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\ ABSTRACT

The problem of determining whether a given interval of a speech
signal should be classified as voiced speech, unvoiced speech or silence
is formulated as a test of statistical hypotheses. A robust detector is
obtained by modelling the speech and the acoustic background noise signals
as correlated Gaussian random processes. The methods of statistical decision
theory areapplied to these models to synthesize an optimum, minimum probability
of error, classifier.

The optimum classifier is an estirator-correlator receiver which is
well approximated using a linear phase hign pacss filter in the unvoiced channel
and a linear phase low pass filter in the voiced channel. A clutter filter
appears in the reference channel which tries to eliminate as much noise as
possible before forming the unvoiced and voiced correlations. The statistics
of the noise are learned during the silent intervals which makes the classifier

adaptive to time-varying noise statistics.

Knowledge of the clutter correlatiofN.function permits implementation

of adaptive Wiener filters which are used to eNiminate as much noise as possible
prior to the determination of pitch and the estggation of the LPC filter
coefficients. The clutter filtered voiced speech signal is then passed through
a bank of comb filters and the pitch estimate chosen to correspond to the filter
for which the output energy is largest. It is shown that this pitch estimation
strategy is optimum and robust as long as the correlation time of the noise

is less than the minimum pitch period of interest. g=i=mwimo o v g
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The robust LPC vocoder is evaluated experimentally for Airborne
Command Post noise for which the unvoiced speech signal-to-noise ratio
is often less than 0 dB. Based on listening tests comparing the input speech
plus noise, versus standard LPC synthesis techniques versus the robust LPC
vocoder, it is concluded that rather dramatic improvements in speech intell!
gibility can be obtained at the expense of a marginal increase in computatio

time.
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j 5 INTRODUCTION AND SUMMARY

There are a variety of applications in which it is necessary to be
able to classify a given set of speech data as corresponding to voiced speech,
unvoiced speech or silence. For the synthesis of speech using Linear Predictive
Coding (LPC) teshniquesli4, for example, it is necessary that the speech signal
be classified as voiced or unvoiced. This information is transmitted to the
speech synthesizer along with coefficients that represent an all-pole linear
filter model for the vocal tract. For voiced speech the filter is excited
by a periodic train of impulses, whereas a white noise excitation is used
when unvoiced speech is to be synthesized.

The ability to detect silence is of interest in digital communications
in which channel capacity is at a premiums. By detecting intervals of silence,
other data streams can be interleaved with the speech conversation thereby
maximizing the utilization of the available bandwidth. Another application of
silence detection arises in conferencing situationss. By detecting when a set
of speakers are silent, their lines can be disconnected from the superposition
of inputs so that an enhancement of synthesizer input signal-to-noise ratio
can be obtained.

Solutions to the classification problem have, for the most part, been
developed on an ad hoc basis in which an individual discriminant is proposed
which seems to characterize in one way or another the attributes of the three
possible speech events. In a recent paper, Atal and Rahinerb have proposed
an algorithm that simultaneously computes five of the most significant dis-
criminants and uses a hypothesis testing strategy to assign a given set of
observations to one of the three speech classes.
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With few exceptions, most notably the work of Atal and
Rabiner, most of the spcech research reported to date has dealt
with a speech environment that has been carefully controlled in the
sense that background noise and interference signals have been eliminated
from the speech. It is generally known that the intelligibility of modern
vocoders is seriously degraded when noise and interference signals are super-
imposed on the speech datas. Since there are many practical problems in which
noise and interference arise, it is of interest to develop more general speech
processing techniques designed to eliminate the noise as much as possible.

In this paper it is assumed that the speech signals are corrupted
by additive Gaussian noise that may or may not be white. The unvoiced speech
signal is modelled as a zero mean Gaussian random process having a known
covariance function. Voiced speech is modelled as a zero mean Gaussian
quasi-periodic random process. Using these models as a starting
point the classification problem is formulated as a statistical
hypothesis test and solved using statistical decision theory.
Subject to the validity of the underlying speech models, the
resulting signal processing algorithm is optimum in the sense that the
probability of a decision error is minimized. The advantage of this approach
is that the discrimination criteria are synthesized from the model, rather
than being selected on an ad hoc basis.

The classification problem is recognized as a Gauss-in-Gauss
detection problem for which solutions have been catalogued by Van Frces7
The estimator-correlator structure was chosen since it led most naturally to a

practical implementation. If pitch information is available, additional
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discrimination can be provided in the voiced speech channel using a comb
filter tuned to the most recent estimate of the pitch.

The ability to detect the silent intervals (noise alone) means that
the statistics of the clutter can be learned and used to implement adaptive
Wiener filters to enhance the speech signals prior to coding. In this mode
the adaptive prefilter can be used as a pre-processor for any narrowband or
wideband speech encoder.

An extensive experimental program was developed to evaluate the class-
ifier in a variety of acoustic noise environments including shipboard noise,
office noise, helicopter noise and noise in an airborne command post. The
results for airborne command post noise are included in this paper.

EF. MODELS FOR SILENCE, UNVOICED AND VOICED SPEECH

The basic problem of detecting the presence of silence, unvoiced speech
or voiced speech inagiven set of data can be formulated as a statistical

test for choosing one of the three hypotheses:

HI: silence: y(n)

H,: unvoiced: y(n)

w(n)

u(n) + w(n) (2.1)

H,: voiced: y(n)

3 v(n) + w(n)

where w(n), u(n) and v(n) represent the nth sample of noise, unvoiced speech
and voiced speech waveforms respectively. Based on a set of observations
v(l), y(2),...,y(N) it is desired to develop a decision rule for determining
which of the three hypotheses ''best" characterizes the data set. This is
the classification problem. In order to synthesize an optimum decision rule

in the sense that a classification is made with minimum probability of error,




it is necessary to develop statistical models that characterize the data for
each of the three speech events.

To begin with, the interference will be assumed to consist of simply
zero mean white Gaussian noise. Once the detector structure has been analyzed
and understood for this case the generalization to non-white noise spectra

follows almost by inspection.

