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ABSTRACT

Originally published in the French language in “Signal
Processing — with Emphasis on Underwater Acoustics ,”
by the NATO Advanced Study Institute , 14-26 September
1964 , pp. 162-299 , this study has been translated to
serve as a ready reference work. The study itself lies In
the area of research that is concerned with the improve-
ment of long-range-detection techniques. Subjects covered
include (1) a formal solution to matched filtering with N
inputs, (2) the case of identical signals —proper filter-
ing — orthogonal images of a system with N noise inputs ,
(3) narrow -band approximation — variation of proper
filtering , (4) case of two inputs — coherent noise , (5)
matched filtering and directivity, and (6) generation of
proper filtering — autoadaptive systems — practical
stationarity conditions.
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GLOSSARY OF SYMBOLS

a separation of receiver elements

a column matrix of ones

a ( t )  unitary signal

B ( t ) ,b ( t )  noise inputs

b ratio of S/i\ ( ;~ PP )  to S/N (simple summation)
t h

b~ elementary noise component from direction at i receiving
element

noise at filter output
th

k ~ 
-t- ) crosscorreiation of .J and k noise components

th  th

~ k ~ v )  cross power spectrum of .i and k noise components

C ( i )  autocorrelation of noise n ( t )

C~ ( v )  power density spectrum of noise n ( t )

C matrix o f C . ,
J

c velocity of propagation

normalized proper filter gain

( t )  crosscorrelation of filtered noise components

k ~ v)  cross power spectrum of filtered noise components

c” ) spectral density of noise at outputs

U ( w , v )  complex directiv ity coefficient

d ,. spectral density of summed noises

determinant of matrix of 0
•5 4\

ó ( t )  unit impulse function

E x mathematical expectation of x

t h  t h
receiver elements Ci , k

F , signal energy

frequency (cps) of reference voltage

F( a )  spatial correlation of noise inputs to receiver elements
with separation i
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I’ frequency (cps)

C v )  system function of proper filter

v )  system function of 1< filter

h ( t )  impulse response of k t t l filter

ii matrix of h k (v )

I ( ~) imaginary part of complex number x

o complex correlation coefficient

o time constant

average duration of stationarity

j  , k (subscripts) indices

k , K constants

A ,1 eigenvalue of matrix C

A matrix of eigenvalues A .

k cofactor of determinant t~

M matrix of cofactors ~~ k
W C i - )  crosscorrelation of noise components from direction w ati k th  and k t

~ receiving elements

N C v )  cross power spectrum derived from N . ( T )

constant

N number of elements or channels

N ( T )  crosscorrelation of th  and k th  noise componentsj k\

1< ~ v )  cross power spectrum of ~ 
t h and k th noise components

n C t )  arbitrary noise input

v frequency (cps)

mean noise power

noise power minimized by optimal filtering

system function of filter 
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matrix of

k proper filter

homogeneity factor (constant)

q -r-- for 2-input system

~~~~, 
( t ) , r~ ( t )  impulse response of filters

R ( u ) , r~ C ~) system functions of filters

r matrices of ~~~

R ( x )  real part of complex number

P signal-to-noiSe ratio (~~/~i )

~ /~ for simple summation

optimized (maximized) S/N

signal

~ C v )  Fourier transform of output signal

time duration of signal

t time

I time lag
th  th

U . C v )  normalized cross power spectrum of i and k noise
inputs after signal compensation - case of omnidirectional
noise

V matrix of V~1j k

~ ( u )  system function of filter with unit gain

matrix of ~~ v)

bandwidth of narrow-band filter

X

j  
( v )  system function of h filter

x column matrix of

v i
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k ~ I )  crosscorrelation of noises at t h and k th  receiving
elements in omnidirectional noise

k ~ v )  cross power spectrum derived from y k I )

w spatial parameter defining direction of a plane wave

unit vector in direction w

(~~~~~) numbers in parentheses correspond to references
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CHAPTER I.

SOME PRACTICAL PROBLEMS AT THE BEGINNING OF THE STUDY

~~~~~~~mary

This study lies in that area of research that is concerned with the improvement

of long-range detection techniques. By extending the well-known concept of a

matched filter to include a receiver with several elements and by using a few

simple examples, it is shown that current ideas about the optimum use of an antenna

provide answers to only a few special aspects of the general problem.)
I-i. General Outline 

-

‘
~The problem of extracting weak signals from interfering noise may be found in

the general area of Information Theory . ~We may consider two different approaches

to the problem, each arising from a diff ~~~nt practical situation . The first approach
is concerned with the faithful reproducti.~,n~~~an input signal at the output of a com-

munication channel . Here , the applicable th\~ory is that of information transmission;
the signal is unspecified except for the variety of forms or values which it may
assume and the probability of occurrence of each. Optimization criteria are based

upon the reconstruction of the most probable form of the signal, that is , the best

“guess” at the original form and content of the transmitted signal . This first ap-

proach is that of optimizing the reconstruction of a message that has been deterio-

rated by noise.

The second aspect of the processing of weak signals - the aspect with which this

paper is concerned - has its origins in practical problems associated with the develop-

ment of long-range detection methods, using both electromagnetic ( radar) and

acoustic (sonar) techniques. Here , we wish to be informed of the presence of an

obstacle or target as soon as possible and at as great a distance as possible. The

“echo” returned by such a target or obstacle is weak, immersed in the inevitable

interfering noise, but it is assumed to be of a specified or known form - the same

form as a specific model (i.e., identical to the model except for some constant ampl i-

tude factor and time lag) . The model might be the original emitted signal , which may

be controlled or even derived from it by a known transformation (e.g. doppler shift) .

Conceivably each possible doppler shift value may yield a different “model.” We may

1
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group the variables in the received signal in order to form a reasonable number of
H specific models and treat all models separately but simultaneously. The basic

problem is reduced to the question: what are the criteria which optimize the detec-
tion of the presence of a signal of a given form? It is not required that the signal

be accurately reproduced; it is even permissible to transform and alter it. What is
required is the best possible indication of its presence; this indication might be , for
example , a maximum contrast in the output level of the receiver.

1-2. Matched Filtering and Multiple Antennas

A particular, but essential , solution to the problem stated in the preceding
paragraph may be found using the Matched Filter Theorem. This study deals with

the scope of that theorem and with the criteria which it utilizes.

In its classical form , the Matched Filter Theorem treats a single signal and a

single noise and does not deal with the multi-parameter aspects of the detection of

weak signals using an antenna. An antenna is an ensemble of N sensors whose out-
puts are collected in some more or less complex fashion. For each sensor there is

a corresponding noise. When a signal reaches an antenn a, it is distributed in some - —

specific manner into N particular signal outputs.

What , then , is the best possible utilization of the N signals and the N noise
outputs for optimal detection of the presence of an incident signal? What is the
best arrangement of the sensors? And what gain might be expected from using
N sensors as compared to using a single sensor? It may be noted that the usual
ways of evaluating antenna gain answer the last question in special cases only. In

some cases, this gain is expressed simply by the number N itself.

Classical reasoning assumes that at the output the signal power increases as N

while that of the noise increases as N This reasoning, however , postulates

statistical independence among the noise outputs from the elements or sensors

and is therefore dependent upon a particularly simple hypothesis about the statis-

tical “relationships” of the N noise outputs.

In another case , antenna gain is computed in terms of “directivity ;” thereby

introducing the more or less implicit hypothesis of a noise field with particular

spatial properties , known as “omnidirectional noise , ” which completely defines the

statistical relationships of the N noise components.

2

~ 
-



-~~ ~~~~~~~~~ -~~~~~~~~~~~~~~~~~ ~~~~~~~~~

Two methods of improving an antenn a are linked to these two means of evaluating
antenna gaui. In thc cas& ol us .  .pi. i~~ n~ noise components , N is made very large and
the outputs of the N elements are summed . This “direct sum” is the antenna
processing, that is, the way in which the outputs of the elements are assembled.
In the case of omnidirectional noise , there are more subtle solutions , consisting,
for example, of assigning to each element a suitable weighting factor before summing
the outputs , such that the “directivity ” is optimized.

Methods for the calculation of directivity , derivation of directivity patterns for
specific arrays of elements, and methods for reducing or equalizing “secondary
lobes” have provided abundant literature (references (6), (15) to (22)) because of the
usefulness of the directivity concept in both transmission and reception. The under-
lying hypothesis of omnidirectional noise is , however , always present when this
concept is applied to a receiving antenna.

The variety of techniques for estimating antenna gain suggests that optimal
antenna processing depends upon the statistical relationships between the noise
components associated with the elements of the antenna.

For a given antenna, the noise output s are known. Their properties are , in
general , stable (stationary) , at least for a time duration on the order of the signal
duration . Thus , they may be measured and the best methods of handling them may
be determined. These methods may include direct summation or optimization of
directivity, if the nature of the noise correspond s to these special cases , or they
may be something quite different and may not even require that N be large. Such
is the case, for instance, with “coherent” noise interference , which, like the

signal , propagates in a single plane wave (from a different direction from that of
the signal). This coherent interference is a case of still another statistical rela-
tionship: the noise components in the antenna elements differ from one another by
a time delay only. Using only two elements, it is possible to null the noise without

• losing the signal , which is obviously the optimum procedure . All that is required
is to take the difference between the outputs of the two elements after having

introduced into one of them a delay corresponding to the difference in path length
for the noise itself. A limited case such as this illustrates the way in which

optimum antenna processing may occasionally be achieved when the statistical
relationships between the noise components are taken into account. h ence , iS the

noise components are known, the problem is to define and construct the optimal
processing system.

-
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A logical second step is to allow the statistical relationships between noise
components to vary slowly with time in an irregular , unpredictable manner. We

must then look for autoadaptive systems that evolve the optimum antenna processing
as a function of the statistical relationships - relationships which are continually
tested in the course of that evolution.

A great deal of work to date has been devoted to autoadaptive systems, but in a
rather different theoretical context. In general , it has been concerned with the
construction of receivers that progressively “adjust” themselves to the carrier
frequency of a repetitive signal (as in the case of radar) . The evolution of the re-
ceiver is thus dictated by the signal itself (references (25) , (26) , (27)).

Here , on the other hand , we want to modify the receiver as a function of the
noise, which is always present , in such a way that reception will be optimized for
the signal whenever it arrives. Note that the idea of adaptation does not have the
same meaning in a “matched filter” as it does in an “adaptive system”. In the first
case , it has a “spectral” sense and corresponds to a well-defined criterion; in the
second , it takes on a “temporal” meaning and is found to be tied in with a practical

conception of stationarity. -

These practical problems are mentioned here because they will be considered in
the course of the first few chapters , employing more theoretical techniques. They
wil l not he resolved in all their generality, but only in those special cases which are
of particular interest. Thus, the ensuing study is developed in the direction of de—
cre~ ~ing general ity, f rom the theoretical basis formed by generalizing the Matched
F’ Lit er l’heorem to technological methods and principles useful in the construction
of equipment. Meanwhile, some general properties of the statistical relationships
of the noise components and their illustration through the important concept which we
have called proper antenna filtering will be examined, especially with respect to

matched filtering. The cases in which it is possible to obtain very large antenna gain

will he stated precisely, and it will be shown that optimization of “dircctivity” ~
actually a special case of matched filtering.

1-3. Some Comments on Notation

a. As a general rule, two functions related by a Fourier transformation are
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designated by the same letter , for example’

h ( t )  -
~ 

h ( u )

This convention does not lead to any ambiguity, since the variable is always indicated.
It has the advantage of economy of symbols.

b. The symbol f  indicates an integral between the limits —~~~ and +°~

c. We have made use of some results of harmonic analysis of unspecified
function s (references (1) and (7)).

Generally the variable T is indicated for auto- and crosscorrelation functions .
The variable v may be omitted from the notation for the Fourier transforms of the
correlation functions, especially when dealing with matrices. The complex number

} C~ k designates either C ,~ k~ 
v )  or ~~~~ k~ ~~~ for a particular value of v

The convention , in this case , is always defined in this text.

1To state it more precisely: ~ ( t )  = J h ( v )  e ’~’ ~ 
-~ V t  d v

= f h (t )  ~~~~~~~ -~~l

5
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CHAPTER II

RESTATE MENT OF TILE CLASSICAL MATCHED FILTER THEOR EM

Summary

This theorem, taken from the area of prediction theory, is concerned with

specific signals (of known form) mixed with stationary noise. It defines the linear

filtering process that optimizes a certain parameter called “signal-to-noise ratio .”

This parameter summarizes the best possible information about the presence or

absence of the signal without being concerned with preserving its “shape” or form

at the output. Although this “best possible information” is limited to the case of

Gaussian noise , it is frequently found in practice. The optimizations derived during

the course of the discussion are in agreement with matched filter theory.

U-i. History of the Concept of Matched Filtering

The concept of matched filters was introduced in the technical literature around

1943 by D. 0. North (10) in a study of the detection of weak signals of some known

form S ( t )  in noise that is stationary and has a uniform spectral density . North ’s

essential result is that the filter which maximizes at its output a certain parameter

known as the “signal-to-noise ratio” is the filter whose impulse response is the

image of the signal: S ( — t )  . This result justifies the expression “matched filter”

later used by Van Vieck and Middleton (11) , who obtained the same result inde-

pendently. The extension of this theorem to the case of noise having a nonuniform

spectral density is found in the work of B. M. Dwork (5) , as well as in that of

L. A. Zadeh and J .  R. Ragazzin i (12) .

These latter authors , in particular , demonstrated that the”signal-to--noise ratio”

cri terion is , in fac t , a criterion of the “ separation ” between the signal and the noise.

This observation connects matched filtering with the Wiener-Ilopf equation (8) .

Criteria of “separation ’ however , are non-statistical criteria, which depend

only upon the spectral density or autocorrelation of the noise , that is , on a single

moment of the probability distribution. The noise is entirely specified by this moment

o~4y in the case of a Gaussian distribution .
Another approach to the problem of optimizing weak signal detection is through

statistical decision theory. The literature on the subject is abundant, and we intend

here only to skim its surface In order to specify the criteria for a matched filter

(references (3) , (4) , (9) , (28) , (29) , (30) , (31)). This theory takes into account the

ensemble of statistical properties of the combination of signal and noise in order to
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deal with , especially, the a posteriori probabilities (for a given combination) of the
presence or absence of signal . The ideal receiver must , then , construct the
“probability ratio” connected with these probabilities. It may be shown that if the
noise is Gaussian and has a uniform density , this probability ratio is completely
described by the convolution of the “mixture” (of signal and noise) with the “pure”
signal. This convolution is nothing more than the output of the matched filter
(having impulse response S ( — t )  ) .  Thus, matched filtering appears ~is a “ statistical
optimum” in the Gaussian case. This case is especially important in practice. The
signals to be processed are often “narrow band”, that is , lying in a small band
around a center frequency. It may then be assumed that the spectral density is
uniform in the band.

On the other hand (reference (13)), for a very large class of non—Gaussian noise ,
narrow-band filtering tends to restore some of the Gaussian characteristics. It
may be said that optimization in the sense of matched filter criteria is often very
close to optimization in the statistical sense. One may then think of matched filtering
as being very close to an ideal receiver.

These considerations underline the importance of the matched filter criterion that
may at first seem a little arbitrary. This criterion is the maximizing of the signal—
to-noise ratio defined in the following way:

p = i n s t a n t a n e o u s  power of the  s ignal  at arbitrary time t
average power of the~~~ ise

As stated more precisely in the succeeding pages, this criterion corresponds to the
requirement of producing at the filter output maximum contrast between the presence
and the absence of a signal. This is to be accomplished by collecting all the energy
of the signal in order to produce a peak that is as narrow and as high above the
average noise power as possible.

11-2. Matched Filtering With One Input

Let us recall that the theoretical solution of the matched filter may be presented
in two equivalent forms related by a Fourier transformation: the temporal form ,
which fu rnishes the impulse response h ( t )  of the filter; and the spectral form , which
gives its transfer function h ( ‘

~~~)

h ( t )  h ( v )  . ( l i— i )

7
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Let S ( t ) be the signal having a spectrum S ( v )  , let B ( t )  be the stationary noise whose

autocorrelation is C ( T )  derived from its spectral density C (v  )~, and let t ~ be an

arbitary time.

a. The impulse response h(t) is specified by the integral equation

f h ( O )  . C(t—o) do = KS(t0— t) , ( 11— 2 )

where K is an arbitrary real factor.

b. The transfer function h( v ) is given by

—2-idvt 0
h(v) Ke . S~ (v) (11—3)

C(v)

where * designates the complex conjugate.

The factor e 
2111vt 00f Eq. (II—3)correspond s to a time lag of t 0 .

Since t 0 and K are arbitrary , it may be said that the matched filter is defined
except for a real factor and a time lag. This is physically obvious. The real factor
acts in the same way upon both signal and noise and can not alter their behavior.
As for the time lag t 0 if it varies, the time of the appearance of the signal “peak”
is more or less displaced, but its height is not changed. It is preferable generally
to have the time lag as small as possible in order that the observer may be informed
of the presence of the signal as soon as possible after it reaches the receiver input.
However , it may happen that considerations relating to the realization of the filter
will lead to a compromise- in this area.

Nevertheless, we will , in the course of this dissertation , again encounter the
— 2 i r i v t

factor ::e 0,which, as we shall see, has no effect upon the filtermg processes
On the basis of the preceding considerations , it is not difficult to find that , in the

presence of white noise , the matched filter is defined by (except for the above factor)

h ( v )  = S *( v )
h ( t )  = S(—t)

and that , as a result , it performs the convolution of its input with the signal (more

precisely with the signal “reflected” i.n t im e—the  image of the signal) .

8 
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Having reviewed these results , it will be possible to deduce them as well as all

the other properties of matched filtering, from the generalization of the theorem

to a system of N inputs - a generalization which we shall now consider.

-
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CHAPTER UI

MATCH ED FILTE RING WITH N INPUTS - FORMAL SOLUTION

Summary

This chapter treats the problem of generalizing matched filtering to N inputs
(multiple filtering). An antenna with N sensitive elements exhibits , at all of these
elements, N parasitic noise components whose statistical relationships are defined
by the crosscorrelation function s of the noises taken two at a time. It also delivers
a “multiple signal” consisting of N particular time functions. What is the multiple
filtering of these data - the ensemble of N filters - such that , when the N outputs are
summed, the characteristic parameter of matched filter ing(S/N)is optimized?

The formal answer to this question is presented in two equivalent forms - the
list of N impulse responses of the desired filters, and their N complex gains
(system functions) . 

-

In the second form , the solution is seen to be unique (except for a real factor
and a time delay) and suitable for expression in convenient matrix notation.

Two characteristic properties are established:
a. The opti mized parameter is independent of the refe rence time t o
b. Except for a real factor and a time delay (representing an arbitrary choice

of the time origin) , the spectrum of the signal and the spectral density of the noise
are identical at the output of the matched filter.

Ill-i. Status of the Problem

Let us consider a system of N inputs 
i , E~ ~ where

a. the signal is represented by N specific real function s of time ,

S 1 ( t ) , N 2 ( t ) S~~
( t )  ,

b. the interference (parasitic noise) is represented by N unspecified real
functions , B 1 ( t ) , B 2 ( t )  B , . ( t )
which are stationary and whose correlations arc stationary .

10
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C
~ k

(T) = E ~ N . ( t )  N~~~~ ( t + T )  

} 

, ( I l l - i)

where ~ designates the mathematical expectation (of the function in the brackets) .

The real functions c~ ~( -t ) arc autocorre lation s (even functions) when ,~ =

and crosscorrelations when j  ~ . The N ’ equations of the type( I I l — i  )express
the statistical relationships between the N noise inputs. These noise inputs are
independent of the signals N 

~ 
( t )  , N 2 ( t )  N~ ( t  )

We then ask:

What is the linear filtering process represented by N filters having impulse
responses~~1( t )  , R 2 ( t  ) R N ( t )  which , when applied to the inputs E 1, i-~ ,

respectively , have the following property : by taking the sum of their N outputs , a
common outpu t ~~ is formed in which the following ratio is optimized (maximized):

e =  i n s t an t a n e o u s  power  of thc ’ s i g n al  at ar b i t r a r y  t o
. ( I I T ~~~)

average no i s e  power

Thus, the characteristic criterion of matched filtering is utilized.

111-2. Review of the Classical Properties of the Crosscorrelation of Two Noise Inputs

Before proceeding to the proof, let us recall a few classical properties of the
functions C .k (t) and C

j1K
(V).

a. First of all, according to the definition,

= C, . (- ~~~~ ) 
( I I I ~~3)

b. Expressing the fact that the power of a real noise

13
1

( t )  + A N k
( t )  ( x  r~’ a1)

2Other authors adopt a convention which corresponds to exchanging i and ~~ i

in the relation I T T — l .  This results, for the remainder of this paper, in the

exchanging of the correlation matrix with its tran spose .

11 

---.-~~~~~
_ _——- -— _

