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1. INTRODUCTION

| 77 R SR

- the survival times of N(> 1) items under life-

N'
testing, be independent random variables (rv) with continuous distribution

functions (df) F respectively, all defined on the real line

l""’PN’

(-2,@). In a life-testing problem, the smallest observation comes first,
the second smallest next, and so on, until the largest one emerges last.

Thus, the observable random variables can be represented as

(1.1} {(ZNI’QNI)""’(ZNN’QNN)}

is the j-th smallest observation among X, ,...,X

where 2 1’ (1 <j<N) and

Nj N

(1.2) Z.: = X v ROF J3% Xoo.i N

by virtue of the assumed continuity of the Fi' ties among the Xi (and

Z

hence, the uNi) may be neglected, in probability, so that the QN are
1

uniquely (in probability) defined by (1.2) and (QNI""'QNN) represents

a permutation of (1,...,N). Since a complete collection of (1.1) demands

-

the span of the experimentation until INN

is observed, while practical
considerations often set time and cost limitations on the duration of

cxperimentation, the experiment may be terminated at the r-th failure

-

where

Nr’
{1.3) r = [Np] +1 for some 0<pc<l

([s] being the largest integer contained in s). Thus, here, the obser-
vable random variables are

s 4 S

(r)
Z N - (QNI,.."QNT)

(1.4) 2y

= (2 and Q

NLP e eNy)




Ak

|We also know the complementary set Q(N) (r)

Q 'gN , but without any idea

of the order in which the elements do appear.] For testing suitable

statistical hypotheses concerning the df's F_,...,F a terminal test

1’ L Nl
(r) (r)

N QN ) is termed a censored test; we denote the corre-

based on (E
sponding test statistic by TNr'
In a progressive censoring scheme (PCS), the experiment is moni-
tored from the very beginning with the objective of an early termination
(prior to ZNr) whenever statistically feasible, i.e., one observes
TNk at each failure time ZNk (l<k<r), and, if for some k (s r), TNk
provocates a clear statistical decision in favor of one of the hypotheses,
cxperimentation is terminated at that time-point; if no such k(< r) exists,
the experimentation is stopped at the r-th failure er along with an appro-

priate statistical decision. Thus, by constitution, a PCS test is based on

the entire partial sequence
(k) () B e
=z < <
(1.5) {uN QN Sk,

and is time-sequential in nature. Since the updated sequence {TNk’
l<k<r} involves dependent random clements and the PCS involves repeated
testing on these dependent statistics, statistical analysis of such a pro-
blem, often, becomes complicated. In this context, suitable invariance

principles for | 1<k<r} provide us with convenient tools for formu-

Tk
lating a PCS test and studying its (asymptotic) properties.

In the context of nomparmetric life testing, Chatterjee and Sen (1973)
have studied PCS tests based on a general class of linear rank statistics;

the theory rests on an invariance principle for PCS linear rank statistics.

For the case of FI B L ex B FV = F involving an unknown paramcter 0 (form
)




of F assumed to be specified), Sen (1976) has constructed PCS tests for
HQ: 6 =00 VS, Hl: 8 # (or > or <) 00 based on PCSLR (likelihood ratio-)
statistics; here also, the theory is based on an invariance principle for
the PCSLR. The object of the present investigation is to focus on a

general class of location, scale and regression models where the PCPLR

statistics yield suitable quantile processes (QP) and to develop suitable

invariance principles for such PCQP's. These models are introduced in
Section 2 and the corresponding PCSLR statistics are derived and incor-
porated in the construction of appropriate PCQP's. By nature, such a PCQP
involves a partial sequence of linear combinations of functions of order
statistics with stochastic coefficients depending on the various censoring
stages. Invariance principles for the PCQP are studied in Section 3. The
last section deals with some application of the main theory to some time-

sequential tests.

2. A CLASS OF PCQP'S

Let O be an open interval containing 0 and let {f(x;8), 6¢0} be
a family of absolutely continuous probability density functions (pdf), and

for every f: - ®» < x < ®» , let us denote by

g(x) = -(3/96)1og f(X;O)lO
(2.1) and

G(x) = ll-F(x;O)]'If g(2)dF (x;0)
X

X
where F(x;0) = J f(z;0)dz. We conceive of the model where the df

~ 00




admits of the pdf fi and

(2.2) £ (x) = Hx;A&iE&n ., rwmfydon . ASsish ,

where ¢ .,c, are given constants (not all equal), EN=N-12?=1ci and

17"

A is an unknown parameter. We intend to test

N

(2.3) HO: A=0 vs. Hl: Az (or > or <) 0 .

Let us also denote by

(2.4) ci . X?=1(°i'—ﬁ) and cx. = C&l(ci-EN) L deisH .
so that ZN c*. =0 and ZN fic® ')2=1 Then, the likelihood function for
: i=1°Ni i=1"'"Ni : ’
(erk), Qrgk)) is given by
k) k), 2
(2.5) by 62 s T d. £ T G-t 12,3}
Bk o L T T T

k N
= | (2.5 e, <€)} | | [1-F(2y:8lc, =-¢.3)]
sl W Qo dakel Nk " Qy; N

Simple computations leads us to

% Lot (k) (k)
&) Tk = Sx {(B/BA)1°3 Ly kCn 0 W )|A=0}
k —
= § ef, [8(Z) -6(Z,)], k= 1,...,N
oy NQy Ni Nk
and TN0=0. Note that

N
e - <K (4 = C y
' ® 2i=1 ‘NQNig(“Ni) Zi=1 cni8(;) -

ki) (k)

Thus, the LMP (locally most powerful) test statistic based on (ZN : QN

)




-4~

is and in the setup of Progressive censoring, the sequence

rNk’
(

TNk; 0<k<rl relates to a sequence of linear combinations of functions

of order stutistics with the coefficients {c* } all stochastic in nature.

