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PREFACE
.

This is the second part of a two—part report that describes re-

search initiated at Rand in mid—1975 under the Project RAND research

project  “Target Acquisi t ion .” The subject  is “map matching” or image

correlation to achieve autonomous target acquisition and terminal

guidance for missiles (both strategic and tactical), w ith par ticular

emphasis on the acquisition phase.
*

Part I presen ts an analysis of the probabilities of correct and

false acq uisit ions , extends it to include the effet ts of a number of

common error sources , and describes compu ter simula tions based on da ta

samples from real scenes. Part II provides a more general and more
rigorous analytical approach . Some of the conclusions derive jointly

from both phases of the study, but Part II is published separately be-

cause it is addressed to readers with a theoretical and mathematical

interest in the subject.

Both reports should be of interest to defense and ~.ndustria1 proj-

ect managers and engineers involved in the development of missile guid-

ance , particularly those concerned with current or future correlator

programs .

*
H. H. Bailey , F. W. Blackwell, C. L. Lowery , and J. A. Ratkovic ,

Imag e ‘o~ r~~at i.on , Part I :  Simulation and Ana l/ / s i s , The Rand Corpora-
t ion , R—2057, l—PR , November 1976.
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SUNNARY

Image correla t ion or “map ma tching” makes possible a type of
weapon guidance that provides autonomous target acquisition and track-

ing. This study analyzes the image correlation process , both theoret-

ically and by using computerized simulations; primary emphasis is on

the of ten neglec ted but crucial acquisition phase. (The requirement

for achieving adequate terminal tracking accuracy in weapon delivery

has been and is being studied extensively elsewhere and, for this re-

por t, is considered to be of secondary importance; it is simply assumed
that, if necessary, operational systems could accommodate a software
change to maximize tracking accuracy after the initial acquisition has

been accomplished.)

The essential step in image correlation guidance is to find the

position of “best fit” between two similar but nonidentical images or

“maps”: a sensor image of the terrain surrounding a desired target ,

obtained in real time as the weapon approaches, and a previously pre-

pared reference image of roughly the same area. The match point is

found by systematically disp lacing one map relative to the other and

computing , for each of the man y possible disp lacements, the value of

a comparison function or “metric” that , ideally ,  has an extremum

(max or m m )  value at the match point. The particular displacement ,

sui tably scaled , that produces the extremum becomes the correction sig-

nal for the guidance system .

Unfortunately , precisely because the two maps are not identica l——

owing to detector noise, real changes in the scene , geometrical distor-

tions, and several other causes that are discussed in Part I of this

repor t——the displacement that produces the extremum does not a lways

correspond to the correct match point. It only does so on the average.

Accordingly , this analysis of Part I focuses on two topics of principal

concern: (a) the probability of achieving a correct match (conversely,

*
H. H. Bailey, F. W. Blackwell , C. L. Lowery , and J. A. Ratkovic ,

Image Correlation , Part I :  Simu lation and ~~~~~~~~~~~~~ The Rand Corpora-
tion , R—2057/l—PR , November 1976.

- 
... ..—- ‘.



