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ABSTRACT

Two—phase Hartmann flows in an MilD generator duct of rectangular cross—

section are examined and numerical values for the velocity fields and induced

current 8treamlines for fluids of spatially—dependent electrical conductivity

are determined as a function of load factor, Harttnann number and channel aspect

ratio. This study is of considerable practical interest in connection with some

experimental work in progress at Argonne Laboratories on two phase liquid metal—

gas MHD generators and the results presented herein may enhance the understanding

of the operating characteristics of such devices. The problems considered

include: 1) one—dimensional Hartmann flow between two parallel plates at high

Hartmann number when the fluid electrical conductivity decreases with increasing

distance from the walls, 2) two—dimensional Hartmann flow in rectangular

channels of finite aspect ratio having two insulating walls and two thin walls

of finite conductivity representing the electrodes and , 3) compressible one—

dimensional isothermal MIlD flow with zero—slip between its liquid and gas

components. Results indicate that conductivity gradients can produce inflected

velocity profiles which may be hydrodynamically unstable, that for larger load

factors the shunt current in the Hartinann boundary layers become considerable

and that two—phase MHD flows of moderate void fractions have sound speeds

considerably lower than in its components. Turbulent effects are not considered

in these studies since turbulent fluctuations are expected to be suppressed

for the high Hartmann number flows of interest in two—nhase MIlD generators.
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LIST OF SYMBOLS

x co—ordinate perpendicular to the flow direction and the applied
magnetic field

y(or Y )  co—ordinate parallel to the applied magnetic field

z co—ordinate in flow direction

t time

a channel half—width in y direction

b channel half—width in x direction

B applied magnetic intensity

E induced electric field In x direction

L channel length in flow direction

R external electrical resistance

K load factor ( ratio of external to total electrical resistance)

H half—height of channel in y direction for one—dimensional problem

c sound velocity in homogeneous two—phase mixture s

r channel aspect ratio ( = b/a)

P total pressure (hydrodynamic and magnetic)

pressure gradient in flow direction

W velocity in flow direction

B induced magnetic intensity in flow direction

ratio of electrode resis~ nce to fluid plus electrode resistance

void fraction ( = ratio of gas to total volume)

coefficient of viscosity

o electrical conductivity

magnetic permesblliey

magnetic viscosity ( = 1/is o)

p density

y specific heat ratio of gas component

M Hartmann number ( aB— ~ 1 /p )

N Interaction parameter 
~ 

=

Subscripts

o v~ilue at channel walls

g gas component of two—phase flow

1 liquid component of two—phase flow

iii

-- ~~~~--  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —  
j ..- --

~~~~~~~~~ ~~~~~~~~~~~~ .—~~~~~~~~~~ - — -—



- . ---- -.

I. INTRODUCTION

An analytical study on two—phase Hartmann flows in the MHD generator

configuration has been in progress here at the University of Florida since

December 1975. The objective of this ONR sponsored program has been to

better understand the behaviour of electrically conducting flows with spatially

dependent electrical conductivity in the presence of externally applied

magnetic fields and in particular to aid in the understanding of some of the

experimental observations which have been and are being obtained in a major

experimental research program at Argonne Laboratories on liquid metal—gas

MIlD power generation[l , 2J . The hydromagnetic flow behaviour in such two—

phase devices is of special interest to the Navy as these generators , if

they can be made to function in scaled—up versions, have good efficiencies

and high power densities which would make them ideally suited for on—board

applications. At the present time an effort is underway at Argonne

Laboratories to construct a two—phase, sodium—argon MIlD generator with a net

30 MW power output[1). It is part of our effort at the University of

Florida to gain a better understanding of the properties of the MMD flows

encountered in such generators and possibly to aid in the surmounting of

expected difficulties introduced by upscaling, end effects and liquid—gas

separation within the generator channel. We have made an effort to initiate

and maintain communications between the various research groups working in

liquid metal—gas MMD power generation. Discussions to date have been held ,

among others ,with N. Petrick ’s Group at Argonne Laboratories and with H.

Branover of Ben—Gurion University.

The present report gives a summary of results obtained by us here

at the University of Florida during the first year of the contract period .
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The personnel involved in the combined analytical—numerical research

effort have been Dra. E. R. Lindgren and U. H. Kurzweg as co—principal

investigators , together with R. E. Elkins as a full—time post—doctoral

investigator and T. A. Trovillion as a PhD canidate. The initial phase

of our study included a careful examination of the relevant literature in

the field and a formulation of an appropriate set of equations governing

two—phase magnetohydrodynamic flows. This was followed by major analytical

efforts in the areas of: 1) One—dimensional Hartmann flow for fluids of

variable electrical conductivity, 2) Two—dimensional Hartmann flow in

channels of rectangular cross—section and 3) One—dimensional compressible

MIlD flow under zero—slip conditions. Details of our results in these

areas are presented below.

2
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II. ONE-DIMENSIONAL HARTMANN FLOW WITH VARIABLE ELECTRICAL CONDUCTIVITY

Our initial studies involved the determination of velocity and current

distributions in one—dimensional Hartmann flow between two parallel plates

when the fluid electrical conductivity and viscosity was a function of the

normal distance from the bounding walls and a constant external magnetic

field was applied. This represents a first approximation to homogeneous,

laminar , two—phase flow in an MHD channel of large aspect ratio when bubble

motion relative to that of the liquid is neglect2d. The appropriate

differential equation for such a laminar, one—dimensional flow in this

geometry can be derived from the standard continuum MHD equations as given

for example by Hughes and Young [3} and reads

0 = — + 
~~~~~~~~~~~~~~~~~~~~~~~ 