NQ,,.
Ni
By reference to Hajek and Sidak (1967, pp. 70-71), we may remark that the

model (2.2) includes as special cases, the classical two-sample location
and scal models as well as the so called regression model in location and
scale

We are primarily concerned here with weak convergence of suitable sto-

chastic processes constructed from the partial sequence { 0<k<r}

Tk

where r satisfies (1.3). In statistical applications, often, we face

some related PCQP's which we pose below.

00
Note that under the usual Cramér-regularity conditions, I g(x)dF(x;0) =0,

so that by (2.1)

X
(2.8) G(x) = -{I—F(x;())}_lf g(z)dF(z;0), - ® < x <,

-0
Let now u(t) be equal to 1 or 0 according as t is =2 or <« 0, and
let

; -1¢N
(2.9) Sy(x) = N Zizlu(x-xi) , - ®<x<w

be the empirical df. We define

X
-{I-SN(x)}-lj_wg(x)dSN(x) . <L s

(2.10) ﬁ&(x) =
g(ZNN) 5 X 2ZNN .

oy N s ” ‘: 7 ~ . 5 P
Then, in (2.6), we replace h(-nk) by CN(ZNk), and obtain a reclated

sequence

o




k -
PN S * _ -
(2.11) Tr 2i=1 e i[g(ZNi) GN(ZNR)] , l=sk=sN-1

3 e k =N .
Note that, one can rewrite T;k (1 <ks<N-1) as
k ) 1 ¢k
5 ok * 4
(2.12) Nk = Liap © i[g‘ZN') * Nk Lieg 8(Zy)]

k - 1 k
= ¥, . (L.} e =3 cx ],
1=1 Ni NQNi N-k “a=1 NQNa
so that it is a linear combination of a function of order statistics with
stochastic coefficents depending on the censoring stage.

We conclude this section with the asymptotic stochastic equivalence

of the two sequences {T O<k<r} and (T 0<k<r}. We specifically

. i .
Nk’ Nk’
provide the proof for the null hypothesis situation and we shall see in

-

Section 3 that the conclusion remains true for contiguous alternatives.

We denote by Fo(x) = F(x;0) and consider first the following.

Lemma 2.1. Let {dNi’ 1<i<N; N<1} be a triangular array of recal numbers

satisfying

3 13 N o -
(2.13) Lieg G =0 ad ], dy =1

Also, let q = {q(t): 0<t<1l} be a continuous, non-negative, U-shaped and

square integrable function inside 1= [0,1]. Finally, let Q =(Ql,...,QN)

takes on each permutation of (1,...,N) with equal probability (N!)-]. Then

: k \ L,
(2.14) v{ mAxqk/N)| Yd |21t < J q-(t)dt .
1<k<N-1 i=1 NQ i "




Proof. Let PV denote the uniform probability measure over the set of

N!  permutations of (1,...,N). Then, h[dNQiIPN] = 0 and

2,15 2id.. 4. [P
(2.15)  E( NG, NQJ.I N L b 1 b b
N(N-1) Zoa=3=1dwmdws i1

Thus, if we let

- 3 s -1 k < <
(2.16) Uy = (N-K) Zi=ldNQi 3 lzkaN-1 ,
we have
: - 2 o = |
(2.17) [;[uNijN]_o and E[UNk}PN]-k{N(N—l)(N-k)} :
Further, under PN,
(2.185  E[dy |Ql,...,Qk] = (N-k) 71 N-k+ldN
Qk+l J= QJ
=-(N-k)'lzk B =4 0<k<N-1
j=1 NQJ. Bk T *

and hence, by (2.16) and (2.18)

, L 1

(2.19) ] (. IQ],...,Qk] o [UNk + E{dNQk lQl,...,Qk}]
+1

=u for k=0,1,...,N-2 ,

Nk °

so that under P., {U

N Nk] is a martingale. Let

(2.20) hye = (N-K)a(k/N) , 1<k<N-1

Then, by the U-shapedness of q, there exists an a: 0<a<1, such that
(N-k)q(k/n) is E, in k for 1<k<Na. Hence, by the Chow (1960)

extension of the Hdjek-Rényi inequality,




it = A SR e

(2.21) p{l;]'('“‘g"N <(k/N)'Z

max
% 1} 5 P{1<k<Na hyge | U 2 1}

o S [Na] 2
"{hm””m) * Tey Mg [EU) - EQU 1”}

- {N‘lq(l/N) + TN Q2 ey vy 8-1) (N-k+1)1}

1

(7, N CER RSV I FC K SR e SR D a

a
sf qz(t)dt , as q 1is U-shaped .
0

. k N
Since Ei=ldNQi = -Zi=k+ldNQi’ 1<k<N-1, the case of Na<k<N-1 can be

reduced by reflection and an inequality for this complementary part be

obtained in the same manner. G ERDE

In particular, if we let q(t) = K-l, 0<t<1l where 0<K<« and choose

K large, we obtain from (2.14) that

max

60
(2.22) 1<k<N

k ; :
Zi=1dNQil = Op(l) , uniformly in N .

