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ABSTRACT

Motion responses derived from model experimental results in regular
and irreqgular head waves for the XR-5 high length-beam ratio surface
effect ship are presented. Frequency response functions for pitch,
heave, relative bow motion, heave acceleration and bow acceleration
were computed from the random wave experiments and are presented herein.
Comparisons are made with responses derived from regular wave experiments.
The results indicate that the rigid body motions are reasonably linear for the
Froude numbers and sea conditions investigated. Nonlinear effects
that increase with the severity of the sea state are evident in the
accelerations.

In addition, the motion of the stern seal with respect to the
relative motion at the stern is presented. These responses are
generally linear although some nonlinear effects appear with increasing

Froude number.

Probability distributions for the double amplitudes of wave height,
heave and pitch are presented. Comparisons are made with Rayleigh
probability distributions based on the variances of the sample data and

on the minimum Chi Square (xz) estimators computed from the distributions.

ADMINISTRATIVE INFORMATION
This work was supported by the Naval Sea Systems Command and was
authorized under Task Area Number SF 43421202. Work Unit Number
1-1507-200 was used. The objective of the task was to develop a cap-
ability for predicting the dynamic performance characteristics of
surface effect ships for use in design evaluation. The experimental
program described in this report represents the second stage of the

task in which the XR-5 craft response in waves is analyzed using

model experimental data.
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INTRODUCT I ON
The purpose of this series of seakeeping experiments was to invest-

igate theapplicability of the linear superposition assumption to determine
irregular sea responses of the XR-5 craft as computed from regular

wave data. The model used is a 1/3 scale replica of tne

XR-5 manned testcraft. Both the model and manned testcraft were built
to obtain data for performance prediction of a proposed high length-
beam ratio surface effect ship (SES) with an overall length of about

500 feet. The high length-beam ratio SES is designed to operate at
subhump speeds. The nominal design Froude number of 0.7 is low relative
to other SES and amphibious hovercraft which may have design Froude
numbers of 1.5 to 2.0 or higher. This report presents the results of
the irregular sea experiments for the XR-5 model in head waves at three
Froude numbers. Frequency response functions obtained for regular head

waves were presented in References |1 and 2.%*

DESCRIPTION OF MODEL

A photograph of the model and tow gear is given in Figure 1. The
XR-5 Manned Testcraft is shown in Figure 2. Model dimensions and
transducer locations are given in Tables 1 and 2, respectively.

The model is constructed of polyurethane foam reinforced with an
outer covering of fiberglas. The two sidewalls have a 45 degree dead-
rise except in the vicinity of the bow, where the deadrise angle is
higher (see Figure 2). The bow and stern seals are the semi-rigid
three-lobed planing type, and are inflated directly from stacked axial
flow fans. The seal air is vented to the air cushion (main plenum)
through clear plexiglass bypass ducts mounted on the deck at the bow
and stern. Each duct has two adjustable gate valves that regulate the
back pressure in the seal. The after valve controls the third (upper)
lobe, which is designed to alleviate impact pressures. The forward
or main valve regulates the two larger lobes, and thus governs the
seal overpressure relative to the cushion pressure.

The model was fitted with 12 fans. Four feed the seals, and the

remainder feed the main plenum directly. The fans are synchronous and

* References are listed on page 14
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were run at 20,000 RPM. The fans feeding the seals were stacked, two in

series, so that an overpressure relative to the main plenum would be
developed. Each fan was fitted with a spring-loaded flapper, or check
valve, so that no air would leak out if the fan was not working or was

not switched on. The various pressures (seal and plenum) could be adjusted
by selecting the number of feed fans and by means of the four gate valves
in the seal bypass ducts.

The maximum downward position of each seal is limited by two sets of
downstops which are short lengths of aircraft cable attached at the deck
and on the seal stiffeners. The forward set of downstops is about midway
between the hinge line and the trailing edge, while the after set is near
the trailing edge. The maximum downstop position and the chamber of the
seals could be adjusted by means of shims of various thickness which

were inserted between the downstops and the deck.

