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PREFACE 

Under the sponsorship of the Tactical Technology Office of the 

Defense Advanced Research Projects Agency, The Rand Corporation has 

been engaged In analysis for and development of hydrodynamlc design 

criteria employing various concepts of boundary-layer control, Includ- 

ing shaping, suction, and heating. 

Stabilization of the laminar boundary layer over a horizontal 

axisymmetric body by heating may be upset by the buoyancy force induced 

by temperature differences.  Using analytical methods, this report con- 

siders the combined effects of variable viscosity and buoyancy force 

over a heated cylinder, as a preliminary step toward defining a region 

where heating is a favorable method of stabilizing the boundary layer. 

This report should be useful to hydrodynamiclsts, to designers of 

submersibles, and to others interested In applying fluid mechanics to 

the prediction and improvement of the performance of underwater 

vehicles. 

Other, related Rand publications Include: 

R-1752-ARPA/ONR, Low-Speed Bomdar'y-Layer- Transition Workshop 
William S. King, June 1975. 

R-1789-ARPA, Controlling  the Separation of Laminar Boundary 
Laiiers in Water:    Heating and Suction,   J. Aroesty and S. A. 
Berger, September 1975. 

R-]863-ARPA, The Effects of Wall Temperature ami Suction on 
Laminar Boundary-Layer Stability,  William S. King, April 1976. 

R-1866-ARPA, Hydrodyncunia Considerations in  the Design of Small 
Submersible   Vehicles   (U), C. Gazley, Jr., J. Aroesty, W. S. 
King, and E. R. Van Driest, April 1976 (Confidential). 

R-1898-ARPA, "e  " Stability Theory and Boundary-Layer Transition, 
S. A. Berger and J. Aroesty, in process. 

R-1907-ARPA, Buoyancy Cross-Flow Effects on  the Boundary Layer 
of a Heated Horizontal  Cylinder',  L. S. Yao and Ivan Catton, 
April 1976. 

I.un-Shin Yao is a member of Rand's research staff; Ivan Catton is 

an Associate Professor of Engineering at the University of California, 

Los Angeles, and a consultant to The Rand Corporation. 

^i^i^^j^i^dJ i^.j.ii—.^-^ i^^..^--.^-,^..-,^^-^—- . - ■■--. .-.. v. ---.-^-:.. ;...:.-..-.;.;..r-..'- ■.■•'.■.-■■:■ ä .-■ i ■c-^.:^>-,J\-.:A...,::^i:-\::.:-. -..-.,.;.-/.,, .■--.....,;...^.;.- . , . .. .,.-:...■ :::y:\:.^:^-\\.^;P:.J^:f^^-^,-\.^ 
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SUMMARY 

The stabilization of laminar boundary layers under realistic cir- 

cumstances requires attention to all those effects that could tilt the 

balance towards increased growth of disturbances.  One such effect, 

occurring in heated boundary layers in water, is due to buoyancy- 

induced cross flow.  A small cross flow is induced in an otherwise 

axially symmetric laminar boundary layer when a uniform horizontal 

stream flows along the inner or outer surface of a heated horizontal 

cylinder.  The magnitude of this cross flow depends on the ratio of 

the Grashof number to the square of the Reynolds number, based on the 

radius of the cylinder, and in its early stages grows linearly in the 
2 

downstream direction.  The governing parameter, £ = Gr/Re , is inde- 

pendent of viscosity and can be interpreted intuitively as the ratio 

of the heating-associated buoyancy force to the inertial force of the 

basic flow. 

Earlier analysis, performed for a constant property flow, indi- 

cated that the cross flow could reduce heat transfer and shear stress 

over the upper half of the cylinder (or the pipe), while increasing it 

over the bottom half.  More significantly, the cross-flow profiles were 

notoriously unstable, and their impact on hydrodynamic stability could 

be important, depending on the magnitude of E. 

The present work extends the analysis In our earlier study to in- 

clude the viscosity variation appropriate to water in the temperature 

range 40oF (40C) to 100°F (37.8°C).  The earliest effects of cross flow 

are studied and characterized by an expansion procedure in which the 

basic axially symmetric flow determines the leading term, the first 

corrections to axial velocity and temperature profiles are proportional 

to e(x/a)  cos tj), and the cross-flow component is proportional to 

e(x/a) sin $. 