Note that if the Xi are i.i.d. with df FO, then by the Glivenko-

Cantelli Lemma, as N - o

max

ol
) 1<k<N

iFO(ZNi) -k/N| > 0 almost surely (a.s.) .

Lemma 2.2. If the X, are Totsds Weth df  F then under (1.3) and

O’
[lgldFy < =,
max |~ -1vk i g
2.24) Lekep|C(Zy) *+ (N-K) Zizlg(zm)ho a.s., as N~ .

Proof. First note that under the hypothesis of Lemma 2.2,




! 0-

j g(x)dSN(x) -[ g(x)dFU(x)‘ +f) a.8., 45 N =»> o

b -0 -0

the proof is straightforward [see, for example, Basu and Borwankar (1971)],

and hence, is omitted. Secondly, under (1,3), r/N -+ p; 0<p<l1,

max

(2.26) 1ekse

|{1~F0(2Nk)}N/(N-k)-l| *0 a.s., as N=>« ; by (2.23).

The rest of the proof follows from (2.8) and (2.24)-(2.26), OB D,

(with df F_), Q(N)°

Note that for i.i.d. X Xy 5 Q -(QNI""’QNN)

l!
takes on each permutation of (1,...,N) with equal probability 1/N! Thus,

by (2.6), (2.12), (2.22) and (2.24), we obtain that under Ho and (1.3)
5 max |, e
$2:27) lsksrerk rNkl
max |ck max |= 1 ¢k
- {1"“2? Zi=lcr“QNi'}{1z~kSr G2y * b8 (Oyg) }

> 0 , 1in probability .

With this results at our disposal, we are tempted to consider a more general

class of PCQP's and then to study invariance principles for this class, lead-

ing to similar results for {TNk} as special cases.

3. AN INVARIANCE PRINCIPLES FOR PCQP

Instead of considering PCQP's derivable from some PCSLR statistics,
we study here a broader class of PCQP's.
Let J={J(x), - ®< x <@} be absolutely continuous (on finite inter-

vals) and be a difference of two non-decreasing and square integrable (with




=17

respect to FO) functions, so that

(3.1) & = [ PR ) (< @)

- 00

Further, let {le""’dNN; N>1} be a triangular array of real numbers

satisfying the conditions:

=1 and e

2
Ni lsiiN,d

(|20 as Nee .

Finally, let {Eék), Qék), l<k<r}l and r be defined as in (1.3) and

(1.4), and let

6, k=0
k 1 ok
(3.3) L. =A% Mz J[d +——7)" d ] , 1<ks<N-1
Nk i=1 Ni NQNi N-k “a=1 NQNQ
g 1 N

Our primary concern is to develop an invariance principle for {L OiSIRiET ),

Nk’

and we consider first the case of the null hypothesis (H,) where the Xi

0

arc i.i.d.r.v with an absolutely continuous df FO' We denote the expecta-

tion and variance under “0 by E, and V_, respectively. Let

0 0
i . 2
(3.4) ANk = hO(LNk) o USRS NG,

and for every N(-r - 1), we consider a stochastic process Wy ={W“(t). te I}
(I=10,1]) by introducing a sequence of non-decreasing, right-continuous and

integer-valued functions {k,(t), t«1}, where

N
- = < . : } y y
B8 = ¢ x{ R+ (; 3 (% «
( . ) kN(t ) ma l\ Nk 5 N t l

and then letting




=2

: , ot
(3.6) Wy(t) = 8 L tel

r NkN(t)
Note that WN belongs to the D[0,1] space endowed with the Skorokhod
Jl—topology {for N=0,1, WN(t) =0, Vtel). Our primary concern is to

show that under suitable regularity condtions,

v

(3.7} WN

W , in the Jl—topology on D[0,1] ,

where W={W(t), t<I} 1is a standard Brownian motion in 1I.

For absolutely continuous F the a-quantile ga is defined (uni-

0)
quely) by

(3.8) FO(CQ) = g3 0<a<l
Let then
2 f;01 ) 1 ga 2
(3.9) W J JT(x)dF  (x) + (1-a) U J(x)dF (x)] ., GEa<l 3
o 0 _ 0
2- -

by (3.1]), v, <~ for every 0<a<1l. First, we consider the following.

Lemma 3.1. Under (3.1), (3.2) and H as N » o

0)

k o 2 2
(3.10) [ﬁuz[ > Eglly) * vy, ¥ 0<ac<l

Proof. Let QN be the set of all possible (N!) permutations of (1,...,N),

Then, under H

0’
(3.11) [ (Z(N) Q(N)) = IN £ (Bs) v Q(N)'
e N,NSN =N -i=10 N =N QN
and hence géN), g;N) are stochastically independent with g#N) assuming
cach permutation of (1,...,N) with the same probability (N!)_l. This

insures that for each k(=1,...,N), Qék)

is independent of E;N) (and




~15=

hence, of g;k)) when “0 holds. Thus, proceeding as in the proof of

Lemma 2.1, we obtain that

(3.12) Bl 1Z00) = Egllg) =0 , 1<ksN

(12 ) =E (k) (k)
A3) Eg(Ly) =E { Nklz } {v (Ly |gN )}
tofi) 3 0 e LL
Oy M0 " i M LT 57 e
N 2 k k 2
1 3 1
-~§ ]}E{XJ(Z )+ L M) }
[ N2 0N, &, NON-RY | 2,7 i
- Z

N Nk u
:=ﬁ__ { J (x)dS (x) +————[J J(x)dSN(xﬂ“} , by (2.9) and (3.2).

