AD=AD36 321

UNCLASSIFIED

NAVY UNDERWATER SOUND LAB NEW LONDON CONN F/6 9/5
MATCHED FILTERING AND OPTIMAL USE OF AN ANTENNA, (U)
JUN 66 H MERMOZ

USL=-PUB=-745




g 12
e 22 o
=
3
L

s e

o

N
O

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAL OF TANDARL 1 A




ﬂ)%'”4(bi(/)31(9 ,l/ A
L 20O

& @ 29 Jun;gg ) .
£
. U. S. Navy Underwater Sound Laboratory
~ § Fort Trumbull, New London, Connecticut
O l\ DISTRIBUTION STATEMENT A_ | :
A d far public release;
g ’)- ki ppl!)‘:s't:xbu:m Uniumted )(

B

| 1
- e Slﬁwly IN FRCuc ranslated from ‘

) "'E“-/.' A2l IXA "Slgnal Processing — with Emphasis on Underwater Acoustics,|’

(Matchnd Flltermg and Optlmal Use of an Antenna}.‘{
HENRI[MERMOZ]

Institut Polytéchnique, Grenoble

,';1'* ETEYs vy
\o » |
am

O

o

=

< y

o

<

ATO MMMQ,
4 ' 162-299

14—26 S cY

s 1 RoBER NEILL ]R.

‘**"F ias 163 / 7

DDC

a...‘.‘—-

< MAR 8 917

] T

%

59 268 [

Bael / to USWUSL Ser m-;gé 72‘)




ABSTRACT

Originally published in the French language in "Signal

Processing — with Emphasis on Underwater Acoustics, "

by the NATO Advanced Study Institute, 14-26 September

1964, pp. 162-299, this study has been translated to

serve as a ready reference work. The study itself lies in

i the area of research that is concerned with the improve-

f@ ment of long-range-detection techniques. Subjects covered

@ include (1) a formal solution to matched filtering with N

‘ inputs, (2) the case of identical signals — proper filter-

? ing — orthogonal images of a system with N noise inputs,

(3) marrow-band approximation — variation of proper

i filtering, (4) case of two inputs — coherent noise, (5)

matched filtering and directivity, and (6) generation of

proper filtering — autoadaptive systems — practical
stationarity conditions.
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CHAPTER 1,

SOME PRACTICAL PROBLEMS AT THE BEGINNING OF THE STUDY

\
ymmary
This study lies in that area of research that is concerned with the improvement
of long-range detection techniques. By extending the well-known concept of a
matched filter to include a receiver with several elements and by using a few
simple examples, it is shown that current ideas about the optimum use of an antenna
provide answers to only a few special aspects of the general problem. ‘

I-1. General Outline :

\The problem of extracting weak signals from interfering noise may be found in
the general area of Information Theory. ,We may consider two different approaches
to the problem, each arising from a diffekent practical situation. The first approach
is concerned with the faithful reproductiin an input signal at the output of a com-
munication channel. Here, the applicable theory is that of information transmission;
the signal is unspecified except for the variety of forms or values which it may
assume and the probability of occurrence of each. Optimization criteria are based
upon the reconstruction of the most probable form of the signal, that is, the best
"guess' at the original form and content of the transmitted signal. This first ap-
proach is that of optimizing the reconstruction of a message that has been deterio-

rated by noise.

The second aspect of the processing of weak signals - the aspect with which this
paper is concerned - has its origins in practical problems associated with the develop-
ment of long-range detection methods, using both electromagnetic (radar) and
acoustic (sonar) techniques. Here, we wish to be informed of the presence of an
obstacle or target as soon as possible and at as great a distance as possible. The
"echo'" returned by such a target or obstacle is weak, immersed in the inevitable
interfering noise, but it is assumed to be of a specified or known form - the same
form as a specific model (i.e., identical to the model except for some constant ampli-
tude factor and time lag). The model might be the original emitted signal, which may
be controlled or even derived from it by a known transformation (e.g. doppler shift).
Conceivably each possible doppler shift value may yield a different "model." We may

A e o




group the variables in the received signal in order to form a reasonable number of
specific models and treat all models separately but simultaneously. The basic
problem is reduced to the question: what are the criteria which optimize the detec-
tion of the presence of a signal of a given form? It is not required that the signal
be accurately reproduced; it is even permissible to transform and alter it. What is
required is the best possible indication of its presence; this indication might be, for

example, a maximum contrast in the output level of the receiver.
I-2. Matched Filtering and Multiple Antennas

A particular, but essential, solution to the problem stated in the preceding
paragraph may be found using the Matched Filter Theorem. This study deals with

the scope of that theorem and with the criteria which it utilizes.

In its classical form, the Matched Filter Theorem treats a single signal and a

single noise and does not deal with the multi-parameter aspects of the detection of

weak signals using an antenna. An antenna is an ensemble of I sensors whose out-
puts are collected in some more or less complex fashion. For each sensor there is
a corresponding noise. When a signal reaches an antenna, it is distributed in some

specific manner into N particular signal outputs.

What, then, is the best possible utilization of the N signals and the N noise
outputs for optimal detection of the presence of an incident signal? What is the
best arrangement of the sensors? And what gain might be expected from using
N sensors as compared to using a single sensor? It may be noted that the usual
ways of evaluating antenna gain answer the last question in special cases only. In

some cases, this gain is expressed simply by the number N itself.

Classical reasoning assumes that at the output the signal power increases as i’
while that of the noise increases as N This reasoning, however, postulates
statistical independence among the noise outputs from the i elements or sensors
and is therefore dependent upon a particularly simple hypothesis about the statis-

tical "relationships' of the N noise outputs.

In another case, antenna gain is computed in terms of "'directivity;'" thereby
introducing the more or less implicit hypothesis of a noise field with particular
spatial properties, known as "omnidirectional noise, " which completely defines the

statistical relationships of the |l noise components.




Two methods of improving an antenna are linked to these two means of evaluating
antenna gain. In the case of inc o ponident noise components, N is made very large and
the outputs of the I elements are summed. This "direct sum' is the antenna
processing, that is, the way in which the outputs of the elements are assembled.

In the case of omnidirectional noise, there are more subtle solutions, consisting,

for example, of assigning to each element a suitable weighting factor before summing

the outputs, such that the "directivity' is optimized.

Methods for the calculation of directivity, derivation of directivity patterns for
specific arrays of elements, and methods for reducing or equalizing ''secondary
lobes" have provided abundant literature (references (6), (15) to (22)) because of the
usefulness of the directivity concept in both transmission and reception. The under-
lying hypothesis of omnidirectional noise is, however, always present when this

concept is applied to a receiving antenna.

The variety of techniques for estimating antenna gain suggests that optimal
antenna processing depends upon the statistical relationships between the noise
components associated with the elements of the antenna.

For a given antenna, the noise outputs are known. Their properties are, in
general, stable (stationary), at least for a time duration on the order of the signal
duration. Thus, they may be measured and the best methods of handling them may
be determined. These methods may include direct summation or optimization of
directivity, if the nature of the noise corresponds to these special cases, or they
may be something quite different and may not even require that N be large. Such
is the case, for instance, with "coherent'" noise interference, which, like the
signal, propagates in a single plane wave (from a different direction from that of
the signal). This coherent interference is a case of still another statistical rela-
tionship: the noise components in the antenna elements differ from one another by
a time delay only. Using only two elements, it is possible to null the noise without
losing the signal, which is obviously the optimum procedure. All that is required
is to take the difference between the outputs of the two elements after having
introduced into one of them a delay corresponding to the difference in path length
for the noise itself. A limited case such as this illustrates the way in which
optimum antenna processing may occasionally be achieved when the statistical
relationships between the noise components are taken into account. Hence, if the
N noise components are known, the problem is to define and construct the optimal

processing system.




A logical second step is io allow the statistical relationships between noise
components to vary slowly with time in an irregular, unpredictable manner. We
must then look for autoadaptive systems that evolve the optimum antenna processing
as a function of the statistical relationships - relationships which are continually

tested in the course of that evolution.

A great deal of work to date has been devoted to autoadaptive systems, but in a
rather different theoretical context. In general, it has been concerned with the
construction of receivers that progressively ""adjust' themselves to the carrier
frequency of a repetitive signal (as in the case of radar). The evolution of the re-
ceiver is thus dictated by the signal itself (references (25), (26), (27)).

Here, on the other hand, we want to modify the receiver as a function of the
noise, which is always present, in such a way that reception will be optimized for
the signal whenever it arrives. Note that the idea of adaptation does not have the
same meaning.i.n a ""matched filter" as it does in an "adaptive system'". In the first
case, it has a "spectral" sense and corresponds to a well-defined criterion; in the
second, it takes on a ''temporal’’ meaning and is found to be tied in with a practical

conception of stationarity.

These practical problems are mentioned here because they will be considered in
the course of the first few chapters, employing more theoretical techniques. They
will not be resolved in all their generality, but only in those special cases which are
of particular interest. Thus, the ensuing study is developed in the direction of de-
eres sing generality, from the theoretical basis formed by generalizing the Matched
Filter Theorem to technological methods and principles useful in the construction
of cquipment. Meanwhile, some general properties of the statistical relationships
of the noise components and their illustration through the important concept which we

have called proper antenna filtering will be examined, especially with respect to

matched filtering. The cases in which it is possible to obtain very large antenna gain
will be stated precisely, and it will be shown that optimization of "directivity' is

actually a special case of matched filtering.
I-3. Some Comments on Notation

a. As a general rule, two functions related by a Fourier transformation are




designated by the same letter, for example1

hit) + h(v)

This convention does not lead to any ambiguity, since the variable is always indicated.
It has the advantage of economy of symbols.
b. The symbol f indicates an integral between the limits -~ and +« ,

c. We have made use of some results of harmonic analysis of unspecified
functions (references (1) and (7)).

Generally the variable T is indicated for auto- and crosscorrelation functions.
The variable v may be omitted from the notation for the Fourier transforms of the
correlation functions, especially when dealing with matrices. The complex number

ijK designates either Cjk( v) or Cjk(vo) for a particular value v  of v

The convention, in this case, is always defined in this text.

jh(v) C"” mivt dv
fh(t,) B g

1To state it more precisely: h(t)

"

h(v)

(92




CHAPTER II

RESTATEMENT OF THE CLASSICAL MATCHED FILTER THEOREM

Summary

This theorem, taken from the area of prediction theory, is concerned with
specific signals (of known form) mixed with stationary noise. It defines the linear
filtering process that optimizes a certain parameter called ""signal -to-noise ratio."
This parameter summarizes the best possible information about the presence or
absence of the signal without being concerned with preserving its "'shape' or form
at the output. Although this '"best possible information' is limited to the case of
Gaussian noise, it is frequently found in practice. The optimizations derived during

the course of the discussion are in agreement with matched filter theory.
1I-1. History of the Concept of Matched Filtering

The concept of matched filters was introduced in the technical literature around
1943 by D. O. North (10) in a study of the detection of weak signals of some known
form S(t) in noise that is stationary and has a uniform spectral density. North's
essential result is that the filter which maximizes at its output a certain parameter
known as the "signal-to-noise ratio" is the filter whose impulse response is the
image of the signal: S(-t) . This result justifies the expression "matched filter"
later used by Van Vleck and Middleton (11), who obtained the same result inde~
pendently. The extension of this theorem to the case of noise having a nonuniform
spectral density is found in the work of B. M. Dwork (5), as well as in that of
L. A. Zadeh and J. R. Ragazzini (12).

These latter authors, in particular, demonstrated that the“signal -to-noise ratio"
criterion is, in fact, a criterion of the "separation' between the signal and the noise.
This observation connects matched filtering with the Wiener-Hopf equation (8).

Criteria of "separation)' however, are non-statistical criteria, which depend
only upon the spectral density or autocorrelation of the noise, that is, on a single
moment of the probability distribution. The noise is entirely specified by this moment
only in the case of a Gaussian distribution.

Another approach to the problem of optimizing weak signal detection is through
statistical decision theory. The literature on the subject is abundant, and we intend
here only to skim its surface in order to specify the criteria for a matched filter
(references (3), (4), (9), (28), (29), (30), (31)). This theory takes into account the
ensemble of statistical properties of the combination of signal and noise in order to
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deal with, especially, the a posteriori probabilities (for a given combination) of the
presence or absence of signal. The ideal receiver must, then, construct the
"probability ratio" connected with these probabilities. It may be shown that if the
noise is Gaussian and has a uniform density, this probability ratio is completely
described by the convolution of the "mixture" (of signal and noise) with the "pure"
signal. This convolution is nothing more than the output of the matched filter
(having impulse response S(-t) ). Thus, matched filtering appears as a '"'statistical
optimum' in the Gaussian case. This case is especially important in practice. The
signals to be processed are often 'narrow band', that is, lying in a small band
around a center frequency. It may then be assumed that the spectral density is
uniform in the band.

On the other hand (reference (13)), for a very large class of non-Gaussian noise,
narrow-band filtering tends to restore some of the Gaussian characteristics. It
may be said that optimization in the sense of matched filter criteria is often very
close to optimization in the statistical sense. One may then think of matched filtering

as being very close to an ideal receiver.

These considerations underline the importance of the matched filter criterion that
may at first seem a little arbitrary. This criterion is the maximizing of the signal-

to-noise ratio defined in the following way:

p = 1lnstantaneous power of the signal at arbitrary time t
average power of the noise

As stated more precisely in the succeeding pages, this criterion corresponds to the
requirement of producing at the filter output maximum contrast between the presence
and the absence of a signal. This is to be accomplished by collecting all the energy
of the signal in order to produce a peak that is as narrow and as high above the

average noise power as possible.
I1-2. Matched Filtering With One Input

Let us recall that the theoretical solution of the matched filter may be presented
in two equivalent forms related by a Fourier transformation: the temporal form,
which furnishes the impulse response h(t) of the filter; and the spectral form, which

gives its transfer function h(v)

h(t) > h(v) . (11-1)




Let S(t )be the signal having a spectrum S(v),let B(t) be the stationary noise whose
autocorrelation is C (1) derived from its spectral density C(v), and let t , be an
arbitary time.

a. The impulse response h(t) is specified by the integral equation
fh(e) « C(t-6) de = KS(ty-t) , (TT-2)

where K is an arbitrary real factor.

b. The transfer function h(v)is given by

(v) —2ﬂivt0
h(v) = Ke . S¥lw) ., II=-
i (II-3)

where % designates the complex conjugate.

