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PREFACE

This is the second part of a two-part report that describes re-
search initiated at Rand in mid-1975 under the Project RAND research
project "Target Acquisition.'" The subject is '"map matching" or image
correlation to achieve autonomous target acquisition and terminal
guidance for missiles (both strategic and tactical), with particular
emphasis on the acquisition phase.

Part I* presents an analysis of the probabilities of correct and
false acquisitions, extends it to include the effects of a number of
common error sources, and describes computer simulations based on data
samples from real scenes. Part 11 provides a more general and more
rigorous analytical approach. Some of the conclusions derive jointly
from both phases of the study, but Part II is published separately be-
cause it is addressed to readers with a theoretical and mathematical
interest in the subject.

Both reports should be of interest to defense and industrial proj-
ect managers and engineers involved in the development of missile guid-

ance, particularly those concerned with current or future correlator

programs.

%

H. H. Bailey, F. W. Blackwell, C. L. Lowery, and J. A. Ratkovic,
Image Correlation, Part I: Simulation and Analysis, The Rand Corpora-
tion, R-2057,1-PR, November 1976.

(A

& wa

.




S - @l S

EESY

e e et

T Ak

TR S ol A

- RN

-

—~— e ——

--

SUMMARY

Image correlation or '"map matching'" makes possible a type of
weapon guidance that provides autonomous target acquisition and track-
ing. This study analyzes the image correlation process, both theoret~
ically and by using computerized simulations; primary emphasis is on
the often neglected but crucial acquisition phase. (The requirement
for achieving adequate terminal tracking accuracy in weapon delivery
has been and is being studied extensively elsewhere and, for this re-
port, is considered to be of secondary importance; it is simply assumed
that, if necessary, operational systems could accommodate a software
change to maximize tracking accuracy after the initial acquisition has
been accomplished.)

The essential step in image correlation guidance is to find the
position of "best fit" between two similar but nonidentical images or
"maps': a sensor image of the terrain surrounding a desired target,
obtained in real time as the weapon approaches, and a previously pre-
pared reference image of roughly the same area. The match point is
found by systematically displacing one map relative to the other and
computing, for each of the many possible displacements, the value of
a comparison function or "metric'" that, ideally, has an extremum
(max or min) value at the match point. The particular displacement,
suitably scaled, that produces the extremum becomes the correction sig-
nal for the guidance system.

Unfortunatelyv, precisely because the two maps are not identical--
owing to detector noise, real changes in the scene, geometrical distor-
tions, and several other causes that are discussed in Part I* of this
report--the displacement that produces the extremum does not always
correspond to the correct match point. It only does so on the average.
Accordingly, this analysis of Part I focuses on two topics of principal

concern: (a) the probability of achieving a correct match (conversely,

%

H. H. Bailey, F. W. Blackwell, C. L. Lowery, and J. A. Ratkovic,
Image Correlation, Part I: Simulation and Analysis, The Rand Corpora-
tion, R-2057/1-PR, November 1976.
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the probability of a '"false lock" or, in military terms, a gross error)
and (b) the selection of an appropriate comparison metric to maximize
(a).

Part I of this report describes the results of a direct approach
to determining the probability of a correct match, Pc, first for random
scenes with Gaussian statistics, and then for real scenes in the presence
of noise and various errors. Two commonly used comparison metrics are
calculated by using the so-called Product (a sum of products that is
related to classical correlation) and MAD (mean absolute difference)
algorithms, respectively. It is shown that in all cases PC increases
with the size of the data sample and with the elemental signal-to-noise
ratio (S/N), and decreases (slowly) with increasing search area. It is
also shown that at low S/N, the Product algorithm is the preferred one
(i.e., it leads to higher probabilities of correct lock), but at high
S/N, the MAD algorithm is preferred. However, when geometrical errors,
such as synchronization (an effect peculiar to digital systems in which
the cells of the two maps are staggered by some unknown fraction of a
picture element), rotation, and scale factor (magnification), are pres-
ent, the effective value of S/N is significantly reduced. Thus the
higher values that would render the MAD or similar algorithms attractive
are seldom realized in practice.