In order to derive the structure of the classifier it suffices
to model the unvoiced and voiced speech waveforms as sample functions of Gaussian
random processes having zero means and covariance functions Ru(k) and Rv(k)
respectively. In addition voiced speech is assumed to be quasi-periodic in
the sense that Rv(k+T) = Rv(k) where T is the period of the process. This
means that almost every sample function is periodic with period T8.

The preceding discussioncan be summarized succinctly by the follow-
ing set of modelling equations. Under hypothesis Hi the observed data set
is given by:

y(n) = si(n) + w(n) 2 S e (2.2}
where sl(n) = 0 for silence, sz(n) is a Gaussian random process with mean zero
and covariance Ru(k) for unvoiced speech and ss(n) is a zero mean quasi-
periodic Gaussian random process with covariance function Rv(k) for voiced
speech. In all cases the noise term w(n) represents a zero mean Gaussian
white noise random process having the correlation function Rw(k) = 026(k).

B THE OPTIMUM CLASSIFIER AGAINST WHITE NOISE

The optimum classifier processes the raw speech data y(1), y(2),...

y(N) in such a way that a decision is made with minimum probability of error
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on whether the given interval of signal should be classified as voiced speech,
unvoiced speech or silence. Using statistical decision theory the minimum
probability error decision rule is:

"Declare hypothesis Hi to be true if and only if the a posteriori

probability that Hj iS true conditioned on the observation set

y€1), ¥(2),---y(N) is largest," i.e.,

max
P[H1|Y(N),--»Y(1)] i k=1,2,3 P[Hkl)’(N),---,)’(l)]

Signal processing configurations of the likelihood ratio test have been docu-
mented by Van Trees7. For the special case of ternary hypotheses, zero means
and stationary random processes the test is implemented by computing three

sufficient statistics denoted by Ri’ i=1,2,3. The first component of the ith

statistic is
N
2 .= % ym s.(n) (3.1)

where §i(n) is the linear least squares unrealizable estimate of the ith

signal si(n). The bias component of the ith sufficient statistic is

o0

T 6y (£)
R, = - = - i= 2 r'4
Bi 3 fnn (1 + N°72—] aE 1=1,2.3 (3.2)

-

where T = N/FS is the observation time of the process, FS is the sampling rate,
Gi(f) is the power spectrum of the ith random process and NO/Z is the two-sided

white noise spectral density. The complete ith sufficient statistic is

w
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li = ’Lyi ”Bi i=1,2,3 (3.3)
and the test consists of choosing the largest of
Ri + 2n Pi i=1,2,3 (3.4)

where Pi is the a priori probability that hypothesis Hi is true. The goal
now is to use the gross attributes of speech signals to simplify the computations
involved in implementing the likelihood ratio test.

Under hypothesis H , which corresponds to silence, the anticipated

l’

signal is s,(n) = 0. Therefore §, (n} = 0 whence & = 0, RB = 0 and R, = fpP
i 1 Yy 1 1

The likelihood ratio test reduces fo compnuting only two statistics

1

22 = 2),2 + x,Bz + MnP2 = JlnP1 (3.5a)

P
1]

[ +nP_ - &P (3.5b)
Y3 QBS 3 1

in which only ¢ and % involve the raw data, &, and % being fixed biases
Y Y3 By Yy

reflecting the average energy in the ensembles of unvoiced and voiced speech

sounds. Letting

)\l = - QB i 5znP2 + sznP1 (3.6a)
2

\ = - Q,BS -~ P, + P, (3.6b)

xuv = - QB7 + QB; = anz + 9nP3 (3.6¢)
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the classification rule reduces to the following:

¢Ly  If: < and < .
23'2 = Au n 2y3 & >\, (5.7a)
declare silence
{2y If: > or > and ¢ - % > A (3.7b)
P yyo N o B
declare unvoiced speech
(3} ¥f: L > (e e A and & -2 <
yz Au ¥ Av n Y, y3 Auv (3.7¢e)

declare voiced speech

In order to simplify the test further it is noted from (3.2) that

the bias terms QB and QB are related to the energy in the ensemble of unvoiced
2 3

speech and voiced speech sample functions. If a global average is taken, the
voiced speech spectrum will have significantly more energy than that of
unvoiced speech which would contribute a negative bias in favour of the unvoiced
speech hypothesis. Using this bias would be valid if voiced speech were truly
stationary. In fact however not only do the spectral properties change from
frame to frame but more importantly the amplitude undergoes a slowly increasing
and decreasing modulation at the beginning and ending of a voiced sound. Since
10-20 msec frames of speech represent the data base upon which a classification
is to be made, then from a sample function point of view the energy in a frame
of unvoiced speech or a frame of voiced speech could be comparable. The
inclusion of the ensemble average energy bias term would therefore incorrectly

favour unvoiced speech. Therefore the bias terms QB and QB must be assumed

2 3
to be equal. !Inder this condition the thresholds reduce to
Au = - QB - QnPZ + SlnPI (3.8a)
e - - LnP L
AV QB n!3 + nP1 (3.8b)




Auv = —lnP2 + SlnP3 (3.8c)

where QB =RB = QB represents an unknown bias term related to the a priori
2 3

knowledge of the energy in the unvoiced and voiced speech signals.

Althoughthe Bayesian detection theory demands that the bias term
and priori probabilities be calculated, a more practical method for determining
the thresholds would be to train the system against noise and then choose those
values that keep the false alarm rate at a value consistent with the system
objectives. For example a much greater penalty is paid for failing to detect
speech than falsely classifying noise as speech: Therefore the thresholds
most likely should be set close to the 1l-sigma values of %é and 2y3 obtained
during the noise training phase. This strategy is ideal for self-adaptive
tracking of the noise statistics should they be non-stationary. The voicing
threshold Auv is most reasonably approximated by zero when the signal-to-noise
ratio is large or the noise is white. When this is not the case,
this threshold can also be trained to the l-sigma value of £ - & .

