. AD=A036 468

UNCLASSIFIED

XEROX PALO ALTO RESEARCH CENTER CALIF COMPUTER SCIEN=-=ETC F/6 9/2
THE INTERLISP VIRTUAL MACHINE SPECIFICATION, (U)

SEP 76 J S MOORE

NO0014=75-C=-0626

IiIIIIlIIIIIlIIlII

l““ 10 &0 g

==

;1 '" 36

ol

Ll £
NI!I__i o

2 s ne

MICROCOPY RESOLUTION TEST CHART
NAT BUREA P TANC 3-4

¢

THE INTERLISP VIRTUAL MACHINE ;SPECIFICATIOrB‘\.'

e ——— i

/

J. Strother/iﬁoore)]l: ‘

COMPUTER SCIENCE LABORATORY 1507 | ,
XEROX PALO ALTO RESEARCH CENTER ' /7 —/ |
PALO ALTO, CALIFORNIA 94306

MAU36468

Septamber 4976

PRSI SV

o i

The INTERLISP Virtual Machine is the environment in which the INTERLISP System is
implemented. It includes such abstract objects as “Literal Atoms®“, "List Cells",
“Integers”, etc.. the basic LISP functions for manipuiating them. the underlying program
control and variable binding mechanisms, the input/output facilities, and interrupt
processing facilities. In order to impiement the INTERLISP System (as described in The
INTERLISP Reference Manual by W. Teitelman, et. al.) on some physical machine, it is
only necessary to implement the INTERLISP Virtual Machine, since Virtua! Machine
compatible source code for the rest of the INTERLISP System can be obtzined from
publicly available files. This document spectifies the behavior of the INTERLISP Virtual
Machine from the implementor's point of view. That is. it is an attempt to make explicit
those things which must be implemented to allow the INTERLISP System to run on some
machine.

.-

e

e Mt el it S A 8
\

e R
)

e
——

W
(¢

.
i A
é ™
|4
& t
1 > Formerly at the Computer Scienca Laboratory. Xerox Pale Allo Rescarch Center. Palo Alto. Ca. 94304,
i curtently at the Computer Science Laboratory. Stanford Rese2aicn institute. Menlo Park. Ca. 94028
I
i 2 This work was supported by the Advanced Research Projects Agency of the Department of Defense and
was monitored by the Office of Naval Research under contract number NO0014-75-C-0626.\
/)
| 7/ W
,</ /(& /A
i
1

-‘r,mv? ~ - .b“ “ AR ET WA — -— 'j

. —

B ——

L R

+ Ry

10.

9 ¢

2.

13.

14.

16.

16.

7.

18.

19.

20.

21.

22.

23.

24,

25.

- T P TR i o P
DE:"—‘T;"
TABLE OF CONTENTS s e
© Bppoved
Pisinw -
b et

INTRODUCTION .

PRIMITIVE CONCEPTS .

CONVENTIONS FOR VM FUNCTION SPECITICATIONS .
CONVENTIONS AND DEFINITIONS USED IN THIS DOCUMENT
LOGICAL OPERATORS .

DATA TYPES

LIST CELLS
LITERAL ATOMS
INTEGERS

FLOATING POINT NUMBERS .

ADDITIONAL ARITHMETIC FUNCTIONS
STRINGS

ARRAYS

HASH ARRAYS

USER DEFINED DATATYPES .

FUNCTIONS AND FUNCTION OBJECTS .

STACK POINTERS .

EVALUATION

RESTRICTIONS ON THE IMPLEMENTATION OF VM FUNCTIONS
THE COMPILER

FILES AND FiLE NAMES

READ TABLES .

TERMINALS

TERMINAL TABLES

INTERRUPTS

11

15

20

22

26

30

31

33

36

41

49

60

64

66

73

79

81

87

26 OUTRINE . . ir d e e e A e B s s e S R 94

P T, ATV LN PN e S R R B L o

3 BTORRAR ALGCATION - 5 i s s bt o e ot o oy G
29, MISCELLANEOUS VM FUNCTIONS & . « » v s s s ansasas 113
] ACINOINEDCRUENTE . . s st o e e e S

REFERENEES .| o o n v s s 08 o 50t g bt SEE 45 Sgee R S U5 de e s 115

-

Barn Wt i 5.

R ol

e

bl et LS (T TTY. WA e i © T A

o vitwn

o cmliicg’

i
i
.r
;
;

g

A - ® abic

RPN

- —

Lo R T

»

1. INTRODUCTION

INTERLISP is an interactive LISP system. It consists of a large and sophisticated collection of
user support facilities (such as DWIM and the Programmer's Assistant [TEI]) built on top of a
fairly conventional LISP language.

We call this underlying conventional language "Virtual Machine" (or simply VM) LISP. The user
support facilities are written entirely in VM LISP, and are in the public domain. Thus. if VM
LISP is implemented on some machine, the rest of INTERLISP can be obtained from publicly
available files'.

Although the INTERLISP System is extensively documented at the user level in the INTERLISP
Reference Manual [2]. it is not possible to implement the system from that documentation.
The purpose of this document is to specify VM LISP as fully as possible from the
implementor's point of view. Consequently, this document emphasises clarity and conciseness
over intuitive appeal. It is expected that a prospective implementor will have access to the
INTERLISP Reference Manual for explanations of the justification or implications of certain
specifications. Furthermore, since its purpose is mainly a practical one (i.e., to tell an
implementor what must be done), the document is not altogether formal.

Because INTERLISP evolved under the rather sophisticated BBN TENEX? time sharing system,
it assumes the presence of capabilities (such as user-defined interrupt characters) which may
not be found in the implementor's environment. If an impiementor is forced by such
circumstances to forego the implementation of certain INTERLISP features, the user-support
facilities may not perform as described in the Reference Manual. The implementor assumes
responsibility for the documentation of such deficiencies.

A great deal of care has been taken in the preparation of this document to determine ihe
assumptions made in the high-level facilities about features in the underlying VM. Because of
the size and complexity of the system we cannot guarantee that we have identified them all,
and therefore do not assure the prospective implementor that the rest of INTERLISP will run
perfectly upon loading it into the just implemented VM. However, this document goes a fong
way toward that admirable (and probably impossible) goal.

2. PRIMITIVE CONCEPTS

Below we introduce several concepts and terms used throughout this document. We do not
attempt formal definitions of these concepts because we feel they are sufficiently clear.

L For information write Dr. W. Teitelman, Computer Science Laboratory, Xerox Palo Alto Research Center,

3333 Coyote Hill Road. Palo Alto. Ca. 94304.

The INTERLISP implementation on the DEC PDF-10. called INTERLISP-10. was developed under the
management of researchers at Xerox Palo Alto Research Center and Bolt. Beranck and Newman
Comprehensive user documentation is provided in the INTERLISP Reference Manual [2]

A e T W €y A“.‘*— -

-~ :l-‘- Al e A e - .- o ¥ j

TN adie

PUPRSSRrR

e Bt e

object Anything which can be given to an INTERLISP
program as data or returned by an INTERLISP
program as a result of a computation.
Equivalently, an object is anything that can be
the value of an INTERLISP variable. Examples:
NIL, 143, (F X Y).

INTERLISP programs can dynamically create "new" objects using “"creation functions" supplied
by the Virtual Machine. These functions return objects that did not exist in the user's Virtual
Machine immediately before the creation function was invoked. That is. they return objects
that no other VM function could have returned prior to the invocation of the creation function.
Mcst implementations accomplish the implied illusion of infinite space by secretly reclaiming
the space occupied by an object once no VM LISP function can detect the absence of the
object.

The details are presented in Section 28.

We wiil have occasion to talk about concepts which are not objects in the Virtual Machine but
which have relevance to an implementation of the Virtual Machine. Such meta-objects include
devices and buffers as well as mathematical entities such as sets, character sequences, and
n-tuples.

meta-object Any thing or concept. other than an INTERLISP
object, which can be discussed in English.

form Any object used as the argument to the function
EVAL (cf. Section 16). Examples: NIL, 143, (F X
Y) if they are given to EVAL.

Note that the determination of whether something is a form is made on the grounds of how it
is uced rather than how it is constructed or how it is written down. However, typically, forms
are just List Structures or Atoms.

Value of a form The object returned by EVAL when given the
form. Examples: The value of NIL is NIL. The
value of (ADD1 142) is 143. The value of
(CONS (QUOTE F) (QUOTE (X Y))) is (F X Y).

Note that not all forms have values: some cause errors or otherwise alter the flow of control
so that EVAL does not return to the point of invocation (e.g., the goto statement).

