (L), = (2)y(2) | =
* [ PEx+e f at T F £ dat . av,, (4.4)
v
where )
€ =£(l) + 3(2) + 5(3) , ,é(l) =£(1) - r(1)’5(3) , §(2)=E(2)‘I(2)£(3) )
(4.5)
and from (3.9), (3.17), (3.21) and (3.26)1, we have
t=n-r1, .‘3(1)=2‘B(1): g(2)=2 ‘2(2) ', @.6)
(n)

and t is the mechanical traction vector of the combined ccntinuum, and the d .

n=1, 2, may be thought of as the difference traction vectors, Taking the

material time derivative in (4.4) and using (4.6), (3.16), (3.20), (3.25) and employing

the divergence theorem, the material time derivatives of {2.8) and (2.13) and

the arbitrariness of V, we obtain

(1) (2)
aw aw !
wd_€=T v +D(l)'/ w] ) +I)(“)' w) \
Pae = Ti3Yy,i Y P a1t Py vaE L
(1) a™ ) ay
i Ara AT L (4.7)

which is the first law of thermodynamics for our combined continuum.

We may now introduce dissipation by assuming that the symmetric part of .

. 1 2 SN
the total stress tensor IS’ the two difference stress tensors 2( ) and 2( ) . e
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1 2 . O
and the two difference internal forces g( ) and E( ) may be written as a sum of a &

dissipative and a nondissipative part. This is a restrictive assumption, but

24 .
it is believed to be adequate for our purposes , Thus, we write

ls < RS, le, B(l) - RE(I) + DE(I)’ B(2) - RE(Z) + D

~

. Rg(l) + Dg(l) R?(Z) D (2)’ (4.8)

and in each case the superscript R indicates the nondissipative (stored energy)
portion and the superscript D, the dissipative portion. Substituting from (4.8)
into {3.27) and obtaining the tensor form from the vectcr form, we obtain

A _RA DA

T, . g L, (4.9)
ij 1) 1]
where
A 1 (1) (1) (l) (1) Rg(l) (1) (1) ‘ i -
Ti3 72 LRD ki 3,k RD K Yik T 91 Yy 7 R3 b

+ Rp(2),(2) RD(z) gz) Rg(zw (2) Rggz)wgz)] ,
1 J 1

ki "j,k

-
DA 1 DD(l) (1) _ DD(l)_(l) _ Dy (1) (1) + 3(1) (1)

i ~ 2L ki Y,k K5 Yik T 95 Yy i
D_(2) (2) D_(2) (2) D, (2) (2) D, (2) ()7
Dki wj,k - ij wi,k - Si wj + Ej wi J . (4.10)

Since T = is + zA’ from (4.8)1 and (4.9), we may write

J= 1+ 1T + 1, (4.11)

where 'fﬁ

=TT 4+ T, (4.12)

Equation (4.11) is the form we are interested in employing becausc it enables

us to obtain all the results of interest to us most readily. Substituting from

(4.8)2_5 and (4.11) into (4.7) and employing (4.10), we obtain
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L (1) JANED
P %% = RTijvj,i + Rpéz) < j (O Rﬁgl) -t Rbii) K‘E%‘"),i
Raj(z) °Zi2)_ . DTsijdij . DD(l) [(d;'il)>’k - wi(];})cwijj!
- D“§l) Eigéii - wil)wij] * Déi) (f;%ii),k “izﬁ 131
2
- DE;Z) f;%“i “i wij] "9 o (4.13)

whare dij and wij are the rate of deformation and spin tensors, respectively,

which are defined by25

= % (v, . +v, ), w,. = % v, . - v, .). (4.14)

For the circumstances we have outlined, the mathematical expression of the

second law of thermodynamics may be written in the forrn26—28
(l) (1) (2)
I ( ) L Re Y5 Ry 9 )
. 13Y5,i aF /i R i3 \3/,i
(2)
2 d
Rz‘ e B 00 52 , (4.15)

where 6 is the positive absolute temperature and T is the entropy per unit mass.

From (4.13) and (4.15), we have the dissipation equation

JNEY) o)
N S ( j ) L 1D (1)[ _ )
Ti3%5 xj at /,x Vi ,k 13J j dt i Yij
(2) (2)
D (2) < ) L@ o.M @ ] . a1
oDy Je )k T Vi k® 13] 370 3t Wiwgg )T 9y ;=00 » (4.16)

and the entropy inequality may be written in the form




18.

e 3 (), Py ¢ S G ) - v ess)

(1) (2)
_ Dy (1) S Wy Y, D @) (d” ), - @)
i %ij/ k3 at /,x T Yi,x%iy
W( 2)
(2) _,2) 1 ] -
- Ej (—EE—— w, wij) 5 qie’i pI" 2 0 , (4.17)

where I' is the positive rate cf entropy production, At this pcint it should be

. . . 29,3
noted that this theory can readily be generalized™ ™’ 0 to account for more

general functional constitutive response in the manner set forth in a previous

7
paper

5. Constitutive Equations

Since we are concerned with thermodynamic processes for which both the
state function equation (4.15) and the dissipation equation (4.16) arec valid,
we may determine the dissipative constitutive equations from (4.17) and the non-~

dissipative constitutive equations from (4.15) which, by virtue of the relations

(1) (2)
w qw

_ d ( j _ d (1) ( j _ 4a ()

ViiT ¥M,i de @y W \ gt ),i'xm,i 3 M5 \Tat >,i Xw.i 3¢ W50 o
may be written in the form
de _ R a Ly, 4 Q) (2) a (@
Pat ™ Tis¥m,iac Yy Y pbu Mide My Y RD.'L Xm,iac My,
’l) (2)
Ry 2y 5 an

st 1% pG a—t . (5,1)

Since the entropy inequality is of the form shown in (4,17), it turns ocut to be

convenient to define the thermodynamic function ¥ by the ILegendre transformation

)]

y=¢-T8. (5.2)

ik P et Bl S

st e R M arit it b, ST

b e il 2



The substitution of the material time derivative of (5.2) into (5.1) yields

19,

QLR S P, & @) @, 4 @
Pt ™ Tig™w,i 3 Yy )*'Rbij miac Myt RDl] M5 ac 9
(l) aw (2)
(1) (2) . a6 c
- Rg dt B:;J T en a—E . (£.3)
Since (5.3) is a state function eguation, we must have
(ry . 2y () _(2), e
w w(yj M ‘ijM, ijM! wj ? wj H e) - (JeQ)
Substituting the material timec derivative of (5.4) into (5.3), we obtain
R Y \ d (RD(l) oY ) d (1)
T,.X - ) 7 ¥ ) + =P === T (W)
( ij"m, i a(1j’M)/ at “f9,M M i 3 (w (l)) dt i ,M
(RD(Z) P -l _ oy ) 4 L, Rg(l) oy }-Ji_wgl)
ij M i 3 (w (2)) j, ( awfl); dt 3
J,M J
(2) 3 )4 @) by 40
(RI? +p (7)> v p(ﬂ + ae) t=0. (5.5)
J
. . (1) (2) (1)
Since (5.5) holds for arbitrary d(yi M)/dt, d(w )/dt d(w /dt dw. " /dt,
L4 )
dw;Z)/dt and 40/4t, we have
P, . (1) ' (1)
Xy i Mgy P WAL ), R:}j =- e op/au (5.6)
(1) _ (l) (2) _ _ (2)
xM’ﬁaij = 0 34/3 ()’ , 5 o ot/ (5 7)
(2) _ . (2) - . - "
w1 Diy =0 MR, M= - p /30 (5.8)

I
Solving (5.6)1, (5.7)l and (5.8)1 for R1 RR\l) and RR(2), respectively, we find

b

R 3 1 2 3y
¥ (1) ’ RD( ) _ ¥ '

T,.=py, ., =———— , .= py.
ij i,M a(yj,M) ij a( (1)) ,M O(W;?Q)

Clearly, § cannot be an arbitrary function of the variables shown in (5.4)
3,14

(5.9)

. . L . . |
becau~e in order to satisfy the principle of material objectivity € and,

~toAls Ak

i

et Lrsulel 3o i
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hence, ¥ must be scalar invariant under rigid rotations of the deformed body,

and any arbitrary function of the 34 assumed variables (1l vectors and a scalar
at the point yk) will not be so invariant. However, there is a theorem on
rotationally invariant functicas of several vectors due to Cauchy3l, which says
that § may be an arbitrary singie-valued function of the scalar products of the
vectors and the determinants of their componente taken three at a time. Appli-
cation of this thecrem shows that § is expressible as an arbitrary function of

66 scalar products and 127 determinants and 0 for a total of 194 quantities.
However, the 194 quantities are not functionally independent and it is relatively
easy to show, by using procedures similar to those employed in Scction 6 of

Ref. 6 that the 194 variables are cxpressible in terms of the 31 arguments

. (1) _ @@ (1) @) __ @

ke TYi,in Tow Y,k o T Yok 0 90 Pow TV,
(2) _ 2) .
LR (5.10)

Thus, we find that | is invariant in a rigid rotation if it is a single-valued
function of the 31 arguments listed in (5.10), Hence { may be reduced to the

form

1 2 2

in place of the form shown in (5,4), and wherc we have taken the liberty of
replacing Green's deformation tensor CRL’ which does not vanish in the unde-

formed state, by the equivalent material strain tensor E which does vanish

’

. 3z
in the undeformed state, and is related to C, by 2

KL

1 5 12
ElQa - "2‘ (CH. - GKL) . (.;.lc.)

