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INTRODUCTION

The operation of a fire control system entails several tasks. The
weapon system must acquire a target, lock on and maintain track, accurately
estimate the present target state, and provide gun orders based upon the
predicted future position of the target. The target state may consist of any
convenient set of variables used to descritie the dynamics of the tarpet motion.
Typically, these are the target position, velocity, and acceleration, as well
as auxiliary variables which describe the stochastic behavior of the motion.
Accuracy in estimation of target state is a necessary condition for predicting
its future position. Untortunately, it is not a sufficient condition, since
the target can undergo unexpected maneuvers during the time-of-flight of the
projectile resulting in a miss. The purpose of this report is to focus on the
problem of target state estimation.

Modern state estimation theory provides a powerful tool for estimating target
state from sensor data of target position and rate information, if available.
The power of this theory, sometimes referred to as Kalman filtering, derives
from the fact that the estimation procedure is iterative so that only the
present sensor measurements and the previous "optimal" target state estima
are needed to compute the "optimal" estimate of the present target state. This
feature of the theory obviates the need to store a large number of Jdata points.
Furthernore, the solution for the "optimal" estimate is related linearly to.
the observations and the previous optimal estimate which is an additional
simplifying feature of the theory.

e
LES

This report describes several Kalman filter designs, from which a candi-
date for possible implementation in a fire control system is chosen. In selecting
the final filter design, two criteria are applied. One is that the number of
state variables be relatively small so as to reduce the computational time for
the state estimates. The second is that the relative accuracy of the state
estimates be high.

The lack at present of a complete model for maneuvering tirgets as well
as insufficient data on sensor performance characteristics generally imposes
a limit on the accuracy of filter design and hence, its performance. Computer
requirements impose an additional constraint in that an accurate target model,
which may require for its description a large number of state variables, may
result in a relatively long time to solution for the estimates cf Lhe state
variables. Finally, the statistics governing real aircraft motion may not, in
fact, be Gaussian as required by the theory to achieve global optimality.

Although proposals for using Kalman filters in air defense date back Lo Lhe
1960's, the filter design presented here is unique for two reasons. Compared
to designs proposed heretofore, the filter described here is of minimal mathe-
matical complexity. Oecondly, flight data on high performence aircraft made
recently available, is utilized to optimize the filter desipgn through model
identification.

A brief description of the available flight path data upon which the design
is based as well as the underlying assumptions leading to a particular design
philosophy are discussed in the following section.
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It 15 assumed that the reader is familiar with Kalman filtering theory.
For the reader's convenience, a bhrief summary of the Knlman equations ig
provided in Appendix A, together with the underlying assumptions of the theory.




CECTION 1

OTATEMENT OF THE PROBLEM

During the summer of 19Th, the Frankford Arsenal Capabilities Test (FACT'
was conducted at the Naval Weapons Center at China Lake, California. In these
tests, tactical aircraft were flown to simulate combat conditions. Accelero-
meters placed on board the aircraft recorded aircraft accelerations for 20 flight
paths while a ground based Nike Hercules radar recorded aircraft position. Forty
more simulated attack missions were flown for which only radar derived tarpget
position information was recorded. At the completion of these tests, it was
recognized that the FACT data may provide the basis for a filter design. The key
desipn goals would be accuracy and simplicity.

[n designing a suitable filter, one must decide upon a coordinate system
in which to filter sensor data. The most likely candiates are rectangular and
spherical coordinates. Upnerical coordinates provide a natural set in which to
operate the filter because the sensor data is already in spherical form. However,
one is faced with the problem of adequately modeling the target motion in this
set. '"The restrictions on the model of target dynamics arise from the Kalman
theory which states that the plant equations (a name pgiven to the equations
describing the target motion) must be linear differential equations in the state
variables. If the problem involves non-linear dynamics, then the Kalman theory
is still applicable, provided that suitable linearization is possible.

The difficulty in suitably modeling targetdynamics in spherical coordinates
is illustrated by the following example. GSuppose that x; i5 the state variable
for the range to the target, designated by R in spherical coordinates. If one
models the acceleration in x; as composed of both a random and o deterministic
component X3 and xh, respectively, then a four state model may look like

]
]
>
+
L2

x3 = ux-5 + Bu

>

F -

i
o

with u = white noise. Consider, for thLe sake of simplicity, the deterministic
portion of the model, obtained by setting a = B = 0. The resulting expressions
can then be easily solved for x, to yield a 3rd degree polynomial in time.
However, under almost all circumstances, the range R is an infinite series in
time. Otrictly speaking, then, one would require an infinite set of state
variables to accurately describe the deterministic portion of the acceleration
in R. One may, nevertheless, proceed to implement such a model under the
assumption that the state estimates will be reasonable anyway.




