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ABSTRACT

Two-phase Hartmann flows in an MHD generator duct of rectangular cross-
section are examined and numerical values for the velocity fields and induced
current streamlines for fluids of spatially-dependent electrical conductivity
are determined as a function of load factor, Hartmann number and channel aspect
ratio. This study is of considerable practical interest in connection with some
experimental work in progress at Argonne Laboratories on two phase liquid metal-
gas MHD generators and the results presented herein may enhance the understanding
of the operating characteristics of such devices. The problems considered
include: 1) one-dimensional Hartmann flow between two parallel plates at high
Hartmann number when the fluid electrical conductivity decreases with increasing
distance from the walls, 2) two-dimensional Hartmann flow in rectangular
channels of finite aspect ratio having two insulating walls and two thin walls
of finite conductivity representing the electrodes and, 3) compressible one-~
dimensional isothermal MHD flow with zero-slip between its liquid and gas
components. Results indicate that conductivity gradients can produce inflected
velocity profiles which may be hydrodynamically unstable, that for larger load
factors the shunt current in the Hartmann boundary layers become considerable
and that two-phase MHD flows of moderate void fractions have sound speeds
considerably lower than in its components. Turbulent effects are not considered
in these studies since turbulent fluctuations are expected to be suppressed

for the high Hartmann number flows of interest in two-phase MHD generators.
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LIST OF SYMBOLS

co-ordinate perpendicular to the flow direction and the applied
magnetic field

co-ordinate parallel to the applied magnetic field

co-ordinate in flow direction

time

channel half-width in y direction

channel half-width in x direction

applied magnetic intensity

induced electric field in x direction

channel length in flow direction

external electrical resistance

load factor ( = ratio of external to total electrical resistance)
half-height of channel in y direction for one-dimensional problem
sound velocity in homogeneous two-phase mixtures

channel aspect ratio ( = b/a)

total pressure (hydrodynamic and magnetic)

pressure gradient in flow direction

velocity in flow direction
induced magnetic intensity in flow direction

ratio of electrode resistance to fluid plus electrode resistance

void fraction ( = ratio of gas to total volume)
coefficient of viscosity

electrical conductivity

magnetic permegbility

magnetic viscosity ( = l/ueo)

density

specific heat ratio of gas component

Hartmann number ( = aB; Uo/u )

Interaction parameter (=oB
o

(o S e}

L/pW) |

Subscripts

o

g
1

value at channel walls
gas component of two-phase flow

liquid component of two-phase flow |
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I. INTRODUCTION

An analytical study on two-phase Hartmann flows in the MHD generator
configuration has been in progress here at the University of Florida since
December 1975. The objective of this ONR sponsored program has been to
better understand the behaviour of electrically conducting flows with spatially
dependent electrical conductivity in the presence of externally applied
magnetic fields and in particular to aid in the understanding of some of the
experimental observations which have been and are being obtained in a major
experimental research program at Argonne Laboratories on liquid metal-gas
MHD power generation{l, 2|. The hydromagnetic flow behaviour in such two-
phase devices is of special interest to the Navy as these generators, if
they can be made to function in scaled~up versions, have good efficiencies
and high power densities which would make them ideally suited for on-board

applications. At the present time an effort is underway at Argonne

Laboratories to construct a two-phase, sodium-argon MHD generator with a net
30 MW power output[1l]. It is part of our effert at the University of
Florida to gain a better understanding of the properties of the MHD flows
encountered in such generators and possibly to aid in the surmounting of
expected difficulties introduced by upscaling, end effects and liquid-gas
separation within the generator channel. We have made an effort to initiate
and maintain communications between the various research groups working in
liquid metal-gas MHD power generation. Discussions to date have been held,
among others,with M. Petrick's Group at Argonne Laboratories and with H.
Branover of Ben-Gurion University.

The present report gives a summary of results obtained by us here }

at the University of Florida during the first year of the contract period.