The use of this expansion procedure bypasses the need for numer- 

ical calculation of three-dimensional boundary layers, provides solu- 

tions which are valid for realistic ranges of the parameters, and, 

because of their explicit  dependence on the cross-flow parameter, e. 

vmz***"* 

,ii;j;j;/,v_;L^;;^..^1l,^;j_1.^_....L-,>-..:..: '^...-t"^-'^'^.-'.'»-:!'.-..-.'.-■-... . ■--AL,3M$$\lii)?M >-:j:fc.j^ ::..,■■-:■ : ;.. ■..■.-.;!- .,. :,L ..: v■■■... ■ /.:.; .-■,!..A;,u:..vfe:.■ ./■.'..y--. .-■-!-::;:; 



-vi- 

can be later studied systematically for the effect on cross-flow 

stability of increas-ng the magnitude of £.  However, the cross-flow 

effect on the flow transition can be qualitatively assessed by the 

variation of the velocity gradient on the wall.  It has been demon- 

strated by Wazzan and Gazley* (see Fig. 7) that the critical Reynolds 

number can be correlated approximately with the velocity gradient on 

the wall.  The numerical results show that the variable-viscosity 

effect can increase the velocity gradient and, hence, stabilize the 

laminar boundary layer; the cross-flow effect will decrease the veloc- 

ity gradient and destabilize the laminar boundary layer over the upper 

half of the cylinder (or the pipe flow).  Also, the boundary beyond 

which the cross-flow effect can overwhelm the variable-viscosity 

effect has been determined. 

The ratio of the maximum cross-flow velocity to the free-stream 

velocity, u^, is about 3 x lo"3(AT/uoo) • x, where AT is in 0F, u^ is 

in ft/sec, and x is in ft. 

The analysis, which may easily be extended to larger values of 

e(x/a)2, is appropriate for estimating cross-flow effects for either 

external or internal flows and will be reported when it is finished. 

It is thus valid for describing the early stages of buoyancy-induced 

cross flow within a heated tube, where experiments are being conducted 

to verify the theoretical results. 

A. R. Wazzan and C. Gazley, Jr., "A Parametric Study of Boundary- 
Layer Stability and Transition for Falkner-Skan Wedge Flows," presenta- 
tion at Low-Spaed Boundanj-Uvjep Transition Workshop:     11,  held at The 
Rand Corporation, Santa Monica, California, September 13-15, 1976. 
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SYMBOLS 

a = radius of the cylinder 

b, c = constants, Eq. (5) 

f = nondimensional stream function, Eqs. (9), (10), and (11) 

F = similarity nondimensional stream function, Eqs. (14) 
and (15) 

g = similarity nondimensional temperature, Eqs. (10) and (11) 
2 

g = gravitational acceleration, Eq. (2) = 32.2 ft/sec 

G = similarity nondimensional temperature independent of (j), 

Eqs. (14) and (15) 

Gr = Grashof number, Eq. (2) 

n = index, Eq. (17) 

N, Nn, N = viscosity ratios, Eqs. (2) and (6) 

Nu = Nusselt number, Eq. (21) 

Pr = Prandtl number, Eq. (2) 

r = nondimensional coordinate normal to the wall 

r = radial coordinate 

Re = Reynolds number, Eq. (2) 

T = temperature 

u = axial velocity 

v = circumferential velocity 

w = radial velocity 

x = axial coordinate 

a = coefficient for variable viscosity 
-4  o  -1 

ß = thermal expansion coefficient = 0.8 x 10  [°F] 

Y = thermal diffusivity 

E = Gr/Re2, Eq. (2) 

n = r//2x, Blasius similarity variable, Eq. (9) 

6 = nondimensional temperature, Eq. (2) 

V = kinematic viscosity 

(j) = circumferential coordinate 

T  = x-directional shear stress 
rx 

"rcj) 
circumferential shear stress 

„.üSüJö'.ij 
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Subscrlpts 

0 = zeroth-order solution 

00 = zeroth order of zeroth-order solution 

01 = first order of zeroth-order solution 

1 = first-order solution 

10 = zeroth order of first-order solution 

11 = first order of first-order solution 

2 = first order cross-flow solution 

w = surface 

00 = free stream 

fc = forced convection 

Superscripts 

— = dimensional quantities 

' = derivative with respect to r) 

x = local quantities at location x 

,■....-,■■. ...;     ■■■■■■■■■.■■.■:■.::■■:.■■   :.::- ■:■-.  ..■.■. V - v ■//•^.1 ., ...:....■ ^'.V ^ /^^^^i 
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I.  INTRODUCTION 

Laminar flow control, as the means to achieve low-drag performance, 

requires the careful manipulation of boundary-layer velocity profiles. 

Body shaping, pressure gradient, and suction are classic methods for 

such boundary-layer control.    For submersible applications the 

temperature-dependent viscosity of water provides the mechanism by 

which appropriate velocity profiles can be maintained by wall heating. 

These velocity profiles, as in the other methodc, inhibit the amplifi- 

cation of two-dimensional Tollmein-Schlichting instability waves and 

thus retard boundary-layer transition until body shape and adverse 

pressure gradient force the separation of the laminar boundary layer. 

Suction and heating have similar effects on boundary-layer stability 

and transition, but the theoretical potential of suction for even f^M* 
(2) 

ther drag reduction by delaying laminar separation is greater. 

