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Abs trac t

We state a duality theorem for disjunctive progranining,

which generalizes to this class of problems the corresponding

result for linear programeing.
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A NOTE ON

DUALITY IN DISJUNCTIVE PROC RA}IMINC

by

Egon Salas

1. Introduction.

A disjunctive programeing problem is a linear progranming problem with

disjunctive constraints . Mixed integer programs and many other nonconvex

progranmitng problems can be stated in this form. One advantage of this

fonm3latton is that it yields a variety of cutting p lane s with desirable

properties (see Refs . 1,... ,4; and , for an early version, 5). Another one

is that it leads to nice theoretical characterizations : a disjunctive program

can be shovn to be equivalent to a linear program; the fami ly of a l l  val id

inequalities can be described in terms of a scaled polar set; the facets of

the convex hull of feasible points are the extreme points or extreme ha l f -

lines of this polar set; for a large family of disjunctive programs (which

includes the zero-one *ixed integer program , the linea r coinplemnentarity prob-

lem and other familiar models) , the convex hull of f easib le points can be

generated sequentially , imposing the disjunctions of a conjunctive normal

form one by one (see Ref . 6) .

In this note we state a duality theorem for disjunctive programs ,

which generalizes to this class of problem s the duality theorem of linea r

programing.
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2. The Duality Theorem.

Consider the disjunctive program

mm cx

> bh

1~Q{ x > 0  
}

where A)~ is a matrix and b1’ a vector, ‘# hcQ. The constraint set of (P) requires
x to satisfy at least one of the IQI bracketed systems of inequalities .

We define the 4~j~ of (P) to be the problem

v — max v

hbh < O

hsQ U
h

A
h

~~~~C

it 
~

The cons t~aj,~ set of (D) requires each u
1
~, haQ, to sa tisf y th e correspond ing

bracketed system, and w to satisfy each of them.

Let

X [z$A 1’x~~~b1’, x~~~o3 Xh
_ fX I AhX~~~ O , X � 0J ;

Uh 
- Cu

lt 
~~~~ ~ c, u

1
~ ~ oj , 

~
1
1’ 

- (u”~ u
1’A1’ < ~~ , 

~h 
~ oJ .

Further, let

- (heQixit ,~ 0) , - (heQiub #

St
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We viii assume the following

Reaulari ty condition:

(Q* ~ O, Q\Q** # 0)  ~ Q*\Q** ~
i.e., if (P) is fusible and (D) is infeasible , then there exists hcQ such that

‘
4 0. U

1’ 
- 0.

Theorem . Assume that (P) and (0) satisfy the regularity condition .

Then exactly one of the following two situations holds.

1. Both problems are feasible; each has an optimal solution and

z — w .
0 0

2. One of the problems is infeasible; the other one either is

infeasible or has no finite optimum.

Proof. (i) Assume that both (P) and (D) are feasible. If (P) has no

finite minimum, then there exists heQ such that ‘4 0 :tnd x C such

that cx < 0. But then Ult — 0, i.e., (D) is infeasible ; a contradiction .

Thus (F) has an optimal solution, say x. Then the inequality cx ~ z

is a consequence of the cons traint set of (P) ; i.e., x t X.~ implies cx

~ haQ. But then for all haQ*, there exists u”cUh such that u
1’b~

’ ‘ z .

Further, since (D) is feasible, for each hcQ\Q* there exists and

since - 0 (for hsQ\q*) , there al so exists u $ Uh such that ~~b
)l 

~~
.

~ heQ\Q*. But then, defining

— + ?~~
‘, hsQ\Q*

f or )~ sufficiently large, u
h
(k)sUh, u

t
~(.)b

1’ ‘> z0, ~ hsQ\Q*.