By filtering in the rectanguiar set, this problem is obviated. However,
difficulty arises when one attempts to describe the sensor by a linear model
(linear in the state variables) in this set. The source of this difficulty ic
the fact that the sensor data is in spherical form whereas the state variables
are now in described rectangular coordinates. Conversion of the sensor data
into the rectangular set is a non-linear transormation which results in equa-
tions which are non-linear rather than linear in the state variables as required
by the theory. This, however, is a minor drawback for two reasons. The first
is that suitable linearization of the equations describing the sensor model is
possible but with the slight penalty that the coefficients of the state variables
become time dependent. The second reason is that more is generally known about
sensor error characteristics than about aircraft dynamics. One therefore, has
more information available to construct a model representative of a real sensor
than information about aircraft dynanics to construct a single model which ade-
quately describes the spectrum of real aircraft maneuvers. For this reason,
emphasis in this report will be placed on the plant model. The sensor noise
will be modeled as a white noise sequence, although filter performance against
sensor errors described by a first order Markov process will also be investigated.

Another important consideration in choosing a suitable coordinate frame is
the description of the stochastic behavior of the aircraft acceleration. If
the tarpet acceleration is characlerized by stationary Gaussian statistics, a
debateable point at this time, then Gaussian stationarity is more likely to be
manifest in the inertial frame (rectangular frame) than in a rotating non-inertial
polar frame. For the reasons mentioned above, inertial (fixed to the earth)
coordinates are chosen for modeling the filter.

After choosing a suitable coordinate system, one must adequately model both
the dynamic and the stochastic aspects of target motion. Two classes of target
models are investigated. In oune class, the target acceleration is modeled as
a first order Markov process; in the other class, the acceleration is modeled
as a second order Markov process. Based on their performance against the FACT
data, a recommendation is made as to the filter design that should be incorpor-
ated into an air defense fire control system.

All tests of filter performance are done by exercising the filter apainst
the FACT data. This data, which provides target position, velocity and acceler-~
ation in cartesian coordinates is available in 1/10 sec increments. Thus, the
sampling rate used throughout the report is 10 data points per second. Further-
more, of the 20 flight paths for which position, velocity and acceleration data
was obtained, 12 are useable. A classificalion of these useable flight paths
is provided in Table 1. For more details concerning FACT, the reader is referred
to the report, "The Frankford Arsenal Capabilities Test" (FACT) July 197k
FA-TR-TW0O1.
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FLIGHT DATA

1ABLE 1

Path
45° Dive Toss
30° Dive Toss
45° Dive Toss
45° pive
30° Dive
30° Dive
30° Dive
45° Dive
Pop-up/dive
Pop-up/dive
Pop-up/dive

Laydown

11

B e

SUMMARY

Ordinance

3 Bombs

Dummy

Dummy

Run

Run

3 Bombs

Dummy
Dummy
Dummy
Dummy
Dummy
Dummy
Dummy

Dummy

Run

Run

Run

Run

Run

Run

Run

Pun
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SECTION 2

SUMMARY & CONCLUSIONS

Several filter designs were investigated for possible implementation in
an air defense weapon system. The performance of each design was determined by
the toal RMS error in the estimates of target position, velocity, and accelera-
tion. FEach design was "optimized" in the sense that the free parameters of the
desipgn were adjusted so as to yield the most accurate state estimates (lowest
RMS errors). The targets for which these filters were designed were not simu-
lated but real. That is, data in the form of position, velocity, and accelera-
tion time histories of real aircraft flying simulated combat missions was used
to aid in the selection of the filter desipn parameters. This data, called
FACT (Frankford Arsenal Capabilities Test), provided inputs into the filter
via the weapon system sensor model.

In addition to real aircraft data, which permitted the "optimization" of
filter performance, a simplification of the usual nine state filter desipgn was
sought in order to minimize the computational burden of the fire control computer.
This simplification was successfully achieved by decoupling the nine state
filters with little degradation in filter performance. Fach three state filter
incorporates a target state model in which the target acceleration is modeled
as a first order Markov process. Although decoupled filters involving more
state variables were designed, it was found that they did no%t offer improved
performance against the FACT data.

A decoupled four state filter in which the target acceleration was modeled
as a second order Markov process was also designed. This design was purposely
constructed in such a way as to produce an acceleration correlation function
that is represented as an exponentially decaying sinusoid. Although the target
model incorporated into this four state filter appeared to be more realistic,
the performance of the filter nevertheless did not prove to be superior to the
three state design.