From (5.6),, (5.7)2, (5.8)2 and (5.9) - (5.12), we obtain
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R _ a¢ oy . Ay (2)
T T Yy msE L T i D w MR
L
, Y (1) O% o (2)
+ . 3
p)i (1) Wj,'Vi oYy ,L 3p ~ 2y wj,M ’ (5.13)
LM
1) _ 3y (2) _ 3y
RDLJ Y w3, Sp L7 Ruij Y: my,L o () (5.14)
Pr M

) _ 3y @) __ a¥ _ . 1s
K Y50 @ 2 L@ T PEs e B
II L

where we have Introduced the conventions Ow/BELM = aw/aEML and it is to ke
assuned that aEKL/aELK = 0 in differentiatingy ¥. Substituting from ( ,14) and

(5.15) into (5.13) and employing the chain rule of differentiation, we obtain

1 1 2 2
RT =py Y —BJ[—--RE: )wj()—REi( )wj()

137 PYi,1¥5,m Be
(1) {1) (2) (2)
+ Rp, K5 RDk'L v - (5.16)

. . R . . . .
Clearly, the antisymmetric part of Tij obtzined from (5.16) is identical with
. R A . . . .
the expression for Tij given in (4.10). Taus, even in this rather conplex
sitnatior, the antisymmetric portion of the nondissipative part of the stress

tensor is derivable from a thermodynamic state function and has just the value

required by the conservation of angular momentum,

This brings ws to a consideration of the dissipative constitutive equations,

which are obta’ued from the entropy inequality (4.17) which may be written in

the form
D S LD (1) (1) _ D (1) (1) U (h) (2} _ Do (2) ,(2) _ 2 . -
Tijdij + ij S j B ij Sj Bj qie’i/e 0, (5.17)

where
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) (1) (1) )y _ . (1) _
(,kj = (dw /dt) v k¥ Bj = dwj /dt - g 54
(2) (2) (2) (2) (2) (2)
g: 3 = (dw /dt) W, k i3 Bj = dwj /8t - w, ;4 - (5.18)

Motivatad by (5.17) we take the dissipative constitutive equations in the form

B A, 0.

ng(l) D, (1)<dk£, g&’, 1) %Sa): };z), 0\ |
Do i 8 62, 80,
ng(?.):q j<2) @, c;&), E}El)’ C}S), 122), 0 0 i
9, = q; @, Q,:z), '“, ';};z’, B‘“’ 8\ {5.19) b

but since the nondissipative constitutive equations (5.13) ~ (5.15) depend on

(1) (1) (2) (2) . .
the Yy BT wols, i Vi wi,M and 8, there is no logical recason to exclude %
3:
them from the dissipative constitutive equations j. Hence, on account of the 1
4
chain rule or differentiation, we may write ;
S D S (1) ( 1) (2) __7) . (L) (1) 'J(2) A2) a1,
T3 T33O G BTy G T B s 8w Yy o e oM e o ¥y w © ]
b (1) D (1) (1) (1) (2) (2) (1) (1) (2 (2
Diy = P33 Cuwr b o P G0 B 3 e Vi Y Vicme Y Ym0
D, (1) _ D, 1) 1) L) (2) L(2) @ Lm e @) |
3j Jj (d k&’ C—k‘a ] a 2 gkz ’ B e’M; yk,M‘ Wk 5 k M’ W k M G) i
D, (2) _D, (z) 1) L) .2) L(2) 4 ® W@ ) | 3
Dij 5 Qg G0 BT Gy B © ow Mk Yo Y 0 Yo 9 ; !
:D (2) 1) L) (2) () (L @ @) j
‘2) g bxe’r B S B O e ow W T Yo Vi w90 b
3
" {1) (1) (2) (2} (1) (1) (2) (2) i
] G930k Gaur P Gt B e Yicw Yk o Tk MmO 1
; (5.20)
!
i
hﬁuﬁﬂ~ s e i ‘ .
|




for the general functional dependence of the dissipative constitutive equations,

Wow, in order that the dissipative portions of the constitutive equations satisfy

3,14

the principle of material objectivity1 77, all variables in (5.20) must be

objective, i.e., they must transform as tensors under time-dependent proper

(1) B(l)

orthogonal transformations, All variables in (5,20) save dkE’ kg P

(2) (2)

gkz and Bk satisfy this latter requirement trivially, since they are not

time-differentiated quantities, and dkl is known34 to be objective and Bél),
(2) 1)

)

regpectively. To see this consider

2 R . .
and Qéz) may readily be shown to be objective vectors and tensors,

e oo iy, v # b 1), yi=o (B, + b, (t) (5.21)
Y ¥ % Qeg (V) lyg vy e e YA AR S ‘

where ka(t) represents an arbitrary time-dependent proper orthogonal trans-
formation and bk(t) an arbitrary time-dependent translation, 1In (5.21) the
starred quantities represent either the motion as seen from an orthogonal co-
ordinate system in arbitrary rigid motion with respect to ours or the motion
plus a superposed rigid mction as seen from our cuordinate system., From (5,21),

we obtain

)% _ (1)
wl =g (e, (5.22)

the material time derivative of which yieids

(L)y* - L (L)
dw, "' /At = Q dw, T /dt + (aQ /dt)w, T {5.23)

Taking the spatial gradient of (5.23) and employing (5.21)2, we find

()%, va ¥ (1) (L) ..
a(dwk /dt)&);.vm-ngua(dwJe /dt)/ayr+er(koz/dt)awz /agr. (5.24)

Now, employing the well-known relati0n35

*
40 /At = Qg Wip = QyiWey o (5.25)

e LR TN N L s e AL

103 a1

L et cars Wik iat T a2
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in (5.23) and (5.24), respectively, and using (5.22), we obtain

(1)* . (1)* * (1) (1)
dwk /4t - wi Wiy ka(dw /dt wi miz) s
(1)* (1)
ow, ow,
3 (1)%* 1 * ( d (1) __1
o (@w " /a8) - N T YA B T ‘”iz) )
¥
" n (5.26)
which shows that B(l) and Q;;) are an chjective vector and tensor,'respectively.

Obviously, in the same way we may readily show that 8(2) and g(z) constitute an
objective vector and tensor, respectively. Now, the quantities on the left-~hand
sides of (5.20) cannot be arbitrary functions of the variables shown because
arbitrary functions of the variables. shown will not satisfy the principle of

. . . 3,14 . ) . . .
material ob]ect:.\uty1 )1 , which requires the constitutive equations to transform

appropriately undexr proper orthogonal transformations. However, if DTiﬁ’ DDéi),
_ ] 1
DZFl), JDS?), Dﬁfz) and q., are expressed in the forms
3 13 J 1
D_S D_ (1) (1) b (1) _ g (1)
T > . . T s = A L Y
ij = yl,Ry],L KL’ Dl] 1,K¥j,L KL’ 73 ],K K’
p (3 aA2)  Dg(2) g (2)
= = = )
13 Vit 0 % Y5 bk 0 LTV WPk (5.27)
(1) (L) (2) (2) . .
where T, AKL s QK ; AKL s QK and L are functions of the variables shown

on the respective right-hand sides of (5.20), it may readily be shown using

3
established methods 6 that the principle of material objectivity is satisfied

£ Q(l), Qé%) and L, are vector invariants in a rigid motion and Trr? éi)

K and

2

. . . - : 37 . .
XL, are tensor invariants in a rigid meotion. Then the theory of invariant

. 38 . . .
functions of vectors and second rank tensors shows that the required invariance

is assured if TKL’ A(l), Qél), Aéi), @éz) and LK’ respectively, are of the form
(l) (l) (2) (2) (1) (L) (2)(2)
x Ry’ % » Py o By o G Fae M P o Mw P o O o
(l) (1) (1) (1) (2) (2) (1) (1) (2) (2)
bye A (F}IN’MN’BM’MN’BM’GM’EMN’NM’PMN’NM’PMN’G)’

(1)