Yo T3
As a result of the preceding analysis the only statistics that must

be calculated at each frame time are the correlations

b
"
M=

y(n) §m  i=2,3 (3.9)

i n=1

where y(n) is the raw speech plus noise data and §i(n) is the linear least

squares unrealizable estimate of si(n) given that hypothesis Hi is true. Since

s b b -




the unvoiced and voiced speech waveforms are g:~si-stationary the filter that
results in é}(n) given that y(n) = si(w) + w(n) has the transfer function
G. (f)
H, (f) = E"Ii}“:’ﬁ‘?i (3.10)
1 o
The filters defined by (3.10) obtain enhanced discrimination against
noise by passing only those frequencies where the signal power is substantially
larger than the noise power. Enhanced voiced-unvoiced discrimination depends
on the implicit orthogonality of the two random processes as reflected by the
degree to which the spectral densities are correlated. Both of these detection
statistics can be improved by capitalizing on the quasi-periodic properties
of voiced speech. If the voiced speech process is periodic with period T then

the voiced speech power spectrum is more accurately represented by

Gz(f) = C(f;T) Gv(f) (3.11)

where Gv(f) represents the gross properties of the spectral envelope and C(f;T)
is a comb filter reflecting the fine structure of the periodic spectrum. If

the period is maintained for M periods then

1 sin(™f/F) .
. o5 0 et LT S (M- : 2
C(f;T) M (TE/T) exp [jT(M-1) f/F] (3.12)
where F=1/T represents the pitch frequency. Not only does the comb filter
enhance the voiced speech-to-noise ratio but it also increases the orthogonality 1
of the voiced and unvoiced spectra. In order to exploit the additional dis-

crimination implicit in the comb filter it is necessary that the pitch period
be known. A discussion of how the pitch is to be determined will be deferred

to a later section.
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Fig. 1. The optimum speech classifier against white noise.

10

R bl it i i i e o

=N S S A
SRR VT




Subject to the assumptions that the envelopes of the unvoiced and
voiced speech power spectra are known and that the pitch period for voiced
speech can be estimated then the optimum classifier can be implemented as
shown in Figure 1.

Of course all of this informationis not available a priori and it will
be necessary to introduce approximations to the filtering and estimation
operations while maintaining the basic structure of the estimator-correlator

receiver. This will be the goal of the next section.

IvV. PRACTICAL IMPLEMENTATION OF THE ESTIMATOR-CORRELATOR SPEECH CLASSIFIER
AGAINST WHITE NOISE

For voiced speech the optimum minimum mean squared error filter

has the transfer function

G, (£) C(£;T)
H (£) = (4.1)
G, (E)C(£5T) + N_/2

which passes those frequencies at which the signal power is substantially
larger than the noise power and rejects all others. Certainly the comb filter
in the denominator contributes to the definition of those frequencies at
which noise rejection should occur. However, in white noise approximately the
same rejection performance can be obtained by a cascade combination of the comb
filter and the least squares filter designed on the basis of simply the spectral
envelope. Therefore the voiced speech estimator filter is taken to be

G (f)

H(f) = c(f;1) - Y (4.2)
- G, (F) + N /2

11
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For unvoiced speech the estimator filter is

G, (£)

H(F) = ——
G, (£) + N_/2

(4.3)

Setting i=2 for unvoiced and i=3 for voiced, the Wiener filters based on the

spectral envelopes for both cases can be written as

el B
Hi(z) = ) a z (4.4)
k=-o
where the coefficients a; satisfy the Wiener-Hopf equation
o .
i a : 2 : ; :
fe-wk [Ry(k-3) + & &k-1)] = R,())  -=<j<o  (4.5)

where 02 = (NO/Z)FS represents the energy in the noise process (FS is the
sampling rate) and where Rz(k), RS(k) are the sampled data correlation functions
corresponding to the power spectra Gu(f)’ Gv(f) respectively. In practice

the correlation functions can be suitably truncated and then (4.4) can be
efficiently solved using the Levinson recursiong. Of course the solution re-
quires that the correlation functions for an ensemble of unvoiced and voiced
speech sample functions be computed for a large class of utterances and a

large class of speakers. In order to bootstrap the system initial classification
would have to be done manually which would be extremely tedious and time con-
suming. In order to avoid this problem a more practical and robust strategy

is proposed based on the well known global properties of unvoiced and voiced

12




speech spectra and a close examination of the filtering operation defined
in (4.2) and (4.3).

The essence of the Wiener filter is to pass those frequencies at which
the speech power is substantially larger than the noise power. As a good
first approximation it seems reasonable to approximate the Wiener filter by a
passband filter that passes 'most" of the energy in an unvoiced or voiced speech
sound. For unvoiced speech it can be assumed that "most'" of the energy will be
above 1000 Hz while for voiced speech "most' of the energy will be below
2000 Hz. While restricting the estimator filters to these frequencies improves
the detection SNR of unvoiced and voiced speech, of at least equal importance
is the ability of the unvoiced filter to reject voiced speech and vice versa.
Since the first formant of voiced speech is approximately 1000 Hz then if the
cutoff of the unvoiced speech filter is above 1250 Hz then most of the unvoiced
speech energy will pass through the filter while a large fraction of a voiced
speech signal will be attenuated. Similarly if the cutoff of the voiced speech
signal is above 2000 Hz then most of its energy will pass through the voiced
filter while a substantial fraction of an unvoiced speech signal will be
attenuated. From this point of view it can be seen that it is crucial that
the input data to the classifier not be preemphasized since the higher formants
of a voiced speech signal would take on the attributes of an unvoiced speech
waveform at the expense of good classifier performance. Therefore if
pre-emphasis is to be used for speech analysis and synthesis the data will

-
have to uﬁdqrgo digital deemphasis prior to speech classification.




Fig. 2.

Practical realization of the optimum speech classifier.