~~~~~~~~~~~~~ - -_ —- -- _ . — -  ——- - - - -— —- - - - —



p..- -- —- ---

~~~~

—---‘--—---- —-- -‘.-- - - - - - - ----.--- - --- --- — ---- 

~~
—— - - -.—- ------- ‘-- -- _ - —.,-—--

~~~~~~
-‘-

~~~- - = ‘ ~~~~~~~~~~~
- -— -  — --- -— --—-

is a positive quantity regardless of the value of x , it may be shown (Schwartz
inequality) that

[ C~~~~~ ( T ) ]  

2 
< C~~1

( O )  . C kk ( O ) , for  all i , ( I I i — ~~)

the right side of the inequality being, moreover, the product of the powers of B . C t )
and of Bk ( t ) .

c. The existence of C~ . CV) , the Fourier transform of C~ . C r ) , will be assumed.
It is the spectral density of B C t ) , a real, even, non-negative function of V

for any value of V -

d. The existence of C. k ~ V) the Fourier transform of C~ k ~ i )  ,wiU be assumed.
As the transform of a real function, it satisfies the equation

Cj k ( V )  = C
j k

( _ V )  , C I I I - 5 )

which expresses its Herznitian symmetry with respect to the variable V . Moreover ,
these functions have Hermitian symmetry with respect to their indices since Eq. C I I 1— 3 )
implies that

C .k (V) = C~~~~~~~~ ( V)  . (II i-6 )

Since the C~~. ( V )  are obviously spectral densities we will call the ~j k v )

crosscorrelation spectra.

e. If B~ C t )  and B k C t )  are filtered by fil ters having impulse responses ( t )

and R k ( t ) , respectively, two new noises b
1

( t )  and b k ( t )  will be obtained whose
spectral densities are

Y~~~~( V )  = C 1J CV) I i ~~( V ) I 2

and 
~~~~~~~ 

- Ckk (v) J R K ( v ) J . C n T — f l

The crosseorrelation function of ~~ C t )  and ~~~ 
( t )  is , by definition ,

12 
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Y J k
C T )  = E ~ b~~C t )  . b k C t + 1 )  } . ( I l l - N )

A classical calculation (Appendix I) shows that

Y j k (T) = fR~ CV) . R~~(~~) . Cjk
(V) e

2
~~~~

V T dV (111—fl

from which we derive the Fourier transform of y~ k ~

Y j k ( V )  = R~~( v )  - RkCV ) . Cj k
( V )  . (111-10)

f. Let two filters ( V )  and (~~) be identical with real impulse responses
(with Hermitian transfer functions) having gains equal to unity in a band ~ around

V o (and —v o ) and zero elsewhere. Let us assume that this band is narrow enough
so that C

jk
( V )  does not differ from C .k (Vo ) within the band .

The crosscorrelation function obtained for the two noise inputs is, according to
C I I I — 9 ) a n d  (111-6) ,

2~ . ~c 1~ (v ~ ) (  ccs { 2~~ V 0 t  + Arg [c .k (vo )J ~
which , as ~~ O , approaches the limit

k
( T )  = 2

~~J C ~ k ( V o ) I  C O S {2 ~~v O r  + Ar~~~[C j k (Vo)]} III-11

(see application in Chapter IX) ;
that is, it approaches a real, sinusoidal function of r whose phase is equal to the
argument of C~~~( v o )  and whose amplitude is proportional to

The Fourier transform is a spectral “line” at the frequency V o characterized by

the complex number Cj k ( V o )  .Thus, C .k ( V o ) is a complex number which describes
the crosscorrelat ion of noises B 1 

( t )  and ( t )  by two identical narro band

filtering processes at the frequency V O~

The function v l k ( T )  given by (III-ll) is justified by the inequality (IIl- ’
~),

which becomes here

[ 1
j

~~~~~( T )  

2 

~j j ( O )  . y kk (o) . for all 1

from which may be deduced

C
1 1 C V 0 ) < C~~. ( v 0 )  . Ckk (vo) . C i  1-1?)

13
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The right-hand side is the product of spectral densities, for V = v o ’ of the

noisesN .( t ) and B k ( t ) .  Since the preceding equation is true for all ‘ o ,we may write

IC .k ( v ) I  < C~~~(v) ~kk~~~~’ 
for  a l l  v , ( 111— 13) -

or in determinant form ,

L . .

0 ( I I I — 1 3 a )
C kk for all v .

ffl-3. Review and Physical Interpretation of a Fundamental Property of the

Crosscorrelation of Two Noises

Let us consider, for the present, the problem posed in Paragraph 111-1 and

illustrated by Fig. Ill-i (multiple filtering). The signal at the output of filter (i)

J R~~( e )  S~~( t~~e ) de ,

and as a result the signal at the output ~~ is

e C t )  = 

~~ f R~~Ce ) s.(t—e) d O  . (III—lfl

The noise at the output of filter R~ C t )  is

f  R~~Cu) B .Ct—u) du ,

and the noise at ~~ is

0 ( t ) = 

~~ 
[ ~~~( u )  B

1 C t — u )  ~1t C 1 I I _ l ~~)
j J

Its average power is

P0 
= ~~C t )  = E ~ 

[
~~~~~~~ f R ~~~~

C t  R~ C t. _
~ ) ~t i :  ] 

~ 

.~
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S1(t) I
~~~~ B1

(t) 
Ri Ct

~J-

3 (t) 1
B:(t) 

R 2 (t)J

,~~~ 1 ~ 
( ~ )0 ——— — — — — —  — — —

E~~O 
B .(t) [R 1

t)

o—----- - ---- -

N ,, ( t )
p R ,.(t)

“N P . C t )

Fig. Ill-i
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The [~] in Eq ( 111— 16) may be put in the form of a double

~ 0 
=

~~~~ 
~~ ( [R j u R k ( v )  . B

1
( t — u )  . B~~C t _ v )  d u dv

j  k J J  (111-17)

obtained by permuting the symbols ~ , J
., and 3 , which is legitimate under

many realizable conditions in physics. We have, then ,

P~ =~~~~~ ~ff R~~(u )  RkCv) C
j k

( u_ v )  du dv ( 111— 18)

from the definition of C~ k C t )  (Eq. (III —1)).

The right-hand side of (I I I— 18)be ing a power, is non-negative, regardless of
what filtering processes R~ Ct) are considered. This fact constitutes a characteristic
property of the ensemble of cross- and autocorrelation functions of any N real noises
B~~( t ) .  We have, then,

R~~(u )  H k ( v)  C
~~k

( u _ v )  du dv 
-~~ 0 ( 111—19)

j  k
for any R .

Equation (111-19) will be later used to advantage.

m-4. Investigation of the Solution to the Problem Posed in Paragraph Ill-i.

The ratio ~ which is to be maximized by the proper choice of the filters ( t )

is, according to equation (111—2)

[0 t 0 ) ]  
2

p = . 
( 111— 2 0)

It is evident that this ratio Q , except for a constant factor, depends ouly on ( t ) .
We may recall the remark made in Paragraph 11-2 that matched filtering would be
defined except for a constant factor. In order to maximize p , this arbitrary factor
must be chosen in such a way that the numerator of c ,  that is,[oC t o )  ] 2

is given an arbitrary non—zero value k and then, taking this constraint into con-
sideration , the denominator F 0 is minimized.

The problem is now reduced to finding filters (t ) such that

= ~~ R~ (o) S~ (t0— o ) d~ = k , (111 2 1)
j

16
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and such that the quantity P
0 in E q. ( 111— 8) is minimized.

Let us consider the ensembles of impulse responses r C t ) , r 2 C t ) , . . r~ ( t )

such that
— 

~~ 
f  r . ( e )  S . ( t 0 - o )  d O  = 0 ; ( l I T _ Z N )

that is, filtering processes which null (or reduce to zero) the signal at the output

~~ at time t 0 .

It is clear that all filtering of the form

R . C t )  + a r~~( t )

with some given real a satisfies Eq. (III—2]- ),as does R 1
( t )  itself. By varying a

and r j  C t )  (constrained only by Eq. ( 1 1 1— 2 2 ) )  we may associate with any fil tering
process H . C t )  an infinite number of filtering processes

R .(t) + ar~~( t )  ,

each one of which assigns the same value k to the numerator of P and different

• values to the denominator P 0 .

If the chosen filtering R . ( t )  is indeed a solution to the problem , that is, if it
minimizes F0, it means that the value of P for that C t )  is less than or equal to

all other values obtained for filtering processes ( t )  + ar~ ( t )

with arbitrary real a and r~ C t )  constrained by( 111—22) . Now, calling
h~ ( t ) , one of the desired filtering processes ,
D h ,  the value of P 0 for R

1 
( t )  = h ( t ) , and

Dh r the value of F 0 for  R~~( t )  = h ’
1

( t )  + ax’1 ( t ) ,
the desired condition may be written

~~
- 

t
~h r  (111—23)

• for arbitrary a and for an arbitrary value of r: constrained only by (111-22).

Substituting from Eq. C 111—18 ),the inequality C 111—N 3 )becomes

~~ ffhj
(u) h

k
( v )  Cjk (u~

v) du dv 
( 111-21)

~~. Ef [[ h1 (u)  + ctr
~~

( u )  ] [ h 1~
(v) + ar

k
( v )  ] c~~k(u_v) du dv

17 
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for any a and any r constrained by C 111—22 ), or rearranging the above in
terms of a ,

a
2 

~~ ff r . ( u )  . rk
( v )  Cjk

(u_v) du dv

jk CIII—25)

+ a >~~ff [r . ( u )  h k ( v )  + h~ (u) rk(v)] Cjk
(u_v) du dv > .0

for any a and any r constrained by ( 1 1 1— 2 2 ) .

The coefficient of a
2 

in (1 11— 2 5) is of the form found in Eq. ( I l l - i N ) ;
hence it is non-negative. It represents , moreover , the noise power at the output ~~
for the fil tering process r ,~ ( t ) .  Since the first term of E q. ( 111— 2 5)  remains
positive for all a , in order to prevent the sign of the second term from prevailing
for small values of j a , it is necessary to set the coefficient of a equal to
zero. This condition is then

~~~ff[r1 ( u )  . h
k

( v )  + h~~( u )  r
k

( v )  ] C
~~k

U_ V du dv 0

(I I I-~-~~)
for any i’ constrained by C 111—22) .

ffl-5. Demonstration - Temporal Form of the Solution

The first term (left side) of (111—26) is composed of two terms. Because of
Eq.(III—3 ) ,which implies

C j k
( u_ v )  = C

kj
(v_u)

these two terms may be written in symmetric form with their two indices , as well as
u. and v permuted.

It is evident , in this for m, that they are equal . Condition ( I I  I — 2~~) is then
reduced to

~~~[Jr
. ( u )  lI

k
(v) C

~ k
(u_v) lu dv = 0 , (111— N’ )

for any r constra ined by ( 1 1 1 — 7)

18 

_ _ _  _  _ _  _ _ _



——-
‘
--—-- -~~~~~ ‘-—-—-—~~~~~~-—-— ‘- ~~~~~~~~~~~~~~ 

- - - -~~~
-
-- --—

Equation (I I I  — - 7 )  may be written

~~fr~~(u) [~~ f 
h~~-~v )  C

~~k
( u _ v )  d v]  du = 0

and from ( 111—22 )

~~~fr j
( u )  S~~( t o — u ) du = 0 . (III-N2)

In order to simplify the notation for the moment, let us set the bracketed term

of (111—28) equal to f~ C u ) .  Among all the possible systems of functions r 1 
(u),

let us consider those which possess only a single function not identically equal to
zero , for example r 1 C u ) .  This function is constrained by Eq. (111—22) , which is

expressed as

f r 1 Cu) S1 (t 0—u) du = 0 .

Condition ( T I I — 2 8 )  defines only fj (u); for any function r 1(u) constrained by
(I I I — 2 2 a ) ,  f 1( u )  must satisf y

- fri(u ) f 1( u )  du = 0 • ( T I I — 2 8 a )

Equations (III—22a) and (III—28a) are .seen to result in

f 1( u )  = K 1 S 1(t 0— u ) , (111-78)

where K 1 is a factor independent of u (Appendix 11~. 
The preceding relation is valid

for all values of the index j ,  and as a result

f~~( u )  = K~ 3 1 (t 0 — u ) .

Applying these necessary conditions to (111-28) , we obtain

~~ K~ f r
1 Cu

) n~ (t0-u) du 0.

Comparing with (111-22) we observe that all I’: . must be equal to one another and to

the same factor K , which is independent of the index j .

Finally, the system of equation s which gives the impulse responses 
~~: 

C t )

the solution to the prol)Iem, is the eflS(’mhl( ot equa t ions  ol the typ e

It )

____ -- - - -



- -
~~~~~~

--
~~~~~~~~~~~ 

—-- - ---- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- -
~~~~~~~~

-—

~~~ H’:~~~ 
7
~ k

Cu_v ) ~v = ~: N 1 Ct 0 — u )  (111— 30)

:ur j  = 1 , 2 .fl

These I. integral equations define the N impulse responses h 1 ( t )  ,h 2 ( t )  
~
i
N 

C t )
and give the desired solution to the problem in its temporal form ( impulse responses).

o ptimal filtering comprised of the filters hk(t) is defined by Eq. (111—30) ,
except for a factor K.  This factor is arbitrary but it is still related to the other
arbitrary factor k = c Ct ~ 

) by Eq. (1 11— 21 ) by which the numerator of ~ was
normalized; it is related as well to the noise power at the output ~~ (denominator
of t ) , which is minimized for a given K but which is nevertheless proportional to K 2 .

In fact, Eq. (1 11—21 ) is written, for the filtering process h~ C t ) ,

k = o ( t 0)  = ~~ f h~~(u) 7 1 (t 0—fl  1L~ , ( I I I ~~~l )

which is, multiplying both sides by K ,

Kk = ~~ fh ~~C u )  [F: ~~~~ ~_ 22 ]  
~~~

. C : : : - ~ fl

and , replacing the bracketed term of C III — 32 ) by its value derived trom ( : 1  — 3 ) ) ,

Kk = ~~ f f h~~( u )  :i~: C v)  C~~,. Ct- v )  
( I n _ 3 . , )

Thus, the second term (right side) of (111—33) is the value of power for
the optimum filtering process h~ C t ) ,  that is, the noise power at output ~~
-power which is minimized by that optimum filtering. The minimum power is
designated by P .

We have then
K k = P

or K o ( t 0 )  =

As for the value of the ratio p , which is made a maximum 
~ ~ by the optimal

20
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filtering h ( t ) , it is equal by definition to

[ o ( t o ) ]  
2 

= 

o ( t 0 )  
=

K K

These equations may be summarized by

i ( t 0)  p
K = _____ = _!9_ , CIII— 3~~)

o t 0 )
2

and the proportionality of to K may be made obvious by

2
= ~~,, K . (111—35)

The coefficient K has the dimensions of signal amplitude.

111-6. Spectral Form of the Solution - Value of the Optimized Parameter

By replacing both sides of Eq. C 111—30) by their Fourier transforms, we
obtain the solution to the optimum filtering problem in °spectral” form. The left
side of ( 111—30) contains the convolution of hk(t) with Cik  

( t )  . Its transform
is the product of the Fourier transforms h k C v) and ~~~~ k ~ v ) .  The transform
of the first term is then

~~ h~~( v )  Cjk(v)

k

If S
i 

Ct)  is the Fourier transform of ( t ) ,~ the Fourier transform of the right

side of (111—30) is

e 2
~
1
~
)t 0

whore the asterisk denotes the complex conjugate . Accordingly , the system of

Eqs. ( 111— 30) yields, through transformation, the equations

C 
~~~~ 

hkCv ) = K e~~~~~~~
t 0 S*C v), fo r  j =1 , 2 . . . 1:

( I I i — 3 t - )

In Eq. ( I  11—36) the quantities h k C v) (system functions of the filters) are
dimensionless since they are ratios of two amplitude spectra. The C C ~)

21 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~---~~~~.



are homogeneous in spectral density, that is , in power per cycle (power x time);
hence, in energy.

The N C ~) are in terms of a~~1itude uer cycle (Fourier transforms of
amplitudes), and F: is the unit of amplitude of the signa]..

One may write , introducing the unit of time T,
2 -

- 
N C u )

C . ( v )  n ( u )  = ~ T e~~~~~~
t 0 j

KT
2 k

where K is the wilt o energy or spectral density.

In terms of dimensionless quantities , E q. ( I I  I — 3~ ) may be written

*
C ( v )  . , Z . C v )

N C u )  = e~~~
”
~~~~~o ~ . ( I T I — 3 ~ a)

2 k KT
k K T

However, this form is less concrete, and we will retain the prerogative to speak
of system functions, densities, and signals.

The system (11I_36) is a system of ~j linear equations in N unknowns consisting
of the h k ( v ) .  . Solving explicitly, we have the N equations

hk(v) = :ce 2
~~~

ut 0 
~~ v )  ~~ S ( v )  1j k~~~~ , ( 111-37)

for  k = 1,2 N ,

where ~ ( v )  denotes the determinant of the 7 j  k ~‘4 C~ is the line index and k

the column index), and where ~~ k ~ v)  denotes the cofactor of the element( I , 1-: )
of A( v)  (that is, the determinant obtained by suppressing the 

t h  line and the k th

column and assigning the sign ( — 1)  ~ ~~ )

The system of equations given by ( 1 11— 37 )  constitutes the “spectral” form of
the solution. It defines the optimum filtering process by the system functions of the 11

filters, N 1 ( v ),  h 2 C u )  hN( ‘4.
Let us note that the solution of the linear system ( I I  1 — L - )  is generally unique

provided that ~ C v )  � 0 ) .

Thus, the h k u )  are, in general, completely determined, as are , consequently,

the C t ) .  One may then speak of the solution to the problem of matched filtering

with N inputs - a unique solution defined by ( 1  I I-.3t4 .

The case of ~ ( v )  = 0 will be investigated later. The C ( v )  are Ilermitian

w ith respect to the variable v (Eq. CII 1— 5)) . The Nj C v )  are also, as transfo rms

of the real signals ( t ) .  Thus , all the system function s ( v )  are Ilermitian with

respect to v , and the impulse responses h~~C~ arc real. l) r ivcn l iv  real signals or

00 
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noise , an N. . ( t )  delivers a real signal or a real noise.