EXPERIMENTAL SETUP

A side view of the model mounted on the towing apparatus is given in
Figure 1. The towing frame is attached to the rear (East side) of Carriage
Il by means of an A-frame device. The pitch-heave towing gear from the
Center's Tank at Langley Field, Virginia was mounted below the frame. The
tow point was located forward of the model's longitudinal center of gravity
(LCG) to ensure yaw stability. The tow cable was led through a sheave
mounted to the heave staff to simulate a thrust axis along the lower edge
of the keel. The model was free to pitch and heave. The model was fixed
in surge by the tow cable, which was kept taut by applying a constant 20
pound force to the back of the surge roller cage using a force negator.
Some surge motion (about one inch) occurs when the model pitches due to the
tow cable's being led through the sheave on the heave staff.

The model was fitted with lifting cables forward and aft that were led

to winches on the carriage so that the model could be lifted clear of the

water at the end of each run to avoid swamping and to save time when returning

to the other end of the basin. |In addition, snubber lines were attac! i

to the model to restrict motion in case of emergency.
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The model was extensively fitted with transducers to measure motions,
accelerations, pressures, and relative wave heights. The pitch-heave
towing gear was equipped with slide-wire devices for measuring the heave
staff position and the craft pitch angle. The heave staff and heave
transducer were mounted forward of the LCG. Accelerometers were mounted
at the LCG and at the bow.

Pressure transducers were mounted at the bow and stern to measure bow
and stern seal pressure, and two additional pressure transducers were
either flush-mounted in the plenum or had a short length of tubing leading
to the high pressure side. The reference pressure was obtained by venting
the low pressure side to the atmosphere in an air chamber shielded from
the air stream to eliminate picking up any dynamic pressure. The transducers
selected had high frequency response characteristics so that true dynamic
measurements were obtained throughout the frequency range of interest.
Ultrasonic wave height transducers were mounted in or on the craft at five
locations: the bow, three locations in the main plenum, and the stern. The
bow and stern transducers are shown in Fiqures 2 and 4 of Reference 1. In
addition, a wave height transducer was mounted on the carriage well forward
of the model to obtain a reference wave height undisturbed by the preserce

of the model.

EXPERIMENTAL PROCEDURE

Before starting the random wave program, it was necessary to establish
a representative operating condition for the craft. |In particular, a
near-optimum fan configuration, duct valve settings and downstop settings
had to be determined. This was partly done on the basis of earlier
experimental data and from a series of exploratory random wave experiments
in which the above parameters were adjusted to minimize motion. The duct
valve settings for the reference model operating condition for the craft,
are given in Table 3. The reference fan arrangement was 2-0-2, i.e., two
fans in the forward seal, none in the main plenum and two in the stern seal.
The downstops were set in the maximum downward position. This operating
condition is not necessarily the optimum one for the craft. [t was

impossible to explore all the combinations of operating conditions due to




the time limitations; however, the reference condition is near-optimum

from the seakeeping or ship motions standpoint, while maintaining good
drag and 1ift fan power characteristics. The reference condition is
very close to the one selected in an earlier series of experiments
where the effective horsepower (fan plus propulsion) was minimized.

The irregular seas experiment was designed to examine the worst case
behavior of the model in random waves by selecting encounter spectra
that contained most of their energy in the same range as the resonant
frequency of the model. The experiments were carried out with the model
on-cushion at 9, 12 and 15 knots, corresponding to Froude numbers of
0.72 (design speed), 0.96 and 1.20. (See Table 4). At 9 and 12 knots,
runs were made in two sea states with similar frequency content but
different significant wave heights. A complete description of the
procedure used to obtain the regular wave data is presented in References
1 and 2.

DATA ANALYSIS

The irregular sea data was recorded on magnetic tape and processed
using a spectral analysis computer program. Data obtained in random
waves were analyzed in both the time domain and the frequency domain.
This analysis yields mean values, power spectra, histograms and Fourier
transforms as well as statistical information about the time histories.

The heave and pitch data derived from data collected at the pitch-heave
staff were combined in the time domain to determine heave at the LCG.
Pitch was nondimensionalized by wave slope while stern seal motion was
normalized by the relative motion at the stern. All other measurements
were normalized by the wave ampli tude.