In most simulations involving filter performance, the fire control sensor
was modeled to provide psosition information only with a standard deviation in
the range error of 10m and a standard deviation in the azimuth and elevation
errors of lfi. Nevertheless, the performance of rate aided filters as well as
filters using more accurate sensor inputs was also investigated.

The conclusions reached in this report are summarized as follows:
i) The three filters which require no matrix inversion for the solu-
tion for the state estimates in rectangular coordinates offer a
simple filter design and adequate target state estimates (i.e. -

position, velocity, and acceleration).

ii) The three state filters are characterized by a 2 second settling
time against tarpets undergoing constant Lg maneuvers.

iii) For a sensor providing position data only and characterized by a 10m
standard deviation in range and a 1l# standard deviation in both azimuth

12



iv)

and elevation measurements, the average RM® position measurement
errors over all the flight passes contained in FACT is 11.3m.
The three state filters reduce the RMS position error by 377 to
an average value of T.lm.

The three state filters do not perform as well as a single nine
state filter. This is to be expected. Nevertheless, the degrada-
tion in performance is minimal. Over the ensemble of flight paths
considered (12 in number), the decrease in the RM® error of the state
estimates for the nine state filter over the three state filter is

as follows:

a) 2.7% decrease in position RMS error
b) 10.9% decrease in velocity RMS error

c) 16.4% decrease in acceleration RMS error

The 10.9% and 16.4% figures are of little practical significance when the actual
RMS values are compared. For the velocity RMS, the nine state filter yields a
value of 13.1m/sec vs. 1lh.Tm/sec for the three state filters and for the accel-
eration RMS, the figure are, respectively, lS.%m/sec2 and 18.3m/sec?.

v)

vi)

vii)

viii)

The three state steady state filters (fixed gain filters) perform
almost as well as the non-steady state three state filters. The
difference in performance is negligible. The storage requirements
and computational complexity are both minimal.

If the accuracy of a position only sensor is doubled, that is, the
standard deviations of the range, azimuth and elevation errors are
reduced from 10m, 1, l#t to Sm and 1/2# 1/2# respectively, then the
position state estimates improve by a factor of 1.9 to 1 whereas the
velocity and acceleration estimates improve by factors of 3 to 2

and 6 to 5 respectively.

Addition of rate measurements (the accuracy of position measurements
remains fixed at o values of 10m, 1#, and 1#) characterized by
standard deviations in range rate, azimuth and elevation rates of

5 m/sec and 1/2d/sec, 1/2d/sec results in the following improvements
in the stete estimates. The position estimates improve in accuracy
by a factor of 2.3 to 1, whereas the velocity and acceleration
estimates improve by factors of 4 to 1 and 9 to Y respectively.

In view of vi) and vii), it appears that addition of rate measure-
ments (of the relative quality given in item vii) improves the
accuracy of the state estimates to a greater extent than does the
doubling of the accuracy of position only sensors. The position-
rate sensor improves filter performance over the improved position
only sensor by a factor of 6 to 5 in position, 2.7 to 1 in velocity,
and 3 to 2 in acceleration.

13




ix) In items i) through vii), the sensor noise was modeled as being
uncorrelated in time. 1f the sensor model, as it appears in the
filter equations, remains unchanged but the sensor data which is
inputed into the filter is time correlated with a correlation time
constart of .1 sec., then the state estimates improve sipnificantly.
Opecifically, the MO position errors drop by 937 whereas the

velocity and acceleration EMS errors decrease by W27 and 197

respectively.

A brief incursion into the area of process identification was made for
the purpose of getting some handle on the approximate values of the filter design
parameters. The most significant result of this brief study, however, was that
the target acceleration could not be statistically characterized as being a
stationary process. Whether or not it is Gaussian remains in doubt although no
firm conclusion in this regard could be made with the data that was available.
Furthermore, the statistical behavior of the acceleration process appeared to
be strongly dependent upon the target attack mode. This information, it was
recognized, could be useful in the design of adaptive filters. A thorough
study of the available flight data using autoregressive models will undoubtedly
provide some very useful information which is needed for the purvnose of obtain-
ing pgood statistical models of target motion. Such models would provide not
only a means of further enhancing the quality of target state estimates, but
would also provide a means of better predicting the future position of the
target, which is ultimately what is desired. The only requirement is that
plenty of data, representative of the threat posed to air defense systems, be
available for further analysis.