The personnel involved in the combined analytical-numerical research

effort have been Drs. E. R, Lindgren and U. H. Kurzweg as co-principal
investigators , together with R. E. Elkins as a full-time post~doctoral
investigator and T. A. Trovillion as a PhD canidate. The initial phase

of our study included a careful examination of the relevant literature in
the field and a formulation of an appropriate set of equations governing
two-phase magnetohydrodynamic flows. This was followed by major analytical
efforts in the areas of: 1) One-dimensional Hartmann flow for fluids of
variable electrical conductivity, 2) Two-dimensional Hartmann flow in
channels of rectangular cross-section and 3) One-dimensional compressible
MHD flow under zero-slip conditions. Details of our results in these

areas are presented below.




II. ONE-DIMENSIONAL HARTMANN FLOW WITH VARIABLE ELECTRICAL CONDUCTIVITY

Our initial studies involved the determination of velocity and current
distributions in one-dimensional Hartmann flow between two parallel plates
when the fluid electrical conductivity and viscosity was a function of the
normal distance from the bounding walls and a constant external magnetic
field was applied. This represents a first approximation to homogeneous,
laminar, two-phase flow in an MHD channel of large aspect ratio when bubble
motion relative to that of the liquid is neglected. The appropriate
differential equation for such a laminar, one-dimensional flow in this
geometry can be derived from the standard continuum MHD equations as given
for example by Hughes and Young [3] and reads

0=-2 4 gy—@y)g—;’-] - (B [w +%J , (1)
where u(y) is the viscosity and o(y) the elecgrical conductivity both of
which are taken as functions of the normal distance from the walls. Here z
is the flow direction coordinate, W(y) the axial velocity, Bo the constant
applied magnetic intensity in the y direction, E the electric field in
the current flow direction x and 3p/3z the constant pressure gradient. As
we were attempting to approximate the experimental conditions encountered
in the Argonne Group's studies [2], the electrical conductivity was assumed
to have the void related y dependence given by the empirical formula

a=0 [0.97083 - 1.04679 a - 2.22367a2 + 3.52146(13 - 1.117420a] (2)
with a parabolic void distribution

a=0.7 - O.S(y/H)2 = Gas Volume/Total Volume (3)
corresponding to that found at station 4 in their non-tapered channel
experiments. Here y=+H are the locations of the bounding walls. Note again
that in this model the two-phase liquid metal-gas mixture is being treated

as a homogeneous fluid with variable
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conductivity properties. Although such an approach is certainly not exact,
it nevertheless can be expected to shed valuable new light on the problem.
Also it should be noted that we are applying Eq.(2) to yield a spatial vari-
ation for g,while the original Argonne Laboratory results [2] gave this
conductivity behaviour as an averaged value across the channel in the

absence of a magnetic field. Because of this difference, we may treat

Eq.(2) as one among many experimental conduction formulas showing a
monotonically decreasing electrical conductivity with increasing distance
from the bounding walls of the channel. The viscosity coefficient in our
calculations is taken as constant. This simplifying assumption is reasonable
as viscous effects can be expected to be confined to a very narrow region
near the walls for the high Hartmann number cases of interest. 1In such a
thin Hartmann layer the viscosity coefficient can be treated essentially as
constant although it may vary considerably in the core of the flow. The
boundary conditions for the problem are the no slip velocity condition W(+H)=0

and the integral requirement
+H

E=2—b‘ ;-

o(y) (WBo+E)dy , (4)
H

where R is the external applied resistance, L is the channel length in the
flow direction and 2b is the distance between electrodes in the x direction.
Equation (1), subjected to the stated boundary conditions, was
solved by both an analogue and digital numerical approach since analytic
solutions were not found to be possible for the conductivity distribution
given by Eqs. (2) and (3) except within the core of the flow. The analogue
solutions were obtained for Hartmann numbers M=B°H477:7U'up to 10 but the
solution became unstable for still larger values. This difficulty is due
to the rapid change in magnitude of the velocity profile in the wall near