1) L) L) L@ (@) L @ () (@)
( (RMN ZMN ’ M ’ ZMN}’ BM ’ GM’ EMN’ NM ! PMN ? NM ’ PMN > 9,




(2) (2) (1) (1) (2) (2) 1) (1) (2; (2
w R B B o %v o B O B mo T e T o,
(2) {2) (l) (l) (2) (2) 1) (1) (2) (2)
“f Rov By o Bw o Ban o By oo Cw Ew M o Bav o Mmoo Pmy s O
1 1) (2 2 1 (1) (2) (2)
Ly = L Ry, 2 nfm)’ ( ,ZMN),BR:),GM, Epne? Né),pm',NM s Py s )
(5.28)
where
= L (1) 1y _ (1)
RMN =Yy Myj,Ndij - dEMN/dt’ ZMN ¥j Myj, glJ ! BM 1 MBl ’
2) _ (2) (2) - (2) -

Zyw = Yi,w'5,8C45 2 Bu Vil 2 G =% o 529
and EMN’ Nél), Pé;), Néz) and Pé;) are defined in (5,12) and (5.10). Now, it
must be remembered that although the dependence of T A(l) Q(l) A(z) Q(Z)

g P KL’ "kL? K ¢ Pk P’k

(2}

N(l) (1) N(z) and PMN is arbitrary, there are conditions on

PMN 7 M
- .=

11\ y 2y _(2) _ 5. ..
M ? Gy r By A Gy on account of the

and LK on EMN’ M
their dependence on RMN z
Clausius-Duhem inequality (4.17). Thus the dissipative constitutive equations
in the general case are given by (5.27), with (5.26).

Equations (4,11), (4.8) {(5.13) - (5.15), (5.27) and (5.238) determine

2-5’
the constitutive equations for our combined continuum. Thus, all that remains
in the dQetermination of explicit constitutive equations is the selection of

e (1) {1) {2) i2) . :
specific forms for ¥, T, AKL s @K s AKL , @R and L . Once the constitutive
equations have been determined, we have a determinate theory, which by appropriate
substitution can readily be reduced to 10 equations in the 10 dependent variables

(1) (2) .

yj, Wi and 0, The 10 equations are the three each of (3.16), (3.20},
{(3,25) and (4.16). 1In order to have a complete field theory, the boundary (or

jump) conditions at moving surfaces of discontinuity have to be adjoined to the

aforementioned system of equations, These boundary conditions are determined

in the next section,
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Before ending this section it 13 perhaps worth noting the physical fact

L (W L@ 2)
g 0 Giyte By oand Gy

/at, (dw;l)/dt)
3

that the objective tensors B
(1)

are nothing more than the

portions of dw, Sz)/dt)

b 5 ,1i°
beyond that of each due to the local rigid body rate of rotation wij'

if the aforementionec. vectors wgl) and wéz)

R dw;Z)/dt and (dw respectively,

i
As

and tensors w;l?

a

consequence, and

wi?
3,1

attendant attenuation will vanish,

’
are rigidly fixed in the continuum, i.e,, with respect to y, then the

6. Bourdary Conditions

I this section we determine the boundary conditions which must be adjoined
to the system of differential equations, as noted in Section 5, in order to
formulate boundary value problems. As usual, these boundary (or jump) conditions
are deternined by applying the integral forms of the pertinent field equations
to apprupr.ate limiting regions surrounding the moving (not necessarily material)
surface ¢f disco;tinuity39 with normal velocity u_, and assuming that certain
variakles remain bounded.

The pertinent integral forms are (3.,2), the integral

forms oL (2,542, (3.20), (3.25) and (4.17), which take the respective forms

r r a i
Jpnerx ds + | pf av = at J py av (6.1)
S v v
. ! . an®
\ 1) Fo@),. @ (1) ., _4a [ @
g bas oo tj av +J {}Zj av = == r p =5 V., 6.2)
5 v v v
aq )
[ o) as , [ @ (2) J ) o _d [ @ °5
J nols  as v Lo @e i ave | gt av= [ i av, 6.3)
S v v
"9y
3 I pl av + J 5 ds = J olhadv =z 0, 6.4)
v S v

where pI’ is defined in (4.17).
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For all the integral forms considered, a volumetric region is taken in the
3 . . .
usual way 9, and it is assumed that all pertinent variables remain bounded.
The Jump conditions obtained from the respective integral forms consisting of

(3.2) and (6,1) - (6.4) are

unipl - niﬂ[‘vipl = 0 (5.5)
ni’yrij']‘ + ungpvjl - nilvipv_-jl =0 (6.6)
(L) (1)
an, . an,
(1) n[ )y 7Y ]_ [ ) _ 3 ] -
ni[Dij ] +u ~p el niNVi o == J =0, 6.7)
() (2}
an, an,
(2) .[ ) 73 ] _ [ 2y 3 ] -
LI g J 7 MiLYi P at O, ©.8)
nin[»qi/el - ul_h['p'ﬂ']v + nilvipﬂl =0, ©.9)

R " . . . - + -
whevre vwe have introduced the conventional notation '\[‘(,il for Ci - Ci and n; de-

notas the comp:nents of the unit normal directed from the - to + side of the

surface of discvontinuity. If the surface of discontinuity is material

+
u = nv.oS oy, (6,10)
then (6.5) evaporates and (6.6) ~ (6.9), respectively, reduce to
n'.\[,Tijr}v =0, (6.11)
1), _ 1
ni.A['Dij 1=0, {G6.12)
(2). _ ‘
n o, '1=0, (65.13)
n,[a./01=0, (6.14)
it-i
Morecver, if 6 is continuous, i.e.,
8 =0, (6.15)

across the surface of discontinuity, I' is bounded and, from (4.17), in place of

(6.14), we have
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iiqil =0, (6.16)

This latter situation, consisting of the jump conditions (6.11)~ (6.13), and
(6.15) - (6.16), is the most common, and if the body does not abut another solid
body but abuts, say, air instead, the boundary conditions are fully defined by
the noted equations. However, if a body does abut another solid body and the
Tfull field equations have to be satisfied in each region, additiomnal conditions
on [y [ﬂ(l)] and Lﬂ(z)l have to be satigfied at the surface of discontinuity.

The conditions are usually

vl =0, M1 =0, m?

.~ ~ A ~ ~

=0, (6.17)

the latter two of which may, by virtue of (3.24) and (3.26)4: respectively, be

written in the form

1+ @@ @@y o @@ MWl 618

Frequently, the thermal conditions are such that v may eliminate either (6.15)
or (6.16). Clearly, all boundary expressions, which are not prescribed, may be
expressed in terms of the same 10 field variables as the 10 equations mentioned
at the end of Section & by making the appropriate straight-forward substitutions.
We can determine an energetic jump condition from (4.4), which, although
not needed in the solution of many types of boundary-value problem, can be
useful for obtaining certain types of information. This jump condition is
obtained by applying (4.4) to the aforementioned volumetric region surrounding
the (not necessarily material) surface of discontinuity and assuming that all
pertinent variables remain bounded, with the result

(1) (2)
dw
(1) k-—i—D(2) k

1, aw
n Jkk Jk dt jk dt

-qi;] + unn[JT+ pel—njlvj (T+pe)] =0, (6 .19)

LNEEYD PV M o
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where T is given in (4,3), if the surface is material we have (6.10), and

(6.19) reduces to

1) (2)

Aaw. dw
1) _k @) x 1 -
nj['rjkvk + Djk at + Djk T qj& o, (6 .20)

7. Generalization to N-Constituents

In this section we generalize the equations which have becon derived for
the three-constituent composite material to a composite with N-censtituents,
Since the form in which the eguations for the three constituent compcsite
material have been written makes the form of the equations for ths N-constituent
composite rather obvious, we briefly present the basic and essential resulting
equations here for completeness without presenting any of the intermediate
equations, In faci, where possible we simply refer to the generalization of
existing equations without writing new ones,

The equations of Section 2 remain unchanged except for (2.3), (2,9) and
(2.11) - (2.,13), which, with the exception of the intermediate egquation (2.11),

‘take the resulting forms

N N N N
Y Voom T (m) (m) . ( .
P, = L p;m) , P = .. p(n ’né1 p (M), (m =0, [-,_-1 p(m) aw m)/dt=0_ (7.1)

g
[
'—l
=]
il
i

The equations of the conservation of linear momentum for each constituent, i.e,,

(3.10) - (3.12), remain the same except that the sums of the internal interactions

nm : . ; . .
LE in each equation increase in nmumber to (N-1), where the meaning of Lpt™ 4s

obvious from the discussion in the last paragraph of Section 2 and, of course,
the number of such equations increases to N. The equation of the conservation
of linear momentum for the combined continuum, (3.16), remairns the same and the

difference equations of linear momentum, (3.20) and (3.25), take the form

dZT](n)
pM™ e _ ) 5 Jj‘“’ =0, n=1,2,.... (N=1) ,  (7.2)

ij,i 9 dt2
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where
N (N-1) .
3j(n) - S' LF;m - Ez LF§m, ?;n) - fgn) - f;H),
m#n n#N - )
(!{:1
(n) _ . (n) . {n)_ (n) (n) _ (n), (N}
T]j vy + rowy, P, /Py - (7.3)

n=1
The equations of the conservation of angular momentum for each constituent,
(3.13) - (3.15), remain the same except that the sums of the internal interaction
couples lsnm increase in number to (N-1), where the meaning of the Lsnm is

clear from the discussion in the last paragraph of Section 2 and, of course,

the number of such equations increases to N, From Eg.(3,27) it is clear that

the equation of the conservation of angular momentum for the combined continuum

now takes the form
(N-1)