- - T .____ _ _ ____ ___ _ __
~ 

- 
~~~~~~~~~~~~~~~~~~~~~

-vi-

the probab ility of a “false lock” or , in mili tary terms, a gross error)
and (b) the selection of an appropriate comparison metric to maximize

(a) .

Par t I of this repor t describes the results of a d irec t approach
to de termining the probab ili ty of a correc t match , P , f i r s t for random
scenes with Gaussian statistics , and then for real scenes in the presence
of noise and various errors . Two commonly used comparison metrics are

calculated by using the so—called Product (a sum of products that is

related to classical correlation) and MAD (mean absolute difference)

algor ithms , respectively. It is shown tha t in all cases increases

with the size of the data sample and with the elemental signal—to—noise

ra t io (S/N ) , and decreases (slowly) with increasing search area. It is

also shown that at low S/N, the Product algorithm is the preferred one

(i.e., it leads to higher probabilities of correct lock), but at high

S/N , the MAD algorithm is preferred. However , when geometrical errors,

such as synchronization (an e f fec t peculiar to d igital systems in which
the cells of the two maps are staggered by some unknown f rac t ion of a

picture e lement ) , rotation, and scale factor (magnification), are pres—
ent, the effective value of S/N is significantly reduced . Thus the

hi gher values that would render the MAD or similar algorithms attractive
are seldom realized in practice .

The fundamental nature of the map—matching problem is reexamined

in this portion of the study (Part II), and the degree of theoretical

justification for the use of the various comparison metrics is also in-

vestigated. Since the problem is basically one in statistical de cision
theory, it is shown that the optimum solution is achieved by compu ting

the likelihood ratio for each comparison and then choosing the match

point at the place where the likelihood ratio is maximum. Unfortunately ,

that computation requires a knowledge of the N—dimensional joint proba—

bility distributions——functions that are unknown and , in a prac tical

sense , unmeasurable. Hence, one must resort to approximations . These

usually take the form of maximizing or minimizing one of several func—

t ions , herein called “metrics.” In much current work , these are chosen

almos t arb it rar ily and therefore must be subjected to essentially experi—

mental validation. By considering two—picture—element scenes, such tha t

- . V 
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-vii-

the likelihood ratio and several of the commonly used me trics can be
expressed in simple algebraic form and discussed in geometrical terms,

the essential features of the various metrics are explained and corn—

pared with the likelihood ratio. In this way heuristic arguments are

developed that suppor t the use of the Prod uct algorithm when S/N is low
and the MAD algorithm when S/N is high. The notion, borrowed from
signal de tec tion theory, that the classical correlator (i.e., the
Product algorithm) is optimum for this application Is shown to be erron-

eous; the two problems are fundamentally different.

Two major conclusions were derived from this study. First, on the
basis of the empirical results of the simulation studies described in
Part I, it appears that the theoretically predicted values of P for

random scenes with Gaussian statistics can he considered as an approxi-

mate lower bound for the probability of acquisition in a real applica-

tion. The quantitative relationships between P and various system

parameters that have been derived for random scenes, and tha t have been

largely confirmed by simulation testing with real scenes, can therefore

be used to carry out various design tradeoffs, including a balancing of

the costs of a tighter overall P~ requiremen t with the loss of those

weapons that fail to acquire . The theoretical model of the random

Gaussian scene is known to be not completely realistic , but it appears

to err on the conservative side . Thus, a “floor” for P can be estab—
C

lished , which should permit the flight test performance of future prop-

erly designed systems to be somewhat better (i.e., to exhibit fewer

gross errors) than is predicted by the theory.

The second conclusion is tha t there ough t to be be tter algori thms

than those tha t have usually been used in the past. Since (a) there

is at present little theoretical basis for the commonly used comparison

metrics , and (b) most real terrain contains features beyond those de-

scribable by simple Gaussian statistics , it seems both reasonable and

not inconsistent with theory to search for more efficient ways to carry

out the initial map—matching or target—acquisition function . In par—

ticular , drastic preprocessing to extract special features of a given

scene, using techniques currently being developed and exploited in the

field of pattern recognition, should lead to more efficient algorithms.
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I. INTRODUCTION

Map matching is fundamentally a problem in statist ical decision
theory. During the acquisition phase it is necessary to decide whether
or not the sensor and reference maps are matched . But because of noise ,

errors , distor tions , etc., possibly in each map , there is no foolproof
way to make certain that the maps have been matched correctly. The

L most that can be done is to determine the probability that the maps

are in a certain geometrical relationship to each other based on the

available data. The optimum map—matching system , therefore , is by def—

4 inition the system whose output is the set of a posteriori probabilities
descr ibing each poss ible relationship. Once these probabilities are

de termined and cos ts are ass igned to each kind of wrong decision , the
decision rule is implicitly def ined by the requirement that some measure
of the total cost , e.g., the average total cost of a decision , be a

minimum. The cost assignment and the details of the resulting dec ision

rule do no t a f f e c t the underlying structure of the map—matching system.

The dec ision rule, wha tever i ts form , is necessar ily based on the values

of the a posterior i probabili ties . Hence , the primary task is to deter—
mine these probabilities.

t
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II. STATISTICAL DECISION THEORY

The basic relationship between a priori and a posteriori probabili-

ties is given by Bayes’ formula . For simplicity of exposition , suppose

that only two possibilities are of interest , namely that the maps are ,

or are not , matched . Let these two conditions be denoted by the sym-

bols S (signal) and B (background), respectively . If a sensor map

consisting of N data elements is represented by the N—dimensional vec-

tor x, then Bayes ’ formula for the matched hypothesis states that

