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ABSTRACT

The problem of determining whether a given interval of a speech

signal should be classified as voiced speech, unvoiced speech or silence

is formulated as a test of statistical hypotheses. A robust detector is

obtained by model ling the speech and the acoustic background noise signals

as correlated Gaussian random processes. The methods of statistical decision

theory areapplied to these models to synthesize an optimum, minimum probability

of error , classifier .

The optimum classifier is an estirator-correlator receiver which is

well approximated using a linear phase hign pass filter in the unvoiced channel

and a linear phase low pass filter in the vo iced channel . A clutter filter

appea rs in the reference channel which tr ies to el iminate as much no ise as

possible before forming the unvoiced and voiced correlations. The statistics

of the noise are learned during the silent intervals which makes the classifier

adaptive to time-varying noise statistics.

Knowledge of the clutter corre1atio\~function permits implementation

of adaptive Wiener filters which are used to e\4minate as much noise as possible

prior to the determination of pitch and the estimation of the LPC filter

coefficients. The clutter filtered voiced speech signal is then passed through

a bank of comb filters and the pitch estimate chosen to correspond to the filter

for which the output energy is largest. It is shown that this pitch estimation

strategy is optimum and robust as long as the correlation time of the noise

is less than the minimum p i tch period of interest . -
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The robust LPC vocoder is evaluated experimentally for Airborne

Command Post noise for which the unvoiced speech signal-to-noise ratio

is often less than 0 dB. Based on listening tests comparing the input spe . L

plus no ise, versus standard LPC synthesis techniques versus the robust Ll ’C

vocoder , it is concluded that rather dramatic improvements in speech intel I i

gibil ity can be ob tained at the expense of a margina l increase in comput=~t ~~~

time .
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I .  INTRODUCT ION AND SIV JMMARY

There are a variety of applications in which it is necessary to be

able to classify a given set of speech data as corresponding to voiced speech ,

unvoiced speech or silence. For the synthesis of speech using Linear Predictive

Coding (LPC) techniques
1 4

, for example , it is necessary that the speech signal

be classified as voiced or unvoiced . This information is transmitted to the

speech synthesizer along with coefficients that represent an all-pole linear

filter model for the vocal tract. For voiced speech the filter is excited

by a periodic train of impulses , whereas a white noise excitation is used

when unvoiced speech is to be synthesized .

The ability to detect silence is of interest in digital communications

in which channel capacity is at a premium5. By detecting intervals of silence ,

other data streams can be interleaved with the speech conversation thereby

maximizing the utilization of the available bandwidth. Another application of

silence detection arises in conferencing situations5. By detecting when a set

of speakers are silent , their lines can he disconnected from the superposition

of inputs so that an enhancement of synthesizer input signal-to-noise ratio

can be obtained .

Solutions to the classification problem have , for the most part , been

developed on an ad hoc basis in which an individua l discriminant is proposed V

which seems to characterize in one wa y or another the attributes of the three

possible speech events. En ~i ~~ V~~ nt  paper , .\tal and Rahiner6 have proposed

an algorithm that simultaneousl y comp~ite~ fiv e of the most significant dis-

criminant s and uses a hypothesi s testi ng strategy to assign a given set of 
V

ohscrv;it ions to  one of t h e  t h r e e speech c L i s ses

— 
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With few exceptions , most notably the work of Atal and

Rabiner , most of the speech research reported to date has dealt

with a speech environment that has been carefull y controlled in the 
V

sense that background noise and interference signals have been eliminated

from the speech . It is generally known that the intelligibility of modern

vocoders is seriously degrad ed when noise and interference signals are super-

imposed on the speech data
5. Since there are many practical problems in which

noise and interference arise, it is of interest to develop more general speech

process ing techniques designed to eliminate the noise as much as possible.

In this paper it is assumed that the speech signals are corrupted

by additive Gaussian noise that may or may not be white. The unvoiced speech

signal is modelled as a zero mean Gaussian random process having a known

covariance function. Voiced speech is modelled as a zero mean Gaussian

quasi-periodic random process. Using these models as a starting

point the classification prob lem is formulated as a statistical

hypothesis test and solved using statistical decision theory .

Subject to the validit y of the underlying speech models , the

resulting signa l processing al gorithm is op t imum in the sense tha t the

probability of a decision error is minimized . The advantage of this approach

is that the discrimination criteria are synthesized from the model , ra ther

than being selectet! on an ad hoc basis .

The classification prob l em is recognized as a Gauss-in-Gauss

detection problem for  w h i c h  so lu t ions  have been ca ta logued  by Van Ir ces .

The estimator-corr elator structure was chosen since it led most natura lly to a

practica l implement at ion. If p i tch I uforniat ion is available , add i t i ona l

. V~-V ~~~V V~V V~ -V~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ V V~~V V V V V V . . .~ ~~~~~~~~~~~~ . . . .
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discrimination can be provided in the voiced speech channel using a comb

filter tuned to the most rec ent estimate of the pitch.

The ab i l i ty to detec t the s i l en t  in tervals  (noise alone) means that

the statistics ofthec lutterc an he learned and used to implement adaptive

Wie n er f i l ters to enh an ce the speech signals prior to coding . In this mode

the adaptive prefilter can be used as a pre-processor for any narrowband or

wideband speech encoder .

An extensive experimental program was developed to evaluate the class-

ifier in a variety of acoustic noise environments inc luding shipboard noise ,

office noise , helicopter noise and noise in an airborne command post . The

results  for airborne command post noise are included in th is  paper .

II . MODELS FOR SILENCE , UNVOICED AND VOICED SPEECH

The basic problem of detecting the presence of silence, unvoiced speech

or voiced speech inagiven set of data can be formulated as a statistical

test for choosing one of the three hypotheses: V

H
1
: silence: y(n) = w ( n )

112: unvoiced: y(n) = u(n) + w(n) (2.1)

113 : voiced : y(n) = v ( n )  + w ( n )

where win) , u(n) and v(n) represent the nth sample of noise , unvoiced speech

and voiced speech waveforms r e spec t i ve ly .  Based on a set of observat ions

y(l ), y(2),... ,v(N) it is desired to develop a decision rule for determin ing

which of the three hypotheses “best ” cha rac te r i zes  the  da ta  set . Thi s is

the classification problem . In order to synthe size an opt imum decision rule V

in the sense that a classification is made with m i n i m u m  p r o b a b i l i t y o f error , 
V

- -- - - -V ~~~~~ .~~ . .
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it is n eces sa ry to develop s tat istical models that char ac teri z e the data for

each of the three speech events.

To begin with , the interference will be assumed to consist of simp ly

zero mean white Gaussian noise. Once the detector structure has been analyzed

and understood for this case the generalization to non-white noise spectra

follows almost by inspection .

In order to derive the structure of the c lass i f ie r  it suffices

to mod el the unvoiced and voiced speech waveforms as sample funct ions of Gauss ian

random processes having zero means and covariance funct ions R (k) and R (k)

respect ive ly .  In addition voiced speech is assumed to be quasi-periodic in

the sense that R~ (k÷T ) = R~~(k)  where T is the period of the process . This

means that almost every sample function is periodic with period T8.