— o(y)B~ [~ + , (1)

where u(y) is the viscosity and u(y) the electrical conductivity both of

which are taken as functions of the normal distance from the walls. Here z

is the flow direction coordinate , W(y) the axial velocity , B the constant

applied magnetic intensity in the y direction, E the electric field in

the current flow direction x and op/az the constant pressure gradient. As

we were attempting to approximate the experimental conditions encountered

in the Argonne Group ’s studies [21, the electrical conductivity was assumed

to have the void related y dependence given by the empirical formula

o = o [0.97083 - 1.04679 a - 2.22367a2 + 3.52146a3 - l.11742~~ ] (2)

with a parabolic void distribution

a = 0.7 — 0.5(y/H)2 = Gas Volume/Total Volume (3)

corresponding to that found at station 4 in their non—tapered channel

experiments. flere y+H are the locations of the bounding walls. Note again

that In this model the two—phase liquid metal—gas mixture Is being treated

as a homogeneous fluid with variable

3
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conductivity properties. Although such an approach is certainly not exact ,

it nevertheless can be expected to shed valuable new light on the problem.

Also it should be noted that we are apply ing Eq.(2) to yield a spatial vari-

ation for ~,while the original Argonne Laboratory results [2] gave this

conductivity behav iour as an averaged value acr oss the channel in the

absence of a magnetic field. Because of this difference , we may treat

Eq.(2) as one among many experimental conduction formulas showing a

monotonically decreasing electrical conductivity with increasing distance

from the bounding walls of the channel. The viscosity coefficient in our

calculations is taken as constant. This simplif y ing assump t ion is reasonable

as viscous effec ts can be expected to be confined to a very narrow region

near the walls for the high Hartmann number cases of interest. In such a

thin Hartmann layer the viscosity coefficient can be treated essentially as

constant although it may vary considerably in the core of the flow. The

boundary conditions for the problem are the no slip velocity condition W(±H) 0

and the integral requirement

E = 
~ 

o ( y )  (WB 0+E)dy (‘i)
J —H

where R is the external app lied resistance , L is the channel length in the

flow direction and 2b is the distance between electrodes in the x direction .

Equation (1), subjected to the stated boundary conditions , was

solved by both an analogue and digital numerical approach since analytic

solutions were not found to be possible for the conductivity distribution

given by Eqs. (2) and (3) excep t within the core of the flow . The analogue

solutions were obtained for Hartmann numbers M=B0l’~~ ‘0 /~i
’up to if) hut the

solution became unstable for still larger values. This di f f i c u l t y  is due

to the rapid change in magnitude of the velocity profile in the wall near

region fo r  l a r g e r  M and led us to abandon the analogue calculat ions In

4 
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favo r of the finite difference digital approach. The digital calculations