P(SIx)P(x) = P(x~ S)P(S) , (1)

where P(Slx) = the a posteriori conditional probability that the

maps are matched , given that the sensor map has the

value x ,

P(x) = the a priori probability that the sensor map has

the value x ,

P(xIS) = the conditional probability that the sensor map has

the value x , given that the maps are matched ,

P(S) = the a priori probabil ity that the maps are matched .

An analogous statement with S replaced by B holds for the unmatched

hypothesis. Since there are only two possibilities , the probability

tha t the sensor map has the value x is simply

P(x) = P(xlS)P(S) + P(x~B)P(B) . (2)

The likelihood ratio L(x) is defined by

L(x) = P(xIS)/P(xIB) , (3)

so that , after substituting (2) and (3) into (1), the a posteriori

t probability of a match can be written as

P(SIx) = 

1 + ~~~
)/P(S) (4)

L (x)

. __
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Since the probability that the map assumes precisely the value x is

usually zero , it is to be understood that the indeterminate form of

the likel ihood ratio is to be replaced by the ratio of the respective
probability densities p(xJS) and p(xjB) . The a pr iori probabilities

can be considered to have known constant values that describe the

estimates of the position of the flight vehicle and the direction of

the sensor ’s line of sight when a sensor map is obtained . Since the

a posteriori probability is a simple monotonic function of the like-

lihood ra tio, it is clear that a knowledge of the likelihood ratio ’s
value is equivalent to a knowledge of the a posteriori probability .
Hence , the optimum map—matching system is nothing more than the system

that computes the value of the likelihood ratio for each comparison

between a sensor map and a reference map.

In a purely forma l sense , Eq. (4) represents a complete solution

to the problem. The essential difficulty in applying Eq. (4) to a

practical situation , however, is that the N—dimensional joint proba-
bility functions needed to form the likelihood ratio are usually un-

known . A typical sensor map may consist of tens to thousands of

spatially correlated element values with a non—Gaussian joint proba-

b ility distribution . In the absence of a theoretical framework to

describe the form of the distribution , the only recourse for deter—

4 mining the distribution is direct measurement , which , for maps con-

taining even as few as three or four elements , is a practical

impossibility.

Because the probability distributions needed to form the li’:e—

lihood ra t io are generall y unknown , and, in a practical sense , essen—

* tially unmeasurable , another approach to map matching is required .

The approach most frequently encountered in the litera ture is one based
• *
3 on the extremals of a metric.

EXTREMA L METRICS
A metric F is a class of pairs of the form (x, F(x) ) ,  where x is

*The te rm “metric ” as used here simp ly refers to a scalar func-
tion of a vector . There is no requirement that the metric satisfy the
so—called t r iangle inequal i ty  as in the study of func tions of a real
variable .

.
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a vector and F(x) is a number . The first member of the pair is often

called the objec t and the second member , its value. Many metrics have

ex tremal proper ties, i.e., for some particular vector , the val ue of

the metric is either a maximum or a minimum . Familiar examples of

such metrics are given below.

The Normalized_ Inner Product (NProd) Metric

The normalized inner Product , sometimes called the normalized

Product (NProd), is defined by

F(x ) = 
‘

where y is some given vector , x • y denotes the inner Product , and

~ ~ denotes the norm of a vector defined by
= (x . x)~ and 

~yiI 
= (

~ 
. ~~) ½ (6)

The extremal property of this metric follows from the familiar Cauchy—

Schwartz inequality. Thus, F(x)I � 1 for all vectors x y, with

equality occurr ing only when x = Cy , where C is an arbitrary constant.

The Difference Squared Metric
This metric is def ined by

2F(x) = /jx — yJI (7)

where y is some given vector. Thus , F(x) � 0 for x ~ y, with equality
only when x = y.

The Mean Absolute D i f f e r e n c e  (MAD) Metric

This metric is defined by

F ( x )  = > I x i — y1j , (8)

~~ ~~~~~~~ ~~~~~~~~~~~~~~ 1~~~I1T _ _ _ _



where x1 and y
1 
denote ith components of the vectors x and y, respec-

t ively, and the sum extends over all components. As with the differ-

ence sq uared , F(x) � 0 for x 
~ y, 

with equality only when x = y.

If the vectors x and y are associated wit h the sensor and the

referen ce maps , respec t ively, then a phys ically reaso nable basis for
attemp ting to adapt such metrics to the problem of map matching im-

med iately suggests itself. If it is assumed that when the sensor ’s

line of sight (i.e., the map center) coincides with the target , the

sensor map “most nearly” resembles the reference map, then it is

reasonable to assume that the value of the metric in that case will

be “closest” to the extrernal value . Because of noise and other dis—

4 tortions , however , a perfect match is never to be expected . Thus,

some acceptance threshold different from the extremal value is implied.

If it is known befo rehand that the sensor map is contained within the
ensemble of maps available fo r  compar ison, i.e., the reference map ,

the decision rule may simp ly dec ide that the extremal—producing map

defines the match point. If the sensor map is not known to be con-

tained within the reference map , the decision rule may require the

value of the extremal to be above some prescribed threshold value .

The obvious question that arises when such metrics are used is,

“What metric should one use? or , stated differently , How is an optimum

or at least a “good” metric selected? The answer clearly depends on

the map statistics——which have been completely ignored in the above
definitions of metrics. Any attempt at an analytical formulation of

this ques tion leads direc tly back to the original statement of the
map—matching problem as a problem in statistical decision theory . The

= 
optimum metric is the likelihood ratio defined by Eq. (3), since it

essen tially def ines the mos t that can be known , namel y the a posteriori

probab ilities that the maps are matched given the available data. Thus ,

if a completely ad hoc approach to map matching is to be avoided , some

sort of theoretical analysis based on the likelihood ratio mus t be

under taken .

HEURISTIC INTERPRETATION OF THE LIKELIHOOD RATIO

Some insight as to what constitutes a good metric can be obtained

if one considers the likelihood ra tio for the extremely simp le case of

I
~~~Z1r 
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i
maps that  consist of only two e lements.  This simplification permits