An interesting expression for the maximum value of ~M of the ratio ~,
optimized by the filtering process {h k ( v ) } , may be drawn from the Eqs. (III— 

~

In fact, Eq. ( 111—31 ) may be written

a C t o )  = 

~~ 
f  ::~~ ( u )  

~ k
(t 0 _ u )  du , (f l~~~~ 1)

and when transformed by Parseval’s identity gives the result

aC t 0) = 

~~ fk~~~ 
h k ( v )  e2~~

1vt 0 J u  CII :-

(the Fourier transform of (t 0 — t )  being h k C — u )  e 21T vt  0 , , that is ,
h~~C v )  e 2 iii  v t  ~ , since hk 

( t )  is real, as we nave seen previously).

Substituting the value of Cv ) given by (I I I —37 ) into Eq. C I 1 1  —3 8), we have

o ( t 0)  = -~--~N.-~ - S~~( v )  ~~~~( v ) ]  ~v

or from (ITI—3~ )

o ( t 0 )  I N .Cv) N (v) I I . ( v )
= __________ = 

~ 1 ~ i v 
~ I Ic I k ~~ v )  -

Note that since ~ ~ is a ratio of powers the right side of (I I I — ~ 4 is always
non-negative for any noise B 1 

( t )  and any signal (t  ~~~.

The value P~ is the integral of a function of v :

* 
N . C u )

U (v) = ~~~~~~ ~
‘
~~ ( v )  2 1, C t )  —~‘-~~--— 

-

j  k ~ ( v )  ‘ ( 1 1 1— 0 )

whose real, non-negative character for all v will become evident shortly

(Eq. TTI— > :2)).

The output signal a C t )  has an amplitude spectru m given by

o ( v ) = 
~~ 

N~ Cv ) h k ( u )  ( 1 I T — - . 1 )
k

23
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or, taking ( 111— 37) and I I I — ~4 0 )  into account ,

= (Ke
_2
~
1vt

0) . D ( v )  ( I I I-~~2 )

111-7. Matrix Notation - Characteristic Property of Matched Filtering

We will now express the preceding equations in a particularly convenient matrix
notation that is suggested quite naturally by Eq. ( 1T1 46 ) .

In this notation, the table of C~ k ~ v )  constitutes a square matrix of order N ,
which, according to Eq. (111—6) ,~ is Hermitian. The ensemble of system functions

R
1 

C u )  or C u) may be represented by column matrix R or N . The ensemble

of signals may be designated by a column matrix S
It is obvious that the matrices S and R represent different physical quantities

(signals and system functions) . Thus, all operations between matrices S and H
are not justified from a physical point of view. For example, a linear combination
czS+ ~R has no meaning and will not be used. On the other hand, a matrix
multiplication such as Nn or hS represents the right-hand side of C 111— 111 )
that is, the amplitude spec trum of the output signal of the matched filter. More
generally,

SR =

designates the signal output of the multiple filtering process of Fig. (lu-i). Moreover ,

using only dimensionless quantities (Eq. C 111—36 a)), only physical quantities of the

same nature may be manipulated.

Anticipating its justification given in Paragraph V-4, let us use, for the moment,

Eq. (V—2 1) , which gives the spectral density of the multiple filtering process H
at the output ~~

For any arbitrary H
1 

( t )  H . ( v )  , we have

= ~~~~ R~ Cv) Rk Cv) C ,k (u) ,
j k

which is expressed in matrix notation as

3The symbols of matrix calculations are those recommended by Standard

NF’X~2—l 10 of April 19 (2.
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y~~( v )  = R~CR . ( I II -~4 3 )

The right-hand side is the Hermitian form of the matrix C.  In the case of matched

filtering, the spectral density of the output noise is

+y
~~

Cv ) = h Ch . ( i I I_ ~~~)

Equation (111—36) is written

Ch = [Ke
_2
~~

Vt
0] s * . ( T 1 I — ~ 5)

(In matrix expressions, coefficients will be placed in brackets for greater clarity) .

Equation C 111— 37) gives, when 
~ ( ‘4 ~ 0 ,

h = [Ke
_ ’
~ 1ut0] c

_ i 
5* (III— ~ 6)

Matrix C being Hermitian, we have

C~ = C and C 1 . (III— ~47)

Setting the matrices associated with both sides of (I I I - ~4’4 equal to one
another , we have

= [Ke
+2~~1u t 0 ]  S*+ C _ l +  

. (IIT-~ 8)

Since S = S , the transpose of S, we have

h~ = [Ke
+2
~~

ut
0] S C~~ • 

( T T I — ~~9)

Equation (III_ !4~~) is then written

= h~ Ch = [K 2] ~ C~~ N . (TIT—50)

M
Substituting in ( I I I -  140) and noting that is

~Cv)

25 

- —  -~~~~~~~~~~—--~~ -- -  -~~~~~~--- -- --~~~~~~-~~~~~~~- _ _ _



_ _ _ _ _ _ _ _ _ _  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

the term corresponding to “line k, column j” of c~ 
1 , . we may write

D ( u )  = C~~ N~ , (111-51)

and , consequently, from ( I I I  — N O )

Cv) = K
2 D ( v )  . ( I I I -~ ~4

As a result of (I Il—N C) , NC v )  is indeed a real and non-negative function of V

and is homogeneous at a given time .

Comparing ( I I I — ~4 2 )  and ( I I I — N 2 )  one is led to the characteristic rule of
matched filtering, generalized here to the case of N inputs: except for the

—N IT 1 u t
factor [e 

K 
‘ , the spectrum of the output signal is identical to the

apectral density of the noise at the output.

y Cu )
_ _ _ _  — 

a u —

2 
- ________ - ~(v )  . ( IT I -~~~)

K . — 2 i r i v t 0

The identity becomes complete when one adopts the conventions

K = 1 at~ i t o  = 0

The first convention consists of defining the unit of amplitude; it destroys the

homogeneity of the preceding equations. The second expresses the fact that the time

origin is taken to be the instant when the “peak” of the output signal appears. This

convention of notation , which does not alter the generality of the problem , will

ultimately be adopted.

A convenient integration of ( I  I I — N )  y ields the result

a ( t ~~) =f ~C v )  ~~~~~~~~ l u  = J K N ( u )  du K

and integration of (T11— 52) gives

F = K ,.

Thus, we again encounter Eqs. ( 111— 3 1 1 ) and C I T T — 3 N )

26 
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Note that the matrix form of Eq. (111— 14 1) is

a ( u )  = Nb (If1-N 4

and that the comparison of C II 1 _ 14 14 ) ,  (I  1 1—53)  , and C I 1— 5 1 4 )  gives

+ 1~ 2iiiut ol ~= h Gb = j ~,h . ( 111—55)

This equation may be demonstrated directly by beginning with Eq. C 111-145) ,
setting the two matrices associated with the two sides equal to each other, and

multiplying on the right by h.

111-8. Properties of the Output Signal

Equation ( 1 1 1 — 3 1 4 )  shows that c ( t 0 )  has necessarily the same sign as ~
-
,

which we will assume to be positive in order to conform to the current practice which
displays the “peak” of the signal “upward”; however, the opposite convention would be
just as useful . Let us justify the qualitative term “peak” showing that a ( t  o )
is indeed the maximum value of the outpu t signal a ( t ) .  This is equivalent to

showing that a ’ ( t )  = ( t 0 + t )  is less than or equal in magnitude to

or I o ’C t) I ~ a ‘ ( 0 )  . ( I ’ I _ 5 u ) .

Then,

o ’ ( t )  = 0 ( t 0 + t )  = f a ( v )  e2 I T 1
~~~

t 0 +4

and using equation ( I f  1-142) ,

0 1 (t) = KJD(u) e
2
~~
1Vt lu ,

which is, as we know, real and non-negative , and the obvious inequality

I J D C u )  2 I T i u t  d v j  < f D ( u )  Ou

precisely demonstrates Eq. ( I I  I — N b )  . Note that ( u ) , bein g even in v ,

has a Fourier transform a ’ (~ ) that is even in . Thus, a ( ‘~ ) ~S symmetric

about time t = t o .

__________ 
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APPENDIX I

We have, in fact

b
1

( t )  = f B ~~( o )  R . ( t - o )  dO

bkC t) =fBk ( e ’) Rk(t_O
’) do ’,

from which we get

Y j k ( T )  = 
JJE ~ 

B~ CO) Bk(O
’) ~ R

1
( t — O )  R k ( t + T _ O ’ ) do do ’

~jk ( t )  = f -f ’. C j k ( e _ o )  R
1

( t — O )  R k ( t + T _ O ’ ) do  d O ’

Letting

0 ’ — 0 = a
t — 0 w ,

we have

= .11 C~~~( o )  R~ C’4 R k ( T +
~~

_ o ) do dw .

Then,

Rk ( T )  = f  Rk(v) e
2
~~

ut dv ,

from which we get

YJk
(t) =

~~f/f k~ °~ 
R
1

C w )  Rk(u) e
2
~
1 T— (~~~a) d w do dv

y j k ( t )  = 

J

’.
Rk(v) e

21T
~~~~t [fRj

( w )  e 2 \
~~ d w][fC lk (o) e

_ 2
~~~

V 0  

do] dv
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The first bracketed term is R, C u ).

The second bracketed term is C1 k ~ 
v).

Then,

yj k ( T )  = 

f 
R~ ( v ) Rk(v) Cjk (v) {e

2IT
~~ T] dv

This example is analogous to that of reference (7), page 39.

APPENDIX 11

S Cu) being a given function, let us determine a function I ( u )  such that,
for any function r C u) constrained by the reiationfr C u) S C u )  du = 0 ,

we havefr(u) 1(u) du = 0

There are two points u =u 1 and u = u 2 for which the values of S ( u )  are SC u 1)

and S ( u 2 ) (which will be assumed to be different from zero). Consider the function

s (u—u 1) 5 (u—u 2)
r(u) = - 

____

S(u 1) S(u2)

This satisfies the first equation since ( u — u 1) S ( u )  du = S(u i)

We must have therefore

1 
fo (u_ u i) 1(u)  du — 1 6 (u—u 2) 1(u) du = 0

S(u1) S(u2)

and

1(u 1) 
— 

1(u 2)

C-. , ~ 
(
~“ f  \

. J T ~~U 1 )

29
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Considering u 2 as an arbitrary point, it is clear that is a constant ,

independent of the point considered and thus independent of u .

Therefore, f ( u )  = K S ( u)

30
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CHAPTER N

REMARKS CONCERNING THE FORMAL SOLUTIONS OF SOME SPECIAL CASES

Summary

The preceding formal solution may, of course, be applied to the classical problem
of a single input.

a. In the special case where the 1-I noise inputs are uncorrelated , it is shown
that multiple matched filtering is achieved by summing the outputs of separate
matched filters in each channel.

b. If the N noise inputs are both uncorrelated and of the same uniform spectral
density, the generalization of a well-known, essential property of the classical
theorem establishes the fact that the value of the optimized parameter depends only
upon the total energy of the multiple signal (of the N signal inputs).

c. The parameter 
~m expresses the performance ( N / N )  of the matched filter for

given signal and noise inputs. If the noise is defined and the choice of a signal is
arbitrary (a case frequently found in practice), the value of D~~ depends upon
that choice.

Examination of the expression for 
~m shows that it is advantageous to choose

signals in selected frequency bands whose specification is based upon the correlation
matrix of the N noise inputs. This qualitative observ ation introduces the idea of
“eliminable interference” or “infinite signal-to-noise ratio , ” which will be developed
later.

N-i. Limitations of the Cases Considered in This Chapter

The systems of Eqs. C I I I — 3 0 )  and ( I T 1_ 3 7 ) provj de , in temporal form ai~l
spectral form , respectively, the solution to the problem posed in Paragraph 111-1.

First , let us note that according to ( T  11—37 ) the system functions of the
filters h k C v )  are defined only for 

~ C v ) fiO . Therefore, it is a good idea to
examine the case in which this condition may not be fulfilled. This , however , is
part of the study of the prope rties of t~ ( v )  that will be undertaken later .
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II

IV-2. The Case of a Single Input

With the aid of Eqs. (111—30) and ( 11 1— 37) , the solution of a matched filter
with a single input may be found - a solution summarized in Paragraph 11-2.
Equation ( 111—3) yields E q . ( I I — 2 )  directly for the case of N = 1, by letting

C 1 1( T )  = C ( t )  ,

the autocorrelation function of the single noise input.

Equation (111—37) no longer has any meaninginthe case where iN 1 since

the cofactor M 1 1 C u )  is not defined, but Eq. ( 111— 36) is reduced to

— 2 i i ivt 0 *h 1 ( v )  C 11 ( v )  = Ke S 1 ( u )

or h 1 (u) = Ke . 5 1( u )  , ( n i_ i )  
—

C 1 1 ( u )

which is identical to (11—3) since C 11 Cu ) = C( u )  is the spectral density of the

single noise input considered here.

The rule given in Paragraph 111-7 is also valid since the spectrum of the output

signal is

— 2ITiut0 2

o(v) = h(u) S(v) = Ke . _____

while the spectral density of the output noise is

2 2 c~ ( \ I
= C ( u )  

. (h(v)( = K . ______

with D ( v )  = 
I N ( u ) 1

2

1V-3. Matched Filter Rule for Uncorrelated Noise. Signal Energy and Signal-to-Noise

Ratio

Let us consider the simple case where the N noise components are not correlated.

In this case, since the crosscorrelation functions are identically zero, all the

elements C k ~ v) 
of the determinant ~ C’4 are 

zero for ,~ ~~ k . Thus, A C’4

becomes diagonal and takes on the value of the product of the 1 spectral densities

( v ) .
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The cofactors N,j k C v)  are themselves zero for i � k , and one cofactor 1-~ ,~ 

Cu )

is the product of N — 1 spectral densities obtained by omitting C~~1 
C u )  . As a result,

Eqs. (111—37) are reduced to

— 2~~1vt 0 S ( v )  14 (v )

1~~u = e . A ( u )  ‘

that is, to the N equations

— 2~~i ut 0
hk(u) = Ke C ( v )kk (IV—2)

for k = 1, 2 N

The system of Eqs.C IV—2 )points out that for each input the optimum filter is the

same as the case in which that input is considered to be isolated. The following rule

may then be stated (referring to Fig. ffl-i):

A matched filtering process with N inputs, whose noise inputs

are uncorrelated, may be obtained by taking the sum of the outputs of

the matched filters for each input.

In the special case considered here, the value of ~m 
given by expression( 111— 3 ~)

is reduced to
2

= 

~~ 
f 

~~~~~~~~~~~~~~~~~~~~ 

d v  . 
C I v — 3 )

Furthermore, if . the N spectral densities are uniform and equal ,

C11(u) = d

and we have

~ f I3~ (v )~~du . (iV-14)

The integr al J IN 1 ( u )  dv represents the energy of the signal S ( t )

L. ~ ~~~ - - -~~~~~ r - -—-~~~~~~~~~~~~~~~~~~~~ 
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(Parseval’s identity). Then, the ratio 
~m depends only upon the sum of the energies

of the 1-~ signals, that is, upon the total signal energy at the inputs.

This statement generalizes the equivalent rule valid for the case of one input as
long as the noise has a uniform density. We have then

E

m d
where E is the energy of the signal (see reference (8), Chapter LV).

W-4 . General Case - Usefulness of the Arb itrary Parameter

A matched filter with N inputs is defined except for a constant factor - designated
here by K - for all filters h 1. , and an arbitrary time lag represented by the

term e 2 ~i u t  0 , a factor in the N system funct ions C v ) . Th is t ime lag
depends upon the instant of time t a chosen for the appearance of the “peak” output
signal. As has been already suggested in 11-2, the performance of the system rep-
resented by 0 m — which may be defined as the signal-to-noise ratio of the process —

is independent of K and of t 0 , which is evident from Eq. ( 111—39) . It is equally
clear physically that no change in the detection ability of the system is brought about
by inserting the same ideal delay line in series with each input. The appearance of
the signal peak is only changed in time without modifying the height of that peak above
the mean noise level. By th is observation , we touch upon the question of the possi-
bility of achieving filters defined by E qs. C I 11— 30 ) or (I I I — 3 7 )  . We know that,
in order to be realizable, a filter must have an impulse response which is zero for
t 0, bounded, and unconditionally integrabic. If a theoretical filter satisfies only

the two latter conditions , its unit impulse response goes to zero at the limits
t = +~~~ and t = ~~~~~~~. It is possible then to satisf y the first condition in an approxi-
mate way by a translation of the unit impulse response to the righ t on the time axis ,
that is, by a supplementary time delay . This amounts to saying that the physical ap-
proximation of a filter is often facilitated by adding adequa te time delay. The approxi-
mate realization of the matched filter will thus be facilitated by per mitt ing an appro-
pria te value of t. 

~ ; this time delay, although important, cer tainly constitutes an incon-
venience since it postpones the instant when the observer is informed of the presence
of the signal , but it allows us to obtain a good approximation of the ideal performance
expressed by ,, ~~.

IV—5. Limited Possibilities for Elimination of Noise Having a Parti cular ~1rueture

l~ ‘t US (‘on~uder Eq. C r 11—3
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= ~~ S ( u )  Sk C V )  i j k ( u )  
. (111-39)

A ( u )

The possibility appears here of having 
~m become “ infinite” if there exist

f requencies for which A ( ‘4  becomes zero (provided that the signals indeed possess
spectral components at these frequencies and that the sum of the cofactors does not
go to zero as well) .

Such a possibility, which corresponds to the total elimination of noise , naturally

constitutes a limiting case. It is apparent , however , that it may be interesting in
practice to concentrate the signal energy in those frequency bands where A C v )

is very small, if such bands exist.

Formally, structures having “eliminable noise” may be defined in terms of matched
filtering. The case of “coherent interference” which belongs to this category will be

treated later (Paragraph VII-5) . It can be immediately seen that no such situation

ever arises in the case of N uncorrelated noises; in fact, as we have seen, A C v)
is reduced, in such a case, to the product of spectral densities; that is, to a non-
negative quantity . Further , the spectral density of noise at an input is never zero in
practice (because of thermal noise) . Thus , A ( u )  may not be zero at any frequency

(Paragraph VI-8).

Formally, the case A Cv ) =0 may be encountered if the noise inputs are

statistically related. However, in practice , there will always be one part of the total
interference - thermal noise - which , because of its independence f rom one input to
another , will prevent A C ’4  from being reduced to zero . Thus, A ( v  ) = ~ appears
as a limiting case , interesting in its formalism but physically inaccessible, as

is the “infin ite” signal—to—noise ratio.

This restriction does not take away any of the practical interest from the following
statement: the signal -to-noise ratio tends to become very large when A C ’4
becomes very small. In order to use this fact , we must , given the choice , use signals
in the band or bands where A C ’4 is the smallest; as a result , we must know ~ ( u )  -

This preceding statement is obviously a generalization of the very simple ease ol
one input for which the expression in (ITT— -H) becomes

:35 
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= dv . (IV-5)

Applying the theorem of the mean , ft may be show7~ that for a given signal energy,

E = I S ( v ) 1 2 
dv

The maximum value for p~~will be obtained by placing this energy in that band - or
in the limiting case, at that frequency - where C ( u) is minimized. Since it is a

question of a limiting case, it is particularly interesting to know the nature of the
statistical relationships - let us say, the spatial structure of the noise at the
inputs - which will result in t~ ( v )  being zero. In fact, the performance of matched
filtering is then considerable since it permits a theoretically infinite signal-to-noise

ratio. In other words, it allows us - in this case only - to suppress the noise. A
more complete discussion of this case will appear later.