/ur;\I/LoTlé:go 18-2-1318)
4(n)
1250 Mz {
N A
Zy(nu(n)
nzl
yiu) THRESHOLD | SPEECH
o LOGIC |
TYPE
VOICED 7
/FILTER | Sy(a)v(n)
nzl
A
COMB | v(n)
FILTER
ﬂ 2000 Hz f
PITCH
ESTIMATOR

14




On the basis of the preceding arguments the Wiener filter for unvoiced
speech will be approximated by a high pass linear phase digital filter whose
cutoff frequency is below 1250 Hz. For voiced speech a lowpass linear phase
digital filter having a cutoff frequency above 2000 Hz will be used. The linear
phase requirement is essential since the temporal properties of the waveforms
must be preserved in order that a meaningful correlation operation be obtained.
The practical implementation of the optimum classifier against white noise is
shown in Figure 2. The detailed characteristics of the linear phase filters are

provided in the Appendix.

Implicit in the realization illustrated in Figure 2 is the estimation
of the pitch period of a voiced waveform so that the additional discrimination
inherent in the vomb filter can be exploited. A further simplification in
processor complex.ty can be obtained simply by omitting the comb filter and
relying on the spectral orthogonality of the two speech types. However, since
the periodicity of the voiced speech process is a potentially powerful

classification discriminant, for theoretical completeness, it is worthwhile
to develop a practical algorithm to exploit it. Since this necessitates
an estimate of the pitch period, a brief exposition of an optimum pitch

estimation algorithm will be presented.

V. OPTIMUM PITCH ESTIMATION

Voiced speech was modelled as a periodic random process in the sense
that Rv(k) = Rv(k+T) for some pitch period T. This means that almost every
sample function in the ensemble is periodic with period T. Therefore
the voiced speech signal, v(n), can be modelled as

vin) = q(m)_ 4r (5.1)




where q(1), q(2),..,q(T) are completely unknown. Of course to be faithful

to the random process formulation of voiced speech, the quantities q(k)

should be trcated as correlated random variables. However to keep the
estimation problem mathematically tractable the correlation properties will be

ignored at first. The voiced speech data are therefore taken to be

y(n) = v(n) + w(n) (5.2)
where w(n) represents white Gaussian noise and v(n) is given by (5.1). Based
on N samples of this data the parameters q(1), q(2),...,q(T) and T are to be

estimated.

The above formulation of the pitch estimation problem was formulated

and solved by Wise, Caprio and Parkslo. Using the maximum likelihood estimation

rule they minimized the cost function

J 2
D(g,T) = I [y(mn) - v(n)]
n=1
N 2 T M-1
= ¥ y o) =2 L I y(k+mT) v(k+mT)
n=1 k=1 m=0
T M-1 2
+ I L v (k+mT) (5.3)
k=1 m=0

In order to simplify the derivation, it has been assumed that N=MT, M an
integer*. From the periodicity condition v(k+mT) = q(k)modT’ then (5.3)

reduces to

*The more general case is tedious and contributes little to the final result.
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N .
b(q,T) = Iy m -2 q (k) y(k+mT) + M
n=1 k=1 m=0 k=1

M-1

™
3

ek (5.4)

Since the basic voiced speech waveform q(1),...,q(T) has been assumed
completely unknown (i.e., the correlation properties have been ignored )
then, for the fixed T, the minimizing values are obviously

M-1

Ak = & I y(kenT) (5.5)
m=0

The estimate of the voiced speech waveform is therefore

‘(n|N) = (5.6)

a0 odr

where the notation V(n|N) is used to denote the fact that all N measurcments
y(1), y(2),...,y(N) are used in developing the estimate of the voiced speech
waveform v(n), n<N. In that sense, the estimator is unrealizable . The

corresponding minimum value of the likelihood function is

N
DT = I [yMm) - vmlN]? (5.7a)
n=1
N 2 N D
= L y'm) - I v(|N) (5.7b)
n=1 n=1

Since f(nlN) can be interpreted as the output of a comb filter tuned to

pitch period T when y(n) is the input, then the second term in (5.7b) simply

*The more general casc 1s treated by McAuluy]l.
A realizable estimator that uses only the data up to time n is
1 M-1
Vinn) = = ¥ y(n-MT).
M
m=0

17




represents the energy at the output of this comb filter. Therefore the
opitmum estimate of the pitch period can be obtained by constructing a
bank of comb filters each tuned to a slightly different pitch period and
choosing as the estimate the pitch corresponding to the comb filter for
which the output energy is largest.

It is important to keep in mind the fact that voiced speech signals
are at best quasi-periodic; hence, there is a definite limitation on the
number of periods over which the averaging process is a meaningful operation.
Since values of the pitch frequency generally fall within the range 70-300 Hz

corresponding to pitch periods 3-15 ms long, and since the time required for

a significant alteration in the vocal tract is approximately 20 ms, there
can be 1-7 repetitions of the voiced speech waveform. Therefore the number
of periods over which the data is averaged is a design parameter that must
be chosen to carefully trade off the estimation accuracy and the quasi-
periodic nature of the voiced speech waveform.

A particularly important practical case corresponds to the assumption
that the voiced speech waveform is periodic for two successive periods.

In this case from (5.5) and (5.6) the maximum likelihood estimate of the voiced

speech signal is

Y@l = 3 ym) + y(a-m)] (5.8)

which from (5.7a) results in the residual error

2 1 . 2
) - YN = oo 2 fyta). = y@etlis o A5
1 n=1

N g Z

D(T) =
n

18
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The estimate of the pitch period is then the value of T that minimizes D(T).
This criterion has already been proposed for pitch estimation by Moorer12
and Ross et al.l3 except that the squared difference has been approximated
by the absolute magnitude difference function in order to achieve greater
dynamic range and computational speed. Experimental results have shown that the
quality of the pitch estimates is roughly equivalent to that of the cepstral
method and successful operation has also been demonstrated in strong noise
environments. For this reason it is conjectured that the (5.5)-(5.7) represent
a possible solution to the problem of robust pitch estimation. To see this
suppose that the true pitch period is To' Then the observed data is

ym) = v(n;T)) + w(n) (5.10)
where v(n;To) = q(k)modT . The output of the comb filter tuned to pitch
period T is f

M-1 1 M-1

v T) = % L v(n—mT;To) * 8 L w(n-mT) (5<11)
m=0 m=0

The noise signal at the output of the comb filter is

1 M-1
n(n;T) = M L w(n-mT) (522
m=0
As long as the correlation time of the noise process is less than the
minimum pitch period of interest, then if w(n) has variance 02, N(n;T)

will have variance OZ/M. For the comb filter tuned to pitch To the output

signal is
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¢m;T ) =_Q(k)modTo + n(m;T ) (5.13)

Therefore there is anM:1 increase in signal-to-noise ratio as a result of

using the comb filter. Applied to the two-pulse canceller in (5.10)

(i.e., the AMDF) a 3 dB improvement in SNR is obtained for the class of noise
processes whose correlation timesare less than the minimum pitch period
of interest.

