D=AD036 401 RENSSELAER POLYTECHNIC INST TROY N Y COMPUTER RESEAR=-=ETC F/6 9/2
AN IMPLEMENTATION OF THE LOUTREL HIDDEN=LINE ALGORITHM.(U)
f SEP 76 M POTMESIL AF=AFOSR=2937-=76
' UNCLASSIFIED CRL-49 AFOSR=TR=77=0104 NL

(6]

o

g g
ol

I
g
| s

128 fls. s

m—
.

.
et

MICROCOPY RESOLUTION TEST CHARI
: i ¥ N "

i ’
VLS A E
i | o e ' 5
i L W 2 '

s o
Buh sectiv
‘J"
LR %
T ma—

¢
e |
b |

, —
L gesp o /R

Technical Report CRL-L9

AN IMPLEMENTATION OF THE LOUTREL \ t ‘ |
HIDDEN-LINE ALGORITHM { f7/\ ‘ |

by
Michael Potmesil

September 1976

34 b e : Y o 1 T
distribution unlimited,

Prepared for

Directorate of Mathematical and Information Sciences
Air Force Office of Scientific Research
Air Force Systems Command, USAF

Grant Number AFOSR T76-2937

ARG)

s o

Computer Research Laboratory
Electrical and Systems Engineering Department

Rensselaer Polytechnic Institute

TROY, NEW YORK 12181

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
NOTJICE OF TRANSMITTAL TO DDC

This technical report has becn reviewed and is
approved for public rclease IAW AFR 190-12 (7b}.
Distribution is unlimited,

A. D. BLOSE

Technical Information Officer

i

ABSTRACT

\This report describes ;n implementation of a variation of the
hidden-line algorithm developed by P. Loutrel. The new algorithm
produces hidden~line drawings of scenes composed of opaque polyhedra
as well as of some more general types of flat-faced objects not
covered by the original Loutrel algorithm. The prcgram is written in
Fortran IV and has been implemented in a batch version on a CDC 6600
computer and in an interactive version on an ADAGE AGT-30 interactive

graphics computer.

0

’ T e ——

3l

ACKNOWLEDGMENT

The author wishes to thank Professor Herbert Freeman for
providing the direction and guidance for this project.

The work was supported by the Air Force Office of Scientific
Research, Directorate of Mathematical and Information Sciences,

under grant AFOSR-76-2937. This support is gratefully acknowledged.

TABLE OF CONTENTS

Abstract

Acknowledgment

List of Figures

1.

2.

Introduction

The Program
2.1 Review

2.2 Computation of a Normal Vector to a Face
2.3 An Extension of the Algorithm

The PDRAW Routines

Program PDRAW
Subroutine SETUP
Subroutine INPUTM
Subroutine PRECOM
Subroutine TRANS
Subroutine REMOVE
Function IVFACE
Subroutine MRANGE
Subroutine FRANGE
.10 Subroutine CLASS
.11 Function IORDER
.12 Subroutine LOCATE
.13 Subroutine COLECT
.14 Function ITEST
.15 Function INTERS
.16 Subroutine EMIT

\O G0 O\ W -

WWWWwWwWwwwwwwwwwww
PR o & . m % .

The Data Structure

Common Block MODEL
Common Block FACE
Common Block EDGE
Common Block VERTEX
Common Block STACK
Common Block FREE
Common Block PARAMS
Common Block DIMENS

FE FEF EFEEEE
(oo BN AN, I = UV I O I o

iid

vi

5. Data Format

5.1 The Structure of Data Files
5.2 Format of Object Specifications
5.2.1 Vertices
5.2.2 Faces
5.3 Format of Vantage Point Specifications
5.4 An Example of a Data File
6. The CDC 6600 Batch Implementation

6.1 Description of CDC 6600 System Programs
6.1.1 Subroutine PLOTS

6.1.2 Subroutine PLOT

6.1.3 Subroutine SECOND

Notes to the CDC 6600 Data Structure
Examples

w N

6.
6.
T. The Adage AGT-30 Interactive Implementation

Review of the Implementation

Execution Time

Description of Interactive PDRAW Programs
T.3.1 Program PDRAW

Function ALINE

Function CROSS

Subroutine VECTOR

—~ ==
w N -

~ ==
w W w
=W

7.4 Description of Interactive System Programs
7.4.1 Program XGRAFX
T7.4.2 Program XPUNCHX
T7.4.3 Function TIMER
7.5 The Data Structure
T.5.1 Common Block OUTPUT
T7.5.2 Notes to the Adage Data Structure

8. Conclusion
9. References

Appendix A Three-Dimensional Transformations and
Projections

vi

LIST OF FIGURES

Figure
Number Page
2.1 PDRAW flow of control -
2.2 A cube with a hole 6
2.3 A cube with a protrusion 6
L The connections of PDRAW routines 8
L1 Data structure 15
Sk Listing of an example data file 30
5.2 View of the scene from vantage point 1 31
5.3 View of the scene from vantage point 2 32
6.1 Five views of two aircraft 35
6.2 A view of three aircraft 36
el The connections of PDRAW routines in the ADAGE

interactive version L3
8.1 First view of a scene of two objects Ls
8.2 Second view of a scene of two objects Ls
8.3 Third view of a scene of two objects 45
A.l Three coordinate systems 50
8,2 Initial position of (x,y,z) and (x',y',z') coordinate

systems 22
A.3 Rotation about the y' axis by angle & o
A.b Rotation about the x' axis by angle 8 Sk
A.S Perspective projection 56
A6 Orthographic projection 56

1. INTRODUCTION

-

Given a computer description of a three-dimensional scene and the
coordinates of a vantage point, a hidden-line algorithm determines the
parts of the scene which are visible from the vantage point.