At present, let us be satisfied to take note of the formal difficulty involved in
practical use of the case 

~ 
( v) = 0 . In fact, K being considered an arbitrary,

fixed constant - easily normalized to the value 1 - in Eq. C 111—37) , the (v

are found to be unbounded and thus unrealizable in just that case where they yield
the best results. The output signal 

~ C t ~~) 
from filters with “infinite” gain is itself

infinite. Its observation would thus be inconvenient. We will see in Chapter VI how
the concept of normalized matched filtering permits us to avoid this difficulty
in the case of a narrow band.

-- 
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CHAPTER V

THE CASE OF IDE NTICAL SIGNALS - PROPER FILTE RING-ORTHOGONAL IMAGES

OF A SYSTEM WITH N NOISE INPUTS

Summary

To assum e N identical signals does not reduce the generality of the problem.
This is a case to which we may always return and one to which, in general, even the
most advanced techniques are effectively reduced. In this case, the following may be
established:

a. Matched filtering is divided into (1) a proper antenna

filtering (PF), which depends only on the N noises and

involves one filter per channel, and (2) a unique filter

defined by the signal alone, which is nothing more than

the matched filter for the signal in noise with uniform

density.

b. The direct sum of the N elements of an antenna forinø a part of

a PF - now an optimal process - only if the N noises are

uncorrelated and have the same spectral density.

The concept of proper filtering is very important. The propert ies of a PF are
associated with the noise alone. The “system function” (complex gain) of a PF may be
defined for the signal between the input and output. It is always real and non-negative,
and the first characteristic property of the PF is the following~

The gain of the PF is equal (except for a homogeneity factor) to the

spectral density of the output noise.

The study of a PF reduces naturally to a study of the correlation matrix, whose
known classical properties will first be reviewed. The eigenvahtes of this matrix
are functions of frequency and have the properties of a spectral density.

37
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The initial argument assuming N correlated noise inputs B 1 C t )  may be

replaced by a simpler argument assuming N uncorrelated noise inputs derived
from the first, which represent the ensemble B~ C t )  equally well. This trans-

position offers the same convenience as the reduction of a surface to principal axes.

Thus it is, in itself, interesting and will be used effectively in the remainder of the

study.

The N “ reduced” noise inputs, which we will call the “orthogonal images” of

the B~ (~u )  , are obtained from the latter with the aid of a collection of linear filters

comprising a “matrix ~ “. This means of generation illustrates the abstract

operation of diagonalizing the correlation matrix C

The “orthogonal images” are uncorrelated, have for their spectral densities the
eigenvalues of the correlation matrix, and are such that to any multiple filtering of

the B~ ( t )  there corresponds a multiple filtering of the images that yields the

same signal and the same noise spectral density. The latter, however, is easier

to study.

In particular, to the matched filtering of a signal in the C t )  there corresponds

the matched filtering of the signal transformed (through the matrix o ) to

“orthogonal image” form. Proper filtering of the B . C t )  corresponds to matched
filtering of unlike signals in uncorrelated noise .

Thus, from now on, we will be able to transpose the entire study into the realm
of “orthogonal images”, which will permit us to establish, in a simple, “physical”

way, certain properties of matched filters in the limiting case where the correlation

matrix becomes singular.

Finally, the second characteristic property of proper filtering is established;

it is a multiple filtering process where the crosscorrelation between a single noise

input and the output noise is the same for all inputs. Moreover, this mutual

crosscorrelation is zero for any value of t except for one C T = U )  but dependent

upon the choice of the time origin. This is a “microscopic” crosscorrelation .

V-l. Non-Restrictive Character of the Case of Identical Signals

We will consider , for the present , the case in which the ~: signals are identical ,

first emphasizing the practical interest of this special case; it is immediately clear

that we may always come back to it. Let us assume, as we have done before, that

the inputs are the N elements of a ree iving antenna with fixed elements arranged
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in some arbitrary manner. The signal to be received is carried by a plane wave from

a known direction. Let us put on each element an ideal delay line of such a value that
the relative time lags of the elements for that particular direction are equalized. The

output signals of the N delay lines become identical. Naturally the statistical

relationships between the noise components are not the same at the outputs as at the

inputs, but this does not restrict us much since we have assumed them to be arbitrary.

We have thus constructed a new system with N inputs (the delay line outputs) at which

the N signals are identical. The operation may be repeated for each direction of the

signal plane wave. This is exactly what is done, in general, in a technique aptly

named “preformation of beams”, designed to provide for each direction an output

whose signal-to-noise ratio is improved by putting all the signals in phase. Let us

say “improved” and not “optimized” since it will be seen later that it is necessary to
consider this simple “putting in phase” and the limits of its efficacy. (See Paragraph
V-2.)

Be that as it may, making signals at antenna elements identical is already in

current practice and is related to the angular separation of the different plane waves

which are received.

Strictly speaking, the process of delay compensation is sufficient to render the

signals identical only if one is dealing with point antenna elements, which do not alter

the incident sound field by their presence.

If there exists a rigid structure around which sound waves are diffracted, delays

computed from the geometry are not adequate. For a given element, however, this

diffraction appears as a linear filtering which modifies, at the input, the type of

signal carried by the incident wave. This filtering is defined by the relative geometry
of the element and the structure and by the boundary conditions of the acoustic field

at the structure. At any rate, one may at least formally assume each input to be

affected by an inverse filtering which nullifies the diffraction and restores identical
signals to all the inputs. The compensation process is complex but still possible.

Let us summarize:

a. At the formal level, we may always reduce the problem to the

case of identical signals. Properly speaking, there is no restriction here upon the

general study of matched filtering with N inputs.
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b. From a practical standpoint, it is often very close to the situation of
N identical signals.

V-2. Formal Solution for the Case of Identical Signals

Assume that the N signals are identical:

S1Ct) = S2Ct) = S C t )  = SCt)N (V-i)

S1C v ) = S 2 ( v )  = SN CV ) = SCv)

Equation (111—37) is then reduced to the following N equations:

— 2 rd v t 0 *

hk(v) = Xe • S ( v )  . 

~ (~~) M~~~C u )  , CV— 2)

for k = 1, 2 N

As a result of (V — 2 ) each filter hkCv ) is obtained by placing in series a

filter whose gain4 is

— 2irivt 0 *Xe S C v )

which depends only on the signal and arbitrary time t 0, with a filter

Cv ’ - ~~ 
j k ~~~ (V -3 )

/ — 

~( v )

which depends only upon the noise at the N inputs.
—2idvt 0 * 

•

The filtering defined by Xe S C v) is nothing more than the

matched filter for the signal S C t )  in noise having a uniform density. It is common

to all ri channels of the system. If we refer to Fig. nI-i we will see that, in the

4Herea.fter, except for a homogeneity factor, the expression “complex gain”
is understood.
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case of identical signals, it is reduced to Fig. V-i, in which the filtering of the
signal is accomplished after summing the filtered output of each channel 

~~~k 
( u )

I PROPER ANTENNA FILTERING

S(t) ’ I
E1 p B C t)’ ‘

~ 

p 1 v I C t )  OCt)

:2:
~~~~~~~~~~EJ

_

~~~~~~~~~ 

~~~~::2~~~~t0 . s*( :~~~~ ~~~

N 0 B C t )  N (F I L T E R I N G  DE P ENDENT
N 

ON SIGNAL ONLY )

L_ _  _J
(FILTERING DEPENDENT ON NOISE ONLY )

Fig. V-i. Identical Signals — Arbitrary Noise Inputs

Let us consider, for the moment, the special case where the N noise inputs are
,.mcorrelated (see Eq. IV—2 ) . Equation C V— 2 ) becomes

— 2 Tdv t 0 *

hk(v) = Xe . , - 
( V _ 1 4 )

and Eq. (V-3) becomes

pk(v) = C kk cV J . (~~
•
~~~~)

If, moreover, the N spectral densities are identical to C C v ) ,  all the (v)

are identical to . Figure V-i becomes Fig. V-l(a) in which all filtering
processes are reduced to a single filter 

Xe
0 S*(v) placed

C (v)
after the direct summation of the inputs. This single filtering process is, moreover,

the matched filter for an arbitrary input.
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- ‘  S~( t )

B~~( t )

Fig. V-i(a). Identical Signals — Uncorrelated Noise Inputs
Having the Same Spectral Density

The preceding line of reasoning presents all the necessary conditions in order
that the direct summation of antenna elements may be interposed in the matched
filtering process (see Chapter I). As attractive as the replacement of N filters

by a single one may be, it is well to realize that an optimal process may be realized

in this way only under the following conditions:

For identical signals, with uncorrelated noise inputs having the same
spectral density, the matched filtering process is reduced to direct summation of

iflputs followed by the matched filtering for an arbitrary input signal.

V-3. Proper Filtering of an Antenna and Its Gain. First Characteristic Property

We will now define the important concept of proper antenna filtering. Let us
recall the general Eqs. ( V — 2 )  and (V—3) , referring to identical signals and

arbitrary noise (Fig. V-i) . The ensemble of filters 
~k C v )  and the subsequent

summation will be called the prope r filtering for the system having N inputs in
the presence of noises B 1 C t )  , B 2 ( t )  B N ( t )

The letter P designates the output of the prope r filtering process where the
signal will be a~ C t )  

•~ o~ C v )  and where the noise will be F~~( t )

The numerator of ( v )  in Eq. ( V — 3 )  is the sum of the cofactors of the terms of
the k th  column of the determinant ~ ( v )  . In other words , it is a determinan t

- - -

~ 12 

j



obtained by starting with z~ ( v )  and replacing the terms of the k
t h 

column by ones.

Proper filtering has been defined from the concept of identical signals, that is,

by a single unique signal applied to all elements of the antenna. For such a unique

signal , it is equivalent to a linear filter whose system function (complex gain) is

T~k C v) since the spectrum of the signal at P is S C v )  . 

~~ 
p~ C v)

k k
The system function 0 (v) of the proper filtering process will be defined as

G~~( v )  
~~ 

E Mjk(v>,/ . C V — 6 )

This is the spectrum of the response obtained at point P when the same unit impulse

6(t) (Dirac delta function), whose spectrum S(v) = 1, is applied at the inputs.

The ratio 
~m 

(optimum signal-to-noise ratio) at the output becomes, in the

case of identical signals (see Eq. ( 11 1— 3 9 ) ) ,

= 

f 
4~v~~L ~~ M. ~~( v )  dv 

‘ (V-7)

or

= f  S C v ) t ~ 0 ( v )  dv . (
~~- i  a)

The density 1) ( v )  defined by C I I I  — Li 0 )  becomes in this case

D(v ) SC v) 1
2 
0 (v) , (V_ H)

and as a result G~ ( v )  is a real, non-negative function that is even in v

Thus, the proper gain of an antenna is real and non -negative; that is,an arb itra ry

spectral component of the input signal appears at point P (Fig. V-i) multiplied by a

real, positive number and therefore is not changed in phase.

The matrix notation of Paragraph 111-7 is modified because column matrix

may be replaced by (a)] a , where a is the column matrix whose N elemen ts

are equal to 1. Equation ( l i t — 1 1t ) becomes

* 1 ~h L ~ . S C v ) J  C a .
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Equation C 111—50) ( spectral density at ) becomes

~~~~~~~~~ 1
y ( v )  = h~ Ch = LX IS(v )I C a , ( V — b )

from which we get

0(v) [ I S C v ) I  ] a C~~ a (V-li)

and

G Cv) = a C a  . ( V — 1 2 )p

The spectrum of the signal at output P is obviously G~ C v )  S ( v )  = C v )

but at the output , this spectrum is (see Eq. (111—5)4))

a ( v )  = [s(v) ] a h

or r
I — 2 i r i v t 0 2 1 _ 1

a (v) = LKe IS(v )I ]a C ~ , (V 1 3)

and , of course, E q. C 111—53) remains valid in the form

-y
~~~ C u )

0 
= ~~C~~ ) 

= 0 ( v )  = S ( v ) j a  C a  . 
Cv - 1) 4 )

K —2 ~~i v t 0
Xe

The concept of proper filtering and especially of antenna gain 0 C v )  effectively
expresses the properties of the ensemble of N noises at the n inputs . This is a re-
suit of Eq. ( V — 12 )  The spectral density of the noise at the output is given by (V - J O)
which from ( V — 1 2 )  may be written

~ ( v )  = K IS (v)I G ( v )  
. (V-15)P
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Now, this density is the product of the spectral density at P or y C v ) ,

with the square of the magnitude of filtering gain , with the filter placed between P

and (Fig. V— i) . It may be seen that

i~~ C v) = G Cv ) . (~J — i t ~)

Thus, the system function (complex gain) of proper filtering is equal to the
spectral density of the noise at the output of that filtering. (See the note of Paragraph
V-2.) This property is nothing more than the characteristic rule of matched filtering
(Paragraph [11-7) applied to proper filtering.

This is the same as saying that everything takes place as if the antenna were
equivalent to a single input at which the noise has a spectral density of

1 - ~ ( v )  (V - i ?)A ( v )  = 
~ ~ 

) 
_ ____________

v 

~~ M . k ( v )

the gain of the antenna being 0 C v )  and the input signal, 3 ( t ) .  The matched
filtering of such a system (see Eq. ( 1 1— 3 ) )  is then comprised of

— 2 7 r i v t 0 *

Ke S ( v )  0 ( v )

that is, precisely as in Fig. V—1,where the antenna was replaced by a single filter with
a gain G~ C v). The preceding property may also be expressed as follows:

Proper filtering is such that the spectral density of the noise at the output is
equal to the amplitude spectrum of the impulse response (signal S C t) at all N
inputs), which is nothing more than the system function. We are dealing here

with an intrinsic property of the antenna in the presence of t-. given noise inputs.

V-4. Review of the Known Properties of the Correlation Matrix

Since proper filtering of a system is independent of the signal considered, its
study is reduced to the study of A ( v )  and its cofactors and, more generally, of the

• N statistically related noise inputs. Hence, for the remainder of the chapter, we
will depart somewhat from the viewpoint of optimal signal detection - to which we will
return in the following chapters - in order to review the mathematical properties of

~ ( v) , and we will relate them, by their physical interpretation, to the properties of
N statistically related noises.
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Let us first recall that each te rm of the determinant A ( v )  is a 2 .  C ~)
having Hermitian symmetry with respect to v and with respect to its indices , ac-
cording to Eqs. (111—5) and 111—6):

C.k (v) = C
~ k

(_u) , ( f1- - . )

C.k (v) C k . ( v )  - 
(II i-~~)

As a result , the determinant A C v )  itself , being a polynomial in c i of degree ~: ,
has Hermitian symmetry with respect to v:

*A ( u )  = A ( - v )
I

Furthermore, thanks to Eq. (111—6) , reflection about its principal diagonal leaves

A C v )  unchanged and equal to its complex conjugate. Thus,

6 ( u )  = 8 ( v )  - 
(V_i? )

As a result, A Cv) is real and an even function of v - We know that it is also non-
negative, as are the eigenvalues of the matrix C .

In the following discussion , it is intended to define exactly how this property cx-
presses an obvious physical fact; namely , the sum of arbitrary filtering of the N
noise inputs under consideration is itself a noise and by virtue of this fact possesses a

necessarily non-negative spectral density.

Equation (111— 18) ,

P~ =~~~~ 

~~ 
f f  R . ( u )  H k ( v )  Hk  (u - v )  iu iv  , ( 1 1 1— 1 8)

gives the noise power of the sum of the arbitrary fil terin g H 1 ( i  ) , H 
-~ C t )  H~, C )

of the N noise inputs B C t )  , B 7 C t )  , . . . !~~~, C t  ) (multiple filterin g) .

This relation may be wri tten in spectral form. Let us first put it in the form

= 

~ f H . ( u )  [ f : (
~ C~~H-v) 

—.---- -~~- --— ---- ----~~~~~~~~~ ~ - --—- —
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The bracketed term is the convolution of C t )  with C .  ( t ) .  Its Fourier

transform is then R k ( v )  c~ k v) , and it may be written

fRk
( v )  C .k ( v )  e 2

~~~~~ dv

or 

= R~~( v )  C .~~( v )  ( R . ( u )  e2~~1~~~) d u  dv

In the last expression , integration in u results in Cv ) , and we have finally

f [
~ 

R~~( v ) R
1 (v) 

(T
.~k~~~

) ] dv  .

We would also have been able to obtain Eq. (V— ~ 0)  from the autocorrelation of

the sum of the filtering processes, that is, by ~ neralizmg to N noise inputs Eqs.

C I T T — i )  and ( 111—10) , which were established for two noise inputs.

Thus, it would appear, according to (V— ’o )  , that the spectral density of the

multiple filter output is

= ~~ F~~( v )  H ( v )  
~1-:~~~~ 

= 
‘ (V_ i)

j k

that is, the Hermitian form of the correlation matrix C It is non-negative for any

multiple filtering R (positive definite matrix) . Let us recall that, in a linear tran s-

forma tion which diagonalizes the matrix C , the expression of the Ilermitian form

becomes

~~(v )  ~~ A . ( v )  x~~( v )  I (: - . N)

where the A C v )  are the cigenvalues of matrix N — real eigenvalues since is

Hermi tian — and where the x~ 
( v )  correspond to the B C v ) in the t ransformatio n

(refe rence (14), Chapter III).

The matrix notation for C V — N? ) is

y~~ ( v )  = x x  ( V  -
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where x is the column matrix of X j  Cv ) and where A (without indices) is the
diagonal matrix of eigenvalues.

Equation (V_2 3) is true for any arbitrary X j  Cv) (resulting from any arbi-

trary R~ C v )  . Thus, it is evident that

( v )  > o for any j  and v . ( V — 2 ) 4 )

The eigenvalues of the matrix are non-negative. Their product is non-negative,

8 ( v )  > 0 (V 2 5)

all these properties being consequences of the fact that ‘r ~ 
( v) >0 for an arbi-

trary multiple filtering process.

Any cofactor M .  . Cv) plays the same role as 8(v) for N— i noises among

the N noises considered. Hence

M~~~( v )  > 0 . ( V - 2 6 )

More generally, every minor of A C v )  obtained by suppressing a certain number

of lines and columns of the same rank , is non-negative. if the minor is of order two

we get Eq. (111—13).

To finish this review, note that

M j k
( v )  = M k~~

( v )  (V - 2 7 )

because of the Hermitian symmetry of A ( v) . Thus, the sum of all ( v )  is

real .

We have seen that the gain for proper filtering defined by (-1-6) ,
M C v )

0 (v) = 
~~~~~ ~

y
_ 

‘ 
(v—6)

i k
is, according to (V—8) , real, even in v , and non-negative. Since this is also

the case for A ( v ) , we have

~~~~~ ~~~~~ k~~”~ 
which is real, non-negative (V-~~8) ,

j  k and even in v
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V-5. Second Characteristic Property of Proper Filtering

Let us make a final observation concerning the physical interpretation of the
equation defining proper filtering, which may be written (from C V— 9 ) )

CF = a , ( V — 2 9 )

which summarizes N equations of the form

C . 1 P 1 + C~~2 P 2 + C .N 
~N 

-

3 ( V — 3 0 )
f o r j l , 2 , . . . N .

An arbitrary term of the sum ( V _ 3 0 )  is in the form

*C 1 P , or t C P
K j k K

where ~ C v) designates the system function of a filter of gain 1 over the whole spec-

trum. It may be seen by analogy with Eq. ( 111—10) that C k ~k (a function of v )
5 3

is the crosscorrelation spectrum of two noises, the first resulting from the filtering

of B~ ( t )  by ~ (v) (that is, unfiltered B~ ( t ) )  and the second resulting from
the filtering of Bk

( t )  by Pk(v).