The fundamental nature of the map-matching problem is reexamined
in this portion of the study (Part II), and the degree of theoretical
justification for the use of the various comparison metrics is also in-
vestigated. Since the problem is basically one in statistical decision
theory, it is shown that the optimum solution is achieved by computing
the likelihood ratio for each comparison and then choosing the match
point at the place where the likelihood ratio is maximum. Unfortunately,
that computation requires a knowledge of the N-dimensional joint proba-
bility distributions--functions that are unknown and, in a practical
sense, unmeasurable. Hence, one must resort to approximations. These
usually take the form of maximizing or minimizing one of several func-
tions, herein called "metrics." 1In much current work, these are chosen
almost arbitrarily and therefore must be subjected to essentially experi-

mental validation. By considering two-picture-element scenes, such that
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the likelihood ratio and several of the commonly used metrics can be
expressed in simple algebraic form and discussed in geometrical terms,
the essential features of the various metrics are explained and com-
pared with the likelihood ratio. In this way heuristic arguments are
developed that support the use of the Product algorithm when S/N is low
and the MAD algorithm when S/N is high. The notion, borrowed from
signal detection theory, that the classical correlator (i.e., the
Product algorithm) is optimum for this application is shown to be erron-
eous; the two problems are fundamentally different.

Two major conclusions were derived from this study. First, on the

[ basis of the empirical results of the simulation studies described in

é Part I, it appears that the theoretically predicted values of PC for
random scenes with Gaussian statistics can be considered as an approxi-
mate lower bound for the probability of acquisition in a real applica-
tion. The quantitative relationships between PC and various system

: parameters that have been derived for random scenes, and that have been

largely confirmed by simulation testing with real scenes, can therefore

-

be used to carry out various design tradeoffs, including a balancing of
the costs of a tighter overall Pc requirement with the loss of those

weapons that fail to acquire. The theoretical model of the random

e —

Gaussian scene is known to be not completely realistic, but it appears
to err on the conservative side. Thus, a "floor" for Pc can be estab-
lished, which should permit the flight test performance of future prop-

erly designed systems to be somewhat better (i.e., to exhibit fewer

gross errors) than is predicted by the theory.
5 The second conclusion is that there ought to be better algorithms

than those that have usually been used in the past. Since (a) there

is at present little theoretical basis for the commonly used comparison
metrics, and (b) most real terrain contains features beyond those de-

scribable by simple Gaussian statistics, it seems both reasonable and

» T T

not inconsistent with theory to search for more efficient ways to carry
out the initial map-matching or target-acquisition function. In par-
ticular, drastic preprocessing to extract special features of a given
scene, using techniques currently being developed and exploited in the

field of pattern recognition, should lead to more efficient algorithms.
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I. INTRODUCTION

Map matching is fundamentally a problem in statistical decision
theory. During the acquisition phase it is necessary to decide whether
or not the sensor and reference maps are matched. But because of noise,
errors, distortions, etc., possibly in each map, there is no foolproof
way to make certain that the maps have been matched correctly. The
most that can be done is to determine the probability that the maps
are in a certain geometrical relationship to each other based on the
available data. The optimum map-matching system, therefore, is by def-
inition the system whose output is the set of a posteriori probabilities
describing each possible relationship. Once these probabilities are
determined and costs are assigned to each kind of wrong decision, the
decision rule is implicitly defined by the requirement that some measure
of the total cost, e.g., the average total cost of a decision, be a
minimum. The cost assignment and the details of the resulting decision
rule do not affect the underlying structure of the map-matching system.
The decision rule, whatever its form, is necessarily based on the values
of the a posteriori probabilities. Hence, the primary task is to deter-~

mine these probabilities.
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II. STATISTICAL DECISION THEORY

The basic relationship between a priori and a posteriori probabili-
/ ties is given by Bayes' formula. For simplicity of exposition, suppose
that only two possibilities are of interest, namely that the maps are,
or are not, matched. Let these two conditions be denoted by the sym-
bols S (signal) and B (background), respectively. If a sensor map

consisting of N data elements is represented by the N-dimensional vec-

% tor x, then Bayes' formula for the matched hypothesis states that

;

: P(S|x)P(x) = P(x[S)P(S) , &Y

l where P(Slx) = the a posteriori conditional probability that the
'3 maps are matched, given that the sensor map has the

value x,

¢ P(x) = the a priori probability that the sensor map has

1 the value x,

; P(x|S) = the conditional probability that the sensor map has

3 the value x, given that the maps are matched,

? P(S) = the a priori probability that the maps are matched.