In this report an implementation of such an algorithm is described.
The algorithm is that originally developed by P. Loutrel and described
in a journal article¥* as well as in his doctoral thesis**., The original
algorithm accepted only true polyhedral objects, either convex or concave
and either simply or multiply connected. The algorithm implemented here
extends the set of acceptable objects to all objects bounded by planar
surfaces. This includes objects whose faces may contain one or more
holes (either intruding or extruding). However, the extended algorithm
cannot handle non-closed objects or objects bounded by gquadrie or other

non-planar surfaces.

iy

The implemented program called PDRAW is written in FORTRAN IV. There

are two versions of the program: batch and interactive.

"oy

* Loutrel, P. P., "A Solution to the Hidden-Line Problem f
Drawn Polyhedra," IEEE Transactions on Computers, Vol. C-19, No.

March 1970, pp. 205-213.

** Joutrel, P. P., "A Solution to the Hidden-Line Problem f
Drawn Polyhedra,”" doctoral dissertation, Department of E
Engineering, New York University, September 1967. (NTIS
number: N68 13 830).

The batch version was implemented on a CDC 6600 computer. This
version of the program reads all commands, object descriptions and
vantage point specifications from an input data file and produces
drawings on a digital plotter.

The interactive version was implemented on an ADAGE AGT-30 inter-
active graphics computer. This version of the program reads object
descriptions from data files but program control and vantage points are
specified by interactive graphics I/0 devices. The drawipgs produced
by the program are made on a CRT screen and hard copies can be obtained
on a dot matrix plotter or an incremental plotter.

During the last several years a number of other hidden-line or

hidden-surface algorithms have been developed. An extensive survey of

these algorithms is given in [3].

2. THE PROGRAM

2.1 Review
The program consists of a main program, PDRAW, and a set of

routines and functions. The program regquires a plotting package

sub-

for

drawing on a digital plotter or a similar device. The program uses

system routine to measure the elapsed execution time.
The input to the program consists of
scene is followed by a set of vantage
makes drawings of the scena. A scene ists of
bounded by planar surfuces. All the objects in a scene must be
intersecting. All the vantage points for a scene must be outside

the objects in the scene®*. PDRAW produces three

(1) all the edges of all the objects

the visible edges are drawn as soli
are drawn as solid lines and

lines. Figure 2.1 gives the

2.2 Computation of a Normal Vector to

A change from the original Loutrel version was made in
of computing outward normal vectors to all faces. These v
vantage-point independent, computed once for an object
PRECOM. The original method devised by Loutrel failed
such as those in the shape of an "H". The new program computes 2

outward vector to a face as follows: S has

* Two types of projections are availabl

-y -

o

P

1

SR - r - ~
verform vantags-b«

-

e

=]

x
vh

whose coordinates are Vl’ V2, e VV then
N-1 5

=V = (U =V

>
n

1]
I o~11

is an outward normal vector.

2.3 An Extension of the Algorithm

The original algorithm was extended to accept objects that have cne
or more face-interior holes [Fig. 2.2] or protrusion [Fig. 2.3]. When
an object has a face-interior hole or protrusion, the face where the hole
or protrusion occurs will be multiply connected; that is, it will have
a hole in it. We shall refer to a hole in a face as an "antiface". When-
wer a vertex is behind a visible face, the order of invisibility is
increased by one. However, when a vertex lies behind an antiface, the
order of invisibility is decreased by one. This is done because each
antiface indicating the presence of a face-interior hole or protrusion

is inside a larger true face*, For the face the order of invisibility

(47}
foN)
D
2
3
D
5}
[47)
1]
fo

is increased; for the antiface the order of invisibility i

Therefore, the order of invisibility of a vertex inside an antiface does

o H

not change after both the face and the antiface have been processe

* An antiface is thus bounded by a chain of
from the chain bounding the containing face.

-

)

A cube with a no

+ vy

bl

o

r

“

3wy

S A e)

3. THE PDRAW ROUTINES

3 In this section all routines in PDRAW are described. PDRAW con-
sists of a main program, 9 subroutines and 4 functions. The chart

of Fig. 3.1 gives their connections.

3.1 Program PDRAW

? PDRAW is the main program which controls the execution of all

routines. It opens the plotting output, moves the pen to the first
! drawing, moves the pen between drawings and closes the plotting output. |
PDRAW also reads from a data file all the data delimiters and vantage

point specifications, analyzes them and calls the main functional sub-

i routines.

3.2 Subroutine SETUP

SETUP is a subroutine which initializes the data structure of the
: program. Pointers to the various sections of the data structure are set
to point to the first available locations, and the number of objects is

set to zero. The data structure of the program is described in Section .

3.3 Subroutine INPUTM

This subroutine reads the description of an object from the input

data file to the data structure of the program. The format of an object

description is described in Section 5. Whenever an attempt is made to

4 read more data into the data structure than the allowable maximum, an {

error message is written, the plotting output is closed and o

o

execution

ot
O

‘g

g
@®
[N

o
12}
[7]

PDRAW#*

| I
l | 1 3

i SETUP INPUTM#** PRECOM REMOVE*

| | [I |

MRANGE CLASS* LOCATE FRANGE

H

()
=

)
2s)

IVFACE

r b

COLECT*#* EMIT*

moam

4SOl

% Calls a plotting routine to draw a vector. PDRAW also ca
3 - 3 -~ 1 ~1 Y Ny - > - oo o
routines to open and close the plot output and to messure

alls a plotting routine to c¢lose the plot output in a case of data
-~ -~ v o~ 1 ~ o -
structure or stack overflow. .
i
T gy 8] m -~ vy I Arn~ ~f PDRAW eI e S A e
gure 3.1 The connections of FDRAW ro ne

3.4 Subroutine PRECOM

This subroutine performs the preliminary, vantage-point-independen
classification of each object. It is called once for each object

immediately following a call to INPUTM. PRECOM computes the following:
j¢ g

a) an outward normal vector to each face of the object

(the method is described in Sec

b) classification of each edge

[1, page 208]

¢) classification of the objec i convex or
J

Subroutine TRANS

This subroutine transforms all vertices of all objects from the
object coordinates to the vantage point coordinates and then to the
picture plane coordinates. TRANS uses either perspective or orthographic
projection. All picture plane coordinates are scaled down to a
(=1.0, 1.0) square for further computations. The transformation prccess

is described in Appendix A.