The sum of ( V — 3 0 )  represents, therefore, the crosscorrelation of B~ ( t )

with the sum of
B1 (t) filtered by P 1 (v)

B2(t) filtered by P2 (v), etc ,

in other words, the crosscorrelation of B ( t) with the output of the proper filter.

Thus, Eq. ( V — 2 9 )  expresses the fact that the crosscorrelation spectrum of any
one of the noise inputs B~ C t )  with the output of the filter is equal to 1, or rather to
Q where Q represents a homogeneity factor. The corresponding crosscorrelation
function is thus in the form Q 

~ 
( T )

Hence, proper filtering is characterized by the following property: it is a multiple

filte r ing process such that the crosscorrelation between any one input and the outpu t is

the same and is zero for all -r except -r = 0 . This is a “microscopic” cross—

correlation.

r
‘~That is, as we will recall, the Fourier transform of the crosseorrelation function.

_ 
— - ---~~~~~~~~~~~~~~~~~~~ -- _ -



In the special case of a single input, the proper filter has a gain proportional to

y ( v )  
= p ( v )  , (V-31)

where y C v )  is the spectral density of the input noise (see Eq. ( I~ —1)).
The crosscorrelation spectrum of noise between input and output is that of B C t )  un-
filtered with B C t )  filtered by p C v ) ,

or according to (111—10), [i] [-y(v )] [p Cv )] = 1. ( V — 3 2 )  -

The corresponding crosscorrelation function is thus equal to ~S ( t )  except for

a homogeneity factor.
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C~IAPTER VI

NARROW-BAN D APPROXIMATION - VARIATION OF PROPER FILTERING (NPF)

Summary

This chapter describes applications and develops the realization of matched
filters. We will be limited here to the important and practical case of narrow-band
signals. It will be assumed that in the frequency band of interest, prope rties of noise
are independent of frequency. The useful gain of a linear filter is reduced to a
complex number that represents a “phase shift” accompanied by a “weighting” of
amplitude; these operations are always realizable in the sense of Network Theory ,
provided that the weighting remains bounded, that is, provided that the gains remain
finite.

Thus, the narrow-band approximation offers new possibilities of normalization
since the parameters that depend upon the spectral properties of the noise are

reduced to constants. These possibilities permit us to avoid a previously described

difficulty (Paragraph 1V-5): for broad bands, the gains of the filters arc not finite
(constant K being chosen) if the correlation matrix becomes singular, that is, in the

limiting case where the signal-to-noise ratio might be ‘infinite.” For a narrow

band , the same difficulty may occur, but it is avoidabl e to some degree by using a
convenient normalization. Thus, we arc led to define the variations of proper

filtering which perform in the same way for all ordinary cases but offer additional,
useful behavior in the limiting cases. These variation s are characterized by the

disappearance , in the expression for filter gains , of the determinant ~ ( v
of the correlation matrix .

It is found , moreover , that this disappearance provides an economic advantage.
The technology of prope r filters , as will be outlined in Chapter LX, consists , in fact ,
of constructing the C and then the ~

‘ . • ,  the latter being polynomials of degree
( N — i )  in C . But is , itself , of degree N . By avoiding the construction of ~ ,

we reduce the technological difficulty by one degree.

Here, consequently, arc the points which are to be considered. Calling the
previously defined proper filtering simple pi.oper filtering (SPF), let us consider

a variation of it , normalized proper filtering (NPF) , which has the following

properties:
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a. It is always defined, even when the correlation matrix becomes singular ,
unlike SPF.

b. In this latter case it may act in two ways:
- in the case of eliminable noise, the noise is cancelled

at the output without losing the signal. 
-

- in the case of cutoff, all the filter gains go to zero
simultaneously.

c. A special case of eliminable noise is that in which the noise goes to zero at a
single input; all channels cut off except the single input.

d. These cases are physical limits. The inevitable presence of thermal noise
prevents their strict realization.

e. Similarly, it will be established, in the case of NPF, that no change occurs
if the same uncorrelated noise is superimposed upon the initial noise at each input.

VI-i. Narrow-Band Hypothesis. Physical Meaning of the C~ k v o )  and of the
Matrix Notation

We have seen that the hypothesis of identical signals does not, strictly speaking,
constitute a restriction on the general study of matched filtering, with which we will
be concerned from now on. On the other hand, we will for the moment consider a

special case where the spectral band of interest, obviously containing the signal6,
is such that the statistical properties of the noise (spectral density and cross-
correla tion spectrum) can be considered as being independent of frequency . Althou gh ,
strictly speaking, such a hypothesis may be made in a band that is arbitrarily large ,
it is clear that, in practice, the best chance of realizing the hypothesis lies in the use
of narrow bands. Thus, it (the hypothesis) is very desirable in the practical cases of
radar or sonar signals, which are in principle narrow band - that is, of a bandwidth
that is small compared with the center frequency .

Let us assume that we are dealing with signals lying in a narrow band centered at

v o. That is, to a first approximation, only the statistical properties of noise at

60r, more precisely, the quasi-total of the signal energy, since a signal of finite
duration has no spectral limits.
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the frequency v o will enter into the problem; in other words, we are interested only
in the values C’ k C v o ) .  The matched filtering is thus composed of the filters

C v o ) distributed over the N inputs (Fig. V-i), then the summation of these N
filter outputs, followed by the filter S * ( v ) .  This last filtering, narrow band by
hypothesis, assures to some extent the exclusiveness of the frequency V 0

between the input and output of the system. The filters ( v  ~
) must be interpreted

in the following way: sinusoidal signal, with frequency v 0 ,  unit amplitude , and
zero phase , denoted by a ( t ) , applied at input E~~, comes out with amplitude

I p k (v O )I and phase Arg p k
( v O ) . Likewise, the proper gain G~j v o ) of the

system represents the amplitude and phase of the response at P for the same
unitary signal a ( t )  applied at the N inputs. Describing all the transformations
by the modulus and phase obtained under the above condition , all equations previously
written and , in particular , the matrix equations remain valid when the functions of

v are replaced by their values at V = v o . For example, the unitary signal
a ( t )  applied at the n inputs may be described by the same column matrix

(all elements = 1) that previously represented the spectrum of ~ ( t ) .  We may
write then

0 ( v 0 )  =

where p is the column matrix of the C v  ~
) . We will thus be able to examine

what the preceding formalism becomes in terms of the narrow-band approximation
and to deduce from it , should the occasion arise, its special properties.

At this point, we have no need to isolate the narrow band by means of filters
since S* ( v )  itself takes that responsibility. On the other hand , the “filters”

~k (v 0 )  may always be realized since they consist only of a “phase shifter” and an
“amplifier”, that is , very simple electronic circuits (provided , however , that

~ . C v o ) I is bounded).

Nevertheless, if we had to construct the k v 
~

) themselves, we would need
to filter, or rather prefilter, the N inputs with narrow-band filters ~ centered at ~,
which are identical and have a gain of unity in the narrow band and zero gain elsewhere.
If the 13 ( t )  were put into these filters ~ , the outputs would be narrow-band
noise ( t  ) .  We have seen in Paragraph 111-2 that the complex number . (v n)

is the “spectral line” in the crosscorrel ation of L , ( t )  with U k ( U ~~~. In fact, the
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narrower the filters ~ , the closer the crosscorrelation function is to a sinusoidal

function of -r with frequency v 0. This function has a phase and an amplitude

specified exactly by C~ k -~ ~ 
)(see Eq. i l l— i l ) .  Thus, technically, it is the cross-

correlation of b C t )  and b~. ( t )  which C .  
~
. C v ~

) will represent , and this same

complex number defines the crosscorrelation function and the “crosscorrelation
spectrum.”

Since this crosscorrelation may be constructed only with nonlinear operations
(products) produced by interactions between spectral bands , preliminary isolation
(of bands) by prefiltering is indispensable. We will return to this point when it is
required to consider the C C v ~

) in order to construct the C v 
0 ) (see Chapter IX) .

VI-2 . Nor malized Prope r Filtering - Technical Advantages

Multiple filtering (in the sense which we have outlined) which defines proper filtering
of the system (see Fig. V-i), is given on the basis of Eq. ( N — 3 ) :

= 
~~~~~~~~ ~k~~~0

)/ . (‘;~ -1)
/ ~ ( v o )

S TOSAL
•~~~~~r~ ‘j  ~ ~~~ FRi~CSJ~ f lCY

T 0RSAt~IZL-~
I ___________ 

f ’ iL’~1-:FiSG (5FF)

I I
1 S IN NA L  = 5 ( v )  I ST’~U A L :

r = = ~~ I o (v) = 5 (v )  ‘ F 
-~

- 

= I ~ Ct  )=  F E
• IT I P S

E 2 2
B 2 ( t )  I ‘CM N~~( v )

I ::~ 1 5~: I :~~ i
y = = [~] iNa I = H5 (v )1 2

I ~ 
)W

~~-N ~ =
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The proper gain of the system (see Eq. (V—6)) becomes

G ( v 0 ) = 
~~~~~~~~~~~~~~~~~ jk~~~0~/ 

. ( : : - 2 )
,~ k ~ (~~0 )

We have seen (Eqs. (V—8) and( \~— 2 8) ) that ( v  
~

) is real and non-negative,

its numerator and its denominator each being real and non-negative. The optimum

signal-to-noise ratio is (Eq. CV—7 .a ))

= 5 ( v 0 )  . E 5 , ( 7 1 — 3 )

where E denotes the signal energy at an arbitrary input. We know that the

filters in a matched filtering process are definable except for a constant real

factor. This property applies here also. Thus, the filters p . (the notation v 0

will be unde rstood) of Eq. (VI—1) all contain a common factor ~~- This factor

depends upon the properties of the noise. However , in all cases where : is not

zero , the 1
~k 

may be replaced by the filters

= :-~~~ . (VI—U)

Henceforth, we will distinguish between simple proper filtering (SPF) , defined

by E qs. C V I — 1)  and ( - . 1  - ) , and normalized proper filtering (NPF), defined

by Eq. ( V I —  1 ) , to which corresponds a normalized proper gain,

“ p = : : . ,  , (NI— - - )

which is real and non-negative.

It is understood that these limitations apply only in the case of the “narrow-band”

approximation. The performance of the NPF remains the same as that of the SPF

and, following Eq. C V 1—3 ) , depends in particular upon

= K 5 = . ( V I — ’ - )

Now we must determine the way in which the NPF, as defined by 1-:q. - ‘ 
I —

behaves when ‘ = 0 . This will he the objective of Paragraph VI-5.
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It may be noted that the NPF presents an interesting technological advantage;
although 

~m 
always depends upon A , the filters (IT themselves do not

depend upon it. Thus (see Chapter LX), A is a polynomial of order N in terms of

the C~ k whereas the TT k are only of order N— i . Computations which involve

taking the product of complex numbers and which lead to the “fabrication” of the
IT k have a lower degree of difficulty than those required for the computation of t~.

VI-3. Invariance of the NPF in the Presence of the Same Noise Superimposed on

Each of the B . C t )

A property common to both SPF and NPF is the fact that the phase of the signals

(narrow band) at the output of the summation of the N channels is unchanged. This

is tied in with the fact that and G are real and non-negative.

A second special property of NPF is connected with the structure of the

Equation CVI _ LI) shows that It
k 

is the sum of the cofactors of a given column,

i.e., a determinant of order N formed from A by replacing the elements of the

column by ones.

It is easily verified that if the same constant a is added to each of the

elements of such a determinant other than those of the k th  column, the value

of the determinant, and hence that of IT
k 

, is not changed. The physical inter-
pretation of this property is as follows.

An NPF is unchanged in the presence of a stationary supplementary noise that

is identical at all inputs, not correlated with the B
1 

( t )  , and superimposed upon
them. Let us assume, in fact, that the same noise n C t )  is added to all the B~ ( t )

The crosscorrelation functions C k ~ T )  become

N j k ( t )  = B ~ [B i
t + n ( t ) ]  [B k t +T + n ( t + T ) ]  ~ 

( V I — ? )

which is, because of the lack of correlation between n ( t )  and the other noise,

Nj k
( T )  = C .k C T )  + C~~( T )  ,

where C ( t )  is the au tocorrelation of n ( 1 ) .
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Hence, the Fourier transform is

N
jk

(v) = C
j k

( v )  + C~~( v )  CVI— 8)

which is, for a narrow band, -

N j k ( u o ) =  C .k ( v o )  + C ( v o )  . (V 1 9 )

Thus, all the Cj k ( V o )  are increased by the same amount a = C~~( v o ) ,
which is, moreover, the spectral density of n ( t )  at v = V 0. This modification
leaves the value of 11k unchanged; hence the NPF is unchanged, as we have already
seen. It is evident , however , that the performance (ratio 

~ m ”~ 
is affected.

Equation ( v I— 6 ) shows, in fact ,that if F is unchanged ( E q . (v I _ 5 ) ) , A
itself is altered; it may be shown that it increases, becoming

A + a

and that , consequently, as would be expected, the signal-to-noise ratio decreases.
It may be said that everything capable of constructing the IT , - from the C .ik
will be, a priori, unaffected by a noise n K t )  at the inputs.

An analogous reasoning allows us, with the same result, to replace the noise n C t )
by a sinusoidal signal of “infinite” duration and frequency lying in the narrow4and
of interest. We concede that under quasi-stationary conditions (see Paragraph 1X-2)
with a long, real signal, it may be assumed that the are not altered by the
presence of the signal at the inputs.

VI-4. Matrix Notation for NPF

The matrix notation for SPF and NPF is derived from the equations of Paragraph V-3
and from the definition of the column matrix II for NPF.

= 
[A]  

p . C v I — i o )

For SPF the notation is that of Paragraph V-3 , and only the interpretation of the
functions of v which appear in it is changed , following the convention of Paragraph V1 1.

For NPF , using Eq. (V -3) , the following may be derived:

iT = [A ]  C 1a CVI i i )
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Let M be the adjoint matrix of C (the matrix of cofactors) defined by

i~i = [
~~

j C~~’ 
; (VI_12)

then,

- 
Ma . ( V I — 13 )

The gain of the NPF may be written (see Paragraph Vl-l

F = ( V I — i ~4 )p

that is,
F = a Ma = 

[A ]  
C

1
a = 

[A ]  . (V1 15)

These equations must be compared with Eq. (VI—5) in order to be defined. The

spectral density at the output of the NPF is

= ,~
+ C = [A

2] a C 1a = [ A ]  a N a , C vI — 1~~

or

y A . (VI—16a)

Having replaced an SPF by an NPF , let us complete the system by adding a
filter fl * ( v )  in series with the summation of the N channels. If the narrow-band
signal p ( v )  is applied at the input, the spectrum of the signal after summation of
the ~

- channels is F ,~ S C v )  . At the output (see Fig. VI—1) it is F j : ( v )  1
2

Its value (maximum) at time t 0 0 is F K 5 . The noise density, which has

a value y at point P , becomes equal to y H ( v )  
2 at , and its power becomes

S

Figure VI-1 summarizes the properties of an NPF followed by a filter —
‘ * ( v )

(normalized matched filtering) .

VI-5. Limiting Behavior of the NPF-Eliminable Noise and Cutoff

The NPF has been defined , starting with the SPF , for A ~ 0 .  Let us assume

it to be realized in terms of the ~- in accordance with Eq. ( V T  - :~~) . The values
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of i T .  and of F r, are well defined and remain defined if ~ goes to zero7. Then
what is the performance of the NPF under these circumstances? We have already
stressed the characteristics of the “physical limitations” of the hypothesis = 0 .

• We will treat it here, however, in a formal way, in order to justify the use of the NPF.
In fact, note that, in this case, the filters r~k (Eq. ( v I — 1 )  are not realizable
since they are not defined. This is then a particularly regrettable case of failure of
the SPF (see the end of Paragraph 1V-6) since it corresponds to an “infinite” signal-
to-noise ratio (Eq. (VI—u)). On the other hand, the NPF is realizable and can
yield this “infinite” S/N ratio provided that F~ � 0 .

Such performance may be obtained - ~i remaining bounded and hence the output
signal remaining bounded only by nulling the noise (while the SPF produces an infinite
signal since the p, are unbounded). This is clear from Eq. ( V i — i ) where ~

‘

is nulled when ~ = 0 , the matrix 5 and the C . , . themselves remaining bounded.
Thus, the performance of the NPF is better than that of the SPF in the case where

= 0 ; it is defined and hence it provides the limiting performance of matched
filtering by nuiling the noise at its output.

This performance exists , in fact , only if F~, itself does not simultaneously

go to zero, that is, if the system does not “cut off”, nulling both the noise and the
signal. This would be the case in particular if the matrix were of rank

All the cofactors II . k would then go to zero, as would

Thus, the “limiting performance” of an NPF system is possible only if the
matrix C is of rank N — i

If the matrix C is of rank N — i , it may be shown that F~) can be zero only if = 0 .

An NPF , then, has two possible modes of behavior:

a. The case of eliminable interference characterized by = 0 and ~ 0 .

The noise is nulled and the signal is not.

b. The case of cutoff , characterized by r , = 0 (hence - = 0 ) .  The
multiple filter iet~ nothing pass , by letting its gain go to zero . It may be shown that

7The word “becomes” contradicts “stationary .” Let us assume a very slow change in
the noise , and hence of the C , allowing time for adjustments in the value of the
and concede that in this case a situation exists where -

• = 0
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such a case occurs only by simultaneous nulling of all the i i - , , that is, simultaneous
cutoff on all channels. Returning to the case where the matrix C is of order N—2 ,
it is obviously still a case of cutoff.

VI-6. Lindting Case of a Zero Noise at One Input

The case in which one of the noise inputs is found to be zero is a special case of

systems with eliminable interference. It is obviously a limiting case and merely a
formal one , since in such a case it is evident that one need only use that single input
at which the noise is zero. If , however , one of the noises “becomes” zero (see note
of Paragraph (VI-5)), let us verify that the NPF immediately makes use of that fact.

In fact, if Bk ( t )  is the noise that goes to zero, all C .  go to zero for all j .
The matrix C , provided with a column and a line o zeros, is reduced to rank N—
The representation of the in the form of determinants taken from A (by replacing

the t h  column by ones) shows that all of them go to zero except TT
k ’  which becomes

equal to M kk (real , non-negative) and also, in this case , equal to F r, . Thus , the

only channel that remains open is the one in which the noise is zero , which obviously

results in zero output noise. Note, in passing, that the occurrence of two input noises
B . ( t )  , being zero,is a case of cutoff, all the then being zero. The matrix ~~,

moreover , is of rank N — 2 . Although this is of a particularly formal case , we see

here an example where the NPF fails because of an excess, so to speak, of good noise
behavior. It is clear that we may get an output, in the case of cutoff , only by trying

systems having fewer than ;-: inputs. (See Paragraph Vll-7 on the optimal use
of an antenna.)

VI-7. Influence 01 Independent Noises Superimposed on the N Inputs.

We have just considered some limiting cases of “eliminable interference ” and

“cutoff , ” all of which involve the reduction of the rank of the matrix . Now , let

us demonstrate that the presence of unavoidable thermal noise at the inputs is sufficient ,

in practice , to exclude these limiting cases.

Thermal noise appears as noise inputs n t )  produced in the input amplifiers or

in the receiving elements themselves , superimposed upon the ~
- ( t  , which may be

considered “external” interference noise.



- ————-- — .-.~ •— 
~~~~~~~~

- --
~~~~

- -
~~~

- — - - - --•.•——••.
~ 

‘
~~~~~~~

‘
~~~~~~~~

— —-.------
~

—-—- 
~~~~ 4 .  

.-••• .---- - ---- - - -

The noises C t )  are characterized by

a. non-zero densities,

b. no mutual correlation, and

c. no correlation between themselves and the B . ( t ) .