the use of elementary geometrical concepts to illustrate the essential

features of various met r i cs .  The ex tens ion  of the concepts to larger

map s is s t ra igh t fo rward .

A single two—element map is thus represented by a pair of values

(x 1,x2). The ensemble of possible sensor maps for the unmatched con-

dition is then described by its joint probability density funct ion

p(x1,x2~ B). For simplicity, let the mean value of this distribution

be assumed zero. The two values compr i s ing  a sensor map w i l l  generally

be correlated , so that the in te r sec t ion  of a horizontal p lane wi th the

density f unct ion will produce a somewhat oval—shaped curve , as shown

by the dashed curve of Fig. 1. (The exact shape of this curve of

x 2

_  
/

~~— ~ 1 ~ .._—.—-.— __
~
.
~ /

Signa l plus noise N

,“ I
Sensor 

,/
/ / / /

/ “

// / / 
/

/

450 /
f 

-/ 

/
/ - 

/ / A’ L .  Crit ical reg ion defined

I I ..—‘ ,/ I by threshold value

~~~ ,
~~7 

/ 
of likelihood ratio

/ Back ground

Back ground plus noise

Fi g. 1 — Schematic representation of the map—matching problem
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intersec t ion depends , of course , on the particular form of the joint

probability densi ty function.) Thus, the maps wi thin this boundary
contour occur with a cer tain frequency de termined by the height of
the intersect ing p lane . If the map values are highly correla ted , the
oval tends to be narrow ; if the correlation is weak, the oval tends
toward a circle.

Suppose f or the moment that no errors of any kind are present in

either map . If the values associated with the sensor map are

for the matched condition, the joint probability density function
of the sensor ’s output is a two—dimensional Dirac delta function ,

namely,

p(xIS) = p(x1,x2IS) 
= 6(x

1 
- s

1
)6(x

2 
- 

~~~ 
(9)

The likelihood ratio in this simple case is then

6(x
1 

— s
1
)t5(x

2 
— s2)

L(x ,x ) = • (10)
1 2 p(x 1, x2 B)

Thus, if the joint probability density function p(x1,x2 IB) is well be-

haved , the likelihood ratio itself has the form of a delta function. The

decis ion rule , which identifies the match point with the maximum value

of the likelihood ratio, then tells us to decide that a match is pres-

ent whenever precisely the pair (s1,s2
) occurs. The rule , of course ,

simply expresses the obvious. We know exactly wha t to expect when a

match is present. Although the occurrence of the pair may not be an

unambiguous indication of a particular match point , we have no means

for refining our decision . Hence , the bes t we can do is to assume
that a match is present. The situation is completely analogous to

finding a specific two—digit number in a table of numbers , for example .

If we know that the table is accurate , we decide that we have found

t the number when precisely the reference two—digit pair occurs. In the

absence of other informa t ion, every such pair mus t be considered a

match poin t .

~~~~~~~~~~~~~~~~~~~~~~ :1
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Now suppose that both the sensor and reference maps are subject

to error because of noise , distortions , etc. For simp licity, suppose

further that all of these errors have zero mean value , are statis-

t ically independen t of the uncorrupted map values , and can be considered
to be additive in their effect. If all of these effects are simp ly

called “noise ,” with a joint probability density function p(x
1
,x2~ N),

then , if the noise is uncorrelated and has a zero mean value , the

intersection of the noise distribution with a horizontal plane will

be a c irc le , as shown at the origin in Fig. 1. With these assumptions ,

the joint probability density function p(x
11 x2~

BN) of the corrupted

sensor maps for the unmatched condition is 
~BN = 

~ N 
* 

~B
’ where the

asterisk denotes the convolution operation and where the arguments of

the functions have been dropped and the conditions incorporated into

subscripts to simplify writing. Similarl y, the joint probability

density function p(x1,x2 ISN) 
of the sensor ’s output when the maps are

matched Is 
~sN = 

~N * p5 
= P N (x

l 
— s1, x

2 
— s2 I N ) .  There fore , hori-

zontal cuts through these two probability density functions result in

contour curves somewhat like the solid curves of Fig . 1 that are

cen tered on the origin and the point (s1,s2).

If the noise is small compared with the variance of the uncor—

rupted sensor map values , the maximum value of the likelihood ratio
will occur in the neighborhood of the reference map values (s

1
,s
2
).

A horizontal cut through the likelihood ratio near its maximum value

will then result in a closed curve somewhat like that shown bounding

the shaded area in Fig. 1. The occurrence of a pair of map values

close to the reference values is then an indication of a probable

match. Thus, for the assumptions stated above, a metric that def ines
a family of closed contours about the reference map values qualita-

t ively resembles the likelihood ratio. It is to be emphasized , how—

ever , that  the assumption that all the errors a f f e c t i n g  the maps can

be lumped together into a single , s ta t i s t ica l ly  independent , proba—

b ili ty  densi ty  function wi th  random noise—like propert ies  is a simp l i—

f ica t ion  made here for  I l lus t ra t ive purposes only .

I

~ 
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LIKELIHOOD RATIO FOR GAUSSIAN DISTRIBUTIONS

If i t  is assumed tha t  all the d i st r ibu t ions  have a Gaussian form ,
t hen an explicit  representat ion of the likelihood ratio is obtained
by simple substitution . Let it therefore be assumed that the ensemble

of possible sensor map values for the unmatched condition has the
jo in t probabili ty dens ity

exp [_ ( x ~ - 2r Bx lx 2 + x~ ) / 2~~~(l - r~~)]
p (x 1, x~~I B )  = 

~ 
— . (11)

£ 
2ir~ (1 — r ’)~B B

where 
~B 

is the root—mean—square variation of the uncorrupted sensor

map values and r
8 is the correlation between the values x

1 and x2.
Similarly , let it be assumed that

1 2 2 2exp L_ (x1 + x 2 )/2a Np(x
1
,x
2 IN ) 

= 2 ‘ 
(12)

where is the root—mean—square variation of the noise . Then by
forming 

~SN and 
~BN and subst i tu t ing into Eq.  ( 3 ) ,  one can show that

the logarithm of the likelihood ratio is propor tional to the quadrat ic
fo rm

F(x 1, x2) a~ (x~ - 2r
BNxlx2 + x~)

aBN(l 
- rBN) [(xl 

- sl ) + (x2 
- S2 ) ]  , (13)

where

= + NB 
(14)

and

r BN = 2 r B (15)
aBN

__$
~~~~~~~~~~~~~~~~ 