=2nivt
The factore ' Cof Eq.(II-3)corresponds to a time lag of t -+

Since t, and K are arbitrary, it may be said that the matched filter is defined
except for a real factor and a time lag. This is physically obvious. The real factor
acts in the same way upon both signal and noise and can not alter their behavior.

As for the time lag T g, if it varies, the time of the appearance of the signzl "peak"
is more or less displaced, but its height is not changed. It is preferable generally
to have the time lag as small as possible in order that the observer may be informed
of the presence of the signal as soon as possible after it reaches the receiver input.
However, it may happen that considerations relating to the realization of the filter

will lead to a compromise in this area.

Nevertheless, we will, in the course of this dissertation, again encounter the

=2nivt
factor e O,which, as we shall see, has no effect upon the filtering processes.
On the basis of the preceding considerations, it is not difficult to find that, in the

presence of white noise, the matched filter is defined by (except for the above factor)

S*(v)
SC=F)

o 3
~
ct
~
non

and that, as a result, it performs the convolution of its input with the signal (more

precisely with the signal "reflected" in time —the image of the signal).




Having reviewed these results, it will be possible to deduce them as well as all
the other properties of matched filtering, from the generalization of the theorem
to a system of N inputs - a generalization which we shall now consider.
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CHAPTER III

MATCHED FILTERING WITH N INPUTS - FORMAL SOLUTION

Summary

N

This chapter treats the problem of generalizing matched filtering to ! inputs
(multiple filtering). An antenna with N sensitive elements exhibits, at all of these
elements, N parasitic noise components whose statistical relationships are defined
by the crosscorrelation functions of the noises taken two at a time. It also delivers
a "multiple signal" consisting of N particular time functions. What is the multiple
filtering of these data - the ensemble of N filters - such that, when the N outputs are
summed, the characteristic parameter of matched filtering (S/N)is optimized?

The formal answer to this question is presented in two equivalent forms - the
list of N impulse responses of the desired filters, and their N complex gains
(system functions).

In the second form, the solution is seen to be unique (except for a real factor

and a time delay) and suitable for expression in convenient matrix notation.

Two characteristic properties are established:
a. The optimized parameter is independent of the reference time t T
b. Except for a real factor and a time delay (representing an arbitrary choice
of the time origin), the spectrum of the signal and the spectral density of the noise
are identical at the output of the matched filter.

III-1. Status of the Problem

Let us consider a system of N inputs ) ,E, . ... EN where

a. the signal is represented by N specific real functions of time,
Sa(t)y Sa(t)y vess SN(t) s

b. the interference (parasitic noise) is represented by N unspecified real
functions, B,(t), B,(t), ..... By (t)
which are stationary and whose correlations are stationary.

10




By definition, let”

C t) = E}B 3 IT -
Wk( ) { J(t) Ik(tﬂ)} K (T1T=1)
where ' designates the mathematical expectation (of the function in the brackets).

The real functions C 'k( () are autocorrelations (even functions) when j = [
and crosscorrelations when ] # k.The )° equations of the type( 1 I-1)express
the statistical relationships between the N noise inputs. These noise inputs are

independent of the signals Sy (t), S,(t), .... S,(t).
We then ask:

What is the linear filtering process represented by N filters having impulse
responsesR; (t),R,(t), ... RN(t) which, when applied to the inputs E .. ..,
respectively, have the following property: by taking the sum of their N outputs, a

common output Z is formed in which the following ratio is optimized (maximized):

€ = instantaneous power of the signal at arbitrary t,

¢ «(ITT=2)
average noise power

Thus, the characteristic criterion of matched filtering is utilized.
III-2. Review of the Classical Properties of the Crosscorrelation of Two Noise Inputs

Before proceeding to the proof, let us recall a few classical properties of the

functions cjk(r) and cjk(v).

a. First of all, according to the definition,

Cjk(r) = ij(”) ’ (IIT<3)

b. Expressing the fact that the power of a real noise

15‘1(t) + Hsk(t) (x» real)

2Other authors adopt a convention which corresponds to exchanging © and ~1
in the relation 11T7-1. This results, for the remainder of this paper, in the

exchanging of the correlation matrix with its transpose.

il




is a positive quantity regardless of the value of ), it may be shown (Schwartz

inequality) that

-

2
[Cjk(r)] < ch(o) « Cp(0), for all =, (ITI-4)

the right side of the inequality being, moreover, the product of the powers of B 5 (t)
and of B, ( ).

c. The existence of C 13 (v), the Fourier transform of C, (), will be assumed.

JJ
It is the spectral density of B, (t), a real, even, non-negative function of v

j

for any value of Vv .

d. The existence of Cjk< v) the Fourier transform of CJ. 1 (1), will be assumed.
Asthe transform of a real function, it satisfies the equation

*
ch(v) = Cjk(—v) : (I11-5)

which expresses its Hermitian symmetry with respect to the variable v. Moreover,
these functions have Hermitian symmetry with respect to their indices since Eq.(111~3)

implies that

*

kj(v) ! (II1-6)

Cjk(v) = C

Since the C 33 (v) are obviously spectral densities we will call the C 3K (v)

crosscorrelation spectra.

e. If Bj (t) and B, (t) are filtered by filters having impulse responses Rj (t)
and Rk(t ), respectively, two new noises b1 (t) and b, (t) will be obtained whose
spectral densities are

(v} & &%) |Rj<v>[2

3 JJ

and
Yk (V)

i

& -
Crrc ) IR (V)] (ITI-7)

The crosscorrelation function of b f (t) and b (t) is, by definition,

12




Y;yk(” = h{ bj(t) ; bk(t+r)} ; (TIT-8)

A classical calculation (Appendix I) shows that

* 2mivrt |
Yy (1) = ij(v) L R(v) L Cpplv) e dv ,  {TII-9)
from which we derive the Fourier transform of y Tk (1)

Vie(®) = BRI LR L C(e) (1T1-10)

f. Let two filters R 3 (v) and R, (v) be identical with real impulse responses
(with Hermitian transfer functions) having gains equal to unity in a band ¢ around
vo (and -vj ) and zero elsewhere. Let us assume that this band is narrow enough

so that Cjk(v> does not differ from Cjk( v o) within the band.

The crosscorrelation function obtained for the two noise inputs is, according to
(III-9)and (III-6),
sin n¢rt -
2¢ ~—ser " lbjk(\)o)f COS{27T\)0T + Arg [Cjk(\)o)} } .

which, as ¢>0 , approaches the limit

Vi(T) = 28]C5 (o) cos{ 2nvgt + Arg [Cjk(\’o)]} (IT1-11)

(see application in Chapter IX);
that is, it approaches a real, sinusoidal function of t whose phase is equal to the

argument of C

3 k< v ) and whose amplitude is proportional to |C ; k( vo)

The Fourier transform is a spectral "line'" at the frequency Vo characterized by

the complex number C K (vo) .Thus, Cj K (v 0)isa complex number which describes

the crosscorrelation of noises BT (t) and Bk (t) 5)7two identical narrow-band

filtering processes at the frequency vo .

The function Y ik (v) given by (ITI-11) is justified by the inequality (TT71-4),

which becomes here

2
[YJK(T)] < ij(O) « Y (0) for all 1

from which may be deduced

”

]C“{(VO)’V € Caslvgl) . (Tk.r:(\)o) . (ITI-12)

JJ
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The right-hand side is the product of spectral densities, forv = v, of the

noisesB j( £ )and Bk (t). Since the preceding equation is true for all v,,we may write

2
ICJk(v)l < cjj(v) C,p (v), for all v, (ITI-13)
or in determinant form ”
C. C
JJ Jk
TP R (III-13a)
LkJ‘ Cxk for all v.

II-3. Review and Physical Interpretation of a Fundamental Property of the

Crosscorrelation of Two Noises

Let us consider, for the present, the problem posed in Paragraph III-1 and

illustrated by Fig. III-1 (multiple filtering). The signal at the output of filter R 3 5,
is
R (80 S, (two) dg
3¢ ) J( ) ¢

and as a result the signal at the output ) is

- R,(8) S,(t-8) de . (ITI-14)

a(t) = ¥ / j(0) 8,
3

The noise at the output of filter R, (t) is

J
fRJ(U) Bj(t-u) de 5

and the noise at ) is

B(t) = 2/‘ Ry(u) B,(t-u) du . (I11-15)
J

Its average power is

2

; ;
P, = b; g8 (L) ‘ = E ; [ fﬁ (u) B,(t=u) du ] $ b
. z,(: J J {111-16)
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The [ * in Eq (III-16) may be put in the form of a double 3

=Y Z//R (u) R, (v) - IC{Bj(t-—u) - B, (t-v) } du dv ,

(ITI-17)

obtained by permuting the symbols 3" | ﬁ and £, which is legitimate under
many realizable conditions in physics. We have, then,

=2 E/f RJ(u) Rk(v) Cjk(u-v) du dv {I1T-18)
J k

from the definition of Cjk(t) (Bg. (111<1)).

The right-hand side of (III-18)being a power, is non-negative, regardless of
what filtering processes R 3 (t) are considered. This fact constitutes a characteristic
property of the ensemble of cross- and autocorrelation functions of any N real noises
B,(t). We have, then,

J
R.C(u) - B.(v) €, (u=¥) gGuadv >0 , (IIT-19)
J K jk z
b

for any R,
Equation (III-19) will be later used to advantage. J

III-4. Investigation of the Solution to the Problem Posed in Paragraph III-1.

The ratio o which is to be maximized by the proper choice of the filters R 3 (t)
is, according to equation (III-2) ,

) [o(to)] :

; (11120}
Pe

p

It is evident that this ratio o, except for a constant factor, depends only on R, (t ).
We may recall the remark made in Paragraph II-2 that matched filtering would be

defined except for a constant factor. In order to maximize p, this arbitrary factor
must be chosen in such a way that the numerator of p, thatis,| o(t,) 5

is given an arbitrary non-zero value k and then, taking this constraint into con-
sideration, the denominator P 8 is minimized.

The problem is now reduced to finding filters R , (t ) such that

J

o(ty) = Z/RJ(G) S,(tg-0) do = k (ITI-21)
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and such that the quantity FB in Eq. (III-8) is minimized.

Let us consider the ensembles of ! impulse responses "1 (t), rp(t), .. r'N(t)
such that

no
o

Zfr].(e) Sj(to-e) de = 0 3 (I11-22)
F a

that is, filtering processes which null (or reduce to zero) the signal at the output
Z at time t .

It is clear that all filtering of the form

R.(t) + a r.(t)

with some given real o satisfies Eq. (ITI- 21) as does R (t) itself. By varying o
and ry (t) (constrained only by Eq. (IIT-22)) we may assomate with any filtering

process Rj (t) an infinite number of filtering processes

Rj(t) * ar'j(t)

2
each one of which assigns the same value kK to the numerator of o and different
values to the denominator P g

If the chosen filtering Rj (t) is indeed a solution to the problem, that is, if it
minimizes PB , it means that the value of PB for that RJ (t) is less than or equal to
all other values obtained for filtering processes R, (t) + ar.(t)
with arbitrary real o andr, (t)constrained by(III-22) Now, calling

h 3 (t), one of the desired filtering processes,
D the value of P, for R (t) = h, (L), and

h? B
hy(t) + ar (t),

Dh,r'the value of P for Rj(t)

the desired condition may be written
Dy S0 . (III-23)
for arbitrary o and for an arbitrary value of I constrained only by (111-22).

Substituting from Eq.(III-18) the inequality (III-23)becomes

h,(u) h (v) C,, (u=v) du dv 1
3‘:’( /f J - Jk (ITI-24) |

fo[hj(u) + arj(u) ][hk(V) + ark(v) } Cik (u=v) du dv
k i

17




for any o« and any r constrained by (II11-22 ),or rearranging the above in

terms of o,

az Z f/ rj(u) A r’k(v) Cjk(u-v) du dv
Jk (ITI-25)
+ a Zf/ [r’j(u) hk(v) + hJ.(u) rk(v)] Cjk(u—v) du dv >,0
ik

forany @ and any r constrained by (I111-22),

The coefficient of on2 in (IIT-25)is of the form found in Eq. (III-19);
hence it is non-negative. It represents, moreover, the noise power at the output Z
for the filtering process r'J. (t). Since the first term of Eq. (IIT-25) remains
positive for all o, in order to prevent the sign of the second term from prevailing
for small values of ||, itis necessary to set the coefficient of o equal to

zero. This condition is then

fo[rj(u) 3 hk(v) + hJ.(u) r'k(v)] Cjk(u—v) du dv = 0
jk

(I11-26)
for any r constrained by (III-22),

III-5. Demonstration - Temporal Form of the Solution

The first term (left side) of (I1II-26)is composed of two terms. Because of
Eq.(III-3), which implies
Cjk(u-v) = CkJ(v-u) ;
these two terms may be written in symmetric form with their two indices, as well as
u and v  permuted.
It is evident, in this form, that they are equal. Condition (I111~26) is then

reduced to
¥ r'J(u) hk(v) C‘jk(u—v) ju dv = 0 , K ETE=217)
Jk
for any r constrained by (111-22) ,
18




Equation (ITI-27) may be written

Z/rj(u)[Z/hkfv) € (u=v) dv]du =0, (II1-2
J K 4

and from (II11-22

o
~—

Efr’j(u) Sj(to-u) du = 0 . (III-22)
J

In order to simplify the notation for the moment, let us set the bracketed term
of (III-28) equalto f 3 (u). Among all the possible systems of functions r 3 (u),
let us consider those which possess only a single function not identically equal to
zero, for example rj(u). This function is constrained by Eq. (III-22), which is

expressed as
frl(u) Sy(tg-u) du = 0 . (III-22a)

Condition (TIT-28) defines only fj(u); for any function r;(u) constrained by
(I1I1-22a), f;(u) must satisfy

frl(u) folu) du = 6 . (1IT-28a)

Equations (III-22a) and (III-28a) are.seen to result in
f1(u) = Ky S3(to-u), (IT1-29)

where Kl is a factor independent of u (Appendix II). The preceding relation is valid

for all values of the index J, and as a result

fJ.(u) = Kj S' {tg=u) .

j
Applying these necessary conditions to (I1I-28), we obtain

2. K1 f r’i(u) .“,j(to—u) du = 0,
J
Comparing with (I1T-22) we observe that all ¥ i must be equal to one another and to

the same factor K, which is independent of the index J .
Finally, the system of equations which gives the impulse responses i, (t),
the solution to the problem, is the ensemble of equations of the type
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Y h(v) C,, (u-v) dv = K Sy(tg-u) (III-30)
8 J
for § = 1. 2, suiaa N

These N integral equations define the ! impulse responses hy(t), ho(t),.... .hN(t)
and give the desired solution to the problem in its temporal form (impulse responses).