were carried out by dividing the channel half—wtdth O- -y ’ H into ten equally

spaced subintervals within the Hartmann boundary layer located approximately

in H>y>H[l—(1/M) j and ten equally spaced sublntervals between the boundary

layer edge and the channel axis at y O. In this manner a simple matrix

inversion yielded solutions for W(y) for any desired Flartmann number and

calculations for both constant conductivity and the variable distribution

given by Eqs. (2) and (3) were made for Hartmann numbers as high as M 1000

without encountering convergence difficulties. Typical results for the

velocity variation in the variable conductivity case are shown in Fig. 1

for M=50. Note the thin Hartmann layer near y=H and the general inflected

profile in the core of the flow. This inflection is due to the rapid

decrease in electrical conductivity with increasing distance from the

wall as predicted by Eq.(2) and (3) and is not present in the classical

Hartmann solution where the conductivity is constant . Such inflected velocity

profiles are known to be unstable from hydrodynamic stability considerations

and may therefore produce a breakdown and subsequent cross—flow mixing under

variable conductivity conditions. The functional form of the velocit y

distribution is seen to remain unchanged with varying external load , a

fact well known for constant conductivity calculations. Note also that the

velocity variation in the core goes approximately as the inverse of the

electrical conductivity as can ~i i~~o be directl y surmised from Fq.(l’), upon

neglecting the viscous term , which has significant values onl y in the wall

near region . That is, outside the }lartmann boundary layer the velocity

p ro f i le is given by an algebraic expression involving ci , B0, E and the

pressure gradient and the current density there is approximately c o n s t a n t .

Some plots of these anal yticall y determined velocit y profiles in the core

S
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have been genera ted f o r  the  d i f f e r e n t  void d i s t r i b u t i o n s  given in R e f . [ 2 ~

at s t a t ions  1 t h r o u g h  4.  The v e l o c i t y  p r o f i l e s  a l l  show a c h a r a c t e r i s t i c

peak at the channel center  where the  void f r a c t i o n  is largest .

In f i g u r e  2 we show the v e l o c i t y  and e l e c t r i c  cu r r en t  dens i ty  in

our one—dimensional  channe l flow fo r  a Har tmanr i  number  of M 1000 and a

load f a c t o r  K=R/R t o t ai 20/’2 1
~ 

Again one notes  the i n f l e c t e d  ve loc i ty  p r o f i l e

and the ext remel y thin boundary l aye r .  The cu r r en t  dens i ty  in the core

of the f low is essentially constant. An expanded version of t h i s  same

solu t ion  fo r  the Hartmann boundary layer is found in Fig. 3 and shows the

back f low cur ren t  in a layer of thickness Ay = 0 .002 5H . We e s t imate  t h a t

the typical Hartmann number in the Argonne liquid metal—gas MIlD generator [2]

is M=400, so that the viscous effects will be confined almost entirely to

a very thin layer next to the insulating wall. We have not carried out

calculations for other variable electrical conductivity profiles hut can

easi l y do so with the existing computer program . CP U time for the velocity

determination for a given conductivity profile amourts to less than one

second and does not increase apprec iably with increa sing M .

An analytical study has also been comp leted for these one dimensional

llartmann flows for the case of a discrete jump in electrical conductivity

and viscosity coefficient at a given y between constant but differing values

on the two sides of the interface. Here one finds a hyperbolic tangent

type variation in the velocit y W(y) across the interface with the transition

thickness proportional to the reciprocal of the Hartmann number. A current

layer will generally exist at such a dis continuit y in fluid properties .

9



III. TWO-DIMENSIONAL HARTMANN FLOWS IN CHANNELS OF RECTANGULAR CROSS—SECTIONS

Using the same homogeneous two—phase approximation as for the one—

dimensional Hartmann flow case, we next considered laminar Hartmann flows

in channels of rectangular cross—section with finite aspect ratio. Series

solut ions  for  such flows in the constant conductivity limit have been ob tai ned

by many investigators including Shercl if f  [4 ], Uflyand  [5), Chang and Lundgren [6]

and others . However these calculations are generally not applicable for the

wall conductIvities encountered in MIlD generator configurations nor are

the series solutions obtained well suited for numerical evaluation at high

Hartmann numbers. Accordingly, instead of using the series solution method

which is unlikely to work for variable conductivity conditions anyway , we

went d i rec t ly  to a digital  solution approach using a two dimensional version of