•
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Since in practice the correlation is greater than zero and less

than one, one can show by elementary analytical geometry that  this

equation defines an ellipse with axes rotated 45 deg with respect to

the x1, x2 axes. The center of the ellipse is disp laced from the un-

corrupted map values (s1,s2), bu t the displacement tends to zero as

the ratio of tends to zero, i.e., at high values of the signal—

to—noise ratio . When the correlation is zero, the ellipse red uces to

a circle . The likelihood ratio thus assumes i ts largest values when

the ratio of the map values is approximately in the ratio of the ref-
erence map values , and when the values of the sensor map are separately

approximately equal to their corresponding reference map values.

When the background variation is small in comparison with the

noise , the sensor ’s output consists essentiall y of either the desired

signal plus noise, or noise alone . This situation is de; icted in Fig.

- :  2. The problem of discriminating between these two cases is the classi-

cal problem of .signa l deteot ion . Its solut ion is the well—known matched

f i l t e r  that , for  the àase of Gaussian noise , is the classical correla—

tor , i.e., the unnormalized product metric. This result follows in—

med iately from the likelihood ratio (see Eq. (13)) when and r
B ~

re

set equal to zero . In t ha t  case , the ellipse defined by the likelihood

r a t io  degenerates into the straight line defined by

F(x 1, x2 ) = s
1x1 + s2x 2 . (16)

The problem of map matching has sometimes been confused with the

problem of signal detection. As a result, the solution to the signal—

detection problem , i . e . ,  the classical correlator , has some t imes been

erroneously interpreted as the theoretically optimum solution to the

map—matching problem. The starting point in many analyses of map

matching has therefore been the calculation of the classical corre—

lation function. The fundamental difference between the two problems,

however , is readily apparent when Figs . I. and 2 are compared . In the

case of map matching,  one needs to dist inguish between signal p lus

noise and background plus noise . In the case of signal detection, it

is necessary to distinguish between signal plus noise and noise alone.

I
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plus noise

Noise

— — 

~ ~~~~ x
1

Product metric

Fig. 2—Schematic representation of the signal—detection problem

The solution of either problem lies in the calculation of the likeli-

hood rat io, which , for additive Gaussian noise , takes the form of

Eq. (13) and the shaded ellipse of Fig. 1 for map matching and of

Eq. (16) and the straight line of Fig. 2 for signal detection .

The more general case in which the noise associated wi th  the

matched condition is d i f f e r e n t  from that for  the unmatched condition

is discussed in the appendix. Noise in both cases is of ten  par t ly  due

to geometrical misalignments in angle or scale. In such cases, the

statistics of the sensor’s map for the matched condition will strongly

depend on the properties of the map in the vicinity of the nominal

~

•

~

-

~
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match point. It is shown in the appendix that when the conic is non—

degenerate , the locus of the likelihood rat io can be e ither an elli pse ,
hyperbola, or parabola , depend ing on the relative var iances of the
sum and difference of the pixel values for the matched and unmatched

conditions. in most cases of practical interest , however , neither

var iance for the matched condition is expected to exceed its corre-

sponding v a r i a n c e  fo r  the unmatched condition . Thus, as the analysis

p rcserited in the appendix shows , the locus of the likelihood ratio is

~i lways an ellipse , which agrees with the simp lified discussion above.