—
w

IIM"’

N
N
Wik

f—M

N-k

- 00

Now, Kk/N = a: 0<a<l => N/(N-k) + (1-a) " <o, and by (2.23)-(2.25),

£
Nk o
(3.14) I Jr(x)dSN(x) > J Jr(x)dFO(x) a.s., as N+ (r=1,2)
Finally, for »r=1,2 .,
2/r — 2/r
Nk r i r
(3.15) J J7(x)dsy (x) < J |J (x)IdSN(x)
-00 t.oo
-2 alem | 2
< JE(x)dsy (x) =N ZHJ (X,)

where under (3.1), N-12T=1J2(Xi) (being a reverse-martingale) is uni-

formly (in N) integrable. Hence, (3.10) follows from (3.13)-(3.15) and the

Dominated Covergence Theorem [cf. Loeve (1963, p. 124)]. Q.E.D
ﬁ(k) (k) ' R b (k) (k)
Let —B( QN be the o-field generated by (Z QN

and B&k =B(zéN), Qék) be the o-field generated by N(N (k‘

(ZN ), QN s | TOr

K=k,25000sN 5




{L B* ; 0<k<N} (and hence, {L B ; 0<k<N})

Lemma 3.2. Under H

0’ Nk’ "Nk’ Nk’ "Nk’
are martingales for every N(2 1).
Proof. Note that LNN=LNN-1’ while for k<N-2, by (3.2),
§ 1 kil 1 k
L Ly = ) 2 s Ld -— )d
Nk+l "Nk L2 TN l}l—k—IOFINQNa N-k ENQy
1 k+1
(3.16) +J(Zyy ;) ]d +o—0— 7 d
Nk+1 [NQNk+1 N-k-T 2 NG
k k
(N-k) 1 1
= e _Ig +— 3 d J(Z ) +=— ) J(Z,)] -
(N-k-1) [:NQNkH N-lcl=1 NQN(J[ Nk+1 N-ku=1 Na
Since, under HO, gb(lkﬂ) is independent of Z(k”), while as in (2.18),
k) 3
E [d |85 1=E_[d |g( 1= --x " 4 it follows from (3.16)
0 NQNk+l ~Nk 0 NQNk a=1 NQNa

and the above that

(3.17) EO[LNk+1 'LNk|B§k] =00l VoS kisN=2 .
Thus, EO[LN“I]B&k] = Ly » Y 0<k<N-2. Further by (3.17),
(3.18) E, Nk+l‘8r~.k] E {h [Lyke 1IB k”BNk

=EO{LNk|BNk}=LNk, VOo<k<N-2 . Q.E.D.

Lemma 3.3. Under (3.1), (3.2) and H_, k/N + a: 0<a<1 insures that

0’
k o 1 2 P
(3.19) ZS=0[.{(LNS+1 L |8} v, 8s N+e=,
Proof. Note that by (3.16) and the stochastic independence of Q(N) ~r5N),

T di

we have for 0<s<N-2,




~15-

9
Ns+1 ~ LNS) IBNS}

= 4 (N=s -6~ 2 N -~1._ N 2 "
Ao Yt e ]

1 S 112 (s)
ho{ I g4y ’NTE[ i=1J(‘Ni)] N } '

(3.20) E{(L

Now, by (3.1), for every n>0, there exists an ¢ >0, such that

&
(3.21) f |Junrubu)<n for r=1,2 .
" J N 2 1 N 2 _oN i
For s<Neg, we note that Xi=5+1[dNQNi “Nos Z€=s+ldNQN - < zi:S*IdNQNi

L LS Tt
zi=l N~ so that

- [Ne] . 2
(3.22) XS=0 b{(LNs+l -LNS) lBNS}

< lvINe] . 1 s 2,.(s) % -1
‘N[L.:O l'O{I}(ZNs'rl)*’N-s zs=1J(ZNi)] IzN HE (K )] 5

and proceeding as in (3.14)-(3.15), it can be shown on using (3.21) that the
right hand side of (3.22) can be made arbitrarily small, in probability

(when N » «),

Note that the conditional pdf of 2 given gés) is

Ns+1

. ¥ g N-s—l// . o N=SE P
(3.23) (N-s) £, (2) [1-F,(2) ] [l-FO(HNS)] v Iy S 2 3

o (S

It is easy to show that E[J(Z )IZy

] exists for all 0<s<N-1 [under
(3.1)] and further by the absolute continuity of J(x) (on finite intervals)

and the a.s. convergence of to 0 for every Ne<s<Na, a<l,

|:Ns _&s/Nl

it follows as in Theorem 3.1 of Sen (1961) that

) mux Y 2 = 2 > 3 £ -+
(3.24) . M,LJ(ZNS*I)|ANS] J(MNS)I 0 a.s., as N g

SIES =<
N
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Let us then denote by