Historically, each method of boundary-layer control has had limi- 

tations, corresponding to the growth of disturbances associated with 

free-stream turbulence, surface roughness or waviness, noise, loss of 

suction effectiveness, or three-dimensionality.  Surface heating shares 

these possible limits on performance and has some limits which are 

unique to it alone. 

Temperature gradients in the boundary layer of a heated horizontal 

body result in buoyancy forces that induce small, steady, cross-flow 

velocities.  These in turn could distort the basic laminar axisymmetric 

velocity profiles into three-dimensional ones, which are considerably 
(3) less stable.  Yao and Catton   earlier examined the development of 

this steady, slightly three-dimensional laminar boundary layer on a 

heated longitudinal horizontal cylinder for the case of constant fluid 

properties.  Their results indicate that the cross flow can enhance the 

heat transfer and stabilize the boundary layer over the lower half of 

the cylinder, but it degrades heat transfer and destabilizes the flow 

over the upper half of the cylinder.  Since the boundary layer is very 

thin compared with the curvature of the cylinder, the transverse curva- 

ture effect can be neglected.  Also, the results can be applied to the 

entrance flow in a circular pipe. :; 

■■.^■.:...:.':.-■ ■:■•■■■ ;..-.'--:^.- j..::f,/-:..:u ■■■i..: ,■.■;■■■... ■iJj-J^>;;.,.:-^;^^:.:j.;:;,;.v.-..^;^w..y.,-:-'/v.-v^....K.-;--:.:,.-. ^,v .,. ■■,-:■■.■..■ ■■:.■■- :■  .. ■ • ./.,-■ ■;■■. -....:, :>:. -.vv.^-.ft.af;-:;..::-^.?....-/-.'. '^.it 



-2- 

The present paper extends that work to the realistic case of 

water, including the variable visco.-H ty effect.  Similarly, the results 

can be applied to the pipe flow near the entrance.  In this way the 

domain where cross-fL * effects may counterbalance the stabilizing 

variable viscosity effect may be established later by a more detailed 

three-dimensional stability analysis. 

The physical model chosen is a semi-infinite cylinder of radius 

a (or in a horizontal pipe with radius a), which is alignei with its 

axis parallel to a uniform flow and normal to the direction of gravity. 

The uniform flow is assumed to have a velocity u and temperature T 

The surface of the cylinder is heated to a constant temperature 
T ^Tw 

> Too^  For water flow in the range of 40oF (4.40C) and 100oF 

(37.80C), the principal departure from constant property flow is due 

to viscosity variation.  The thermal conductivity and specific heat 

do not vary appreciably in this range, and the most important phenomena, 

because of the gradient of viscosity, are quite well represented by 

the model in which k and c  are constant, and the variation of viscosity 

with temperature is preserved.  Since the density variation is small, 

the Boussinesq approximation is adopted, whicli treats the density as a 

constant in the equations of motion except for the buoyancy force term. 

The buoyancy cross flow is small in the leading-edge region of the 

cylinder and can be treated as a second-order effect.  Further down- 

stream, a distance of order a • Re/Gr2, the Initially small buoyancy 

cross flow becomes one of the dominant velocity components and can no 

longer be treated as a second-order effect.  The present analysis is 

valid under most practical circumstances, particularly when realistic 

magnitudes of L//e = Re/Gr2 =  u^/Vßg ATa are considered.  For example, 

the analysis should provide an accurate approximation to the cross 

flow in the region 0 - x < a//e = (ujyjßg  AT • /a), where x is in ft, 
uco is in ft/sec, AT is in deg F, and a is in ft. 

The ratio of the cross-flow component to the free-stream velocity 
-2 -3    2   — 

is 3g ATx/ir cos (f), or 3 x 10  (AT/u"") x x cos 0, in the same units. 

^jTj^t^i^fc^i^^wJft^iliii&Ä^UdiitaS.        ■ttähiMtä$^&Mtä&i&\&&j&iM> ..-:■■. ;...■;.■ ...v ,.-:^^- 
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II.  ANALYSIS 

The governing equations o f the flow with fluid of variable vis- 

cosity on a heated, longitudinal, horizontal cylinder are the Boussinesq 

boundary-layer equations.  In cylindrical coordinates, as shown in 

Fig. 1, they are 

9u  1 3(rw) , 1 3v = n 

9x  r 3r    r Y 

(la) 

u 9x + ^ 3* + W 3-  P. g-  ^ V 

3u 

3r 

(lb) 

9w . v 3w + - 9w = (gß AT) cos $  - ~~ ^ + ^ 
3w 

3x  r T 

- 3v  v 3v  - 
u — + — ^rr + w 

~-  - 3* 3x  r 

3r 

3^ 

3r 

Joo 3r  3r \ 3r 

= (gß AT) sin <t> 
1  ^ 4- in d) -   ^r + 

rp 
3(f) 

iL L  .9v 

3r \ 3r , 

(lc) 

(Id) 

