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ABSTRACT

The optimum structure of a signal to be transmitted over a ran-
domly time-varying and frequency-selective medium is investigated.

A model is developed that treats the medium as a randomly time-varying

! linear filter. By viewing the filter's transfer function as a homoge-

neous random field on the time-frequency plane, a second-order theory
results that relates various second-order measures of the time and

frequency structures of input and output processes.

A Neyman-Pearson detector 1s assumed, and a signal-design strat-
egy, based on the asymptotic behavior of the false-dismissal proba-
bility when the detector is presented with a sequence of observations
of the medium output, 1s developed. This approach leads to the strat-
egy of maximizing the Kullback-Leibler information number. It 1s
shown that this criterion minimizes the false-dismissal probability
for any veasonable false-alarm probability when the medium satisfies

’

Price's “low-energy coherence” condition.

The extrema of the Kullback-Leibler ormation number are in-

vestigated as a function of the noise-normaliged eigenvalues of the
output covariance kernel, and an energy-constrdined maximum i1s found
to occur when each degree of freedom possesses a signal-to-noise ratio

in the vicinity of 2

An optimum distribution of energy in the output time-frequency
plane, which maximizes the Kullback-Leibler information number, 1is
deduced. Also, a constraint is derived on the input ambiguity func-
tion that produces the best mean-square approximation to the optimum
output energy distribution. A discussion on the general structure of
input signals that satisfy this constraint in the high signal-to-noise
ratio case 1s included. Finally, the signal-design criterion of max-
imizing the Kullback-Leibler information number is compared with the

criterion of maximizing the divergence.
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SIGNAL DESIGN FOR EFFICIENT DETECTION
IN RANDOMLY DISPERSIVE MEDIA

I INTRODUCTION

This study presents a unified framework of concepts that relate to
the reception of signals perturbed by a randomly time- and frequency-
dispersive medium. In particular, the problem of designing efficient
transmissions for the detection of such signals in the presence of noise
is investigated within this framework. In practice, this signal-reception
problem and the related signal-design problem arise in the detection of
radar targets that are spread tn both range and Doppler and arise 1n
“on-off” signaling over randomly time-varying and {requency-selective

radio channels.

We restrict our attention to the question of optimizing the detect-
ability of a stochastic signal in the presence of noise. The stochastic
signal of interest is, 1in general, a nonstationary random process that
is the result of transmitting a known signal through a randomly disper-
sive medium with known spectral characteristics. Consideration 1s not
given to signal-design aspects of the more general radar problem in
which various characteristics of the target are estimated or the more
general communications problem i1n which one of several signals 1s trans-

mitted over the channel.

Following an introduction to the elements of the detection problem
relevant to this study, in Chapter Il, we devote Chapters 111 through VI
to the development and discussion of a linear-system characterization of
the randomly dispersive medium. Besides unifying various approaches to
the problem of modeling dispersive media, this material discusses a
second-order theory for randomly time-varying linear filters. Various
measures of the second-order properties of the time and frequency struc-

tures of an arbitrary process are introduced, and the manner in which a




randomly dispersive medium transforms an input measure into an output

measure 1S «l«'\t"ninwl. '|‘||l' ‘lll-ll\.\l.\ p[v\vnlz'«i in these 4||.|'»|‘-|\ 15 ger=-

mane to the synthesis problem treated in later chapters.

In Chapter VII, the detection problem is analyzed. Following the
adoption of a Neyman-Pearson approach and an outline of o harhunen Lodve
exposition, the test statistic and various related quantities and useful

facts are introduced.

In Chapter VILI, we present the concept of asymptotic relative
efficiency of radar signals as a criterion for signal design. This
criterion is based on the asymptotic behavior of the false-dismissal
probability when the receiver is presented with a sequence of independent
observations of the medium output. The Kullback-Leibler information
number enters naturally into this material and serves as a useful measure
of the efficiency per transmission of an input signal in reducing the

false-dismissal probability.

Chapter IX is concerned with the investigation of the extrema of the
Kullback-Leibler information number as a function of the norse-normalized
eigenvalues of the output covariance kernel. This leads to a signal-
design strategy of synthesizing input signals that provide degrees of
freedom in the output signal with individual signal-to-noise ratto (SNR)
in the vicinity of 2. The result is similar to a result obtained by
Pierce [Ref. 1]. He concludes that a SNR in the vicinity of 3 for each
degree of freedom minimizes an upper bound for the error probability in

the symmetric binary-signaling case.