The preceding discussioncan be summarized succinctly by the fo l low-

ing set of model l ing  equations . Under hypothesis H
i 

the observed data set

is g iven by:

y( n ) = s~~(n) + w(n)  i = 1, 2 , 3 ( 2 . 2 )

where s1 (n ) = 0 f or silen ce , s 2 (n)  is  a Ga uss ian  random process w i t h  mean :ei~ i

and covariance R (k)  for unvoiced speech and s .(n ) is a zero mea n quasi-

periodic  Gaussian random process w i t h  covarianc e func t ion  R
~

( k )  for voiced

speech. In a l l  cases the noise  term w ( n )  represents a zero mean Gauss i an

w h i t e  no ise  random process h a v i n g  the corre la t ion  func t i on  R
~~

( k )  =

III. THE OPTIMUM CLASSIFIER AGAINSt ’ W1IITF NOISE

The optimum classifier process’ s the raw speech dat.i y ll ), v ( l, ..

y (N) in such a way that a decision is made i%~ th minimum pro b abilit y of error
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on whether the given interval of signa l should be classified as voiced speech ,

unvoiced speech or silence. Using statistical decision theory the minimum 
V

V probability error decision rule is:

“Declare hypothesis H. to be true if and on ly i f the a p o s t er i o r i
probabil ity that H

~ 
i~ true conditioned on the observation set

V 
y (l), y(2),. ..y(N) is largest,” i.e.,

p[H j y ( N) , . . .  , y (l) }  = k = i , 2 , 3 p [H~~y (N)~~. . .~~y ( l ) ]

Signal processing configurations of the likelihood ratio test have been docu-

mented by Van Trees 7 . For the special case of ternary hypotheses , zero means

and stat ionary random processes the test is imp l emented by computing three

sufficient statistics denoted by L , i= l , 2 , 3. The f i r s t  component of the i t h

statistic is

N
= ~ y(n)  ~.(n) (3.1)

n=l

where ~.(n) is the linear least squares unrealizable estimate of the ith

signal s . ( n ) .  The bias component of the i th su f f i~ ient s t a t i s t i c  is

I G . ( f )

Bi = - ~ + df i= l , 2 , 3 (3. 2)

where I = N/F is the observation t ime of the process , F
~ 

is the sam pli ng r ate ,

G . ( f )  is the power spectrum of the i th  random process and N 0/2 is the two-sided

white noise spectra l density. The complete ith sufficient statistic is

S

_ _  _ _  _ _ _ _  _ _  -V ,— ,~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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9.. = 9. . +L. i=l ,2,3 (3.3)
1 ~~1 Iii

and the test consists  of choosing the largest of

9.. + 9.n P
1 i=l ,2,3 (3.4)

where P~ is the a priori probability that hypothesis H~ is true. The goal

now is to use the gross attributes of speech signals to simplify the computations

involved in imp lementing the likelihood ratio test.

Under hypothesis H~ , which corresponds to silence , the anticipated

signa l is s1
(n) = 0. Therefore ~

‘
1
(n) 0 whence 9. = 0, 9.B 

= 0 and =

1
The likelihood r.’tio test reduces ~o computing only two statistics

= + 2. + i~nP
2 

- 9nP~ (3.Sa)

~2 B2

9.3 = + 9~ ÷9~P - 9nP~ (3.5b)

in which only 9 and 9. involve the raw data, 9.B and 9.
B 

being fixed biases
y2 y3 2 3

reflecting the average energy in the ensembles of unvoiced and voiced speech

sounds. Letting

= - 

~~2 
- 9nP + lnP

1 
(3.6a)

A = - 9.. - 9nP~ + QnP (3 .6b)v 1

= - + 9. — RnP + RnP (3.bc)
uv 

~2 B3 
2 3

—. .—-. -V ~~~~~~~~~~~~~~~ 
V



the classification rule reduces to the following :

(1) If: 

~ 2 ~ 
and 2’y ~ 

(3.7a)

declare silence
(2) If: 2~,, > A~ or 2~, > and 2. - 9. > A (3.7b)

2 y2 )“3 ~~declare unvoiced speech

(3) if: 2. > ?~, or 9. and 2. -9. < A (3.7c)y2 y
3

dec lare voiced speech

In order to simplify the test further it is noted from (3.2) that

the bias terms 9.B and 9.
B are related to the energy in the ensemble of unvoiced

2 3
speech and voiced speech sample functions . If a global average is taken , the

voiced speech spectrum will have significantly more energy than that of

unvoiced speech which would contribute a negative bias in favour of the unvoiced V

speech hypothesis. Using this bias would be valid if voiced speech were truly

stationary . In fact however not only do the spectral properties change from

frame to frame but more importantly the amplitude undergoes a slowly increasing

and decreasing modulation at the beginning and ending of a voiced sound . Since

10-20 msec frames of speech represent the data base upon which a classification V

is to be mad e, then from a sample function point of view the energy in a frame

of unvoiced speech or a frame of voiced speech could be comparable. The

inclusion of the ensemble average energy bias term would therefore incorrectly

V favour unvoiced speech. Therefore the bias terms 9.~ and must be assumed V

2 3
to be equal. ~lnJer this condition the thresholds reduc e to

= - - ZnP 7 + 9.nP
1 (3.Sa) 

V

= - 9.
B 

- + 2nP (3.8h)

7

~~V~
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A = -2.nP
2 

+ 9.nP (3.8c)

where 2.
B ~~ = 2.B represents an unknown bias term related to the a priori

2 3
knowledge of the energy in the unvoiced and voiced speech signals.

Although the Bayesian detection theory demands that the bias term

arid priori probabilities be calculated , a more practical method for determining

the thresholds would be to train the system against noise and then choose those

values that keep the false alarm rate at a value consistent with the system

objectives. For example a much greater penalty is paid for failing to detect

speech than f al sely cl ass if ying noise as speech. Therefore the thresholds

most likely should be set close to the 1-sigma values of 2. and 9. obtained
y2 y3

during the noise training phase. This strategy is ideal for self-adaptive

tracking of the noise statistics should they be non-stationary. The voicing

threshold is most reasonably approximated by zero when the signal-to-noise

ratio is large or the noise is white. When this is not the case,

this threshold can also he trained to the 1-sigma value of 2. - 2.

y2

As a result of the preceding analysis the only s ta t i s t ics  that must

be calculated at each frame t ime are the correlations

N
2. = 1 y(ri) ~

‘.(n) i=2 ,3 (3.9)
y
~ n=l

where y(n) is the raw speech plus noise data and ~~(n) is the linear least

squares unrealizable estimate of s.(n) given that hypothesis H~ is true. Since

8
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the unvoiced and voiced speech waveforms are q -‘ci-stationary the filter that

results in ~
‘.(n) given that y(n) = s~~(1t) + w (n) has the transfer function

G. (f)
1-L(f) = (3.10)

1 G.(f) + N/2

The filters defined by (3.10) obtain enhanced discrimination against

noise by passing only those frequencies where the signal power is substantially

larger than the noise power. Enhanced voiced-unvoiced discrimination depends

on the implicit orthogonality of the two random processes as reflected by the

degree to which the spectral densities are correlated . Both of these detection

V statistics can be improved by capitalizing on the quasi-periodic properties

V 
of voiced speech. If the voiced speech process is periodic with period T then

the voiced speech power spectrum is more accurately represented by

G
3
(f) = C(f;T) Gy(f) (3.11)

where G
v
(f) represents the gross properties of the spectral envelope and C(f;T)

is a comb filter reflecting the fine structure of the periodic spectrum . if

the period is maintained for H periods then

C ( f ; T )  = 
sin (1~~fIfi . exp [jlr (M_i) f/I:] (3.12)

where I=l/T represents the pitch frequency. Not only does the comb filter

enhance the  vo iced  s p e e c h — t o — n o i s e  r a t i o  hut it a! sO n c r t :I~-es the orthogonal it v

of the  voiced and unvoiced  spectra . In order to i-~ p lo it the add it i o i i a  I d i  s-

en ml nat ion imp ! ic I t in the i-omh f ilt e r it is nece ’~’~;J rv t h a t  t h e  
~ 

t ch per od

he known. A discussi on of how the p itch is to he det c m i  ned wi l l  he d et ~~~r 1~~ V l

to  l i t e r  sec t l i n .