3T,v3T3T^T 
u  3^ + 7 3* + W 3r      a 3r2 

(le) 

Eq uations (1) are also valid for the entrance flow in a heated pipe, 

'oo 

(r, ^, x) 
(w, v, u) 

Pig_   1—Physical   model  and  coordinates 

-U^iu-J^i:^: - ..,.^„_.l_i..:..-....;..!.^;.;.^.;:.. -:.^-;,.^    :■:.]-.: ..;.-■■-.■., , . ... ...    y.:..:..   ..   . .:..   :-A:. j ., i 
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The dimensionless variables  that are  introduced  to nondlmension- 

alize Eqs.   (1)  are 

(the velocities) u v        w/Re 
u = — ,   v = — ,  w- — 

u u. u_ 
oo CO 00 

T - T 
00 

T  - T 
w    0 

x - - ,   r 
a 

(r - aj/Re 

u a 
Re 

ßga3(T 
V 

Gr = ; 
T ) 

Pr = 
Y 

(the temperature) 

(the coordinates) 

(the Reynolds number) I  ^ 

(the Grashof number) 

(the Prandtl number) 

£ = 
Gr 

Re 

_ u_ 

The radius of the cylinder, a, has been selected as the longitudinal 

characteristic length in order to study the detailed development of 

the mechanism of the induced cross flow caused by heating along the 

upstream part of the horizontal cylinder.  The coordinate normal to 

the wall has been stretched to reflect the fact that the thickness of 

the boundary layer in the region of x ~ 0(a) is inversely proportional 

to the square root of the Reynolds number. 

We note that the quantity £ can be expressed simply as 3g(Tw - Tja/i^ 

and can be Interpreted as the ratio of the potential energy increment 

• ,. ,.' ■.,... .■_:.._ .:.-._ ■.... ■   -i ..■ i.', ■■     -,,-■■.■;: 
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to the kinetic energy of the flow.  For the flow close to the leading 

edge of the cylinder (or close to the entrance of a pipe), the magni- 

tude of e determines the importance of the thermally driven cross flow. 

As we move further downstream, the governing parameter will be the 

Grashof number instead of e.  There the cross flow can be neglected 

only when the Grashof number is small.  For our case, where the Grashof 
2 

number is not small but Gr/Re  is small, the cross-flow effect can be 

treated as a secondary effect in the region near the leading edge of 

the cylinder (or near the entrance of the pipe).  The magnitude of the 

cross flow develops and eventually becomes one of the dominant phenomena 

which can trigger the flow transition and the flow separation further 

downstream.  it is worth noting that the value of E also determines the 

size of the early region where the cross flow is a second-order effect 
2 

when Gr > 1 and Gr/Re  < 1.  In terms of the dimensionless parameters 

in Eq. (2); Fqs. (1) become 

3u  9w  9v 
9x  9r  84) 

(3a) 

du   , du   , du 
ux— +V7rT+W7r— 

dx    dcp    dr 
= _ lE+ 1 ,    ,  (N |ü) 

dx  dr   dr 
(3b) 

dr 
6 • cos (}) (3c) 

dv   ,        3v .   dv 
U   7r~   +   V   TTT   + W TT- 

dx     dcp     dr 
= e • sin (J) 

dty       dv   UN dr) (3d) 

3B    90 ,   90 
9x    dtp    dr 

2 i_ re 
Pr . 2 dr 

(3e) 

after neglecting smaller-order terms.  The terms that represent the 

transverse curvature effect have been neglected simply because the 

boundary layer is thin compared with the radius of the cylinder when 

the Reynolds number is not small.  Equation (3c) indicates that the 

pressure gradient normal to the wall is negligible to the lowest order, 

■■■. ■■.■•.X.A,V';.../., . '       : v» "'- 
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and the pressure gradients parallel to the wall can be evaluated from 

the inviscid solution at the edge of the boundary layer.  For a uni- 

form free stream, these pressure gradients vanish. 

It is necessary to specify the viscosity ratio, N, before the  ^ 

solutions of Eqs. (3) can be presented.  It has been shown by Gazley 

that a good approximation for the kinematic viscosity of water in the 

range of temperature between 40oF (4.40G) and 100°F (37.8°C) is 

v = 
10 

-5 

-0.0807 + 0.0126T 
(4) 

where T is in 0F and V is in ft /sec.  This suggests a viscosity- 

temperature model of the form 

b + cT 
(5) 

For such a model. 

1 
N 

1 + a AT • (6) 

where AT = Tw - T^, and a = c/(b + cTj.  For water in the temperature 

range between 40oF (4.40C) and 100oF (37.8°C), a « 0.0151 CF)" .  It 

has also been shown by Gazley that the Prandtl number of water in the 

range of temperature 40oF (4.40G) and 100oF (37.80C) can be approxi- 

mated by 

455 
Pr = -T— (7) 

whore T  is in 0F.  The illustrative calculations described below were 
00 

performed using a value of Pr = 8. 