3.6 Subroutine REMOVE

This is the main subroutine controlling

line removal. It computes the visibility

function IVFACE. All edges and vert

<

routine CLASS. Visible edges in a non-intersectin

are determined in this subroutine

potentially intersecti

processing.

* Intersections are determined
picture plane.

EarTatl

- 10 =

3.7 Function IVFACE

This is an integer function which returns the value of +1 if a
face is visible from a given point and the value of -1 if the face is
invisible from a given point. IVFACE is invoked at two points in the
program. First, it is used to determine whether each face is invisible
or potentially visible from a vantage point. Second, in order to compute
the order of invisibility of a vertex, this function is used to determine
whether a face is visible from a vertex, which is identical to deter-
mining whether the face is in front of or behind the vertex. This
second use of the function, however, uses cnly faces which were deter-
mined to be visible in the first use of the function, since invisible

faces do not change the order of invisibility of a vertex.

3.8 Subroutine MRANGE

This subroutine computes an enclosing envelope for =ach ob
the current scene. This is done by searching for the maximum and minimum

x and y picture coordinates of each object.

3.9 Subroutine FRANGE

This subroutine computes an enclosing envelope for each visible

~

face of

S o ~

each object. This is done by searchin

L)
"
J
Ly |
+
o
H
™
“
4 d
g
&
®
(=
fu
=
B
o
|

mum x and y picture plane coordinates of each visible face in a scene.
Although the enclosing envelopes of
the basic algorithm, they are used to speed up substantially the compu-

tations of the o

Ly |

der of invisibility of vertices as well as the searching

o NANT TN

for edge intersections performed in subroutines COLECT and IORDER.

3.10 Subroutine CLASS

This subroutine performs the vantage-point-dependent classifica-
tions. Each edge in a scene is classified as either type Hl, H2, H3
or Hh [1, pp. 208-209]. Each vertex is classified as either a boundary
or an inner vertex [l, pp. 210-211]. This subroutine is called each
time a set of potentially intersecting objects is found. If it is
called with only a single object which is convex, the vertex classifi-
cation is omitted. This subroutine identifies 2all invisible edges

(type H1 and H2).

3.11 Function IORDER

This function returns as its integer value the order of invisibility
[1, page 209] of a vertex passed to it. The order of invisibility is a
non-negative integer corresponding to the number of potentially visible
faces which are in front of the vertex, i.e. between the vantage point

and the vertex. Note that invisible faces are not counted.

3.12 Subroutine LOCATE

REMOVE passes to LOCATE a set of objects in a scene which potentially
intersect in the picture plane [1, page 211]. This routine processes
in two passes all H3 and H4 type edges. In the first pass all H3 edges
are processed; in the second pass all HY edges are processed. Each edge
that is processed has its initial and final coordinates put intc a stack.
The order of invisibility of the initial vertex of the edge is put into
another stack. These stacks are then passed to subroutine COLECT which
computes any possible intersection of this edge with any H2 or HY type

edge in the set of objects passed to LOCATE.

3.13 Subroutine COLECT

This subroutine computes all possible intersections that one edge
may have with another [1, pp. 209-210]. The initial and final coordi-
nates of an edge are passed to COLECT from LOCATE. COLECT uses
functions ITEST and INTERS to find any possible intersections and adds
the coordinates of any found intersection into a stack. It also com-
putes whether the processed edge is coming from behind a face or is
going behind a face at the point of the intersection. This change in
the order of invisibility along the edge, which is either +1 or -1, is

also put into a stack.

3.14 Function ITEST

ITEST is an integer function which tests two edges for a wvalid
intersection. It returns the value of +1 if a valid intersection is

~

found; otherwise the value of 0 is returned. ITEST is also used to f

ind
an intersection of a line going from a vertex to infinity with an edge

during computations of the order of invisibility of a vertex.

3.15 Function INTERS

INTERS is called from COLECT after ITEST found that two edges have
a valid intersection and computed the x and y coordinates of
section. INTERS determines whether at the point of the intersection, the
processed edge is in front of the other edge or not [1, page 210]. 1If
it is behind, it means that the processed edge is either cowing from

behind a face or is going behind a face and INTERS returns the value of

+1, otherwise a zero is returned.

3.16 Subroutine EMIT

This subroutine is passed a stack containing the initial and final
coordinates of an edge as well as the coordinates of all intersection;
this edge has with all other edges. A stack containing the initial
order of invisibility as well as the changes in the order of invisibi-
lity at each intersection, either +1 or -1, is also passed to EMIT.
EMIT sorts out the intersections by their increasing distance from the
initial vertex and then causes the segments of the edge to be drawn as

either visible or invisible vectors.

All the data describing objects as well as several parameters used
throughout the program are stored in common blocks.
the data structure which are vantage-point independent are marked

with asterisks.

ol

have

L. THE DATA STRUCTURE

In this section the data structure of the program is described. 3

Common Block MODEL

This common block contains the data describing the objects that

been entered into the program. All arrays in this block a

dimensioned to MAXM which is the maximum number of objects in

that

can ve entered intc the program.

MODEL(MAXM)* contains pointers to the first face of
an object. The pointer of each object is set by
subroutine INPUT just before the object is read in.

MIYPE(MAXM)* contains the type of an object:

convex object «vivwecs O

concave objeet voesswe 1
The type is set by subroutine PRECCM after the
preliminary classification of all edges as either
type H2 or H3. If there are nc edges of type H2,
the type of the object is set to convex (@) if
there are one or more type H2 edges, the type of

the object is set to concave (1).