1h




SECTION 3

PROROTYPE FILTER DESIGN - NINE STATE FILTER

MODEL OF THE PLANT

The filter described in this section has nine state variables, three for
each of the components of target position, velocity and acceleration. Although
this filter is not proposed for use in an actual air defense system, it is
described here for two reasons. First, it provides a logical framework from
which a class of lower order filters can be constructed. Second, the proposed
filter design will be tested against this nine state filter. One will then be
able to Jjudge the degradation in filter performance when certain simplifying
approximations are made.

The target position variables are labeled in Figure 1. We model each
component of the target acceleration as

>
TARGET
{ POSITION
|
|
SENSOR |
AT ORIGIN i Y
o |
\\\l

X
Figure 1. GSensor Variables in Inertial Coordinate Set

a first order Markov process. Thus, if x; = x is the state variable for the
x component of target position, we model the target motion along X as

(3’1) il - X2

(3-2) ie - X3

(3-3) x5 = -ajxg + byu,
where w represents white noise. The quantity a) is related to the correlation
time for the acceleration process and b is the intensity of the white noise.
It is best to obtain a numerical value for a) experimentally in such a way as
to optimize the filter performance. A suitable value of a, can, however, be
obtained from theoretical considerations.

The equations describing the target motion in the remaining two components
are identical in form to the above model for motion along X. Thus, there are

nine state variables and nine linear differential equations describing the tar-
get motion. The state equations are
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(3-4) x; = xp
(3-')) ).(2 o X-;
(3-6) )'(3 = ~gjxy ¥ hx"x

(‘&-7) Xh = Xc

2
(3-8) iS = xg
(3-9) ;6 = -a,Xxg + byuy
(3-10) i7 = xg
(3-11) xg = Xq
(3-12) i9 = -agx, + bu,

where x), and x, are the y and z components of target rosition respectively.
Because there 1s no preferred direction in the horizontal plane, a; = a, and
b, = by. There is no a-priori reason, however, for assuming that a3 = a,.

X
These equations can be written more concisely in matrix form as

(3-13))‘(_=£_)_(_+(_)_2

where, by inspection

5y : S R - S SO SR R S
X5 (o T « B SR « O U D
; 0 0 -85 - . « Q0B
5 = 5 § .}‘— = . . . - . .
xé . 0 0 . « s 0 1 ©
b s (G SRS Sa, . RN A > S T |
L_O 0 0 . . . 0 0 -!).—BJ
O 0 ©
o o 0O
by O © -
L e >R, Q4
=16 90 0 5 u= |us
0 b 0 u
o o o 3
0O o O |
LO (6] bz,b

Because sensor data comes in discrete form, the discretized form of the Kalman
filter equation will be implemented. Once discretized, the plant equations take
the form

16




(3-1) xn41 = EnXy + Gpog

where (Appendix B)

by 0 0
(3-15) F, = ¢ (a) = 0 & O
o 0 ¢,
with
by & i My
) g
'L - [8Y
(3-16) e, (v =x, ¥, z) = 0 1 ;i - ™)
k: v O e_alA J
and
A
(3-17)gn=/0 ¢ (1) Gd 1

Here, A is the time interval between measurements.

The w, is a time averaged white noise sequence obtained from the continuous
white noise process. That is,

L (n+l)a
(3-18) w, T} / u, (1) dt (v =1,2,3)
nh

The error convariance matrix for the process described by Equation (3-1L4)
is found by evaluating E(wnwg) where E is the expectation operator. Assuming
wys Wp, w3 to be statistically independent, the error covariance matrix defined
by Q is

= 4 -
E(wl) 0 0
(3-19) Q = 0 E(wf) 0
0 0 E(wz)

From (3-18),

$. 1 b o
E(w\ ) = = E U (t) u, (1) dt drt
A 0 0
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t 3
1,1
l,j f f E [ul () u, (t)] dt dr
5 0J0
- f f 8 (t-1)dt dr = —
A= 0JO A

where the integration is over the time interval A.

Thus,

where I is & 3 x 3 identity matrix.

The autocorrelation function for this process has a very simple form. If
R, (t) with \ = x, y, 2z is the autocorrelation function for the target acceler-
ation along the i1th coordinate, then (Appendix C)

2
PR B
(3-21) R, (1) = e
281

Thus, a, is related inversely to the correlation time as stated earlier.
Furthermore, by setting v = 0, R, (1) becomes the variance of the acceleration
along the 1th direction. That is,

2o

(3 2”)02‘bl
=22 B o
& l 2a1

Thus, if one has some knowledge of the aircraft RMS acceleration as well as the
correlation time for the acceleration process, one can determine the intensity
b, of the white noise process from the above equation.