The next concept is probably the single most important concept used in this document.

field A "place", usually associated with an object or
meta-object. that can be used to "hold" another
object or meta-object. Example: A List Cell is
an object with two fields. named the CAR and
CDR fields. each of which can hald an object.

There are two operations on fields: "accessing" and "replacing”. If x is an object with a field
which contains y, then it must be possible to compute y given x. This is called "accessing”
the fiela. Furthermore, it must be possible to modify that field of x so that it is made to
contain another object instead of y. This operation will be called either "replacing” (the
contents of) the field or "setting" the field.

AT IIPTY. MNTONINS A - SR S N e j

TR i alir

N

In general, only the implementor has full access and replacement rights on a field. In some
instances the user is given limited rights to fields.

Note that fields are not objects: A variable may have as its value the contents of a given
field, however a variable cannot have as its value the field itself. We will always be specific
about whether the contents of a field is an object or meta-object, and what. if any, restrictions
are placed on the contents. Unless otherwise stated. any field said to contain an object can
contain any object whatsoever.

The final primitive concepts are concerned with communication between the VM and the
"outside world". The most abstract and important of these concepts is that of the "character”.

character A graphic mark in the alphabet available to the
machine's input/ouput facilities. Examples
usually include such characters as 'A‘, 'a', and
‘(', as well as "non-printing"” characters such as
space, tab and form-feed.

A character is a meta-object because it exists outside the machine. We assume the
implementor has designated a set of characters to be used in input/output transactions with
the VM. This set will be called the "standard VM character set". For each character in this
set there is a unique INTERLISP object either in the set of Literal Atoms or the set of Integers
which is identified with that character. These particular objects are called Characters (note
capitalization).

A certain subset of the characters are known as "control characters". These characters are
usually "non-printing” (in the sense that outputting such a character causes no mark to be
made) and usually perform control or formatting functions on certain physical devices. Since
these characters are non-printing. we associate with each control character a printing
character. called the "tequivalent" (pronounced "uparrow equivalent"). Sometimes the control
character will be printed by printing the character 't' followed by the tequivalent of the
control character.

It is assumed there is a character (and hence., a Character) called the "“carriage return"”
character. which causes output devices to position their print mechanisms so that subsequent
characters will be printed starting at the left-hand margin and immediately below the last line.
In some systems., more than one character must actually be sent to certain devices to achieve
this effect (e.g.. one character to return the print mechanism to the left margin and 2nother to
advance the line). Reading and writing more than one character per carriage return character
is permitted. In fact, the precise characters transferred may be device dependent. However,
the implementor is expected to maintain the illusion of the single carriage return character by
translating to and from the appopriate sequences when fetching and depositing characters (cf.
Section 21).

We assume that there is a one to one mapping from the standard VM characters onto a subset
of the integers. The INTERLISP Small Integers (cf. Section 9) in the range of the above
mapping are called "character codes”. The number of bits required to represent the largest
character code is called "standard VM bytesize".

If the ASCIl mapping is used. the integers are those from 0 to 127. The control characters
are those with character codes from O to 31 and the character codes of their trequivalents are
obtained by adding 64. Thus. the character "control-A" has character code 1, its tequivalent
is the character 'A' dnd has code 65. "control-A" is sometimes printed as "tA". If a mapping

I s, AP O "'-MO‘. .4

- li‘; Bl e AR W

b et it

other than ASCIl is used, the implementor is expected to define these character sets in
accordance with their properties above.

character sequence a meta-object consisting of a succession of
characters.

The ith character in a character sequence cannot be changed without producing a different
character sequence. (In Section 12 we will introduce a meta-object, called a string, which
allows its characters to be replaced without the production of a new meta-object.)

file a meta-object which is used as a character
source or sink for input/output operations. j

Physically, files may be represented as sequences of character codes stored on a disc or
other external storage device. or sequences of character codes coming from or going to any
available input or output device.

Technically, files are meta-objects and not objects. because INTERLISP programs cannot
directly manipulate them. However, INTERLISP assumes that each file is uniquely identified by
a "file name" which is represeniable as an INTERLISP Literal Atom. The Virtual Machine
provides for input/output on named files, using Literal Atoms to indicate the source or
destination file.

3. CONVENTIONS FOR VM FUNCTION SPECIFICATIONS

| This Section and the next explain the conventions used in this document when specifying the
‘ VM LISP functions. These conventions should not be confused with the INTERLISP facilities
[which affow the user to define new INTERLISP functions.
]

The precise nature of a VM LISP function is fully specified in Section 16. However some
background information is necessary to understand the form and meaning of the function
specifications.

In this document we use the word "function" in an extended mathematical sense to refer to
the abstract association or mapping between some n-tuple of “arguments” and a value or
effect. A function is named by an INTERLISP object called a Literal Atom (cf. Section 8)
which contains a function object (cf. Section 16) in its function definition field. The function
object is essentially a program, which tells EVAL how to compute the value and/or effect of
the function named by the Literal Atom. ?

In this document, when we specify some function we will first wrife down the function name (a
Literal Atom). Following that will be a list of the function's parameter names. Each name will
be in lower case and separated from the others by ';'. The entire list will be enclosed in [
and ']". If the function takes an indefinite number of arguments we will use an ellipsis ("..") in
J the parameter list. (Such a function is called a "nospread" function: otherwise, the function
is a "spread” function. See Section 16 for the details.)]

e e — .

The parameters are merely placeholders. The particular names used in this document are not
important.

TSI o NPT B WM. R s i S B L T

L it l—————..

Ly e ——p—

Following the parameter list we will write down English text which specifies, in terms of the
parameter names given, the actions performed by the function when it is applied to some
argument objects. As is made clear in the next Section, the parameter names are understood
to represent the objects supplied as arguments. The text defining the behavior of the
function, called the "body" of the specification, will be indented to distinguish it from
surrounding explanatory material. There are numerous examples of such specifications in the
following pages.

Sometimes (cf. AND in Section 5) we will write "(NOEVAL)" after the parameter list in a
function specification. We say that the corresponding function object is “noeval-type".
Otherwise, it is said to be "eval-type". Informally, whether a function object is eval-type or
noeval-type determines whether EVAL will bind the parameter names tc the values of the
forms in the argument positions, or the forms themselves. (See the specification of EVAL in
Section 18.)

From the implementor's viewpoint it is important to understand that each function specification
in this document does two things:

(1) It specifies the nature of a function object.

(2) It specifies that the function object shall initially be found in the function
definition field of a certain Literal Atom (the function name).

4. CONVENTIONS AND DEFINITIONS USED IN THIS DOCUMENT

We will use certain conventions and definitions when specifying functions. Usually they will
be introduced before they are used the first time. Below we present those most commonly
used.

Convention: Lower-case character sequences will be used as meta-variables to denote both
INTERLISP objects and meta-objects. We will have occasion to refer both to the meta-
variable itself and to the value (object or meta-object) it denotes. For example. we may wish
to say "Let the meta-variable x denote the sum of the values currently denoted by the meta-
variables x and y.” To distinguish a meta-variable from its value we will use an underline.
When a meta-variable is underlined the construction is understood to denote the value of the
meta-variable. When not underlined the construction denotes the meta-variable itself. Thus,
the above example can be abbreviated to "Let x be x+y.” Note that if x denotes y (the meta-
variable itself, not its denotation). then while "let x be 1" affects the denotation of x, "let x be
1" affects the denotation of y.

Note: The reader should not confuse meta-variables with the notion of variables provided by
INTERLISP. Meta-variables are strictly a notational device for communicating with the reader.
Variables (as implemented in INTERLISP) are INTERLISP objects, namely Literal Atoms, which
are used as forms. This document carefully distinguishes the two concepts.

Convention: If x4, Xo. ... X} denote objects and f denotes a VM function name, then whenever
the specification of some computation uses the construct f[’x1:x2:...xk] it is understood to
imply that at that point in the computation the computation specified as defining the n-ary
function f should be executed with the successive n parameter names of f denoting the
corresponding first n elements of the sequence xq.Xo,...x NILNILNIL,..., and the construct is
to denote the object (if any) "returned” (see the next convention) by that computation.

e Py - W W'm*. -

R T

Convention: Successive sentences in the function specification body specify successive
computational processes that are to be carried out sequentially when the function is applied to
some arguments. We use clauses beginning with the words “if", "elseif', and "else"
(separated by ";") to specify the conditional structure of the function. When the scope of a
"then-clause" is ambiguous the entire clause is further indented. The phrase "return x" means
that if a computation reaches that point of the specification then all subsequent statements in
the specification are to be ignored (as specifying the computation along a different path
through the function) and x is to be considered the value of the function application.

Convention: When we refer to objects in a boolean context (in constructions using the
English words "if", “or", "and", and "not") the object NIL is identified with falsity and all other
objects are identified with truth.