An analogous statement with S replaced by B holds for the unmatched
hypothesis. Since there are only two possibilities, the probability

that the sensor map has the value x is simply

P(x) = P(x|S)P(S) + P(x|B)P(B) . (2)

R

The likelihood ratio L(x) is defined by
L(x) = P(x|s)/P(x|B) , (3)

so that, after substituting (2) and (3) into (1), the a posteriori

probability of a match can be written as

1

1 & P(B)/P(S) ° (4)
L(x)

P(S|x) =

 ARIIEITN ST R .
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Since the probability that the map assumes precisely the value x is
usually zero, it is to be understood that the indeterminate form of
the likelihood ratio is to be replaced by the ratio of the respective
probability densities p(x|S) and p(x|B). The a priori probabilities
can be considered to have known constant values that describe the
estimates of the position of the flight vehicle and the direction of
the sensor's line of sight when a sensor map is obtained. Since the
a posteriori probability is a simple monotonic function of the like-
lihood ratio, it is clear that a knowledge of the likelihood ratio's
value is equivalent to a knowledge of the a posteriori probability.
Hence, the optimum map-matching system is nothing more than the system
that computes the value of the likelihood ratio for each comparison
between a sensor map and a reference map.

In a purely formal sense, Eq. (4) represents a complete solution
to the problem. The essential difficulty in applying Eq. (4) to a
practical situation, however, is that the N-dimensional joint proba-
bility functions needed to form the likelihood ratio are usually un-
known. A typical sensor map may consist of tens to thousands of
spatially correlated element values with a non-Gaussian joint proba-
bility distribution. In the absence of a theoretical framework to
describe the form of the distribution, the only recourse for deter-
mining the distribution is direct measurement, which, for maps con-
taining even as few as three or four elements, is a practical
impossibility.

Because the probability distributions needed to form the lile-
lihood ratio are generally unknown, and, in a practical sense, essen-
tially unmeasurable, another approach to map matching is required.
The approach most frequently encountered in the literature is one based

*
on the extremals of a metric.

EXTREMAL METRICS

A metric F is a class of pairs of the form (x, F(x)), where x is

The term "metric' as used here simply refers to a scalar func-
tion of a vector. There is no requirement that the metric satisfy the
so-called triangle inequality as in the study of functions of a real
variable.
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a vector and F(x) is a number. The first member of the pair is often
called the object and the second member, its value. Many metrics have
extremal properties, i.e., for some particular vector, the value of
the metric is either a maximum or a minimum. Familiar examples of

such metrics are given below.

The Normalized Inner Product (NProd) Metric

The normalized inner Product, sometimes called the normalized

Product (NProd), is defined by

F&) = o o ks

where y is some given vector, x * y denotes the inner Product, and

|| || denotes the norm of a vector defined by

1

1%

=l = x = x)* and |yl| = v * ¥)* . (6)
The extremal property of this metric follows from the familiar Cauchy-
Schwartz inequality. Thus, IF(x)| < 1 for all vectors x # y, with

equality occurring only when x = Cy, where C is an arbitrary constant.

The Difference Squared Metric

This metric is defined by

FO = Jle - y]* (7)

where y is some given vector. Thus, F(x) 2 0 for x # y, with equality

only when x = y.

The Mean Absolute Difference (MAD) Metric

This metric is defined by

F(x) =lei AR (8)
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where X and ¥y denote 7th components of the vectors x and y, respec-
tively, and the sum extends over all components. As with the differ-
ence squared, F(x) > 0 for x # y, with equality only when x = y.

If the vectors x and y are associated with the sensor and the
reference maps, respectively, then a physically reasonable basis for
attempting to adapt such metrics to the problem of map matching im-
mediately suggests itself. If it is assumed that when the sensor's
line of sight (i.e., the map center) coincides with the target, the
sensor map ''most nearly' resembles the reference map, then it is
reasonable to assume that the value of the metric in that case will
be "closest" to the extremal value. Because of noise and other dis-
tortions, however, a perfect match is never to be expected. Thus,
some acceptance threshold different from the extremal value is implied.
If it is known beforehand that the sensor map is contained within the
ensemble of maps available for comparison, i.e., the reference map,
the decision rule may simply decide that the extremal-producing map
defines the match point. TIf the sensor map is not known to be con-
tained within the reference map, the decision rule may require the
value of the extremal to be above some prescribed threshold value.