N (n) (n) (n)y (n), _
szeZijTij + £4° x5 Lj (wk,i Dij - W Ej ) =0, (7.4)
m=

The equation of the conservation of energy (4.1) and the definition of the
kinetic energy density (4.2) remain the same except that the sums increase to N,
Equations (4.3) and (4.4) retain the same form, but the sums increase to (N-1)
and all possible quadratic mixed products occur for (N-1) terms. The eguivalent

of Egs.(4.5) and (4.6) take the form

N
£=\L_£(n):£=2'1, (7.5)
n=1
Sm)=£m)—rmkm),gm)a2-EM),n=1g,“..mdL7ﬁ)

Equations (4.8), (4.9), (4.11), (4.12) and (4.14) remain unchanged. The number

(n) L (n)

A

of D and in Egs.(4.8) increase to (N-1), The sums in the remaining

equations in Section 4, i.e., (4.7), (4.10), (4.13) and (4.15) - (4.17) increase

to (N-1). The numper of w;n) and wfn)

5,1 occurring in the generalization of the
3

equations in Section 5 is (N-1). Consequently, the generalization of 21l




(n)

equations in Section 5 is obvious, i.e., wherever the wj occur, there are (N-1)
of them in place of 2, including all conjugate quantities. Accordingly, the

dcfinitions occurring in (5.10), (5.13) and (5.29) must be increased thus

(n) (n) (n) _ (n) - _
P Y, 1"k, M’ N Y ¥ T L2, .... (8-1), (7.7)
(n) _ (n} _ () (n) _ 5, (M) _ () - g
C,kj » (dwj /m;),k wi,k“’ij , Bj dwj /at - w, W5y B 1,2, .... (N-1)
(7.8)
(n) (ny () m) :
% yi,MYj,NCij s By _Yi,mai , n=1,2, ..., (N-1), (7.9)

and the constiiutive relations occurxring in (5.14), (5.15) and (5,27) must be

increased thus

(n) (n) n) _ (n)
R,oij = oy, Y5 g VAR “:53. =- oy oAb (7.10)
n_ ) (n) Dy (n) (n)
'};i..j gyi,i(vj_,LAKL , S‘j = yi,}{q)!( , n=1,2, .,,. (N-1) , (7.11)

and the associated dependence in (5.11) and (5,.28) must be increased to suit,
i.e., must contain the variables with superscripts from 1 to (N-1).

The jump conditions (6.5), (6.6), (6.9), (6.11), (6.14) - (6£.16) and (6.17),
remain unchanged and the sums in (6.19) and (6.20) increase to (N-1). The
remaining jump conditions, i.,e., (6.7), (6.8), (6.12), (6.13), (6.17)2_3 and

(6.18) take the respective forms

(n) (n) ,(n) n) jn(n) o
niy:ij L+ le dﬂj /at] - ngv.p dnj /dt] = 0, (7.12)
(n); _
n Ipi57) =0, (7.13)
Nﬂj(n)l =0, (7.14)
-1

WM N My o (7.15)
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8, Piola-Kirchhoff Form of therEqpations

Up to this point all the equations have been written in terms of present
{(or spatial) coordinates. Since the reference (or material) coordinates of
material points are known whi;e the present (or spatial) coordinates are not,
it is advantageous to have the equations written in terms of the reference
coordinates. To this end, analogous to the Piola-Kirchhoff stress tensor KLj’
which is defined by

nTi 45 =N K S, (8.1)

we define the reference relative stress tensors ﬁﬁ?) by

n o™ as = NL-BI(‘?) as_, (8.2)

i1)
where dSo and NL denote the magnitude of and unit normal to an element of area

in the reference configquration, which has magnitude 4S and unit normal n; in the

present configuration. By virtue of the well-known relation40

ng ds = J% N dS, (8.3)

from (8.1) and (8,2), in the usual way, we find

™ | x p®

3457 L3 L, i1 8.4)

Ky = 5%

Now, using (8.4)l and (8.4) respectively, with (3.16) and (7.2) and employing

29
(2.8). (2.10) and the well-knowa identity41
) o =0, (8.5)
we obtain, respectively,

KLj,L + pofj = 0y dvj/dt s (8.0)

_5(“) (n)~ (n) (n) _ (n) 2 (n)

Lj L pO fj + J 33 'ﬂJ R n=1’2’ vee. {N-D1) s (8.7)
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the first of which is the Picla~-Kirchhoff form of the stress equations of motion
and the second of which is the vrefgrencc form of the (N-1) relative stress
equations of motion.
Analogous to the foregoing, wec now define the reference heat flux
t
vector QL by

niqi das = NLQL dSo , (8.8)

which with (8.3) yields

EARRL AL .9)

Substituting from (8.9), (5.27), (5.29) and (7.8) - (7.10) into the generalization

of (4.,16) for N-constituents ard employing (8.5) and (2.10), we obtain

(N-1)
(W), (m) _ ,(m)_(m) ] _ -
J[TKLdEKL/dt + El (AKL ZeL, éx By ) QL,L—pQS d)/dt , (8.10)
m:

which is the reference form of the dissipation equation.
In view of (8.4), (8.9), (5,13) - (5.15), (2.10), (5.27), (7.10) and (7.11),

the pertinent constitutive equations for this section may be written in the form

(N-1)
g . = oy VUrRy o, 3y )
%3 7 P¥sm T, P L@ Y5 T Yl
) w=l L LM
Ro{n) _ oy Rpin) _ 34
33 = . Voo gy, S
K33 Po¥y L NV 1&3 Po¥3 K @ (8.11)
L KL
D.. (n) (n)
Kg = 9¥5 wTomo 995 = 995 1By
D . (n) (n) _
L3~ Y5 mPom 0 % T ko (8.12)
where
- D (n) R, (n) D.. (n) (n) Ra(n) D.(n)
- j + i 3‘ = 3 2 - = . . . .
KLJ RKLJ Kij s 95 33 + 33 s iij ﬁij + ﬁLJ . (8.13)

e ikt cae e A ettt i
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' () L (n) . :
and ¥, TLM’ QK s ALM and LK are the generalized versions of (5.11) and (5.28), :
which are discussed in Section 7. In view of (8.1), (8.2) and (8.6) - (8.8), in '
reference coordinates the boundary conditions €6.6), (7.12), (6.9), (6.11),
(7.13), (6.14) and (6.16) take the respective forms
N .) J Iv.] = 8.14
1\L'\[-KI;_]M + UNpONle 0, ( ) -
N ™) +up @n™satl =0, n=1,2, ... D) (8.15)
L L) No 3 » N 325 wves 5 ( .
NL\[‘QL/GL— uge LT =0, (8.18;
_ ﬁ(n) _ _ ffu
N IK L =0, Nl =0, n=12, . (N-1) , (8.17)
ped =
N [0 =0, N o1 =0, (8.18) .