, -1¢N ~l¢s
(3.25) U, = (N-s) ") . .d = -(N-s) ). .d , lss<N-1,
Ns s+l NQNi 1=1 NQNi
3 & B 1N 2 y
(3.26) Uyg = (N-5) st NQ . s»1,..,.N-1
Ni

It follows from (2.19) that {Uws’ B(Qés)); 1<s<N-1} 1is a martingale
when “0 holds and as in (2.14) and (2.26),

S max 7 =]

(3.27) staIUNs| Op(N ) for every 0<a<l,

Also, note that
2 (s)

(s) B@* 1)

~ o5 -l u
(3.27) BolUye BRG] = (N-s-1) " {(N-s) Uy - Egldy,
Ns+1
REPPRRETY | SO R Y. SR
= (N~.s-l) {(N-S)UNS N-s XGFS*ldNQNa!

=~ s < N-
UNS , l<s<N-2 .

Using the martingale property in (3.27) and the Kolmogorov inequality, we

obtain that under H for every €>0

0’

(3.28) p{ ™% IND. -1] >eb < e %8 (NU,, -1}
5 1<s<k ! "“Ns g 0" UNK ’
where
(3.29) €, M0, ~1)" =B dat 50 0t :
i ‘0" Nk " UOIN-k “s=k+1 NQy, N

ON® K(N-K) N @2 L2

B NIN_1 Lia v

(N-k)2 NO-T) Li=1tNi TN

= [Nk/(N—l)(N-k)l{ZLd;i ) r:’}

2 2 1
2 [N"/‘N'”(N""”{(ll:?;ndNi]iilde * N’}

+0 by (3.2) and the fact that k/N+a: 0<a<l, as N » @ ,




1

Thus, from (3.28) and (3.29), we have under HO’

max I ot

AT 1
(3.30) 1<s<k UNS —NI

= 0. f1) ., ‘as N ¥=o
P
From (3.20) through (3.30), we obtain that for k/n » a: 0<a<l,

g 2
(3.31) 25=1b(){(LN5+]-LNs) lBNS}

s 1 ¢S 2
=N [§s=l{J(st) ey izlJ(ZNi)}:][1+op(1)]

=N-l[zt:l.lz(ZNs)(N-s+l)/(N-s) "

L3 -1 ok 2
izlizlJ(zNi)J(zNj)((qun +§:S=ivj(N-s) ):][l+op(l)]
ohivk .2 1 [ck 2 3
A+ el [ o7 Hieo,0)
Ink - N Ink 2
- f J“(x)dSN(s)+N~_—EI J(x)dS, (x) {l+op(l)},
di
while
3 B ALE 18 =B R T 2 1 . .2 .
(3.32) E( NII hio? = Eglly) =N (8-1) § Bl (4) 70 as Noe.

Hence, by (2.23) and (3.14), the right hand side of (3.31) converges (in

2
probability) to v&, as N » o and the proof of the lemma then follows

from (3.31) and (3.32). Bl

- &
Remark. Note that in (3.32), N IEOJ (ZNI) follows from the fact that
-1 P max -1 .
& 00 e < : :
k3] N "Bo? o) = i ¥ B Wyt
max -1

2
lejey N EgdT(X) 0, as No-we,

where the last step follows by standard arguments under (3.1).
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Let now 1(A) denote the indicator function of the set A.
Lemma 3.4. For every €°>0, k/N > a: 0<a<l, as N+

. A 2 %
(3.34) Zs=0L0“LNs+1 & LNs) I(“Ns&rl i LNsl @ )lBNs} 5 Ll

Proof. We breakup the sum into two subsets {s <Ne} and {Ne <s=<k}. Then,

by arguments similar to that in (3.22),

(3.35) Zifglﬁo{u Lys| > €18y}

2
Ns+1 'LNs) I(ILNs+1 = NsI

. vNe] 2
¥ zs,=o EO{(LN5+1 g LNs) lBNs} S0 *

Since J(x) 1is the difference of two non-decreasing, absolutely con-
tinuous and sequare integrable functions, it can be shown easily that for

every 0<e<a<l1, there exists a C=C(eg,a) (< ), such that

max S

1
(3.36) 13(Zygy) ‘Hiiﬂ“zm” <C a.s., as N+= ,

S:1ES =<a
N

On the other hand, by (3.2), for every QI\SN) € QN’

max 1 i ' max 1 N
(3.37) .- {]d +—)  d ja o] -2 ...d [}
1<i<N NQNi N-1 &s=1 NQNS 1€i<N NQNi N-1 ~s=j+1 NQNs

max |
< Z{KiledNiI[-*O as N > o |

Hence, for every C and €~ >0, there exists an integer N0(=NO(€',C)),

such that

(3.38) P{ S

1 S
el el DL |<e’/C}=1 , VN2N
s<N NQNs N-s &i=1 NQNi

0"

From (3.16), (3.36) and (3.38), it follows that for NzNO.

et

—— e R S i | i




2
L) 1L

k .
(3.39) 2s:[N{,I*‘th{(LN

LNs| >s‘)|BNS} Lo "

s+l Ns+] ~

and (3.34) follows from (3.35) and (3.39), 0L E.D.
We are now in a position to formulate and prove our main theorem of

this section.