The portions of

A chart of the data structure is given in Fig. 4.1.

e

scene

MODEL (MAXM)

NEXTF (MAXF)

T

o

&3]

IEDGE (MAXE, L)

\

AN

TEY(MAXV,3)...

55

IFRSTV (MAXM)

\
TT AMYU { MA M
TLASTV(MAXM)

—

B
|
|
|
|

NEXT (MAXE) . .|

- 16 -

IFRSTV(MAXM)* contains pointers to the first vertex of
of each object. The pointer of an object is set by
subroutine INPUTM just before the object is read in.

ILASTV(MAXM)* contains pointers to the last vertex of
each object. The pointer cf an object is set by
subroutine INPUTM after the last vertex of the object
was read in.

XMAXM(MAXM) , XMINM(MAXM) , YMAXM (MAXM) and YMINM(MAXM)
contain the maximum and minimum x and y picture plane
coordinates of each object. These values are computed
for all objects in subroutine MRANGE.

MLIST(MAXM) is a processing status list which contains
pointers to a set of objects that have potential
intersections in the pigture plane. These pointers
are set in subroutine REMOVE.

MSTATE(MAXM) contains the processing status of each object
in a scene:

Aol Procesied scvevvisnvneesee @

(]

add to the processing list ...

49}

in the processing 1ist s.uvees

procesged ciisviseerns v nsvian

)

- — T ——— ks PO L A

= L

4.2 Common Biock FACE

This common block contains the data describing the faces of objects

entered into the program. All arrays in this block are dimensioned
MAXF, which is the maximum number of faces that can be entered into
program.
IFACE(MAXF)* contains pointers to the first edge of a
face. The pointer of each face is set by subroutine
INPUTM just before a face is read in.
FNV(MAXF,3)* contains the three components of an out-
ward normal vector of each face. The vector is
computed in subroutine PRECOM.
IVPNT(MAXF)* contains pointers to the first vertex of
each face. The pointer is set by subroutine PRECOM.
NEXTF(MAXF)* contains pointers to the next face of an
object. All pointers are initialized by subroutine
SETUP. End-of-list pointers are inserted by sub-
routine INPUTM after the last face of an object was
read in.
IFTYPE(MAXF)* contains the type of each face;
inner face description O
outer face description 1

The type of each face is read

H
[®]
2]
ot
=3
1]
[
s
i
=
ct
u
0
ct
(6]

file by subroutine INPUTM.

to

the

=

S

ICF(MAXF) indicates the visibility of each face:

Invigihle £806 isssrsivsssansnn =i
potentially visible face +1
The visibility is computed in function IVFACE and

stored to ICF by subroutine REMOVE.

XMAXF (MAXF), XMINF(MAXF), YMAXF(MAXF) and YMINF(MAXF)

contain the maximum and minimum x and y picture plane

coordinates of each potentially visible face. These

o

values are computed for all potentially visible

faces by subroutine FRANGE.

ZFNV(MAXF) is used in computing the visibility of faces

when the orthographic projectiorn is selected. It
contains the dot product of the z row of the trans-
formation matrix with a face normal vector. A
negative value indicates an invisible face; a non-

negative face value indicates a potentially visible

face.

Cormon Block EDGE

is common block contains the data describing the edges of objects
entered into the program. All arrays in this block are dimensioned to
MAXE which allows MAXE/2 edges to be entered into the program.

IEDGE(MAXE,4)* contains the following four pointers

for each edge:

1. Pointer to the initial vertex of the edge.

2. Pointer to the ¢

L.b

= R e e,

- A

3. Pointer to the face on the right of the edge.
4. Pointer to the face on the left of the edge.

Pointers 1 and 2 are read in by subroutine INPUTM from

the input data file. Pointers 3 and 4 are set by subroutine

INPUTM after all the data was read it.

IHTYPE(MAXE)* contains the vantage-point-independent classifi-
cation of each edge as either type H2 or type H3. This
classification is done in subroutine PRECOM.

NEXTE(MAXE)* contains pointers to the next edge in a2 face of

an object. All pointers are initialized by subroutine

SETUP. End-of-list pointers are inserted by subroutine

INPUTM after a face was read in.

IH(MAXE) contains vantage-point-dependent classification

o]

of each edge as type Hl1, H2, H3 or H4. This classi-

"

fication is done by subroutine CLASS.

Common Block VERTEX

This common block contains the data describing the vertices of

entered into the program. All arrays in this block are dimensioned

MAXV which allows MAXV - 1 vertices to be entered into the program.

last location is used by the program for a point at "infinity

VERTEX(MAXV,3)¥ contains the coordinates of vertices

described in the object coordinate system. The

fon

a 3 2 + £39
from the input ata file

coordinates are read in

4

by subroutine INPUTM.

b e o e AT i

- 20 =

VTRANS(MAXV,3) contains the coordinates of vertices in the
vantage point coordinate system. The transformation
from the object coordinate system to the vantage point
coordinate system is done by subroutine TRANS.

V2D(MAXV,2) contains the coordinates of vertices in the
picture plane coordinate system. The transformation
from the vantage point coordinate system to the picture
plane coordinate system is done by subroutine TRANS.

IOV(MAXV) contains the order of invisibility of a vertex.
It is computed by function IORDER.

IVTYPE(MAXV) contains the classification of a vertex as
either a boundary vertex (non-zero value) or an

inner vertex (zero value).

4.5 Common Block STACK

This common block contains information about intersections that an
edge may have with any other edge. All arrays in this block are dimen-
sioned to MAXS. This allows each edge to have up to MAXS - 2 inter-
sections, since two locations are used for the initial and final vertices
of the edge.

ISTPNT is a pointer to the top of the stack.

STACK(MAXS, 2) contains the picture plane x and y coordi-

nates of all edge intersections. Locations 1 and

-~

2 contain the picture plane coordinates of the

initial and final vertices of the edge.