Optimal filtering comprised of the filters h, (t) is defined by Eq. (ITI-30),
except for a factor K. This factor is arbitrary but it is still related to the other
arbitrary factor k=0(t )by Eq. (II11-21) by which the numerator of p was
normalized; it is related as well to the noise power at the output 2 (denominator
of ¢), which is minimized for a given K but which is nevertheless proportional to K o

In fact, Eq. (II1-21) is written, for the filtering process hi (),

k = o(tq) = Z/hjm Sgltg-u) au , (111-31)
J

which is, multiplying both sides by K,

Kk = 3 fh1(u)[K :sj<to-u>] du (111-32)
J

and, replacing the bracketed term of (I111-32) by its value derived trom (1 11--)) &

Kk = ¥ X //h-f(“’ ATY Bplew) @8 O% « corz am)
J k

Thus, the second term (right side) of (I11-33) is the value of power P . for
the optimum filtering process h j (t), that is, the noise power at output >
-power which is minimized by that optimum filtering. The minimum power is

designated by Pm .

We have then

Kk = P,

or }\'O(to) i Pm

As for the value of the ratio p , which is made a maximum Om by the optimal

20




| filtering h(t), it is equal by definition to

A [ o(to)] . s a(ty)

k
p = = L = = —
M p K K
m
These equations may be summarized by
altqg) e
K = = , (TIT-34)
°M o(tg)

2
and the proportionality of Pm to K may be made obvious by
Ph = e K& (ITI-35)

The coefficient K has the dimensions of signal amplitude.
II-6. Spectral Form of the Solution - Value of the Optimized Parameter

By replacing both sides of Eq. (III-30) by their Fourier transforms, we
obtain the solution to the optimum filtering problem in ‘'spectral’” form. The left
side of (ITI-30) contains the convolution of hk(t) with CJk (t).Its transform
is the product of the Fourier transforms hk( v) and C K (v). The transform
of the first term is then

2: hk(v) Cjk(v)
k

If S 3 (v) is the Fourier transform of (t),, the Fourier transform of the right

53
side of (III-30) is

*
SJ(V) e—2ﬂivt0 ;

where the asterisk denotes the complex conjugate. Accordingly, the system of

Egqs. (ITT-30) yields, through transformation, the equations

-2nivt ¥
Conv) hy(v) =K e " 0 sS.(v), for J=1,2...N
;[‘ Jk = J (IT1-36)

In Eq. (II1-36) the quantities h, (v) (system functions of the filters) are
dimensionless since they are ratios of two amplitude spectra. The C Tk (v)

21
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are homogeneous in spectral density, that is, in power per cycle (power X time);
hence, in energy.

The S(,) are in terms of amplitude per cycle (Fourier transforms of
amplitudes), and K is the unit of amplitude of the signal.

One may write, introducing the unit of time T,
" FAGRE 8. (v)
Z L, (v hk(v) = K9 e‘""l"to i kv 3
2 KT
where K Tis t.he unit of energy or spectral density.

In terms of dimensionless quantities, Eq. (111~30) may be written

%
C (\)) , S'<\))
b & Jf h, (v) = "=V

k BT
However, this form is less concrete, and we will retain the prerogative to speak

(ITI-36a)
Kfl!

of system functions, densities, and signals.

The system (III~-30) is a system of N linear equations in N unknowns consisting
of the hk(v) . . Solving explicitly, we have the N equations

r =2nivt, 1 * d ;
hk(\)) = Ke m Z SJ(\)> ,]jk(\)) > (111-37)
for K = 1,2, sases N3
where A (v) denotes the determinant of the C K(\)) (3 is the line index and k

the column index), and where ! jk( v) denotes the cofactor of the element( j, k)

of A(v) (that is, the determinant obtained by suppressing the J lme and the k h

column and assigning the sign (-1) JHE 5

The system of equations given by (IT11-37) constitutes the "spectral" form of
the solution. It defines the optimum filtering process by the system functions of the N
filters, , hy(v), ho(v), ..... hN(v).

Let us note that the solution of the linear system ([T1~36) is generally unique
provided that a(v) # 0).

Thus, the h, (v) are, in general, completely determined, as are, consequently,
the h, (t). One may then speak of the solution to the problem of matched filtering
with N inputs - a unique solution defined by (ITI~30).

The case of A(v) = 0 will be investigated later. The C " (v) are Hermitian

with respect to the variable v (Eq. (II11-5)). The -‘" (v) are also, as transforms
of the real signals "')J (t). Thus, all the system functions h, (v) are Hermitian with

respect to v, and the impulse responses ?'1»' (t) are real. Driven by real signals or
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noise, an hk(t) delivers a real signal or a real noise.

An interesting expression for the maximum value of "1 of the ratio o,

optimized by the filtering process {hk( v) } , may be drawn from the Eqs. (111-37).

In fact, Eq. (ITIT1-31) may be written

o(tg) = zfskw) h, (to-u) du , (IT1-31)
k
and when transformed by Parseval's identity gives the result
o(to) = Zfsk(v) h, (v) i (ITI-38)
k
(the Fourier transform of hk(to-t) being hk(_v) e?"i"to,, that is,

* <2ntots - . )
h (v) e , since h, (t) is real, as we have seen previously).

Substituting the value of 1, (v) givenby (I11-37) into Eq. (ITI-38), we have

o(tg) = Z'/Sk(v) S [Z S;(\)) _v.J,A,(v)]..iv i

J
or from (ITTI-34)

*
o(tg) S,(w) 8, (v) M, {v)
CM = = ZZ/ J K .jl'\ av . (r’l—')"x"
j Kk

k a(v)

Note that since Py is a ratio of powers the right side of (I11-39) is always

non-negative for any noise B’ (t) and any signal 5 : (t).
The value Py is the integral of a function of v:

D(v) = ZZ SJ(\J) Sk(v) -
G a(v)

{III-40)
whose real, non-negative character for all v will become evident shortly
(Eq. ITI-52)).
The output signal o(t) has an amplitude spectrum given by
o(v) = F  S.(v) h, (v) (IIT-41)

k
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or, taking (ITT-37) and III-40) into account,

o l) = (Ke‘z"i"to) . D) . (IIT-42)

III-7. Matrix Notation - Characteristic Property of Matched Filtering

We will now express the preceding equations in a particularly convenient matrix
notation that is suggested quite naturally by Eq. (TII-36).

In this notation, the table of C 3 1« (V) constitutes a square matrix of order N, ,
which, according to Eq. (III-0),, is Hermitian. The ensemble of system functions

R P (v) or h ; (v) may be represented by column matrix R or h. The ensemble

of signals may be designated by a column matrix S .

It is obvious that the matrices 5 and R represent different physical quantities
(signals and system functions). Thus, all operations between matrices S and R
are not justified from a physical point of view. For example, a linear combination
aS+ B8R has no meanmg and w111 not be used. On the other hand, a matrix
multiplication such as Sh or hS represents the right-hand side of (ITI1-41 )3
that is, the amplitude spec trum of the output signal of the matched filter. More
generally,

SR = RS

designates the signal output of the multiple filtering process of Fig. (III-1). Moreover,
using only dimensionless quantities (Eq. (I1I-36a)), only physical quantities of the
same nature may be manipulated.

Anticipating its justification given in Paragraph V-4, let us use, for the moment,
Eq. (V-21) , which gives the spectral density of the multiple filtering process K
at the output )

For any arbitrary R J(L) SR J,(\)) i we have
() = T R R(v) Clv) (v-21)
J Kk

which is expressed in matrix notation as

3'I‘hc symbols of matrix calculations are those recommended by Standard
NFX02-110 of April 1962,
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v (v) = rYfcr . (ITI-43)

The right-hand side is the Hermitian form of the matrix C. In the case of matched
filtering, the spectral density of the output noise is

= +
Tz,i %) =50k (ITI-44)
Equation (III-36) is written
Ch = [Ke'z"i“tO] g, (ITI-45)

(In matrix expressions, coefficients will be placed in brackets for greater clarity).

Equation (ITI-37) gives, when 5(y) # 0, \

* 5
h - [Ke-;)‘ﬂ'ivtO] C—l S : (III—“O)
Matrix C being Hermitian, we have

¢t = ¢ ana ¢~ = ¢t (ITI-47)

Setting the matrices associated with both sides of (ITT-40) equal to one

another, we have

h+ £ [Ke+2ﬂi\)t0] S*+ c—l+ ; (ITI—“S)

*4 -
Since S = S, the transpose of S, we have
¥ [Ke+2"1vt°] g ¢! . (TTT-49)

Equation (ITII-44) is then written

~ - x )
¥y, o) h* ch = [K2] s¢™'s . (T11-50)

Substituting in (TTI-40) and noting that 45— s




the term corresponding to "line k, column j" of c=1 . we may write
b

i~ = *
D(v) = s ¢~ s, (I1I-51)
and, consequently, from (I111-50)
vg,(v) = X Dlv) . (IT1-52)

As aresult of (IIT-52), D(v) is indeed a real and non-negative function of v

and is homogeneous at a given time.

Comparing (IT1-42) and (TII-52), one is led to the characteristic rule of
matched filtering, generalized here to the case ot N inputs: except for the

—2 m _L vt 0
e
factor [ X ] >, the spectrum of the output signal is identical to the
spectral density of the noise at the output.

Y. (V)
Lo o o(v)
- -
h Ke-LTTl\)tO

= Blv) = CITT-53)

The identity becomes complete when one adopts the conventions
K =1 and tog = 0 ,

The first convention consists of defining the unit of amplitude; it destroys the
homogeneity of the preceding equations. The second expresses the fact that the time
origin is taken to be the instant when the '"peak'' of the output signal appears. This
convention of notation, which does not alter the generality of the problem, will
ultimately be adopted.

A convenient integration of (I11-42) yields the result

4
a(te) =/:)(v) gt TVER gy = fKI)(v) dv = K oy ,

and integration of (T11-52) gives
Y '?
Tm = K Oy

Thus, we again encounter Eqs, (IT1-34) and (TIT-35).
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Note that the matrix form of Eq. (ITT-41) ig

syl = 35 (ITI-54)
and that the comparison of (IT1-44), (ITT-53),and(TTT-54) gives
> o -
Yzo(v) =n* cn = [Ke‘“lvto] sh . (III-55)

This equation may be demonstrated directly by beginning with Eq. (IIT-45)
setting the two matrices associated with the two sides equal to each other, and
multiplying on the right by h.
III-8. Properties of the Output Signal

Equation (TI1I-3%4) shows that o(t;) has necessarily the same sign as X, ,
which we will assume to be positive in order to conform to the current practice which
displays the "peak" of the signal "upward'; however, the opposite convention would be
just as useful. Let us justify the qualitative term '"peak’ showing that o(t )

is indeed the maximum value of the output signal o(t). This is equivalent to
showing that o' (t) = (to+t) isless than or equal in magnitude to

' (0) = cltg),

ox bo CE)] « a™8) <. (ITI-56).
Then,

O'(t) = 0(t0+t) = /0(\)) e?'ﬂi\)(to'ﬁ't) A

and using equation (ITT1-42),

s
& (B) = KfD(v) e“‘”t dv ,

which is, as we know, real and non-negative, and the obvious inequality

l/.D(v) e?ﬂi\)t d\;l <fD(v) dv

precisely demonstrates Eq. (111-56) . Note that KD(v), being evenin v,
has a Fourier transform o' (t) that is evenin ¢ . Thus, ,(t¢) is symmetric

about time t = tg.
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APPENDIX I

We have, in fact

b(t)—fB(e)R(te)de,

L, ' ' ?
b, () _f B, (8') R (t-8') do',
from which we get

¥y () = ffE gBJ(e) B, (8 )§ Ry (t-0) Ry (t+r-8') do do' , ;

vyl®) = ff Cyp(0"-0) R (t-0) Ry (t+r-6") do as"' . :

Letting

]
€ Q
-

t -8

we have ;

ij(T) = ff ch(o) Rj(w) Rk(r+w-o) do dw .

Then,

2mivrt
Rk(-r)=ka(v)eﬂv dv ,

from which we get

ij /// Jk(o) R.(w) R (v) e?'rriv(r ~w=0) dw do dv
Y (0) =/Rk(v) ez"i”[ Ry(u) e gltive dm][/cjk(c) et L do] av .

v
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e T .