Theorem 1. Under (1.3), (3.1) and (3.2), when the Xi are t.t.d.r.v with

an absolutely continuous df FO, (3.7) holds.

Proof. By virtuc of the martingale property of {LNk}, when ”0 holds, we
are in a position to use Theorem 2 of Scott (1973), and to prove the theorem,
all we need to show that
k(1)
2 -2¢ N R
(3.40) 5Nr§i=] VO[LNiIBNi-ll t, as N=»>o (0<t<1) ,

(3.41) &35F B Lo L. 3530l Jd>elB. 3B0 (¥ e>0)
= nrti=180! Vg “Engaad Pl i) Ni-1 '

where kN(t) and r are defined by (3.5) and (1.3), respectively. Now,
(3.41) follows directly from Lemmas 3.1 and 3.4 (where we note that (1.3)

insures that O<p=a<1). Since, by (3.4), (3.5) and Lemma 3.1,

e e a2 gl 2
(3.42) Nk () e

the proof of (3.40) follows from (3.42) and Lemma 3.3. QuE.D.

Remarks. The condition that J s the difference of two non-decreasing
functions, through quite general, can be dispensed at the cost of strngthen-
ing (3.1) to

(3.43) J IJ(X)ImdFO(x)<:m for some m>2

-0
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In that case, in Lemma 3.4, a Liapounoff-type condition can be obtained
(which implies (3.41), and the rest of the proof remains the same. Secondly,
by (1.3), we have limited ourselves to 0<p<1l. Though p may be arbitra-
rily close to 1, there are a few technical barriers for allowing p to be
equal to one. Note that vi may tend te «® as p > 1 (viz,, J(x]) =1,

¥ x = v§==p/(l—p)). If, however, we impose the additional condition [as

before (2.8)] that
00

(3.44) I J(x)dFO(x) =0,

-00

we obtain from (3.9) and (3.44) that for every 0<p<l1,

p (2
(3.45) v2=f 22 (x)dF, (x) + (1-p) ‘” 32 0dE. () |2
p 0 A 5
-00 p
k- .
f -Jz(x)dFO(waJz(x)dpo(x)=52 and ;T \,sﬂga
=00 p

Even so, wa(x)dSN(x) is not necessarily equal to 0; in fact, it is

O (N, Further, {. ™% 5%z 3} = g d MK 200 50 ), under (3.9)

P : T Ni<isn YUNi o\1sisN” “Ni = ~a
1.2

while under (3.9) and (3.44), EOUOOJ(x)dSN(x))2 = N "8°. Hence, it follows
- 00

from (3.13) that for every (fixed s(z21), as N > o

- G 2
) > 8% asTlet = (1as7he% > 6722

(3.46) E (L2 1

0" NN-s

This apparent anomaly can be straightened out with the help of (2.8) and
(2.10). Note that if g satisfies (3.1), then for every (fixed s(-1),
as N+ o,
L ZNN-S 1
G = = i ( = 5
(3.47) G(ZNN_S) op([N/S] ) while IJ g\x)dSN(x) Op(N )
-00

1
Thus, whereas (2.8) relates to a term (for x= ZNN-q] op([N/s]’), (2.10)




L L -
leads us to a term O ((N/s)N"°) =0 (N?/s), and hence, G(Z,,, ) and
p p NN-s

Gﬁ(ZNN—s) are of different (stochastic) orders of magnitude, and the

stochastically larger order of magnitude fro GN(Z ) pushes up the

NN-s

variance of LNN-S; in fact, here (2.24) and hence, (2.27) may not hold.

But, if s=s(N) be any (slowly varying) function with limN_’w s(N) =,

it can be shown that

2

NN-s(N))=52(1*1/S(N)+0(1))+6 as Noo |

(3.48) EO(L

Thus, as regards (2.27), we can proceed as follows. First, doing the
same line (of proof) as in Lemma 3.1 of Sen (1976), it can be shown that

under HO’

(3.49) { B 0<k <N} 1is a martingale .

Take Pak

while for n >0, arbitrarily small, on letting Ty = [N(1-n)], it can be

R g 2 s e 2 g
shown that LO(FN)«\)l and LO(TNrN)A’Vl—n’ so that by the Kolmogorov-
inequality for martingales, for every ¢ >0,

(3.50) P{r prot, EL R >c} < e'z('rN - Ty, o
N N N
-2, 2 2
= € [vl -vl_n-+o(1)] :

which can be made smaller tahn any given &(>0) by choosing n(-0) siffi-

.
ciently small [and noting that as fng0= 0; by (3.4.5), 11mn$0vl_n= v]].

On the other hand, for rEr, = [N(1I-n)], n>0, we are in a position to use

2.27), so that the invariance principle for {T;k; 0<kcs rN} leads us to

the same for {° 0<k<r,}, and this along with (3.50) yields the desired

T
Nk N
result for the entire sequence {

Tyks 0<K <N}. In a similar manner, by the




~

martingale property (Lemma 3.2) of {LNk} and (3.48), for any slowly vary-

ing {s(N)}, we can replace {LNk; 0<k<N-s(N)} by an appropriate

le; 0<k<=N(l-n)} (n>0) and apply our Theorem 1. In view of the fact

that to(L

{L

2

2 2
AN _LNN~S(N)) +87, (not to 0), we are, however, unable to

replace N-s(N) by N in this case, In actual practice, PCS mostly
involves a terminal censoring number (r) corresponding to a value of
p quite below 1, and hence, this technicality is not of much concern
to us.