So far, no Justification has been given for the particular target state
model assumed here. The true target acceleration may indeed be a second or
higher order Markov process. Unfortunately, the variety of target models is
too numerous to make a thorough evaluation of each model practical. Nevertheless,
reasonable alternatives to the acceleration process described here are considered
in subsequent sections of this report with the conclusion that modeling accelera-
tion randomness as a first order Markov process is indeed adequate.

MODEL OF THE OBSERVATIONS

It is assumed that the sensor provides measurements of R, 6, and ¥ as
defined in Figure 1. Furthermore, the measurements are assumed to be statis-
tically independent quantities whose noise components have zero mean and known
values of standard deviation. The observations are taken to be the three
components of position measurements in cartesian coordinates with addative white
noise. Thus,

18




(3-23) 27 = x1 + v}

(3-2h) 2y = x)y + vy

(3-25) 23 = X7 + V3
The covariance matrix R of the observation noise is non-diagonal due to the
coupling of the noise terms along x, ¥y, and z through the measurements R, 6, and

¢. Indeed, R is state dependent because of the dependence of the observation
errors v,, v, and V3 upon the target state.

In matrix form, the observation equations are written as
(3-26) 2 = Hx + Dv

where, by inspection,

I @ 00 & -9 0 9 vy
H= ¢ o & X @ g O ¢ @ g D= E g Vo
g @ 0 ¢ 6 0 12 0 O v3
with I a 3 x 3 identity matrix.
By definition,
g 1 (vyv3)
g vy E Vlv2) E Viv3
i e s o
(3-27) R = E[v v'] = | E(vyvp) oy, 2 E(vpvs)

E(vlv3) E(v,v.) g

o
<

v ; . ; & o
Given the variances of the errors in R, 6, andy , namely Ors Jg and Ip s

one obtains, in a straightforward manner, the elements of R explicitly. From
Appendix D,

b] 9 2

) ” ) S ~
- [ . ¢ =4 . [- . [«
cos“@ sin"y + 0,7s5in"6 siny]

&

0 2 )

s 2 2.2 ‘ 2
(3-28) Ryy = 0y“ = R® [0g"cos™p cos v + 0 0,
» ossin26 cos?y

2 2 g 2
Ry = E(V1V2) = Resin ¢ COS ¢ [0O cos B - g 2sin 6]

(3’29) R12 ')

+ ogsinae siny cosy

-
Ry = E(V1V3) = (cﬁ - R og )cosd sind cosy

(3-30) Ryg

2 ol
(3-31) R23 = R32 = E(v2v3) = (oR - R‘oe )cos® sin® sing
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s g g @l 3 g p 9. P N T
(3-32) Ry, = Oy,° = R [ow sin 8 cos ¢ + of O, COS ¢ cos B + gy cos 6 sin

- -
+ ag sinee sinzw

g i Mo i @ .2 2 2

(3-33) Ry3 = Oyy = R™ 0y sin"@ + op cos'0

In implementing the Kalman filter, one may use either current state esti-
mates to determine R, 6, and ¢ for use in the R matrix or raw sensor values.
Because these two alternatives give virtually the same numerical values for the

matrix elements for R, the simpler alternative of using sensor values for R,
8, and ¥ will be used to compute R.

It will be shown in Section 1L that, for the proposed filter design, the
elements of R can be replaced by numerical constants with little loss in filter
performance. Indeed, unless this is done, the gains never reach steady state

values. By using steady state gains, one can investigate the performance of an
exceedingly simply steady state filter design.
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SECTION b

INITIALIZATION OF THE FILTER

In all filter simulations, a standard procedure described in this section
will be used to initialize the state vector x as well as the state estimation
covariance matrix P.

The procedure for initializing x is straightforward. Fcur position
measurements are made, where the last measurement is used as the initial wvalue
of target position and the first and fourth measurements are used to compute
the velocity components. That is, if z;(0) and zj (3A) represent the 1th compo-
nent of measured position at times t = 0 and t = 34, where A is the time between

observations, then the Jth component of initial velocity state is

Zi(BA) - Zi(O)

(b-1) x4(0) =
34

where J = 2, 5 or 8 depending on whether i is x, y, or z. The use of four
observations is rather arbitrary.

The initial acceleration estimate is set to zero. Position measurements
are not used to estimate target acceleration since this procedure yields ex-
ceedingly noisy results. Indeed, it is not impossible to be in error by
several hundred percent using raw sensor measurements to estimate acceleration.
It is therefore, best to initialize the acceleration to its expected value,
namely zero.

The elements of the state covariance matrix, P,, defined by g[fio - %)

m ~
(x5 - xo)l], where x, is the initial state estimate, are easily computed.