*
The first bracketed term is R j (v).
The second bracketed term is C ik (v).
Then,

ij(r) = J/.R;(v) R, (V) CJk(v) [ez"i“TJ dv

This example is analogous to that of reference (7), page 39.
APPENDIX II

S(u) being a given function, let us determine a function f(u) such that,
for any function r(u) constrained by the relation fr(u) S(u) du = 0 ,

wehave/r(u) f(u) du = 0

There are two points u =u,and u = uj for which the values of S(u)are S(u,)

and S(u,) (which will be assumed to be different from zero). Consider the function

G(u-ul) 6(1.1—1.12)
p(u) = ~
S(ul) S(uz)

This satisfies the first equation since fé (u=uj;) S(u) du = S(uy)

We must have therefore

2 /G(u-ul) f(u) du - = fé(u-ug) f(u) du = 0
S(uy) S(uy)

and
f(uy) f(ujz)

S(l.l]) S(U2)
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Considering u, as an arbitrary point, it is clear that —é—%%%— is a constant,

independent of the point considered and thus independent of u.
Therefore, f(u) = K S(u)
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CHAPTER IV

REMARKS CONCERNING THE FORMAL SOLUTIONS OF SOME SPECIAL CASES

Summary

The preceding formal solution may, of course, be applied to the classical problem
of a single input.

a. In the special case where the ) noise inputs are uncorrelated, it is shown
that multiple matched filtering is achieved by summing the outputs of separate
matched filters in each channel.

b. If the N noise inputs are both uncorrelated and of the same uniform spectral
density, the generalization of a well-known, essential property of the classical
theorem establishes the fact that the value of the optimized parameter depends only
upon the total energy of the multiple signal (of the N signal inputs).

c. The parameter o expresses the performance (5/11) of the matched filter for
given signal and noise inputs. If the noise is defined and the choice of a signal is
arbitrary (a case frequently found in practice), the value of Pm depends upon
that choice.

Examination of the expression for P, shows that it is advantageous to choose
signals in selected frequency bands whose specification is based upon the correlation
matrix of the N noise inputs. This qualitative observation introduces the idea of
"eliminable interference' or "infinite signal-to-noise ratio, " which will be developed
later.

IV-1. Limitations of the Cases Considered in This Chapter

The systems of Eqs. (ITT-30) and (IT1-37) provide, in temporal form and

spectral form, respectively, the solution to the problem posed in Paragraph III-1.

First, let us note that according to (111-37) the system functions of the
filters hk (v) are defined only for a(v)#0 , Therefore, it is a good idea to
examine the case in which this condition may not be fulfilled. This, however, is

part of the study of the properties of A(v) that will be undertaken later.
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IV-2. The Case of a Single Input

With the aid of Eqs. (III-30) and (III-37), the solution of a matched filter
with a single input may be found - a solution summarized in Paragraph II-2.
Equation (III-3) yields Eq.(II-2) directly for the case of N = 1, by letting

€yzlr) = €z} ,

the autocorrelation function of the single noise input.

Equation (III-37) no longer has any meaning in the case wherell = 1 since
the cofactor My (v) is not defined, but Eq. (III-36) is reduced to
=2wivt 0 *

hl(v) Cll(v) = Ke Si(v) ,
i -2mivtg %
hy(v) = Ke -« S51(v) (IV-1)
5 i
Cllz\)s

which is identical to (II-3) since C;;(v) = C(v)is the spectral density of the

single noise input considered here.

The rule given in Paragraph III-7 is also valid since the spectrum of the output
signal is

=2mivt S(v) -
o(v) = h(v) S(v) = Ke . J—C-(v—yl'— ,
while the spectral density of the output noise is

?
rg, = G LIt =L ISAL
2
with D(\)) = _I%((\\j_g_l_ .

IV-3. Matched Filter Rule for Uncorrelated Noise. Signal Energy and Signal-to-Noise
Ratio

Let us consider the simple case where the N noise components are not correlated.
In this case, since the crosscorrelation functions are identically zero, all the
elements (,‘J k(" ) of the determinant A(v) are zero for j # k . Thus, a(v)
becomes diagonal and takes on the value of the product of the N spectral densities

CJ (v}

J
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The cofactors Mj) (v) are themselves zero for j # k,and one cofactor I, i (v)
is the product of N - 1 spectral densities obtained by omitting C 33 (v).Asa result

Eqs. (II1I-37)are reduced to

#
—2ni 1
bt = e 2mivtg Sk(\)) .Vlkk(\))
k 3 alv) »
that is, to the N equations
*
=2mivty Sk(\))
hk(\)) = Ke . W s
(IV-2)
Tork = il 2 s N

The system of Eqs.( IV-2)points out that for each input the optimum filter is the
same as the case in which that input is considered to be isolated. The following rule

may then be stated (referring to Fig. IlI-1):

A matched filtering process with ! inputs, whose noise inputs

are uncorrelated, may be obtained by taking the sum of the outputs of

the matched filters for each input.

In the special case considered here, the value of o given by expression(I11-39)

s )
Z/ | (“| dv . (IV=3)

is reduced to

Furthermore, if, the Il spectral densities are uniform and equal |

CJJ(V) = d

1
Pt 2[ 'Sj(v)}zd" . LRSS

and we have

=2 J

2
The integral _/I S . (v)| dv represents the energy of the signal S(t)
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(Parseval's identity). Then, the ratio'om depends only upon the sum of the energies
of the N signals, that is, upon the total signal energy at the inputs.

This statement generalizes the equivalent rule valid for the case of one input as
long as the noise has a uniform density. We have then
ol
S
L

m 8 %

where E-Zq is the energy of the signal (see reference (8), Chapter IV),

IV-4. General Case - Usefulness of the Arbitrary Parameter

A matched filter with N inputs is defined except for a constant factor - designated

here by K - for all filters hk , and an arbitrary time lag represented by the

5
term e et

,a factor in the N system functions hk (v) . This time lag
depends upon the instant of time ¢t o chosen for the appearance of the '"peak'' output
signal. As has been already suggested in II-2, the performance of the system rep-
resented by o — Which may be defined as the signal-to-noise ratio of the process —
is independent of K and of t, , which is evident from Eq. (I11-39), It is equally
clear physically that no change in the detection ability of the system is brought about
by inserting the same ideal delay line in series with each input. The appearance of
the signal peak is only changed in time without modifying the height of that peak above
the mean noise level. By this observation, we touch upon the question of the possi-
bility of achieving filters defined by Eqs. (I11-30) or (III-37). We know that,

in order to be realizable, a filter must have an impulse response which is zero for

t < 0, bounded, and unconditionally integrable. If a theoretical filter satisfies only
the two latter conditions, its unit impulse response goes to zero at the limits

t = 4o and U = _=. It is possible then to satisfy the first condition in an approxi-
mate way by a translation of the unit impulse response to the right on the time axis,
that is, by a supplementary time delay. This amounts to saying that the physical ap-
proximation of a filter is often facilitated by adding adequate time delay. The approxi-
mate realization of the matched filter will thus be facilitated by permitting an appro-
priate value of t ;; this time delay, although important, certainly constitutes an incon-
venience since it postpones the instant when the observer is informed of the presence
of the signal, but it allows us to obtain a good approximation of the ideal performance

expressed by o .
IV-5. Limited Possibilities for Elimination of Noise Having a Particular Structure

Let us consider Fq. ([T1=39),
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*
Pm = fZ EK: gyl B Malel (I1I-39)
J

aCv)

The possibility appears here of having o become "infinite" if there exist
frequencies for which A (v) becomes zero (provided that the signals indeed possess
spectral components at these frequencies and that the sum of the cofactors does not

go to zero as well).

Such a possibility, which corresponds to the total elimination of noise, naturally
constitutes a limiting case. It is apparent, however, that it may be interesting in
practice to concentrate the signal energy in those frequency bands where 4 (v)

is very small, if such bands exist.

Formally, structures having "eliminable noise'" may be defined in terms of matched
filtering. The case of '"coherent interference' which belongs to this category will be
treated later (Paragraph VII-5). It can be immediately seen that no such situation
ever arises in the case of N uncorrelated noises; in fact, as we have seen, 4(v)
is reduced, in such a case, to the product of spectral densities; that is, to a non-
negative quantity. Further, the spectral density of noise at an input is never zero in
practice (because of thermal noise). Thus, A(v) may not be zero at any frequency
(Paragraph VI-8).

Formally, the case A(v )=0 may be encountered if the noise inputs are
statistically related. However, in practice, there will always be one part of the total
interference - thermal noise - which, because of its independence from one input to
another, will prevent A(v) from being reduced to zero. Thus, A(v )=0 appears
as a limiting case, interesting in its formalism but physically inaccessible, as

is the "infinite' signal-to-noise ratio.

This restriction does not take away any of the practical interest from the following
statement: the signal-to-noise ratio iends to become very large when A(v)
becomes very small. In order to use this fact, we must, given the choice, use signals

in the band or bands where A(v) is the smallest; as a result, we must know A(v).

This preceding statement is obviously a generalization of the very simple case of

one input for which the expression in (IT11-39) becomes




R =" r——

2
O ® /l—g(:) dv. . (IV-5)

Applying the theorem of the mean, it may be showr that for a given signal energy,

2
B = |S(v)] dv

The maximum value for P will be obtained by placing this energy in that band - or
in the limiting case, at that frequency - where C(v) is minimized. Since it is a
question of a limiting case, it is particularly interesting to know the nature of the
statistical relationships - let us say, the spatial structure of the noise at the

inputs - which will result in A(v) being zero. In fact, the performance of matched
filtering is then considerable since it permits a theoretically infinite signal-to-noise
ratio. In other words, it allows us - in this case only ~ to suppress the noise. A
more complete discussion of this case will appear later.

At present, let us be satisfied to take note of the formal difficulty involved in
practical use of the case A(v) = 0 . Infact, K being considered an arbitrary,
fixed constant - easily normalized to the value 1 - in Eq. (III-37) , the hj (v)
are found to be unbounded and thus unrealizable in just that case where they yield
the best results. The output signal ;(t ) from filters with "infinite'" gain is itself
infinite. Its observation would thus be inconvenient. We will see in Chapter VI how
the concept of normalized matched filtering permits us to avoid this difficulty

in the case of a narrow band.
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CHAPTER V

THE CASE OF IDENTICAL SIGNALS - PROPER FILTERING-ORTHOGONAL IMAGES

OF A SYSTEM WITH N NOISE INPUTS

Summary

To assume N identical signals does not reduce the generality of the problem.
This is a case to which we may always return and one to which, in general, even the
most advanced techniques are effectively reduced. In this case, the following may be
established:

a. Matched filtering is divided into (1 ) a proper antenna

filtering (PF), which depends only on the N noises and
involves one filter per channel, and (2 ) a unique filter
defined by the signal alone, which is nothing more than
the matched filter for the signal in noise with uniform
density.

b. The direct sum of the N elements of an antenna forms a part of
a PF - now an optimal process - only if the N noises are
uncorrelated and have the same spectral density.

The concept of proper filtering is very important. The properties of a PF are
associated with the noise alone. The "'system function'" (complex gain) of a PF may be
defined for the signal between the input and output. It is always real and non-negative,
and the first characteristic property of the PF is the following:

The gain of the PF is equal (except for a homogeneity factor) to the

spectral density of the output noise.

The study of a PF reduces naturally to a study of the correlation matrix, whose
known classical properties will first be reviewed. The eigenvalues of this matrix
are functions of frequency and have the properties of a spectral density.
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The initial argument assuming ! correlated noise inputs B,j (t) may be
replaced by a simpler argument assuming ! uncorrelated noise inputs derived
from the first, which represent the ensemble B 3 (t) equally well. This trans-
position offers the same convenience as the reduction of a surface to principal axes.
Thus it is, in itself, interesting and will be used effectively in the remainder of the
study.

The N ''reduced' noise inputs, which we will call the "orthogonal images' of
the B 3 (v) , are obtained from the latter with the aid of a collection of linear filters
comprising a "matrix o '". This means of generation illustrates the abstract
operation of diagonalizing the correlation matrix C .

The "orthogonal images' are uncorrelated, have for their spectral densities the
eigenvalues of the correlation matrix, and are such that to any multiple filtering of
the B 3 (t) there corresponds a multiple filtering of the images that yields the
same signal and the same noise spectral density. The latter, however, is easier
to study.

In particular, to the matched filtering of a signal in the B 1 (t) there corresponds
the matched filtering of the signal transformed (through the matrix o ) to
"orthogonal image" form. Proper filtering of the Bj (t) corresponds to matched
filtering of unlike signals in uncorrelated noise .

Thus, from now on, we will be able to transpose the entire study into the realm
of "orthogonal images', which will permit us to establish, in a simple, "physical"
way, certain properties of matched filters in the limiting case where the correlation

matrix becomes singular.

Finally, the second characteristic property of proper filtering is established;

it is a multiple filtering process where the crosscorrelation between a single noise
input and the output noise is the same for all inputs. Moreover, this mutual
crosscorrelation is zero for any value of 1 except for one (1=0)  but dependent

upon the choice of the time origin. This is a ""microscopic" crosscorrelation.
V-1. Non-Restrictive Character of the Case of Identical Signals

We will consider, for the present, the case in which the N signals are identical,
first emphasizing the practical interest of this special case; it is immediately clear
that we may always come back to it. Let us assume, as we have done before, that

the ! inputs are the 1l elements of a receiving antenna with fixed elements arranged
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in some arbitrary manner. The signal to be received is carried by a plane wave from

a known direction. Let us put on each element an ideal delay line of such a value that
the relative time lags of the elements for that particular direction are equalized. The
output signals of the N delay lines become identical. Naturally the statistical
relationships between the noise components are not the same at the outputs as at the
inputs, but this does not restrict us much since we have assumed them to be arbitrary.
We have thus constructed a new system with N inputs (the delay line outputs) at which
the N signals are identical. The operation may be repeated for each direction of the
signal plane wave. This is exactly what is done, in general, in a technique aptly
named '"preformation of beams'', designed to provide for each direction an output
whose signal-to-noise ratio is improved by putting all the signals in phase. Let us

say "improved' and not ""optimized" since it will be seen later that it is necessary to
consider this simple "putting in phase' and the limits of its efficacy. (See Paragraph
V-2

Be that as it may, making signals at antenna elements identical is already in
current practice and is related to the angular separation of the different plane waves

which are received.