t)

~~~~~~~~~~~V V 
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Fig. 1. The optimum speech classif ier against whi te noise.
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Subject to the assumptions that the envelopes of the unvoiced and

voiced speech power spectra are known and that the pitch period for voiced

speech can be estimated then the optimum classifier can be implemented as

shown in Figure 1.

Of course all of thi s information is not available a priori and it will

be necessary to introduce approximations to the filtering and estimation

operations while maintaining the basic structure of the estimator-correlator

receiver . This will be the goal of the next section.

IV . PRACTICAL IMPLEMENTATION OF THE ESTIMATOR—CORRELATOR SPEECH CLASSIFIER
AGAINST WHITE NOISE

For voiced speech the optimum minimum mean squared error f ilter

has the transfer function

G (f)  C(f ;T)
H (f) = 

v (4.1)
V G~ (f)C(f;T) + N

0
/2

which passes those frequencies at which the signal power is substantially

larger than the noise power and rejects all others . Certainly the comb filter

in the denominator contributes to the defini t ion of those frequencies at

which noise rejection should occur . However , in white noise approximately the

sane rejection performance can be obtained by a cascade combination of the comb

filter and the least squares filter designed on the basis of simply the spectral

envelope . Therefore the voiced speech estimator filter is taken to be

G ( f )
II (f) = C ( f ; T )  . _Y._ (4.2)
V G (f) + N / 2

1!
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For unvoiced speech the estimator filter is

G ( f )
H ( f ) = 

U (4.3)
U G (f)+N/2

U 0

Setting i=2 for unvoiced and i=3 for voiced , the Wiener filters based on the

spectral envelopes for both cases can be written as

H.(z )  = 

k=~~~~
k ~

-k (4 .4)

where the coefficients a~ satisfy the Wiener-Hopf equation

k=-~~~ 
[ R . ( k - j )  + ~ k - j ) ]  = R . (j ) -~~< j < ~~ (4.5)

where a2 
= (N /2)F represents the energy in the noise process (F

5 
is the

sampling rate) and where R2(k), R3
(k) are the sampled data correlation functions

corresponding to the power spectra G
~~

( f ) ,  G (f)  respectively.  In practice

the correlation functions can be suitably truncated and then (4 .4 )  can be

efficiently solved using the Levinson recurs ion9 . Of course the solution re-

quires that the correlation funct ions for an ensemble of unvoiced and voiced

speech sample function s be computed for a large class of utterances and a

large class of speakers . In order to bootstrap the system initial classification

would have to be done manua ll y which would be extremely tedious and time con-

suming . In order to avoid this problem a more practical and robust strategy

is proposed based on the well known global properties of unvoiced and voiced

12
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speech spectra and a close examination of the filtering operat ion defined

in (4.2) and (4.3).

‘I he essence of the Wiener filter is to pass those frequencies at which

the speech power is substantiall y larger than the noise power. As a good

first approximat ion it seems reasonable to approximate the Wiener filter by a

passband filter that passes “most” of the energy in am unvoiced or voiced speech

sound . For unvoiced speech it can be assumed that “most” of the energy will be

above 1000 Hz while for voiced speech ‘ most” of the energy will be below

2000 Hz. While restricting the estimator filters to these frequencies improves V

the detection SNR of unvoiced and voiced speech , of at least equal importance

is the ability of the unvoiced filter to reject voiced speech and vi ce versa.

Since the first formant of voiced speech is approximately 1000 Hz then if the

cutoff of the unvoiced speech filter is above 1250 Hz then most of the unvoiced

speech energy will pass through the filter while a large fraction of a voiced

speech signa l will be attenuated . Similarly if the cutoff of the voiced speech

signa l is above 2000 Hz then most of its energy will pass through the voiced

filter while a substantial fraction of an unvo iced speech signal will be

attenuated . From this point of view it can be seen that it is crucial that

the input data to the classifier not be preemphasized since the higher formants

of a voiced speech signa l would take on the attributes of an unvoiced speech

waveform at the expense of good classifier performance. Therefore if

pre-emphas’is is to be used for speech ana lysis and synthesi s the data will

*
have to ui~dc’rgo di gital deemphasis prior to speech classificat ion.

13 
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Fig. 2. Practica l realization of the optimum speech classifier .
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On the basis of the preceding arguments the Wiener filter for unvoiced

speech will be approximated by a high pass linear phase digital filter whose

cutoff frequency is below 1250 Hz. For voiced speech a lowpass l inear phase

di gital filter having a cutoff frequency above 2000 Hz will be used . The linear

phast requirement is essential since the tempora l properties of the waveforms

must be preserved in order that a meaningful correlation operation be obtained . V

The practica l implementation of the optimum classifier against white noise is

shown in Figure 2. Vl~he detailed characteristics of the l inear phase filter s are

provided in t he  .V\ppendix .

Impl icit in the realization illustrated in Figure 2 is the estimation

of the pi tch period of :t voiced waveform so that the additiona l discr imination

inherent in the ,omb filter can be exploited . A further simplification in

processor complexity can he obtained simply by omitting the comb filter and

relying on the spectra l orthogonality of the two speech types. However, since

the periodic ity of the voiced speech process is a potentially powerful

c l a s s i f icat i on d i s c r i m i n an t , f or theor et i cal comp leteness , i t  is w o r t h w h i l e

to develop a practical algorithm to exp loit it. Since this necessitates

an est imate of the p i t c h  period , a br ief  e x p o s i t i o n  of an opt im um p itch

est imat ion  a lgor i thm w i l l  be presented .

V. OPTIMUM PITCH ESTIMATION

Voiced speech was modelled as a periodic random process in the sense

tha t  R
~

(k)  = R
v

(k+T) fo r some pitch period 1. This means that almost every

sample func t ion  in the ensemble is pe r iod ic  wi th period T. Therefore

the voiced speech si gn al , v ( n ) , can he model led  as

v ( n l  = q ( n )  . ( 5 . 1 )modi

15 
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where q ( l ) ,  q ( 2 ) , . . , q ( T )  are completely unknown . Of course to be fa i th fu l

to the random process formulation of voiced speech, the quantities q(k)

should be t rea ted  as correlated random variables . However to keep the

estimation problem ma thema t i ca l l y  tractable the correlation properties w i l l  be

ignored at first. The voiced speech data are therefore taken to be

v ( n )  = v(n) + w(n) (5.2)

where w(n)  repre.~ents  w h i t e  Gaussian noise and v(n)  is g iven by (5.1) .  Based

on N samples of thi s data the parameters q(l), q(2),. ..,q(T) and T are to be

estimated .

The above formulation of the pitch estimation problem was formulated

and solved by Wise , Caprio and Parks’0. Using the maximum likelihood estimation

rule they minimized the cost function

N
D(~ ,T) = L ~y (n )  - v(n)]

2

n = l

N 2 T M-i
= 1 y (n) - 2 E Z y(k+mT) v(k+mT)

n=l k= i  m=O

T M-l
+ E E v 2 (k+mT) (5 .3 )

k= 1 m=O

In order to simplify the derivation , it has been assumed that N=MT, N an

integer*. From the periodicity condition v(k+mT) = q(k)~~~~~ then (5.3)

reduces to

*The more genera l case  is ted i ous and contributes little to the fina l result.

lb  
V
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N ., T H-I  T
= E y (n) - 2 E q ( k) ~ y (k +mT) + M ~ q2 (k) (5. 4)

n 1  k=l m=0 k = l

S in ce t he bas ic  v o i c e d  speech waveform q(l),.. .,q(T) has been assumed

comp l e t e l y  unknown ti.e. , the correlation properties have been ignored *)

then , for the fixed T, the minimizing values are obviously

M-l
= ~ y(k +mT) ( 5 .5)

m=0

The estimate of the voiced speech waveform is therefore

~~n l N )  = 
~

(k) dT 
(S.h)

where the notation ~
‘(n lN) is used to denote the fact that all N measurt ments V

v ( l ) , y(2),...,y(N) are used in develop ing the estimate of the voiced speech

waveform v (n), n < N. In that sense , the estimator is unrealizable . The

corresponding minimum value of the likelihood function is V

N
9 (T) = E [y(n) - ~ (n f N ) 1 2 ( 5 .7a )

n=l

N , N ,
= E y~~(n) - E v’ (n l N) (S. 7b)

n=l n=1

Since ~‘(n IN) can he interpreted as the output of a comb f i l t e r  tuned to

pi tch  per iod T when y ( n )  is  the input , the n the  second ter’1~ in  (S .  T~h) s im p ly

*Tl1 c m~~ cii iT7~ise T~ t meat ed hv Mc Au 1 av

A realizabl e estimator that uses only the data  up to t ime  n i s

i N - i
~~( f ~ ~

) = ~ y ( n —Mi ’ )
m = 0

- . ~~~~ V V V - V  V
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represents the energy at the output of this comb filter . Therefore the V

opitmum estimate of the pitch period can be obtained by constructing a V

bank of comb filters each tuned to a slightly different pitch period and

choosing as the estimate the pitch corresponding to the comb filter for

which the output energy is l argest .

It is important to keep in mind the fact that voiced speech signals

are at best quasi-periodic; hence , there is a definite l imitation on the

number of periods over which the averaging process is a meaningfu l operation .

Since values of the p itch frequency generally fall within the range 70-300 Hz

corresponding to pitch periods 3-15 ms long, and since the time required for

a s ignif icant  a l t e r a t ion  in the vocal tract is approximately 20 ms , there

can be 1-7 repetitions of the voiced speech waveform . Therefore the number

of periods over which the data is averaged is a design parameter that must

be chosen to carefully trade off the estimation accuracy and the quasi- V

periodic nature of the voiced speech waveform.

A particularly important practica l case corresponds to the assumption

that the voiced speech waveform is periodic for two successive periods.

In this  case from ( S . S1 and (5.6) the maximum likelihood estimate of the voiced

speech signal is

~
‘(n IN) = [y(n )  + y (n - T) ]  (5 .8)

which from (5 .7a)  r e s u l t s  in the residual error

N 1 
N 2

9(T) = Y [y(n) - c i(n IN) 1~ 
= 

~~
- 

~~ [y(n) — y(n-T)] (S.9)

n=l n=l

18 
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t he es t i mate of th e p i tch per iod is then the value of T that minimizes 9(T).

This criterion has alroa~Jy been proposed for pitch estimation by Moorer
12

and Ross et al~~ except that the squared difference has been approximated

by the absolute magnitude difference function in order to achieve greater

dynamic range and computationa l speed . Experimental results have shown that the

quality of the pitch estimates is roughly equivalent to that of the cepstral

method and successfu l operation has also been demonstrated in strong noise

environments. For this reason it is conjectured that the (5.5)-(5.’) represent

a possible solution to the problem of robust pitch estimation . To see this

suppose that the true pitch period is T0
. Then the observed data is

y( n) = v ( n ;T0) + w ( n ) (5.10)

where v( n ;T0) = q (k)
0~~~

. The output of the comb filter tuned to pitch

V 
period T is

M- l M-l
~ (n ;T) = ~ v ( n -m T ; T  ) + E w(n-mT) (5.1 1) V

m=0 0 m=0

Th e noise signa l at the out put of the comb f i lt er is

H— 1
n ( n ;T)  = E w(n -mT) ( 5 . 1 2 )

m=0

As long as the correlation time of the noise process is less than the

minimum pitch period of interest , then if w(n) has var i ance 0
2

, fl(n;T)

will have variance 0
2/M . For the comb filter tuned to pitch T0 the output

signa l is

I ~~

— - - - -V  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _



_ _ _ _ _  - 
~~~~~~~~~~~~~~~~