In this case, the matrix C ’ of such a system is

= C .k ,  for  j  ~ k

C . . = C .. -i- d .~~33 33 3 ’
that is,

C’ = C + d 
‘ (VI—17)

calling d the diagonal matrix made up of the spectral densities of the noises . C t ) .
This matrix d is

a. of rank N since no d. is zero, and
3

b. Hermitian since it is diagonal and real.

Let us assume that the rank of C’ is less than N ; this means that there exists
a non-zero column matrix (all U . are non-zero) such that

C’ u = 0

which results in

u+C~ u 0 ; (V I — i N )

taking into account Eq. (VI-17) , Eq. (VI_18) may be written

u~~Cu + u +du = 0 . ( V -i~~)

The two bilinear terms of (V I— i ~~) ,  being non-negative, must each go to zero
separately. The column matrix u would then have to satisfy the following:

u~ du = 
~~ u . 1

2 
d . = 0

which is impossible since all d . are ~ 0 and all the ~~ . cannot go to zero.
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Thus the matr ix C ’  cannot be of a rank less than II . It is clear that this
property is not limited to the narrow-band case.

More generally, it may be said that, if some portion of the interference noise

uncorrelated throughout the N inputs, the limiting cases will not occur.
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CHAPTER VU

TWO-iNPUT CASE - COHE RENT NOISE

Summary

The case of two inputs is treated here in a detailed manner , including some numer-
ical calculations. The effectiveness of an NPF with two inputs is compared with the
“direct sum.” The theoretical gain procured from the NPF is calculated as a function
of two parameters: 

-

a. the ratio of the two input powers ,and

b. the complex correlation coefficient €- ( amplitude and phase of the nor-
malized correlation function).

This gain is represented by a diagram which gives the curves for level as a function
of the position of e in the complex plane. Naturally, it is always greater than 1 and
is “infinite” in the case of eliminable noise .

Two limiting cases are settled , one by an equality of performance , the other , the
• 

. 
case of cutoff , by an exceptional inferiority of the NPF compared with the direct sum.

The latter case yields the same result as a single input.

“Coherent noise” is eliminable from the inputs, and the mechanism for its elimi-

nation is considered.

yR-i. General Equations

Let us anply the preceding results to a system with two inputs. The four matrix

elements C . are C 
~ 

and C2 2 , spectral densities of the two noise inputs
- 

a t v  U 0

and C 1 2 = -~~~~~ , which represents the crosscorrelation of the
two noises at V = v 0

Let us recall the relation

H-~i~~ ~~. ~ i i  V ; ,

which expresses the fact that A of matrix C is non-negative. NPF is defined b

( 1 1- 4) .

I T 1  = ‘ -
~ — 

~~

- i i — ~~)

= 1:  — 
~

-
~2 i

(;3 
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Note that if the spectral densities are equal the two filtering processes are com-

plex conjugates. Let us not consider here the case where one of noises is zero, a

case which comes under general consideration in Paragraph VI-7. We have

F~ = + I T 2  = C 11 + C 2 2  — C 12 C 2 1  . (VIi—2)

Note that F is nothing more than the spectral density (a t  v = ~ o )  of the

difference between the two noises (see Fig. IX-6) . In fact , the crosscorrelation of

that difference is, by definition,

or 

E ~ [B 1 C t )  — 82 ( t ) ]  { B 1 (t+ T ) — B 2 (t+i ) ] ~
C 11 (~~) — C 12 C T )  — C 2 1 (T )  + C2 2 (t )

whose Fourier transform, according to ( V I I  — 2 )  , is equal to I’ (V )

Vfl-2. Eliminable Interference and Cutoff.

Let

C 11 = q ~~ C 11 C 2 2

= I ~~ C 11 C 2~ , real , positive q = ( V I I — 3 )

C 12  = 0 ~~ C i 1  C 2 2  , e l  < 1 (Eq . ( 111— 13)

Thus g is a complex numbe r that represents the amplitude and phase of the nor-

malized correlation function for two noise inputs (or degree of complex correlation).

The matrix 2 and the preceding quantities may be written

- Iq
C 2~ I

I * i C V I — 2 4 )

h4

_ _ _ _ _ _  _ _ _ _ _  __ J
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A = C 11 C 2 2  (l_ 1o 1
2
)

r p = 2~~~C 11 C 2 2  [~- Cq+~ ) = R [®]]
1 CVII—5 )

71 11 = C 11 C~~ (~-— o )

1122 = ~I C i i  C 2 2  ( q_ o * )

Setting aside the case where one of the two densities is zero, systems with elim-

inable interference are defined by

e l  =

1 i ( V I T — ~~)
~~ - (q+~-) — s[e] ~~ 

0 ,

where H designates the real part.

We always have ~~
- (q +~~) > 1 for any q. ( V I  1— 7 )

Since I 0 = i in order that the inequality (Vu — u ) be realized , it is necessary

that 0 ~ 1, that is, that e have a non-zero argument.

In more techn ical terms, let us say that , if two noises are “totally correlated”

( e =1) without their “average phases” being equal C o~~l ) , we have a system

with eliminable interference.

Thus, conditions for cutoff of the system require, according to the preceding re-

marks, that 0 = 1 and as a result 1

hence, q = 1 .

Summarizing, we have -0 - 1 ( V H — 8 )

q = 1

Thus, the case of cutoff may occur only for noises having equal spectral densities

at ‘-‘o ( q = i )

Moreover, the condition 0 = 1 itself reduces Eq. (Vu — N ) to
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A = 0 , or r a t h e r  C 12 = C 2 1  =~~~C 11 2 2 2

F = 

( 
~~~J 1 i  — ~‘C 22 

) ( : I  I — N )

= 
~~~~ 2 2  (~~C 2 2  —

= ~
(2 i i  (~~C 11 —

If , besides, the two densities are equal , the system cuts off by simultaneously
nulling 71 1, ~ 2 and F , as sho~~i by Paragraph VI-6 .

Thus, in order for a two-input NPF to cut off, it is required that

a. the spectral densities (and consequently, the powers) be equal and

b. the “average phases” be equal, that is, that

C 12 = C 2 1  = C~~1 C 2 2  = C 11 = C 2 -  . ( ‘ 1 1 1 — l i )

Let us return to the general case. The signal-to-noise ratio is (see Eq. ( V 7 ~— t - ) )

F C 11 +C 22— C 12— C 21
p = —a E = . E ( 7 1 1— l i )m A S 2 S

C 11  c 2 2 — ~c 12~

It s “infinite” for systems with eliminable interference and indeterminate in the case
of cutoff.

Finally, if the two noises are uncorrelated , C i~~~ 
= C 2 ~ 

= 0 and we have

= C 2 2
112 = C 11

F = C 1 1  + C 2.2p 
(vu -lI )C 1 1 +C 2 2

p = _____

m 
~

-
~

- 1 1  ~
- 2 2

VU-I. Advantages of Matched Filtering Over the Direct Sum

We may represent the “benefits” derived from matched filtering in the following

way:

The two inputs I- and E ) may be considered to be receiving elements of an
antenna. Assume that the signal , identical at the two elements , is carried Iw a plane
wave whose wave front is parallel to the straight line B 1 E~~. The process of

6’;

L -~ --S—



“direction summation” is most commonly used to enhance the signal-to-noise ratio ,
which means that proper antenna filtering is replaced by a simple sum (Fig. VU-i).

The signal, upon summation, has for an amplitude spectrum 2 2 ( V ) .  Subse-

quently received by the filter N * ( V ) , it yields an output signal 2 - ( V )  I 
2

whose value at time t o 0 is

2 f I N ( v ) l  Nv 2 I- :

2
and whose instantaneous power at that time is NE 3

B1( t )
E 1

I SIGNAL ___________
u:-i * C ~

S(t)

E 2 B 2 ( t )

Fig. VU-i. Direct Summation

The spectral density of the noise at the point of summation is obv iously

= C 11 + C 2 2  + 2 1 2  + C~~1 ( 7 1 1 — 1 3 )

and the noise power at the output of the filter * C v )  is

1 f  l~: ( v )  1
2 

d v  = 1

‘- S ( V T  ~— T ’ ; )

~

— ---—-- -- - - -

~~~~

--- .—

~~~~~~~

-

~~~~~~~

- j



_ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The signal-to-noise ratio of the process is therefore

24
= 

~ j j ÷ C 2 2 +C 12 +C 2 1  
. E~ . CvIu— l5 )

The improvement given by matched filtering (or NPF) over the “direct sum” is
expressed by

b — ~m _ C C 11 +C 2 2 — C 1 2_ C 2 1 )  ( C 11 +C 2 2 +C 12 +C 2 1 )
- - 

24 C 11 C 2 2 _ j C i 2 1 2  (vu — ic)

The word “improvement” is justified only if the ratio b > 1 in all cases except
for that of cutoff of the NPF. it is already clear that no improvement is gained ( b = l )
when the two noises are independent and have the same spectral density ( C 1 2 C 2 x 0
and C 1 1=C 2 2 ) .  We have seen, in fact, that in this case only , matched filtering
would be identical to direct summation (see Paragraph V-2) .

Let us make it obvious that b > 1. Taking E q. ( V I I — 3 )  into account ,
the ratio may be written

[~~(q + ~~]

2 
— [RCe)J

b = ~~~~~~ CvuI— l7 )
1— [R (e) ]2 

— [~ ( ) J
2

The denominator is always > 0 , since I 0 I < 1.

Since ~~- (q+!) > l  for any q ,  CVII— 7)

we may let r 2
I i  1 2
~ (~ +~ ) = m + 1 ( V 1 u 18) —

with rn real and positive.

Hence , 

2 • 2 • 2m +1 — [ B C ® ) ]  m + {T C o ]
b = —  = 1 +

‘- [R ( o ) ] 2 
- [ I C ® )]  i- [ R e ]  2 

- [ ( ) ]
2

( 7 1 1 —1 1 )
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which is a form from which it is obvious that b > 1. Uncorrelated noises C 0= N )
with the same spectral density Cm 0)  correspond to the case b = 1 (zero
improvement) .

The case I ® I = 1, which makes the denominator of b equal to zero and gives
an “infinite” improvement , cor responds to the case of eliminable interference , as
we have alreay seen.

The improvement b remains undetermined in two cases.

a. The first case:

m = 0 , 0 = 1, (vII-2 0)

which corresponds to the case of cutoff for an NPF. The signal-to-noise ratio for

direct summation, given by Eq. (VII—15) , may be written

4E 5 1
= 

2 ~~C 11 C 2 2  ~~~(q+ 1) + R C ® )

= 

2E 1 ( V u I — 2 1)
2

~ i+m +H (0)
11 2 2

and is not zero in the case (VII—20). Thus, the indeterminacy is resolved as
a very striking inferiority of the NPF compared with direct summation. It may be

said that, with noise inputs having the same spectral densities and “in phase”
the NPF cuts off while direct summation produces a signal-to-noise

ratio equal to ES/ , which is identical to that produced with a single input and
11

a filter S~’ ( v). Thus, the direct sum does not contribute anything itself, but at
least it does not “spoil” the result. Such a case is found, for example, when the

noise carried by a plane wave comes from the same direction as the signal and hence
is identical at the two inputs. In this case alone, and provided that such a noise input
is indeed the only interference — otherwise the NPF adjusts itself for the other
noise inputs, according to Paragraph VI-3 — the NPF cuts off. in practice, the
presence of independent thermal noise at the two inputs, combined with some of the
considerations of Paragraph VI-3, prevents cutoff, even if the condition ( I  =

does not represent in itself the limit of a limiting condition ( 
I 

= 1)
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b. The second, equally idealized, case where b is undetermined corresponds

to
m =  0

0 = —1 . CVII—22)

Here , the NPF behaves as in the case of eliminable interference and gives an
“ infinite” signal-to-noise ratio. It is found, however , that the direct sum does the
same thing since the two noise inputs are in phase opposition. Note that the two
filters i r 1  and 112 are now real and identical (see Eq. ( - ~I I — 5 )  with
q = 1 and 0 = 1) and , because of this fact , produce the sum precisely , except
for a multiplicative factor. Thus, the indeterminacy is resolved as an equality of

performance.

Vll-4. A System of Graphs Representing the Gain of the NPF

Let us set aside the two extreme cases examined above. The improvement U

always greater than unity , may be represented for each value of m ,by a surface
(E q. (VII—19)) above the complex plane for 0. This surface is entirely contained
in the vertical cylinder of radius 1 and is tangent to it at inf inity (the case of
eliminable interference) . Furthermore , this surface is symmetric with respect to
the two planes I ( 0)  = 1) and Arg  ® = , and it is sufficient to
represent it within a 90 degree dthedron (in a single quadrant). It may be represented
there by level curves. Figure Vll-2 shows, in four successive quarter planes , the
level curves of the surfaces for fou r values of m , that is , four values of the ratio
of the spectral densities C 11/ . 

These fou r values are
C 2 2

C 111 = 1 10 log C 11 / = 0 :16

C 111 = 1. N 10 i~~ 1 .5 -lb
~~2 2

C 1 i~ = 2 10 1( ~~ 11/ 
- 15

C 2 2

C 1 1/ ,  = 2 . ~~ 102 1 1 / = N . ft

7()

_______ _____ ~~—~~ - 
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The greater the ratio C 1 1
/ 

, the higher the “base point” of the surface
C 2 2

2
(corresponding to 0 = 0 , b ~ 

= 1 + m ) and the more rapidly the

surface rises, as I 0 I increase, toward the “inf inite” values which correspond to

I ® I = 1. The level curves are ellipses whose major axes lie along the real axis.
These ellipses tend toward circles when b becomes very large . We may say , then ,
that regardless of the value of C 1 

“C 2 2 
the more “advantageous” of two values

of 0 having the same modulus is the least real one.

The critical zone corresponding to m= 0 and 0 = 1 has been crosshatched
in Fig. VU -2 .

VU-5. Coherent Interference (Jamming) - Mechanism for its Elimination

We will call interference noise coherent if it is carried by a plane wave coming
from a direction other than that of the signal . This is the important and practical
case of a ja mmer or of a localized distant source. Two noise inputs

~ C t )  and 2 
( t  ) differ from each other only by a time delay .

We will generalize the definition of coherent interference a little and assume that

B 2 ( t )  = a B 1 ( t — u )  , ( V I T 3)
where a is a real multiplicative factor and u is the time lag. It is then simple to
verily that

= a C 1 1 ( T — U )  (vuT_21~)

and as a result,

— — 211jvu6 12 Y ~
) — a C 1 1 ( v )  e . ( V u I — 2 5 )

Since we have , furthermore,
2 -

C 2 2 ( v ) = a C 1 1 ( v )  , (Vil-Nu )
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we may write, for frequency v = v

C 12 ( v 0 )  = e 2 U I V 0 U  
~~~ C 11 ( v 0) . C 2 2 ( v 0 )  . (VII—27)

The number ® defined by Eq. (V 11—3 ) is

e
_2111V0U (vII—28)

Thus, we have the case I ® I = 1 which gives a system with eliminable interference.

Hence, coherent interference is eliminable interference in a system with two inputs.

Figure Vll-3 illustrates how the noise is eliminated. In fact , the two filtering

processes ~ and 
~ 2 are, except for the factor 

~~ 
i i  C 2 2

(see Eq. (V I I - 5)  ) ,

I
; = a — e _ 2 1 1 1 V 0U 

(VuI—22)

112 = + e +211 1v 0u

Each may be considered to be the sum of two filters in parallel. The term

e
2

~~
1V 0U represents a delay u, and its conjugate represents an “advance”

In the general sum of the four terms, noise inputs cancel each other in pairs, but two
opposing terms come from different inputs.

Likewise, it is easily seen how the case of cutoff may occur, when simultaneously

a = 1

u = 0

that is, when the two noise inputs are identical, or rather when the coherent interference

comes from the same direction as the signal.

The four terms of the noise destructively interfere in pairs on the same input.

Thus a two-input system may eliminate coherent interference provided that the
interference does not come from the same direction as the signal. It is clear , in fact ,
that in this latter case, no spatial discrimination between signal and noise being possible,
one may do no better than when using a single input; direct summation itself results in
no improvement (Paragraph Vil-3a)

7’;



aB1(t)xa

B1( t )

— B ( t — u )
DELAY 1

x ( _ i )

~ B 2 ( t )  = B
1

( t — U )

B2 ( t )
- 

- 
aB1( t — ~~)

DELAY — I U ( t — u )  = — aB 1( t )
x ( i)  ( - u )

(ADVANCE)

Fig. Vll-3

Vll-6. Return to a Remark Made in Chapter I - The Special Case of Coherent Interference

The reasoning illustrated by Fig. VH-3 does not necessarily use the “narrow-band”

hypothesis; in fact, coherent interference is interference that is eliminable over a

broad band.