2 . . . 2
where UN is the intrinsic velocity4 of the singular surface, i.e., the velocity 5 X
of the singular surface in the reference coordinate system. The boundary condi- i
tions (6.15), (6.17),, (7.14) and (7.15) remain unchanged, while (6.5) degenerates

to nothing in the reference coordinate description,

9. Linear Equations for the Two-Constituent Composite

In this section we cbtain the linear equatio.s for the two-constituent
composite material in the absence of dissipaticn frow the general nonlinear

equations for the N-constituent composite mat.rial presented in Sections 7 and 8,

To this end we first note that for the two-constituent composite N = 2. Then,

in the usual way, we define the mechanical displacement vector uy by

y, o= 6,y + 0y, (2.1)

where siM is a translation operator, which serves to translate a vector from

ie present to the reference position and vice-versa and is required for nota-

tional consistency and clarity because of the use of capital and lower case
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indices, respectively, to refer to the referenct and present coordinates of the

center of mass of material points. From (9.1), we have

= . + R .
yi,L 61L 61MuM,L’ (9.2)
and substituting from (9.2) into (5.12) and n=2glecting products of Uy s We
: a7
obtain
1 o A
Em ™ =37 Oyt ¥ (9.3)

which is the usual infinitesimal strain tensor. Similarly, substituting from
(9.2) into (7.7) for N = 2, we cbtain

(1) _ (1) _ (L) (1) _ ) (L)
Prm "skka,M‘ LM N T A A (9.4)

where we have taken the liberty of utilizing capital indices to denote the

1}

Cartesian compcnents of the relative displacement vector g‘ in the linear

y
Rﬁgl' and 3&‘1)

. are assumed to
Lj

description being obtained here. Since RRLj’

vanish when u _ and wél)

" vanish, in this linear theory ¥ must be a homogeneous

quacdratic functicn of the form

p V= x c €€+ l-a w(l)w(l) L b \Y 1)w(U +
o’ 77 ‘v T 2 kYL 2 PRLMN' K, LM,
e8! 5 (1) (1Y (1) .
€W + T wolw 9.
T AR Y] KLMN KU'M,N T 'MEL'K, LM 2.5)
where the ¢ are the usual elastic constants of ordinary lincar elasticity,

the a may be called the difference displacement clastic constants, the by

the relative elastic constants and QMKL’ B and YMKL’ the respective coupling

constants, In the arbitrarily anisotropic case, there are the usuval 21 inde-

pendent = 6 independent a,__, 45 independent b 18 independent o

KLMN’ KL XI.y’ MKL*

54 independent BKL and 27 independent Yura,! for a total of 171 independent

MN

material constantes.

i
3
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Now, substititing from (7.3)3, (8.11), (8,13) and (9.2) -~ (8.5) into (8.6)

and (8.7) and neglectirg all nonlinear terms, we obtain

Kt ¥ Pofu = OoUy» | (5.6)
1t ’
1)
W x| () Q) (1)
'&LM,L + 14 I(1) pofy, * 31\4 r PQWM P (9.7)

where we have employed the relations
- _ . "V(l) - "‘(l)
vj = ayj/at = SjMauM/Bt = sjﬁum’ 3 éjMFM

e @ (1) ) (L) (1)
Kes = Sfemr oy = 50w 0 557 Sfmr 9 by Ty o 9

} 3lp W) SO 3lp V) L) alp 1) ©.9)
Ko Sery MM T 3D 0 NI .
M, L M
From (9.5) and (9.9) we have
- (1) (1)
Ky = “noer * %xenx * Powatron
(L) _ . (L) (1)
Py = Proneli * Yookt Pk, N
w _ @, )
Fy = Cafr T P "MRLYK, L (9.10)

The substitution of (9.10), with (9.3), into (2.6) and (9.7), respectively,

vields
CLMxNuK,NL M “mmw:c,lx{ * Bmmq‘”li,lt)m +pfy = Py (9.11)
(1) N
BKNLMuK,NL + YKLMwéTi + bLMKNwéjéL +-;3i—;717 pofél)
- QMKLUK,L - aMLwél) - YMKLwéjL - r(l)pouél) ’ (9.12)

which constitute 6 linear differential equations in the 6 dependent variables

uy, and wél). To this system of equations we must adjoin the linear boundary
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conditions across material surfaces of discontinuity, which are obtained by sub-

" stituting from (9.8). into (8.17) for N = 2 with the result
35-4 4

- ), _
N K ) =0, in'ﬁml 0. (9.13)

If the surface abuts space, one side of the jump brackets in (9.13) determines
applied traction terms in the usual way. On the other hand if the body abuts
another solid body, we must obtain the associated jump couditions by substituting

from {9.1) and {9.4) into (6.]'7)1 and (7.15), respectively, with the result

T e I (9.14)

L(l + r )wK 1

The linear equationcs foxr the two constituent composite with discontinuous
reinforcement (chopped fiber) can be obtained from the foregoing equations in
this section simply by setting bKLMN’ BKLMN and YKLM equal to zero wherever they
occur. Under these circumstances ﬁﬁ;) vanishes and the boundary conditions

(9.13)2 and (9.14) do not exist.

10. HMaterial Symmetry Consideraticns

In this section we obtain the linear equations for the isotropic and trans-~
versely isotropic two-constituent composite material. Although we can cobtain
these equations directly from the arbitrarily anisotropic equations presented
in Section 9 by writing the tensors for the particular symmetry involved, it is
advantageous to return to the stored energy function po¢ and write all the
quadratic scalar invariants first for the isotropic material and then for the

transversely isotropic material, especially when a great deal of symmetry exists,
3,44

as in these two cases, The tables of integrity bases provided by Spencer '’

for the two transformation groups involved prove to be extremely valuable in

obtaining the independent quadratic invariants. We are ccncerned with the

gk
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. . 1
quadratic invariants of a symmetric tensor € ., an asymmetric tensor wé ; and
b4
a vector wél). Since spencer systematically considers symmetric tensors,

antisymmetric tensors and the skew-symmetric tensors of vectors, we must de-

(1)

compose the asymmetric tensor w into its symmetric and antisymmetric parts

L,M
PiM and p:M, respectively, and write the skew-symmetric tensox wé;) of the
vector wél)_, thus
s 1 .,..1) (L) A _1 (1) (1)
PLM 2 (WL,M + WM,L)’ PLM > (WL,M wM,L) , (10.1)
= (1)
Wim T ok (10.2)

Then pow can be written as a quadratic polynomial invariant in the sum of the

invariant products of two symmetric tensors ¢ an antisymmetric

and S
LM Prw
A
i a skew- tric tensor W_ .
tensor Py, 20d a kew-symmetric tensor LM
For isotropic materials possessing a center of symmetry, pow is a scalar
. . 4 .. .
invariant under the full orthogonal group. Spencer lists 4 the basic invariants
of a number of second order symmetric and antisymmetric tensors for the proper
orthogonal group. From this list all quadratic invariants under the full

orthogonal group may readily be obtained. Thus we find that for an isotropic

material the homogeneous quadratic function pow may be written in the form

S s 1 5 S
ex®zr ¥ Mook t Pk t PofkPik t 3 P1PkkPrL
s s A A 1 (1) (1)
¥ PP Prx t P3PircPrxk Y 7 1Yk Yk -

Pl =

N>

(10.3)

Substituting from (10.3) into (9.9) and employing (9.3) and (10.1), we obtain
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1) 1 (1) (1)
X\ = A“K,KGLM + p(uL,M tuyp Ot ﬁle Kt 3 BZ(WL,M + W(M,L)’
. (1) ® o
& = Blux kLMt B (uL Mt R K, KGLM * Ry, L,M M:L)
L) _ (L)
+ b3 (wL,M wM,L) J
(1) |, L
5t aw® (10.4)

which are the linear constitutive equations for the isotropic two-constituent
composite material. Substituting from (10.5) into (9.6) and (9.7) and ignoring

the exiernal body forces, we obtain

ST UG § TR
A +udug o * POy g * <B 2 2 o)k, 1 * 2 P2 kx T Polim (10.5)
1,0 1 (1)
\Pp *3 Bz) g ok T3 Bty g v Byt Ry TRy
) @) ) (3)
* By = By)¥y kT 21 ¥Ry (10.6)

which are the equations of motion for the isotropic twe constituent composite
material.

A material with a single preferred direction which is the same at every
point is said to be transversely isotropic. For such a material poﬁ is a
scalar invariant under rotations about the preferred direction, which we take
along the x3~axis. The transformations under which we have invariance are the
rotations about the x3—axis, and reflections in the planes containing the %=
axis. Spencer gives a list44 of invariants under this transformation. 1In
addition to the foregoing we require invariance under reflections in the plane

perpendicular to the x,-axis. From Spencer's list44 all quadratic invariants

3

satisfying the latter additional symmetry requirement may readily be obtained.
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Thus we find that for our transversely isotropic material the homogeneous

quadsatic function pot can be written in the form

-~

CleQUGBB +C€ 03 Y C3edBeBa + €630803

=

NEE C€aq6
2 5733733

+ i
Q

N

~

- s e s  a s . a s S
T BraafEs * PofapPry t PafaaPas * ByfagPas t Pef3iPae

-3 S ~ 5§ 85 l~ 58 8 s 8 o “S s
+ BgeyaP3y + byPoabey * 3 DR Pag + BapiPyy + Bp P,

1 > A

1l & € ¢+ A A ~ (1Y (1)
+3 Bypiapiy + bePypPap * F7P3 Yo Yo T

A L1 1. 1) (1)
3 Y72 Y Yo 7 %3 Wy

23

2

(10.7)

where the greek indices take the values 1 and 2 and skip 3.