Convention: Whenever the body for some function specification does not specify an action
for some possible argument combinations. the implementor is free perform any action desirdt.
is assumed this freedom will be used to merely avoid certain type checks (e.g., assume the
argument to CAR is a List Cell and accept the consequences on other types of objects).
Should the implementor's default action for any VM function be meaningful to the user (e.g.,
CAR of an atom always returning NIL) the implementor is expected to document the fact that
such behavior is not standard. Furthermore. the implementor is expected to document those
default actions which may result in harm to the user's Virtual Machine (e.g., a replacement
function which, when improperly used, will destroy meaningful data or confuse the garbage
collector).

Convention: When we refer to an object in the set of INTERLISP Integers we will capitalize
the word "integer". We will leave it in lower case when referring to the mathematical entity.

Convention: We will write down integers and real numbers in standard mathematical notation
in base-10. When referred to as objects they shall denote the corresponding INTERLISP
Integer or Floating Point Number (cf. Section 10). In this document. all Floating Point Numbers
will be written with at least one digit to the right of the decimal point to distinguish them from
integers followed by periods. (That is, the real 10.0 will be written (in this document) with
the redundant 0, to distinguish it from the integer 10.)

Convention: We will occasionally use meta-variables which denote INTERLISP Integers and
Floating Point Numbers in constructions involving standard mathematical notation. In this
context the meta-variables are understood to be abbreviations for the mathematical entities
represented by their values. (That is, if x denotes an INTERLISP Integer -- an object which
merely behaves somewhat like a certain mathematical entity -- then in the construction x+1, x
is treated as though it denotes the mathematical entity the Integer represents.) This convention
allows the use of standard mathematical notation involving objects even though the notation is
formally defined on meta-objects.

Convention: When we refer to a character sequence enclfosed in quotiation marks as though it
were an object. it denotes an INTERLISP String (cf. Section 12) with the character sequence
as its pname.

Convention: We will often use the name of a field to refer to the contents of the field, if such
use is unambiguous. For example, we will refer to the CAR of a List Cell, when we mean the
contents of the CAR field of the List Cell.

Convention: Whenever we say some computation should be done for each x in a specified

sequence (e.g.. "fof i from 1 to n do .." or "for each x; do ..") we mean that the

W-_-s.ph":, Rt m‘“"i' . U ‘ AR e AT g

W

= a3

it

N i — e

AL A e,

i
e
]
}
1

computations should be performed in the same order as the x's occur in the sequence. That
is, the compuiation for the first x should precede that for the second, etc.

We now present the commonly used definitions. The purpose of a definition is to introduce a
suggestive phrase that has a precise formal meaning. Usually the defined phrase involves one
or more meta-variables. Whenever an instance of a defined phrase is used the meaning is
that obtained by reading the definition with the meta-variables of the definition denoting the
objects or meta-objects indicated by the instance of the phrase used.

We will occasionally use an English variant of a defined phrase and expect the reader to
recognize that we are still speaking formally. For example. later we define the phrase "the
representation of x as an Integer”. We may use the phrase "return the representation as an
Integer of x" or "represent x as an Integer and return it" or even "represent and return as an
Integer x." It is hoped that all three of these will obviously be understood by the reader to
mean: "Let temp be the representation of x as an Integer. Return temp.” The reason we use
such variants is that they occasionaly allow us to reduce the number of meta-variables the
reader must contend with (as above) and they allow a more natural style of specification.

Definition: "f[x:..x, 1", where f denotes a non-VM function, means "APPLY*[fix4:..x,]". Since
APPLY* is a VM function, this definition is meaningful. The reason we cannot appeal to the
convention on VM function application (above) to make sense out of I[x1;,..,xk] is that since f
is not a VM function it does not- have a specification in this document and the above
convention on the meaning of VM function application was based on the body of the
specification of the function. It also happens that while VM calls to other VM functions (as
almost all calls in this document are) can be implemented by any technique desired, calls to
user functions must use a well-defined stack structure defined in Sections 16-20. This
definition makes this clear because APPLY* in fact manipulates the stack. Finally. for sanity, it
should be pointed out that the effect and value of t[>51:...xk] is in fact the same (except for
the effect on the user's stack) as "APPLY‘[I;;,:...LK]" whether f is a VM function or not.

Definition: "cause error n with culprit x" means "ERRORX[LIST[n:x]]. Perform any unspecified
(but presumably meaningful) computation”. ERRORX is not in the VM but is defined as part of
the user-support facilities of INTERLISP. It is the main entry into the error handling routines.
Nominally ERRORX never returns to the computation which called it (i.e.. to the compuation
which "caused the error") but (using the stack manipulating functions discussed in Sections
17 and 18) returns to some higher process. However, the user can redefine ERRORX and
therefore it may be altered so as to return control to the point of invocation. Implementations
should therefore allow for this (by, for example, following the call to ERRORX by the
equivalent of RETTO[T] (cf. Section 18)).

Definition: "pname of x" means "the character sequence that would be printed to a file other
than the terminal by PRIN1[x]. when the radix field contains 10 (cf. Section 26). If PRIN1[x]
would cause error n with culprit z, then cause error n with culprit z."

Definition: "PRIN2-pname of x with respect to y" means "the character sequence that would
be printed to a file other than the terminal by PRIN2[x:NIL;y] when the radix field contains 10.
If PRIN2[x:NIL;y] would cause error n with culprit z, then cause error n with culprit z."

Definition: "the Literal Atom x" means "the Literal Atom whose pname is x."
Convention: When we refer to a sequence of all capital characters as though it were an

object, we mean the Literal Atom with that pname. Examples: NIL, T, LISTP. When such a
sequence is underlined, it denotes the binding or value (in the EVALV sense -- see Section

18) of the Literal Atom. Thus, RANDSTATE means the Literal Atom with pname "RANDSTATE",

Definition: "the Character (note capitalization) corresponding to (the character) x", means “the
Literal Atom or Integer whose pname consists only of the single character x."

] Convention: When we refer to a character as a Character we mean the Literal Atom or Integer
with the character as its pname. For example, we will refer to the ith Character in a character
! sequence.

Definition: A "Number" is either an Integer or a Floating Point Number.

Definition: An "Atom" is either a Literal Atom or a Number.

5. LOGICAL OPERATORS

B 3

EQ[x:y] If x and y are the same object, return T;
else, return NIL.

The following function tests the equality of Numbers, and Stack Pointers (cf. Sections 9, 10,
and 17).

EQP[x:y] If x =y, return T;
elseif STACKP[x] and STACKP[y]:
: I[f x and y contain the same frame extension, return T;
3 else, return NIL;
elseif NUMBERP[x] and NUMBERP[y]:
i If FIXP[x] and FIXP[y]:
If x and y represent the same integer, return T;
else, return NIL;
P else (x or y is a Floating Point Number):
' ; If not FLOATP[x], let x be FLOAT[x].
I[f not FLOATP[y]. let y be FLOAT[y].
If x and y represent the same real, return T:
else, return NIL.
else, return NIL.

: Note: In a sense, EQP tests the equality of meta-objects contained in boxes (cf. Section 9).
bl The implementor is free to extend EQP to test such equality on other classes of objects
. which use such representation (e.g.. Strings). However. the next function, EQUAL, is
e responsible for the more general abstract equality of two objects.

3 EQUAL[x:y] If x =y or EQP[x:y] or STREQUAL[x:y]. return T:
i elseif LISIP[x] and LISTP[y]:
return AND[EQUAL[CAR[g];CAR[X]];EQUAL[CDR[E];CDR[MJ]];
else return NIL.

AND[xl:xzz...xk]L(?OEV?lg !
et va e T.
For each x; (until some x; “"evaluates to NIL"™) do:
Let val be EVAL[x;].

!
2
i
)
5
' If val = NIL,
(we say x. "evaluated to NIL") return NIL.
i
1

i
Return val.

5 WRREYG SW ee ., - A-‘. Nl e

ot Sl At 5

A

TR i

OR[xl:xz;...xk] (NOEVAL)
For each x; (until some x; "evaluates to non-NIL") do:
tet val be EVAL[Ei].
If val /= NIL,

(we say x; "evaluated to non-NIL") return val.
Return NIL.
NOT[x] If x=NIL., return T;

else, return NIL.

NULL[x] Return NOT[x]

6. DATA TYPES

Every object in the VM is a member of a unique class. All of the objects in a given class
have certain common properties which define the class.

Associated with each class is & unique Literal Atom. called the "data type" of the class.
Given any object it is possible to obtain the data type of the object’'s class.