In summary, therefore , we have the following two extremes: when

the signal—to—noise ratio is very l a rge, the likelihood ratio reduces

to a delta function , so that the optimum metric is one that requires

each component of the sensor map vector to fall within an arbitraril y

small distance from its corresponding reference map value . This is

essentially the MAD metric . When the signal—to—noise ratio is very

small , the likelihood ratio approaches the unnormalized Product metric .

These conclusions , altho ugh based on an anal ysis of a two—picture—

element map , are readily extended to maps of arbitrary size. 

~~~~~~
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III. A COMPARISON OF THE LIKELIHOOD RATIO FOR

GAUSSIAN DISTRIBUTIONS WITH OTHER METRICS

It is interesting to compare the metric defined by the likelihood
rat io for the Gaussian case discussed in Sect ion II with some of the
metrics mentioned earlier in that section.

THE NORNALIZEI INNER PRODUCT (NProd) METRIC

In two dimensions , the normalized inner Product m e t r i c  has the

for m

xlsl + x2s2F(x1, x2) = 2 2 ½ 2 2 ½ (17)
(x
1 + x2) ~~ 

+

where the given vector , of course , is the reference map vector
The values of the metric that exceed some prescr ibed threshold F are
those within the angular sector ± cos 1 F centered about the line
through the origin and the point 

~~l’~~2~~’ 
as shown in Fig. 3. The

normalized inner product assumes its largest values when the ratio of

the sensor map values x
2/x

1 
is equal to the ratio of the reference map

values 
~2
’
~ l~ 

Thus , this metric is appropriate when no a priori know-

ledge of absolute map values is assumed . The only assumption is that

the two data sets are in a linear relationship.

If the statistics of a sensor map are assumed to be stationary

and ergodic , the average norm for a sensor map containing N elements

approaches the ensemble average . Thus ,

ll.m IIx II IN 1 = , (18)

where is the root—mean—square variation of the sensor map values

averaged over an infInite ensemble. If one assumes that  thc sensor 

~~~~~~~~~~ ~~= =~~~~
-
~r=~ ~~~~~~~~~~~~~~~~~~~~~~~ — :: :~
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Likelihood rat io

Normalized
S i product

Unnorma lized product

cos~~ F0

Maximum
likelihood value

x l

Fig. 3 — Comparison between metrics

map contains so many elements that Eq. (18) can be considered an

equality for a finite value of N, then the average norm associated

with both the sensor and reference maps can be considered constant

for all maps. Except for a constant factor , Eq. (17) reduces to the

classical correlator or the unnormalized Product (Prod) metric defined

by

F(x) 
~ (x y) , (19)

where y is the reference map vector. For this case, computations using

either metric will g ive approximately equal performance.

~!1-~ ~~~~~~~~~~ T1~~~
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The distinction between th . use of the Product and normalized

Product metrics is well illustrated in the calculations of Sections II,
*I I I , and IV of Part I of this report. In Sections II and III , the

probability of acquisition is computed over an infinite ensemble so

that the unnofmalized Product metric can be used . ln Section IV , cal-

culations are made for a finite sample of maps. Hence , the diff erent

metrics produce different results .

THE DIFFERENCE SQUARED METRIC

The locus of the difference squared metric defined by Eq. (7) is
a c ircle cen tered at 

~~1’~~2~~’ 
as shown in Fig. 4. Thus , the ac cep tance

region is similar to that defined by the likelihood ratio for the spe—

cial case of uncorrelated map values, but the location of the center
of the circle is not at the optimum point. The disp lacement between
centers is minor , however , when the signal—to—noise ratio is large .

The metric takes no account of the possible correlation between map

values as does the likelihood ratio.

THE MEAN ABSOLUTE DIFFERENCE (MAD) METRIC

The loc us of the mean absolute dif f erence (MAD) is a fa mily of

squares rotated 45 deg with respec t to the x
1
,x
2 

axes , also shown in

Fig. 4. The properties of this metric are thus similar to the differ-

ence squared me tric. The accep tance region is a small symmetrical area
surrounding the reference map values. This metric does not make use

of the correlation between sensor map values.

PROBABILITY OF CORRECT ACQUISITION

When the desired map is assumed to be present in the ensemble of
maps , and when the extremal value of the ensemble is assumed to define

the matched condition , the probability of correct acquisition P (s)

H. El. Bailey, F. W. Blackwell, C. L. Lowery, and J. A. Ratkovic ,
Imaqe Correla l iun, Par t . 7: S-~n I4 la t- ion and ~~~~~~~~~~~~~~~~~ The Rand Corpora-
t ion , R— 2 0 5 7 / l — P R , November 1976.
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x2

___--  —
~~
— S

i 
— .