-

~~ - 

~R~~~3 
-

~~~~~~~~~ TER ~~~~~~~~~~~~~~~ )
2

______  L J  PICK PITCH

2000 HZ Hz I 

LARGEST ESTIMAT E

V 

Fi g. 3. P r a c t i c a l  implementation of the optimum pitch estimator .
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~ (n ; T )  = q (k)~~~ 1 + ri (n;T ) (5.13)

Therefore there is a n M : l  increase in s ignal - to-noise  ratio as a r esu l t  of

usi ng the comb f i lt e r . Applied to the two-pulse canceller in (5.10)

(i .e. , the AMDF) a 3 dB improvement in SNR is obtained for the class of noise

processes whose correlat ion t imesa re  less than the minimum pi tch period

of in teres t .

Al though ori g in al l y proposed as a pitch es t imat i on cr iter ion based

on ad h oc considerat i o ns , the maximum l ikelihood theory shows that  ~he av erage

squared d i f fe rence  funct ion is optimum and robust when the voiced speech wave-

form is modelled as a de te rmin is t ic  quasi-periodic waveform with p e r i o d i c i t v

extending over two periods.  The major  l imi ta t ion  in using the two-pu l se

comb filter (i.e., the AMDF) is the not infrequent occurrence of pitch doubling

which occurs when the voiced speech is periodic for at least four pitch periods.

At the expense of increasing the i~ ngth of the speech buffer , an H-pulse

comb filter , H >3 , can be used to reduce the rate at which pitch doubling

errors occur .

A further enhancement in the pitch estimate can be obtained by using

the low pass voiced speech filter to increase the pitch estimator SNR . t h i s

corresponds to exp loitation of the globa l correlation properties of voiced

speech . The approximate matched filter configuration of the p itch detector

is shown in Fi gure 3.

\V j TIII ~ OPTIMUM CLASS IF IFiR AGAINST COLOU RED NO I~~L

There are several examples in which speech in non—whi to acoustic

background noise can be effectively classified using the algorithm that ~~~

2 1

~ 

. 
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defined to be op t imum against whi te  noise. In part icular  whenever the s igna l -

to-noise ratio is hi gh , the white noise classif ier  wi l l  yield acceptable

performance . There are some cases , par t icular ly  if the SNR is low and the

noise is highl y correlated , where s ignif icant  improvements can be achieved

b y taking the spectral  character is t ics  of the noise into account . In this

section the structure of the op timum classifier wil l  be derived for the coloured

noise case and then reasonable  practical approximations wi l l  be deduced in

order to s impl i f y t he  com p l e x it y of the signal processor.

For th i s  c l a s s i f i c a t i o n  problem the data corresponding to hypothesis

H~ is
1

y ( n )  = s . ( n )  + w (n) + w(n)  i = l ,2 ,3 (6 .1)
V i where wc (n) denotes the coloured noise present on al l  three hypotheses.

Note that a white no i se  component , w(n), is also incorporated into the model

to avoid mathematica l p roblem s relating to singular solutions . The standard

approach to this problem is to precede all of the processing by a whitening

V filter and then app ly the white noise solution . This was the approach

taken by McAulay~~ . Alth ough mathemat ic a l l y  correct , th is  approach encounter s

pract ical  diffi cul t i~~.~ because t he  w h i t e ning f i l t e r  e s sen t i a l l y  preemp has i z es

the speech data. \s has a l r e a ~I v  been d i s c u s s e d , this can cause the hi gher

formant s of vo i cod ~j o ~-h te acquire the sam e attributes as unvoiced speech

V wh ich makes  c l ; I s s i t i c V I t  ion d i f f i c u l t .  McAulay and Yates’4 have derived

an e s t i m a t o r - c o r r e l a t o r  c l i s s i f ior th at doe’~ not require  a whitening pre-

f i l t e r .  I)r aw i ng on t h e i r  re~i il ts and t~~~’se developed in Section III two

suf f i c i e n t st t t i s~ icc are com pu~~~1 . t h e y  ire

LV. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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N
= ~ z ( n) ~‘. ( n) i=2 ,3 ( 6 . 2 )

n= 1

where
tO

= E h.(n-k) y(k) i=2 ,3 (6.3)
k = -o~~’

is the l inear least squared error unrealizable estimate of s.(n) based on

the data y(n) = s~~
(n) + w (n) + w(n)  and where

z( n) = E h (n-k)  y (k ) ( 6 . 4 )
k=- ~ c

is the resul t  of passing y(n)  through the clutter rejection f i l t e r  h ( n ) .

It has been implicitly assumed that the speech and noise processes are independent

and quasi-stationary. The transfer functions of the filters are’4

C . ( f)
H . ( f )  = 

1 i=2 ,3 (6. 5)
G.(f) + G

~~
(f )  + N / 2

G (f) N / 2
H ( f )  = 1- c 

= (6 .6)
c G (f )  + N/2 G (f)+N /2

whe re C ( f ) , G 2 ( f ) , C 3 ( f )  represent the power spectra for the coloured

noise , unvoiced speech and voiced speec h processes re spec t ive ly .  The second

term in (6.6) is prec ise ly  the l inear least square s u n r e a l i z a b l e  es t imator  of

wc (n ) based on the  si gnal w (n) + w ( n ) .  The refore the  c l u t t e r  f i l t e r  a t t o i ~ t 1~

to remove the coloured n o i s e  from the data  before per forming the c o r r e l a t i o n

operat ion.  t h e  o p t i m u m  c l a s s i f i er s t r uc tu r e  i s  shown in Fi gure -2 . The

23 

V ..V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V



- V  _ V~~~ VV~~V~~~~~~~ V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - V-V

I UNVOICED
-~ WIENER

FILTER

N
Z z (n) u( n)

~~~y (n) - _ _ _ _ _ _ _ _  
z t n) 

~~~zI n2 ~~~~~ 

THRESHOLD

FILTER

r volcED i
s W IENER ~FILTER ]

___________ 
PITCH I

EST lM~~~~
J

Fig. 4.  The optinum speech classifier aga inst coloured noise.
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classification rule is similar to that derived for white noise, equation (3.7)

except that  the su f f i c i ent  s ta t i s t ics  are now R. and P~ instead of ~ and ~Z
2 

z3 y 2
VII. PRACTICAL IMPLEMENTATION OF THE ESTIMATOR-CORRELATOR SPEECH CLASSIFIER

AGAIN ST COLOURED NOISE
The arguments for simplifying the processing of voiced and unvoiced

speech proceed along the same lines as those made for the white noise case. In

par t icular , if knowledge of p i tch  is available the spectral harmonics of voiced

speech are matched by using a comb filter in cascade with the Wiener filter de-

signed on the basis of the spectra l envelope. Therefore the voiced speech estim-

ator filter is C (f)
H ( f )  = C ( f ; T )  v (7. 1 )

V G ( f ) + G ( f ) + N / 2v c

where C(f;T) is the comb filter tuned to the most recent pitch estimate , 1.

For unvoiced speech the estimator filter is~
C ( f )

H ( f )  = ( 7 . 2 )
U G ( f ) + G ( f )

U c

Lacki ng k now ledge of t he exact f orm of G (f )  and C (f) a good first approxima-v U

t i on is  to use the linear phase low pass (cutoff above 2000 Hz) and high pass

( cutoff  below 1250 Hz)  f i l t e r s  in the voiced and unvoiced speech channels