Although originally proposed as a pitch estimation criterion based

on ad hoc considerations, the maximum likelihood theory shows that the average

squared difference function is optimum and robust when the voiced speech wave-
form is modelled as a deterministic quasi-periodic waveform with periodicity
extending over two periods. The major limitation in using the two-pulse
comb filter (i.e., the AMDF) is the not infrequent occurrence of pitch doubling
which occurs when the voiced speech is periodic for at least four pitch periods.
At the expense of increasing the i2ngth of the speech buffer, an M-pulse

comb filter, M ;>3, can be used to reduce the rate at which pitch doubling
errors occur.

A further enhancement in the pitch estimate can be obtained by using
the low pass voiced speech filter to increase the pitch estimator SNR. This
corresponds to exploitation of the global correlation properties of voiced
speech. The approximate matched filter configuration of the pitch detector
is shown in Figure 3.

Y. THE OPTIMUM CLASSIFIER AGAINST COLOURED NOISE

There are several examples in which speech in non-white acoustic

background noise can be effectively classified using the algorithm that was




defined to be optimum against white noise. In particular whenever the signal-
to-noise ratio is high, the white noise classifier will yield acceptable
performance. There are some cases, particularly if the SNR is low and the
noise is highly correlated, where significant improvements can be achieved

by taking the spectral characteristics of the noise into account. In this
section the structure of the optimum classifier will be derived for the coloured
noise case and then reasonable practical approximations will be deduced in
order to simplify the complexity of the signal processor.

For this classification problem the data corresponding to hypothesis

y(n) = sj(n) + wc(n) + w(n) i=1,2,3 (6.1)
where wc(n) denotes the coloured noise present on all three hypotheses.
Note that a white noise component, w(n), is also incorporated into the model
to avoid mathematical problems relating to singular solutions. The standard
approach to this problem is to precede all of the processing by a whitening
filter and then apply the white noise solution. This was the approach
taken by McAulayll. Although mathematically correct, this approach encounters
practical difficulties because the whitening filter essentially preemphasizes
the speech data. As has already been discussed, this can cause the higher
formants of voiced speech to acquire the same attributes as unvoiced speech
which makes classification difficult. McAulay and Yates14 have derived
an estimator-correlator classifier that does not require a whitening pre-
filter. Drawing on their results and those developed in Section IIT two

sufficient statistics are computed. They are




N
in = I z(n) §i(n) i=2,3 (6.2)
n=1
where
§.(n) = L h.(n-k) y(k) 1i=2,3 (6.3)
i bty 1

is the linear least squared error unrealizable estimate of si(n) based on

the data y(n) = si(n) + wc(n) + w(n) and where

z(n) = L h (n-k) y(k) (6.4)
k=- ®°

is the result of passing y(n) through the clutter rejection filter hc(n).
It has been implicitly assumed that the speech and noise processes are independent

and quasi-stationary. The transfer functions of the filters are14

G, (£)
H, (f) = i=2,3 (6.5)
Gi(f) + Gc(f) + No/2
6 () N /2
H () =1- = = (6.6)
G (f) + No/2 Gc(f)+No/2

where Gc(f), Gz(f), Gs(f) represent the power spectra for the coloured

noise, unvoiced speech and voiced speech processes respectively. The second
term in (6.¢) is precisely the linear least squares unrealizable estimator of
wc(n) based on the signal wc(n) + w(n). Therefore the clutter filter attempts
to remove the coloured noise from the data before performing the correlation

operation. The optimum classifier structure is shown in Figure 4. The
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classification rule is similar to that derived for white noise, equation (3.7)

except that the sufficient statistics are now lz and £ instead of ¥ and %
2 3 Y,
VII. PRACTICAL IMPLEMENTATION OF THE ESTIMATOR-CORRELATOR SPEECH CLASSIFIER
AGAINST COLOURED NOISE
The arguments for simplifying the processing of voiced and unvoiced

speech proceed along the same lines as those made for the white noice case. In
particular, if knowledge of pitch is available the spectral harmonics of voiced
speech are matched by using a comb filter in cascade with the Wiener filter de-

signed on the basis of the spectral envelope. Therefore the voiced speech estim-

ator filter is i G (f)
H(f) = C(£f;T) 2
3 (7.1)
G,(f) + G_(f) + Ny/2

where C(f;T) is the comb filter tuned to the most recent pitch estimate, T.

For unvoiced speech the estimator filter is*

G, (£)
H(f) = ————— (7.2)
Gu(f) + Gc(f)

Lacking knowledge of the exact form of Gv(f) and Gu(f) a good first approxima-
tion is to use the linear phase low pass (cutoff above 2000 Hz) and high pass
(cutoff below 1250 Hz) filters 1in the voiced and unvoiced speech channels

as was done in the white noise case. This insures the spectral ortho-

gonality of the two speech channels and enhances the speech-to-noise ratio
whenever the noise spectrum lies outside the filter passbands. For coloured
noise, however, it is possible that all of the noise energy will lie within the

filter passbands in which case no speech enhancement will occur if only the

*The effects of the artificial white noise term have been neglected at this
point since there is no problem with singular solutions.
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fixed filters are used. Somehow additional processing tuned to reject the
clutter will have to precede the fixed filters in the speech channels. To
develop a clue as to the form of the clutter processor it is necessary to
reexamine (7.1) and (7.2). Letting Gz(f) = Gu(f) and G3(f) = Gv(f) then the

unvoiced and voiced speech Wiener filters can be written as

Gi(f)
H(£) = (7.3)
Gi(f) + Gc(f)

Realization of these filters requires that the speech and noise spectra be
known. Since the noise statistics can be measured during the silent inter-
vals it is reasonable to assume that the clutter spectrum is known.
Unfortunately a priori estimates of the speech spectra are not available unless
long term averages are determined from training sets. When detailed know-
ledge of the frequency distribution of the speech is unavailable a conservative

approach is to model the speech as white noise thereby having a flat spectrum.