Difference squared

MAD al gorit hm —

Likelihood ratio /

• Locat ion of maximum I

likelihood value —

~~1~~~~ x 1

Fig. 4— Further comparison between met r ics

for a maximizing metr ic  can be defined as

P (s) = f p(FIS) 
[1

F 

p(F’ IB) dF] dF , (20)

where p(F~S) is the probability density of the metric given tha t a match

is present, p(FjB) is the probability density of the metric given that a
match is not present , and Q is the total number of out—of—register corn—

parisons. Equation (20) is equivalent to Eq. (3) of Part I. A simple

change in the limits of integration defines the probability of correct

acquisition for a minimizing metric. The calculation of this proba-

bility requires a knowledge of the probability dens ity f uncti ons of

‘I

¶
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~~S ~~~ a. ~~ - . ~~~~~~ -.~~ . ,~~~ •... - _ 
V

-— — -—---~ --- — -- — — ~~ u. 
- - ___________ -



_ _ _ _ _ _ _ _ _ _  - ~~~~

the metric , which, in turn , depend on the multidimensional joint prob-
ability density function of the sensor map values. This joint proba-

bility density func tion is generally unknown, so that some sor t of an
assumption regarding the form of the distribution of the metric ’s

values must be made in order to use Eq. (20) to estimate the probabil-

ity of correct acquisition. The calculations described in Sections II

and III of Part I of this report are based on the assumption that these

distributions are Gaussian .

I ’
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IV. SUMMARY AND CONCLUSIONS

- 

- 
The theoretical solution to the problem of map matching is to com-

pute the likelihood ratio . Unfortunately, the probability density func—

tions needed to form the likelihood rat io are generally unknown , and ,
in a prac tical sense , essentially unmeasurable . Hence , some sort of

theoretical model of the statistics of maps must be developed or simp ly

assumed if an approach based on the likelihood ratio is to be pursued.

The common approach to map matching based on the extremals of a

metric has little theoretical foundation beyond the simple notion of

continuity. The extremal proper ty of a me tric generall y represents a
universal statement about the class of all functions . Moreover , the

extremal value is associated with a particular function or a narrowly

def ined class of funct ions whose values are precisely specified at

every poin t .  This corresponds to the ideal error—free (noiseless)

sensor map , which , of course , occurs with probability zero. By con-

tinuity, however , it is reasonable to assume tha t  when the sensor map

is close to the ideal , the value of the m e t r i c  is close to the ex t remal .

When the various map errors  can be treated as addi t ive  noise , a

heuristic interpretation of the likelihood ratio suggests the proper-

ties of a good metric. When the noise is small compared with the map

variance , and when the absolute amplitude of the sensor map is cali-

brated to that of the reference map , a metr ic that requires an approxi-

mate equality be tween corresponding sensor map and r e fe rence map values

• should be used . The MAD algorithm is such a metric. But when the

noise is large compared with the map variance , and when no assumption

concerning absolute signal levels is made , a metric requiring an ap-

proximate proportionality between corresponding ~E n ,~or map and r~~f —

erence map values should be used. The normalized Prodact algorithm ~s

such a me t r i c .

The above conclusions , al though based on an anal ysis e~ a si~~: i~

two—picture—element map , are read ily extended to n ip s of arbitr ary s

The sometimes encountered statement that the l ,ssi~~i1 corr tat

i.e., the Product algorithm , is a theorci ftallv o p t i m u m  •1~ pr ’~ i~ H to ma

match ing has limited validity. The statement ol t i-n ~~ i rives t r~’r; .i con --

fusion between the problem of map matching and the pr - h lv - - “ si > ’n~~l.

detection.

_____________ - —.‘ ~~~~~~~~~~~~ — _ ,~~~~~~~
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Append ix

LIKELIHOOD RATIO FOR CORRELATED BIVAR1ATE GAUSSIAN DISTRIBUTIONS

Suppose that the  joint probability densities for the matched and
unmatched conditions are denoted by p(x ,y~SN) and p(x ,y~BN), respec—
t ively , where

• r 2 2
I (x — 

~~~ 
— 2r SN(x 

— s
1
)(y — s2

) + (y — s2
)

e x p l —  2 2I 2o ( l — r  )
p ( x , yj SN )  = L 

2 
SN 

2 ½ (A.1)
— r

SN
)

and

r 2  2- :  x _ 2 r
~~ x Y + y

e x p i—  ., 2
I 2~ ( l — r  )

p(x ,yIBN) = L 
2 

BN 
2 

BN 
, (A.2)

2rn~ (1 rBN BN’

where, in general, 0sN ~ 
aBN ’ and r SN # r BN .

The likelihood ratio L(x ,y) is defined by

L(x ,y)  = . (A.3)

-
• Its logarithm, in terms of the two probability densit ies def ined by

Eqs. (A.1) and ( A . 2 ) ,  is

2 2 ½  2 2aBN (l - r BN
) x - 2rBNxy + )~Z n L  1 + 2 2

aSN
(l — rSN) 2

~ BN~
1 — rBN)

(A .4 )

2 2(x — — 2r cN (x — s1) ( y  — 