The VM provides 11 primitive classes, plus facilities permitting the definition of new classes.
Below we list the data types of the primitive VM classes. We will discuss the defining
properties of each of these classes in the following Sections. Section 15 deals with the
introduction of new classes.

Definition: A "data type" is a Literal Atom associated with a class of objects. No two classes
may have the same data type. The initially existing classes and their data types are given
below:

Class Data Type
List Cells LISTP
Literal Atoms LITATOM
Small Integers SMALLP
Large Integers FIXP
Floating Point Numbers FLOATP
Strings STRINGP
Arrays ARRAYP
Hash Arrays HARRAYP
Stack Pointers STACKP
Read Tables READTABLEP
Terminal Tables TERMTABLEP
The implementor may add additional primitive classes provided they are assigned unique data
types.
TYPENAME[x] Return the data type of the object x.

v“ - AL . A W

1R o o e

o B

L R

R RN RN AR, P G 3 T g

7. LIST CELLS

Definition: A "List Cell" (or "List Structure") is an object with two fields called the CAR field
and the CDR field, each containing arbitrary objects. The List Cells constitute a distinct class
of objects with class name LISTP.

The VM requires the existence of a field. called the "CONS count" field, which contains an
integer. The initial contents of the CONS count field is O The functions which reference the
CONS count field are CONS and CONSCOUNT.

LISTP[x] If x is a List Cell. returcn Xx:
else, return NIL.

CONS[x:y] Increment the contents of the CONS count field by one
and store the result in the CONS count field.
Create and return a new List Cell
with x in the CAR field and y in the CDR field.

CAR[x] I LESERFX],
return the contents of the CAR field of x;
elseif LITATOM[x]:
If x is NIL, return NIL;
else, return any value desired (but cause no error).

COR(x] FE S CESHERE T
return the contents of the CDR field of x;
elseif LITATOM[x]:
If x is NIL, return NIL;
else, return any value desired (but cause no error).

RPLACA[cell;val]
If cell=NIL:
If val=NIL, return NIL:
else, cause error 7 with culprit val;
eliseiF LESTRcall]:
Set the CAR field of cell to va
Return cell;:
eise, cause error 4 with culprit cell.

-

RPLACD[celi;val]
If celi=NIL:
[f val=NIL, return NIL;
else, cause error 7 with culprit val;
elseif LISTPicell]:
Set the CDR field of cell to va
Return cell:
else, cause error 4 with culprit cell.

-—

|

LISTOxqixp:..x]
Return CONS[x;;CONS[x,:...CONS[x, :NTL]...]]

CONSCOUNT[n] If n is NIL, represent and return as an Integer
(cf. Section 9) the integer contained in the CONS count
field;
else,
If not FIXP[n]. let n be FIX[n].
Replace the contents of the CONS count field with

10

R e e] m»mwk. B 0 i S AT A

PRPAPSSE

the integer represented by n and return n.

Definition: The "CDR chain from (some arbitrary object denoted by) x" is the ordered
sequence of objects defined as follows: If x is not a List Cell, the CDR chain from x is the
empty sequence. If x is a List Cell, the CDR chain from x is the sequence obtained by adding
x to the front of the CDR chain from the CDR of x.

Note that CDR chains will be infinite if some List Cell occurs twice in the chain. If a
computation is specified in terms of operations on the end of a CDR chain (e.g.. involving the
last List Cell in the CDR chain), the computation is considered to be unspecified for infinite
chains.

Definition: A “proper list (of a sequence of n objects)" is the Literal Atom NIL if n is zero,
and otherwise is a List Cell with the first object in the CAR field and a proper list of the
remaining n-1 objects in the CDR field. The "length" of such a proper list is n. The "ith
element” of a proper list of n objects, 1=<i=<n, is the contents of the CAR field if i is 1, and
otherwise is the i-1st element of the proper list in the CDR field. A "new" proper list is one
for which new List Cells are in the CDR chain.

Note that these are definitions of terms we will use in this document. They do not define
INTERLISP functions but merely allow us to refer to "proper lists" with precision. Aiso note
that a proper list. x. always has a finite COR chain. Furthermore. the CDR of the last List Cell
in the CDR chain is always the Literal Atom NIL.

Convention: When we display a List Structure in this document we will use the notation

produced by the function PRIN2. Thus (1 . 2) represents some List Cell with 1 in the CAR
and 2 in the CDR, and (1 2 3) represents a proper list of the three Integers shown.

8. LITERAL ATOMS

Definition: A “Literal Atom is an object with the foilowing properties:
(1) There is a field containing a (meta-object) character sequence called the
"name" of the Literal Atom. such that no two distinct Literal Atoms have the
same name and no Literal Atom has a name defined by <integer> or <floating
point number> (cf. Sections 9 and 10). (It is permitted to limit the number of
characters in the name of a Literat Atom. The limit (s Llnspecéfied3.)

(2) There is a field. called the "top-level value" field. which may contain any
object.

(3) There is a field, called the “property list” fiefa, which may contain any
object.

3 INTERLISP-10 limits it to 99.

11

B S e PRSI Ny SR Ay, & W w NIRRTl W -y
X

e 5l

LA

(4) There is a field, called the "function definition" field, which may contain
any object.

The Literal Atoms consitute a distinct class of objects with class name LITATOM.

Informally, the name of a Literal Atom is the character sequence used to identify the object on
input and output. The top-level value field contains the object to be interpreted as the top-
level value of the Literal Atom when it is used as a variable in a form. The property list field
usually contains a proper list and is used to associate additional information with the Literal
Atom. When the Literal Atom is used as a function name (by being applied to some

arguments), the contents of the function definition field is used as a program which should be
run to compute the results.

The user has no access or replacement rights on the name field of a Literal Atom. However,
the user can obtain the nth Character in the name of any Literal Atom (cf. NTHCHAR below).

Initially, the Literal Atom NIL shall exist and have NIL in its top-level value, property list, and
function definition fields. In addition, the Literal Atom T shall exist and have T in its top-level
value field. Of course, the names of all VM functions are also initially existing Literal Atoms

with function objects (which behave according to the VM specifications) in their function
definition fields.

LITATOM[x] If x is a Literal Atom, return T;
else, return NIL.

ATOM[x] [f LITATOM[x] or FIXP[x] or FLOATP[x], return T;
else return NIL.

MKATOM[x] Let charseq be the pname of x.

If charseq conforms to the syntax of an Integer:
represent and return as an Integer the integer
denoted by charseq (cf. Section 9);

elseif charseq conforms to the syntax

of a Floating Point Number:
represent and return as a Floating Point Number
the real denoted by charseq (cf. Section 10);

elseif charseq is the name of a Literal Atom, litatom,

already created:
return litatom:

elseif there are more characters in charseq than

the implementation allows in a Literal Atom name:
cause error 11 with culprit NIL:

else:

Create a new Literal Atom, litatom, whose name

is charseq.

Set the top-level value field of litatom

to the Literal Atom NOBIND.

Set the property list field and the function definition
field of litatom to NIL.

Return litatom.

PACK[x] If x is a proper list of objects. (xq x, ... xg):
return MKATOM[CONCAT[x1:x,:...x, 1]

PACKC[x] If x is a proper list of objects. (xq x; ... X):
return MKATOM[CONCAT[CHARACTER[x4]:
CHARACTER[X,]:

12

{m....‘"n-‘.‘,*_‘nw oo q-.'g(- e vy - o e

AL AR b

R T I

eE—

CHARACTER[x, 11]:

GETTOPVAL[litatom]
If LITATOM[1litatom]. return the contents of the
top-level value field of litatom;

else, cause error 14 with culprit litatom.

SETTOPVAL[Vitatom;val]
[f litatom is NIL and val is not NIL,
cause error 6 with culprit val:
elseif LITATOM[litatom]:
Set the top-level value field of litatom to val.
Return val;
else, cause error 14 with culprit litatom.

Note that SETTOPVAL maintains the top-level value of NIL at NIL.

GETPROPLIST[litatom]
[f litatom is NIL, return NIL:
elseif LITATOM[litatom]. return the contents
of the property list field of litatom:
else, cause error 14 with culprit litatom.

SETPROPLIST[litatom:proplist]
If litatom is NIL:
[f proplist is NIL, return NIL;
else, cause error 7 with culprit proplist.
elseif LITATOM[litatom]:
Set the property list field of litatom to proplist.

Return proplist;
else, cause error 14 with culprit litatom.

Note that SETPROPLIST maintains the property Tist of NIL at NIL.

GETD[litatom] If LITATOM[litatom], return the contents of
the function definition field of litatom;
else, return NIL.

PUTD[1itatom:defn]
If LITATOM[1itatom]:
Replace the contents of the function
definition field of litatom with defn.
Return defn;
else, cause error 14 with culprit litatom.