a variable grid spacing such that the number of points within the boundary

layers of the channel walls equal approximately those wi th in  the core of the

flow.  The governing moment um and magnetic ind uction equations governing

such variable property Hartmann flows were derived and in Cartesian coordinates

assume the form

- -~~-~~ + !-± 
~~~~ + f(u-~

) + -~---(~f) = 0 (5)

~ 3B ~+ -~-— ( r,-~—-) + -~-~ (n~~
) = 0 (6)

where B0 is the constant external magnetic field applied in the y d i rec t ion ,

W(x ,y) the sought after axial velocit y distribution and B the induced field

in the z d i r e c t i o n . Here P represents  the to ta l  pressure  and r t = l/ p o is

the magnetic viscosity related to the magnetic permeability and electrical

conductivity. We note that Eqs. (5) and (6) reduce respectively to the c l a s s i c a l

In 

--—-- -~~~~.-~-—--—- -~~- - ~~. . - --



MIlD momentum and induction equationsE3l in the limit of constant P and r~.

The important non—dimensional parameters in the problem are the aspect

ratio r b/a of the channel, where 2b is the distance between thin finite

conductivity electrodes at x+b and 2a the distance between the two

insulating sides of the channel at y +a, and the Har tmann number here

defined at MaB 0~~ 00/LI 0,’ where ii 0 and a~ are the f l uid viscosi ty and

electrical conductivity at the wall, respectively . The boundary conditions

appropriate to an MIlD generator channel and those used in our calculations

were that W vanishes on the channel walls, that B=Const. at the insulating

walls and that both the tangential component of the electric field and the

normal component of the magnetic intensity be continuous at the electrodes .

For the finite thickness and finite electrical conductivity electrodes under

consideration this leads to a mixed boundary condition at the electrodes

• identical  to that used by Chang and Lund g r e n [6] .  An important parameter

enter ing the boundary conditions at the electrodes is the non—dimensional

electrode resistivity , K
~~

resistivity of electrode/resistivity of fluid plus

electrode.

Numerical calculations using a variable grid spacing based upon a

boundary layer thickness of a/M at the insulating surfaces and one of

a/Mi at the electrodes was carried out using the extended Peaceman—Rachford

alternate direction implicit method [7J. The method involves a relaxation

scheme in which a time derivative is introduced into the equations and the

solu t ions  relaxed un t i l  all time dependence vanishes.  The advantage of t h i s

method is that  all iterations are solved implicitly, considering a l l  nodes

s i m u l t a n e o u s l y .  This gives numerical  s t a b i l i t y  to the ca l cu la t ions  and the

necessary m a t r i x  inversion is reduced to inverting a tr idi ario nia l s \ st em.

I I
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Because of the symmetries inherent in the problem our ca l cu la t ions  were con-

fined to only the first quadrant of the rectangular cross—section . The

-
‘ 

velocity and magnetic intensity was evaluated at 400 mesh points within

th i s  quadrant  and typ ica ly  involved six seconds of computer  time at a Hartmann

number of 20. Typical ly  35 to 50 i terat ions were required for convergence .

‘ ur f i rst calc ula tions were done f or the cons tant electrical

conductiJ-i~ .~ and viscosity case at an aspect ratio r=b/a= 2, 
a Har tmann number

20 , zero load f a c t o r  and electrodes of in f in i te  conduct ivi ty  (K.~= O ) .  Results

of the calculat ion are shown in Figures 4 and 5. The first of these

shows contours of constant velocity in increments of one—eighth  the maximum

veloc i ty  at the channel center .  Note the relatively thick boundary layer

at the electrodes compared to the narrow Hartmann layer at the insulating

walls which are perpendicular to the applied magnetic f i e ld . The induced

cur ren t  lines (which are proportional to B) are seen to lie essentially

p a r a l l e l  to the non—conduct ing walls with no appreciable re turn  curren t in

the Hartmann layer .  This fac t  stems from the zero external  load considered

in th is  p a r t i c u l a r  calculat ion. Large re turn currents near the insu la t ing

walls we re found for large load f ac to r s  as demonstrated in Figs . 6 and 7.

Note in Fi g. 7 that  all current  lines remain in the l iquid as the electrodes

are n o n — c o n d u c t i n g  (K.~= l) .  To our knowledge these ca lcula t ions  represent

the  f i r s t  f i n i t e  d i f f e r e n c e  solut ions  for  the H ar tma nn  generator  geometry

and should be extendable wi thout  major  problems to o the r  aspect r at i o s  and

large r Hartmann numbers . As in the  one dimensional  c isc , the c u r r e n t  dens i ty

w i t h i n  the core of the f low is essen t ia l ly c o n s t a n t .

Some c a l c u l a t i o n s  were also done for  a v a r i a b l e  c o n d u c t i v i t y  f l u i d

of assumed cons t an t  v i scos i ty .  For a choice of conductivi ty we considered

12
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the hyperbolic tangent profiles

oo/I1—( l/4)(l—A ) [l+tanh 8(l—x/a) 1 [l+tanh 8(0.5—y/~ fl~ , ( 7 )

where A is an adjustable parameter. Such a conductivity profile is an

approximation to what can be expected in a two—phase MIlD channel flow th

which the conductivity near the wall is large but becomes quite small

near the axis of the channel where most of the gas wi l l  be loca ted .  A

calculat ion for  A~=lO is shown in Figs . 8 and 9. The load fac to r  here is

1@O .95 and the Hartmann number remains at M 2O . Comparing these results

wi th  those obtained for  constant e lec t r ica l  conduct ivi ty  indicates the

presence of a high veloci ty  core near the channel axis followed by a veloci ty

p la teau at intermediate distances from the wall and then the usual rapid

veloci ty decrease in the boundary layers . Note that  th is time there is a

large current backflow in the vicinity of the insulating walls. This is the

result mainly of the large load factor considered .

We have not at this point extended our ca lcula t ions  to larger H a r t —

mann numbers in these two—dimensional calculations because of the increased

computer t ime required . Ways to reduce the CPU time for  larger M are now

under investigation inc lud ing  the poss ib i l i ty  of a boundary layer hookup

w i t h  an inviscid core calculat ion. The calculat ion method could be used to

make p a r a m e t r i c  s tudies  with d i f f e r e n t  v iscosi ty  and conduc t iv i ty  d i s t r i -

bu t ions  should th is  seem advisable , and also used to de te rmine  volume f low

rate as a function of channel aspect ratio . It is l ike ly  tha t  the  largest

f low rates fo r  a f i x e d  a r e . i  4 a h  w j  I occur in channels  of aspect

r a t i o  r=b/ a  less than uni ty  as the boundary l ayers at the e l ec t rodes  are

gene ra l l y  t h i cke r than  the  H ar tmann layers  at the insu lating sidos.

17