Probability distributions for the double amplitude values of wave
height, heave and pitch were calculated from the histograms produced by
the irregular seas data analysis program. Corresponding Rayleigh distributions
were computed for comparison purposes. Two Rayleigh distributions are
presented; one which is based on the sample variance and one which is based

on the minimum Chi-square (xz) estimator derived from the histograms.




i

B

PRESENTATION OF DATA

Table 5 presents the mean values of trim, draft and cushion pressure

obtained for five irregular wave conditions. The values in Table § are
plotted in Figure 5 to indicate the effect of increasing sea state on

the mean operating conditions of the craft. The significant wave height
and mean draft are normalized by dividing by the cushion height. The mean
cushion pressures are normalized by multiplying by the nominal cushion
area and dividing by the craft weight.

Tables 6 and 7 present significant response, i.e. average of the one-
third highest double amplitudes, determined directly from the double
amplitude distributions, derived from spectra using the narrowband assumption
and derived using linear superposition of the regular wave transfer
functions and the measured wave spectra. Table 6 presents these results
for heave, pitch and relative bow motion (RBM). Heave and RBM are
normalized by the cushion height while pitch is normalized by the significant
wave height to cushion height ratio. Table 7 presents similar results for
absolute vertical acceleration at the bow and at the center of gravity.

The acceleration has been normalized by the significant wave height to
cushion height ratio.

Figures 7 through 10 are graphs of the wave spectra encountered by the
model during the experiments. These would range from Sea State 4 to Sea
State 6 for a 500-ft ship. These particular wave spectra were chosen
because their sigmnt energy content corresponded to the model's natural
frequency of 6 radians per second. Figure 10 is included to demonstrate
the difference between the experimental spectra chosen for these experiments
and the one-parameter (significant wave height) Pierson-Moskowitz (PM)
spectrum.

One sees from Figures 7, 8 and 9 that the peaks of the spectra coincide
closely with the model's natural frequency. Two spectra are shown in
Figures 7 and 8 (for Fn = 0.72 and 0.96, respectively). These spectra have
approximately similar frequency content although the waveheights were nearly

doubled. This effect was achieved by using the same wave tapes and increasing

the blower RPM of the pneumatic wavemaker.




The spectra provide a random seaway that contains significant energy
in the range of the craft natural frequency. This enables an accurate
determination of frequency response functions that result from the spectral
analysis. Equally important, these spectra may provide a worst case
irregular seas condition for the pitch-heave motions of the XR-5 SES in
head seas. As can be seen in Figure 10, restriction of motion testing
to operation in a ''Pierson-Moskowitz' idealized seaway of same wave height
to that actually tested would have greatly underpredicted the craft motion
since the PM spectrumcontains almost all of its energy in the supercritical
range of the XR-5.

Figures 11through 28 present comparisons of the transfer functions
obtained from the spectral analysis of the random wave data with those
; obtained from regular wave experiments. Random wave transfer functions
are presented only for frequencies where the pitch-heave coherency was 85% or
better to insure confidence in the data. The regular wave experiments at
9 and 12 knots were made with a nominal wave height/wavelength ratio of
1/100, although at longer wave lengths the height was restricted to about
one foot because of mechanical limitations of the tow gear. In the 15 knot
regular wave runs the nominal wave height was restricted to three inches
to minimize the risk to the test apparatus and model. The two circled
points in Figure |]are the points on the pitch transfer function in reqular
waves where the wave heights are the same as the significant wave heights
for the two random seaways. While these two quantitites cannot be compared
{ directly, they are among the regular wave points which correlate best with
the irregular wave data.

The regular wave transfer functions presented are based on the first
harmonic component of the response. In Reference 2 it was shown that the
amplitude of the first harmonic is essentially equal to the amplitude
based on the total energy, indicating that generation of higher hamonics,

which is an indication on nonlinear response, was not a significant factor

i for all three speeds in waves with lengths greater than the cushion length.
b ¢ The heave motion data presented in Figures 14 through 16 was derived
from slidewire measurements. In Reference 2, data derived from the

accelerometer measurements was preferred over the slidewire data because

3
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of high frequency noise produced by flexing of the slidewire pickup. This
decision was based on total energy data; however, for the frequencies
examined herein, using the first harmonic component from a harmonic
analysis, there was no significant difference in the regular wave

transfer functions obtained by the two methods. Both signals were again
examined in the current evaluation of irregular wave data and the acceler-
ation spectra produced less reliable heave data than did the slidewire
measurements for the frequencies of interest because of numerical error
introduced in the double integration of the acceleration signal in the
frequency domain.