region for larger M and led us to abandon the analogue calculations in




favor of the finite difference digital approach. The digital calculations

were carried out by dividing the channel half-width O<y<H into ten equally
spaced subintervals within the Hartmann boundary layer located approximately
in H>y>H[1-(1/M)] and ten equally spaced subintervals between the boundary
layer edge and the channel axis at y=0. In this manner a simple matrix
inversion yielded solutions for W(y) for any desired Hartmann number and
calculations for both constant conductivity and the variable distribution
given by Egqs. (2) and (3) were made for Hartmann numbers as high as M=1000
without encountering convergence difficulties. Typical results for the
velocity variation in the variable conductivity case are shown in Fig. 1

for M=50. Note the thin Hartmann layer near y=H and the general inflected
profile in the core of the flow. This inflection is due to the rapid
decrease in electrical conductivity with increasing distance from the

wall as predicted by Eq.(2) and (3) and is not present in the classical
Hartmann solution where the conductivity is constant. Such inflected velocity
profiles are known to be unstable from hydrodynamic stability considerations
and may therefore produce a breakdown and subsequent cross-flow mixing under
variable conductivity conditions. The functional form of the velocity
distribution is seen to remain unchanged with varying external load, a

fact well known for constant conductivity calculations. Note also that the
velocity variation in the core goes approximately as the inverse of the
electrical conductivity as can also be directly surmised from FEq. (1), upon
neglecting the viscous term, which has significant values only in the wall
near region. That is, outside the Hartmann boundary laver the velocity
profile is given by an algebraic expression involving o, B,, E and the
pressure gradient and the current density there is approximately constant.

Some plots of these analytically determined velocity profiles in the core

W
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have been generated for the different void distributions given in Ref.[2]
at stations 1 through 4. The velocity profiles all show a characteristic
peak at the channel center where the void fraction is largest.

In figure 2 we show the velocity and electric current density in

our one-dimensional channel flow for a Hartmann number of M=1000 and a

load factor K=R/R - =20/21. Again one notes the inflected velocity profile

otal

and the extremely thin boundary layer. The current density in the core

of the flow is essentially constant. An expanded version of this same
solution for the Hartmann boundary layer is found in Fig. 3 and shows the
back flow current in a layer of thickness Ay = 0.0025H. We estimate that
the typical Hartmann number in the Argonne liquid metal-gas MHD generator[2]
is M=400, so that the viscous effects will be confined almost entirely to

a very thin layer next to the insulating wall. We have not carried out
calculations for other variable electrical conductivity profiles but can
easily do so with the existing computer program. CPU time for the velocity
determination for a given conductivity profile amourts to less than one
second and does not increase appreciably with increasing M.

An analytical study has also been completed for these one dimensional
Hartmann flows for the case of a discrete jump in electrical conductivity
and viscosity coefficient at a given y between constant but differing values
on the two sides of the interface. Here one finds a hyperbolic tangent
type variation in the velocity W(y) across the interface with the transition
thickness proportional to the reciprocal of the Hartmann number. A current

layer will generally exist at such a discontinuity in fluid properties.




III. TWO-DIMENSIONAL HARTMANN FLOWS IN CHANNELS OF RECTANGULAR CROSS-SECTIONS

Using the same homogeneous two-phase approximation as for the one-
dimensional Hartmann flow case, we next considered laminar Hartmann flows
in channels of rectangular cross-section with finite aspect ratio. Series
solutions for such flows in the constant conductivity limit have been obtained
by many investigators including Shercliff [4], Uflyand [5), Chang and Lundgren [6]
and others. However these calculations are generally not applicable for the
wall conductivities encountered in MHD generator configurations nor are
the series solutions obtained well suited for numerical evaluation at high
Hartmann numbers. Accordingly, instead of using the series solution method
which is unlikely to work for variable conductivity conditions anyway, we
went directly to a digital solution approach using a two dimensional version of
a variable grid spacing such that the number of points within the boundary
layers of the channel walls equal approximately those within the core of the
flow. The governing momentum and magnetic induction equations governing
such variable property Hartmann flows were derived and in Cartesian coordinates

assume the form

2 , Bo 3B, 3 W, 3 W _

3z = L (By 3 ax(”Si) = ay “35) =9 (5)
oW J 9B 3 aB

B°8y i X "5;) iy ay(”ay) -9 . (6)

where B, is the constant external magnetic field applied in the y direction,
W(x,y) the sought after axial velocity distribution and B the induced field
in the z direction. Here P represents the total pressure and n=1/ueo is