The obvious question that arises when such metrics are used is,
"What metric should one use? or, stated differently, How is an optimum
or at least a ''good" metric selected? The answer clearly depends on
the map statistics--which have been completely ignored in the above
definitions of metrics. Any attempt at an analytical formulation of
this question leads directly back to the original statement of the
map-matching problem as a problem in statistical decision theory. The
optimum metric is the likelihood ratio defined by Eq. (3), since it
essentially defines the most that can be known, namely the a posteriori
probabilities that the maps are matched given the available data. Thus,
if a completely ad hoc approach to map matching is to be avoided, some

sort of theoretical analysis based on the likelihood ratio must be

undertaken.

HEURISTIC INTERPRETATION OF THE LIKELIHOOD RATIO

Some insight as to what constitutes a good metric can be obtained

if one considers the likelihood ratio for the extremely simple case of

e T e o Sk SOOI ST
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maps that consist of only two elements. This simplification permits
the use of elementary geometrical concepts to illustrate the essential
features of various metrics. The extension of the concepts to larger
maps is straightforward.

A single two-element map is thus represented by a pair of values
(xl,xz). The ensemble of possible sensor maps for the unmatched con-
dition is then described by its joint probability density function
p(xl,leB). For simplicity, let the mean value of this distribution
be assumed zero. The two values comprising a sensor map will generally
be correlated, so that the intersection of a horizontal plane with the
density function will produce a somewhat oval-shaped curve, as shown

by the dashed curve of Fig. 1. (The exact shape of this curve of

L Critical region defined
by threshold value
of likelihood ratio

|

1— Background

~Background plus noise

Fig. 1— Schematic representation of the map-matching problem
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intersection depends, of course, on the particular form of the joint
probability density function.) Thus, the maps within this boundary
contour occur with a certain frequency determined by the height of
the intersecting plane. If the map values are highly correlated, the
oval tends to be narrow; if the correlation is weak, the oval tends
toward a circle.

Suppose for the moment that no errors of any kind are present in
either map. If the values associated with the sensor map are (51’32)
for the matched condition, the joint probability density function
of the sensor's output is a two-dimensional Dirac delta function,

namely,
p(x]|s) = p(xl,les) = 6(x1 - sl)G(X2 - 52) . 9)
The likelihood ratio in this simple case is then

6(xl - sl)G(x2 - s2)

L(xl,xz) = v (10)

p(xl,leB)

Thus, if the joint probability density function p(xl,x2|B) is well be-
haved, the likelihood ratio itself has the form of a delta function. The
decision rule, which identifies the match point with the maximum value
of the likelihood ratio, then tells us to decide that a match is pres-
ent whenever precisely the pair (sl,sz) occurs. The rule, of course,
simply expresses the obvious. We know exactly what to expect when a
match is present. Although the occurrence of the pair may not be an
unambiguous indication of a particular match point, we have no means
for refining our decision. Hence, the best we can do is to assume

that a match is present. The situation is completely analogous to
finding a specific two-digit number in a table of numbers, for example.
If we know that the table is accurate, we decide that we have found

the number when precisely the reference two~digit pair occurs. In the
absence of other information, every such pair must be considered a

match point.
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Now suppose that both the sensor and reference maps are subject
to error because of noise, distortions, etc. For simplicity, suppose
further that all of these errors have zero mean value, are statis-
tically independent of the uncorrupted map values, and can be considered
to be additive in their effect. If all of these effects are simply

called "noise,"

with a joint probability density function p(xl,leN),
then, if the noise is uncorrelated and has a zero mean value, the
intersection of the noise distribution with a horizontal plane will

be a circle, as shown at the origin in Fig. 1. With these assumptions,
the joint probability density function p(xl,leBN) of the corrupted

sensor maps for the unmatched condition is Pgy = P * P> where the

asterisk denotes the convolution operation and whege the arguments of
the functions have been dropped and the conditions incorporated into
subscripts to simplify writing. Similarly, the joint probability
density function p(xl,XZISN) of the sensor's output when the maps are
matched is Poy = Py * Pg = pN(xl - SeX, - sle). Therefore, hori-
zontal cuts through these two probability density functions result in
contour curves somewhat like the solid curves of Fig. 1 that are
centered on the origin and the point (sl’SZ)'

If the noise is small compared with the variance of the uncor-
rupted sensor map values, the maximum value of the likelihood ratio
will occur in the neighborhood of the reference map values (sl,sz).