as was done in the whi t e  noise  case .  This insures the spectral ortho-

gon a l i t y  of the two speech channels  and enhances  the speech-to-noise r a t i o

whenever the  noise  spectrum l i e s  outs ide  the  f i l t e r  passhands.  For coloured

noise , however , it is possible that all of the noise energy will lie within the

f i l t e r passhands in w h i c h  CV ~~SO no speech enhanc ement w i l l  occur if  o n l y  the
* Fhc effects of the  a r t i f i c i a l  w h i t e  n o i s e  term have been neg lected at t h i s
poi nt s i nce  there  is no problem w i t h  s i n g u l a r  solutions. 
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fixed f i l t e r s  are used . Somehow additional processing tuned to rej ect the

clut ter  wi l l  have to precede the fixed f i l t e r s  In the speech channels.  To

develop a clue as to the  form of the clutter processor it is necessary to

reexamine (7.1)  and ( 7 . 2 ) .  Lettiii g G 2 (f)  G (f) and G3(f)  = G (f)  then the

unvoiced and voiced speech Wiener f i l t er s  can be wr i t ten  as

G . ( f)
H . ( f )  = (7.3)

C . ( f )  + G (f)

Real izat ion of these f i l t e r s  requires that the speech and noise spectra be

known . Since the noise statistics can be measured during the silent inter-

vals it is reasonable to assume that the c lutter spectrum is known.

Unfortunately a priori estimates of the speech spectra are not available unless

long term averages are determined from t ra ining sets. When detailed know-

ledge of the frequency distribution of the speech is unavailable a conservative

approac h is to model the speech as white noise thereby having a f la t  spectrum .

Letting

C . ( f )  = cx. i = 2 , 3 (7 .4 )

and substituting thi s in to (7~~ 3) results in the filters

cx .
II.(f) = i = 2 , 3 (7. 5)
1 G ( f ) + a .

C 1

Since I-I . ( f )~~ O whenever C ( f )  ~~> a . and i i .  ( f ) ~~ I whenever G ( f ) < <  tI
1 C 1 1 C 1

(7.5) can be interpreted as  a notch filter tuned to reject “most” of the

c lu t te r  energy . When the speech- to-noise  r a t io  (SNR ) is l arge l i t t l e

~ 
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clutter rejection is needed and a1 
should be large since this  results

in a passband filter . When the SNR is small , then the clutter must be

rejected whatever the cost in speech distortion which necessitates a small

value for cx.. It follows , therefore , the parameter a. should be pro-

portional to the speech-to-noise ratio. Since the clutter power is known

from the s i lent  intervals , estimates of the SNR can be made from the data

frame being analyzed . In th i s  mode the d i s t inc t ion  between voiced and

unvoiced speech disappears and only a sing le parameter value and clutter ~~lter

need be determined . In this sense the clutter filter represents an adaptive

pref ilte r  whose output , in a conservative sense, represents the best avail-

able estimate of the speech waveform.

The results of this discussion are sunmiarized in Figure 5 which

shows the practical realization of the optimum classifier operating agains t

a coloured noise background . Except for the clutter filters in the

reference and speech channels the processing is identica l to that used in the V

white noise case. Since selection of the tuning parameters a
~ 

and cx 
~ 

depend s

on the noise statistics further discussion regarding their selection will

be deferred to the section on experimental results.

The only problem that remains to be discussed is the calculation

of the clutter filter impu l se response from (7.5). The most straight-

forward approach is to solve the Wiener-Uopf equation

1 a rR ( k — i )  + :x c ( k — j ) J  ~~( j )  
_ <1< ‘ (7 . 6)

I—. 
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If the impulse response is truncated at 
~
p, the 2p+l coefficients , ak.

can be found by solving (7.6) numerically using the Levinson recursion .

Another approach is to fit an all pole spectrum to G
c

(f)  + a using

Linear Prediction techniques and use the spectral coefficients to determine the

clutter filter . For this method the LPC spectral estimate of G
~
(f) + a can

be obtained by solving

p
E ak [R (k- j) + aiS (k-j)] R~ ( j )  1 < j  < p  (7 .7 )
k=1 C

This equation can be solved e f f ic ien t ly  using the Levinson Recursion and

resul ts  in a p-pole f i t  to the clut ter  spectrum . The estimated spectrum is

aC ( z) + a  = ( 7 .8 )
C A (z)A*(z)

where

kA ( z )  = 1 - E a
k
z (7.9)

k=l

which corresonds to the Inverse Filter in the usua l LPC analysis. Sub-

stituting (7.8) into (7.5) results in the Wiener filter

11(z) = ~~
- A( z ) A~ (z)  (7 .10 )

Letting y(n) denote the input sequence and ~(n) the output sequence then

S( z ) = ~~
- A(z) A*(z) Y(z)

= A ( z )  X ( z )  ( 7 . 1 1 )

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -  V- --- — -- - V _ _--- --V. - V — --
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wh crc

X( z) = A * ( z )  Y ( z )  (7 .12 )

Since the LPC coefficients {a
k
} are real

kA* (z)  = 1 — 

~ 
a~ z (7.13)

k= 1

and
p

x(n) = y ( n )  - E aky( n +k )  (7 .14)
kol

A cxs( n) = ~~~ [x( n) - E akx (n k)J (7.15)

Therefore the u n r e a l i z a b l e  Wiener f i l t e r  can be implemented by the cascade

combination of an inverse f i l t e r  that  operates on p samp les of fu ture  data

and an inverse f i l t e r  that  operates on p samp les of past data. Therefore

a p-sample buf fer  must be ava i lab le  to provide for the future data. The

advantage of th i s  approach is that the length of the impulse response is

comp let e ly dete rmined on th e  basis of the number of poles required to f i t

the c lu t t e r  spectrum .

V I I I  . ~XPER IMENTAL R 1~SULJ S

The s i gna l processing concepts developed in the prev ious sections

were eva lua ted  e x p e r i m e n t a l l y  u s i n g  speech data that was corrupted h~-

Airborne Command Post (ACP) noise . No t o n l y  does t h i s  p rov ide  a good

pedagog ical too l for illustrating the filtering ideas hut it represents

an important real-world speech encoding d I V  i r onment w h i c h  i s not ad e tiia t el

solved u s i n g  s t a t e - o f — t h e — a r t  voc oder techri o logy .

61) 
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The noisy speech data was sampled every 132 ~~ec (7575 Hz)

and 158 samples were collected to define a 20 millisec. frame. Figure 6a

i l lus t ra tes  a 20 millisec sample function of ACP noise. Figure 6f

is a plot of the magnitude of its Fourier Transform measured in dB. The

correlation function of the mth frame (i.e., the current frame) of

noise data was computed from

N-i-k
R (k; m ) = ~ x(n) x(n+k) k=O ,1 ,...,p; m=l ,2,... (8.1)
y n=0

where x(n) is the Hamming weighted version of the input data y(n). A

first order smoothed correlation function was then computed from

= 
~~~m 