Since the initial position estimate is a raw sensor position measurement, we
have

~ )

(b-2) Py = E[(%,(0) - x1(0))] = E(z, - x))° = B(v]) = By,
1L k 1 1

"
1}
|
jos]

(4-3) Py, = E[(%,(0) - x,(0))] = E(z, - x,)° = E(v}) =

B D
)® = E(v3) = Ry3

(b-k) Py = E[(x7(0) - x7(0))21 = Elz3 = x7
(b=5) Py, = Py = Ry,
(4-6) Py7 = Pry = Ry3

(h-’{) Ph'r - P-(h = R23
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where the elements of R are given in the previous section. The remaining
elements of P,, with the exception of the elements relating to the target
acceleration, are computed in Appendix E with the following results:

1

(4-8) Plz = 921 = 53 R11

(69 Pou's Pox w5 B
15 51 ~ 3a S0

€4-10) P.. =P . = 1 R
18 ' (N, A

(4-11) P,, = P, = 3 R
- 41~ 714 38 12

(5-12) P, =P = L R
7 45 - "S54  3A 22

(4-13) P,. =P, = & R
= 7o SR T e

(4-14) P.. = P.. == R
72 27 38 13

(helS) B w P ma B
75 572  3& 23

(4-16) P__ = P =-l R
78 87 " 32 33

The elements of R are evaluated at the end of the time interval 34 (i.e. =
after the fourth sensor position measurement). The velocity variance and
velocity cross terms are

RC348) * R - L0)
4-17) b, 11 11

: (38)2

R22(3A )+ RZZ(O)

(4-18) Peo 5
(3a)

R33(3A ) + R33(0)

L}

(4-19) P88 -
(3a)




R..(38) + R £0)
e . 1.2
(4-20) 125 = 132 - 5
(3a)
R13(3 &) % RlB(O)
(4-21) P28 = 982 =
(38)°
R..(3A) = » (0}
(4-22) P, = P, = £ 23
.78 8 J 2
(34)

By admitting total ignorance of target acceleration, the variance of
each component of the initial acceleration estimate is set equal ta (3g)“

(g = 9.8m/sec®). Thus,

| O D = = P = {7 2
(h=23) r33 P66 99 (3g)

with the remaining elements of P, set equal to zero.

It is not obvious that this elaborate procedure for initializing the
Kalman filter is really necessary. It may be argued that suitable results will
be obtained by initializing the filter with some constant pre-determined values.
Experience early in the program, however, has shown that some estimates for
initiel conditions can lead to long settling times and indeed, a bad choice of
initial conditions can lead to instability in the Kalman equations resulting
in divergence of the elements of P. The above procedure eliminates the guess-
work associated with initialization of the Kalman filter and is therefore used
in all subsequent computer simulations.




SECTION 5

SUBOPTIMAL FILTER DESIGN PHILOSOPHY

The filter described in the preceeding section has nine state variables.
Implementation of the filter equations therefore requires matrix inversion at
each step of the iteration process. If one can eliminate the need to perform
matrix inversion at each iteration step, then one will have reduced significantly
the execution time fcr the solution to the state estimates. Of necessity, how-
ever, one must pay the penalty of degrading the accuracy of the state estimates
since reduction of the complexity of the filter discussed heretofore generally
results in some loss of information, either about the plant or the observation
models or both. Nevertheless, if the degradation in filter performance is
small, simplification in the filter design may be Justified.

A considerable simplification results when one considers the following
design modification: Instead of using a single nine state filter in which the
three cartesian coordinates are coupled via the polar measurements R, 9, ¢,
design three separate and independent filters, one for each cartesien coordinate.
In such a design, information about the coupling is lost, but the decrease in
complexity is significant. Thus, the nine state filter is replaced by tLhree
independent three state filters. The need to perform matrix inversion is then
replaced by inversion of a single number. Henceforth, the filters described
will all have this simplifying feature. The only exception is the discussion
in Section 21 in which the performance of the nine state and the three state
filters is compared.
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SECTION 6

THE FIVE STATE FILTER

MCDEL OF THE PLANT

Here, we consider a filter in which the acceleration process is modeled zs
the sum of two terms: a deterministic term and a stochastic term. The stochastic
portion of the acceleration is modeled as a first order Markov process. Thus,
for each of the three cartesian coordinates, we have the following model of
the target motion:

(6-1) x; = x5
(6~2) i2 = xq * X
(6-3) x, = —ay + bw
(6=k) x), = x,
(6~5) x5 =0
where x] is the target position along one of the three cartesian axes. This
model assumes that the rate of change of the deterministic portion of the
acceleration is constant.
In matrix form,
(6-6) i = Fx + Gw
where, by inspection