Substituting from (10.7) into (9.9) and employing (9.3) and (10.1), we

obtain
K.=5u, b o+8u, 6. +& @ .+u, ) +pwt)s
«p Y, ¥ a8 273,37af 3" a, B B« 17y, ¥y “af
a (1) 1 L (1)
+ 83‘”3,3%8 +3 BZ(W&;B + wﬁ-a) ,
sk = 1a @), (@)
Kz = Koo = €l o7y 3) * 5 Bylig o v 30,
= ~ ~ 2 (l) (1)
Ki3 = 838 o * 8% 3 * Bovy o + Bevy s,
1 _ 3 ; 1a 3 s 1) (1)
J&B - ﬁluy,v %xﬁ *3 Bz‘ua,ﬁ * uB,a) * B5u3,36ch * bl(wa,ﬂ'*we,a)
s (1) s (1) s (Y (1)
+ bzwy,yéaﬂ + b3k3,36aﬁ + b6(“8,d wa,B)’
(1) _ 14 o (1) L (), L 1a (1) (1)
Doz’ =7 Palig o ¥y 3) H vy w3 g bty g )
P - +u a (1)} (1) (xy (1

1 ~
3 =3 Paliy g T Uy 3) T Raliy TNy 3) 5 by, gy )
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which are the linear constitutive equations for the transversely isotropic two-
constituent composite material with X4 the preferred direction. Substituting

from (10.8) into (9.6) and (9.7) and ignoring the external body forces, we obtain

C1%,08 * 9% 3p * €309 go * ¥p, a0 *bl"'o(z,l;a 3B ""ci,léa * “é,l?m’
* %3"3(,1:)55 +atug gy g gp) * % A “'3(:,[5)33 * "’é,l.ia’ =00
Ezud,a3 + 64(u3,au + ua,Ba) + % ad(w;f;a + w;?;a) + 35u3!33 + ESW;?;3
+ Bsw::,l;3 P » (10.9)
B u + 1 % o u ) + 1 B (u + u, . +
g0 2 "2 "a,oB B, o 2 74'72,38 B, 33)
Bos 35 * B grap * g oo * P2arap * 53338 * o a0~ Yo fo
+ 54(w;?;3 + wé?;3) +-% 57(wé3;3 - wéfgﬂ)-alwél)==r(1)pouél) ,
Ea“a,aa %E4 @3 oo * Y0’ 36“3,33 * i;3"'4;,12:13 + by ("':g,lr)an'wc(»?;ﬁ
+ %:- b, (wéf;u - wé};a) + Bs"a(,l:)aa - 32w3(1) = r(l)poii;l) . (10.10)

which are the equations of motion for the transversely isotropic two-constituernt
composite material with Xy the preferred direction. We have bothersd to write
the linear constitutive and differential eguations for the transversely iso-

tropic two-constituent composite material in completc detail because we deem

this to be a particularly important symmetry for fiber reinforced composites.
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11. Wwave Propagation

The solution for plane vwave propagation in the arbitrarily anisotropic
infinite medium may readily be obtained by substituting plane waves in the system
of linear equations iﬁ (9.11}) and (9.12). However, the resulting algebra is
sufficiently lengthy and cumbersome that it becomes relatively involved to
extract useful physical information from the resulting system. Since the iso-
tropic case contains many of the interesting features concerning the propaga-
tion of waves in the two-constituent composite and is much less cumbersome
than the general anisotropic case because of the considerably smaller number of
material constants, we treat plane wave propagation in two-constituent isotropic
composites in this section. To this end as a solution of (10.5) and (10.6)

consider e .o .
1{on X, ~Wwe) i{on X -wi)
u, = A.e , W. =B.e *'x s (11.1)
J ] J J

where ny is a unit vector denoting the wave normal. The solution (1l.1)
satisfies (10.5) and (10.6), provided

2 2 2 1 2
(v €7 = P Y )Aj + (Ot gAknknj +t3 82§ Bj

1 2
+ (81 + 3 ﬁ—))g B nn, = o,
1 2 2 kKk3

[N1R2)

2 1 2 2 2
< Aj + (Bl +5 B8 Aknknj+[(b2-b3)§ +a) - rgp ] Bj

2
e
+ (bl + b2 + b3)b Bknknj = 0. (11.2)

At this point it should be noted that in order to secure the positive definite-

ness of pow in (10.3), we must have the conditions

W>0, 3+ 224>0, b,>0, 3b +b, >0, by <C, a >0. (11.3)

’ 1 1

Equations (11.2) constitute six linear homogeneous algebraic equations in the

Aj and Bj’ which may also be regarded as two vectorial equations of the form
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b P 0 and 9. = 0. Since the medium is isotropic, a major reduction in the algebra
results if we decompose each vector equation aleng the direction of the unit

r.ormal n and in the plane normal to n. To this end we write A and B in the form

A=p°An -pXnpxA, B=p-Bn-nXnXxB, (11.4)

~

and first we write the equations in the normal direction n, to obtain

2 2 . 2, -
[+ 20)8° - po’ln * A+ (B +B)En + B =0,

2, 2 _ ) 2 R =
(814-ﬁ2)§ n*A+ [(bl-+2b2)§ +-al r pow In * B 0, (11.5)

which constitute & system of two linear homogeneous algebraic equations in
n*Aandn - B, thas showing that purely longitudinal waves exist in the iso-
tropic two-constituent composite. For a nontrivial solution; the determinant

of the coefficients of n * A and n * B must vanish, which yielids
tad N tad L

1) 2 4 . L 2 2
rl )po w - f[(bl-l-sz)po + (A + 20) ! )polg 4-poal}w
+ ([0 +20) (o) +2b) - (B +B)21E + (0 + 2m)a }E% = 0. (11.6)

Equation (11.6) governs the propacation of longitudinal waves in tre isotropic
two—-constituent coxgosite. From (11,6) it is clear that for a given wavenumber g

-

2 - . i 2 - s - - e
there are two w s ang solving for W and expanding for smalil ¢, we Obialit

a (b, +2b
W= Lovane® + oty o = — L ? g2+o@ih . 1.7
17 o, 2 T T M
r Y r p

(&) o

In view of (11.3), we sez from (11.7) that both wl and w, are real for real E.

Moreover, it is clear that on an w vs § diagram there are two branches, one

emanating from w = 0, € = 0, with positive initial slope J(k4-z¢)/po, and the

§W)
pO

other emanating from w = ,al/r E = 0, with zero initial slope and positive

curvature (b, + 2b2)ﬁJr(1’p a

ol’

Now we write the equations in the plane normal to n to obtain
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2 2 1.2 v 1, .2 Ve 2
(n § p&n)ﬁxgx51-552§ XnxB 0, 262§£X2X5-r[®2 byg

n
(1) 2
+a1—x %PIEX£XE=0, (11.8)

which constitute a system of two linear homogeneous algebraic equations in the
vectoxrs n X n X A ard n X n X B, thus showing that purely transverse waves exist
in the isotropic medium. For a nontrivial solutibn, the determinant of the

coefficients of n X n X A and n X n X B must vanish, which yields

2 4 2 2
r(l)po w - {[r(l)pou + po(bz—b3)]§ +alpo}w
2..2
+ {u b, -by) - -i— leg +p,al}§2 = 0. (11.9)

Equation (11.9) governs the propagation of transverse waves in the isotropic

. 2
is clear that for 2 given wavenumber £ there are two 7,

-

medium. From {11.%) it

and solving for w2 and expanding for small £, we obtain

~2 w2 4
Wy == E +0(E)
p
o
a (b, - b))
A 4
@l = -2+ =23 2. 0ch. (11.10)
2 r(1)p r(l)p
o o
Again, and tor the same reasons, it is cliear that boih &l and &2 are real for

real £, and on an w ve f diagram there are two branches, one emanating from
w=0 £= 0, with positive initial slope Ju/po, and the other emanating from

_(1)

w = al/l Por € = 0, with zero initial slope and positive curvature

(1)
b, b3)/ﬁ P2y -

12. Dynamic Potentials

In the classical theory of isotropic linear elasticity it is possible to

reduce the displacement equations of motion to wave equations in the Lamé

potentials by means of the Helmholtz resolution. In this section the analogous
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reduction is obtained for Eqgs. (10.5) and (10.6), which were derived for an isgo-
tropic two constituent composite material, and the completeness of the repre-
sentation is established following Sternberg45 with minor modifications. To

this end we write Egs. (10.5) and (10,6) in the invariant vector form
Cpu + L Bw) +UV [ tp)u + B, + L Bywl = pid (12.1)
Rt ¥ X Hig 1 Yz RNl =Y, :
V2 1 Ru+ (b, -b )w‘] + vV '[(B +-1- B )u + (b, +b_+Db )w]-a WSrp W (12.2)
2 2~ 2 3~ ~ 1 2 2/~ 1 2 3'~ 1~ o’ )
where we have taken the liberty of umitting the superscript (1) from w and r.
The substitution of the Helwmholtz resclutions

U=y Y NE, Y H =0,

{
o

W =VX, + VX E VG

~ ~ 1 e 1’ ~ ~1 = E] (].2.3)

into (12,1) and (12.2) yields

, 2 2, & [ 2 1 2, _ --]_
g[\)\+2u)v el+ (Bl+s2)v xl poell +z>< VAY) 51+2 82V 51 pcrgl =0, (12.4)