Let us now proceed on to the non-null case. We shall confine our-
selves to local (contiguous) alternatives where paraellel results can be
derived and these will be incorporated in the next section for the study
of asymptotic power of some PCS tests based on such PCQP's. Consider a

triangular array {XNi’ 1<i<N; N<1} of (row-wise) independent rv's

and assume that XNi has an absolutely continuous df FNi with an

absolutely continuous pdf fNi and
= . ~ % - 00 1 =
3.5k} fNi(x) F(x; ALNi) : Sx<e L =L idemN s

where f, A and Cﬁi are all defined as in the beginning of Section 2.

Note that, in (3.51), A 1is regarded as fixed while by (2.4), the Cﬁi

all go to 0 as N - «. We denote such a sequence of alternative hypo-

theses by {HN}, while H, relates to A=0. Our concern is to study

the weak convergence of {WN}, defined by (3.5)-(3.6), when {HN} hold.

We define the dNi as in (3.2), the cﬁi as in (2.4), and assume

that they satisfy the limits

3 N ~k = AR & " & max
(3.52) 6 LT T R B BT P

iN IC§i|+();




in fact, for d . =cr., 1<i<N, p*=1 (by (2.4)), For every tc[0,1]

and 0<p<1l, we define

(3.53) a(t,p) =max{a: vi < tvg} S T [

is P oin tlel0,1]

where vi is defined by (3.9). Note that vi(t,p)

2 2 2 = 3 = >
and Va(O,p) =0, va(l,p) —vp, so that a(0,p) =0 and a(l,p) =p. Here
also, we denote [F(x;0) and f(x;0) by F and f respectively, and

0 0’

g(x) and G(x) as in (2.1). Further, we define

X
(3.54) J*(x) = ll-FO(X)]'IJ JpIdEa ) , =< x<w]
£ =
(3.55) c(P)_ J J(X) g (X)dF _(x) - (1-a)'1J*(g )G(E ) tel
e Lt 0 o 20 i 3
s a=a(t,p)

We also assume that the pdf f(x;8) 1is absolutely continuous in
0{c®) for almost all x, (9/90)f(x;0) =fé(x;8) exists and converges to
fé(x;o) as 6 » 0, and further, defining g(x) as in Section 2 and let-

ting FO(X) =F(x;0), we assume that

Viml s g sl TS e i
(3.56) o»o[ [£7(x;0)1°[£(x,8)] dx = f g ()dF(x) <= .

-0 o0

Finally, let us denote by
(3.57) b= tuee) = aerelPy L een)

nad note that by assumptions made on J and g, u«C[{0,1] space. Then,

we have the following.

Theorem 2. Le! {WN} and W be defined as in (3.5)-(3.7), Then, under

(.53, (53.2), (3.52), (3.56) arnd {HNI e (3.51), a8 N+ o
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3.58 W 2 V in the J, -t 4 D[O,1
(3.58) N W W, in the J -topology on [0,1]
Do ) ) * . S (N) (N).
Proof. Let lN and PN be respectively the joint df of (ZN ' QN )
when llO (1.e. Fi= FO’ Yi=1) and ”N in (3.51) hold. Then, under

(3.2), (3.52) and the assumed regularity conditions on f, it can be
shown [cf. Hdjek and Siddk (1967, pp. 239-240)] that {Pﬁ} is conti-

quous to {PN}. For xe¢D[0,1] and &€ (0,1), let us define
(3.59) ws(x)= sup{min[|x(t)—x(s)|,|x(s)-x(u)|]: O0<u<<tzu+b<1}

Since, WN(O) =0, with probability 1, and, by Theorem 1, under HO,{WN}

is tight, it follows that
lim lim

(3.60) 840 N

P{wﬁ(WN) >e|HO}=0 oY e,
: . s Ny L(N)
Also, Wy is a mapping of (Z.™, Q)
the contiguity of {Pﬁ} to {PN} and (3.60), we conclude that

into the space D[0,1]. Hence, by

lim lim

(3:61) S¢0 N

P{wG(WN)>e|HN}=0  Neng ,

that is {WN} remains tight under {HN}. Thus, to prove (3.58), we nced to
establish only the convergence of the finite dimensional distributions of
{WN -u} to the corresponding ones of W.