[0 1 0 0 O]

0 0 1

-
o




Discretizing the plant equation leads to
(6-T) xp+1 = Fpxp + Gpup

where (Appendix E),

[ 1 1 1
= = - e—al -
s = [A -5 (1L ~e )] 5
1
0 1 T{1-e08) A
(6-8) F_=¢ (a) =
s 0 0 e-abd 0
0o 0 0 1
0 0 0 0
s & 1 1
44 4,1 _ o-8h
a (2 a) r a3 (1 i

and

1 (n+1)A
(6-10) wy = Fy / w (t) at
na

The correlation function for the stochastic portion of the acceleration is

the same as for the nine state filter. Thus,

bl
(6-11) R(t) = 55 e~8IT7I

From the equations for the state variables x), and Xg s
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R

At t =0, x); = 8 and x5 = a. These are set equal to zero for X

in
by

It
by

MODEL OF THE SENSOR

With obvious minor modifications in H, the observation model is as described
Section 3. Unless otherwise stated, the sensor is henceforth characterized

2

a4 range variance GR of lOOm2 and angular error variances 092, cﬁ2 each of lﬁg.

will be shown in Section 1l, however, that the elements of R can be replaced
constant elements with no degradation in filter performance.
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SECTION 7

MODIFIED FIVE STATE, K FILTER - THE FOUR STATE FILTER

An obvious modification of the five state filter results when Equation
(6-L) is replaced by x), = 0. That is, the deterministic portion of the accel-
eration is modeled as being constant. This results in a reduction in the ruter
of state variables from five to four. The four state target model is then

(T-1) %y = x»

(1-2) x5 = x3 + x),
(7-3) X3 = -ax3 + bo
(7-4) x, =0

The F and G matrices are modified in an obvious way, with corresponding
modifications in F,, and G,. Their explicit form will, therefore, not be given
here.
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SECTION 8

RESULTS

The fourth and fifth order filters for the y component of target motion
were optimized for flight passes 1 and 9 (Tables 2 and 3). Optimization pro-
ceeded in the following way: From Equation (6-11), R(0) = 02, where ¢< is the
variance of target acceleration (in this case, along the y coordinate). Then,

2
b

s o e 2 s
(8-1) o= = 2a

Given o and a, one can then solve for the parameter b2. For a given value of
a, it was determined that, in general, an acceleration variance of 1000 (m/sec?)?
results in best filter performance. This value of 02 is used throughout the
report. For each value of a, the RMS of the target position, (in this case the

y component), velocity, and acceleration errors e, €ys €y is computed over the
entire run. The filter is said to be optimized wxen a value of a is chosen

which results in the smallest RMS values for €y, €y, Eye The value of a which
optimizes filter performance is henceforth called {he optimal value of a.

TABLE 2

COMPARISON BETWEEN THE FOURTH AND FIFTH ORDER AND
FILTERS ALONG THE y COORDINATE FOR PASS NO. 1

~ ~

a a RMS (y-¥) RMS (y-y) PMS (§ -5 )

Orders Orders Orders Crders
Lth Sth Lth Sth bth S5th Lth Sth
.001 .001 9.3 8.9 14.2 1k.4 11,1 1T
.01 .01 53 5.3 9.3 9.5 9.5 9.9
L05% .05% .9 .9 6.3 8.5 8.9 9.3
.08 .08 5.0 5+0 8.5 8.6 8.9 9.2
.1 .1 2.0 5.0 8.6 PN 9.0 9.2
5 5 5.k 5.4 10.2 10.2 10.8 10.9
1.2 152 55 S 10.8 10.9 12.4 2.5
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a

Orders

Lth
.001
01
LOT®
<12

1.0

TABLE 3

COMPARISON BETWEEN THE FOURTH AND FIFTH ORDER AND
FILTERS ALONG THE y COORDINATE FOR PASS NO. 9

|®

5th
.001
01
-OT*

.12

RMS (y-y)
Orders
kth 5th
11.6 11.3
6.6 6.5
5.8 5.8
5.8 5.8
6.0 6.0
DD 5.5

RMS (y-
Orders

Lth

i

112

9.9

101

113

10.8

RMS(§4
Orders

5th Lth Sth
1T -6 13.5 13.9
13 114 i 1y ¢
10.1 10.6 10.9
10.3 10.7 10.9
11.4 325 12.3
10.9 12.5 12.5

As seen in Tables 2 and 3, there is very little difference in performance

between the Lth and 5th order filters.