The following three functions take Read Tables as arguments. These are objects that affect
the way objects are printed. Read Tables are described in Section 22.

NCHARS[x;flg:rdtb1]
If flg. represent and return as an Integer the
number of characters in the PRINZ-pname of x
with respect to rdtbl:
else, represent and return as an Integer
the number of characters in the
pname of x.

NTHCHAR[x:n:flg:rdtbl]

13

e e e - - -
¥ :]

At 4 il D

. 3

e i e S A ORI g

T R N M T W

If not FIXP{n], Tet n be FIX[n].
If n<0, let n be NCHARS[x:flg:rdtbl]+n+1.

If n<0 or n=0 or n>NCHARS[x;flq:rdtb1], return NIL;
elseif flgq:

return .the nth Character

in the PRIN2-pname of x with respect to rdthl;
else:

return the nth Character in the pname of x.

UNPACK[x:fl1g:rdtbl]

Ef £lg:
Create and return a new proper list
containing the successive Characters
in the PRIN2-pname of x with respect to rdthbl;

else:
Create and return a new proper list of the successive
Characters in the pname of x.

CHCON[x;flg;rdtb1]
(Same specification as for UNPACK except
use “character codes" for "Characters".)

DUNPACK[x:scratchlst:flig;rdtbl]
If not LISTP[scratchlst], cause error 17 with
culprit CONS["DUNPACK: SCRATCHLIST not a list";scratchlst]:
elseif scratchlst is a proper list:
If flg, let charseq be the PRIN2-pname of x
with respect to rdthl;
else. let charseq be the pname of x.
Let n be the length of charsegq.
If the length of scratchlst is greater
than or equal to n:
Let sublst be the terminal sublist of scratchlst
containing n elements.
Using RPLACA deposit the successive Characters in
charseq into the CAR fields of successive List Cells
in the CDR chain of sublst. starting with the first.
Return sublst:
else:
Return UNPACK[x:flg:rdtbl1].
(Note: The CARs of successive List Cells in
scratchlst may be replaced with Characters from
charseq before taking this exit.)
else cause error 17 with culprit
CONS["DUNPACK: unusual CDR in SCRATCHLIST":scratchlst].
(Note: The CARs of successive List Cells in
scratchlst may be replaced with Characters from

charseq before taking this exit.)

Note: The notes in DUNPACK allowing the CARs of scratchlist to be replaced before exiting
permit the proper list check to be made as the function is running.

DCHCON[x;scratchlst;flg:rttbl]
(Same specification as for DUNPACK except use
CHCON for UNPACK and "DCHCON" for "DUNPACK" and
use “character codes" for "Characters".)

CHCONT[x] [f the pname of x is the empty sequence, return NIL:

else, return character code of the first character
« in the pname of_ x.

..*. T R

L i bl

PP ™ 7

el ot

L i,

e e e T AN ORI, T s 3 T St et 6

CHARACTER[n] [f not FIXP[n], let n be FIX[n].
If n is a character code,
return the Character with character code n.

MAPATOMS[fn] For every Literal Atom, x, currently
represented in the Virtual Machine do:
fo[x].
Return NIL.

9. INTEGERS

Definition: The “Integers" (note capitalization) are objects that as far as possible obey the
laws of arithmetic for integers (the mathematical entities). The Integers do not necessarily
constitute a distinct class of objects. Some Integers must be so-called "Small” Integers (see
below) with class name SMALLP. Unless all Integers are Small Integers, there must exist
another class, with class name FIXP, containing the remaining Integers.

When characters are being read in (cf. Section 27) certain sequences denote Integers, namely
those defined by <integer> below:

<oct digit> ::= 0]1)2|3]4]5|6|7

<{digit> = <oct digit>|8|9

<oct seq> ::= <oct digit>Q|<oct digit><oct seq>
<oct integer> = <oct seg>|+<oct seqg>|-<oct seq>
{dec seq> := Ldigit>|<digit><dec seq>

{dec integer> = <dec seq>|+<dec seq>|-<dec seq>
<integer> ::= <oct integer>|<dec integer>

A character sequence defined by <oct integer> denotes an Integer object which represents
the positive or negative integer whose base-8 expansion is the sequence of octal digits given.
A character sequence defined by <dec integer> denotes an Integer object which represents
the positive or negative integer whose base-10 expansion is the sequence of decimal digits
given. In both cases. if no sign (+ or -) is present. + is assumed.

The set of Integers is distinct from the subset of Floating Point Numbers (cf. Section 10)
which have fractional part equal to zero.

The machine upon which the VM is implemented will have some internal representation of
integers. This bit pattern is a meta-object. called an "unboxed value". It is usually not
possible for the implementor to distiguish an arbitrary unboxed value from an address. and in
particular, the address of some object. Therefore, Integers must usually be represented in
some way other than by their unboxed values. There are two standard ways of representing
Integers in the VM.

The first method exploits the knowledge that certain addresses. (e.g.. those known to
reference the machine instruction codes for the VM itself) cannot possibly point to objects.
Any bit pattern which is such an address and i1s used as an object can then be treated as
though 1t represented some Integer.

- tﬂvenm‘_ - - vn*.- BEWPS TSR TR IR TR

Gt

YA - abia

PR Crmreishe bl o

UL D 0 il . 0 o AN,

s T WP T

B e e L

This representation has two desirable properties, noted in the definition below. Of course,
only a relatively few Integers can be so represented, so it is desirable to represent the
commonly used Integers in this fashion. Since the Integers occuring most frequently in user
programs are clustered around 0, we call Integers represented in this fashion “Small Integers”.

It is not usually the case that the bit pattern representing a Small Integer i1s also the unboxed
value of the integer. Thus, the unboxed value of a Small Integer is obtained by applying some
transformation to the bit pattern representing the Integer. This is called "unboxing” the
Integer. The inverse transformation is applied to unboxed values to obtain a Small Integer.
For example, if addresses less 2001 are to be considered Small Integers, and if it is desired
to represent the integers -1000 to 1000 as Small Integers, then the unboxed value of a Small
Integer would be obtained by subtracting 1000 from the address of the Small Integer.

Definition: A "Small" Integer is an Integer represented in such a way that two Smalil Integers
represent the same integer if and only if the bit patterns representing the two Small Integers
are identical. That is, no two distinct Small Integer objects represent the same meta-object.
Consequently, Smail Integers require little storage and boxing and unboxing them are efficient
operations.

The VM requires that the character codes be Small Integers.

The second method of representing Integers is more general but consumes more space.
Namely, the Integer is represented by the address of one or more storage locations known to
contain the unboxed value of the Integer. The location is called a "box" and an Integer
represented in such a way is called a "boxed" or “"Large" Integer. Unboxing and boxing for
boxed Integers is done by accessing and replacing the contents of the box.

Definition: A “Large" Integer is an Integer other than a Small Integer. The usual representation
of a Large Integer is as a pointer to a storage location known to contain the urnboxed value cf
the Integer. Two distinct Large Integers may represent the same integer.

In order to allow the user to discover how many boxes have been constructed, the VM
requires the existence of a field, called the "Large Integer box count” field, which contains an
integer. The initial contents of this field is 0. This field is updated during the process of
constructing an Integer (see the definition below), and by the function BOXCOUNT.

The above discussion of boxes applies equally well to the implementation of Floating Point
Numbers (see the next Section). In that case of course, an unboxed value is to be
interpreted as the machine's representation of a Floating Point Number.

The Virtual Machine must allow for the possibility of arithmetic overflow or underflow. We
assume the existence of a field, called the "arithmetic overflow flag" field. which contains
either T. NIL. or (the Integer) 0. The initial contents of this field is 0. The contents can be
changed with the function OVERFLOW (below) and determines the behavior of the VM in both
Integer and Floating Point overflow and underflow. The definition below, which specifies the
process of constructing the Integer representation of an integer, formally specifies the use of
this field for Integer arithmetic (and a similar definition in Section 10 does so for Floating
Point arithmetic).

Definition: The "representation of (the integer) x as an Integer”, is the value of the meta-
variable result (if any) after the following computation:

"If x is too large to be represented as an Integer:
If the arithmetic overflow flag field contains T,

16

i,'»“-l_qb-ﬂl"'-".“.v'm" e .;* PR SR e N S

D aws S B . adld

R

R

LA AR CUE

e

e]

cause error 5 with culprit 1;
elseif the arithmetic overflow flag field contains NIL,
let result be the representation of the largest possible Integer;
else, let result be some unspecified Integer;
elseif x is too small (large negative) to be represented as an Integer:
If the arithmetic overflow flag field contains T,
cause error 5 with culprit -1;
elseif the arithmetic overflow fieid contains NIL,
let result be the representation of the smallest (large
negative) possible Integer;
else, let result be some unspecified Integer;
elseif x can be represented as a Small Integer,
let result be the Small Integer representing Xx;
else:
Increment the contents of the Large Integer box count field by 1
and store the result in the Large Integer box count field.
Let result be a newly created boxed lnteger representing x."