"Personal communication from Carl Gazley, Jr., The Rand Corpora- 

tion, 1976. 

--...- -I :  A-^/...^. 
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The solution of Eqs. (3) with the viscosity-temperature model, 

Eq. (6), can be expanded into a series in E, if £ is small, so that 

u = u + eu + ... (8a) 

v = ev1 + ... (8b) 

w = w0 + ewj^ + . . . (8c) 

6 = e   + ee1 + ... (8cl) 

N = N + eN1 + ... (8e) 

where 

N„ = 
1 

0  1 + a AT 6 

-a AT 

(8f) 

N = =^L . e = A(e ) . 6 (8g) 
1  (1 + a AT eor 

Substitution of the expansion given by Eqs. (8) into Eqs. (3), 

and the collection of terms of equal order will result in the pertur- 

bation equations.  The perturbation equations of lowest order are 

(e0):  (N0fp' + f0f[; = 0 (9a) 

0
ü 

+ Pr ^oQo = 0 (9b) 

where the prime denotes a derivative with   |H ' to n, with n - r/.^x 

being the Blasius similarity variable.  1   sir. n. function f0 is de- 
i 

fined by 

u     =   f (9c) Uü 0 

/2x i 

■   . ^.„_^L.:h_^ . „.-L^I -,.;■„.„:,._■:__,,,„_-,,i r
l
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The second-order perturbation equations are 

(O:     (N0f'r ^ Vl"" ^0fi + 5föfl + fö 
9f, 

=   (A  •   g  •   f^')'       (10a) 

%f2y  +f0f2  "  2föf2 + sin *  •   e0 = 0 (10b) 

p? 8" + fo8' - 4fö8 + 5eöfi + 8Ö 
af. 

9^ (10c) 

The  stream functions   f1 and   ^  and   the  temperature  g are defined  by 

u1  =   (2x)2f|(n,(j)) 

v1  =   (2x)f'(n,(j)) 

(2x)3/2(nf"   -  5f 
9f, 

1 1       3(j) 

(11) 

e1 = (2x) g(n,(|)) 

The boundary conditions associated with Eqs. (9) are 

fo "" fo " 0  and  eo = 1  at  ri = 0 

f + 1 0 and   e0 "^ 0  as  n 
(12) 

and the ones associated with Eqs. (10) are 

9f2 
fi  "   f2  -   fI  =  9^ =  0   '       § =  0       at       n  =  0 

f[ =  f«  = 0 g =  0       as       r\ -*■ (13) 

fA  =  0 at       (J) =  0,7T 

iLii^^i-ii^j:..';^  ■        ■       ■  '. ■■    -  ■-■    .-.■•■   .-       -     -.■'-' -., ;.,.f.   .r.:v...^i.,.:...^-.;,;...:■.■.-,■■■■■ :       ..■.   ■■■.^■,.v..^v,.,„..■:;::■■■,.■....-■.^-.;  ; ■  ._ : -„„;,■.,:.„.._.•  :..■■■■,:. ■■■^v":   ::J/.WJ-'..-.-Al..--   ,^.;>1i;.. 
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Equations (10) are separable in terms of r, and $  with dependent vari- 

ables of the form 

f1(n,<t') = F^l) cos * 

f2(n,<J5) = F2(n) sin <$> 
(14) 

g(n,(t') = G(n) cos $ 

Substituting Eqs.   (14)   into  Eqs.   (10)   gives 

W   +f0Fl-4fÖFl-   5föFl+fÖF2=   (A   '   G   *   fÖ) 

VP'   +  f0F2  "  2fiF2 =  ^O 

k G" + foG' " 4föG = 3'(5F1 + F2) 

(15a) 

(15b) 

(15c) 

The associated boundary conditions   for  Eqs.   (10)   are 

\ 
F1(0) = F|(0) = F^») = 0 

FO(0) = F;(O) = F;(°°) = o (16) 

G(O') = G(«) = 0 

The solutions depend on temperature only through the factor a AT and 

are integrated numerically for a • AT = 0, .5, 1.0.  If T^ = 57°F, 

this corresponds to AT = 0, 33°, 66 . 

The form of the solution suggests that a continuation of this 

expansion procedure along the lines 

 ._   -. —         —-----™™~™«~Mi«<>ww, ,;„   ,,: 

...:,.■::-.:: _.. ._  ,.iI™..Llj ....  .„.,_i.^...-.' ,_,_^_^.i_^.^^_ii^^ji..:_^_j___JJ _,..._ „,„.. ^i, ^....^-w^.^.^.i.. „^!iiti_J 



-10- 

u = ^ un(n,^)(ex )n 

e = ^ en(n,(t')(ex2)n (17) 

;x y   v0(ri,(|>) (ex )n 

would be the appropriate continuation scheme further downstream.  Con- 
2 

vergence of this expansion presumably requires that ex be less than 

unity, and the accuracy of the two-term expansion for u and 9 and the 
2        * 

one-term expansion for v requires that ex be small. 