For this purpose, for any k: k/N > a: 0<a<p<1l, we rewrite LNk as

N k o
P 1 7 <
(3.62) LNk:izldNi.r(xj)l(xigsz) -{ﬂizlJ(gNi)}{izldel(xisz)} ,

where [(A) stands for the indicator function of the set A. Defining ¢&

>

and J* as in (3.8) and (3.54), we introduce

N N
# = *
(3.63) - iZIdNiJ(Xi)I(Xi <g)+J ({,a)igldml(x] <€)
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e
If we write SV(EG) =N_lkN, then by (3.62), (3.63) and the defintion of
(k)
) ave
&N , we have
1 N N
(3.64) L* =1 +{J*(g } = 3 J(Z .)}{ ) d } !
Nk NkN a N'kNi=l N1 i1 NQNi

Note that N-lkw-* &, in probability, under ”0 [viz., (2.23)], so that

by the same technique as in Lemaa 2.2,

kN

. -1 P
(3.65) ‘J*(ga) - (N-k) Ei:)J(zNi)[ >0, under Hj .
kN
3 %¥. D) = =
while by (2.22), [Xi=l dNQNil Op(l), under H . Hence, the second
term on the right hand side of (3.64) converges in probability to 0 as
N + o when H holds. Further, by the martingale property (Lemma 3.2),

Q

we have by the Kolmogorov-inequality,

max
(3.66) P{quk_q‘<5N]LNq -LNk] >€lH0}-+0 as §+0 ,
2 )
and hence, noting that [N 1kN-—a[ g 0 and k/N » a: 0<a<l1l, we obtain
from the above that
P
(3.67) = L. +0 as N-»« when H, holds .

Nk ~ TNk 0

Again, by virtue of the contiguity of {Pa} to {PN} and (3.67), we con-

clude that as N > o

” * » 3
(3.68) Nk —LNk > 0 under {HN} as well
Thus, for finitely many k's, say, kls ot 3 km, m(>1) given, satis-
fying
(3.69) N"ll\i ra(t,p) , Ostp<.<t <l

| m
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to study the joint distribution of WN(tl),...,WN(tm), it suffices to

et T i * e = .
( consider the joint df of LNkl""’LNk . Since the LNk involve a sum over
independent random variables, by the classical (multivariate version of the)

central limit theorem, it follows that under (3.1), (3.2), (3.51), (3.52)

and (3.56), L* ] converges in law to a multivariate normal distri-

*
[LNk R 1
1 m

bution with mean vector [n(tl),...,u(tm)]vp and dispersion matrix

which conforms to the desired pattern. Q. E.D.

i
VP((tj Atl))j.le,...,m

Remarks. In (2.27), we have proved the stochastic equivalence of

bl T,
{1Nk’ 0<k<r} and {lNk’

we can proceed on the sameline as in (3.62)-(3.64) and use the contiguity

0<k<r} when HO and (1.3) hold. Here also,
of {Pg} to {PN} to show that (2.27) remains true when {HN} {in (3.51),
(3.52) and (3.56)] holds along with (1.3).

One could have extended the results of Sen (1976) to the current setup
of non-identically distributed rv's. However, that would have induced more
complications in the proof along with some extra (mild) regularity condi-
tions [viz., (2.8) and (3.36) of Sen (1976)]. The current approach pro-

vides an alternative and simple solution.

4. APPLICATIONS TO TIME-SEQUENTIAL TESTS BASED ON PCQP

A variety of rank based PCS tests is available in the literature,
Hajek (1963) has developed the asumptotic theory of Kolmogorov-Smirnov
(KS-) type tests for regression alternatives, and his results can be
adapted readily in a PCS provided we let r/N>1. The simple limiting

null distributions of these KS-type statistics [viz., (3) and (4) on
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page 189 of Hajek and Siddk (1967)] are not valid if r/N-+p; 0<p<1. How-
ever, some recent tabulations of the critical values of the truncated KS-
type tests by Koziol and Byar (1975) provides us with these (approximate)
critical values. In Chapters V and VI of Hdjek and Siddk (1967), some
related tests are also considered; in particular, the Rényi-type and Cramer-
von Mises type tests for regression alternatives deserve mention and they
can also be adapted in a PCS when we let r/N-+1. Again, for r/n + p:
0<p<1l, the limiting distributions of these statistics are no longer

very simple and cxtensive simulation studies are being made to provide
approximate critical values in such cases. Chatterjee and Sen (1976) have
studied the weak convergence of PC linear rank statistics to a Brownian
motion and their procedure can be used for any r/N+p: O0<p<1 with sim-
ple limiting null distribution theory provided by them, Usually, their
procedure is better than the Hajek's ones. All these procedures share

one common featurc: namely, they are based solely on the vector Q(r)

~N ’

zér) of associated

disregarding any information contained in the vector
order statistics. Thus, it is quite intuitive to extract this information
and in Section 2, we have shown that a PCPLR statistics sequence relates to
PCQP's which again can be approximated by more convenient linear combina-
tions of functions of order statistics with stochastic coefficients. Thus,
in the same spirit as in Chatterjee and Sen (1973) and Sen (1976), we may
be interested in employing the process WN, defined by (3.5)-(3.6) and

use as a test-statistic

(4.1) MN = M(WN)

where M(x) =M(x(t): 0<t<1) 1is a suitable functional. For cxample, we
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may take the KS-type statsitics as
+_ sup _ max

(4.2) MN . Ostsle(t) 0<ksr Nk/vp g
i sup > max

(4.3) My Ostslle(t)I 0<k<r LNkl/vp

and obtain the limiting distributions of M; or MN with the aid of our

sup

Theorem 1 and the well known distributional results on 0<t<1W(t) or
Oi:EIIW(t)l. Theorem 2 provides us with the asymptotic power of such a

test. We may also consider other functional (such as the Rényi-type or
Cramér-von Mises type) of WN and purpose the same as test-statistics.
This leads us to the study of the asymptotic behavior of different func-
tionals of PCQP's with different {J}, and will be studied in a subse-

quent paper.
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