ER y
(k ; m ) + 

~ 
R~ (k;m-lfl (8.2)

1-Y

In general the weighting constant -y should be chosen to reflect the

quasi-stationarity of the noise random process. For ACP noi se y = .95

was chosen arbitraril y and seemed to produce good results.

From ((- .6) the clutter filter in the reference channel was

g iven by

a

a (m)
II (z ; m ) = 

c (8 .3 )
c G (z)+cx (m)

The im pu lse  re sr onse  ~~~V I S  fou nd us ing  Li n ea r Pr e d i c t i o n tec hn ique s as

d escr ibed i n  t h e  previou s se c t i o n .  This n e c e s s i t a t e s  so lv ing  the  Wiener-
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Hop f prediction equat ion

p 
— —E ak [R c (k _ j ; m )  + cx (m) 6 ( k - j ) ]  = R ( j ; m )  1 < j < p (8 .4)

k = l  — —

using the long term averaged correlation function computed at the last

frame ( i . e . ,  the mth fr anieL A whole class of clutter filters can be

obtained simp ly by varying the parameter cx (m). Typical transfer

functions from this class are shown in Figure 6g for three values of

It was found that the clutter filter defined for the value a
~
(m) = W (Ø;ni)

worked well for ACP noise. For other noise types other values would

probably be more appropriate. A little experimentation is therefore

required to tune the clutter filter to different noise processes .

The unvoiced and voiced speech channels are preceded by another

clutter rejection filter given by (7.5), namely

a (m )
H (z;m ) = G (z )  +~~~~~~~ ) 

(8.5)

where a
~ 

is chosen to be proportional to the speech-to -noise ratio

measured for the current frame of data (i.e., the mth frame). Since

R
y
(ø;m) represents a measure of the speech plus noise energy for the current

frame of data and since R (Ø;m) represents a measure of the long term

averaged noise energy, then a reasonable estimate for  the speech-to-noise

energy is

= R ( O ; m )  - R (Ø ;m) (8 .~~
)

V
., 1

_ _ _  
- - -- V - V - V —~~~~~~~
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It is possib le t ( i . ~ t the - net -ge i n any  one 20 m i l l i s ec samp le fu n ct ion

will be less than th e  c - r ipe clutter energy , especially if that sample

V function contains noise alone or noise plus unvoiced speech . Therefore

provision must be i~ J .  to bound the clutter notch parameter ~ away

from zero.  A r t - a u - r  ~( - l e  scheme i s  to pick

~~ n i)  = I~~I X  [ ~ m ) ,  
~c (mfl (8 .7)

which guaralitccu that the s p e e c h - c l u t t e r - f i l t e r  notch w i l l  never be

deeper than that in the referenc e channel. As before the impulse res-

ponse was found using the Line ar Prediction power spectrum which was

obtained by solving ‘he l%iener-Elop f predictor equation (8.4) using

a instead of
5 C

The output of the speech clutter filter was then used as the

input to the high-p :iss and low-pass filters characterizing the unvoiced

and voiced speech processing channels respectively. The filters were

both 21- tap lincH phase di gi tal filters designed using the Parks-McClellan

algorithm 15
. I h c  impul se responses and frequenc y characteristics are spe-

ci f ied in the  .\ ppcnd  i .~ No I t  t empt  was m ade to  o p t i m i z e t he filter

design.  The out  j o  s of the re f erenc e channel  c l u t t e r  f i l t e r  ~ i~~) and t h e

unvoiced and vu i ced ~gecch f i l t e r s  ~ (n ) , ~ (n)  are shown in Fi gures  ~b , cc

6d. A ccor d ing to e u - n i t  ion ( U .  .~~~ the  outputs of the  speech f i l t e r s  were

then co r r e l a t ed  a i  rh th e output of the  re ference channel  c l u t t e r  f i l t e r

to form t h e  de t ect  t e I t  s t  it  1st ics:

6-1
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= ~ z ( n ) G ( n )  (8 .8a )
n = l

N
~2 (n) = E z ( r i )~~(n ) (8 .8b)n — i

Q.~~(m) = 
~~
(m) - R. (m) (8 .8c)

It shou ld be noted tha t  t he  comb f i l t e r  has been left ou t of the  voice d

speech processing channel. This decision was made to show that good

classifier performance could be obtained without having to make a pitch

estimate which simplifies the classifier processing which is necessary for

some appi icitions .