The probability distributions of the double amplitudes of wave height,
heave and pitch are presented in Figures 29 through 33. Comparisons of
measured histograms with Rayleigh distributions based on the sample variance
and on the minimum xz estimator are presented for each case.

Figure 34 presents transfer functions derived from both regular and irregular
wave experiments for a destroyer with a bow bulb (Ship A in Reference 3) at
20 knots in head seas. The random wave results were determined during
experiments in a simulated Sea State 5. It is included as an example of the

correlation obtained from the two approaches for the more conventional ships.

DISCUSSION OF RESULTS

Table 5 presents a summary of the mean values for the random wave
experiments. As expected, the mean draft increased and the mean cushion
pressure decreased as significant wave height increased. This was a result
of the increased cushion air leakage for the more severe sea conditions.
Referring to the normalized wave height data, it is seen that the significant
wave height varied from 0.27 to 0.69 times the cushion depth providing a
range of sea states from relatively mild to severe. (It is not expected
that the craft should be able to negotiate sea states with significant
wave heights equal to the cushion height at the design Froude number of 0.72)

Figure 5 is a plot of the normalized mean draft and trim data from Table
5 versus the normalized significant wave height. The mean draft/cushion
height ratio is presented for the tow point and at the bow. It is seen
that the craft sinkage is approximately one-half the significant wave

height.
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Table 6 presents the significant double amplitude motions determined
from the double amplitude distributions and those computed from the
measured motion spectra. |In all cases, the correlation between the two
methods is extremely good. Also included are values computed from the
linear superposition of the regular wave transfer functions with the
measured wave spectra. Best agreement is seen for heave as would be
expected from the examination of the subsequent figures. Agreement is
also reasonably good for pitch and relative bow motion.

The significant heave and relative bow motion were normalized by wave
height, while the pitch angle in degrees (which is nondimensional) was
normalized by wave height/cushion depth. That is, the tabulated pitch
angles represent the pitch angle due to a wave height equal to the cushion
depth. It is seen that the significant heave as computed from the double
amplitude distributions varies from 0.63 to 0.69 times the cushion height
while the relative bow motion varied from 1.6 to 2.2 times the cushion
height. That is to say, there is some attenuation of heave, while the
relative bow motion is amplified. The attenuation of heave with respect
to wave height did not vary significantly with speed, although the
relative bow motion amplification decreased with speed. The significant
pitch angles (computed from the double amplitude distributions) vary from
L.9 degrees at the highest speed to 9.4 at the lowest (design) speed. The
variation in normalized response for runs at the same Froude number give
an indication of the nonlinearity of the response. For example, one sees
that the normalized heave varies from 0.69 to 0.65 at the Froude number
of 0.72 for the moderate and the severe sea state, respectively, indicating
that the nonlinear effect is relatively weak.

It is evident from Table 6 that the significant responses calculated
in three different ways agree reasonably well, generally within about
10 percent. This implies that significant heave, pitch and relative bow

motion can be predicted within engineering accuracy using linear superposition
for the speeds and sea states of the order of those investigated here. The

generally good agreement of responses computed from the douple amplituae
distributions to those computed from the power spectra implies that the

random processes are sufficiently narrow-banded and Gaussian.
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Table 7 presents the significant double amplitude accelerations at
the bow and at the center of gravity in a form similar to Table 6. The
acceleration data have been norialized in Table 7 so that they represent
the acceleration due to a significant wave height equal to the cushion
height. For example, to compute the acceleration for a wave height of
one-half the cushion height, multiply the linearized acceleration response
by one-half. Furthermore, one can compare the normalized accelerations at
the same Froude number for the two lower speeds where tests were made