The Kul lback-Leibler information number is investigated under Price’'s
“low-energy coherence (LEC)' condition in Chapter N.  We show that under
LEC conditions maximizing the Kullback-Leibler information number 1s
equivalent to Price’s criterion of maximizing the receiver-output SNR.

In addition, we demonstrate the asyvmptotic approach to normality of the
Neyvman-Pearson test statistic and conclude that both criteria vield
optimum signal-design strategies when the noise-normalized ergenvalues

of the output covariance kernel are suitably small.

In Chapter XI, we discuss the results of Chapter X in terms of the
useful concept of the equivalent number of degrees of freedom of the

output process,




Finally, in Chapter XII, an optimum shape for the

energy an the output time-frequency plane s deduced,

mrzes the hullback-Leibler 1nformation number by achieving the

number of degrees of freedom for the available SNR. \

input ambiguity function is derived that ensures the best

distribution

ol

f his \Ilu[ll‘ maxi-

onstraint

PI'(J’I('[
on the

medan- ,\(lll are

approximation to the optimum shape, We then treat the high-SNR case.

Lt 1s of interest to compare the Kullback-Leibler

with other proposed measures of detection performance

Chapter X111, maximizing the Kullback-Leibler information number

information

'l.hl‘ e ‘.()]'(‘

’

maximizing the divergence are discussed as signal-design criteria.

number
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Il DETECTION MODEL

In this chapter, we postulate a basiec model that serves to formulate
and analyze the detection problem treated i1n this study. The primary pur
pose of this model is to relate the properties of the received signal to

the properties of the dispersive medium and the transmitted signal.

The spectra of signals transmitted in radar or radio communication
applications are significantly nonzero only in a band of frequencies of
width small compared to any frequency within the band. These signals,
commonly referred to as narrow-band signals, admit a convenient complex

envelope notation,

‘
:_"I“(
x(t) = Reix(t)e 4 . ()
In this notation, x(t) 1s the real narrow-band signal; g 15 A frequency

within the band; and x(t) i1s the complex envelope. The magnitude of x(t)
is the conventional envelope of the narrow-band signal, while the phase of
x(t) 1s the conventional phase measured with respect to the carrier phase,
20f t. The complex envelope X(t) is a low-pass function and is readily

visualized as the modulation of the carrier tone at frequency f,. (See

Appendix A.)

To characterize how the medium transforms an 1nput signal 1nto an
output signal, the medium is viewed as a randomly time-varving lianear
. - - Al
filter. We account for time- and frequency-selective fading phenomend
through the dependence of the filter's transfer function on time and
frequency. Since we are concerned only with narrow-band signals, the

: ; ] : .

medium can be modeled with an equivalent time-varving narvow-baad frlter
that produces the same output as the medium for a class of properly ve

stricted narrow-band i1nputs.

Because the medium 1s assumed to be linear, we can proceed formally
in the usual manner and define system functions which vield the response
of the medium to classes of elementary input signals. Owing to the randop

nature of the medium, however, the description of the svstem functions




obtained in this fashion necessarily requires concepts employed in the

theory of random fields.

The fundamental system function associated with the medium is the
time-variant transfer function H(t,f). A simple experiment performed on

the dispersive medium generates this itmportant function:

If the input x(t) 1s the CW tone

v 27 f+ fo)t

x(t) = Rete gy

then the output of the medium in the absence of additive noise 1s
given by

11‘"(1+(“)|

z(t) = ReiH(t,f)e (%

Thus H(t, f) 1s the complex envelope of the medium response to a CV% tone
relative to the frequency of transmission. In this study, we assume that
the time-variant transfer function is a complex random field defined on
the time- frequeney plane. “That ns. muven n points (i, fiil, -, & ,f )
in the time-frequency plane, the 2n random variables corresponding to the
real and imaginary parts of H(t,,f,), ..., H(t ,f ) will possess a joint

probability distribution.

For fixed f, H(t,f) defines a complex random narrow-band process 1in
t that yields the amplitude and phase time variations of the medium
response to a CW tone at frequency f + f . We can then view the transfer
function H(t, f) as a complex random surface yielding the amplitude and
phase of the medium response as a function of time for CW tone inputs as

a function of input frequency.

The system diagram of Fig. | depicts the model for the detection
problem considered in this study. Upon observation of the process y(t)

in the time interval (0,7T), the receiver must decide whether or not the

p——& H oy Z+n
x(r)———"<———- H(t,f) RECEIVER .