Note that if an overflow or underfow occurs while the arithmetic overflow flag field is O, the
Integer result of the above process is unspecified. The most natural behavior is that which
would result if the overflow had not been detected: The Integer result represents whatever
bit-pattern the hardware produced during the arithmetic operation.

Definition: The "floor of x", where x is a number. is the largest integer fess than or equal to
x. The "ceiling of x" is the smallest integer greater than or equal to x.

Thus, the floor of 2.7 is 2 and the ceiling is 3. The floor of -2.7 is -3 and the ceiling is -2.

Definition: The "integer part of x", where x is a number, is the floor of x, if x is non-negative,
and is the ceiling of x, if x is negative.

OVERFLOW[flg] Let oldflg be the contents of the arithmetic overflow
flag field.
If not flg = T and not flg = NIL,
let flg be the Integer 0.
Set the arithmetic overflag flag field to flg.

Return oldflg.

FIXP[x] If x is an Integer. return x:
else, return NIL.

SMALLP[x] [f x is a Small Integer, return x:
else, return NIL.

TEQP[i:j] If FIXP[i] and FIXP[j]:
If i and j represent the same integer, return T;
else, return NIL:

Note: IEQP is only specified for Integer arguments. This is so that the check can be made
reasonably efficiently. That is, the two arguments can be unboxed and compared without
regard for the consequences if they are in fact not Integers (provided the unboxing does not
destroy the state of the VM).

SETN[nvar:valform] (NOEVAL)
[f LITATOM[nvar]:

1472

oo BTN W --m*. .Y g - BT W

B

B e e

Let n be EVAL[nvar].
Let val be EVAL[valform].
If not NUMBERP[val]. cause error 10 with culprit val;
elseif n is neither a boxed Integer
nor a boxed Floating Point Number,
return SET[nvar:val];
else, store the unboxed value of val
in the box associated with n, and return n;
else, cause error 14 with culprit nvar.

Note that if the box itself affects the determination of what number its contents represents,
then SETN[nvar;valform] will not necessarily make nvar represent the same number as valform.
For example, if i is a boxed Integer and z is a Floating Point Number, then SETN[i:z] merely
deposits the unboxed value of z into the box associated with i. When i is used, the contents
of that box will be interpreted as an integer. That integer will usually not be the number
represented by z.

BOXCOUNT[type;n]
[f n=NIL:
If type=NIL, represent and return as an Integer the
integer in the Large Integer box count field;
else, represent and return as an Integer the
integer in the Floating Point Number box count field.
else, let n be FIX[n].

I[f type=NIL, replace the contents of the Large Integer
box count field with the integer represented by n;
else, replace the contents of the Floating Point Number
box count field with the integer represented by n.

Return n.

FIX[n] If FIXP[n], return n;
elseif FLOATP[n]:
Represent and return as an Integer
the integer part of n;
else, FIX[ERRORX[LIST[10:n]]].

I[GREATERP[i;j] If not FIXP[i]., let i be FIX[i].
If not FIXP[j]. let j be FIX[j].
I 0> 3, returs T
else, return NIL.

ELESSPE#50] If not FIXP[i], let i be FIX[i].
If not FIXP[j], let j be FIX[ji.
I 1 <€ J: return T
else, return NIL.

TPLUS[nq;nys...np]
For each ny, if not FIXP[n;], let n; be FIX[n;].
I[f k is zero, return the Small Integer 0:
else. represent and return as an Integer

the integer nqtno+... .40, .

IDIFFERENCE[i:j]
[f not FIXP[i], let i be FIX[i].
If not FIXP[j]. let j be FIX[j].
Represent and return as an Integer
the integer i-j.

18

Lo P N W‘.M'k. - . ;u* i AR A -

vy

IMINUS[n] If not FIXP[n]. let n be FIX[n].
Represent and return as an Integer the
integer -n.

ITIMES[nyiny:i...n]
For each n;. if not FIXP[n;]. Tet n; be FIX[n;].
If k is zero, return the Smali Integer 1;
else. represent d™¥ return as an Integer
the integer nq*np*...np.

IQUOTIENT[i:j] If not FIXP[i]. let i be FIX[i].
If not FIXP[j]. let) be FIX[j].
If j=0, cause error 5 with culprit j.
Represent and return as an Integer the integer
part of i/].

IREMAINDER[i;j] If not FIXP[i]. let i be FIX[i].
If not FIXP[i], let j be FIX[j].
If j=0, cause errcr 5 with culprit j.
Return IDIFFERENCE[i:TTIMES[IQUOTIENT[i:j):3]]-

Definition: The "N-bit binary expansion of (Integer) n" is the ordinary binary representation of
the integer (represented by) n. in either 1 or 2's complement notation (implementor's choice)
and ermploying N bits, wilth the high-order bits (and sign) to the left.

In the following, N must be at least large enough to allow an N-bit binary expansion of every
Integer.

LOGAND[nq:iny; ...]
For each ny, if not FIXP[n;]. let n;
If k is zero, return an Integer whose
N-bit binary expansion contains all 1's;
else, return an Integer whose N-bit binary
expansion has a 1 in bit position j (1=<j=<N),
if and only if the N-bit binary expansion of each
ny has a 1 in bit position j.
LOGOR[nq:np:...ny]
For each n;., if not FIXP[n;]. let n; be FIX[n;].
If k is zero, return an Integer whose
N-bit binary expansion contains all 0's;
else, return an Integer whose N-bit binary expansion
has a 1 in bit position j (1=<j=<N), if and only
if the N-bit binary expansion of some n; has a
1 in bit position j.

be FIX[n;].

LOGXOR[ng:iny:. ..y]
For each n;. if not FIXP[n;]. Tet n; be FIX[n;].
If k is zero, return an Integer whose N-bit
binary expansion contains all 0's:
else, return an Integer whose N-bit binary
expansion has a 1 in bit position j (1=<¢j=<N),
if and only if an odd number of the n; have 1°'s in
bit position j.

LLSH[n:factor] If not FIXP[n]. let n be FIX[n].
If not FIXP[factor]. let factor be FIX[factor].
Return an Integer whose
N-bit bhinary expansion is obtained from that of n

19

-

by shifting it factor bit positions to the left
(and filling with 0's) if factor>0, and shifting
if factor bit positions to the right (and filling
with 0's) if factor<O0.

Note: "LLSH" stands fur‘"lugical left shift".

LRSH[n;factor] Return LLSH[n:;IMINUS[factor]].

LSH[n;factor] If not FIXP[n]. let n be FIX[n].
If not FIXP[factor], 1let factor be FIX[factor].
If the floor of n*2tfactor can be represented
as an Integer, represent and return as an
Integer the floor of n*27factor:

else, return an unspecified Integer.

Note: In INTERLISP-10 LSH is implemented as an arithmetic shift instruction. If the high-order
bits are lost on the shift. the result is just the Integer representing the remaining bits.

RSH[n:factor] Return LSH[n;IMINUS[factor]].

GCDLi:j] If not FIXP[i]. 1let i be FIX[i].
If not FIXP[j], 1let j be FIX[]].
Represent and return as an Integer the
greatest common divisor of i and j.

10. FLOATING POINT NUMBERS

Definition: "Floating Point Numbers" are objects that as far as possible obey the laws of real
arithmetic. The Floating Point Numbers constitute a distinct class of objects with class name
FLOATP.

During input (cf. Section 27), Floating Point Numbers are denoted by character sequences
defined by <floating point number> given below in terms of the Integer syntax:

{dec real> ::= <dec integer>.<{dec seq>|<dec integer>.|.<dec seq>
{floating point number> ::= <dec real>|<dec integer>E<dec integer>|
{dec real>Eddec integer>

A character sequence defined by <dec real> denotes a Floating Point Number object which
represents the real number whose decimal expansion is the sequence of characters given,
followed by an infinite sequence of 0's. In the absence of a sign (+ or -), + is assumed. A
sequence defined by <dec integer>E<{dec integer> denotes a Fioating Point Number object
which represents the real obtained by multiplying the first denoted integer by 10 raised to the
power denoted by the second (e.g. 125E3 denotes a Floating Point Number representing the
real 125000.0.) A sequence defined by <dec real>E<dec integer> is interpreted analogously
(e.g., 125.4E3 denotes a Floating Point Number representing the real 125400.0).