Letting

n
N

Gi(f) = O i g 3 (7.4)

1
and substituting this into (7.3) results in the filters
a .

H(f) = i i=2,3 (7.5)
7 G (f) + o,
(> 1

Since Hi(f):so whenever G (f) >~ ai and Hi(fj 2 1 whenever Gc(f)<< a g
c
(7.5) can be interpreted as a notch filter tuned to reject "most'" of the

clutter energy. When the speech-to-noise ratio (SNR) is large little
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clutter rejection is needed and oy should be large since this results
in a passband filter. When the SNR is small, then the clutter must be
rejected whatever the cost in speech distortion which necessitates a small
value for - It follows, therefore, the parameter e should be pro-
portional to the speech-to-noise ratio. Since the clutter power is known
from the silent intervals, estimates of the SNR can be made from the data
frame being analyzed. In this mode the distinction between voiced and
unvoiced speech disappears and only a single parameter value and clutter Silter
need be determined. In this sense the clutter filter represents an adaptive
prefilter whose output, in a conservative sense, represents the best avail-
able estimate of the speech waveform.

The results of this discussion are summarized in Figure 5 which
shows the practical realization of the optimum classifier operating against
a coloured noise background. Except for the clutter filters in the
reference and speech channels the processing is identical to that used in the
white noise case. Since selection of the tuning parameters o and @ " depends
on the noise statistics further discussion regarding their selection will
be deferred to the section on experimental results.

The only problem that remains to be discussed is the calculation
of the clutter filter impulse response from (7.5). The most straight-
forward approach is to solve the Wiener-Hopf equation

T ak[Rc(k'j) + ol (k-j)] = od(j) -® <j< ® (7.6)

k=-o

ra
~
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If the impulse response is truncated at +p, the 2p+l coefficients, a

k’

can be found by solving (7.6) numerically using the Levinson recursion.

Another approach is to fit an all pole spectrum to Gc(f) + 0 using

Linear Prediction techniques and use the spectral coefficients to determine the

clutter filter. For this method the LPC spectral estimate of Gc(f) + 0O can

be obtained by solving

ko]

a [R_(k-j) +ad(k-)] = R.G) 1<j<p (7.7

k=1

i

This equation can be solved efficiently using the Levinson Recursion and

results in a p-pole fit to the clutter spectrum. The estimated spectrum is

C (1) 408 = o (7.8)
B A(2)A* (2)
where
M) 2 18 't (7.9)
z = - z .9
kel K

which corresonds to the Inverse Filter in the usual LPC analysis. Sub-

stituting (7.8) into (7.5) results in the Wiener filter

H(z) = g— A(z) A*(2) (7.10)

Letting y(n) denote the input sequence and $(n) the output sequence then

S(z) = gi A(z) A*(2) Y(z)
= = A(z) X(2) (7.11)
29
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where
X(z) = A*(2) Y(2) €7.12)

Since the LPC coefficients {ak} are real

P k
A*(z) =1 - 3 a,z (7.13) ‘
k=1 |
|
and
P
x(n) = y(n) - Z a, y (n+k) (7.14)
k=1
A a s
s{n} = = [x(n) - £ akx(n-k)] (7.15)
k=1

Therefore the unrealizable Wiener filter can be implemented by the cascade
combination of an inverse filter that operates on p samples of future data
and an inverse filter that operates on p samples of past data. Therefore
a p-sample buffer must be available to provide for the future data. The
advantage of this approach is that the length of the impulse response is
completely determined on the basis of the number of poles required to fit
the clutter spectrum.

VIII. EXPERIMENTAL RESULTS

The signal processing concepts developed in the previous sections
were evaluated experimentally using speech data that was corrupted by
Airborne Command Post (ACP) noise. Not only does this provide a good
pedagogical tool for illustrating the filtering ideas but it represents
an important real-world speech encoding environment which is not adequately

solved using state-of-the-art vocoder technology.




The noisy speech data was sampled every 132 sec (7575 Hz)

and 158 samples were collected to define a 20 millisec. frame. Figure 6a
illustrates a 20 millisec sample function of ACP noise. Figure 6f

is a plot of the magnitude of its Fourier Transform measured in dB. The

correlation function of the mth frame (i.e., the current frame) of
noise data was computed from
N-1-k
R (k;m) = I x(n) x(n+k) k=0,1,...,p; m=1,2,... (8.1)
Y n=0
where x(n) is the Hamming weighted version of the input data y(n). A
first order smoothed correlation function was then computed from
R (m) = 1Y [R (k;m) + y R _(k;m-1)] (8.2)
¢ m “y [
By
In general the weighting constant y should be chosen to reflect the
quasi-stationarity of the noise random process. For ACP noise +y = .95
was chosen arbitrarily and seemed to produce good results.
From (6.6) the clutter filter in the reference channel was

given by

a _(m)

- el P
Hc(z,m) = Gc(z)+ac(m) (8.3)

The impulse response was found using Linear Prediction techniques as

described in the previous section. This necessitates solving the Wiener-
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Hopf prediction equation

L o ]

a [R(k-jsm) + o (m) 8k-j)] =R.Gsm 1<jsp (8.4

k=1

using the long term averaged correlation function computed at the last
frame (i.e., the mth frame). A whole class of clutter filters can be
obtained simply by varying the parameter ac(m). Typical transfer
functions from this class are shown in Figure 6g for three values of a-
It was found that the clutter filter defined for the value ac(m) = ié(g;m)
worked well for ACP noise. For other noise types other values would
probably be more appropriate. A little experimentation is therefore
required to tune the clutter filter to different noise processes,