in wave spectia of different severities. One sees that there is considerable

o o @ -l

amplitude dependence for the 0.96 Froude number, although the amplitude
dependence at the design Froude number of 0.72 is relatively small.
Another indication of nonlinear effects on
i the accelerations can be obtained from comparison of significant responses
; computed from the double amplitude distributions to those computed using
the linear superposition assumption. One sees that the response levels
computed using linear superposition consistently underpredict the motions
obtained from the double amplitude distributions. (The significant levels
computed from the double amplitude distributions may be considered the ''correct'' or
! reference values, as these are direct statistical observations that are
not dependent upon any assumptions about the nature of the responses).
The amount of underprediction was found to be related to the severity of
: the sea state. This is illustrated in Figure 6 where the ratio of sign-
) ificant acceleration levels derived using the linear superposition
assumption to the double amplitude distribution values is plotted against
normalized significant wave height. This ratio decreases with severity
of sea state. One sees that the heave acceleration is underpredicted by a

factor of 30 to 40 percent using linear superposition. The nonlinear effect

& on bow acceleration is more sensitive to sea state, the amount of under-
; prediction varying from10 to 40 percent. One may use linear superposition to
: estimate acceleration levels for XR-5 type craft, provided the speed and
H sea state is within the range of the available data, by using Figure 6.

That is, the curves in Figure 6 represent correction factors for bow ?
and heave acceleration. For example, if one is computing acceleration
levels for a significant wave height of one-half the cushion depth, the

correct factors are 0.64 and 0.78 for heave and bow acceleration, respectively.

10
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To correct for the nonlinear effect one divides the response level derived
from the linear superposition assumption by the correction factor. This should
give a result accurate enough for engineering purposes.

Figures 11 through 13 present plots of pitch angle per unit wave slope
as a function of encounter frequency for Froude numbers of 0.72, 0.96 and
1.20. Correlation is reasonably good for all conditions. At a Froude
number of 0.96 the regular wave transfer function correlated best with those
of the more severe sea condition.

Figures 14 through 16 show excellent correlation between transfer
functions of heave motion as a function of encounter frequency for all
conditions.

Figures 17 through 19 present the transfer functions of relative bow
motion obtained from the bow sonic measurements. Reasonable correlation
is seen for all conditions.

Figures 20 through 22 present bow acceleration per unit wave height
as a function of encounter frequency. Reasonable correlation again generally
exists, looking best in the low frequency range. Figures 23 through 25 present
similar results for heave acceleration derived from accelerometer data. The
overall correlation is as good as that for the bow acceleration data, with the
best correlation existing at low frequencies. At Froude number of 0.72 the

regular wave data correlates best with the more severe sea condition.

Figures 26 through 28 present plots of stern seal motion per unit
relative stern displacement. Correlation is very good at 9 knots, reasonably
good at 12 knots but some discrepancies appear at high frequencies for 15
knots.

The experimental motion histograms in Figures 29 through 33 exhibit
reasonable agreement with the computed Rayleigh distributions although
several discrepancies are evident. Experimental histograms of wave height
show a less than desired agreement with the computed Rayleigh distributions
for the lower sea conditions.

Figure 34 is included in order to provide the reader with a measure
for assessing the degree of correlation between the regular and irregular

wave approach for determining transfer functions for the high L/B craft. 1

1




This figure, from Reference 3, provides an indication of the correlation
generally obtained for conventional hull forms. It presents transfer
functions derived from both regular and irregular wave experiments for

} a destroyer with a bow bulb (Ship A in Reference 3) at 20 knots in
head seas. The random wave results were determined during experiments

in a simulated Sea State 5.