~~~~~~~~ . -- — .~~~-_ -~~~~~~~ . --- ~~ 
.
~~~~~~~~



p.- —‘- - —--
~
— . .— .. —— . --_---------- 

]OO~I13313
~ J~l S L O  0S 0 S ? 0  0Ol~

9. 9
5 ,-.4 ~~._4 fi S

LU 0 <0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1 1 ~ >~a a
I

0 o Q

0 i.I~~~~~ 4.1U-) In

a a
U S  a —

-.4 5
S

a a
a a

ãb 1 SL !0 
00

S]OO~I1331J JO Y~1N3J

& - -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—

~~~~~ 
—. -— 

_ , 
j



JaO~I13J-
~SL O 0S0 S~~O

.4;

In ~~~~ In
r-~~~J f ~~~\ \ \
— 

I —

~ 0 C f l
a’ J \ In
..: I .. LUD

I___I
D

In In ._J ’~41 41 -- . . .  ~~~~
- 

~~~~— — ~~~~
— a

_J I Iu_I LL_i

~~ry— L()LI ~~~ LI_. 
~~~~~~ a ~0LI .C

•
LI ~~~~~~~~~~z I~_ , /I

.__,
— U-
LI —~~~~
_.JIa, InL~~~ I

F~-UJ —

a ~ c c ”9. 9 —
~~~~~~~~

O a ~~~~~ .0

Li s o
CII
‘.4

In
41 41

SL O 0 S 0  S ? 0  OD I?
S]OO~J1JJ1J JO Y]INJJ

, .  -
~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~ - .- _ --- .- -~~-~~~~~~ -.- -



___ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_—.----

~~
-..-_-------- -_- ._

IV. TWO-PHASE , ZERO—SLIP MODEL FOR COMPRESSIBLE MHD FLOW

In the  two problems on Har tmann f low descr ibed above i t  has been assumed

that there was no variation in conditions in the streanwise direction . This is

g e n e r a l l y  not t r u e  in a two—phase MHD generator of the type under consideration

at Argonne Laboratories where the gas in the two—phase flow undergoes consider-

able expansion between the entrance and exit part of the MIlD channel . Accordingl y,

we have also devoted some time to examining existing one—dimensional two—

phase slip models for which computer codes have been developed by the Argonne

gaoup [21 and attempted to develop some simplified version of their model which

is consistent with the experimental observations and allows for time—variations

in the variables. In particular , we exam ined the sl ip model used by them and

feel that there are questions concerning the app licability of a churn turbu-

lence term which is dependent on the presence of an average slip between the

gas and liquid components. Measured variations in void fraction in the cross—

stream direction could account for an apparent slip predicted by a one—

dimensional approximation although locally there may be little velocity difference

between the components. To heavy a reliance on such a one—dimensional model

could lead to incorrect conclusions concurring the upscaling of two—phase

MIlD genera tors .

As a first approximation for the axial variations in th€ velocity, density,

void fraction and pressure we have developed a one—dimensional isothermal ,

zero—slip model in which the gas is treated as ideal. Our objective is to

use the zero—slip model , whose utility lies in its mathematical simplicity,

to i nves t i ga t e  the t ime—dependent  behaviour  of such f lows  and look for

possible  o s c i l lat o r y  phenomena t h a t  may be p re sen t  and may lead to f l u c t u a t i o n s

in the power output in two—phase MIlD g e n e r a t o r s .  A l l  f l ow  p rope r t i e s  in the

cross—stream direction have been rep laced by averages. Within the framework

of these approximations , the governing time—dependent equations are essentially

20
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those of bubbly two—phase flow as given by Wallis [91 after a magnetic

force  term is added. They become

C o n t i n u i t y :  -
~~

-
~~

- + -~-— (pW) = 0 (8)

Momentum : p ( ~~~ + w~~) = —  — oB 0 ( E  + WB O ) (9)

State(~ sothermal): ~ 
const. 2g 

(10)

together with the subsidiary conditions

Mean Density: p = 
~Pg + (l—ci)p

1 
(11)

Gas Continuity: fr(Pg
a ) + 

f ~

- (c~~ciW) 
= 0 . (12)

Here all non—subscripted quantities refer to the averaged values at