A horizontal cut through the likelihood ratio near its maximum value
will then result in a closed curve somewhat like that shown bounding
the shaded area in Fig. 1. The occurrence of a pair of map values
close to the reference values is then an indication of a probable
match. Thus, for the assumptions stated above, a metric that defines
a family of closed contours about the reference map values qualita-
tively resembles the likelihood ratio. It is to be emphasized, how-
ever, that the assumption that all the errors affecting the maps can
be lumped together into a single, statistically independent, proba-
bility density function with random noise-like properties is a simpli-

fication made here for illustrative purposes only.
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LIKELIHOOD RATIO FOR GAUSSIAN DISTRIBUTIONS

1f it is assumed that all the distributions have a Gaussian form,
then an explicit representation of the likelihood ratio is obtained
by simple substitution. Let it therefore be assumed that the ensemble

of possible sensor map values for the unmatched condition has the
joint probability density

2 2 2 2
exp [-(x1 - Zer1x2 + xz)/ZOB(l - rB)] -
2no§(1 - 1'12;)!i

p(xl,leB) =

where CB is the root-mean-square variation of the uncorrupted sensor

map values and Ty is the correlation between the values x., and x..

1 2
Similarly, let it be assumed that

exp [-(xi + x%)/ZOé]
p(x),x%,[N) = 2 ; (12)
ZWON

where ON is the root-mean-square variation of the noise. Then by
forming Pgn and PaN and substituting into Eq. (3), one can show that
the logarithm of the likelihood ratio is proportional to the quadratic

form
F(xl,xz) = o;(xi - 2rBNx1x2 + xg)
—Ogn(l - r;N) [(x1 - 81)2 + (x, = 82)2] ’ (13)
where
o%N = o§ + o§ (14)

(15)
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Since in practice the correlation is greater than zero and less
than one, one can show by elementary analytical geometry that this
equation defines an ellipse with axes rotated 45 deg with respect to

the X),X, axes. The center of the ellipse is displaced from the un-

2
corrupted map values (81’32)’ but the displacement tends to zero as

the ratio of ON/OB tends to zero, i.e., at high values of the signal-
to-noise ratio. When the correlation is zero, the ellipse reduces to

a circle. The likelihood ratio thus assumes its largest values when

the ratio of the map values is approximately in the ratio of the ref-
erence map values, and when the values of the sensor map are separately
approximately equal to their corresponding reference map values.

When the background variation is small in comparison with the
noise, the sensor's output consists essentially of either the desired
signal plus noise, or noise alone. This situation is depicted in Fig.
2. The problem of discriminating between these two cases is the classi-
cal problem of signal detection. Its solution is the well-known matched
filter that, for the case of Gaussian noise, is the classical correla-
tor, i.e., the unnormalized product metric. This result follows im-
mediately from the likelihood ratio (see Eq. (13)) when Oy and ry are

set equal to zero. In that case, the ellipse defined by the likelihood

ratio degenerates into the straight line defined by
F(xl’XZ) = s1%; + SyXy - (16)

The problem of map matching has sometimes been confused with the
problem of signal detection. As a result, the solution to the signal-
detection problem, i.e., the classical correlator, has sometimes been
erroneously interpreted as the theoretically optimum solution to the
map-matching problem. The starting point in many analyses of map
matching has therefore been the calculation of the classical corre-
lation function. The fundamental difference between the two problems,
however, is readily apparent when Figs. 1 and 2 are compared. In the
case of map matching, one needs to distinguish between signal plus
noise and background plus noise. In the case of signal detection, it

is necessary to distinguish between signal plus noise and noise alone.
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r Signal plus noise

Noise

T i AR

o

Product metric

e vt

Fig. 2— Schematic representation of the signal-detection problem

i

H

3 The solution of either problem lies in the calculation of the likeli-
: hood ratio, which, for additive Gaussian noise, takes the form of

g

H Eq. (13) and the shaded ellipse of Fig. 1 for map matching and of

Eq. (16) and the straight line of Fig. 2 for signal detection.