3 SUMMARY AND CONCLUSIONS

Motions data have been presented for the XR-5 model in random head

waves for several sea conditions and for three speeds corresponding to
Froude numbers of 0.72, 0.96 and 1.20.
3 Transfer functions derived from the random wave experiment were
presented that show reasonable agreement with those derived from the
regular wave experiments in References | and 2. Furthermore, computations
of significant values based on the linear superposition of regular wave
transfer functions with the measured wave spectra correlate very well
with the corresponding measured random wave responses for the motions
though the accelerations were underpredicted.
The data also provides an indication of the behavior of the XR-5

in an irregular sea where the wave spectra contain significant energy

in the range of the natural frequency of the craft. It is evident that q

restricting the investigation to Pierson-Moskowitz spectra with the

i same significant wave height would result in a less severe condition for 1
¢ the XR-5 than that examined here. Analysis of mean draft and trim in
these more severe seas indicated that the craft sinkage was approximately
one-half the significant wave height.

Comparisons of experimental histograms with Rayleigh distributions
derived from measured statistical properties show acceptable agreement for
¢ heave and pitch provided that the wave height exhibits reasonable Rayleigh
behavior.

In summary, the results presented show that for engineering purposes
the prediction of rigid body motions (and, to some extent, accelerations)
h for the high length/beam ratio SES craft by application of the principle
of superposition can be performed with reasonable accutacy for the speeds

ﬁ and sea states examined here.

Vi
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TABLE 1

HIGH L/B SES MODEL CHARACTERISTICS

Symbol Dimensions Model Scale
LOA Length Overall 15.58 ft L.75 m
- Design Displacement 275.0 1bs 124.74 kg
- Test Displacement 298.0 1bs 135.17 kg
L Length of Bubble 13.83 ft L.22 m
B Beam of Bubble 2. 12§t 0.65 m
L/B Ratio 6.54 6.54
TCG Transverse Center of Gravity E E i
VCG Vertical Center of Gravity |
(Above Keel Line) 0.90 ft 0.27 m |
LCG Longitudinal Center of Gravity ]
(Forward of Transom) 7.21 ft 2.20 m
K Radius of Gyration (in Pitch) 4.7V ft 1.44 m
K/LOA Ratio 0.30 0.30
E Tow Point Forward of Transom 9.63 ft 2.94 m
Tow Point Above Keel Line | 0.97 ft 0.30 m
|
15




TABLE 2

TRANSDUCER LOCATIONS ON MODEL

Transducer or Reference Point Forward of the Transom
Wave Height Probe (Carriage Borne) 51.125 15.583
' Relative-Range (Sonic) Probe #1 (RBM) 15.911 4.850
| Bow 15.580 4.749
Trailing Edge of Bow Seal 14.163 L.317
' Relative-Range (Sonic) Probe #2 13.109 3.996
; Pitch Heave Staff 9.625 2.934
Relative-Range (Sonic) Probe #3 7.974 2.430
! Longitudinal Center of Gravity 7.208 2.197
i Relative-Range (Sonic) Probe #k 2.588 0.789
i Trailing Edge of Stern Seal 0.333 0.102
i Transom 0 0
3 Relative-Range (Sonic) Probe #5 (RSM) -0.229 -0.070
i
b
i
?
;
|
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TABLE 3

OPERATING CONDITIONS FOR MODEL

I Fan Configuration: 2-0-2 (Two fans in forward seal, none in main plenum,
i and two in stern seal)

|

g Downstop Settings: All Downstops at maximum downward position

E Duct Valve Settings: (Orifice Areas)

| ; 2

i Main Bow Seal 4 in 25.81 cm2
4 Third Lobe, Bow 0.625 in®  4.03 cm
} 2

b Main Stern Seal 5.5 in 35.49 em?
i o

i Third Lobe, Stern bin 25.81 cm2
!

H

H

{

i

s

A

§

:

!

f

{

1
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TABLE 4

SPEED IN KNOTS FOR VARIOUS SCALE RATIOS
OF XR-5 HIGH L/B SES, AS A FUNCTION
OF FROUDE NUMBER

Fn - Tow Tank Model Manned Testcraft Proposed Ship
Yql (Scale ratio = 1/3) (Scale ratio = 1) (Scale ratio - 10.667)
0.48 6 10.4 40
0.72 9 15.6 51
0.96 12 20.8 68
1.20 15 26.0 85
1
f
|
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‘ Figure 2 - The XR-5 Manned Testcraft
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Figure 3 - XR-5 Model in Random Waves: Fn = 0.96,
Sig. W.H./Cushion Depth = .309
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Figure 4 - XR-5 Model in Random Waves: Fn = 0.96,
Sig. W.H./Cushion Depth = .693
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Mean Draft / Cushion Height, Nondimensional
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Figure 5 - Mean Draft in Irregular Waves