Although a given Floating Point Number represents exactly one real, it is not the case that any
real can be represented. It is recognized that Floating Point Numbers inherently have a finite

20

v NP ST W "'Vﬂ‘-.“. - - .l‘ B L U R SR)

magnitude and precision. Neither the maximum magnitude nor the minimum precision is
specified since these quantities are largely determined by the host machine's architecture.

Definition: We say "(the Floating Point Number) x represents (the real) y to maximum
precision” when the real deviation between y and the real denoted by x is as small as
possible given the host machine's internal representation of Floating Point Numbers.

The VM requires the existence of a field, called the "Floating Point Number box count™ field,
which contains an integer. The initial contents of the field is 0. The field is updated by the
process which constructs Floating Point Numbers and by the function BOXCOUNT.

Definition: The "representation of (the real) x as a Floating Point Number" is the value of the
meta-variable result (if any) after the following computation:

"If x is too large to be represented as a
Floating Point Number:
If the arithmetic overflow flag field contains T,
cause error 5 with culprit 1.0;
elseif the arithmetic overflow flag field contains NIL,
let result be the representation of the largest possible
Floating Point Number;
else, let result be some unspecified Floating Point Number.
elseif x is too close to 0 to be represented
as a Floating Point Number, let result be the representation as a
Floating Point Number of the real 0.0:
elseif x is too small (large negative) to be
represented as a Floating Point Number:
If the arithmetic overflow flag field contains T,
cause errer & with culprit =1.0;
elseif the arithmetic overflow flag field contains NIL,
let result be the representation of the smallest
(large negative) possible Floating Point Number:
else, let result be some unspecified Floating Point Number.
elseif x is to bhe represented as a boxed
Floating Point Number (implementor's choice):
Increment the contents of the Floating Point Number box count
field by 1 and store the result in the Floating Point Number box
count field.
Let result be a newly created boxed Floating Point Number
representing x to maximum precision;
else, let result be the unboxed Floating Point Number representing x to
maximum precision."

FLOATP(x] If x is a Floating Point Number, return x;
else, return NIL.

FLOAT[n] If FLOATP[n]. return n:
elseif FIXP[n]:
Represent and return as a fFloating Point
Number the real obtained by
appending a decimal point followed by
an infinite sequence of 0's to the right
of the decimal expansion of n.

else, FLOAT[ERRORX[LIST[10:n]]].
FGREATERP[x:y] If not FIOATP[x]. let x be FIOAI[x].

If oot FLOATP[y]. let y be FLOAI[y].
IF x > y, return ¥; else, return NIL.

21

A e NPT, W ey oy . - L » - ~

W T

S kit

LTRSS

PR & il D

FLESSP[x:y] If not FLOATP[x]. let x be FLOAT[x]..
If not FLOATP[y]. let y be FLOAT[y].
If x <y, return T; else return NIL.

fPlUS[n1.n2 : nk]
For each ny. if not FLOATP[n;],
let n; be FLOAT[n;].
If kK is zero, represent and return as a Floating Point
Number the real 0.0;
else, represent and return as a Floating Point
Number the real nq+np+...+n, .

FOIFFERENCE[x:y]
If not FLOATP[x]. let x be FLOAT[x].
I[f not FLOATP[y], let y be FLOAT[y].
Represent and return as a Floating Point
Number the real x-y.

FMINUS[n] If not FLOATP[n]. let n be FLOAT[n].
Represent and return as a Floating Point
Number the real -n.

FTIMES[nqiny:...n]
For each ny, if not FLOATP[n;],
let n; be FLOAT[n;].
If k is zero. represent and return as a
Floating Point Number the real 1.0;
else, represent and return as a Floating Point
Number the real nq*ny*...*n,.

FQUOTIENT[i:j] If not FLOATP[i]. 1let i be FLOAT[i].
[f not FLOATP[j]. let j be FLOAT[]].
If j=0.0. cause error 5 with culprit j.
Represent and return as a Floating Point
Number the real i/j.

FREMAINDER[x:y] If not FLOATP[x]. let x be FLOAT[x].
If not FLOATP[y]. let y be FLOAT[y].
If y = 0.0, cause error 5 with culprit y.
Represent and return as a Floating Point Number
the real representing the difference between x and
the unboxed value of (x/y)*y.

Note: FREMAINDER is non-zero only due to the finite precision of the host machine's floating
point arithmetic.

11. ADDITIONAL ARITHMETIC FUNCTIONS

The following VM functions could be defined in terms of those in the last two Sections.
However, it is useful to consider them primitive

NUMBERP[x] If FIXP[x] or FLOATP[x]. return T; i
else return NIL.
MINUSP[x] If FLOATP[x]. return FMINUSP[x]: |
22

LI PP

S

et el o

B SO R

T N

GREATERP[x:y]

LESSPEx:¥]

else return IMINUSP[x].

If FLOATP[x] or FLOATP[y], return FGREATERP[x:y]:
else return IGREATERP[x:y].

(Same specification as for GREATERP except use
FLESSP instead of FGREATERP and TLESSP instead of
IGREATERP.)

PLUS[XIZXZZ .o Xk]

DIFFERENCE[x:y]

MINUS[x]

TIMES[xqixp:...x

QUOTIENT[x:y]

REMAINDER[x;y]

EXPT[x:y]

SQRT[x]

LOG[x]

If FLOATP[x;]. for any 1=<i=<k:
FPLUS[XqiXp:. . X]s
else IPLUS[xqiXxp:.. X¢]-

(Same as GREATERP except use FDIFFERENCE for
FGREATERP and IDIFFERENCE for IGREATERP.)

If FLOATP[x]. return FMINUS[x]:
else return IMINUS[x].

]
(Same specification as for PLUS except use
FTIMES for FPLUS and ITIMES for IPLUS.)

(Same specification as for GREATERP except
use FQUOTIENT for FGREATERP and IQUOTIENT
for IGREATERP.)

(Same specification as for GREATERP except
use FREMAINDER for FGREATERP and IREMAINDER for
IGREATERP.)

[f not NUMBERP[x]., cause error 10 with culprit x:
elseif not NUMBERP[y]. cause error 10 with culprit y.

[f FIXP[(x] and FIXP[y] and y>=0:

Represent and return as an Integer xty:
elseif x<0 and not EQP[y:FIX[y]]:

Cause error 17 with culprit

CONS["I11legal exponentiation:“LIST[:EXPT:x:y]]:
else, represent and return as a Floating Point
Number the real xty.

If not NUMBERP[x]. cause error 10 with culprit x;
elseif x<0. cause error 17 with culprit
CONS["SORT of negative value":x].

Represent and return as a Floating Point Number
the square root of x (note that x may be
a Floating Point Number or an Integer).

If not NUMBERP[x]. cause error 10 with culprit x:
elseif x<0. cause error 17 with culprit
CONS["LOG of negative value":x].

Represent and return as a Floating Point Number
the natural logarithm of x (note that x may be
a Floating Point Number or an Integer).

23

. i adle

Pt . &

Wl R et

B T R T

oy

ANTILOG[x] If not NUMBERP[x], cause error 10 with culprit x.

Represent and return as a Floating Point Number the
real whose natural logarithm is x (note that x may be
a Floating Point Number or an Integer).

SIN[x:radiansflg]
If not NUMBERP[x]. cause error 10 with culprit x.

Represent and return as a Floating Pcint
Number the sine of x (measured in rc<ians
if radianflg, otherwise in degrees)

(Note that x may be a Floating Point Number
or an Integer.)

COS[x;radiansflg]
(Same specification as for SIN except use
"cosine" instead of "sine".)

TAN[x;radiansflg]
(Same specification for as SIN except use
“tangent" instead of “"sine".)

ARCSIN[x;radiansflg]
If not NUMBERP[x]. cause error 10 with culprit x:
elseif x < -1 or x > 1, cause error 17 with

culprit CONS["ARCSIN: arg not in range":x].

Represent and return as a Floating Point Number
the angle (measured in radians if radianflq

and otherwise measured in degrees) between -90 and
+90 degrees whose sine is x (note that x may be a
Floating Point Number or an Integer).

ARCCOS[x:radianflg]
(Same specification as for ARCSIN except use
"cosine" for "sine". "ARCCOS" for "ARCSIN"
"0" for "-90" and "180" for "+90".)

ARCTAN[x;radianflg]
If not NUMBERP[x], cause error 10 with culprit x.

Represent and return as a Floating Point Number

the angle (measured in radians if radianflq

and otherwise measured in degrees) between 0 and

180 degrees whose tangent is x (note that x may be a
Floating Point Number or an Integer).