KS(MAXS) contains the increment of the order of invisi-

bility of each intersection.
+1 or -1 indicating that the edge is going behind a
face or coming from behind a face. Locations 1 and

2 of the stack contain the order of invisibility of

the initial and final vertices of the edge.

DIST(MAXS) is used for sorting out edge intersections by

their increasing distance from the initial vertex
of the edge. The sorting is done in subroutine

EMIT before the subroutine emits segments of the

edge as either visible or invisible vectors.

L,6 Common Block FREE

This common block contains pointers to the next available

in the blocks MODEL, FACE, EDGE and VERTEX.
IMFREE* is a pointer to the next available locetion in
block MODEL. It is initialized to 1 by subroutine
SETUP and incremented by 1 in subroutine INPUTM
before a new object is read in.
IFFREE* is a pointer to the next available location in
block FACE. It is initialized to 1 by subroutine
L

SETUP and incremented by in subroutine INPUTM

before a new face is read in.
1 by subroutine

SETUP and incremented by 1 in subroutine INFUTM

This value may be either

- 25 .

IVFREE* is a pointer to the next available location in
block VERTEX. t is initialized to 1 by subroutine
SETUP and incremented by 1 in subroutine INPUTM
before a new vertex is read in.

NMODEL* is the number cof objects in the scene in the
program. It is set to O by subroutine SETUP and
incremented by 1 in subroutine INPUTM before a
new object is read in.

NMSET is the number of objects in the scene which have
potential intersections in the picture plane and
which are currently in the list MLIST. The number

is computed in subroutine REMOVE.

4.7 Common Block PARAMS

"

o
0
®

This commen block contains several parameters which are
out the program.
VP(3) contains the current vantage point x, y and z

coordinates given in the object coordinate system.

ct
-
O
3

They are read from a vantage point specifica

card by the main program PDRAW. In some routines

t
t
o
fal
=
<
@
4]
8
[N
<

these variables are set equivalen

ORTHO is a logical variable which is set to .TRUE. in

the main program PDRAW when the orthographic

- 0% -

DD contains the transformation value D, the distance of
the vantage point from thg origin of the object
coordinate system, computed in subroutine TRANS.

ZMAX contains the picture scale of the current image.
It is computed in subroutine TRANS.

RADIUS is the maximum distance of a vertex from the
origin of the object coordinate system. It is
computed in subroutine INPUTM.

EPSl, EPS2, EPS3 are small numbers which are used as
tolerances in some computations. All must be
positive numbers.

IENPNT is a pointer to the currently processed edge.
N1l is a pointer to the initial vertex of the currently
processed edge. It is set in subroutine LOCATE
and used in programs COLECT, ITEST, and INTERS.

N2 is a pointer to the final vertex of the currently
processed edge.

IEIPNT is a pointer to an edge which may have an inter-
section with edge IENPNT and is currently tested.

Il is a pointer to the initial vertex of edse IEIPNT.
It is set in subroutine COLECT and used in programs
ITEST and INTERS.

I2 is a pointer to the final vertex of the edge IEIPNT.

w

L.8

data

X is the x coordinate in the picture plane of the
intersection (if it exists) of edges IENPNT and
IEIPNT. It is computed in function ITEST and
used in programs COLECT and INTERS.

Y is the y coordinate of the intersection.

DASHED is a logical variable set to .TRUE. by PDRAW
whenever the hidden edges are to be drawn =as
dashed lines.

SCALE sets the plot output for a maximum plotting area

of 2% SCALE by 2% SCALE inches.

Common Block DIMENS

This common block contains the dimensions of the arrays used in

structure.

MAXM* contains the dimension of arrays in block MODEL
MAXF* contains the dimension of arrays in block FACE
MAXE* contains the dimension of arrays in block EDGE
MAXV* contains the dimension of arrays in block VERTEX
MAXS* contains the dimension of arrays in block STACK

5. DATA FORMAT

In this section the format of data files read by the program is
described. A data file contains three types of cards - or card images.

delimiter cards - delimit sections of a data file.

object cards - contain object description.

vantage-point cards - contain vantage point description.

5.1 The Structure of Data Files

Input data to PDRAW consists of a description of one or more scenes.
Each scene contains one or more objects. The last object in a scene is
followed by one or more vantage point specifications. The format of
description of an object is given in 5.2. A scene, an object and a
group of vantage points are delimited by special cards - delimiter cards -
which contain a digit in column one as follows:

1 Scene header; indicates that a scene follows; columns

2=42 may contain the name of the scene or any comment

which is printed.

n

Object header; indicates that a description of an object
follows (in the format described in 5.2); columns 2-42 may
contain the name of the object or any comment which is

printed.

(02N

Vantage-point header; indicates that vantage point

cards follow; this card is placed following the descrip- a

tion of the last object in a scene.
9 E

point card and indicates the end of the current scene.

nd-of-scene card. his card follows the last vantage

e R

- B0 =

It may be followed by an end-of-file mark or by the

header of the next scene. The last scene in a file need

not be followed by an end-of-scene card.
The size of the input data, i.e. the number of objects, faces, edges and
vertices in a scene is limited by the size of the data structure. An
error message is printed when the permitted size of the data structure
is exceeded, indicating the part of the data structure that was exceeded.
The program does not limit the number of scenes or vantage points in a

data file.

5.2 Format of Object Specifications

In order to enter a planar-faced, solid object into the program, a
description of the object must be created. Such a description consists
of a list of the vertices, followed by a list of the faces of the cbject.