Strictly speaking, the process of delay compensation is sufficient to render the
signals identical only if one is dealing with point antenna elements, which do not alter
the incident sound field by their presence.

If there exists a rigid structure around which sound waves are diffracted, delays
computed from the geometry are not adequate. For a given element, however, this
diffraction appears as a linear filtering which modifies, at the input, the type of
signal carried by the incident wave. This filtering is defined by the relative geometry
of the element and the structure and by the boundary conditions of the acoustic field
at the structure. At any rate, one may at least formally assume each input to be
affected by an inverse filtering which nullifies the diffraction and restores identical

signals to all the inputs. The compensation process is complex but still possible.
Let us summarize:

a. At the formal level, we may always reduce the problem to the
case of identical signals. Properly speaking, there is no restriction here upon the
general study of matched filtering with N inputs.
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b. From a practical standpoint, it is often very close to the situation of

N identical signals.
V-2. Formal Solution for the Case of Identical Signals

Assume that the N signals are identical:

Si(t) = 8a(t) = ,,0ucns S.(t) = 8(t) ,
1 2 N (V—l)
Si(v) = Sy(v) = ..... .o Syv) = S(v)
Equation (III-37) is then reduced to the following N equations:
=-2nrivty
h, (v) = Ke . 8 L} . le z My (9) (V=2)

for lc =1, 2, i N

As aresult of (V-2) each filter hk( v) is obtained by placing in series a
filter whose gain4 is

Ke B Av)

which depends only on the signal and arbitrary time t, with a filter

EMJK(") (V-3)
R e

which depends only upon the noise at the N inputs.
=2mivty &
The filtering defined by Ke S (v) is nothing more than the

matched filter for the signal S(t) in noise having a uniform density. It is common
to all N channels of the system. If we refer to Fig. III-1 we will see that, in the

4Hereafter, except for a homogeneity factor, the expression "complex gain"
is understood.
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case of identical signals, it is reduced to Fig. V-1, in which the filtering of the
signal is accomplished after summing the filtered output of each channel < (v)

| PROPER ANTENNA FILTERING |

l I

i (v) '
15 %) Fi |8, (t) B(t)

i | |

|

I

|
t
E2 o_{;irgﬂ_. p2(v) ‘ Ke-2nivto . S¥(v) ’2:
P
| |
b b anass s :ogw o(t)
|
S¢t)
N OB (E) py(v) : (FILTERING DEPENDENT
| | ON SIGNAL ONLY)
|
K e R T J

(FILTERING DEPENDENT ON NOISE ONLY)
Fig. V-1. Identical Signals — Arbitrary Noise Inputs

Let us consider, for the moment, the special case where the N noise inputs are
uncorrelated (see Eq. IV-2) . Equation (V-2) becomes

=2mivty S*(v)
hy (v) = Ke & e oo (V-4)
and Eq. (V-3) becomes
Py (v) = 6‘£T“7 '
Kk v (V=5)

If, moreover, the N spectral densities are identical to C(v), all the pk(v)
are identical to C—-l(ﬂ- . Figure V-1 becomes Fig. V-1(a) in which all filtering

processes are reduced to a single filter Ke-2 mivty 8 i (v) placed

3 v
after the direct summation of the inputs. This single filtering process is, moreover,
the matched filter for an arbitrary input.
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S{t)
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By (t)

Fig. V-1(a). Identical Signals — Uncorrelated Noise Inputs
Having the Same Spectral Density

The preceding line of reasoning presents all the necessary conditions in order
that the direct summation of antenna elements may be interposed in the matched
filtering process (see Chapter I). As attractive as the replacement of N filters
by a single one may be, it is well to realize that an optimal process may be realized
in this way only under the following conditions:

For identical signals, with uncorrelated noise inputs having the same

spectral density, the matched filtering process is reduced to direct summation of

inputs followed by the matched filtering for an arbitrary input signal.

V-3. Proper Filtering of an Antenna and Its Gain. First Characteristic Property

We will now define the important concept of proper antenna filtering. Let us

recall the general Eqs. (V-2) and (V-3) , referring to identical signals and
arbitrary noise (Fig. V-1). The ensemble of filters P (v) and the subsequent

summation will be called the proper filtering for the system having N inputs in

the presence of noises B, (t), By (t), .... By (t)

The letter P designates the output of the proper filtering process where the
signal will be Op(t) > op( v) and where the noise will be & (t)
The numerator of Py (v) in Eq. (V=3) is the sum of the cofactors of the terms of

the kth column of the determinant A(v) . In other words, it is a determinant
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obtained by starting with A (v) and replacing the terms of the kth column by ones.

Proper filtering has been defined from the concept of identical signals, that is,
by a single unique signal applied to all elements of the antenna. For such a unique
signal, it is equivalent to a linear filter whose system function (complex gain) is
> pk(\)) since the spectrum of the signal at P is S(v) .Y, pk(v) -

k

k
The system function Gp( v) of the proper filtering process will be defined as

Gp(v) =Z pk(v) = z]: Eijk(vy . (V-6)
s A(v)

k

This is the spectrum of the response obtained at point P when the same unit impulse
5(t) (Dirac delta function), whose spectrum S(v) = 1, is applied at the inputs.

The ratio P, (optimum signal-to-noise ratio) at the output becomes, in the
case of identical signals (see Eq. (1I1-39)),

s’ Y X
°m=/ 5 3) j K Relis Sind

or

©
I

- f IS(\»)I2 G (v) dv . (V-7 a)

The density D(v) defined by (III-40) becomes in this case

D(v) = |S(w)] 6, (v) (V-8)

and as a result Gp(\)) is a real, non-negative function that is even in v

Thus, the proper gain of an antenna is real and non-negative; that is,an arbitrary
spectral component of the input signal appears at point P (Fig. V-1) multiplied by a
real, positive number and therefore is not changed in phase.

The matrix notation of Paragraph II-7 is modified because column matrix S
may be replaced by | 3(v) | a, where o is the column matrix whose N elements

are equal to 1. Equation (ITI-46) becomes

-2nivty % |
h = Ke v S C a
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Equation (III-50) (spectral density at Z ) becomes

i 2 2 ~ E]
Yz,(v) = h Ch =K [SC)| faC"a, (V-10)
from which we get

D(v) = [lS(v),z] & s (V-11)

and

vl et o - (V-12)
p

The spectrum of the signal at output P is obviously Gp(v) S(v) = cp(v) .

but at the output Z , this spectrum is (see Eq. (III-54))
[S(v)] & h ,

=2nivt o
[Ke OIS(v)IZ]a C-la . (V-13)

o(v)

or

a(v)

and, of course, Eq. (III-53) remains valid in the form

Yzo(v)

: e = N (V-14
e e o D) = el 8 e )

Ke

The concept of proper filtering and especially of antenna gain Gp( v) effectively

expresses the properties of the ensemble of N noises at the n inputs. This is a re-

sult of Eq. (V-12) . The spectral density of the noise at the output is given by (V-10) ,

which from (V-12) may be written

2 2
vp, (V) = K IS e (v) (V-15)
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Now, this density is the product of the spectral density at P or Yp, £y
with the square of the magnitude of filtering gain, with the filter placed between P

and E (Fig. V-1). It may be seen that

Ypo(v) = Gp(v) . (V-16)

Thus, the system function (complex gain) of proper filtering is equal to the

spectral density of the noise at the output of that filtering. (See the note of Paragraph

V-2.) This property is nothing more than the characteristic rule of matched filtering
(Paragraph II-7) applied to proper filtering.

This is the same as saying that everything takes place as if the antenna were

equivalent to a single input at which the noise has a spectral density of

T & A(v) (V=-17)

RCv) =
G (v) ’
p ZJ: E{ MJ..K(\))

the gain of the antenna being Gp (v) » and the input signal, S(t). The matched
filtering of such a system (see Eq. (II-3)) is then comprised of

Ke S (v) Gp(v) s

that is, precisely as in Fig. V-1,where the antenna was replaced by a single filter with
a gain Gp (v). The preceding property may also be expressed as follows:

Proper filtering is such that the spectral density of the noise at the output is

equal to the amplitude spectrum of the impulse response (signal S(t) at all N

inputs), which is nothing more than the system function. We are dealing here

with an intrinsic property of the antenna in the presence of N given noise inputs.

V-4. Review of the Known Properties of the Correlation Matrix

1

Since proper filtering of a system is independent of the signal considered, its
study is reduced to the study of A(v) and its cofactors and, more generally, of the
N statistically related noise inputs. Hence, for the remainder of the chapter, we
will depart somewhat from the viewpoint of optimal signal detection - to which we will
return in the following chapters - in order to review the mathematical properties of
4(v) yand we will relate them, by their physical interpretation, to the properties of

N statistically related noises.
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Let us first recall that each term of the determinant A(v) isa C. ()
having Hermitian symmetry with respect to v and with respect to its ﬁldiccs, ac-
cording to Eqs. (ITI-5) and III-6):

Cjk(v) = Cjk(—v) 5 (TTT-5)
o (v) (I111-6)
Cjk(v) = ij Y ( -

.

As a result, the determinant A (y) itself, being a polynomial in Cix of degree 1,

has Hermitian symmetry with respect to v:

alv) = A*(—\)) .

Furthermore, thanks to Eq. (I111-6), reflection about its principal diagonal leaves

A (v) unchanged and equal to its complex conjugate. Thus,

L TR (V-19)

As a result, A(v) is real and an even function of v. We know that it is also non-

negative, as are the eigenvalues of the matrix C.

In the following discussion, it is intended to define exactly how this property ex-
presses an obvious physical fact; namely, the sum of arbitrary filtering of the NI
noise inputs under consideration is itself a noise and by virtue of this fact possesses a

necessarily non-negative spectral density.

Equation (1I1I1-18),

PB =Z Z ff P.}J.(u) Rk(v) C,)‘k (u-v) du dv , Gl E=1.8.)
] K

gives the noise power of the sum of the arbitrary filtering it (E2s RalGds wons Rulll
of the N noise inputs B, (t), B,(t), ... “'J(t) (multiple filtering).
1

This relation may be written in spectral form. Let us first put it in the form
> = R 2 ~ = ; tu
Py i / 5 (u) [/I‘;{(V) u'”{(x v) iv] ‘

J Kk
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The bracketed term is the convolution of R k( t) with C, L(( t). Its Fourier
o =
transform is then R, (v) C Tk (v), and it may be written

/Rk<\’) Cjk(v) gr AU g '

PB = 2 Z Rk(\’) Cjk(v) (Rj(u) egﬁvu)du dv
ik
u v

or

*
In the last expression, integration in u results in Rj (v), and we have finally

P, = [ [Z T Ry R Cyp(v) ]dv . (V-20)
Tk

We would also have been able to obtain Eq. (V-20) from the autocorrelation of
the sum of the filtering processes, that is, by g-neralizing to !/ noise inputs Egs.
(ITI-9) and(I1I-10), which were established for two noise inputs.

Thus, it would appear, according to (V-20) , that the spectral density of the
multiple filter output is

v, (v) =X X R;(v) R lv) Coplvl = R'CR , (V-21)
R

that is, the Hermitian form of the correlation matrix C . It is non-negative for any
multiple filtering R (positive definite matrix). Let us recall that, in a linear trans-
formation which diagonalizes the matrix C, the expression of the Hermitian form
becomes
e o Vo 9y
vy (V) =y X'}.(v) lxj(v)[ - (V-22)
J
where the ».(v) are the eigenvalues of matrix ¢ — real eigenvalues since © is

)

Hermitian — and where the X (v)  correspond to the K j (v) in the transformation

(reference (14), Chapter III).

The matrix notation for (V-22) is

1
4
4
e




where X is the column matrix of X 3 (v) and where ) (without indices) is the

diagonal matrix of eigenvalues.

Equation (V-23) is true for any arbitrary x j (v) (resulting from any arbi-

trary R 3 (v) . Thus, it is evident that

Ap(v) 20 forany  j and v . (v-24)

The eigenvalues of the matrix are non-negative. Their product is non-negative,

Be) =0 (v-25)

all these properties being consequences of the fact that Yy (v) >0 for an arbi-
trary multiple filtering process.

Any cofactor ij (v) plays the same role as A(v) for N-1 noises among

the N noises considered. Hence

ij(v) o) (V-26)

More generally, every minor of A(v) obtained by suppressing a certain number
of lines and columns of the same rank, is non-negative. If the minor is of order two
we get Eq. (III-13).

To finish this review, note that

¥
Mjk(v) = Mki(v) (v=27)

«

because of the Hermitian symmetry of 4(v). Thus, the sum of all M K (v) is
real.

We have seen that the gain for proper f(iltering defined by (V-6),
M v)
Jk

Gp(v) =5 3 ~itey 8 (V<6)
k

is, according to (V-8), real, evenin v , and non-negative. Since this is also

the case for A(v), we have

D T .”4“((\)) , Wwhich is real, non-negative (V-28),
e Cillh

and even in v




V-5. Second Characteristic Property of Proper Filtering

Let us make a final observation concerning the physical interpretation of the
equation defining proper filtering, which may be written (from (V-9))

CP = a , (V-29)
which summarizes N equations of the form

CaPy + CyaPot wevn. Cyy Py = 1

JH R : (V-30)
for § =1, 2, ... N.