Furthermore, the optimal values of a

(those with an asterisk) for both filters are the same. More extensive runs

for these filters were not made in view of the results obtained for the filter
proposed for use in air defense (see Section 15).
order filters, which involve more state variables than the proposed filter,
do not offer improved performance.
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SECTION 9

PROCESS IDENTIFICATION

As mentioned previously, a value for the parameter "a" appearing in the

equation for %3 (Equations (6-3), (7-3)) can be obtained from theoretical con-
siderations. In this report, two basic acceleration models for the stochastic
portion of the acceleration are investigated - a first order Markov model and
a second order Markov model. Consider the first order Markov model

(9-1) % = -ax + bu.
In discrete form,

(9-2) xp41 = X, - daxy + Abup
where A is a small time increment and the subscripted intiger n means that the
variable to which it is affixed is evaluated at the time nA. Observe that x

independent of wp. Multiplying Equation (9-2) by x, and taking the expected
value of both sides, one obtains B

n

(9-3) Elxpxpsy) = (1 - 8a)E(x2)
where the assumption that the mean of the white noise sequence w, is zero was
used. Observe that the expectation operator acts over an ensemble. Now assume
that the process is stationary and ergotic. Then, the ensemble statistics are
the same as the statistics over time. OSpecifically,

(9-4) Elxpxpsg) = ¢ (k)
for all n where ¢ (k) is the correlation function. Thus,

(9-5) & (A) = (1 - 4a) ¢ (0)
or

(9-6) a =

where ¢ (0) is normalized to unity.

The procedure for obtaining expressions for the appropriate variables in the
second order Markov model is similar to the one above. The same assumptions
about ergodicity and the mean of the white noise sequence are made.

The model for the second order Markov process is

(9-7) i3 - xh +w

(9-8) x), = -u2xB - 28x), + (a - 28)w.

31




(The reason for this particular form of the model is given in Section 12).
Discretize each equation to obtain

(9-9) xg(n +1) = x3(n) + Axh(n) + Aw(n)
(9-10) xj(n + 1) = x)(n) + a®ax3(n) - 288x)(n) + (a - 28)Aw(n)
Now solve for x3 and drop the subscript 3. That is, define xp = X3(n). Then,

(9-11) xp4p + 2(88 = L)xp 4 + (1 + o282 - 288)x, = Bupe; + (8 - 82a)uwy= 0

n

Multiplying through by xpn and taking the expected value of both sides,
one obtains

(9-12) & (2a) + 2(BA - 1) ¢ (8) + (1 + a®A2 - 28A) = O

A second equation involving a and B can be obtained by multiplying Equation
(9-11) by Xp-1 then taking the expected value of the resulting expression. The

result is
(9-13) & (38) + 2(BA - 1) ¢ (28) + (1 + a°A° - 28A) ¢ (A) = O

Solution of Equations (9-12) and (9-13) for a and B gives

Pl + 2
(0-14) B = -_EK__
and
) 2BA+P2—1
(9-15) o = ————————
A2
where
o(a)e(2a) - o(3a)
(9-16) P, =
o(2a) - ¢(a)2
(9-17) P, = -0(24) - P,¢(a)

The correlation function ¢(k) is computed from the definition

N - k
(9-18) (k) = W%W E X{X{+k
i=1

where N is the number of available data points.
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Tables 5 through 7 list the computed values of "a'" using Equation (9-6)

2 2 2
for each of the 12 FACT flight passes. With w, defined by w, *a, - B , Tables

8 through 10 list the computed values of w_. and B which parameterize the

o
second order Markov acceleration process. Table 4 lists the number of data
points in each flight path as well as the number of data points in each of the
three segments for each flight path. Each segment is characterized by a specific
portion of the flight path. Segment 1 defines that portion of the flight psik
during which the aircraft undergoes evasive maneuvers prior to weapon delivery.
Segment 2 is characterized by that portion of the flight path during which the
pilot is constrained to follow a particular course in order to deliver his
ordinance on target. It is taken to start 5 seconds before weapon release.
Segment 3 is the remaining portion of the flight path. Mean acceleration values
for each of the three portions as well as the standard deviation of the acceler-
ation along the entire run are also provided in Tables 5, 6, and 7. The data
points are separated by 1/10 second intervals.

TABLE L

NUMBER OF DATA POINTS FOR EACH FLIGHT PATH AND
FOR EACH SEGMENT OF A FLIGHT PATH

Flight Pass N hif o) N
1 365 142 51 172
2 483 329 53 103
3 3673 221 51 111
L k1o 261 51 100
5 Los 329 2
6 345 200, ]
7 378 220 ) 107
8 331 AT 51 109
9 Lo, 361 51 6l

10 573 Lh3 53 79
11 576 hot, 51 29
12 589 538 51 0
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