5.2.1 Vertices

Each vertex Vi is defined by three coordinates
Vi(xi,yi,:i) given in the object ccordinate system. The index '

be arbitrarily assigned to a vertex. It is, however, assumed that

E e > R S >
number of wvertices. The format oi

i=1,2,3,....,M where M is the tota

[

M 13

: 3F8,
g Ak B 3

. 378,
A3 ¥5 2a <

N - AR
M T %y :

5.2.2 Faces

Each face of a planar-faced, solid object is a polygon.
The program allows faces to have one or more holes in them, that is, to
contain antifaces. Therefore, to describe a face, a list of vertices
defining the outer edges as well as lists defining any pcssible holes
or protrusions must be given. Each such list contains the indices 'i'
of vertices as defined in 5.2.1. The direction in which vertices are
listed for a face is such that the interior lies always to the right
relative to an observer outside of the object. For an antiface, the
direction is taken so that the interior lies to the left. Each list of
vertices must be closed; i.e., the first vertex must appear also as the
last one. Note that all the vertices and edges of a face (including
those of all its antifaces, if any) must lie in a plane.

There are N lists of vertices describing faces. Each list
has a flag 'iflag' as its first entry. A value of 'l' indicates that
the list describes the edges of a face, a value of 'O' indicates that

the list describes edges of an antiface. The next entry in the list is

as the last one. DNote, that lists describing antifaces need not follow

the list describing the corresponding face but may be placed anywhere i

-

the list of faces. The format of this list is:

"
a

iflagl nv. abed
iflag2 nv. € b a

T e s e e see e v a

iflagN nv., £ gh

Note, that for a pair of indices of vertices 'i j', there

must be one and only one pair

- 28 -

I3 (number of faces i
2013 (first face |
20I3 (second face ;
2013 (last face

1 (O |
B o IR

5.3 Format of Vantage Point Specifications

The type of drawing to be obtained from a vantage point and the
coordinates of the vantage point given in the object coordinate system

are described by ITYPE, X@, Y8, ZJ on a single card image which is read

with format (1X, Th, 5%, 3FLO.
ITYPE = +1 orthographic

+2 orthographic

+3 orthographic

~1

erspective

'

-2 perspective

-~

-3 perspective

3) where

projection; all lines drawn
projection; hidden lines dashed

projection; only visible lines drawn

ection; only visible

Xp, YP, 280 are the x, ¥ and z coordinates of the

in the object
The projections and the c

described in Appendix A.

coordinate system.

oordinate systems used by

ection; all lines drawn

- 00 -

5.4 An Example of a Data File

A sample data file of a scene is listed in Fig. 5.1. The scene
consists of three objects: a cube, a pyramid and an octahedron.
Following the last object, two vantage points are specified. The

views obtained from these vantage points are drawn in Fig. 5.2-3.

i

2
=

-

A SCENME WITH THREE DRIECTS

O

EXamMFLED

A CUBE kKK KK K K K ok K KKK KKK OO K o sk sl sl ok sl sl st e sk ol sl s sioi ol ok ok

8 VERTICES

10,00
10,00
160,00
_10000
10,00
10,00
ok L3 9 12
& FACES
1 1

~

e

At ag aaa

e

1

G

30,00
40,00
40,00
20,00
20,00
FACES

e bbb
J R e e

anT

ok bk e e il 1)

(&

AN

-30,00
-30,00
=20 00
=20, 00
=40, 00
= A0, G0
8 FACES

W g
A FYRAMID
VERTIEES

AHE TR
6 VERTICES

".’.0»00
10,00
10,00

-10.00

-10.00
10,00
12,00

"‘10000

[0 SN I w3 e S |

F LN DN N D

ES
=

~-30.00
=40.,00
-20.00
~20.00
=40, 00

o
3
4
4

N 3 0

i

30,00
30,00
20,00
40,00
40.00
20,00

-10.00
-10,00
_A|.0000
-10.00
10,00
10,00
10.00
10,00

(SN
b3 =

LIS

RN
3 b 0]

ol
3
3=
¢ 3
¥

20,00
0,00
Q.00
0,00
Q.00

: 2
R HORKOK

20,00
~20,00
0, 00
0,00
0,00

0,00

UERTEX

FRONT
RIGHT
TOF
LEET
BEACK
BOTTOM

KK R KK kK e

VERTEX:

BEET
FRONT
RTGHT
Bai K
BASE

A 0k K K K

UERTEX

3

2

3
4

0

~ o

FaCE

i

2 BT T

3 BASF FRONT
a

5 ReK
é

FET

R S R R B | TOR

B L S B

1)) 1 2 A 1

1 4 1 & O 1

) O R e e BOTTOM
) R S R SR - T

i 4 2 4.3 2

L4 2 9 &6 &

94,75

'
ol ¢

FRONT
FIGHT
BANK
LEFT
FRONMT
=TAHT
HASKFE

- UANTAGRE PO
:“) 1 f..'l 3 F % 0
an example le

BT T O

FRANT

RArK

TOF FROMT

R K

TNF

RAKRE FROMT @ FET
RTHT
BTGHT

LEFT

[T

TR

LEFT
RTEHT
RTHRHT
LEFT
LEFT
RIGHT
FTGHT
[T

MR R R a0k R ek ke ek sk R R

ok

¥

1
B

* ik

g
W

SEECFECECET S SC LSS LSS EELEEFEESEFE S S

rxy

- 31

Figure 5.2 View of the scene from vantag

e point 1

6. THE CDC 6600 BATCH

IMPLEMENTATION

In this section we describe system programs and data structure
modifications which apply only to the CDC 6600 version of the program.
A complete guide explaining how to run PDRAW on a CDC 6600 and how to
modify it for use on similar computers is being issued as a User
Bulletin [5].

6.1 Description of CDC 6600 System Programs

In this section three CDC 6600 system programs reguired by PDRAW
are described.

6.1.1 Subroutine PLOTS

Subroutine PLOTS(LIMIT, TEXT) is used to initialize the
plotting output. It is called before any other
LIMIT is the total length of a plot in integer inches TEXT is a Holleritt
string of up to 40 characters identifying the user. PLOTS is a part of
the CDC 6600 SCOOP plotting package.