the magnetic viscosity related to the magnetic permeability and electrical

conductivity. We note that Eqs. (5) and (6) reduce respectively to the classical

10




MHD momentum and induction equations[3] in the limit of constant ¥ and n.
The important non-dimensional parameters in the problem are the aspect
ratio r=b/a of the channel, where 2b is the distance between thin finite
conductivity electrodes at x=+b and 2a the distance between the two
insulating sides of the channel at y=+a, and the Hartmann number here
defined at M=aB°\f;:7;:? where u, and o, are the fluid viscosity and
electrical conductivity at the wall, respectively. The boundary conditions
appropriate to an MHD generator channel and those used in our calculations
were that W vanishes on the channel walls, that B=Const. at the insulating
walls and that both the tangential component of the electric field and the
normal component of the magnetic intensity be continuous at the electrodes.
For the finite thickness and finite electrical conductivity electrodes under
consideration this leads to a mixed boundary condition at the electrodes
identical to that used by Chang and Lundgren[6]. An important parameter
entering the boundary conditions at the electrodes is the non-dimensional
electrode resistivity, K =resistivity of electrode/resistivity of fluid plus
electrode.

Numerical calculations using a variable grid spacing based upon a
boundary layer thickness of a/M at the insulating surfaces and one of
a/M% at the electrodes was carried out using the extended Peaceman-Rachford
alternate direction implicit method [7]. The method involves a relaxation
scheme in which a time derivative is introduced into the equations and the
solutions relaxed until all time dependence vanishes. The advantage of this
method is that all iterations are solved implicitly, considering all nodes
simultaneously. This gives numerical stability to the calculations and the

necessary matrix inversion is reduced to inverting a tridiagionial system.

L1




Because of the symmetries inherent in the problem our calculations were con-
fined to only the first quadrant of the rectangular cross-section. The
velocity and magnetic intensity was evaluated at 400 mesh points within
this quadrant and typicaly involved six seconds of computer time at a Hartmann
number of 20. Typically 35 to 50 iterations were required for convergence.

dlur first calculations were done for the constant electrical
conductiViEg\and viscosity case at an aspect ratio r=b/a=2, a Hartmann number
20, zero load factor and electrodes of infinite conductivity (KW=0)' Results
of the calculation are shown in Figures 4 and 5. The first of these
shows contours of constant velocity in increments of one-eighth the maximum
velocity at the channel center. Note the relatively thick boundary layer
at the electrodes compared to the narrow Hartmann layer at the insulating
walls which are perpendicular to the applied magnetic field. The induced
current lines (which are proportional to B) are seen to lie essentially
parallel to the non-conducting walls with no appreciable return current in
the Hartmann layer. This fact stems from the zero external load considered
in this particular calculation. Large return currents near the insulating
walls were found for large load factors as demonstrated in Figs. 6 and 7.
Note in Fig. 7 that all current lines remain in the liquidas the electrodes
are non-conducting (Kw=1). To our knowledge these calculations represent
the first finite difference solutions for the Hartmann generator geometry
and should be extendable without major problems to other aspect ratios and
larger Hartmann numbers. As in the one dimensional case, the current density
within the core of the flow is essentially constant.

Some calculations were also done for a variable conductivity fluid

of assumed constant viscosity. For a choice of conductivity we considered
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the hyperbolic tangent profiles

g = 00/{1—(1/4)(1—A)[1+tanh 8(1-x/a)] [l+tanh 8(0.S-y/a)]} . KT
where A 1s an adjustable parameter. Such a conductivity profile is an
approximation to what can be expected in a two-phase MHD channel flow in
which the conductivity near the wall is large but becomes quite small
near the axis of the channel where most of the gas will be located. A
calculation for A=10 is shown in Figs. 8 and 9. The load factor here is
K=0.95 and the Hartmann number remains at M=20. Comparing these results
with those obtained for constant electrical conductivity indicates the
presence of a high velocity core near the channel axis followed by a velocity
plateau at intermediate distances from the wall and then the usual rapid
velocity decrease in the boundary layers. Note that this time there is a
large current backflow in the vicinity of the insulating walls. This is the
result mainly of the large load factor considered.