26

XR-5 Model
Fn = 0.72, 0.96
e Head Seas
O Tow Point
| E58
O Bow
—
= .
et
S
i |
0 0.2 0.4 0.6 0.8 1

.0




XR-5 Model
Fn = 0.72,0.96
Head Seas
!
= 0.0
\ .
ot O Bow Acceleration
:v .
. O Heave Acceleration
~ O
bl - 0
0N -
g 5
Q
L A .0 81 O
a -
o5
v o wn
L o 0
)
0 o
£ B0
o f
| Pl ) &)l SR
E -
80.
« &
O o
Q =
+ 0
2 D
g 8
! 6 0.4
1 o B
i o
| [7, B =
& U
| o
- O
~ 0
[} N G
o E |
% o 9.2k
i (6 I )
i (S
i < ©
H - o
! o w
o
Q £
] ';"‘ 1 |
| 2 2 o0 4 i

5 0 0.2 0.4 0.6 0.8 1.0

: Significant Wave Height / Cushion Height, Nondimensional

i Figure 6 - Comparison of Accelerations Computed by Linear
Superposition with Accelerations Determined
from Double Amplitude Distributions

27




XR-5 Model

9 Knots
Head Seas
g s
§ig. Wave Height/Cushion Height = .392
— — Sig. Wave Height/Cushion Height = .529
2 r—
n
o
2
15
%3] 9]
© o
S wn
<} ]
(8} ~N
L9} »
v v
. - L Y]
~ fa
E
(8] ™
i
- (<
E —~
=
- -
)
o 8
L L
Q o
) 1 '3}
LY
) a.
> w
©
= v
>
©
=
0

0 4 8 12 16 20
Encounter Whve Frequency, Radians Per Second

Figure 7 - Encountered Wave Spectra at 9 Knots, Fn = 0.72

28




e p————.

| i
| i

XR-5 Model

' ‘ 12 Knots
Iir- l ‘ Head bBeas
3 ﬁL—— : I ‘
| |
3
= bl
| | —— Sig. Wave Height/Cushion Height = .309
r I \ — — Sig. Wave Height/Cushion Height = .693 J
, |
2 — ' \
i ne - g el U
oA |
Pl e
e e |
; ! l \
E i l \
9 & l Yok
LS
. _] | a . I \’/ \
= : r |
2 \

0 4 8 12 16 20
Encounter Wave Frequency, Radians Per Second
Figure 8 - Encountered Wave Spectra at 12 Knots, Fn = 0.96

29




. seconds

2

Wave Spectrum, cm

Feetz-Seconds

-3

Wave Spectrum, 10

XR-5 Model
15 Knots
Head Seas

Sl el cina.

= — Sig. Wave Height/Cushion Height = .267

s

0 4 v 8 12 16 20
Enccunter Wave Frequency, Radians Per Second

Figure 9 - Encountered Wave Spectra at 15 Knots, Fn = |.20
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XR-5 MODEL
9 Knots, Head Seas
SIGNIFICANT WAVE HEIGHT/CUSHION HE'GHI = ,392
SAMPLE VARIANCE, --- MINIMUM y= ESTIMATOR
4o
WAVE HEIGHT
30 SIGNIFICANT VALUE = .286 Feet
.087 Meters
20
10
0
& 0 0.10 0.20 0.30 0.40 0.50 Feet
S 0 0.0% 0.061 0.091 0.122 0.152 Meters
Iy
= ‘
= ho
s HEAVE
b 30 SIGNIFICANT VALUE = .271 Feet
; g = .083 Meters
' 3 2
3 /
S 10 /
>
= A
; 5
3 0 0.08 0.26 0.24 .32 0.40 Feet
4 a0 0.024 0.048 0.073 0.098 0.122 Meters
Lo
g PITCH ;¥
L 0 SIGNIFICANT VALUE = 3.55 Degrees
i 3 | —7‘/:\ = .062 Radians
¥ {
: 20 / N !
: 10 // N |
‘ S
0
0 1.6 3.2 L.8 6.4 7.2 Degrees
.028 .056 .083 12 .140 Radians
Figure 2° . Double Amplitude Distributions for Heave and
Pitch of the XR-5 Model at 9 Knots in Head Seas
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B