6.1.2 Subroutine PLOT

Subroutine PLOT(X, Y, IPEN) is used to control all pen move-
ments, create an origin and terminate the use of
X and Y are coordinates (in inches) to which the pen is moved from its
present position relative to the current origin. IPEN can have these
values:

L draw a dashed line

2 draw a solid line

3 move the pen in the up position

- 32 -

e S s BEE———

-1, -2, -3 the pen is moved as for 1, 2 and 3
respectively. In addition the final
position of the pen (X, Y) becomes the
new origin (0, O)

999 terminates the plotting output.
PLOT is a part of the SCOOP plotting package.

6.1.3 Subroutine SECOND

Subroutine SECOND (TIME) returns the elapsed CPU time in

seconds. SECOND is a part of the CDC FIN Fortran Library.

6.2 Notes to the CDC 6600 Data Structure

The following notes apply to the CDC 6600 implementation of the

data structure:

3
()]
O
e |
T

1. The arrays in the data structure common blocks are dimen

as follows:

MAXM..... 20 (the maximum number of objects)
MAXF.....200 (the maximum number of faces)
MAXE.....800 (the maximum number of edges *2)

MAXV.....200 (the maximum number of vertices +1)
MAXS..... 40 (the maximum size of edge intersecticn stack)
This requires the following CM fields:

required to load 661&008

required to run ShQOOq
\®,

The program sizes are:

T

I o

Bt o

- 2h o
The dimensions of arrays in common blocks can be easily changed
by using the text editor UPDATE and a common deck containing all
ccmmon block statements.
2. The following numbers were found to be good computational

tolerances EPS1, EPS2 and EPS3: 0.1, 0.01, 1.0E-10.

6.3 Examples

The program was tested with scenes of one, two and three aircraft

[Fig. 6.1-2]. Each aircraft consists of about 340 vertices, 330 faces

The following table gives memory requirements and execution times. The

packed CDC version packs integer data into 60-bit memory words as described

in [5].
Scene Unpacked memory Packed memory Time [sec]
3 aircraft 210k 115k 11-25
2 aircraft 150k Thx 6-15
1 aircraft 110k 53k 2-0
3k 0.01-0.05

Example [Fig. 5.2-3] 33k

A 7. THE ADAGE AGT-30 INTERACTIVE IMPLEMENTATION
i

T.1 Review of the Implementation

It was decided to implement the algorithm on an Adage AGT-30
interactive graphics computer. The hidden-line scenes are displayed
on a refresh CRT terminal. Hard copies of the drawing may be made on
a dot matrix plotter or on an incremental plotter. The user can
interact with the program through the use of interactive graphics I/0
devices. The Adage computer also has a good Fortran IV compiler
which produces efficient code, and an easy-to-use display text editor.

A major problem encountered in writing the program was the limited
amount of available main core memory. The Adage has 16k of 30-bit words
of core memory, of which about 12k is available to the user. It
decided to make the program entirely core resident for minimum execu-
tion time. This is important to facilitate interactive graphic design.

The entire data structure of the program is stored in seve
common blocks and divided into two parts: vantage-point-independent
data and vantage-point-dependent data. The vantage-point-dependent
data is stored in three buffers of the Adage operating system AMOGS/2.5.

The three buffers are available to the user when the computer does not

orm any disk, t or printer/plotter I/0 orerations. This saved
erform an sk, tape or print plotter O operations This saved
about 2k of user core memory. Another saving of about 1.2k of memory

- 38 -

The vantage-point coordinates are computed from sampled values of

either the joystick or three variable-control dials. An object des-.

cription, called a model, is permanently stored in a disk file and

entered into the program by a keyboard command. This allows the user

to specify interactively a scene and a vantage point. A complete

guide to running PDRAW on an Adage computer is available in the form

of a User Bulletin [6].

T.2 Execution Time

The execution time of hidden~line removal increases with the

complexity of the scene. For a simple scene, consisting of a single

convex polyhedron, the execution time, including the time spent by

refreshing the CRT, is about 50 ms. A model of a cube can "fo

" "

movements of the joystick in "real

the execution time increases to several seconds. In or

for display lists were partitioned into two parts. Whi

part are being displayed, the program computes new disp

the other part of the display buffers. When the progranm

removal calculations, the display processor is switched

new lists.

T.3 Description of Interactive PDRAW Programs

7.3.1 Program PDRAW

The main program in the interactive version
ent from the main program in the batch version. This p

funetion switches and branches to various sections

ct
= 3
D

der

1

time. For more complicated sc

T v

- 39 -

depression of one of them. It also samples the variable control dials
and the joystick and computes the coordinates of the vantage point from
their values. PDRAW includes two image subprograms, PICTUREl and
PICTURE2, which alternate in displaying two sets of image lists. PDRAW
starts the modified display processor XGRAFX by a DISPLAY statement and
stops it by a call to NHALT which is an entry point into the display
processor.

T.3.2 Function ALINE

ALINE is a real junction which returns as its value the
y-axis intersection of an edge. It also returns the slope of the edge.
ALINE is called twice by ITEST to help in determining the intersection
of two edges. In the batch CDC 6600 version, this function is
inserted in-line in function ITEST; in this version of the program it
is made into an external functicn in order to save core memory.

T.3.3 Function CROSS

This is a real function which returns the magnitude o
cross-product of two three-dimensional vectors. It is called from 4
locations in function INTERS. The reasons for making CROSS into an
external function are the same as those for function ALINE.

7.3.4 Subroutine VECTOR

interactive version where

,J
e)
ot
o 3
(1]
™

This subroutine is called

calls to subroutine PLOT to draw a vector are made in the batch version.

visible or invisible vectors.

- B0~

7.4 Description of Interactive System Programs

In this section three interactive System programs required to run
PDRAW on an ADAGE AGT-30 computer are described.