The unvoiced and voiced speech channels are preceded by another
clutter rejection filter given by (7.5), namely

ag (m)

() + o, £%:5)

Hs(z;m) =
where oy is chosen to be proportional to the speech-to-noise ratio
measured for the current frame of data (i.e., the mth frame). Since
Ry(ﬂ;m) represents a measure of the speech plus noise energy for the current
frame of data and since ﬁé(ﬂ;m) represents a measure of the long term
averaged noise energy, then a reasonable estimate for the speech-to-noise
energy is

gm) = R (Hm) - R _(#;m) (8.6)

-
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It is possible that the energy in any one 20 millisec sample function

will be less than the average clutter energy, especially if that sample
function contains noise alone or noise plus unvoiced speech. Therefore
provision must be made to bound the clutter notch parameter og away

from zero. A reasonable scheme is to pick

15(111) = max [2&(m), ac(m)] (8.7}

which guarantees that the speech-clutter-filter notch will never be
deeper than that in the reference channel. As before the impulse res-
ponse was found using the Linear Prediction power spectrum which was
obtained by solving the Wiener-Hopf predictor equation (8.4) using
o instead of X -

The output of the speech clutter filter was then used as the
input to the high-pass and low-pass filters characterizing the unvoiced
and voiced speech processing channels respectively. The filters were

both 21-tap linear phase digital filters designed using the Parks-McClellan

algorithmls. I'he impulse responses and frequency characteristics are spe-
cified in the Appendix. No attempt was made to optimize the filter
design. The outputs of the reference channel clutter filter z(®) and the
unvoiced and voiced speech filters G(n), Q(n) are shown in Figures 6b, oc,
6d. According to equation (6.2) the outputs of the speech filters were
then correlated with the output of the reference channel clutter filter |

to form the detection statistics:




L e

N

Lym) = 5 z(n)i(n) (8.8a)
n=}
N

Lym) = ¥ z(n)v(n) (8.8b)
n=1

& (m) = & (m) - %, (m) (8.8¢)

It should be noted that the comb filter has been left out of the voiced

speech processing channel. This decision was made to show that good
classifier performance could be obtained without having to make a pitch
estimate which simplifies the classifier processing which is necessary for
some applications.

The detection thresholds were obtained by driving the system
with ACP noise for 15 data frames (.3 sec). This is the only training
cycle required by the processor and should be relatively easy to meet
in practice because there is always a speech free interval before a
talker actually speaks into the encoding device after having turned the
machine on. Averaged detection statistics for the training noise are

computed from

Lm = (em « YEm-D]  is1,2,3 (8.9)

with Y= .95 as before. The detection thresholds were then chosen

to be

)\.1 (m)

Xz(m)

1.5 % (m) i=1,2
: (8.10)

Tl(m) " Ez(m)

which allows for moderate statistical fluctuations. After the first

15 data frames of noise have been processed (m=15) and the initial

threshold setting computed, the classification process is initiated.
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The next frame of data is processed and the detection statistics %(m+l)

are computed. If 21(m+1) < Xl(m) and 22(m+1)< Az(m) then the data are

classified as silence and the clutter correlation function, (8.2) and the
detection thresholds (8.9) and (8.10) are up-dated. If 21(m+1)>kl(m)

or 22(m+1) >A2(m) then speech is declared present and neither the clutter
correlation function nor the detection thresholds are changed. No
up-dating is done until the next frame of silence is detected. This
procedure allows the classifier to track noise processes whose statistics
vary slowly with time. Such a classifier structure is often referred

to as a decision-directed detector since it tells itself when to alter

%
:
|
|
i its structure. It becomes evident therefore that the detection thresholds
should be set low even at the expense of a high false alarm rate (declaring
noise as speech is a false alarm). It would be a more serious error
if the classifier declared speech d@s noise since then all the clutter J
filters and detection thresholds would be tuned to reject speech. i
Fortunately this malign event rarely occurred for ACP noise and when it
did the noise always completely overpowered the speech so that little
p change in the filter structures occurred.
The effects of the three filtering channels on the three speech 1
types will be examined for some typical cases to develop a feeling for 5
f the classifier operation. Figure 6a is a plot of a 20 millisec input 4
sample function of ACP noise. Figure 6f is the corresponding short -

i term power spectrum. Figure 6g is a plot of the adaptive clutter filter

transfer function in the reference channel (the adaptive prefilter).




For ACP noise input, it has adapted in such a way as to make a -10dB
null at the clutter frequencies. Figures 6b, 6¢c and 6d show the
respective outputs of the reference channel, the high-pass filtered
unvoiced speech channel and the low-pass filtered voiced speech channel.

As was described in the previous section the output of the speech
channel clutter filter represents a minimum mean squared error estimate
of the input speech. Figure 6e shows a plot of the prefilter output
in response to ACP noise at the input. Of course, with high probability
the classifier will classify the frame as silence, hence one has the
option of setting the prefilter output to zero which removes the residual
noise completely.

Although the comb filter discriminator was not used in the
classifier it remains of interest to evaluate the robustness of the maximum
likelihood pitch estimator in ACP noise. This was done by applying
the output of the low pass filter, V(n), to a bank of two-pulse comb
filters covering the range from 70 to 300 Hz. Figure 6h is a plot of
the energy at the output of the comb filters as a function of the pitch
period for the ACP noise sample.