We have not at this point extended our calculations to larger Hart-
mann numbers in these two-dimensional calculations because of the increased
computer time required. Ways to reduce the CPU time for larger M are now
under investigation including the possibility of a boundary layer hookup
with an inviscid core calculation. The calculation method could be used to
make parametric studies with different viscosity and conductivity distri-
butions should this seem advisable, and also used to determine volume flow
rate as a function of channel aspect ratio. It is 1likely that the largest
flow rates for a fixed area 4ab will occur in channels of aspect
ratio r=b/a less than unity as the boundary layers at the electrodes are

generally thicker than the Hartmann layers at the insulating sides.
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IV. TWO-PHASE, ZERO-SLIP MODEL FOR COMPRESSIBLE MHD FLOW

In the two problems on Hartmann flow described above it has been assumed
that there was no variation in conditions in the streamwise direction. This is
generally not true in a two-phase MHD generator of the type under consideration
at Argonne Laboratories where the gas in the two-phase flow undergoes consider-~
able expansion between the entrance and exit part of the MHD channel. Accordingly,
we have also devoted some time to examining existing one-dimensional two-
phase slip models for which computer codes have been developed by the Argonne
group [2] and attempted to develop some simplified version of their model which
is consistent with the experimental observations and allows for time-variations
in the variables. 1In particular, we examined the slip model used by them and
feel that there are questions concerning the applicability of a churn turbu-
lence term which is dependent on the presence of an average slip between the
gas and liquid components. Measured variations in void fraction in the cross-
stream direction could account for an apparent slip predicted by a one-
dimensional approximation although locally there may be little velocity difference
between the components. To heavy a reliance on such a one-dimensional model
could lead to incorrect conclusions concurring the upscaling of two-phase
MHD generators.

As a first approximation for the axial variations in the velocity, density,
void fraction and pressure we have developed a one-dimensional isothermal,
zero-slip model in which the gas is treated as ideal. Our objective is to
use the zero-slip model, whose utility lies in its mathematical simplicity,
to investigate the time-dependent behaviour of such flows and look for

possible oscillatory phenomena that may be present and may lead to fluctuations

in the power output in two-phase MHD generators. All flow properties in the
cross-stream direction have been replaced by averages. Within the framework

of these approximations, the governing time-dependent equations are essentially
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those of bubbly two-phase flow as given by Wallis [9] after a magnetic

force term is added. They become

, o 8n a -
Continuity: ol az(oW) 0 (8)
: W oW, __ 9p _
Momentum: ° (3% + Wg;? o 0B, (E + WB,) (9)
State(isothermal): p = const. Pg (10)

together with the subsidiary conditions

Mean Density: p =ap._ + (l-a)pl (11

24

Gas Continuity: gz{pga ) + g;—(pgaW) =0 3 (12)
Here all non-subscripted quantities refer to the averaged values at

specified axial positions z. These equations have been solved by a finite

difference-predictor~connector approach[8] using the conductivity void fraction

relation given by eqs. (2) and (3). For one set of specified initial conditions

and boundary conditions based upon constant pressure at the channel exit at

z = L and conservation of momentum, mass and energy during gas injection at

the channel entrance at z = 0 and also closely approximating the conditions

encountered in the low temperature NaK—N2 MHD generator facility at Argonne

Laboratories, one obtaines the time-dependent velocity profiles shown in

Fig. 10. For the large value of the interaction parameter N=0°B°2L/pw used

in this calculation, the steady-state velocity condition is seen to be

approached withount any oscillatory behaviour. This was not always found to be

the case at lower gas entrance pressures where transient oscillatory behaviour

was sometimes observed. We are attempting at the moment to determine whether

this oscilbtory behaviour is due to numerical instabilities in the relaxation

procedure used in the calculations or represents a real acoustic phenomenon

which may produce the experimentally observed voltage fluctuations noted under
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certain conditions. In Fig. 11 we demonstrate the steady-state axially dependent
pressure, density and void fraction corresponding to the steady-state velocity
given in Fig. 10. Note, that as expected for the constant channel cross-

section considered, the velocity and void fraction generally increase with
increasing z while the pressure drops.