Probability of Occurrence, p(x), Percent

XR-5 MODEL
9 Knots, Head Seas
SIGNIFICANT WAVE HEIGHT/CUSHION LENGTH_. = .529

40 SAMPLE VARIANCE, --- MINIMUM ¥~ ESTIMATOR

30 WAVE HE IGHT
s SIGNIFICANT VALUE = .386 Feet

i _____Wj:f:::p—.\Q\\§§::; = .118 Meters

// -

0 .16 .32 .48 .64 .80 Feet
0 .048 .098 146 .195 .24Y4 Meters
4
] HEAVE
3 SIGNIFICANT VALUE = .374 Feet
| = .114 Meters
g
|
4ol
0 .10 .20 .30 Lo .50 Feet
0 .030 .061 .091 122 .152 Meters
4o
30;
3 ﬁ
l N
10 i o,
SN
| S~
0 L —y—
0 2.0 L.o 6.0 8.0 10.0 Degrees
0 .035 .070 .105 140 .175 Radians

Figure 30 : Double Amplitude Distributions for Heave and
Pitch of the XR-5 Model at 9 Knots in Head Seas
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XR-5 MODEL
12 Knots, Head Seas
SIGNIFICANT WAVE HEIGHT/CUSHION HEIGQT = .309
SAMPLE VARIANCE, --- MINIMUM x~ ESTIMATOR

WAVE HE IGHT
SIGNIFICANT VALUE = .225 Feet
= ,069 Meters

ok
0
0
Figure 31 :
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Q R SIGNIFICANT VALUE = .210 Feet
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/ g {7 \
! 2 20 ; / %

o /

o &

N

‘ s, g o
i = o 1 t——___}————ﬁ\\
! " .08 16 24 .32 40 Feet
4 3 .02k .048 .073 .098 122 Meters

a
40
3 PITCH
] 30 SIGNIFICANT VALUE = 1.93 Degrees
! 1 = .034 Radians
t e 8
I 449/‘7——-<:

. / \
10 N
/ S
N
0.8 1.6 2.4 3.2 L.0 Degrees
014 .028 .042 .056 .070 Radians

Double Amplitude Distributions for Heave and
Pitch of the XR-5 Model at 12 Knots in Head Seas
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XR~5 MODEL
12 Knots, Head Seas
SIGNIF)CANT WAVE HEIGHT/CUSHION HEIGQT = 693
SAMPLE VARIANCE, =--= MINIMUM x“ ESTIMATOR

Lo ;
] WAVE HEIGHT ~;
0 SIGNIFICANT VALUE = .505 Feet
3 = . 154 Meters
é
20 = —
L~
10 £ v ~
3 £ B
0 .16 .32 .48 .64 .80 Feet
( 0 .048 .098 146 .195 244 Meters
i
40 HEAVE
SIGNIFICANT VALUE = .LL49 Feet
30 = .137 Meters
P i) a8
e N

20 /¢;¢

Probability of Occurrence, p(x), Percent

2 16 .32 .48 .64 .80 Feet
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3
: Lo
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oz R
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Figure 32 : Double Amplitude Distributions for Heave and
Pitch of the XR-5 Mcdel at 12 Knots in Head Seas
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XR-5 MODEL
15 Knots, Head Seas
SIGNIFICANT WAVE HEIGHT/CUSHION HE!GQT = 267

SAMPLE VARIANCE, --- MINIMUM x“ ESTIMATOR
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20
u 7’
0 .8 1.6 2.4 3.2 4.0 Degrees
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Figure 33 : Double Anplitude Distributions for Heave and
Pitch of the XR-5 Model at 15 Knots in Head Seas
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O Regular Waves
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Figure 34 - Experimental Transfer Functions for a Destroyer
in Head Seas at 20 Knots full scale speed
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