• specified axial positions z. These equations have been solved by a finite

difference—predictor—connector approach[81 using the conductivity void fraction

relation given by eqs. (2) and (3). For one set of specified initial conditions

and boundary conditions based upon constant pressure at the channel exit at

z = L and conservation of momentum , mass and energy during gas inject ion at

the channel entrance at z 0 and also closely approximating the conditions

encountered in the  low temperature NaK—N 2 MIlD generator f a c i l i t y  at Argonne

Laboratories, one obtaines the time—dependent velocity profiles shown in

Fig. 10. For the large value of the interaction parameter N=o 0 B 0
2L/ p W  used

in this calculat ion, the s teady—sta te  velocity condition is seen to be

approached without any oscillatory behaviour . This was not always found to be

the case at  lower gas entrance pressures where transient oscillatory behaviour

was some t imes observed. We are a t t empt ing  at the moment to determine whether

th is  oscith tory  behaviour is due to numerical instabilities in the relaxation

procedure used in the calculat ions or represents a real acoustic phenomenon

which may produce the experimentally observed vol tage f l u c tua t ions no ted under

2 1
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certain conditions. In Fig. 11 we demonstrate the steady—state axially dependent

pressure , d e n s i t y  and void f r a c t i o n  co r respond ing  to the steady—state velocit y

given in Fig. 10. Note , t ha t  as expected  fo r  the constant channel cross—

section considered , the v e h~ - itv and void fraction generally increase with

increasing z while the pressure drops.

In connection w i t h  t h i s  z e r o — s l i p  model  we have also deve i p l I  an

a p p r o x i m a t e  a n a l y t i c  model for channels of vari ab le r1ss-section . This model ,

in which we neglect inertia forces and require the two-phase flow to remain

sub—sonic , i n d i c a t e s  t h a t  the  v e l o c i ty  W ( z )  g e n e r a l l y increases  w i th dec rt ~-asing

pressure and that approximate constant flow velocities desir~’d in an ~4HD generator

can be obtained by having an expanding channel and tailoring the local load

factor by electrode segmentation . One of the  s h o r t c o m i n g s  1f the an a l y tic

model is t h a t  the  a~~oIsti c v e l o c i t y  is not known a pr ior i , being a function the

gas pressure and the  void  f r a c t i o n .

Some c o n s i d e r a t i o n  has also been given to the expected sound velocit y

and c o n c o m i t a n t  p o t e n t i a l  c o m p r e s s i b l e  e f f e c t s  in t h e  two—p hase bubbly tlows

existing in liquid metal—gas MIlD generators . Employing the standard approximation

to the sound velocity in two—phase flows with void fra (’t ions in the range

0.1 ~ t~ O.9 as given In R e f .  [91 and using the ideal gas law for assumed

isotherma l conditions we find that the sound velocity in tile mix tur e becomes

~ 
=
~~ Pg

/[ ~(l—n )v 1 1
’ ( 13)

where y is the specific heat ratio of the gas , P g the gas pressure , 
~i 

t h e

liquid density and ‘ t  the void fraction . The sound ve l ociti es p r ed i .’t ed hv

t h i s  f o r m u l a  y i e l d  a minimum at C = 1/2 and will take on values con sidera b ly

l owe r than those existing In the fluid constitu ents tal - t ’n separ ately . Typ ic a ll y .

for a sod 1~im—argon n i  x t  ure at a channel gas pressure o f  7h  a t m o s pheres .

co r r e s p o n d i n g  to t h e  Argonne L a b o r a t or i e s  h i g h  t e rn p c i , itti r c I a c i l i t v  [1], t1C sound

_ _ _  - - _ .
~~~~~~~ 