The detection thresholds were obtained by driving the  system

with ACP noise for 15 data frames (.3 sec). This is the only training

cycle required by the processor and should be relatively easy to meet

in practice because there is always a speech free interval before a

talker actually speaks into the encoding device after having turned the

machine on. Averaged detection statistics for the training noise are

computed from

= [~~jm) + yZ. (m-l)J 1=1 ,2 ,3 (8.9)

w i t h  y =  .9 5 u S  b e t or e .  -rh~ detection thresholds were then chosen

to he

1 ( m ) = 1 .5  ~~(m) i=l ,2
( 8 . 10)

~~(m )  = ~1
(m) Q (m ) 

V

which a 11 uc~i for  moderate s t a t  i 5t i cu 1 f luct itat ions. -\ ft em - t h e  f i  r u t

15 dat a f r ames  of no I st . have  been proc es-~ed (m= 15) and t h e  in i t  i a 1

t h r e sh o l d  - e t t i f l g  c t m j u i t r u ! , the c l . i s u i f m c : t t  ion  proc ess i s  i n i t i a t e d .
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The next  f rame of data is processed and the detection statistics Q. (m+l)

are computed . I f  i~1 (m -+-1 ) < 1
1 (m) and Z,( m + l ) <  X

2 (m) then the  data are

classified as silence and the clutter correlation function , (8.2) and the

detection thresholds (8.9) and (8.10) are up-dated . If Z1
(m+l)~~X1 (m)

or R
2
(m-s-l) >A

2(m) then speech is declared present and neither the clutter

correlation function nor the detection thresholds are changed . No

up-dating is done until the next frame of silence is detected . This

procedure allows the classifier to track noise processes whose statistics

vary slowly with time. Such a classifier structure is often referred

to as a decision-direc ted detector since it tells itself when to alter

its structure . It becomes evident therefore that the detection thresholds

should be set low even at the expense of a high false alarm rate (declaring

noise as speech is a false alarm) . It would he a more serious error

if the classifier dec lared speech as noise sinc e then all the clutter

filters and detection thresholds would he tuned to r e j ec t  speech.

Fortunately this mali gn event rarely occurred for ACP noise and when it

did the noise always completel y overpowered the speech so that litt l e

change in the filter structures occurred .

The e f f e c t s  of the three filtering channels on the three speech

types will he e x am i n e d  for some t v p i cal cases t o  develop a fec-I ing for

t h e  c l a s s i f i e r  oper a t  i on . F i gure  mu I is a p lo t  of a 2( 1 n i l  l i s e e  I n p u t

s ample  f un c t  i O fl  o t  ALP n o i  St.’ . F i p u r e  u l  i s  t h e  correspond I I I p  s h o r t  —

t e r m  power spoct rum . F i gore up is a p lo t ot t h e  adaptive c h i t  t er f i  I t  er

r .IIlut em f u n d  ion in  the r e fe r e nc e  channel (the adapt ivi’ p r e f i  l t  C r )

3(1

~
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V For ACP noise inpu t , it has adapted in such a way as to make a -10d B

null at the clutter frequencies . Figures 6b , 6c and 6d show the

V respective output s of the reference channel , the high-pass filtered

unvoiced speech channel and the low-pass filtered voiced speech channel.

As was described in the previous section the output of the speech

channel clutter filter represents a minimum mean squared error estimate

of the inpu t speech . Fi gure Oe shows a plot of the pre filter output

in response to ACP noise at the input . Of course , with high pro habi lit-c

the classifier will classify the frame as silence , hence one has the

option of setting the prefilter output to zero which removes the residua l

noise comp letely.

Although the comb filter discriminator was not used in the

classifier it remains of interest to evaluate the robustness of the maximum

likelihood p itch estimator in ACP noise. This was done by appl ying

the output of the low pass filter , ~(n), to a hank of two-pulse comb

filters covering the r ange  from 70 to 300 FL. Figure oh is a plot of

the energy at the outpu t of the comb filters as a function of the p itch

period for the ACP noise sample.

The same sequence of data are p lot ted in Fi gures 8 and 9

for 20 mil l isec frames of u nvoiced and voiced speech respectivel y .

F i gu re s  Ta and V.
(

V 
show that the u nvoic ed speech —to—noise ratio is less

t h a n  0dB ( i t  i s  roug h l y  —3 dB ) \V (V t  F i g u r e  Te sho w s  that t h e  p r e h i lter ha s

remov ed a S i p u m i  t i c a n t  por t  ion of t h e  c l i n t  t e n ’  w a v e l o l - I n  w h u  he i i  101% l i m p

t h e  m i n v o n  cod s1n-ech waveform t o  j~:I S S  rd  i t i ve lv m ind i stui rhed . I - j i m m i e s  ~.I

V

V - V  ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



r 

--- ----

~ 

. V V V V ------—- -- -

~~~

-- - --

~~

-----

~~

- . 
_ _ _ _ _ _

(a) UNVO ICED SPEECH SAMPLE FUNCTION (t) UNVOICED SPEECH POWER SPECTRUM

- 
0

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
- 

. . .. F~ ’7576 Hz
- 

: . :.
V . .-.

-
~~~~ 

- •‘-:

(b) REFERENCE CHANNEL SIGNAL : - 
V .:: 

.:
V -30 I ~~~~~~~~~~ ~~~~~~~~~~~~ .

V — —-—-— 0 F F R E D
V 2

(g) PREFILTER FREQUENC y RESPONSE
(c) UNVOICED SPEECH CHANNEL SIGNAL 

_ __ __ _ __ _ _  
____________

V — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 

~~ ~:

-20 -

(dl VOICED SPEEC H CHANNEL SIGNAL -~o J .  . . . _ _ _ _ _ _

0 F FRED
~~~~~~~~~~~~~~~~ 

,.~v...--..-.— - - - ...- V - - - —
2

(h) COMB FILTER RESPONSE

(e) PREFILTER OUTPUT SIGNAL
Li - .-

~~~~~ V :V V V .
V V :V

V V~ :, V~~~V : . ~~~
V
:;::

V
::

V
:V V:VnV ~~/V V V V. : -~~~ __________

V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Q T~~ 1 0. P I T C H  P E R I O D
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and 8f show tha t the voiced speech-to-noise ra t io  is qui te  large ( i t

is roughly 9dB). Figure 8g shows that the prefilter transfer function

is adjusted to al low most of the speech to pass even though its spectrum

overlaps that of the ACP noise. This shows the advantage of the adaptive

prefilter . Had a fixed clutter filter been used , the voiced speech

waveform would have been distorted unnecessarily. Figure 8h shows

that the pitch estimate is perturbed very little by the presence of

ACP noise. In general it was found that the only significant pitch

errors were the effects of pitch doubling which occurred intermittentl y

near the ends of a voiced sound . l igure Se shows how the prefilter attempts

to reproduce the voiced speech waveform .