The same sequence of data are plotted in Figures 8 and 9
for 20 millisec frames of unvoiced and voiced speech respectively.
Figures 7a and 7f show that the unvoiced speech-to-noise ratio is less
than 0dB (it is roughly -3dB) yet Figure 7e¢ shows that the prefilter has
removed a significant portion of the clutter waveform while allowing

the unvoiced speech waveform to pass relatively undisturbed. Figures 8a




Fig. 7.
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and 8f show that the voiced speech-to-noise ratio is quite large (it

is roughly 9dB). Figure 8g shows that the prefilter transfer function

is adjusted to allow most of the speech to pass even though its spectrum
overlaps that of the ACP noise. This shows the advantage of the adaptive

prefilter. Had a fixed clutter filter been used, the voiced speech

» waveform would have been distorted unnecessarily. Figure 8h shows
that the pitch estimate is perturbed very little by the presence of
ACP noise. In general it was found that the only significant pitch
errors were the effects of pitch doubling which occurred intermittently
near the ends of a voiced sound. Figure 8e shows how the prefilter attempts
to reproduce the voiced speech waveform.
Having established the basic characteristics of the classifier
the next step is to evaluate the frame-to-frame performance when an

ACP noise corrupted utterance is applied to the input. C(lassification

errors were obtained by determining the true speech type by visually
examining the waveform, power spectrum and comb filter energy contour
for each 20 millisec sample function. Statistics were accumulated

for a total of 3 utterances spoken by 3 male speakers in different ACP
noise environments. The results are tabulated in Table 1. From these
results the false alarm probability (declare speech given silence) 1is
estimated to be 9.4%. The miss probability (declare silence given

speech) is 2.3%. The misses mainly occurred for unvoiced speech that

had been completely overpowered by the noise (~ -10dB SNR). Erroneous

classifications (voicedérunvoiced) occurred at the rate of 3%. Whenever
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a frame represented a mixture of voiced and unvoiced speech the classifier
always chose in favour of voiced speech. This event could be reduced
significantly by reducing the frame period (10 millisec versus 20 millsec).
Although these statistics have been gathered for a relatively small
ensemble, the general impression is that the performance is quite good.
Another aspect of the experimental program was the recovery
and synthesis of noise-corrupted speech using Linear Prediction
techniques. The voiced-unvoiced decisions and the pitch estimates were
derived using the methods described in this paper. The LPC filter
coefficients were estimated from the prefilter output waveform. For
the case of noise-corrupted unvoiced speech, Figure 7 for example,
the prefilter output is shown in Figure 7e. Its short term power
spectrum is shown in Figrre 9 which when compared with that for the input
unvoiced speech plus ACP noise, Figure 7f, clearly demonstrates the
action of the adaptive prefilter in eliminating the clutter. The LPC
power spectrum estimate is also plotted on Figure 9 and shows that
the synthetic speech is likely to reproduce the original unvoiced speech.
Of course the ACP noise will cause the spectral estimate to be somewhat
distorted but the perception of the additive ACP noise will have
disappeared. It is for this reason that the synthetic speech is perceived
to be '"noise-free".
Similar results are obtained for the voiced speech sample function
shown in Figure 8a. The short-term power spectrum of the prefilter output,

Figure 8, is plotted in Figure 10 and should be compared with the voiced

speech plus noise power spectrum shown in Figure 8f. The corresponding




LPC spectrum shown in Figure 10 shows the distortion in the first

format due to the presence of the ACP noise.

LPC synthetic speech was generated for a number of utterances
recorded in ACP noise. Compared to LPC speech in which no adaptive
prefiltering was employed, an improvement in inteiligibility
was obtained.

IX. CONCLUSIONS

Using statistical decision theory a new speech classification
algorithm has been developed in the form of an estimator-correlator
receiver. The structure is robust in the sense that it can adapt
to time-varying noise fields in which the signal-to-noise ratio can be
quite low (less than 10dB). For noiseless speech the classifier simply
involves two fixed filters and requires no pitch estimation or linear
prediction analysis parameters. For noisy speech clutter filters must
be added to the speech and reference channels. The reference clutter
filter is developed on the basis of an initial .3 sec sample of noise
data while the other adapts to the speech plus noise statistics
calculated for each frame. If a frame is classified as noise, the
reference channel filter is up-dated so that time varying noise
statistics can be tracked.

The output of the speech channel clutter filter represents
an improved estimate of the input speech in the sense that much of
the additive noise has been cancelled from the signal. By applying
Linear Prediction techniques to this waveform, more intelligible

synthetic speech can be obtained.
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A relatively thorough Ynon-real-time) evaluation of the classifier

and adaptive prefilter was conducted for Airborne Command Post noise
and surprisingly good results were obtained. Based on a limited number
of listening tests, the LPC synthetic speech using the prefilter

output was found to be more intelligible than the LPC synthesis

of the original noisy speech.

No attempt was made to optimize the design of the fixed
voiced (low pass) and unvoiced (high pass) filters. In this study
21- tap linear phase filters were used. A better approach would be to
obtain long term statistics for voiced and unvoiced speech and pick the
filter length and passband edges to more closely represent the average
spectral properties. Another useful study would be to investigate the
possibility of using recursive filters with phase compensation to
further simplify the processing.

Although a first order attempt was made to improve the design
of the clutter filters, other methods are undoubtedly possible.
Additional insights are also needed in the selection of the clutter
filter design parameter; in this note trial and error was used to make
the selection.

Of course, the real test of any speech processing algorithm
is obtained in a real-time environment. This is the focus of the current

effort.
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APPENDIX

The unvoiced and voiced speech Wiener filters were approx-
imated by 21-tap linear phase high and low pass filters designed using
the Parks-McClellan algorithm. The impulse responses used in the
experimental program are given in Table 2 (h(n) = h(-n)). The

magnitude of the frequency responses are shown in Figures 11 and 12.

TABLE 2
IMPULSE
RESPONSE UNVOICED FILTER VOICED FILTER
H
]
: h(1) -0.21511067E-01 -0.38655568E-02
? h(2) 0.55939741E-02 -0.32053679E-01
h(3) 0.21661893E-01 0.23418449E-01
h(4) 0.39310634E-01 0.13665602E-01
h(5) 0.45899481E-01 -0.42199165E-01
h(6) 0.29383000E-01 0.73566064E-02
h(7) -0.15331455E-~01 0.66053927E-01
h(8) -0.82191288E-01 -0.65457523E-01
h(9) -0.15448785E+00 -0.84543467E-01
h(10) -0.21035391E+00 0.30347985E+00
h(11) 0.76869851E+00 0.59147525E+00
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