2 2 .
VOB +B V8, + (b) +2b, )V Xy —a %) - xp x,] +

191'”’0913 =0, (12.5)

1 2 2
'Yx,[,i 52V gl + (bz-b3)v gl-a
Taking the divergence and the curl, respectively, of both {12.4) and {12.5},

we obtain

2 2 2 " 2 2 1 2 .-
L4 - = — v P =
VI{A+2u)V 61+ (Bl+52)v xl poel] 0, vV [uV El +2 Bz El poﬁl] o,

2 2 2 .
VIR +B,)V8 + (b, +2b )V X - a X ~zp X 1=0,
21 2 2 s ]_
v [’2‘ BV H + (0~ D)VG) = 2,8 - 70 .Gy |20, (12.6)

where we have employed (12.3)2 4 along with the identity
r

YXIXVY=VV*evV -V V, 12.7)

~ ~




in arriving at (12.6). Clearly, from (12.6), we may wrile
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2 2 . 2 1 2 .
- v - - =
A+ 20778, + (B, +B VX - B =2, uVH, + 5 BVG ~pH =D,
(B, +PB )vze + (b, +2b )sz —-a. )., ~xp X, =d
1 2 1 1 2 1 11 o'l ’
—1-Bv23+b—b)vzc- G, -rp G, =e {12.8)
7 PV B+ by =bydV Gy - a6 mrp G =2 :
where
2 2 2
V'a=0, V'b=0, V'E=0, vV'a=0, Ve=0, V'e=0 (12.9)
Now, let
6=61+A, '3='131+'1\3‘, x=xl+b, 5=51+E’ (12.10)
where A, B, D and E are particular functions to be selected in order that
poA=a, p0§=2, aln+rpoD=d, al§+rpo§=s. (12.11)
To this end we take A, B, D and E in the forms
tT t 7T
1 1
A=E— a(X,s) dsdrT , §=E~ b(X,s) dsdT,
o fo Rl e) © oo
t t
D= 1 Jd(x s)sin w_(t-s)ds E = L J‘ e(%,s)sin w_(t-s)ds
- m’ - ’ ~ - { ~ ,v’ - )
CoFPo B °© WPy o ° (12.12)
WNEL e
2
wo = al/rpo, (12,13)
and on account of (12.9)
vazo, V2§=O, 2'B=0, V2D=O, V2§=0, V-§=0 (12.14)
Morecver, from (12.9)4_S and (12.11)3_4 we have
vb = 0, vE =o0. (12.15)
Substituting from (12.10) into (12.8) and employing (12,11) and (12.14), we obtain
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2 2 ~ 21, 2 .
O+ 20)V e+(Bl+Bz)qupoH-0, WV +-2-BZV§ pH 0,

2 2 .
(al+82)v 0+ (bl+2b2)V x—alx-rpox=o,

1 2 2 .
5 B9 H+ (b, -b)VG-aG-xp E=0. (12.16)

From (12.3) and (12.10) we may write

U=VH+UXH4L, W=UX+UXGHY, (12.17)
where
u=- VA-VXB, W=- W-YUXE. (12,18)

Equations (12,18) and (12.14), along with the identity (12.7) applied to B

and E, imply that

veu=0, Yxu=0, V+&=0, Yxw=0 (12.19)
Therefore, there exist functions ((X,t) and 1 (X,t) such that
~ 2 ~ 2
u=gg, vVg=0, E:z’ﬂ, vn=o0, (12.20)
and (12,17) and (12.20) permit us to write
u=Vo+VL+VXH, w=WX+VI+VXG. (12,21)
Substituting from {12.21) into {12,1) and {12.2) and employing {12,15)} and
(12.20), we cbtain
=0, Y@ +zp ) =o0. (12.22)

Hence, { and T must have the respective forms
g=al(t) + tBl(§) + Yl (5) ; T]=a2(t) + 82(§) cos wot + \(2 (')\(‘) sin wot . (12.23)

Equations (12.20)2 4 and (12.23) indicate that
=y

VB.=0 v\{l=o, V252=0,V2y2=0. {12.24)

e e Ak e e

ST

s ki

a2 A TR R o M B i iR

o o i

e e a2
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Finally, let us define
P=0+L -0, ¥=2x+N-0a,, (12,25)

which, with (12.21), {12.3) , (12.10) , and (12.14) enables us o write
2,4 2,4 3,6

b ’

E=ch+EXH, VeH=0,
w=U +VYXG, V+G=0, (12.26)

and from (12,16) and (12.23) - (12.25) we see that the potentials satisfy

2 2 o 2 1 2
A+ 20779+ (B) +B,)V -0 ¢=0, wv'H+ 5 B VG-p MH=0,
(B, +B.)V%p + (b, +2b )V - a V-1p =0
LRIV Y 1 2!V ¥ T VIR =0,
2B,9%+ (b, -b,)VG-aG~-1p 5=0 (12.27)
2 P2t AT Wy TV BT AR =0, <

and wc have shown that the representation is complete. It should be noted

that E(ﬁ,t) and w(x,t), given by (12.26)l 3 satisfy (12.1) and (12.2) provided
b
(12.27) hold even if H and E are not solencidal, as may be confirmed by direct

substitution.

12. Static Potentials

A complete solution of the displacement equations of egquilibrium for an

isotropic two-constituent composite material

2/ 1 Y .o P , )| ]
! - ¢ . ) U ' = = (0 3.
v \“E + 5 Bzﬂj +'vz 1_ﬁ_+g)3 + \Bl + > B )w +2 £ . (13.1)

21 1 1
v [E By + (bz'b3)¥] MY [(81 ty 52>5+ (b1+b2+b3)"~’J

l\.(l)

- au /@ 4] p £ =0, (13.2)
i is obtained in terms of stress functiens, which reduce to the Papkovitch
| . . . . 46.47
f functions of classical elasticity. The procedure follows that of Mindlin .
i
|
m - P R R P P T L ST ERETT IV W ST 4 ko oy b oLl i i dasdenobEledakicd i = FFTCRUPC S R A P - TR LT S T

et

1



The substitution of the Helmholtz resolutions

u=V+VxE, V:H=0,
weRW Iy, Y ¥=0,

into (13.1) and (13.2) yields

2
Plagle + X 1+ ot + oy x Y1+

g((Bl-FBZ)Vzw + (bl-+2b2)v2¢ - a ¥l +

1 2 2 -
vx[3 8,7 4 1oy - Py ay] 42 =0,

where for convenience we have introduced the definitions

% = pr]g’ %(l)= [r/(l“‘r)]pc’?(l)

™

+8
TR Sk .
2 T2 m r B3 T

Let us define a vector function B by

B=alszzx§+a'2Z¢ + g

then

<1
u3
i
|
arh>

Taking the divergence of (13.8), we obtain

g
dst]
1]

2 .
\Y (ozltp + azw; ;

which, with the definition

>
|

enables us to write

2rh 2

VXV,
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(13.3)

(13.4)

(13.5)

(13.6)

(13.7)

(13.8)

(13.10)

(13.11)

(13.12)
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Since
2 2
Vi(r *B) =2V "B+r VB, (13.13)
from (13.12) and (13.9) we have
2 S
VE =1r* fA, (13.14)
[s} ~ ~
where we have employed the definition
Bo= 2X-£ ' E (13.1%)

it should be noted that Egs. (13.9) and (13.14) are exactly the same as in
classical linear elacticity.

We must now eliminate H and ¢ from the representation in order to express
£g. (33.5) in terms cf }3, BO, { and E To this end we first take the curl of

(13.3) and employ (13.3)2 4 to obtain
J
V§=—z><§—a3v v. (13,16)

We now substitute from (13.15) into (13.11) t» obtain

¢ = [(c* B+Bo)/2a1] - (cvz/al)\if . (13.17)

(2%

Taking the divergence and the curl, respectively, of (13.3) aud employing

{13.3) we have
‘2,4
2 2 2 5
VA ((B, +8,)7%p + (b + 2637 Y- a il 4y £ =0, (13.18)
21 2 ¥ ~
v [E 8,9 + (b, -bvy-ayv|- v xi¥ -0, (13.19)

Now, substituting from (13.16) and (13.17) into (13.18) and (13.19) and re-

arranging terms, we find

2 2.2 4 (1)
- = nV . : .2
v @ ,Zlv W " (r §+Bo) +V £ /al’ (13.20)

\72(1-,%3\72)'\\{:- nvzvxﬁ—vx%(l)/al, (13.21)

27 AT TR
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where 2 l
2. b1 + 2b, i (81+Bz) - (Bl+52)u ‘ v
, S . -a—
1 a, al()\+2u) 1 2()\+2Lb)al ’
2
12=b2.7b3 - P2 ” =_B_2_' ' (13.22)
2 al 4ual ’ 2 2al

The substitution of (13.8) and the gradient of (13.17) into (13.3)l yields

(131+Bz) B

P - I'4 . — ———— s [ ____2_ k]
u E 0‘12‘33 .?.+Bo) A+ 20 X‘l’ 2 Exy’ (13.23)

where
@y = w200+ 2 . (13,24)

Thus, finally the representation consists of the differential equations (13.9),

>

(13.14), (13.20) and (13.21) along with the expressions (13.23) and (l3.3)3.