Preliminary numerical computations at Rand of the three- 
dimensional momentum integral boundary-layer equation suggest that 
the solution given by Eq. (17) is valid for 0 < ex2 < .2.  However, 
the limits of validity of the analysis and regions where the cross 
flow may balance or even dominate the variable-viscosity effect can 
be better determined after more computations of the downstream three- 
dimensional boundary-layer flow are completed. 

ll.V.-wt..-.K,.it.V;l" KiauiiiiU?*?*'.-:: '.   ..-•-"■,.;..'■ ■■   -'■'■•■■ ^f^j'..:.! ■. ■■^■lM\if&äki:>.i ... ___^:___, ;__: ■ ■■-- ■■ ■■-■ ii   ■ ■   .-   ■■■■■-. ■    -■ ■ ' ■  -   : -   ■ 
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III.  NUMERICAL RESULTS 

The physical ,„a„tltles of veXocit, and temperature can be ex- 

„saed in terms o£ the functions defined In Eqs. (8), (9), and (U) 
P 

They are 

2 (18a) 
u = f^ + e(2x) F^ • cos ({) + .•• 

(18b) 
v = e(2x) • F^ • sin 4> + ... 

1 s    .      to   ^3/2rnF' - 5F - Fn) ' cos 4) + •••    (l8c) 

_ (Tlfo " o)  e(     l        l      2 

2x 

(I8d) 
)    + e(2x)  • G • cos 4» + 

local shear stress at the cylinder can be competed from the 

axia 

The 

ial and cross-flow velocity components: 

,• ^ cw.}     rhiq can be written as 
Introducing the series expansion (18), this 

T 2 Fl(0)      A  -t- (19) 
 riL__ = i + e(2x)/ jrrTöy '■ cos * + • ■ • 

for the axial shear and 

T  ~ e/2^ F''(0) sin * 
(20) 

for the circumferential component, »here fc denotes the value for 

forced convection with variable viscosity. 

 fiM^i^&>iim^^kiMh.i..-:AM -   .....^ ;,:..: 'J. ^ ,. '■ ■■■ ■■ : „...u.., ..^m^^rrrrr^g^r^  . : . __^ - ; ■ .^ ^.-' ' i- ...■•..,'... ■r.^-v^:-' 



-12- 

The local Nusselt number can be vritten as 

Nu 
= 1 + e(2x) 

fc 

G'(0) 
e'(0) 

COS (j) + 
(21) 

Table 1 shows the values of the quantities F^W/f^CO), G,(0)/e^(0), 

and F"(0).  It is worth noting that the relative modifications of the 

axial stress and heat transfer caused by cross flow are both small 

(<9 percent) and insensitive to wall temperature in the range 

0 S a AT ^ 1, or up to AT ~ 660F.  The circumferential velocity gra- 

dient, on the other hand, shows a considerable variation with wall 

temperature, increasing 50 percent in the range between a = 0 and 

a AT = 1.  Interestingly, the increase in the coefficient F'^CO) is 

balanced by the decrease in the wall viscosity caused by heating, and 

the quantity T ,, the product of the velocity gradient and the vis- M        rtp 
cosity at the wall, actually decreases by 25 percent in the range be- 

tween a = 0 and a AT = 1. 

Table 1 

ENHANCEMENT PARAMETERS FOR HEAT TRANSFER 
AND WALL SHEAR STRESS 

a 

a AT 

a AT 

0 

0.5 

1.0 

G,(o)/e^(o) 

0.06981 

0.06559 

0.06296 

F,1
,(0)/f[;(0) 

0.04905 

0.04897 

0.04899 

F^(0) 

0.41499 

0.53625 

0.63888 

From Figs. 2, 3, and 4 we observe that the reduction of water 

viscosity caused by heating modifies the axial flow:  The axial flow 

is accelerated by the induced cross flow over the lower half of the 

cylinder {-^12  < $ <  TT/2) and decelerated over the upper half 

(TT/2 < (J) < 3TT/2).  The cross flow is accelerated by buoyancy from the 

lower stagnation point ($ = 0) to its maximum value at ()) = nil  and 

then decelerated to its upper stagnation point ((() = It).  The decrease 

w^a-eru4WU.'»«U1>^^*ÄaijAv.i*.'.JK.K^.!. ■>■•■■ WpMiMMa vi»'" M . /-■ . > ■■■■■■■-'   ■■•■■.:.-~i-?~:^^<:--.;.^.:A: ■:■■.. v:..->... ■   ■■■-   .   .■-:-■■ , ; ^ ■ . ■ ...■.;;■:■•:/,•-,;.■ w-..;;.:..--..:,- 

«MMMapMBeMqMQfOffil -; 
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Fig. 2—Stream function and velocity profiles without cross flow 

of viscosity by heating enhances the magnitude of the cross flow (Fp 

and shifts the point of maximum velocity to the wall as shown in Fig. 4. 