In connection with this zero-slip model we have also developed an
approximate analytic model for channels of variable cross-section. This model,
in which we neglect inertia forces and require the two-phase flow to remain
sub~sonic, indicates that the velocity W(z) generally increases with decreasing
pressure and that approximate constant flow velocities desired in an MHD generator
can be obtained by having an expanding channel and tailoring the local load
factor by electrode segmentation. One of the shortcomings of the analytic
model is that the acoustic velocity is not known a priori, being a function the
gas pressure and the void fraction.

Some consideration has also been given to the expected sound velocity
and concomitant potential compressible effects in the two-phase bubbly flows
existing in liquid metal-gas MHD generators. Employing the standard approximation
to the sound velocity in two-phase flows with void fractions in the range
0.1 <a<0.9 as given in Ref. [9] and using the ideal gas law for assumed

isothermal conditions we find that the sound velocity in the mixture becomes

c =ﬁpg/[a<1—a)o11' " (13)

where vy is the specific heat ratio of the gas, pg the gas pressure, p, the

1
liquid density and a the void fraction. The sound velocities predicted by

this formula yield a minimum at o« = 1/2 and will take on values considerably
lower than those existing in the fluid constituents taken separately. Typically,
for a sodium-argon mixture at a channel gas pressure of 76 atmospheres,

corresponding to the Argonne Laboratories high temperature facility [1],the sound
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velocity will be 252 met./sec. This compares to an approximate minimum
sonic velocity of 24 met./sec. 1in a water-air mixture at one atmosphere
pressure. In view of formula (13) most of the existing experimental two-
phase MHD generators operate under subsonic conditions. It may under
certain circumstances be of advantage to operate such generators in a
supersonic mode as this may help smooth out observed voltage fluctuations

and produce an acoustically quiter flow.
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V. CONCLUDING REMARKS

During the first year of our contract work on two-phase MHD
flows we have treated the flows as essentially a homogeneous fluid with
spatially dependent properties. This approach has ylelded informative
new results which probably will find direct application to some of the
experimental work conducted in this area by M. Petrick of Argonne Laboratories
and by H. Branover of Ben Gurion University. We have treated the flows as
laminar. This can be partially justified by Branovers experimental studies[10]
which indicate that turbulent fluctuations are essentially suppressed when
the ratio of Hartmann number to Reynolds number exceeds a value of approxi-
mately 10-2. It should be possible to meet this condition of turbulence
suppression in experimental two-phase MHD generators.

We plan during the upcoming contract period to extend our
investigations on two~dimensional Hartmann flows by making parametric studies
of the volume flow rates through channels of rectangular cross-section for
various different conductivity profiles. To handle the larger Hartmann
number cases without the use of an inordinate amount of computer time, we will
attempt to develop a boundary layer solution method in which the core of the
flow is treated as inviscid. Also the effects of varying electrode conductivity
and load factor will be further investigated.

The one~dimensional, compressible, no-~slip mode] is to be examined
further in order to determine the origin of the observed oscillations at
lower entrance pressure conditions. We also intend to look at tapered channel
geometries since it is desirable in actual two~phase MHD generators to keep

the flow velocity constant in its passage through the generator duct. An
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attempt will be made to include fluid property variations in the direction
normal to the flow in order to account for the backflow currents existing
in the Hartmann layers,

We have not up to the present time considered the dynamics of
individual bubbles in these two phase flows, but plan to do so during the
coming year because of the obvious importance of the suppression of radial
bubble drift for a properly functioning generator. Analytical work on
bubble drift in two-phase flows is nearly non-exsistent and presents a
formidable problem. It might be that some type of flow separators will
need to be installed in the two-phase flow channel to suppress such cross-
stream bubble drifts.

Finally, some consideration will be given to the time development
of Hartmann velocity profiles at the channel entrance. This problem Is of
great practical importance as the entrance lengths in typical MHD generators
may be comparable with the actual channel length so that a steady-state

profile may actually not exist.

2
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