~~~ 
+ (y — s2 )

2a
~~~

(1 — r
sN
)

- t  
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If Eq. (A .4 )  is rewritten as the quadratic form

Ax2 + Bxy + Cy
2 + Dx + Ey + F = 0 , (A.5)

the coefficients of the quadratic terms are easily found to be

1 
2 2 

1 
2 ~~~~ (A .6)

GBN
(l — r

EN
) G

SN (l — r SN
)

— r r
B =  2 

B 
~~~~~~~~~~~~ 2 

S 
2 

(A.7)
GBN

(l — rBN) GSN (l — r
SN

)

From elementary analytical geometry, the acute positive rotation

angle , 0, tha t transforms the conic to its principal axes is given by

tan 20 = r-
~

---
~ 

(A .8)

If B as defined by Eq. (A.7) is assumed to be d if f e r en t from zero , it

follows immediately tha t the pr incipal axes of the conic are rotated
45 deg with respect to the (x,y) coordinate axes.

If the con ic is assumed to be nondegenera te , i.e., if

2A B D

~~~~
= B 2C E ~~ 0 , (A .9)

E D 2F

then , from elementary analyt ical  geometry , the type of conic is deter—

mined by the following rules:

1. If B2 
— 4AC = 0, the conic is a parabola.

2. If B
2 

— 4AC < 0, and ~ and A + C disagree in sign , the

conic is an ellipse .

~~~~~~~~~~~ • •~~~~~~ 
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3. If B2 — 4AC < 0, and E~ and A + C agree in sign , the con ic

is an imaginary ell ipse , i.e., no real locus.

4. If B
2 

— 4AC > 0 , the conic is a hyperbola.

From physical considerations we know that a real locus always

exists, so tha t  the condition B2 — 4AC < 0 alone is sufficient to con-

clude tha t the conic is an ellipse. lf W is defined as

W = B2 
- 4AC , (A.lO)

then , since A = C from Eq. ( A .6 ) ,  we have

W = B2 — 4AC = (B — 2A)(B + 2A) . (A.ll)

H By combining Eqs. (A.6) and (A.7), i t is easy to show tha t

B - 2A = - 
2 

1 
- 

2 
1 

(A.l2)

LOBN
(1 — rB

) G
SN

(l — r )J

and

B + 2 A = 
2 

1 
— 

2 
(A .13)

GBN (l + r
B
) GSN (l + rSN)

From elementary probability theory a quantity of the form 0
2 (1 + r )

is recognized as one—half the variance of the sum of two correlated ran-

dom variables. Similarly a quantity of the form 0
2(1 — r )  is recognized

as one—half the variance of the difference of two correlated random

variables. Using these fac ts, the rela tionship be tween the type of
conic and the pr oper ties of the two probabil ity dens it ies is immedia tely

- I evident from Eqs. (A.l0), (A.ll), (A.l2), and (A.l3). When the variances

of the sum and d i f fe rence  of the pixel values for the ma tched cond it ion
are both either less than , or greater than , the corresponding variances
for the unma tched cond it ion , the conic is an ellipse . When the respec—

tIve variances for the matched and unmatched conditions are in an

~ 

:~::L ~ ~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~• - - ~11I



-

—22—

opposite algebraic relationship——i.e., in the matched cond ition one
variance exceeds while the other is less than its corresponding var—

lance for the unmatched condition——the conic is a hyperbola .

Of the various possibilities , the case in which the variances in

the matched condition are each less than their corresponding variances

in the unma tched condit ion is the principa l case of practical interest.

Al though the variability of the sensor map f or the ma tched cond it ion

depends on the statistics of the map in the vicinity of the match

poin t, its variation on the average should not exceed that associated

with the unmatched condition . Hence, the accep tance region def ined by
the likelihood ra tio will be elliptical in most cases of prac tical

• interest.

The cen ter of the conic can be found ei ther by comple t ing the

squares in Eq. (A.4) or by finding the coordinates of the extremum

of the likel ihood ra tio by using elemen tary differential calculus . If

the conic is transformed to its principal axes by the transf ormation

u = (x - y ) / 2~ (A.14)

and

v = (x + y ) 2 2 , (A. 15)

it can be shown that the coordinates of the center (u ,v )  are given

by -

u = (A.16)
0 ~ L2 

~
0SN l + r SN

)

and

_ (s
2 

— 
~~

2 ‘ 
(A.1 7 )

2
~
PG
sN

(l — r SN)

______________________
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where

P = B — 2 A  (A .l8)

and

Q = B + 2 A  . (A . l9)

Thus, the conics for different values of the likelihood ratio are all
concentric.

Finally, it can be shown by completing the squares in Eq. (A.4)

tha t the maj or and minor axes of the conic are always in a constant

ra tio , namely

u : v = p~ ½ : 1Q11 . (A.20)

I
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