7.4.1 Program XGRAFX

This program is a simplified version of the graphical pro-
cessor GRAFX. XGRAFX displays only lists of two-dimensional vectors and,
except for scaling, does not perform any image transformations. These

simplifications save about 1.2k of user main memory. The display pro-

cessor has an entry point NHALT which stops the display of an imag

(b

It is called before a call to INPUTM to stop the display while INPUTM is
reading from a disk.

7.4.2 Program XPUNCHX

This program punches the currently displayed image in =a
special format on peper tape via the fast paper tape punch. The paper
tape then may be used to plot the image on an incremental digital

plotter connected to a PDP-8 computer. The PDP-8 plotting program is

m
b #)

called PLOT.

3

IME

(53}

.4.3 Function

This function measures elapsed execution time. There are

two entry points in TIMER called TIMERON and TIMEROFF.

T.5 The Data Structure

T.5.1 Common Block OUTPUT

This common block, used only in the Adage interactive

- v

version, contains lists of all the visible and hidden vectors generated

by the program. Tt

e— i ek 9 AGEREA 408 - Sy S A F A

Y R

on the Adage CRT by the modified display processor XGRAFX.

IVIPNT is a pointer to the next available location
in a list of visible vectors.

IHIPNT is a pointer to the next available location
in a list of hidden vectors.

These two pointers are initialized by program PDRAW
and incremented in subroutine VECTOR.

IVISIBLE (MAXVI) is an array containing two lists of
visible vectors.

IHIDDEN(MAXHI) is an array containing two lists of
hidden vectors.

Arrays IVISIBLE and IHIDDEN are each partitioned into
two parts; while lists in one part of the arrays
are being displayed, the program computes new
lists into the other part of the arrays and then

The

1]

switches the display to these new list
visible vectors are displayed as solid lines, the
hidden vectors can be displayed as dashed lines.

T.5.2 Notes to the Adaga Data Structure

H

]
4]
[
'L’
jo)
b=
'l
ct
(0]
ct
)
]
b
b
o
Ja
(1]
e
(&)
3
|
(99)
O
b
i
‘g
i
®
=]
[
[
ot
(]
ot
Y
)
i

The following not

¥

L

l. The arrays desc
point dependent information are put into three common

blocks MONBUFFER1, MONBUFFER2, and MONBUFFER3. These

memory.

- 2 -

number

number

number

number

of

of

of

blocks

objects)
faces)
edges * 2)

vertices + 1)

size of edge inter-

Slze

lists)

-
ol

visible vector

hidden vector

2. The arrays in the data structure common

are dimensioned as follows:

MAXM 10 (maximum

MAXF 50 (maximum

MAXE 200 (maximum

MAXV 50 (maximum

MAXS 20 (maximum

section

MAXVI 300 (maximum

display

MAXHI 200 (maximum

display
3. The subroutine TRANS scales

picture plane (array

order to make th
CRT. The point

and V2D(MAXV,2)

4. The computational tolerances in EPS1,
in common block PARAMS are set to O
0.000005, respectively

S. SCALE in common block PARAMS is set
used in this versiocn

6. DASHED in common block PARAMS is use

main program.

em

atc

suitable for display on

Yinfinite"

down all vertices

in the

V2D) to (+1,-1) square in

. - fa e \
stored in V2D (MAXV,1

L=l
"
w
il

=

PDRAW

| | l I [

SETUP INPUTM PRECOM REMOVE VECTOR GRAFX XPUNCHX
NHALT

l

TIMER
TIMERON

el SEEs
TIMEROFT

CLASS IORDER LOCATE ECTOR MRANGE

INFACE

st oty
COLECT EMIT

TR
[l VLU LAUn

Endtyy s

ITEST INTERS

e
ALINE ROS

Figure T.1 The connections of PDRAW routines in the

ADAGE interactive version.

—

o A

8. CONCLUSION

A program implementing the Loutrel hidden-line algorithm has been
written and tested on a CDC 6600 in a batch version and on an Adage
AGT-30 in an interactive version. The program was extensively tested
on both ccmputers which, however, does not guarantee the absence of
any remaining bugs.)

Some of the improvements and extensions which may be made to the
program are the following.

In an implementation of the interactive version of the progr

B
0
s]

a computer with a larger main memory further improvements may be made

to the algorithm as suggested in [4]., The problem considered is: given

we would take advantage of the similarities between successive frames.

has the same intersections with other edges in both scenes. The two

scenes, however, are not equivalent

1 + 4 A 3 & 3 - +3Ana Tra w4 Q 3 M ¢ 7% s ~f Sha o o~

vertices and edge 1lntersections irom rFig. oL ine iew O cile scene

3] 8 % 3= ~+ +ornaloci lﬂ. sauivalent to *he views of the scene

in Mig. O.3 1s not topologically ecuivalent tTO ne views 0Ol e scen

v B4 Q 1 and Fig Q » and we need o re=anply v + m ™ &

- ‘-A_’. Ve e Ve ‘ala we UETd - YLy - v hahis ® e
A | s £ aant]n 5 - Y1 " T D WMAaE Cyopima e

metnod would signiiicantly reduce tne executlion ine 9 e 3

and should be in an interactiv rersion wnere 1 > Xxecud n

Lima s annaidered +o ke imoortant

P e - MO L LWTL T v = -~ . - .

a scene

aw of

4

A 1 St

I

Other improvements may include the shading of surfaces and drawing
the scenes on gray-level display devices. The program could be
extended to allow a vantage point to be "inside" a scene, that is
inside an object or between objects.

In other implementations of this program, subroutines SETUP, INPUTM
and PRECOM may be made into overlays, which would save space for the

data structure.

152

2%

3.

L.

5.

Loutrel, P, P., "A

Loutrel, B. P., '"A

Sutherland, I. E., Sproull, R. F.

Lavin, M. A., "An Application of

Potmesil, M.,

Computer-Drawn

REFERENCES

Solution to the Hidden~L

Polyhedra," IEEE

t=1

ine

Transactions on

Problem for

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>