Having established the basic characteristics of the classifier

the next step is to evaluate the frame-to-frame performance when an

ACP noise corrupted utterance is applied to the input . Classifi cation

errors were obtained by determining the true speech type by visually

examining the waveform , power spectrum and comb filter energy contour

for each 20 millisec sample funct ion. Statistics were accumulated

for a total of 3 utterances spoken by 3 male speakers in different ALP

noise environments. The results are tabu l at ed in  Table 1. F rom the se

results the false alarm probability (declare speech given silence ) is

e s t i m a t e d  to he ¶1~ V )
~~ . V l h e  m i s s  pr ohah i i i  t v  (dccl- re si I ence g i ~‘en

speech ) is  2 .3’ . The m i s s e s  ma july occurred ror u n v o m  cod speech that

had been c o m p l e t e l y  o v e m - p o w e  red h -tv the 001 se I — — 1(1d b gNR ) . I i-roneoml s

c l a ss  i ficat ions (you Led4- ~~ i m m v o  iced ) ot.- t.-mu rr ed I t  t h ~ m i t - el ~

-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - V V
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a frame represented a mixture of voiced and unvoiced speech the classifier

a lways  chose in favour of voiced speech. This event could be reduced

significantly by reducing the frame period (10 mi llisec Versus 20 mi llse c).

-\lthoug h these statistics have been gathered for a relatively ~m al l

ensemble , the genera l impression is that the perf- rmanc e is quit e good .

Another aspect of the experimental program was the recovery

ar id synthes is  of noise-corrupted speech us ing  Li near P r e d i c t i o n

techn iques. The voiced-unvoiced decisions and the pitch estim ates were

derived using the methods described in this paper . The LPC filter

coefficients were estimated from the prefilter output waveform . For

the  case of noise-corrupted unvoic ed speec h , F i gu re ~ for examp le ,

the pr ef ilter output is shown in Figure 7e. I t s  short term power

spectrum is shown in Fi gi’re 9 which when compared with that for the input

unvoiced speech plus ACP noise , Figure Tf , clearly demonstrates the

action of the a d a p t i v e  prefilter in eliminating the clutter. The LPC

power spect rum e s t i m a t e  is also plotted on Figure 9 and shows that

the synthetic speech is likely to reproduce the origina l unvoiced speech.

Of course the ACP noise will cause the spectra l estimat e to he somewhat V

di storted hut  the perception of t he  add it ice ALP noise will have

disappeared . It is for this reason that the synthetic speech j s  perceived

to he ‘‘noise—free’’ .

Si mi lar resin Its are ~m ht iin ed for the vo i ct- it speech s ii:i ~t I e l i i i I . t  i on

shown in F i guire Sa . The short - t e m i  powe r spec t rumn of t lie rre I liter out  put

F i g u r e  ~c , i s  p l o t t e d  i n  F i g u r e  10 and s h o u l d  h i -  compared w i t h  t h e  .- o i c e ~h

speech p I u s  n o n  so power spec ) r unt - I u t~~m m  i i i  F i  ~ :ro  s f •  The c o r r t - sp o n d n

L
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LPC spectrum shown in F i gure 10 shows the  d i s t o r t i o n  in the f i r s t

format due to the presence of t he  A L L’ n o i s e .

LPC synthetic sp eec h was generated for a number of utterances

recorded in ACP noise . Compared to IVPC speech in which no adaptive

prefiltering was employed , an improvement in  inte i l i g ihil it s

was obtained .

IX. CONCLUSIONS

Using statistical decision theory a new speech classification

algorithm has been developed in the form of an estimator-correlator

receiver. The structure is robust in the sense that it can adapt

to time-varying noise fields in which the signal-to-noise ratio can be

quite low (less than 10dB). For noiseless speech the classifier simply

involves two fixed filters and requires no pitch estimation or linear

predict ion analysis parameters. For noisy speech clutter filters must

he added to the speech and reference channels. The reference clutter

filter is developed on the basis of an initial .3 sec sam p le of noise

data  while the other adap t s  to the speech plus noise statistics

ca l c u l a t e d  for each f rame.  I f  a f rame i s  c l a s s i f i e d  as noise , the

reference channel filter is up-dated so tha t t i m e  varying noise

s t a t  i sties can he tracked .

The Output of t h e  speech channel c i  m i t t  er f~ 1 ter represents

an improved est i nmate of the inPut sp eech in the sense that much  of

the add itiv e noise has been c a n c e l  I ed f r o m  t e S ~f I L l  1 . By a p p i v i  ng

Li near Predict ion techni ques to t h i s waco  torn , more h i t  &‘ I Ii g i h i e

-e. r m t  b e t  ic sj ’ t - ( - c J m  can he o b t a i n ed .
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A relatively thorough ‘(non-real-time) evaluation of the classifier

and adaptive prefilter was conducted for Airborne Command Post noise

and surprisingly good results were obtained . Based on a limited number

of listening tests, the LPC synthetic speech using the prefilter

output was found to be more intellig ible than the LPC synthesis

of the original noisy speech.

No attempt was made to optimize the design of the fixed

voiced (low pass) and unvoiced (high pass) filters. In this stud y

2l-tap linear phase filters were used . A better approach would be to

obtain long term statistics for voiced and unvoiced speech and p ick the

filter length and passband edges to more closely represent the average

spectral properties . Another useful  stud y would be to invest igat e the

possibility of using recursive filters with phase compensation to

further simplify the processing .

Although a first order attempt was mad e to improve the desi gn

of the clutter filters , other methods are undoubtedl~’ possible.

Mditional insi ghts are also needed in the selection of the clutter

filter design parameter; in this note trial and error was used to m ake

the selection .

Of course , the real test of any speec h p r o c e s s i n g  a l g o r i t h m

is obtained in a real-time env i ronment. This is the focus of the current

effort .
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APPENDIX

The unvoiced and voiced speech Wiener filters were approx-

imated by 21-tap linear phase high and low pass filters designed using

the Parks-McClellan algorithm . The impulse responses used in the

experimental program are given in Table 2 (h(n) = h(-n)). The

magnitude of the frequency responses are shown in Figures 11 and 12.

TABLE 2

IMPU LSE
RESPONSE UNVOICED FILTER VOICED FILTER

h( 1)  -0 . 2 15 l l 0 b 7 E - O l  -0 .38655 56 8E-02
h ( 2 )  O .5593974lE -02  -0. 320 53679E-01
h(3) O.2l66l893E-01 0.23418449E-Ol
h(4) O.3931O634E-01 0. 13665602E-01
h(S) O.45899481E-01 -0. 4 l99 165E-0l
h(6) 0. 29383000E-Ol 0. 73566O64E-02
h(7) -0. 15331455E-Ol 0.66053927E-Ol
h (8) -0. 82 1 91288E-01 -0. 6S4 S752 3F -01
h ( 9 )  -0. lS4- iS ~ S5E+oo -0 .  8454346 7F-Ol
h(lO) -O .21035391E+OO 0.30347985E+00
h(ll) 0.76869851E+O0 0.59147525E+0O
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