Therefore, the cross-flow velocity gradient at the wall magnified 

appreciably by a slight variation of the fluid viscosity.  The induced 

axial velocity F' becomes more full in the wall region, as wall temper- 

ature increases.  The key differences between the cross-flow velocity 

F' and the co-induced axial velocity F[ is that the maximum value of 

F' increases from 0.118 to 0.107 as a AT increases from 0 to 1, while 

the maximum value of F| decreases from .021 to .015 over the same range. 

Since the maximum value of F| is so small, this suggests that the ef- 

fect of buoyancy on the boundary-layer displacement and momentum thick- 

nesses, 5* and 6, would be negligible in this region. 

__„ -.■ .■■. ■.■■....■ ^ ■■,::,..: :■:..■,-  :    :...:.. 
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0.02 

Pr = 8 

0.04 

0.03 

0.02 - 

0.01 

a= 0.0 

a AT= 0.5 

= 1.0 

0.01 

0.14 

. ■ 

Fig. 4 — Fj  and F2'   functions 
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From Fig. 5 it can be seen that the effect of heating on the 

buoyancy correction G is negligible in the region near the wall, but 

the maximum value of G decreases slightly as a AT increases.  Since 

the maximum value of G is only .03, the cross-flow effect on the tem- 

perature field is negligible in this region.  However, the primary 

distribution of the temperature gradient, 0', varies about 10 percent 

in the range between a = 0 and a AT = 1. 

 G 
•0.04 

-0.03 

-0.02 

-0.01 

Fig. 5 — Temperature distribution 
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IV.  BUOYANCY VERSUS VARIABLE VISCOSITY 

The primary importance of cross flow is the stability of the 

resulting three-dimensional boundary layer, and this will be consid- 

ered in subsequent research.  However, it is still of some interest 

to compare the magnitudes of the buoyancy effect with the variable 

viscosity effect, in order to further delineate the region where 

buoyancy effects on shear stress, heat transfer, and separation may 

safely be neglected. 

While the solutions of Eqs. (9) and (15) correspond to the most 

general case of arbitrarily large viscosity variation, explicit esti- 

mates of the region where buoyancy effects on heat transfer and axial 

velocity profiles start to be important can be obtained by a further 

approximation. 

If the viscosity variation is small, because of small values of 

a AT, the effect of variable viscosity can be separated out from the 

first-order Eqs. (9a) and (9b) by a linearization procedure.  When 

a = 0, the solution of Eq. (9a) corresponds to the Blasius solution. 

The expansion procedure becomes 

fo = foo + (a AT) * foi + ' 

30 = e00 + (a AT) • e01 

1 (22) 

Substitution of Eqs. (18) into Eqs. (9a) and (9b), or collecting terms 

of equal order, gives the equations of the zeroth order 

^0   00 00 
(23a) 

Pr 00  WOO 
(2-3b) 

and the equations of the first order 

.^....MiaAfete«**«'®'*^^ .:„  ,-.,.W>.™0;v-,--.!   ..^ .„..-■..,•, :,.■ iVJ: ,■..,„:■,... .-., .:.:,:...        ..:.,... V :• ..v,.-„ii. 
■j1-!.;-. :,..,.,:,,, 
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01   ^ 00 01   00 01;   ^00 00; 
(24a) 

fe 8Ö1 + fOO0öl + foi0oo = 0 
(24b) 

The associated boundary conditions 

foo(0) = foo(0) = 0 '  föo(a3) = 1 \ 

e00(0) = i . '00 
(co) = 0 

f01(0) = f-^o) = VQ1M - o 

301(o) = e01(») = o 

(25) 

The solution of Eq. (23a) is the Blasius solution; the solution of 

Eq. (23b) is the forced-convection energy equation.  The functions f_. 

and 0  represent the effect of the variable viscosity on the forced 

convection.  The numerical values of 6  and f.  can be obtained by 

integrating Eq. (24) numerically.  Strictly speaking, the above ap- 

proach is valid only for small values of a AT.  However, comparison 

with the solution of Eq. (9) shows that this linearization is accurate 

in the range 0 < a AT < 0.5. 

The decrease of the water viscosity caused by heating will in- 

crease the axial velocity gradient on the wall and consequently will 
(2 3) 

tend to stabilize the boundary layer.  '    For a horizontal cylinder, 

the cross flow will be induced by wall heating as a by-product, which 

will decrease the axial velocJiy gradient on the wall.  In general, 

the stability of a boundary layer is related to this velocity gradient 
(4) 

on the wall as has been demonstrated by Wazzan and Gazley, Jr.    and 

shown in Fig. 6.  Based on this observation, the cross flow seems to 

Introduce, a destabilizing effect on the boundary layer.  Also, the 

inflection point of the cross-flow velocity profile could be unstable. 