The following function, RAND. is used to generate pseudo-random numbers. It 1s assumed that
in order to so operate, RAND must save some state information from one call to the next.
The VM assumes this state information (called a "RAND state”) is contained in an implementor
defined object (called a "RAND State" - note capitaiization) and i1s stored in the value field of
the Literal Atom RANDSTATE. The VM also assumes that a RAND State can be destructively
modified so as to represent any given RAND state. (Thus, a RAND State might be a boxed

24

e e e SRR R]

Integer capable of representing many integers. In INTERLISP-10 it is a List Ce!l containing two
boxed Integers.) This allows RAND to save its new (next) state in the cbject representing its
current state, thereby avoiding the creation of a new object. Finally, it is assumed that such a
state entirely determines the next number generated by RAND (for a given pair of arguments).
(That is, if a copy of the current RAND State 1s saved and then RAND is used to generate
some sequence of "random" numbers. the same sequence can be generated in the future by
restoring the saved State (with RANDSET) and executing the same sequence of calls to
RAND.)

RAND[1ower:upper]
Let stateobj be RANDSTATE.
[f stateobj is not a RAND State:
let stateobj be RANDSET[T].

If FIXP[lower] and FIXP[upper]:
Using the RAND state in stateobj as
the current state. generate a psuedo-random integer,
i, lower=<i=<upper, and a new state, s.

Destructively modify stateobj so that it represents s.

Represent and return as an Integer the integer i.
else:

lLet lower be FLOATP[lower].

Let upper be FLOATP[upper].

Using the RAND state in stateobj as the current

state, generate a psuedo-random real,

x. lower=<{x=<upper. and a new state, s.

Destructively modify stateobj so that it represents s.

Represent and return as a Floating Point Number
the real x.

RANDSET[state] If state=T:
lLet newstate be a new RAND state created from any
(pseudo-) random source availahle (e.g.. a run-time
clock).
Let newstateobj be a new RAND State (note upper case)
representing newstate (i.e., newstateobj is a new object
as well as being a representation of a new state).
SETQ[RANDSTATE :newstateobj].

valid RAND state:

Let newstate be the RAND state represented

by state.
Let newstateobj be a new RAND State (note upper case)
representing newstate (i.e.. newstateobj is a new object

: representing the old state represented by state).

i SETQLRANDSTATE ;newstateobj].

‘ elseif state /= NIL:

- Cause error 17 with culprit

4 CONS["arg not previous value of RANDSET":state].

|

; Return a new RAND State (note upper case)

i representing the state represented by RANDSTATE

i (i.e.. return a new object which

i represents the current RAND state).

12. STRINGS

Strings are objects which represent character sequences. However, the String handling
functions expose a certain amount of the internal represention of Strings. It is possible to
form two distinct Strings which share the same internal structure. This can be detected by
replacing the characters in either String and observing side-effects on the other. Therefore,
Strings have a richer and more complicated structure than mere character sequences.

We must first introduce the concept of a "string” (note lower case). Intuitively, a string is like
a character sequence in that it specifies some succession of characters. However, unlike a
character sequence. the ith character in a string can be changed without producing a new
string. This can be formalized as follows:

Definition: A “string (of length n)" is @ meta-object having n fields, each identified with an
integer. 1=<i=<n (provided n>0). and each containing a Character. At any instant a string
“represents” the character sequence with the same succession of Characters.

Definition: A "String" is an object with the following properties:

(1) There is a field, called the "source" field, which may contain either a character
sequence or a string.

(2) There is a field, called the "position" field, which contains a positive integer,
with the restriction that the integer cannot be greater than the number of
characters in the source.

(3) There is a field, called the "charcount". which contains a non-negative integer,
with the restriction that the position plus charcount of a String cannot exceed
the number of characters in the source of the String.

Strings constitute a distinct class of objects with class name STRINGP.

At any instant, a given String. x. with position, i. and charcount. n. represents the character
sequence consisting of the n characters in the source of x, starting at the ith. This is the
pname of the String.

The reason the source field may contain either a character sequence or a string is that it is
convenient to produce Strings directly from the contents of the name fields of Literal Atoms
without converting those character sequences into character strings (cf. MKSTRING). Of
course. since it is impossible to change the characters in a character sequence. the source of
such a String must be replaced by a string the first time a character is to be changed (cf.
RPLSTRING).

Definition: An "empty String" is one with charcount 0. The source and position fields of an
empty String are irrelevant.

Definition: “Create a new String representing (character sequence) x" means "Create a new
String. with source set to a new string representing x, position set to 1. and charcount set to
the length of x." Whenever the source, position, or charcount of a new String is not as
specified above, we will be explicit.

NCHARS (cf. Section 8) returns the number of characters in the pname of a String. NTHCHAR
(cf. Section 8) returns the ith Character in the pname of a String.

26

TR

Lt o ablet

Tomill 8 oo

o

e, & S

»

A D R AR NIRRT, gt

STREQUAL[x:y]

SUBSTRING[str:n;m]
If not SIRINGP[str] and not LITATOM[str],

po WP WM LAy » - v‘_ NPT AT

If x is a String. return x: else return NIL.

If STRINGP[x] and STRINGP[y]:

If the character sequence represented by x is
the same as that represented by y, return x:
else, return NIL.

MKSTRING[x;flg:rdtb1]
B £lg:

Create and return a new String representing the
PRIN2-pname of x with respect to rdthl.

elseif STRINGP[x]. return x;

elseif LITATOM[x]. create and return a new

String with source set to the name of x,

position set to 1, and charcount set to the number
of characters in the name of x;

else:

Create and return a new String representing the
pname of x.

CONCAT[xqixp:...x,]
If n is zero., create and return a new empty String;
efllsel:

Create and return a new String representing the
character sequence obtained by concatenating the
pnames of xq through x, (in that order).

RPLSTRING[str:n;newchars]
If not STRINGP[str]. let str be MKSTRING[str].

a is NIL, let n be 1;

elseif not FIXP[n], let n be FIX[n].

If n<0, let n be NCHARS[str]+n+1.

If n<0 or n=0 or n>NCHARS[str],

cause error 27 with culprit newchars.

If newchars is a Literal Atom or a String

and n+NCHARS[newchars]-1 > NCHARS[str].

cause error 27 with culprit newchars:

else:

If the source of str is a character sequence

(rather than a string). replace the source of

str with a string representing the source of str.

Let strsource be the source of str.

Let i be the position of str.

Let 1 be the charcount of str.

Replace the contents of the successive Character fields
of strsource, starting with the i+n-1st. with the
successive Characters from the pname of newchars (from
left-most through right-most). and if this preccess requires
the replacement of a field heyond the i+1-1st one,
cause error 27 with culprit newchars.

Return str.

let str be MKSIRING[str].
n is NIL, let n be 1;

elseif not FIXP[n]. let n be FIX[n].
If m is NIL, Tet m be NCHARS[str]:
elseif not FIXP[m], let m be FIX[m].

27

If n<0, Tet n be NCHARS[str]+n+1.
If m<0, let m be NCHARS[str]+n+1.
If n<0 or a=0 or n>m, return NIL.

If STRINGP[str]:
Let i be the contents of the position field of str.
Create and return a new String with source
set to the source of str, pasition to i+a-1,
and charcount to m-n+1;
else:
Create and return a new String with source
set to the name of str, position to a, and charcount
to m-n+1.

GNC[str] If not STRINGP[str], let str be MKSTRING[str].

I[f str is an empty string,
return NIL;

else:
Let y be the first Character in the pname of str.
Let i be the contents of the position field of str.
Set the position field of str to i+l.
Return y.

BT

GLC[str] [f not STRINGP[str], let str be MKSTRING[str].

If str is an empty string,
return NIL;

alige:
Ltet y be the last Character in the pname of str.
Let n be the charcount of str.
Set the charcount field of str to n-1.
Return y.

The next function searches one string for the first occurrence of another. However. wild card
characters are allowed. Thus. we will define the notion of two character sequences being
equal with respect to some wiid card character:

Definition: "(character sequences) seqq and seqp (each of length n) are equal with respect
to the wild card skip”, where skip is an arbitrary object. means "For each i from 1 to n. either
the ith Character in seqq is skip or is the ith Character in seqp.”

STRPOS[pat:stri.start:skip:anchor;tail]
If start=NIL, let start be 1;
elseif NUMBERP[start] and start<O0:
tet start be NCHARS[str]+start-1

]

3 If not FIXP[start]. let start be FIX[start].
§ Let patlen be the length of the pname of pat.
. tet strlen be the length of the pname of str.
1 If anchor, let max be start:

é else, let max be strilen-patlentl.

If there is an integer, i, start=<i=d<max,

such that the pname of pat and the patlen long

substring of the pname of str starting at i are

equal with re<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>