The functions B and Bo reduce to Papkovitch functions when Bl and 82 vanish,

14. Concentrated Forces

In this section we consider first the concentrated force and then the

3 concentrated relative force located at the origin in an infinite isotropi. twe- l

¢ constituent composite medium. In an infinite medium acted upon statically by

(L)

body forces £ and relative body forces % we have Egs. (13.9), (13,14), (12.20),

3 (13.3)4 and (13.21) for the potential functions B, BO, y and V, which enable

the detcrmination of the displacement fields u and w through (13.23) and (13.3)3.

h ek

In the case of the concentrated force we have %(l)==o everywhere and £=0

outside a region V’/ encompassir s the origin and containing a nonvanishing field 3

| of parallel forces f. A concentrated force is defined in the usual way by j

| ~ ¥
3 !
] ;
F P = lim r £ av. (14.1)

(.0 Y
vi-0 3
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For the case under consideration Egs. (13.9), (13.14) and (].3.3)4 take the form

shown and Eqs. (13.20) and (13.21) may be integrated twice to give
(L~ 22924 =n V(e  B+B ) 14.2)
1l 1 ~ A~ o'’ (14.
- 2_2
(1 - £2V )X=- KZZXE. 114.3)

Since, for the infinite medium, solutions of equations having the respective

forms
Ve =0, a-1HE=7, (14.4)
. . . 48
can be written in the respective forms
o ( oTTa/t
9=‘Ilﬁ | 0_‘(,9_)_va, ¥ = 12 ] — 5@ av,, (14.5)
v 1 4Ly 1
Q Q
whnere
2 2. %
= lx- 02 -4 - 0AF, (14.6)

is the distance from the field point P at R to the source point Q at X! and
2 2 . 2
R'R=x +y +2° , r/'rr=E"+0"+0" | (14.7)

we have from (13,9), (13.14), (13.20) and (13.21)

N . £ av L r’+E av
§=4m.] r ’ Bo=-4ﬂp« J r 4 (14.8)
v 1 v 1
" en/h
W=-—-—2- —r———VQ(rE"E'i'B)dV, (14.9)
4 y 1 : ©
1
i eh/ ke
V=- > \ - -nygdv. (14.10)
ans. v 1

Then, from (14.1) and (14.8) in the usual way, we obtain

B = P/4mR, B =0, (14.11)

Smh S

R
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since

lim r, =R, lim r’/=0. | {14.12)
vi-o0 v/=0

The relations in (34.11) naturally are the same as in the classical theory of

isotropic linear elasticity. Since

P = pe_, (14,13)
~ ~Z

where e denotes the unit base vector in the z-direction, we have
b

~2 2

R*B=zP/4np Jr° +2z° , UXB= (p/4nup.2)ge , (14.14)

where &g denotes the unit base vector in the cylindrical coordinate 6-direction,

("D

is the magnitude of the cylindrxical coordinate radial position and, of

course, we have
" +2° =R . (14.15)

Substituting from (14.14)l into (14.9) and converting to cylindrical coordinates,

we have
[o0]
KlP * 211. "rl/*q’lg
V= —= —_———=—— rfdrdé’ag (14.16)
Z 2 2 a2 =
Bmpl, oo -~er (T+Xf)2

where in cylindrical coordinates

2

0l

- - w2 A . .
r. = [+ -2 cos(B-6")+ (= -C,)'z] ’ (14.17)

1
and

2ex?ey?, 2722417, b=tan t x/y, @/ =tan - E/T. (14.18)

At this point it should be noted that since the integral over 6’ in (14.16) has

an interval of 2m which is the period of cos(6-6") in (14.17), the resulting

expression for ¥ in {14.1€) is actually independent of 6.
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Since vVxB is spherically symmetric, it is advantageous tc return to
(14.13) rather than to use (14.10) directly to c¢btain v because an ordinary
differential equation in R results, Substituting from (14.14)2 into (14, 3),

we obtain

(1= 2297y = (n,2/amR" ey . (14.19)

As the solution of (14.19) we can take

¥ = Vg Rieg, (14.20)

because

it

Y*ry=0, d,/R =0, (14.21)

Then Vz takes the sprericaily symmetric form
2 -2, 2
V' =R "3 (R79/3R)/IR, (14.22)

and substituting from (14.20) and (14.22) into (14.19) and employing (14.21)2,

we obtain

{1- !:;R_zd (de/dR)/dR] v6 = u29/4mR2 . (14.23;

On account of the relation

R~ 4a (Rve)/dR =R adRr dVe/uu,/dR, (14,24}
Eqg. (14.23) can be written
2.2 2 =
RV = 2747 (RV,)/AR” = n,P/ATUR, (14.25)
the inhomogeneous solution of which is
R
H.P
P I-l- sinh -B=2) 4 (14.26)
0 4ﬂu£2R 4 s £2

Thus, ¥ and V for the concentrated body force have been written as definite
integrals, and we carry the solution for the concentrated force no further,

Clearly, if the coupling coefficients Bl and BZ vanish, the solution reduces

to that of the classical theory of elasticity.
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For the case of small Ll and 12, which should be most common, asymptotic

representations of the solution for ¢ and Ve in terms of simple functions for

R << Ll’ 12

tions can be matched in the intermediate region. however, although Vg,

and R >> ll, £2 can readily be obtained. These asymptotic solu-

can be

matched relatively easily since it satisfies an ordinary differential equation,

the matching of { requires some effort because it satisfies a partial differ-

ential equation. Consequently, these asymptotic representations will not be

treated here.

In the case of the concentrated relative force we have f = 0 everywhere

£+ (1)

and f = 0 outside a region VvV’ enclosing the origin and containing a non-

vanishing field of parallel relative forces %(l), A concentrated relative force

is defined by

& = lim J' £ 1) gy, (14.
~ VI_.O V’ ~
For this case Egs. (13.9) and (13.14) take the form shown and by virtue of
(14.8), we have
B=0, B =0. (14.
~ o
In addition, from Egs. (13.20) and (13.21); we have
2 - zivz)\y =y - %‘l)/al, (14.
via - szz)x=.- Zx%(l)/al. (14.
Since for the infinite medium solutions of the equation having the form
2
v - e = o, (14
.. . 48
can be written in the form
~r_ /4
1 -1 1
e--ZT_TJ rl (1 - e )o dV, (14,

28)

29)

30)

.31)
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we have, from (14.29) and (14.30),

~x./4 -xr /2
1 -1 1771, (1 1 ~ (1 -1 1" "1
w::-. zﬁ? rn- [rl {(1l-e )E( )]ds+m.. “'\fl( )-y[rl (lL-¢ )]dV,
N l 3" l .l
S v (14,33) :
-xr./8 -x./g
1 -1 1" 72,4 (1) 1 ~ (1) -1 1" ~2
V = — - —— -
v = g ‘[gx [x] (1-e ) Has j'g xgle] (1-e ylav
s 1y
(14, 34)
and we note that the surface integrals in (14,33) and (14, 34) vanish because .
5(” = 0 outside V’. By virtue of (14,12) and (14.27), in the limit V' - 0 !
Egs. (14.33) and (14.34), respectively, reduce to
1 1. R4y 1 E R4y
w-hmlg'y[% (1-e ) s X'-Mmlgxy_i(l_e ﬂ’
' (14.35)
which, with (14.28), are the stress functions for the concentrated relative
force. i
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FIGURE CAPTIONS

Schematic Diagram Showing
the Interacting Continua

Schematic Diagram Showing
and Couple Vectors Acting

schematic Diagram Showing
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Schematic Diagram Showing
and Couple Vectors Rcting

the Relative Displacements of
the Linear Momentum and Force
in Continuum 1.

the Linear Momentum and Force
in Continuum 2.

the Linear Momentum and Force
in Continuum 3.




Continuum 2—

Figure 1

(PR

~— Continuum 3

Continuum||

SRR TR 1T P



il Zﬁwn*ﬂ?www‘}wiw:'?“'-"1-* o L

L A el P

Continuum |

i)

Figure 2

3

i e S o e T i e i i1 S e s Pt s el s AN ) o



2
)

Idz)f(Z)
LFZB

Figure 3

by




Continuum 3

Figure 4