JZ

An arbitrary term of the sum (V-30) is in the form
*
CjkPK 5 or o CjkPK :

where ¢(v) designates the system function of a filter of gain 1 over the whole spec-
trum. It may be seen by analogy with Eq. (ITI-10) that Cjk P (a function of v)
is the crosscorrelation spectrum - of two noises, the first resulting from the filtering
of Bj (t) by ¢(v) (thatis, unfiltered Bj (t)) and the second resulting from

the filtering of Bk(t) by Pk(v) -

(t)

The sum of (V-30) represents, therefore, the crosscorrelation of B

J

with the sum of
B,(t) filtered by P,(v) ,

B,(t) filtered by P,(v), ete, ... ,

in other words, the crosscorrelation of B(t) with the output of the proper filter,

Thus, Eq. (V-29) expresses the fact that the crosscorrelation spectrum of any
one of the noise inputs B 3 (t) with the output of the filter is equal to 1, or rather to
0 where Q represents a homogeneity factor. The corresponding crosscorrelation

function is thus in the form Q §( 1)

Hence, proper filtering is characterized by the following property: it is a multiple

filtering process such that the crosscorrelation between any one input and the output is

the same and is zero for all t except © = 0. This is a "microscopic'" cross-

correlation.

=
Y That is, as we will recall, the Fourier transform of the crosscorrelation function.




In the special case of a single input, the proper filter has a gain proportional to

S5y = P, (v-31)

where y(v) is the spectral density of the input noise (see Eq. (IV-1)).
The crosscorrelation spectrum of noise between input and output is that of B(t) un-

filtered with B(t) filtered by p(v),
or according to (ITI-10), [l] [v(v)] [p(v)] = 1. (v-32).

The corresponding crosscorrelation function is thus equal to §(t) except for

St e M 5 2 i L s

a homogeneity factor.




CHAPTER VI

NARROW-BAND APPROXIMATION - VARIATION OF PROPER FILTERING (NPF)

Summary

This chapter describes applications and develops the realization of matched
filters. We will be limited here to the important and practical case of narrow-band
signals. It will be assumed that in the frequency band of interest, properties of noise

are independent of frequency. The useful gain of a linear filter is reduced to a

complex number that represents a '"phase shift'" accompanied by a "weighting'' of
amplitude; these operations are always realizable in the sense of Network Theory,
provided that the weighting remains bounded, that is, provided that the gains remain
finite.

Thus, the narrow-band approximation offers new possibilities of normalization
since the parameters that depend upon the spectral properties of the noise are
reduced to constants. These possibilities permit us to avoid a previously described
difficulty (Paragraph IV-5): for broad bands, the gains of the filters are not finite
(constant K being chosen) if the correlation matrix becomes singular, that is, in the
limiting case where the signal-to-noise ratio might be "infinite." For a narrow
band, the same difficulty may occur, but it is avoidable to some degree by using a :
convenient normalization. Thus, we are led to define the variations of proper :
filtering which perform in the same way for all ordinary cases but offer additional,
useful behavior in the limiting cases. These variations are characterized by the
disappearance, in the expression for filter gains, of the determinant (v )
of the correlation matrix.

It is found, moreover, that this disappearance provides an economic advantage.

The technology of proper filters, as will be outlined in Chapter IX, consists, in fact,
of constructing the C i and then the ', [ the latter being polynomials of degree

(N=1) in C, . But 4 is, itself, of degree !l

we reduce the technological difficulty by one degree.

By avoiding the construction of &,

Here, consequently, are the points which are to be considered. Calling the
previously defined proper filtering simple proper filtering (SPTF), let us consider
a variation of it, normalized proper filtering (NPF), which has the following

properties:




a. It is always defined, even when the correlation matrix becomes singular,
unlike SPF.

b. In this latter case it may act in two ways:
- in the case of eliminable noise, the noise is cancelled

at the output without losing the signal.

- in the case of cutoff, all the filter gains go to zero
simultaneously.

c. A special case of eliminable noise is that in which the noise goes to zero at a
single input; all channels cut off except the single input.

d. These cases are physical limits. The inevitable presence of thermal noise

prevents their strict realization.

e. Similarly, it will be established, in the case of NPF, that no change occurs

if the same uncorrelated noise is superimposed upon the initial noise at each input.

VI-1. Narrow-Band Hypothesis. Physical Meaning of the CJ. (Vo) and of the
Matrix Notation

We have seen that the hypothesis of identical signals does not, strictly speaking,
constitute a restriction on the general study of matched filtering, with which we will
be concerned from now on. On the other hand, we will for the moment consider a
special case where the spectral band of interest, obviously containing the signalG,
is such that the statistical properties of the noise (spectral density and cross-
correlation spectrum) can be considered as being independent of f requency. Although,
strictly speaking, such a hypothesis may be made in a band that is arbitrarily large,
it is clear that, in practice, the best chance of realizing the hypothesis lies in the use
of narrow bands. Thus, it (the hypothesis) is very desirable in the practical cases of
radar or sonar signals, which are in principle narrow band - that is, of a bandwidth

that is small compared with the center frequency.
Let us assume that we are dealing with signals lying in a narrow band centered at

vo. That is, to a first approximation, only the statistical properties of noise at

GOr, more precisely, the quasi-total of the signal energy, since a signal of finite
duration has no spectral limits.




the frequency v, will enter into the problem; in other words, we are interested only
in the values ¢ 1k (vo). The matched filtering is thus composed of the filters

Py (vo) distributed over the N inputs (Fig. V-1), then the summation of these N
filter outputs, followed by the filter S¥*(v). This last filtering, narrow band by

hypothesis, assures to some extent the exclusiveness of the frequency Vo

between the input and output of the system. The filters pk( vo) must be interpreted
in the following way: sinusoidal signal, with frequency v, unit amplitude, and
zero phase, denoted by o« (t), applied at input E, > comes out with amplitude

|pk(v0) | and phase Arg p, (vo) . Likewise, the proper gain G_(vo) of the
system represents the amplitude and phase of the response at P for the same
unitary signal o(t) applied at the N inputs. Describing all the transformations
by the modulus and phase obtained under the above condition, all equations previously
written and, in particular, the matrix equations remain valid when the functions of
v are replaced by their values at v = vo. For example, the unitary signal
a(t) applied at the N inputs may be described by the same column matrix o
(all elements = 1) that previously represented the spectrum of 6 (t). We may
write then

Gp(vo) = ap ,

where p is the column matrix of the p, (vo). We will thus be able to examine
what the preceding formalism becomes in terms of the narrow-band approximation

and to deduce from it, should the occasion arise, its special properties.

At this point, we have no need to isolate the narrow band by means of filters
since S¥(v) itself takes that responsibility. On the other hand, the "filters"
Py (v) may always be realized since they consist only of a ""phase shifter'" and an

"amplifier", that is, very simple electronic circuits (provided, however, that

1P Cvo) | i bounded). 1
Nevertheless, if we had to construct the ¢ 'k (vy) themselves, we would need ?
to filter, or rather prefilter, the !l inputs with narrow-band filters ¢ centered at v 05 a

which are identical and have a gain of unity in the narrow band and zero gain elsewhere.

If the B, (t) were put into these filters ¢, the outputs would be narrow-band

J

noise b i (t). We have seen in Paragraph III-2 that the complex number © i {vig)
is the "s’pcctral line" in the crosscorrelation of b . (t) with ! I (t). Infact, the
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narrower the filters ¢, the closer the crosscorrelation function is to a sinusoidal
function of t with frequency v,. This function has a phase and an amplitude
specified exactly by Cjk (vo)(see Eq. IIT-11). Thus, technically, it is the cross-
correlation of bj (t) and bk(t ) which CJ. k( vo) will represent, and this same
complex number defines the crosscorrelation function and the "crosscorrelation

spectrum."

Since this crosscorrelation may be constructed only with nonlinear operations
(products) produced by interactions between spectral bands, preliminary isolation
(of bands) by prefiltering is indispensable. We will return to this point when it is

required to consider the C 1K (vg) in order to construct the Py (vy) (see Chapter IX).

o

VI-2. Normalized Proper Filtering - Technical Advantages

Multiple filtering (in the sense which we have outlined) which defines proper filtering

of the system (see Fig. V-1), is given on the basis of Eq. (V-3):

pk(\)o) = E M_H((\)Oy % (VI=1)
s A(Vo)

NARROW-3AND SIGNAL
WITH CENTER FREQUENCY Y

R e ol Sl e it e ) STl
| NORMALIZED PROPER
| FILTERING (NPF) I
: L TR SECR— |
B,(t) |
I SIGNAL = S(v)rp | SIGNAL:
| P = 13 = ZZf'.jk i a(v) = IS(\))l')F 5
| ‘ = aMa | o(t_ )= T E
Yy | o p s
Bt ) ——l— SUM . 14 s#(v) — )
| . !
: NOISE: " l NOTSE:
I s Ml (2] atta ll DENSITY = y|S(v) |
| I POWER = yE_
‘N™ B (t) ! I ET
I l I Orv = __—E
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Fig. VI-1. Normalized Matched Filtering
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The proper gain of the system (see Eq. (V-6)) becomes

Gp(\)o) = ZZ .'/Tjk(\)o/ . (VI=2)
J k A(\)o)

We have seen (Egqs. (V-8) and(V-28) )that Gp( vo) is real and non-negative,
its numerator and its denominator each being real and non-negative. The optimum

signal -to-noise ratio is (Eq. (V-7.2a))
oy = Gplvo) . Eg (VI-3)

where ES denotes the signal energy at an arbitrary input. We know that the

filters in a matched filtering process are definable except for a constant real
factor. This property applies here also. Thus, the filters Dy (the notation v

will be understood) of i£q.(VI-1) all contain a common factor % : This factor

depends upon the properties of the noise. However, in all cases where & is not
may be replaced by the filters

L 3 Z P = (VI-4)

Henceforth, we will distinguish between simple proper filtering (SPF), defined
by Eqs. (VI-1) and (VI-2), and normalized proper filtering (NPF), defined
by Eq. (VI-4), to which corresponds a normalized proper gain,

B LZ "k =Z“k ) (VI-5)
¥in K

which is real and non-negative.

zero, the p K

It is understood that these limitations apply only in the case of the "narrow-band"
approximation. The performance of the NPF remains the same as that of the SPF

and, following Eq. (VI-3), depends in particular upon 4 :

1 Bs x . (VI=6)
Now we must determine the way in which the NPF, as defined by Eq. (VI=4)
behaves when 4 = 0,  This will be the objective of Paragraph VI-5.

()
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It may be noted that the NPF presents an interesting technological advantage;

although o~ always depends upon 4, the filters ( L% ) themselves do not
depend upon it. Thus (see Chapter IX), A is a polynomial of order N in terms of
the Cj K whereas the ™, are only of order N-1. Computations which involve
taking the product of complex numbers and which lead to the "fabrication' of the

T have a lower degree of difficulty than those required for the computation of 4.

VI-3. Invariance of the NPF in the Presence of the Same Noise Superimposed on
Each of the B,j ¢t

A property common to both SPF and NPF is the fact that the phase of the signals
(narrow band) at the output of the summation of the N channels is unchanged. This
is tied in with the fact that I‘p and Gp are real and non-negative.

A second special property of NPF is connected with the structure of the 7,
Equation (VI-4) shows that T is the sum of the cofactors of a given column,
i.e., a determinant of order N formed from A by replacing the elements of the

column by ones.

It is easily verified that if the same constant a is added to each of the

= column, the value

elements of such a determinant other than those of the kt
of the determinant, and hence that of T s i8 not changed. The physical inter-

pretation of this property is as follows.

An NPF is unchanged in the presence of a stationary supplementary noise that
is identical at all inputs, not correlated with the B]. (t) , and superimposed upon
them. Let us assume, in fact, that the same noise n(t) is added to all the Bj (t)

The crosscorrelation functions C].k(r) become

- F (VI-7
Ny (1) = E 3 [Bj(t) + n(t)] [Bk(t+r) " n(t+1)] E ) )

which is, because of the lack of correlation between 1 (t) and the other noise,

NJk(T) = CJK(T) + Cn(T) 2

where Cn (1) is the autocorrelation of n(t).
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Hence, the Fourier transform is

NJk(v) = ch(v) + Cn(v) s (Vi-8)

which is, for a narrow band,

N,jk(vo)= Cjk(\)o) + Cn(\)o) % (VI-9)

Thus, all the Cjk(vo ) are increased by the same amount a = Cn(vo ¥,
which is, moreover, the spectral density of n(t) at v = vg. This modification
leaves the value of T unchanged; hence the NPF is unchanged, as we have already

seen. It is evident, however, that the performance (ratio om) _is affected.

Equation (VI-6) shows, in fact,that if Fp is unchanged (Eq. (VI-5)), & -
itself is altered; it may be shown that it increases, becoming ]
A+ T
= 'p

and that, consequently, as would be expected, the signal-to-noise ratio decreases.

It may be said that everything capable of constructing the 7, from the C

k jk
will be, a priori, unaffected by a noise n(t) at the inputs.
An analogous reasoning allows us, with the same result, to replace the noise n(t)
by a sinusoidal signal of "infinite" duration and frequency lying in the narrow-band
of interest. We concede that under quasi-stationary conditions (see Paragraph IX-2)

with a long, real signal, it may be assumed that the = are not altered by the

k
presence of the signal at the inputs.