Figure VH-4 shows a simpler method of effecting this cancellation in the case

where a = 1 . By conveniently delay ing the noise at one inpu t and taking a
difference , the noise is effectively cancelled withou t cancellin g th e’ signal , if the
signal comes from anothe r direction . This simple case was b rought up in Chapter 1

to suggest that direct summation is not always the best method .
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VU-?. Optimum Use of an Antenna

A few of the preceding remarks may be very quickly extended to the case of
3 inputs, permitting their generalization to N inputs. It is easy to verify, for

example, that “coherent interference,” which is eliminable interference with two inputs,

results in cutoff with three or more inputs .8

8Each of the N noise inputs are derived from a reference noise by (Eq. CV II— 23))

b~~~( t )  = a 1 b 0 (t—u ~ )

or C .k ( u )  = aj  ak C 0 ( v )  e 2
~~~~~~~j _ U k )

where C 
~, 

( v )  is the spectral density of b 
~ 

( t )  - After putting them in convenient form ,
It may be proven that the determinant of matrix C is reduced to a dete rminan t of order
all of whose elements are equal to 1. Thu s the ran k of the system is 1 in all cases.
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To eliminate a j ammer , for exampl e, assuming that it is the only interference ,
a system of only two inputs would be required .

Thus with differ ent N ’  s , various possibilities are offe re d for eliminating
interference , but these possibilities depend upon the value of N

On the othe r hand , the number of possibilities is gre ater for larger N
(number of solutions to 

~~= Q ) .  It is indicated that, in order to derive
the most advant age from an antenna with N elements , several systems should
be used

a. a system with two elements which are used directly,
b. a system of 3 elements which may include the two precedin g elements , and
c. then , a system with 4, 5 ... N elements,

- the last making use of the entire antenna. We have at our disposal , then , all
possibilities offered by the antenna from the point of view of “eliminabl e interference. ”

For example , since coherent interference will be eliminable on a system with
two elements, it doesn ’t matter that it causes cutoff on the others. Other noise
configurations wifi be eliminable with 3 elements, etc .

L 
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CHAPTER VIII

MATCHED FILTERING AND DIRECTNITY

Summary

After a review of the definition and physical meaning of antenna directivity, as well
as the definition of omnidirectional noise, this chapter establishes the fact that
optimization of directivity is only a special case of matched filtering applied to

special crosscorrelation properties created at the antenna by omnidirectional noise.

Thus, theories and processes tending to optimize directivity optimize signal
detection only to the degree that the more or less implicit hypothesis of omnidirec-

tional noise is valid.

A few special properties of plane or linear antennas are reviewed.

VIll-l. Limits of the Validity of the Directivity Concept

Current usage in technical literature assumes that the way to favor detection of a
signal carried by a plane wave is to obtain , by means of an antenna, “the greatest
directivity” in the direction of that wave. We have just seen, however, that optimization

of detection depends upon the statistical relationships of the interference noise inputs
to the antenna elements. If we claim to optimize detection by optimizing “directivity , ”
we become involved with a more or less implicit hypothesis concerning the nature

of the statistical relationships. We will see, in fact, that this hypothesis is that of
“omnidirectional noise,” which corresponds to an exact definition (as does coherent

interference) and, consequently, to a well-defined correlation between two elements.
Likewise , we will see that, as would be expected, to optimize directivity is nothing

more than performing matched filtering in the presence of omnidirectional noise, that

is , treating a special case of the spatial structure of the noise . Thus, from this
chapter we may derive ways to modify some of the hasty conclusion s regarding
the general character of this direct ivity concept, to which a considerable theoretical

and technical effort has been attached. To assume that a noise is omnidirectional

when we know nothing about it is a simple hypothesis but it is not an optimum procedure.
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VIU-2. Definition and Physical Meaning of Directivity

First , let us recall the definition of directivity. The “complex directivity” is a
function of frequency and of two spatial parameters defining the direction of a plane

wave. Let us combine these two spatial parameters into the symbol w .  The

complex function D ( a , v )  gives the phase and amplitude of the voltage observed

at the antenna output in the presence of a plane wave having direction a and

frequency v .  The output is defined as the sum of the voltages coming from the

antenna elements through~ if need be, a linear filter in each channel (multiple

filtering).

The quantity

~ I~ (~ o ,~ ) 1
2

f(v) = (VITT _ 1 )

fID (w ,~~)I da

is called the directivity factor relative to the direction a 
~ (or, in shortened, but

less correct form, “directivity”), where da represents an elementary solid angle

about direction w . To optimize the directivity is, in fact, to optimize CC v )

The physical meaning of this quantity is obvious. The square of the magn itude

of D ( ,~~~, v )  has the meaning of power per unit solid angle. The denominator of

f ( v )  is thus the total power of independent contributions, each assigned a

direction a . We may still say that it is the power at the output of an antenna when

the antenna is in a field of plane waves coming from all directions , which are

independent of direction (even infinitesimally separated) and have the same’ spectral

density9. This, then, is the precise definition of omnidirectional interference.

The numerator of f (  v ) may be said to be the power received by the antenna

in omnidirectional noise if the antenna possesses the same response for all

directions that it has for the direction a a .  Consequently, to say that “the directivity

is high” (or f (  v )  is high) is the same as saying that the antenna is particularly suited

9mat is , “perfectly diffuse radiation .”
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to “avoid” plane waves coming from directions other than a a ,  thereby achieving
a spatial selection; this has the form of a linear filtering process with a gain that is
a function of direction . We may also say that the numerator is , except for some
factor, the power produced at the output by a plane wave coming from direction a

Thus, f C v )  also represents the signal—to-noise ratio (ratio of mean powers)
at the output for a signal plane wave from direction a a and an omnidirectional inter-
ference noise field .

The definition of f ( v ) ,  then , is strictly related to that of omnidirectional
noise, and the use of the concept of “directivity factor” implies the omnidirectional
noise hypothesis. The value of f  C v )  depends upon antenna geometry, which is
assumed here to be defined by the i - elements and upon the filtering, if required,

in each channel . It is the optimization of f (  ~ ) by means of this multiple filtering
which we will discuss here .

VIII-3. Expression for the “Direc tivity Factor” as a Function of the Gains of the
Multiple Filters

Now, let us consider a collection of N antenna elements E 1 , E 2 , ...
(Fig. Vffl -l) , all identical as far as electromagnetic or electroacoustic receiving
elements are concerned , and a phase reference point 0.

For a plane wave propagating in direction a with frequency ~ and unit
amplitude , the voltage received by element is represented in terms of
amplitude and phase by

e

?1T
~~~~~ 

(OE ~ . w )

whet- c c,~ is the un it vector in direction a . The scalar quantity OE . w

represents the path difference of the plane wave be tween 0 at E~~; when

div ided by c (propagation vc~ocity) it is the “ time lag” or “advance” of E

with respect to 0 .

Let us begin by making “iden tical signals” by apply ing to each inpu t a filtering

process which compensates for the path differences among the different inputs for a

plane’ wave coming from directkn a o .  h ence , we are led to apply to I - . .  a

“ fil tering process”
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which , over the frequencies ~ , is merely an ideal algebraic “time lag”

C

Next let us apply to each input a supplementary filtering q~ ( v )  , which is
unspecified for the time being and which will be varied in order to optimize the
directivity factor 1’ C

a

0 

\
\
\

\
\
\
\
\
\
\

Fig. Vu -i
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The voltage at the output of the filter q .  C v )  in channel E . for a plane
wave coming from direction a is represented by

2~ 1~~ [OE . . (~ -~~)J
qj ( v )  e

Thus , the previously defined “complex directivity function” D ( a , v )  is
(see reference (13))

.v r~~~~~~~~~ L0~ . ( a — a 0 )
D ( a ,v )  = 

~ q~~( v )  e C ( V I I I — 2 )

‘3

and we have

D ( w 0 , v )  = 
~~ q

j
( v)  . (VIII—3)

3

The numerator of the directivity factor , according to Eq. (VII  f — i )  , is

~HD(a , v ) 1
2 

= 
~~ ~ q j ( v ) j 2 

. (ViTi-4)
j

The denominator is

* ç 2 i
~~
[oE j

_oE
k
).(w_ wo )]

I =fJD(w,v) !
2 da -~~~ ~ q j ( v )  q~~( v) J  e C da.

j k 
(‘III-~~)

Let

1 2~~i~ - [( ~~~~~~~~~~~~~~= ~~~fe  
c 

da (VI Tf_ - )

- - -C--- - - ~ tv i t r- -i- yr - 1~~- .~~~~
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with the result

I = 
~ q~~( v )  q~~( v )  V~~~( v )  . (VIII_7)

j k

Note that 
*Vj k ( _ v )  = Vj k ( v )

Vkj ( v )  = V k ( v )
(VIII_8)

I V j k ( v ) f  ~ 1

Vj . ( v )  =

On the other hand , I is real and non-negative for all q~~• The expression
for the directivity factor is

2
I ~

f ( v )  = (VIII_9)

~ q . ( v )  q~~( v )  V
j k

( v )
j k

and the problem consists of finding the q j  ( v )  that maximize C C v )

Vffl -4. Optimization of the Directivity Factor

The solution has an obvious relationship to the reasoning of Chapter III and is
purposely presented here in an analogous and brief manner. We will temporarily
omit the frequency notation ( v ) , which will remain understood .

Equation (V I I I —  1) defines f (  v )  for the which are themselves defined
except for a complex factor. This factor may be chosen such that the numerator of
f ’ ( v )  is normalized; that is ,

~ q
1 

= 1 , ( 7 1 1 1 — 1 0 )
.1
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which is the condition under which the qj  will be constrained. Consider complex

numbers r .  for which
3

z rj = 0 . (VIII—il)

‘3

All numbers X
j  

= q j  + ar ,j with real arbitrary ct will satisf y the normalization
condition for the numerator

-: ~

j

Let in particular , be a solution sought among the constrained by
( V I I I — i O ) .  This solution must minimize the value of I

/~~~~

= 
~ 

q~ q~ Vik 
. (VIII-7)

~-I 1T 
j k

Thus, in particular , the value of I for fl
,j 

= h is less than any value of I
for q~ = h . + for any rj  constraine l by (VI I I  — i i)  . We may write the
inequality

‘h -
~~

- ‘h + ar , ( V I 1I— 1 2 )

which may be expressed as

~ h ,~ h k Vik  < 
~ ‘ (h .+ctr .) (h~ +czr~ ) Vikj k  j k

(VIII-13)

or
2 * * *

a 
~ i r,~ rk V

ik  
+ a � (r j hk + h~ r k ) V

~~k ~ 0

j  k j  k ( V I I 1 — 1 ’4 )

The coefficient of a is real and non-negative, since it is a particular value

of for qj  = r 1 .  In order that the inequality ( V i I I — 1~4 )  be true
for any a , we must not allow the sign of the term in c~ to dominate for

small values of I a I . The coefficient of ~ , which is divided into two complex
conjugate terms, must therefore go to zero. Setting one of the terms equal to zero
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we get the condition 
*r . h
k V ik = 0 ( V I I I — i 5 )

j  N

for all constrained by (Vh f—il). Equation(VhII_15) may be written

r .  
~ 

h~ V
ik] 

= . (vIir-16)

Comparing this with Eq. ( V I T I — i l ) , it is clear that all the coefficients
of the r .  on (VII  1— 16) must be equal to the same number ~ . The solution ,
then , is given by

~ h~ V
ik 

= 
~~, 

j  = 1,2 N . ( VI II - 17)

The value of 1/ , minimized by the solution h ~is (see Paragraph V I I I — 7 )

Im * *= h .  h k Vj k  = h . [
~ 

N ( r j ~~~~~~~~~~~~~~
)

j k j  I-:

~~2 h~ p

j

taking ( V I h I — 1 7 )  into account and the fact that h is constrained , as are all the
(Eq. (VIII—lO)).

The directivity factor f , made a maximum by the solution h , is

= . ( 7 1 1 1- 1- 1)

The solution (V~f T 1— i ? )  written in matrix form is

Vh * 
= 

[
_ Jfl]  ~ , ( ‘~ T T T — N 0 )
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where V is the matrix whose elements are the ~~ k (Hermitian with respect to the
indices) , h is the column matrix of the , and ci is the column matrix all of
whose elements are ones.

V~~-5. Correlation Matrix for Omnidirectional Noise

We have just calculated the “filtering” that optimizes the directivity of an ensemble

of N antemia elements. The proper filtering corresponding to omnidirectional noise
will now be calculated , in order to verify the fact that it is identical to the filtering

process h defined by ( V I I I — 2 0 ) .  The similarity between Eqs. ( V I I I — 2 0 )  and

(111~ 115) (or rather ( V — 3 ) ,  since it is a case of proper filtering) clearly shows
that we need only prove that the matrix V* is the matrix of crosscorrelation spectra
(C . k ~ in the case of omnidirectional noise after the signal is made identical
at the N inputs .

Thus, the problem is reduced to

a. evaluating the crosscorrelation between two inputs E~ and Ek ,
b. taking into account the alteration of that crosscorrelation by

making the signals at E~ and Ek identical, and
c. confirming that the result is ~~ k

The first step is a classical calculation which already has been done for some
special cases by B. Picinbono~

0 and is reproduced here using a general notation
compatible with the rest of the paper.

Let us call b o ~ ( t )  the elementary noise received at point 0 from direction &

(see Fig. Vu -i) . The noise received at E~ from the same direction is

+

OE .w
b . (t) = bo ’

~(t + ) . ( V I i i— 2 1)

w ~~~~~The correspondmg noise at E
k 

is b 1~ ( t ) = b O
W ( t  + ) . (VIII—22)

‘°Not published.



The elementary crosscorrelation (for direction w ) is then

-~ -*
OE — OE ) . W

mj~~(T) = E~~bj
W (t).b k

w (t+T)} m o
W 

( T  + 
k ) ( V i i I — 2 3 )

designating by m o W ( r ) the elementary autocorrelatiOn at 0. Thus, we have,

taking Fourier transforms,

W 
+2 TT j~~- OEk

_OE ).w]
mjk(v ) = m 0 (v) e , (VIII—214 )

where m o W ( u )  designates the spectral density in direction w . Then, by

definition , omnidirectional noise is composed of uncorrelated contributions having

the same spectral density in all directions.

Thus,

a. mo W ( v )  is , in fact , independent of w , and may be written m o ( v ) , and

b. the elementary crosscorrelatiofls and their transforms add simply

with integration with respect to w , giving the total crosscorrelation .

Thus the total crosscorrelation spectmm at inputs E~ and E R 
is

I 2~ 1~ [co~ -o~ •~
)]

Yj~~(v )=Jm j~~
(V) dw = m0(v~~~e 

c k i~~.(VIII—25)

The scalar product of (VT 1—25) only involves the distance E~ 
~~~~

. The

classical result , according to which Yj  k ( v )  is real and even in v, is easily

justified on the basis of this equation . The result is that y 
1< ~ -r )  is even in t,

for any pair of points. This result is physically obvious, the data being symmetrical

with respect to the median plane of E~ E R .  Applying a delay ( +  ~) at E .

or ( — r )  at E R 
gives the same result. Furthermore , the crosscorrelatiofl does

not depend upon the distance E E R
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VtII-6 . Matched Filtering in Omnidirectional Noise-Similarity to Optimization
of Directivity Factor

The second step will take into account the fact that input E
1 

has been affected

by a “delay” — 2 7 T 1~~(OE
1 
. 

~~~ ) 
and E R by a “delay” — 2 ~~~~~~~ .

Transposing Eq. ( 111—10) , where the two preceding filtering processes
play the roles of ( v )  and R k ( v )  

, and Y j k
( v )  plays the part of C

~~k
( v )

the new crosscorrelation spectrum , after these “delayst ’ make the signals identical , is

2~ i~-(OE 
_OE

R ).wo (VIII— 26)
e

As a result (see ( V I I I — 2 5 ) ) ,

~jk~~~ 
= mO (v) 
I 

e
_2

~~
1
~ 

[
~
°
~~~~

°
~ k ~~~

0
~~~dw . 

(vIII- 27)

Let us compare the preceding equation to Eq. ( V i I I — 6 )  . Except for a real
factor ~4 ~ m 0 ( v )  , the ~~ k ~ v )  are identical to the V . ( v )  . These
‘

~~~ 
k ~ v )  are the crosscorrelation spectra of the noise inputs for which we propose to

find the proper filtering. As we know, the solution, except for a real factor , is

yp = ci ( V I I I — ~~~)

where Y is the matrix of the y~ ( v )  and p is the column matrix of the proper
filters. It may be written in the form

Vp * 
= ci , ( V I I I — 3 0 )

which is equivalent to the solution (V I  11—20)

In conclusion, proper matched filtering in omnidirectional noise is that filter ing
which optimizes dlrectivi~y.
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The spectral density at an arbitrary input is ~ i~ m 0 ( v )  . It remains the same
after the input signals are made identical.

Thus , the quantity
y . R ( v )  

*

14 7r m 0 ( v )

represents the normalized crosscorrelation of the noise inputs at E~ and E R
after the signals have been made identical .

Whenever the vectors OE~ are perpendicular to the direction w o ,  the

crosscorrelation ~Y j  k ~ v )  is , except for a multiplicative factor, reduced ~ 1< ~ v )

(Eq. ( 7 1 1 1 —2 6)  ), that is, a real quantity that is even in v but not necessarily
non -negative. The signals are then identical without the need of introducing any

delays, since all the inputs are in the same plane normal to o In this case ,
the matrices ~ and Y are real and symmetric (hence , always Hermitian) . The
matched filter p is real. Hence , in omnidirectional noise and for inputs situated
in the same plane normal to the reference direction, matched filtering is real.

VIII-7. Application to Two and Three Inputs

Let us apply the preceding results to a system having two elements. We will assume
that they are arranged along a line parallel to the plane wave front , such that the signal
is the same at the two inputs. Let us use the narrow-band approximation. In omni—
directional noise, the power of the interference noise is the same at the two inputs.
Furthermore, the crosscorrelation spectrum is real. The two filters iT and 2

(see Eq. ( V I I — 5 ) )  are real and identical. They may be replaced by the direct
summation , which means that there is no efficient matched filter for two inputs in
omnidirectional noise. This is physically obvious from the symmetry of the parts
played by the two inputs. Note that we have here a very exceptional case , where the
direct sum is a part of the matched filtering although the noise inputs are not
independent (see Paragraph V-2) ; but this is true only for two inputs in omnidirectional
noise. With two antenna elements, it may be only a question of their separation

distance for Improvement of the signal-to-noise ratio. It is well known that they

must be placed with a separation such that the crosscorrelation of the two noise inputs ,

which is a function of this separation, is minimized.

91

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _________

If a is this separation , calculation of V~ 
~
. (~~~~~) from Eq. (V I  11-6) gives

(a) 1 2it v a

2 a

in the case of two point receivers;

(b) in the case of two parallel line elements of undefined length, we have
a planar situation where the corresponding expression is

, 2 iT

C

In each case the re exists an optimum separation distance between the two elements
(for a given frequency) .

Let us call F’ ( a) one of the two preceding functions and consider the case of
three equidistant elements lined up in the order 1, 2 , 3.

The matrix of the V.  is:j k

1 F ( a )  F ( 2a )

F(a) 1 F(a)

F(2a) F(a) 1 .

Consequently, the filters iT iT 2 ,  , and iT 3 are

1T~~ = i T 3  = [1—F(a)J [1_.F(2a)J

iT 2 = [1—F(2a)] [1+F(~ a)—2F (a)] .
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Finally, the weighting (real filtering) to apply to the two end elements (1 and 3)
with reference to the central element is

1— F ( a )
1+F(2a)_2F(a)

It is simple to generalize this method to a~ arbitrary number of elements with
arbitrary spacing.
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CHAPTER IX

GENERATION OF PROPER FILTERING - AUTOADAPTIVE SYSTEMS -

PRACTICAL STATIONARITY CONDITION S

Summary

In this chapter , we will deal with the technology, or at least the principles of the
technology, of matched filtering. It is a question of constructing the complex
quantities representing the N filters, and then making use of them to do the filtering.

Furthermore , we desire to ensure that the filters and filtering processes will
evolve in a continuous manner , adapting to slow variations in the statistical relation-
ships of the noise inputs. The expression “slow variations” is defined by the
assumption of a “practical duration of stationarity” which is large compared to the
time constants used and the duration of the signal . The essential steps are:

a. formulation of the elements of the correlation s matrix cj k
in the form of electrical voltages,

b. formulation of the product of several elements, of
cofactors and of the “filters” iT

k 
themselves, and

c. a method of “filtering” each channel , starting with the
complex number representing its filter.

Finally, the block diagrams for the case of three inputs and for two inputs are
presented . These diagrams may be used to verify the permanence of the filtering
process in the presence of noise , superimposed on the inputs , which is not correlated
with the initial noise inputs.

XI-1. Representation of a Crosscorrelation (Narrow Band) of Two Slowly Varying Voltages

For the moment, we will treat an aspect of matched filtering that is close to the
technology without going into the details of the technology. That aspect is the effective
realization of matched filtering in the special case of the narrow-ban d approximation .

A filter it of an NPF , for example , is made up of a combination of c .
(a homogeneous polynomial of degree :~— 1 ). Hence , fi rst of all , these must
be “fabricated.” We know that ‘ 

(~~~ ~~ 
repi-esents the erosseorrelation of two
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narrow-band noises b
1 

( t )  and b k ~ t )  resulting from the respective filtering
B~ ( t )  and 

~ k t )  by filters of bandwidth ~ centered at the frequency v

(and at — v 
~~~, 

considering only the case of filters with real unit impulse responses
(see Paragraph m-2fl .