The more general case in which the noise associated with the

» u—

matched condition is different from that for the unmatched condition
is discussed in the appendix. Noise in both cases is often partly due

to geometrical misalignments in angle or scale. In such cases, the

statistics of the sensor's map for the matched condition will strongly

depend on the properties of the map in the vicinity of the nominal
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match point. It is shown in the appendix that when the conic is non-
degenerate, the locus of the likelihood ratio can be either an ellipse,
hyperbola, or parabola, depending on the relative variances of the
sum and difference of the pixel values for the matched and unmatched
conditions. In most cases of practical interest, however, neither
variance for the matched condition is expected to exceed its corre-
sponding variance for the unmatched condition. Thus, as the analysis
presented in the appendix shows, the locus of the likelihood ratio is
always an ellipse, which agrees with the simplified discussion above.
In summary, therefore, we have the following two extremes: when
the signal-to-noise ratio is very large, the likelihood ratio reduces
to a delta function, so that the optimum metric is one that requires
each component of the sensor map vector to fall within an arbitrarily
small distance from its corresponding reference map value. This is
essentially the MAD metric. When the signal-to-noise ratio is very
small, the likelihood ratio approaches the unnormalized Product metric.
These conclusions, although based on an analysis of a two-picture-

element map, are readily extended to maps of arbitrary size.
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ITI. A COMPARISON OF THE LIKELIHOOD RATIO FOR
GAUSSTIAN DISTRIBUTIONS WITH OTHER METRICS

It is interesting to compare the metric defined by the likelihood
ratio for the Gaussian case discussed in Section II with some of the

metrics mentioned earlier in that section.

THE NORMALIZED INNER PRODUCT (NProd) METRIC

In two dimensions, the normalized inner Product metric has the

form

%8, + x.8
11 22
F(x,,x,) = (17)
) G 2 Pt T 2.5 *
(xl + x2) (s1 + 52)

where the given vector, of course, is the reference map vector (sl,sz).

The values of the metric that exceed some prescribed threshold Fo are
those within the angular sector #* c:os—1 F0 centered about the line
through the origin and the point (81’32)’ as shown in Fig. 3. The
normalized inner product assumes its largest values when the ratio of
the sensor map values x2/xl is equal to the ratio of the reference map

values SZ/S Thus, this metric is appropriate when no a priori know-

ledge of abiolute map values is assumed. The only assumption is that
the two data sets are in a linear relationship.

If the statistics of a sensor map are assumed to be stationary
and ergodic, the average norm for a sensor map containing N elements

approaches the ensemble average. Thus,

(18)

lim ”x”/N% =03 >
N-oo

where OB is the root-mean-square variation of the sensor map values

averaged over an infinite ensemble. If one assumes that thc sensor
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Fig. 3 — Comparison between metrics

map contains so many elements that Eq. (18) can be considered an
equality for a finite value of N, then the average norm associated
with both the sensor and reference maps can be considered constant
for all maps. Except for a constant factor, Eq. (17) reduces to the
classical correlator or the unnormalized Product (Prod) metric defined
by

F(x) =§- =3 , (19)

where y is the reference map vector. For this case, computations using

either metric will give approximately equal performance.
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The distinction between the use of the Product and normalized
Product metrics is well illustrated in the calculations of Sections II,
ITI, and IV of Part I* of this report. In Sections II and II1I, the
' probability of acquisition is computed over an infinite ensemble so
that the unnormalized Product metric can be used. In Section IV, cal-
culations are made for a finite sample of maps. Hence, the different

metrics produce different results.

THE DIFFERENCE SQUARED METRIC

The locus of the difference squared metric defined by Eq. (7) is

a circle centered at (sl,sz), as shown in Fig. 4. Thus, the acceptance

region is similar to that defined by the likelihood ratio for the spe-

i

cial case of uncorrelated map values, but the location of the center
of the circle is not at the optimum point. The displacement between
centers is minor, however, when the signal-to-noise ratio is large.

The metric takes no account of the possible correlation between map i

values as does the likelihood ratio.

-

THE MEAN ABSOLUTE DIFFERENCE (MAD) METRIC

The locus of the mean absolute difference (MAD) is a family of

PP —

squares rotated 45 deg with respect to the x axes, also shown in

s
Fig. 4. The properties of this metric are thus similar to the differ-

ence squared metric. The acceptance region is a small symmetrical area
surrounding the reference map values. This metric does not make use

of the correlation between sensor map values.