VI-4. Matrix Notation for NPF

The matrix notation for SPF and NPF is derived from the equations of Paragraph V-3
and from the definition of the column matrix n for NPF.

n= [A] P - (VI-10)
For SPF the notation is that of Paragraph V-3 , and only the interpretation of the i

functions of v  which appear in it is changed, following the convention of Paragraph VI-1.
For NPF, using Eq. (V-3) , the following may be derived:

T = [A] o (VI=11)
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Let M be the adjoint matrix of C (the matrix of cofactors) defined by

M = [4] g7t . (VI-12)

5>

then,
= e . (VI-13)

The gain of the NPF may be written (see Paragraph V1-1 )

P = dnr (BT )
D

that is,

rp=&b71a= [A];C a=[A]&p, (VI-15)

These equations must be compared with Eq. (VI-5) in order to be defined. The
spectral density at the output of the NPF is

per Gao= Lol w e = Ea) o ¥ a,  (VI<16)

or

y= AT . (VE=163)

Having replaced an SPF by an NPF, let us complete the system by adding a
filter S*(Vv) in series with the summation of the ) channels. If the narrow-band
signal 5(v) is applied at the input, the spectrum of the signal after summation of
the N channels is Fp S(v). At the output Z (see Fig. VI-1) it is Fp I S(v)|?.

Its value (maximum) at time to = 0 is 1"b ECS . The noise density, which has

) 2
avalue y atpoint P, becomes equal to Y|S(v)|” at E , and its power becomes

YES .

Figure VI-1 summarizes the properties of an NPF followed by a filter ¥ ()
(normalized matched filtering).
VI-5. Limiting Behavior of the NPF-Eliminable Noise and Cutoff

The NPF has been defined, starting with the SPF, for » # 0. Let us assume
it to be realized in terms of the ¢, in accordance with Eq. (VI-4) . The values

] I
J




of L and of T D are well defined and remain defined if 2 goes to zero7. Then

what is the performance of the NPF under these circumstances? We have already
stressed the characteristics of the "'physical limitations" of the hypothesis 2 = 0.

1 We will treat it here, however, in a formal way, in order to justify the use of the NPF.

In fact, note that, in this case, the filters p, (Eq. (VI-1) are not realizable

since they are not defined. This is then a particularly regrettable case of failure of
the SPF (see the end of Paragraph IV-6) since it corresponds to an "infinite" signal-
to-noise ratio (Eq. (VI-6)). On the other hand, the NPF is realizable and can
yield this "infinite'" S/N ratio provided that i Z 0.

Such performance may be obtained - T

signal remaining bounded only by nulling the noise (while the SPF produces an infinite

remaining bounded and hence the output

signal since the p, are unbounded). This is clear from Eq. (VI-16) where Y

is nulled when 4 = 0, the matrix ) and the Cjk themselves remaining bounded.
Thus, the performance of the NPF is better than that of the SPF in the case where
A = 0; it is defined and hence it provides the limiting performance of matched

filtering by nulling the noise at its output.

This performance exists, in fact, only if I, itself does not simultaneously
go to zero, that is, if the system does not "cut off", nulling both the noise and the

signal. This would be the case in particular if the matrix C were of rank <N-2.

All the cofactors i-I]. would then go to zero, as would 3B

k
Thus, the "limiting performance' of an NPF system is possible only if the
matrix C is of rank N-1 .

N

If the matrix C is of rank N-1, it may be shown that I can be zero only if » =

An NPF, then, has two possible modes of behaviors:

a. The case of eliminable interference characterized by 4 = 0 and © # 0. . |
The noise is nulled and the signal is not. ‘

b. The case of cutoff, characterizedby I' = 0 (hence 4 = 0). The

multiple filter lets nothing pass, by letting its gain go to zero. It may be shown that

7Thc word ""becomes'" contradicts "stationary." Let us assume a very slow change in
the noise, and hence of the C . allowing time for adjustments in the value of the = -

and concede that in this case a situation exists where » =




such a case occurs only by simultaneous nulling of all the Thes that is, simultaneous
cutoff on all channels. Returning to the case where the matrix C is of order N-2,

it is obviously still a case of cutoff.
VI-6. Limiting Case of a Zero Noise at One Input

The case in which one of the noise inputs is found to be zero is a special case of
systems with eliminable interference. It is obviously a limiting case and merely a
formal one, since in such a case it is evident that one need only use that single input
at which the noise is zero. If, however, one of the noises '"becomes' zero (see note
of Paragraph (VI-5)), let us verify that the NPF immediately makes use of that fact.

In fact, if Bk(t) is the noise that goes to zero, all C(’k go to zero for all j.

The matrix C, provided with a column and a line of zeros, is reduced to rank !l-1.
The representation of the n 3 in the form of determinants taken from & (by replacing
the jth column by ones) shows that all of them go to zero except Jos which becomes

equal to M K (real, non-negative) and also, in this case, equal to I' . Thus, the

only channgl that remains open is the one in which the noise is zero, which obviously
results in zero output noise. Note, in passing, that the occurrence of two input noises
Bj (t) , being zero,is a case of cutoff, all the "y then being zero. The matrix C,
moreover, is of rank [I-2. Although this is of a particularly formal case, we see
here an example where the NPF fails because of an excess, so to speak, of good noise
behavior. It is clear that we may get an output, in the case of cutoff, only by trying
systems having fewer than | inputs. (See Paragraph VII-7 on the optimal use

of an antenna.)
VI-7. Influence of Independent Noises Superimposed on the N Inputs.

We have just considered some limiting cases of "eliminable interference" and
""cutoif, "' all of which involve the reduction of the rank of the matrix © . Now, let
us demonstrate that the presence of unavoidable thermal noise at the inputs is sufficient,

in practice, to exclude these limiting cases.

Thermal noise appears as noise inputs 1. (t) produced in the input amplifiers or
in the receiving elements themselves, superimposed upon the ., (¢ ), which may be

considered "external" interference noise.
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The noises nJ, (t) are characterized by

a. non-zero densities,

b. no mutual correlation, and

c. no correlation between themselves and the BJ. (£},
In this case, the matrix C' of such a system is

Cix = Cypo for j # k ,

that is,

(VI-17)

calling d the diagonal matrix made up of the spectral densities of the noises n (e ).
This matrix d is i

a. of rank N since no dj is zero, and

b. Hermitian since it is diagonal and real.

Let us assume that the rank of C' is less than N ; this means that there exists
a non-zero column matrix (all uJ. are non-zero) such that

which results in
utcru = 0 - (VI-18)
taking into account Eq. (VI-17) , Eq. (VI-18) may be written

u+Cu+u+du= Q . (VI-19)

The two bilinear terms of (VI-19), being non-negative, must each go to zero
separately. The column matrix u would then have to satisfy the following:

+ 2
U du = a4, =
Z. ol Ay =0 ,
3

which is impossible since all dj are # ( and all the u ; cannot go to zero.

3
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Thus the matrix C' cannot be of a rank less than . It is clear that this

property is not limited to the narrow-band case.

More generally, it may be said that, if some portion of the interference noise

uncorrelated throughout the 11 inputs, the limiting cases will not occur.
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CHAPTER VII

TWO-INPUT CASE - COHERENT NOISE

Summary

The case of two inputs is treated here in a detailed manner, including some numer-

ical calculations. The effectiveness of an NPF with two inputs is compared with the
"direct sum." The theoretical gain procured from the NPF is calculated as a function 3
of two parameters: ‘

a. the ratio of the two input powers,and

b. the complex correlation coefficient € (amplitude and phase of the nor-

malized correlation function).

This gain is represented by a diagram which gives the curves for level as a function
of the position of 6 in the complex plane. Naturally, it is always greater than 1 and

is "infinite'" in the case of eliminable noise.

Two limiting cases are settled, one by an equality of performance, the other, the
case of cutoff, by an exceptional inferiority of the NPF compared with the direct sum.

The latter case yields the same result as a single input.

"Coherent noise'" is eliminable from the inputs, and the mechanism for its elimi-

nation is considered.
VII-1. General Equations

Let us anply the preceding results to a system with two inputs. The four matrix
elements C Ik are C;; and C,,, spectral densities of the two noise inputs

at v = vy
and Cio = C¥, , which represents the crosscorrelation of the
two noises at v = vg.

Let us recall the relation
2

2l < Cy1 Caz,

Cy

which expresses the fact that 4 of matrix C is non-negative. NPF is defined by
(VI=4).
gt Il - S (VII-1)
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Note that if the spectral densities are equal the two filtering processes are com-

plex conjugates. Let us not consider here the case where one of noises is zero, a

case which comes under general consideration in Paragraph VI-7. We have
By = #omy 5 Cyy ok Qg o Sng = Kp e (VIT-2)

Note that T o is nothing more than the spectral density (at v = vg) of the

difference between the two noises (see Fig. IX-6). In fact, the crosscorrelation of

that difference is, by definition,

: 3 [B166) - Boced ] [ Bacewn) = By (640) ] % :

or

Cyy (1) = Cya(1) = Coy1(1) + Cpa(1)
whose Fourier transform, according to (VII-2), is equal to Fp(v ik
VII-2. Eliminable Interference and Cutoff.

Let
Ci1 = 4 qu Crz »
Cyg
Ciy Cap » real, positive q = —_— (VII=3)
C22

Cip = © "c“ €2z 4 |8) =1 (Bg. (III-13)

Q|

Thus o is a complex number that represents the amplitude and phase of the nor-

malized correlation function for two noise inputs (or degree of complex correlation).

The matrix C and the preceding quantities may be written

= q 0
J 11 C22
* (VIT=4)

0 >
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2
A =2Cy; Cpp (1-]0] )
1
Iy ™ 24011 Ca2 [g (CH%) = R [O]]
JC—”—C—ZZ—(%_O) (VII-5)
*
®zz = Jcll Cr, (g-0 )

Setting aside the case where one of the two densities is zero, systems with elim-

L5

inable interference are defined by

le|] = 1
% (q+%) T (VII-6)
where R designates the real part.
We always have % (q+é—) > 1 forany q. (VII-T)
Since |0| = 1 in order that the inequality (VII-0) be realized, it is necessary

that © # 1, thatis, that o have a non-zero argument.

In more technical terms, let us say that, if two noises are '"totally correlated"
(le|=1) without their "average phases'' being equal (06#1), we have a system
with eliminable interference.
Thus, conditions for cutoff of the system require, according to the preceding re-
marks, that 0 = 1 and as a result
il et .
o3 (q+a) =1 )

hence, q = 1 ,

Summarizing, we have 2
: ik (VII-8)
q =1,
Thus, the case of cutoff may occur only for noises having equal spectral densities

at vo (gq=1),

Moreover, the condition o = 1 itself reduces Eq. (VII-5) to




& = 0, or rather Cjpo = C2) =4JC11 C22

2
. ( JCU - chz )
] (VII-9)

=y
"

L

SR vl (TR oo I

If, besides, the two densities are equal, the system cuts off by simultaneously
nulling (15 e I R 1 | Fp , as shown by Paragraph VI-6 .

Thus, in order for a two-input NPF to cut off, it is required that

a. the spectral densities (and consequently, the powers) be equal and

b. the "average phases'" be equal, that is, that

Ciz2 = C21 = J €11 C22 = C33 = C32 & (VII-10)

Let us return to the general case. The signal-to-noise ratio is (see Eq. (VI-6))

r C11%C22-C12-Cy,
i Y = ) WiT=i11
°m A Es S ( )

4 2
Cr1 Co2=1Cy2o|

It is "infinite'" for systems with eliminable interference and indeterminate in the case
of cutoff.

Finally, if the two noises are uncorrelated, C;, = C,; = 0 and we have

71 = Cas
%z = €1,
Fp = Cll + C22
. (VII-12)
Ci11+Cy,
p_ = .
m Ci11 C22 .

VII-3. Advantages of Matched Filtering Over the Direct Sum
We may represent the "benefits'" derived from matched filtering in the following
way:
The two inputs Iil and . may be considered to be receiving clements of an
antenna. Assume that the signal, identical at the two elements, is carried by a plane
-

wave whose wave front is parallel to the straight line By B, The process of
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"direction summation" is most commonly used to enhance the signal-to-noise ratio,
which means that proper antenna filtering is replaced by a simple sum (Fig. VII-1).

The signal, upon summation, has for an amplitude spectrum 2 S(v). Subse-
quently received by the filter S*(v), it yields an output signal 2 |S(v) [ .

whose value at time t, = 0 is

2
2f|S(v)| dv = 2 E_

and whose instantaneous power at that time is MES .

Bl(t)

| SIGNAL S*(v) | Z

‘ S(t)

Fig. VII-1. Direct Summation

The spectral density of the noise at the point of summation is obviously

d =C11+C2?+C17+C.1l’

E (VII-13)

and the noise power at the output of the filter S¥(v) is

a f,:;(v){‘ dv = d };n .
. g 8 (VIT=14)
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The signal-to-noise ratio of the process is therefore

el 4
¥z 3 C11+C224C1,+4C,q Es - (VTE-15)

The improvement given by matched filtering (or NPF) over the "direct sum' is
expressed by
P (C114C22-C12-C21) (C11#Cy2+C 2+Cp )

B owm -t =
°z

¥ Cnilae=]Cye | (VII-16)

The word "improvement" is justified only if the ratio b > 1 in all cases except

for that of cutoff of the NPF. It is already clear that no improvement is gained (b=1)
when the two noises are independent and have the same spectral density (C;,=C, ;=0
and Cj;1=Cy,). We have seen, in fact, that in this case only, matched filtering
would be identical to direct summation (see Paragraph V-2).

Let us make it obvious that b g Taking Eq. (VITI-3) into account,

the ratio may be written
2

PR y
= - - |R(0

oo [2(Q+qﬂ : [Reo)] it (VIT-17)
1- [R(0)]" - [1(o)]

The denominator is always > 0, since |of< 1,
Since % (q+§)11 for any q, (VII-7)
we may let

2
2
[% (q+%{] =m +1 (VII-18)

with m real and positive.