.
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veloc i ty  will  be 252 met ./sec. This compares to an approximate minimum

sonic velocity of 24 met./sec. in a w a t e r — a i r  m i x t u r e  at one atmosphere

pressure . In view of formula (13) most of the existing experimental two—

phase MMD generators operate under subsonic conditions. It may under

certain circumstances be of advantage to operate such generators in a

supersonic mode as this may help smooth out observed v o l t a g e  fluctuations

and produce an acoustically quiter flow.

-
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V. CONCLUDING REMARKS

During the first year of our contract work on two—phase MMD

flows we have treated the flows as essentially a homogeneous fluid with

spatially dependent properties. This approach has yielded informa tive

new results which probably will find direct application to some of the

experimental work conducted in this area by M. Petrick of Argonne Laboratories

and by H. Branover of Ben Gurion University . We have treated the flows as

laminar . This can be par t i a l ly  j u s t i f i e d  by Branovers experimental s tudies [ lO]

which indicate that turbulent fluctuations are essentially suppressed when

the ratio of Hartmann number to Reynolds number exceeds a value of approxi-

mately io
_2
. It should be possible to meet this condition of turbulence

suppression in experimental two—phase MMD generators.

We plan during the upcoming contract period to extend our

investigations on two—dimensional Hartmann flows by making parametric studies

of the volume flow rates through channels of rectangular cross—section for

various d i f f e r e n t  conductivity prof i les .  To handle the larger Hartmann

number cases wi thou t the use of an inordina te amoun t of computer time , we wil l

attemp t to develop a boundary layer solution method in which the core of the

flow is treated as frtviscid . Also the effects oIL varying electrode conductivity

and load factor will be further investigated .

The one—dimensional , compressible , no—slip model is to be examined

further in order to determine the origin of the observed oscillations at

lower entrance pressure conditions. We also intend to look at tapered channel

geometries since it is desirable in actual two—phase MMD generators to keep

the flow velocity constant in its passage through the generator duct. An

26
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attempt will be made to include fluid proper ty varia tions in the direc tion

norma l to the flow in order to account for the backflow currents  exist ing

in the Mar tmann layers .

We have not up to the present time considered the dynamics of

• individual bubbles in these two phase flows, bu t plan to do so during the

coming year because of the obvious importance of the suppression of radial

bubble drift for a properly functioning generator. Analytical work on

bubble drift in two—phase flows is nearly non—exsistent and presents a

formidable problem. It might be that some type of flow separators will

need to be installed in the two—phase flow channel to suppress such cross—

• stream bubble drifts.

Finally, some consideration will be given to the time development

of Hartmann velocity profiles at the channel entrance. This problem ~s of

great practical importance as the entrance lengths in typical MMD generators

may be comparable with the actual channel length so that a steady—state

profile may actually not exist.

2 7
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