PROBABILITY OF CORRECT ACQUISITION

Bl e s M

When the desired map 1s assumed to be present in the ensemble of

maps, and when the extremal value of the ensemble is assumed to define

e e D

the matched condition, the probability of correct acquisition Pc(s)

e

H. H. Bailey, F. W. Blackwell, C. L. Lowery, and Jj. A. Ratkovic,
Image Correlation, Part I: Simulation and Analysis, The Rand Corpora-
tion, R-2057/1-PR, November 1976.
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Fig. 4 — Further comparison between metrics
for a maximizing metric can be defined as
oo F Q
P_(s) = f p(F|S) f p(F'|B) dF’| dF , (20)
-00 -Q0

where p(F|S) is the probability density of the metric given that a match
is present, p(F|B) is the probability density of the metric given that a
match is not present, and Q is the total number of out-of-register com-
parisons. Equation (20) is equivalent to Eq. (3) of Part I. A simple
change in the limits of integration defines the probability of correct
acquisition for a minimizing metric. The calculation of this proba-

bility requires a knowledge of the probability density functions of
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the metric, which, in turn, depend on the multidimensional joint prob-
ability density function of the sensor map values. This joint proba-
bility density function is generally unknown, so that some sort of an
assumption regarding the form of the distribution of the metric's

values must be made in order to use Eq. (20) to estimate the probabil-
ity of correct acquisition. The calculations described in Sections II

and IIT of Part I of this report are based on the assumption that these
distributions are Gaussian.
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IV. SUMMARY AND CONCLUSIONS

The theoretical solution to the problem of map matching is to com-
pute the likelihood ratio. Unfortunately, the probability density func-
tions needed to form the likelihood ratio are generally unknown, and,
in a practical sense, essentially unmeasurable. Hence, some sort of
theoretical model of the statistics of maps must be developed or simply
assumed if an approach based on the likelihood ratio is to be pursued.

The common approach to map matching based on the extremals of a
metric has little theoretical foundation beyond the simple notion of
continuity. The extremal property of a metric generally represents a
universal statement about the class of all functions. Moreover, the
extremal value is associated with a particular function or a narrowly
defined class of functions whose values are precisely specified at
every point. This corresponds to the ideal error-free (noiseless)
sensor map, which, of course, occurs with probability zero. By con-
tinuity, however, it is reasonable to assume that when the sensor map
is close to the ideal, the value of the metric is close to the extremal.

When the various map errors can be treated as additive noise, a
heuristic interpretation of the likelihood ratio suggests the proper-
ties of a good metric. When the noise is small compared with the map
variance, and when the absolute amplitude of the sensor map is cali-
brated to that of the reference map, a metric that requires an approxi-
mate equality between corresponding sensor map and reference map values
should be used. The MAD algorithm is such a metric. But when the
noise is large compared with the map variance, and when no assumption
concerning absolute signal levels is made, a metric requiring an ap-
proximate proportionality between corresponding sensor map and ref-
erence map values should be used. The normalized Product algorithm is

such a metric.

The above conclusions, although based on an analysis of a siuple
two-picture-element map, are readily extended to maps of arbitrary size.

The sometimes encountered statement that the classical correlator,
i.e., the Product algorithm, is a theoretically optimum approach to map
matching has limited validity. The statement often derives from a con-

fusion between the problem of map matching and the problem of signal

detection.
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Appendix

LIKELIHOOD RATIO FOR CORRELATED BIVARIATE GAUSSIAN DISTRIBUTIONS

Suppose that the joint probability densities for the matched and
unmatched conditions are denoted by p(x,y|SN) and p(x,y|BN), respec-

tively, where

(= s - 2rg (k= s -5y + (y - sy

2

SN)
2 7 %

2mo (1 - r)

TSN
3
ZUSN(l -r

exp | -

p(x,y|SN) = (A.1)

and

2 2
X - ZrBny +y

2 2
ZOBN(l - rBN)
2 Wk >
BN)

exp | -

p(x,y|BN) = (A.2)

2
ZWOBN(I -r

2 2
where, in general, . # OaN’ and Ton # ToN

The likelihood ratio L(x,y) is defined by

_ p(x,y|SN)
L(x,y) = fﬂ'ﬁ“m«') ; (A.3)

Its logarithm, in terms of the two probability densities defined by
Eqs. (A.l1) and (A.2), is