Hence ,

mo+1 - [(R(e)]? m o+ [T(O)]?
b = =1+ S
1- [R(0)]? - [1(e)]? 1« [Rte3]° - [rte)}"

(VII<-19)
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which is a form from which it is obvious that b > 1. Uncorrelated noises (6=0)

with the same spectral density (m=0) correspond to the case b = 1 (zero
improvement). |
The case |©| = 1, which makes the denominator of b equal to zero and gives

an "infinite'" improvement, corresponds to the case of eliminable interference, as

we have alreay seen.
The improvement b remains undetermined in two cases. :

a. The first case:

m=20,6 =1, (VII-20)

which corresponds to the case of cutoff for an NPF. The signal-to-noise ratio for

direct summation, given by £Eq. (VII-15), may be written

bt YE_ N
5T 4 1
= (g+=) + R(0)
24011022 e qq)
2E 1 (VII-21)

e . 2
14+4m +R(0)
Jcll Co2

and is not zero in the case (VII-20). Thus, the indeterminacy is resolved as

a very striking inferiority of the NPF compared with direct summation. It may be
said that, with noise inputs having the same spectral densities and "in phase"
(e=0), the NPF cuts off while direct summation produces a signal-to-noise
E

ratio equal to S/ c. s which is identical to that produced with a single input and

Tl
a filter S¥(v). Thus, the direct sum does not contribute anything itself, but at
least it does not "spoil"' the result. Such a case is found, for example, when the
noise carried by a plane wave comes from the same direction as the signal and hence
is identical at the two inputs. In this case alone, and provided that such a noise input
is indeed the only interference — otherwise the NPF adjusts itself for the other
noise inputs, according to Paragraph VI-3 — the NPF cuts off. In practice, the
presence of independent thermal noise at the two inputs, combined with some of the

considerations of Paragraph VI-3, prevents cutoff, even if the condition 0 = 1

does not represent in itself the limit of a limiting condition (lo] = 1).
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b. The second, equally idealized, case where b is undetermined corresponds

to

m=0

8 = =1 (VII-22)

Here, the NPF behaves as in the case of eliminable interference and gives an
"infinite'" signal-to-noise ratio. It is found, however, that the direct sum does the
same thing since the two noise inputs are in phase opposition. Note that the two
filters ), and 7, are now real and identical (see Eq. (VII-5) with

q = 1 and o = 1) and, because of this fact, produce the sum precisely, except
for a multiplicative factor. Thus, the indeterminacy is resolved as an equality of

performance.
VII-4. A System of Graphs Representing the Gain of the NPF

Let us set aside the two extreme cases examined above. The improvement b ,
always greater than unity, may be represented for each value of m,by a surface
(Eq. (VII-19)) above the complex plane for ©. This surface is entirely contained
in the vertical cylinder of radius 1 and is tangent to it at infinity (the case of
eliminable interference). Furthermore, this surface is symmetric with respect to
the two planes I(e) = 0 and Arg 0 = % » and it is sufficient to

represent it within a 90 degree dihedron (in a single quadrant). It may be represented

there by level curves. Figure VII-2 shows, in four successive quarter planes, the
level curves of the surfaces for four values of m, that is, four values of the ratio

of the spectral densities Ci1 /C . These four values are
22
Cll c (
= o
/022 1 L0 log 11/C22 db
C11 ! " C1 - ( !
A LY 10 log 2 1.5 db |
Lot vy
11y e 2 10 log “11/, = 3 av
C22 ; C22
Ull/‘ = 2.9 10 log €1 ]/ S = 4.5 db
C22 : C22 .
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The greater the ratio C11 /C , the higher the '"base point" of the surface
22

2
(corresponding to o = 0, bg =1 +m ) and the more rapidly the

surface rises, as lo| increase, toward the "infinite'" values which correspond to

o] = 1.  The level curves are ellipses whose major axes lie along the real axis.
These ellipses tend toward circles when b becomes very large . We may say, then,

that regardless of the value of Cia /. the more "advantageous' of two values
22

of 0 having the same modulus is the least real one.

The critical zone corresponding to  m=0 and © = 1 has been crosshatched
in Fig. VII-2.

VII-5. Coherent Interference (Jamming) - Mechanism for its Elimination

We will call interference noise coherent if it is carried by a plane wave coming
from a direction other than that of the signal. This is the important and practical
case of a jammer or of a localized distant source. Two noise inputs
By (t) and B, (t)differ from each other only by a time delay.

We will generalize the definition of coherent interference a little and assume that

Bz(t) =t a Bl(t-u) 5

(VII-23)
where a is a real multiplicative factor and u is the time lag. It is then simple to
verify that

Gigith = B0 s evad) (VII-24)
and as a result,
. . 2 -2nivu
Ci2(v) = a Cyp(v) e . (VII-25)

Since we have, furthermore,

Caz(v) = a2 Cyilv) {(VII=26)

(4
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Fig. VII-2A. Graphical Representation of NPF Gain
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we may write, for frequency v = v,

Cra(vp) = e-2niv0u (CII(VO) « Cazlug) . (VII-2T)

The number 0 defined by Eq. (VII-3) is

0 = e~2mivou (VII-28)

Thus, we have the case |0| = 1 which gives a system with eliminable interference.

Hence, coherent interference is eliminable interference in a system with two inputs.

Figure VII-3 illustrates how the noise is eliminated. In fact, the two filtering

processes m) and 7w, are, except for the factor \, Ci1 Co»

(see Eq. (VII-5) ),

p e-21ri\)0u
{VII-29)

171—

'TT2= +

N Y

$ :
e 2771\)01.1

Each may be considered to be the sum of two filters in parallel. The term

-2nivgu : -
€ 0 represents a delay u, and its conjugate represents an 'Yadvance"

In the general sum of the four terms, noise inputs cancel each other in pairs, but two

opposing terms come from different inputs.

Likewise, it is easily seen how the case of cutoff may occur, when simultaneously
ai=

U=l

that is, when the two noise inputs are identical, or rather when the coherent interference

comes from the same direction as the signal.

The four terms of the noise destructively interfere in pairs on the same input.

Thus a two-input system may eliminate coherent interference provided that the
interference does not come from the same direction as the signal. It is clear, in fact,
that in this latter case, no spatial discrimination between signal and noise being possible,
one may do no better than when using a single input; direct summation itself results in

no improvement (Paragraph VII-3a)
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Fig. VII-3

VII-6. Return to a Remark Made in Chapter I - The Special Case of Coherent Interference

The reasoning illustrated by Fig. VII-3 does not necessarily use the '""narrow-band"
hypothesis; in fact, coherent interference is interference that is eliminable over a
broad band.

Figure VII-4 shows a simpler mecthod of effecting this cancellation in the case
where a = 1 . By conveniently delaying the noise at one input and taking a
difference, the noise is effectively cancelled without cancelling the signal, if the
signal comes from another direction. This simple case was brought up in Chapter 1

to suggest that direct summation is not always the best method.

i
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VII-7. Optimum Use of an Antenna

A few of the preceding remarks may be very quickly extended to the case of
3 inputs, permitting their generalization to N inputs. It is easy to verify, for
example, that ""coherent interference,' which is eliminable interference with two inputs,
results in cutoff with three or more inputs.8

8Each of the N noise inputs are derived from ua reference noise by (Eq. (VII-23))

bJ(t) s bo (L-uj) $

J

T R bl L0

LR TS DL TR

where C,(v) is the spectral density of b(t). After putting them in convenient form,
it may be proven that the determinant of matrix C is reduced to a determinant of order I,
all of whose elements are equal to 1. Thus the rank of the system is 1 in all cases.
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To eliminate a jammer, for example, assuming that it is the only interference,
a system of only two inputs would be required.

Thus with different N's , various possibilities are offered for eliminating
interference, but these possibilities depend upon the value of 1| .

On the other hand, the number of possibilities is greater for larger N
(number of solutions to A=0), It is indicated that, in order to derive
the most advantage from an antenna with 1 elements, several systems should
be used:

a. a system with two elements which are used directly,
b. a system of 3 elements which may include the two preceding elements, and
c. then, a system with 4, 5 ... N elements,
the last making use of the entire antenna. We have at our disposal, then, all
possibilities offered by the antenna from the point of view of ""eliminable interference."

For example, since coherent interference will be eliminable on a system with
two elements, it doesn't matter that it causes cutoff on the others. Other noise

configurations will be eliminable with 38 elements, etc.




CHAPTER VIII

MATCHED FILTERING AND DIRECTIVITY

Summary

After a review of the definition and physical meaning of antenna directivity, as well
as the definition of omnidirectional noise, this chapter establishes the fact that
optimization of directivity is only a special case of matched filtering applied to

special crosscorrelation properties created at the antenna by omnidirectional noise.

Thus, theories and processes tending to optimize directivity optimize signal
detection only to the degree that the more or less implicit hypothesis of omnidirec-

tional noise is valid.
A few special properties of plane or linear antennas are reviewed.
VIII-1. Limits of the Validity of the Directivity Concept

Current usage in technical literature assumes that the way to favor detection of a
signal carried by a plane wave is to obtain, by means of an antenna, ''the greatest
directivity" in the direction of that wave. We have just seen, however, that optimization
of detection depends upon the statistical relationships of the interference noise inputs
to the antenna elements. If we claim to optimize detection by optimizing "directivity, "
we become involved with a more or less implicit hypothesis concerning the nature
of the statistical relationships. We will see, in fact, that this hypothesis is that of
"omnidirectional noise, ' which corresponds to an exact definition (as does coherent
interference) and, consequently, to a well-defined correlation between two elements.
Likewise, we will see that, as would be expected, to optimize directivity is nothing
more than performing matched filtering in the presence of omnidirectional noise, that
is, treating a special case of the spatial structure of the noise. Thus, from this
chapter we may derive ways to modify some of the hasty conclusions regarding
the general character of this directivity concept, to which a considerable theoretical
and technical effort has been attached. To assume that a noise is omnidirectional

when we know nothing about it is a simple hypothesis but it is not an optimum procedure.
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VIII-2. Definition and Physical Meaning of Directivity

First, let us recall the definition of directivity. The "complex directivity" is a
function of frequency and of two spatial parameters defining the direction of a plane
wave. Let us combine these two spatial parameters into the symbol w. The
complex function D(w,v) gives the phase and amplitude of the voltage observed
at the antenna output in the presence of a plane wave having direction » and
frequency v. The output is defined as the sum of the voltages coming from the
antenna elements through, if need be, a linear filter in each channel (multiple

filtering).

The quantity

bn|D(wg,v) |
e (NETL=1)

2
lD(w,v)| dw

is called the directivity factor relative to the direction “o (or, in shortened, but
less correct form, ''directivity''), where dw represents an elementary solid angle
about direction . To optimize the directivity is, in fact, to optimize f(v) .

The physical meaning of this quantity is obvious. The square of the magnitude
of D(w,v) has the meaning of power per unit solid angle. The denominator of
f(v) is thus the total power of independent contributions, each assigned a
direction w. We may still say that it is the power at the output of an antenna when
the antenna is in a field of plane waves coming from all directions, which are
independent of direction (even infinitesimally separated) and have the same spectral

densityg. This, then, is the precise definition of omnidirectional interference.

The numerator of (v) may be said to be the power received by the antenna

in omnidirectional noise if the antenna possesses the same response for all

directions that it has for the direction wg. Consequently, to say that "the directivity
is high" (or f(v) is high) is the same as saying that the antenna is particularly suited

9 That is, "perfectly diffuse radiation."
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to "avoid" plane waves coming from directions other than wg, thereby achieving

a spatial selection; this has the form of a linear filtering process with a gain that is

a function of direction. We may also say that the numerator is, except for some
factor, the power produced at the output by a plane wave coming from direction wgq-.
Thus, f(v) also represents the signal-to-noise ratio (ratio of mean powers)

at the output for a signal plane wave from direction w( and an omnidirectional inter-

ference noise field.

The definition of f(v), then, is strictly related to that of omnidirectional

noise, and the use of the concept of "directivity factor' implies the omnidirectional
noise hypothesis. The value of f(v) depends upon antenna geometry, which is
assumed here to be defined by the Il elements and upon the filtering, if required,
in each channel. It is the optimization of f(v) by means of this multiple filtering
which we will discuss here.

VIII-3. Expression for the '"Directivity Factor'" as a Function of the Gains of the
Multiple Filters

Now, let us consider a collection of N antenna elements ©;,8,, ... By
(Fig. VIII-1), all identical as far as electromagnetic or electroacoustic receiving

elements are concerned, and a phase reference point 0.

For a plane wave propagating in direction « with frequency v and unit
amplitude, the voltage received by element 3 is represented in terms of
amplitude and phase by

2 MY ‘! w
a1y (OLJ. .ow)

e b
‘ > . : 3 : = %
‘ where w is the unit vector in direction w . The scalar quantity ObL, ., ©
: S i
i represents the path difference of the plane wave between O and I - when {
| « ]

divided by ¢ (propagation veiocity) it is the "time lag" or "advance" of I .
with respect to 0.

Let us begin by making "identical signals' by applying to each input a filtering
process which compensates for the path differences among the different inputs for a
plane wave coming from directicn wp. Hence, we are led to apply to I , B

"filtering process'' '
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which, over the frequencies v , is merely an ideal algebraic ''time lag"

o‘E'J.G
C

Next let us apply to each input a supplementary filtering q 3 (v) , which is
unspecified for the time being and which will be varied in order to optimize the

directivity factor f(v).

Fig. VIII-1
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The voltage at the output of the filter g 5 (v) in channel E], for a plane
wave coming from direction w is represented by '

AV _t > >
~ | OF -
a;(v) e21Tic [ oy o sl

Thus, the previously defined ""complex directivity function” D(w,v) is
(see reference (13))

2niz [OF, . (3-34y)]

Dlu,v) = 5 a;(v) e (VIII-2)
J
and we have
D(wg,v) = 3 qj(v) . (VIII-3)

J
The numerator of the directivity factor, according to Eq. (VIIf-1) , is

bn[DCw ,v)|° = An] 2 qy(») |7 . (VITT-4)
J
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