The conditions leading to flow transition can only be defined by ex- 

tensive stability analysis.  Before we can exercise such a complicated 

...... ; ■ ■ '■_. .■,, ■ ^■.■.„.■..^-.....^^■^i^:^,j..-..:;.-.-,.L.'       '.:•. .  ÄSäSÜ   .'.v...^ ■ /. ■.   -^..'..-.■..v..:^:^d 
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Fig. 6 — Critical Reynolds number versus wall velocity gradient 
(/3 Is related to the wedge angle) 

three-dimensional stability anal>sis, we will apply a simple criterion, 

the variation of axial velocity gradient on the wall, to study the 

tendency of stabilizing or destabilising the boundary layer by heating. 

The purpose of the study i i finis section is to provide some in- 

sight into the balancing effects of variable viscosity and cross flow. 

Thus the discussion is limited to the case of small values of a AT in 

order to supply a simple criterion to define a region and its functional 

dependence that heating is a practical way to stabilize the boundary 

layer. 

The double expansion of velocity and temperature in terms of e 

and a AT can be written: 

TWWM.as» W*itil i.V-. 
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u = f' + (a AT)f' + e(2x)2[F' + (a AT)F' ] cos cf) + . ..   (26a) 
00 01 10 

00 
+ (a AT)e  + e(2x) [GQ + (a ADG^ cos $  + (26b) 

where 

F1 = F10 + (a AT)F11 + 

(27) 

G = G0 + (a mG1 + 

and F  and G are the first-order-solution, cross-flow-induced quanti- 

ties, with a constant property assumption. 

The local shear stress, Eq. (19), can be further expanded.  It 

becomes 

rx 

^fr 

fni(0)      2 F10(0) 
= 1 + (a AT) ^TTTC + E:(2xr T^r • cos (j) + 

fÖ0(0) 
föo(0) 

(28) 

where fc denotes the case of forced convection with constant viscosity. 

Since the wall viscosities are the same, Eq. (28) can be viewed as the 

ratio of the velocity gradients at the wall.  Values of fg]/0)/foo(0) 

and F^OO/f^O) are given in Table 2, and f^W/f^O) is about 

twenty times bigger than F^W/f^O).  This indicates that the variable- 

viscosity effect overwhelms the cross-flow effect over the most forward 

part of the cylinder.  However, the magnitude of the cross-flow effect 

Table 2 

RATIOS OF HEAT FLUX AND SHEAR STRESS 

foi(0)/foo(0) 

0.89169 

Fio(0)/foo(0) 

0.04905 

e'1(o)/e'0(o) 

0.17791 

G'(0)/e'0(0) 

0.06981 
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increases as ~ x2 downstream.  The variable-viscosity effect is even- 

tually balanced by the cross-flow effect far away from the leading 

edge.  Equation (28) clearly points out the location where the effect 

of stabilizing the boundary layer by heating will be balanced by the 

destabilizing cross-flow effect over the upper half of the cylinder 

(Tr/2 < I < 3TT/2).  This location can be found from Eq. (28) by equat- 

ing the second and the third terms on the right-hand side, which yields 

(a AT) föl(^ 
F10(0) yj | cos cj)| 

(29) 

Equation (29) is plotted in Fig. 7, which shows that the region of sta- 

bilizing the boundary layer by heating shrinks as x increases.  It 

should be noted that the expansions (23) are valid only up to x ~ L(l//e) 

and then the originally small cross flow becomes one of the dominant 

velocity components beyond x ~ 0(1//^) when Gr is not small.  Equation 

(29), however, indicates that the merit of the heating to stabilize the 

boundary layer starts to fade away at x ~ 0(a AT/e)'2 and disappears 

before the magnitude of the cross flow becomes appreciable, if a AT is 

small. 

The explicit expression of Eq. (29) in terms of physical quantities 

can be written as 

x ~ . I ■" 
\ a ßg cos 

(30) 

Equation (30) reveals that the size of the stabilized region by heating 

is proportional to the free stream speed, is inversely proportional to 

the square root of the cylinder diameter, and is independent on AT. 

For a cylinder of 1 ft in radius submerged in 60oF water, x is about 

15 at u^ = 3 ft/sec and 150 at u^ = 30 ft/sec for cj) = IT.  This shows 

that stabilizing the boundary layer by heating a small body is highly 

effective.  However, extrapolating the test data of a smaller body to 

a larger size appears to be dubious.  Furthermore, the existence of the 

inflection point Ln the cross-flow velocity could cause earlier separa- 

tion and shift the transition point upstream. 

......   -...■. ;;..   ■...   ü    .- ■ ■.■■■■ 
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2.132 

Fig.  7 — Boundary where the variable-viscosity effect balances 
the cross-flow effect 
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