02 (1 - r2 );5 x2 - 2r_ xy + y2
BN BN BN
fn L = > 7 5 + 5 5
Ogn(1 = Tgy) 205 (1 = Tp)
(A.4)
(% = 8.3 = Zo_(x - By ~ 0,) + iy = 80"
1 SN 1 2 y 2
& 2 2
Wl = Tou)
AT IRITIT. A 0 . A b B . St e
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If Eq. (A.4) is rewritten as the quadratic form

sz + Bxy + Cy2 +Dx+Ey+F =0, (A.5)

the coefficients of the quadratic terms are easily found to be

A= — 1 5 - 3 1 =g, (A.6)
opn(l = Tpy)  Tgn( - Tgy)
-y E
B = — B — + 5 = - (A.7)
opy( - TRy) gyl - rgy)

From elementary analytical geometry, the acute positive rotation

angle, 6, that transforms the conic to its principal axes is given by

B
A-~C"’

tan 26 = (A.8)

If B as defined by Eq. (A.7) is assumed to be different from zero, it
follows immediately that the principal axes of the conic are rotated
45 deg with respect to the (x,y) ccordinate axes.

If the conic is assumed to be nondegenerate, i.e., if

2A B D
A=1B 2C E |#0, (A.9)
E D 2F

then, from elementary analytical geometry, the type of conic is deter-

mined by the following rules:

1. 1f B2 - 4AC
2. 1If B2 - 4AC < 0, and A and A + C disagree in sign, the

0, the conic is a parabola,

conic is an ellipse. \
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s L EE 32 - 4AC < 0, and A and A + C agree in sign, the conic

is an imaginary ellipse, i.e., no real locus.

5, If B2 - 4AC > 0, the conic is a hyperbola.

From physical considerations we know that a real locus always
exists, so that the condition B2 - 4AC < 0 alone is sufficient to con-

clude that the conic is an ellipse. If W is defined as

W=8 - 4AC , (A.10)

Lt - @ ki

¢ then, since A = C from Eq. (A.6), we have

W B° = AAC = (B - TA}CE + 24) . (A.11)

By combining Eqs. (A.6) and (A.7), it is easy to show that

; B-24=- |5t -1 (A.12)
< - -
$ Oy (1 rg) O -r)
L}
and
B+ 24 = —— -t : (A.13)
OBN(l + rB) OSN(l + rSN)

{
; From elementary probability theory a quantity of the form 02(1 + r)

i is recognized as one-half the variance of the sum gf two correlated ran-
é dom variables. Similarly a quantity of the form ¢"(1 - r) is recognized '
i as one-half the variance of the difference of two correlated random
5 variables. Using these facts, the relationship between the type of
: conic and the properties of the two probability densities is immediately
i evident from Eqs. (A.10), (A.11), (A.12), and (A.13). When the variances

of the sum and difference of the pixel values for the matched condition

are both either less than, or greater than, the corresponding variances
for the unmatched condition, the conic is an ellipse. When the respec-

tive variances for the matched and unmatched conditions are in an
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opposite algebraic relationship--i.e., in the matched condition one
variance exceeds while the other is less than its corresponding var- ‘
iance for the unmatched condition--the conic is a hyperbola.

0f the various possibilities, the case in which the variances in
the matched condition are each less than their corresponding variances
in the unmatched condition is the principal case of practical interest. |

Although the variability of the sensor map for the matched condition |

depends on the statistics of the map in the vicinity of the match
point, its variation on the average should not exceed that associated

with the unmatched condition. Hence, the acceptance region defined by

v N - adie

the likelihood ratio will be elliptical in most cases of practical

3 interest.

,i The center of the conic can be found either by completing the
squares in Eq. (A.4) or by finding the coordinates of the extremum

of the likelihood ratio by using elementary differential calculus. If

the conic is transformed to its principal axes by the transformation

(x - y)/zl/2 (A.14)

e
]

S P

and

{x % y)2% , (A.15)

<
]

it can be shown that the coordinates of the center (uo,vo) are given

by

B

2)
Ly
2 QOSN(I +r

-(s1 + s

u = (A.16)
v )
SN

and

VBRI ORI . i

o (A.17)
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,L where
i P=B- 2A (A.18)
4’
N and
Q=B+ 2A . (A.19) :

Thus, the conics for different values of the likelihood ratio are all

concentric.

Finally, it can be shown by completing the squares in Eq. (A.4)

i A e @ 2l

.

that the major and minor axes of the conic are always in a constant

ratio, namely

o amts m —

1 1
au:sve=|p|%: |q®. (A.20)
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