We will assume that the spectral band ~ contains all the signal, while remaining
narrow enough such that C

j k
(
~~

) remains practically equal to C
j k

( -
~o ) .  Under

these conditions the crosscorrelation function of b ( t )  and b k (t  ) is

~J~~( T )  = 2~~JC . (v0 )j Cos 
{

~~~~T V O T + arg c
jk (vo )]

( I X- 1)

The value of y k - r )  for r = 0 is

Yjk
(T) o = 2~~R [c lk

(
~~o )] . ( 1X — ~~)

Hence , Y j  k ~ T = 
is the mathematical expectation of the product of the two

noises and , by virtue of ergodicity , the time average of this product. Thus , the

quantity ~ k v o) ]  may be realized , except for the factor 2 0 , in the following
way (Fig. IX-l):

a. by means of a multiplier, produce , in the form of an electrical
voltage , the product of the noises b ( t )  and b k ( t )  received
at inputs E~ and E R after prefiltering 0;

b. take the time average of the multiplier output voltage by means
of a sufficiently narrow low-pass filter (an integrator with an
adequate time constant) , delivering a DC component plus a
fluctuating component which is small for a large time constant: and

c. the output voltage of the low pass filter represents, except for
the residual fluctuation , the time average of the product of the
two noise inputs , or R [C 11~ ~ )}.
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( t ) b ( t )
E~~*~ 

:

1

~~~~~~~~~~~

i 
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LOW PASS

MULTIPLIER R~ C~~]

E R~~~~~~~~~~~~~~~~~~~~~~~~
t )

Fig. DC-i

If we were also able to produce a voltage representing I 
[
~~ 

k ~ ~ o ) ]
we could represent the complex number c,~ k (v  o)  by two electrical voltages.
In order to do this, let us take the two noise inputs b

1
( t  ) and b k ( t )  and let

= -_.~L in Eq. ( T X — i )  . It is clear that

~~~ (-~~~~) = 2~~ EC lk v
o ]  

. ( I x - 3 )

Thus, I Ec~ k ~ o ) ) is , except for the factor 2 0 , the mathematical expectation
of the time average ol a voltage obtained by taking the product of b . Ct with a
noise voltage b 1{ ( t ) ,  itself obtained by delaying b k ( t ) by 

1

J__
‘V0

Since we are dealing with a narrow band , this time delay is equivalent to a phase
lag of i T/~~~. This amounts to the same thing as realizing an advance of i t / -4  in the
phase of b ( t )  and aj ~gof i t/ ’i  in the phase of b ,~ ( t ) .  The two processes of

generatin g ~ [ C 1 k C v o)] illustrated in Fig. IX-2 are equivalent. The output voltage,

except for some fluctuation , represents the value of I ( v  o )]

9(i

_ _ _ _ _  
~~~~~~ -~~~~~~—-~~~~~~~~
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IX-2. Practical Stationarity and Time Constants in an Autoadaptive System

The values of C
~~1 

(~~~ 0 )  and of Ckk ( V 0 ) may be equally well represented by
the mathematical expection of the time average of the squares of o ( t )  and b 

- 
( t )

1

Although very different techniques may be used to form these quantities, their
gene ration , using methods compatible with the preceding figures , is represented in
Fig. IX-3 .

u = cos2 i tF t  u ’ = s i n2 i tF t

~~~~~~~~~ 
— 

c
1~~ I c o s 2 i T F t

~~~~~~~k] 
I DIFFERE NCE ‘ j k  + ARGC .k )

_ _ _ _ _ _  ___  

I c j k l c o s ( 2 i T F t  — ARGC I R
)

Fig. IX-3. Representation of the Complex Numbers C k byAC Voltages with Frequency F
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Finally , for two inputs , we have formed four voltages which represent

C j . ( V o ) ,C k ( V O ) , ~~ ECj k ( V o )
~, and I [Cj .(V 0)] . From now on we shall

omit the indication of frequency v o .

With all the possible C . it is possible to construct the filters it . This
consists of obtaining complex numbers (in the form of voltages) equal to the ~~~~~~~

Next , properly defined filtering consists of applying the filters to the noise inputs

b k ( t )  and taking the sum of the filte r outputs. Later we will see how to realize the

il
k 

and the filtering process itself. But, f or  the present, it is interesting to note that
if the noise inputs are strictly stationary , the C 

,~ 

. may theoretically be obtained
in the form of strictly continuous voltages with the aid of infinitely narrow low-pass
fil ters. In order to avoid confusion , from now on we will call these filtering processes

integrations.

In practice , the C are obtained to within only a flu ctuation whose amplitude

is dependent upon the integration time constant . On the othe r hand, since the noise

inputs vary slowly with time (limited stationarity) , the c 
,
~ ~< 

obtained from the above

methods are going to evolve slowly . The filters derived from them will also

evolve , achieving an autoadaptation of the system that follows the slow variations of
the statistical relationships of the B.  ( t )

Consequently, if an “average stationarity time” can be defined (an essentially

practical concept) , it will be useless to integrate the outputs of multipliers whose

time constants o are greate r than this average time O s~ 
On the other hand , if the

time constant o is not greater than the inverse of the filter bandwidth 0, i t is

ineffectual in practice.

Thus we have imposed the following conditions.

a. The signal is narrow band , lying within the band q> . Thus, its time

duration T is greate r than 1 / ~ .

~~The margin between T and l/~ allows the possibility of several signal types
in the case of doppler effect , for example. In particular , in the case of long signals with
a “ single f requency, ” the output of the proper filtering may be handled by “band division , ”
which corre sponds to matched filtering for each possible value of doppler shift (see
refe rence (23)).
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b. The band 0, although larger than that of the signal , is narrow enough
for the narrow-band approximation to be valid, that is , such that C k ~ V )  are
equal to C .k ( V 0 ) within the band .

c. The noise may be considered as stationary for duration 0 , which is very
large compared with 1/0 and T . The integration time constant is both large
compared with 1/0 and T and small compared with O~~.

1/ O < T < < o < < o
( Ix— ~~)

Thus , the c~ k are defined for durations on the order of O~~. They are con-

sidered as being perfectly constant over the duration 0 , which is the duration ove r
which they are computed by an integration of products.

d. Since o is large compared with 1/0 , the multiplier - integrator system
may be considered to be a correlator “with strong integration” (refe rence 7 , Chapter V).
The power associated with the fluctuation of the output is proportional to 1/00 ,
that is , to a very small quantity . This fluctuation is considered to be negligible.

In order to establish the ideas more solidly, taking inspiration from a practical
case , let us assume that 

0 is on the order of 100 cps at a center frequency of 10 kc ,
which is certainly a narrow band . The duration of signals is on the order of a second ,
and their bandwidth is a few cycles per second. The interference noise is stable -
let us say “practically stationary” - for durations of from 30 to 60 seconds. We may
envisage integration time constants on the order of 5 to 10 seconds.

IX-3 . Representation of a Crosscorrelation by an AC Voltage

Having thus defined the practical conditions of stationarity which allow the use of
the preceding theoretical developments , let us return to the C . k represented by
constant , or more precisely , slowly vary ing voltages. We will indicate briefly, in
the rest of this chapter , how the principles of matched filtering with N inputs may be
implemented .

We will see later that in order to apply filtering iTk to noise b k ( t ) it is

part icularly convenient to express the complex number il
k 

in the form of an AC
voltage of fixed frequency, whose amplitude and phase are equal to the modulus and
argument , respectively , of il k .  Moreover , it is quite natural to represent any
complex numbers by AC vol tages. Thus, although we will “fabricate ” the C~
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in the form of DC voltages , we are going to convert them to AC voltages with an
arbitrary frequency F .

Let us start with a voltage source of frequency F , which will serve as a phase
reference at that frequency. Its amplitude is normalized to the value 1 ,~~

or

u = cos 2ir F t

Take the product of u with the DC voltage representing C~~ ( a  simple modulator

is adequate) . We then obtain the voltage c . . cos 2 ~ F t with zero phase , which

will henceforth represent the complex nun~6er C . . - here it is real and non -negative .
Similarly, we will have the voltage Ckk COS 2i t  F t .

Take the product of u with the DC voltage representing R [c~ k] .We obtain

(see Fig. DC-3) v 1 = R [c~~ ] cos 2 i t  F t .  ( I X - )

From voltage u , derive a voltage u ’ of the same (normalized) amplitude but given a
• phase lag of i i/2:

u ’ = sin 2ir F t

Take the product of u ’ with the DC voltage which represents I [c,~ ~ . We have

V 2 = I [ C i k  ] sin 2i t  F t . ( I X — 6 )

We find that the difference between the voltages , V 1 — V 2 ,  represents in ampli-
tude (modulus) and in phase (argument) the complex number C k~ 

The sum v
and represents . Hereafter, the C k and C are represented by 

1

voltages with frequency F and appropriate amplitude and phase.

IX-4. Principles of Producing a Product of Complex Numbers in the Form of an
AC Voltage

The following operation consists of realizing products of the c The products
arc also complex numbers representable by AC voltages. Let a 1, for example ,

be represented by

I a 1I c os[~~it~’ t + ( a r ’ r  a 1 )]
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and a2 by

Ia 2 I c o s [~ ilF t + (a rg  a2)]

Using a multiplie r , take the product of the two voltages. Two spectral components

are obtained , one at frequency 2 ~ ‘ ,

W = a1 1 a2 CoS~~~n Ft  + ( a r g  a 1) + (ar g a2)} (1X 7)

and the other at frequency zero . We may eliminate the second component by a high-

pass filter or , even better , isolate the first by a band-pass filter wide enough to let

the slow variations in a 1 j a~ j and in (a rg  a1 + arg a pass through .

Now the voltage X repre sents the product of two complex numbers a 1 and a~,.

Thus the product of two complex numbers C
1 1< 

is represented by an AC voltage at

frequency 2F.  The phase reference voltage for these products is obviously the

voltage with frequency 2F , obtained by squaring voltage U .

We have at our disposal, at present , monomials of degree N — i  that enter into

the composition of a il k .  We may omit , in this process , the intermediate computation

of cofactors 
~ k~ 

which are sums and differences of the above monomials (il k being

itself the sum of the cofactors of the k t column of ~~~
) . The phase reference at

frequency (~~~~
— 1) F = r is handled in the same way .

LX-5. Narrow-band Linear Filtering Using Multiplication By a Voltage Representing

The Filter

The final step consists of “filtering” the k th  channel with TT k ’  that is , changing

the amplitude and phase of the voltage at frequency ~ ~ 
which appears at each channel

a. by multiplying its ampli tude by / i t k / , and

b. by increasing its phase by il k .

Thus , il k is represented by the “filtering voltage” ~:

= it , Icos (?nrt + a rr  it ) ,1< ( I : : — ~- )

letting I’ = ( L — l . ) F.

102 

~~~~~~~~~~~~
_

_~~~~~~~ — -— --- -~~- -~~~~~~~ - - - - _ _ _



____ ~~.—-- —-~~~~~~ • - —- ---~~~~~ - -- -- .•_ -- - - -., - _
~~-——

The input voltage (to be filtered) is

x = c z c o s ( 2 - i tv 0 t + A ) , (TX— ~~)

and we wish to obtain

Y =~~~I~~ : I c o s ( 2 1 T \ ) 0 t + A + arg il
k

) .  ( I X — l ) )

Take the product of the voltage ~ and the voltage x and filter the component at
frequency (Vo + 1) .

Z k 0s(2i
~~ 

+ v 0 )t  + A + arg il k~~ (TX— li)

The above voltage has the amplitude and phase of y , but it is not at frequency
V o . In certain cases , this fact may not be troublesome. Thus, the output of the
matched filter is obtained in the form of a narrow-band voltage with cente r frequ~~~~
f + V o. If, however, we have to recover the frequency V o~ it may be done with
the aid of the “phase reference” voltage at frequency f .

r cos2 ii f t  • (~~X-1~~)

Taking the product of z and r and filtering for the component at ~ o (demodulation
with r ) ,  the voltage ‘,‘ itself may be obtained (except for an unimportant factor of
1/2) .

The only thing remaining is to take the sum of the outputs of all the channels in
order to obtain normalized proper filtering. Thus we have given a very brief glance
at realization of an NPF. Numerous variations are possible in the technology itself ,
but the basic circuit remains as a multiplier of two narrow-band voltages. Simple
modulators may be used to realize certain of the mult iplications (when one of the
factors has a normalized amplitude) . In the majority of cases , we need either an
analog multiplier or a digital multiplier of quantized voltages accurate enough to
minimize inaccuracy in the average value of the products (for example , geometric
quantization , see reference (24)).

In order to realize a CSPF , we have seen that it is necessary to divide the result

of the preceding NPF by = E . To form presents little diffi cult y ,  and

it will be obtained on the form of a voltage having a frequency 1’ and zero phase ( r
is real and non-negative) .
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Of itself , the amplitude of this voltage is of interest to us and will be determined
by means of an envelope detector in the form of a constant or slowly varying voltage,
always of the same sign . Subsequently, the output from the NPF must be div ided by
this voltage .

This operation of division by a voltage with a constant sign is technologically
possible , although a little more difficult than multiplication. Thus the CSPF is
realized.

DC-fl . Flow Charts for Two-and Three-Input Systems

Figure IX-4 shows the block diagram for an NPF in the case of 3 inputs , or more

precisely, one of the possible block diagrams. The complexity of this equipment
rests primarily with the large number of analog multipliers that it requires. Within
the present state of the art , it appears difficult to handle more than 4 or 5 inputs.
For this reason , it is natural to turn toward less perfect but more easily realized
solutions , such as that of connecting the CSPF’s together , the principles of which are
discussed in Paragraph VI-9 and Paragraph VI-lO.

The theory of a system with two inputs is treated in Chapter VII. Figure IX-5

represents a possible realization of the corresponding circuit. This figure is similar
to Fig. IX--4 . Six analog multipliers are required to realize a 2-input NPF , and a

supplementary divider for an CSPF (the squares may be realized in a number of ways) .
The other elements (modulators, pass-band filters, integrators) are classical.

Figure tX-fl shows a simplified circuit useful only in the case of two inputs having
the same spectral density. As we know, the filters it

1 
and are complex con-

jugates.12 i~quation VII-5 applies to this case , which is characterized by

C 11 = C 22 = C , from which q = 1 and C 12 = CO ( T ~
• 13)

and , in part icular,

that ~ and it are the system function s (complex gains) of the
fil ters for the frequency v o .
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r = : (i~~~( ø ) )

= C ( 1 -0)  = r -~~ c l ( s )  (~~X- 1~~)

* 1 .~~~~~~= C ( i -_ s ) = ~~
- r +~ I(o) ,

and it may be seen that the real part of both il
l 

and it
2 

is nothing more than F 
~~ / -

that is , half the spectral density of the difference. This justifies the structure of
the circuit of Fig. tX-fl , which requires only 4 analog multipliers.

IX-7 . Verification of one Property of the NPF in the Preceding Diagrams

It has been demonstrated in Paragraph V1-3 that an additional noise input fl ( t ) ,
uncorrelated with B 1 ( t )  and b2 ( t )  and superimposed upon them changes the
behavior of neither the NPF nor the CSPF . This property may be verified in the
sample circuits of Figs. L\-4, IX-5, and DC-fl . Its verification is particularly simple
in Fig. LX-fl. First of all , it is obvious that everything that is common to the two

• inputs - the noise n ( t ) or the con tingent signal - disappears in the difference of
the two and , because of this di ’fe rence , does not influence the process of synthesizing - •

~1and ~~, .

It may be proven that the noise n ( t )  disappears in the multiplication-integration
of two inputs which d iffer in phase by u /C . In fac t , the two narrow-band noises

( t )  and b ~ ( t )  may be written , making more evident their low frequency com-
ponents (whose bandwidth is on the order of ~

b 1 ( t )  = C 1( t )  coo ,~~ it V 0 t + fl~~( t )  s~~n f l u  V 0  t
( ix-

= -L,, ( t )  cos 2ii v 0  t + fl~~( t )  O I I I  f l i t  V 0 t

and the noise n ( t -  ) may be written

n (t- ) = r ( t )  coo • ‘ it V 0 t + i ( t )  sin f lu V 0

where neithe r n ( t ) no’. q ( t ) is correlated with ( t  ) , ~i , ( ) , .
~ 

( t ‘I , w.

• ( t ) .  Furthermore , the mathematical expectations of all the low frequency (‘Ofli-

pon ents are zero (reference (7), page ~1(i , Eq. 3—G-31).

laO
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Following the procedure of the diagram in Fig. DC-fl , we see that the mult iplier
forms the product of

[r~11( t )  + p ( t )]  . [_ sin 2~ v o t] + [N 1( t )  + q( t )]  
. [cos 2 it v 0

and

[r~2 ( t )  + p ( t )]  . [cos 2u V 0 t] + [‘L) ( t )  + q(t)] . [sin fl it V 0 t]

( I X - l u )

Integration done by a low-pass filter eliminates compone’its of frequency C V

As a strong integrator ( e>>1/ ~~, . see E q.(IX -4)), it forms the time average -

or the mathematical expectat ion - oh’ the low frequency terms in the product, that is ,

of

V ( t ) = [~~1( t )  + q ( t ) ]  [ N f l ( t )  + p ( t ) ]  - [M 1( t )  + p ( t ) ]  [ ~H ( t )  + q(t)]

In v ’(t ) , the term p ( t )  • q ( t )  is eliminated (its time average is zero , two

components of the same stationary noise being uncorrelated at a given instant of time

((7) ,Eq. 3— 6-35) .

The time averages of all products such as q ( t )  :L, ( ) or r ( 1 )  ( t

are zero , since they are equal (with no correlation) to the product of the averages of

each factor.

Summarizing, in the time average of -; 
( t ) , at the output of the integrator , only

quantities depending upon I
~ 

( t )  and b ( t )  remain. Thus , the noise fl ‘
~ is

eliminated in thc~p~ocess of synthe ziz~g,~~ ~ ~ and the predicted property is

therefore confirmed. The preced ing demonst i’~it  ion still applies if ( is replaced
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by a sinusoidal function of frequency V ~ It is enough to assume in this case , that

q ( t ) = 0

p(t) = P0

The voltage V(t) becomes V 0 ( t ~) :

V 0 ( t )  = N 1( t )  ~~2 (t  + Po~ — EM1(t  + P0 1 ~J 2 ( t )

and P0 is eliminated from the time average of V 0 ( t )  because the averages of N 1 ( t )

and C 2 ( t )  are zero.

If a sinusoidal function of unlimited duration - having the characteristic of
stationarity - does not change the value of it

1 
and it

2 , the same will be true, certainly,
for the narrow-band signal S ( t )  (narrower than ~ ). In fact , this signal is a
sinusoidal function with frequency v 0 and slowly varying amplitude. Furthermore ,
its duration is small compared with the integration time constant . For these two
-easons, the signal, identical at the two inputs , does not depend upon the multiplier-

integrator output , nor , consequently, upon the values of it
1 

and it 2. Similar
verification of this prope rty may be made using Figs. IX-5 and IX-4 .

The I IC - are not altered by the noise n ( t )  or by a sinusoidal time function
r i

of frequency V . The R [C -
~ kj 

are all increased by the same quantity, which sub-
sequently vanishes when the difference is taken.

CONCLUSIONS

The gene ral area covered by this study is an investigation of the best way of
detecting the presence — and only the presence — of weak signals in noise in terference
and , consequently , of improving electromagnetic and acoustic detection over a wide
range of processes.

In this area are included two methods of approach to this problem. The first is
statistical detection theory , which makes use of the concept of estimation. The other
is the examination of the optimization of certain judiciously chosen criteria (signal—
to-noise ratio).

l i i
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Although historically unrelated , the answers obtained coincide for conditions
usually found in practice.

The Matched Filter Theorem is one of those optimizations and concern s a particular
signal in a stationary noise field . It forms the point of departure for this study.

We have tried to modify this theorem — which handles only a single signal and a
single noise — to include the multiple aspects of detection by an antenna with several
receiving elements. Then we have examined most of the forms taken by the solution
for different statistical relationships presented by the noise inputs. We wished to
stress the very general character of this treatment by showing how it includes and
extend s beyond the concept of directiv ity , which is generally used for the same purpose.
Finally , we have pursued the work to the point of block diagrams for the realization
of such systems , in the particular case of narrow-band signals, and f rom the point of

of an automatic adaptation , with gradual changes in a quasi-stationary noisefield .
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