Hence for all heQ , there exist vectors ~~ satisfyi ng the constraints

of (D) for v — To show that this is the maximal value of v, we note

that since is optima l for (F), there exists hsQ such tha t

p
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But then by linear programing duality,

— h h  hcx = maxju b ~u €U1’
)

n ax [w~w - uhbh 0, u’
~
’eu

h)

h h  1’max[w l (w - u b 0, u CU
1’
))

hSQ

i.e., w z , and hence the maximum value of w is w — z
~~~~~0 0 0

(ii) Assume that at least one of (P) and (D) is infeasible. If (P)

is infeasible , X~ — 0 , ~ hcQ; hence fo r all hsQ, there exists such

-4~ 1’t h a t u b  ~ 0.

If (D) is infeasible , we are done. Otherwise, for each h€Q there

exists ucU1’. But then defining

h ~h 
—in

u (A) =u +X u  , h~Q,

hcQ , for all X ~ 0, and since ~~b
h 

0, S h€Q, w can be made

arbitrarily large by increasing X; i.e., (D) has no finite optimum .

Conversel y, if (0) is infeasible , then either (P) is infeasible and

we are done, or else, from the regularity condition , Q*\Q** ‘4 0; and for
~~** there taxi st X C ~m nd ,c ~ X SU h that cx 0. But tht n

is a feasible solution to (P) for any ~& 0, and since cx ~ 0, z can be

made arbitrar ily small by increasing ~; i.e., (P) has no finite optimum.

Q.E.D.
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3. Discussion.

The above theorem asSerts that either situation 1 or sft~iat1o n ~ hold s

for (P) and (D) if the regularity condition is sst1sfied .~ The following

Corollary shows that the concdtion is not only sufficient but also necessary.

Corollary: If the regularity condition does not hold , then if (P) is

feasible and (0) is infeasible , (P) has a finite minimum (i.e., there is a

“duality gap”).

Proof. Let (P) be feasible , (0) infea sIble , and Q*’\Q** ‘- 0, I.e.,

for every hcQ*, let tJ
1’ ‘4 

0. Then for each heO*, min(cxlx s x.~} is finite ,

hence (P) has a finite minimum. Q.E.D.

Remark. The theorem remains true if some of the variables of (P)

[of (D)] are unconstrained , and the corresponding constraints of (D) (of (P)]

are equalities.

The regularity cDndition can be expected to hold in all but some

rather peculiar situations . In linear programming duality, the case when

both the prima l and the dual problem is infeasible only occurs for problems

whose coefficient matrix A has the rathe r special property that there exists

x ‘4 0, u ‘4 0, satisfying the homogeneous system
A x > 0  , x~~~0

uA~~~0 ,

(see reference 7 for a discussion of this and some equivalent conditions). In

this context , our regularity condition requires that , if the primal problem

is feasible and the dual is infeasible , then at least one of the matrices

A’) wht ’sc~ issoc i~iu’d s~’ts tt
h 

nrc infe asibl e , ~htnild not, have the above

mentioned special property.

Though most problems satisfy this requirement, nevertheless there

are situations when the regularity condition breaks down, as illustrated by

the following example.
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Consider the disjunctive program

mm -x
1—2x2

~x1+x2 ~ 
0 -x1+x2 2~: ~

‘P) -x
1-x2 ~ -2 V x1

-x
2 
> 1

x 1,x2 
-
~~ 0 x1,x2 > 0

and its dual

max w

1w +2u ‘~ 0

1 1
-U

1
- U

2 
< -l

1 1(D) u1- u 2 -2

w -u
2
< 0

2 2-u 
~“2 — 

-l

2 2u -u2 < -2

u~ 0, i = 1,2; k = 1,2

The prima l prob lem (P) has an optimal solution x = (0,2), with cx = -4;

whereas the dual problem (D) is infeasible . This is due to the fact that

Q\Q** [2) and X2 ~ 0, U2 = 0, i.e., the regularity condition is violated .

Here

1 2 ‘ 2  ~ 1 2 ~ -l

U2 = 1 U C R+ 
u~-u~~< -2
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The duality theorem discussed in this paper can be used to derive

strong lower bounds on the value of z~, in the context of a branch and

bound procedure. Th is is best done by using an appropriate relaxation of (P).

For instance , in the case of a zero-one program the relaxation may consist

of considering only one or two of the disjunctions x . = 0 or 1, the locally

most relevant ones. In that case the linear program (D) is of manageable

size; furthermore , (D) need not be solved comp letel y, any feasible solution

to it provides a valid lower bound on the value of z0.

Another potential use is the derivation of strong cutting planes .

I f (w ,u) is any feasible solution to (D) and a~ , jaN, are the columns of

A
h
, hcQ , then

E (max u a ,)x > w
jaN hQ* ~

is a valid cutting plane for (P) (see ref. 2).
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