2(1) y(1) S =

n (1)

FIG. 1 SYSTEM DIAGRAM OF DETECTION MODEL




signal process z(t) has been added to the noise process n(t) (hypothesis
i,

result of passing the signal x(t) through a randomly time-varyving lLinear

or hypothesis H ). When the signal process z(t) 1s present, it as the

filter with transfer function H(t, ).

6




LEE RANDOM FILTER MODEL

A. HOMOGENEOUS LINEAR FILTERS

This study treats an important and interesting class of randomly

time-varying linear filters. We restrict our attention to random f{ields

H(t, f) that are homogeneous [Refs. 2 and 3]. The random field 1s homo-
geneous 1 f
EH (e, OH(t + EE S B = I?"(,, 1) (3a)
and
BlBle, fY1 = & 1, (3b)
where ¢ is a constant complex quantity. (The symbol E indicates mathe-

matical expectation.) Equation (3a) states that the random field it )
is wide-sense stationary in both the time direction and the frequency
direction. The function If”( ¥; 8) is the time- frequency autacarvelation
function and depends only on the time difference @ and the frequency

difference 5 when H(t, f) is honogeneous.

Homogeneous random fields possess spectral representations in terms
of orthogonal-increment random fields [Ref. 2]. The usual spectral
representation [(Refs. 2 and 4] of a wide-sense statironary random process
indexed on a single real parameter is the one-dimensional version of this

more general representation. Since H(t, ) is liomogeneous, 1t possesses

a spectral representation of the form [Ref. 2]

Hit, ) ([ et 2T R e=TF) (N, 7

la)*

.

Absence of limits on integrals indicates that the region of i1ntegration is from = @ to 1Y

e




- o T R i i o

!
i
; where the W(A,7) field has orthogonal increments; that is
| N * g . ’
' EldW (\l.’l)fl”(\.__,":)] §] for Ry F Ay o T F Ty (4h)
§ and
. : v .

Blldwin, w31 = dp ix, 7y . (4c)
: Although KEq. (4a) is the result of purely mathematical considerations,
) it yields a meaningful physical interpretation. The integral in this
1 equation is defined as an appropriate limit of summations of the form
{ [Ref. 2]

o . P27 AN, e=T . F)

2 2 AW(A,,T e B -

)

L
4 - ¢ EZm(fEfo N | . e ; 3
i If Refe 0"} is the input to the filter, then, from Eg. (2), the

output is an appropriate limit of summations of the form
i % : I 20 SRR N I Sl Ffefathy ) Ct=-7,)
Re{Z S A u()\ 1 )(’l k 0 )Pl fo /\k ] .
k B
J
Let

. ; 27N, +f )T
i AUCN, , 7 ) = OWA, ,T e LI R :
3 LA k™ g

and consider one of the terms in the above summation,

lzw(f*/0+Ak)<c—¢}>,

Re \l"(\k,rl)(’ }

Observe that this term represents a contribution to the output due to the
medium delaying the input by 7 seconds, shifting the input frequency by
A ¢ps, and modifying the input amplitude and phase according to the factor
.‘\l’(\k, T ). Thus the above summation decomposes the medium into a sum of
incremental time-delay Doppler-shift channels, and \l'(\k,?}) 1s the com-
plex envelope of the response of an incremental channel to a CW tone.
Since .‘.l'(\h,Vl) does not depend on t or f, the incremental channels are
time-flat (time-invariant) and frequency-flat (frequency-invariant). The

incremental channels also possess the tmportant orthogonality property

*

H'l'(\.I,rl).'\l"(\_,,:,ﬂ =0 for Koy X

r—y




Orthogonality of the incremental channels is a necessary and sufficient
condition for wide-sense stationarity of the random freld H(t,f) tn both

t and f.

It is interesting to note that expressing H(t,f) in the summation
form yields a tapped delay-line model equivalent to the filter model

studired by kailath [Ref. 5]. [f we write

' ] < < A $27A ¢ =2me . f
. H(t, ) Zz 2 .H(‘xk,' ) e k e
3 | J
and let
- ry 1;’“/\'1
A CE) = 2 AW(A i Ye k -
1 & k ]
{ then H(t, f) can be expressed
‘ . &, f -
H(e,f) = 2 A (t)e ’ - (59
‘ / g
]
A delay line possessing taps at the delays 7 with a time-variable
R . . . . . .
: gain :\](r) at each tap realizes this transfer function. Hence the model
for the dispersive medium treated 1n this study 1s essentially the
i Kailath model in which the tap gain functions are complex stationary ran-
| . B . * - .
dom processes that are mutually orthogonal for all time shifts. Equa-
tion (5) itllustrates the presence and origin of frequency-selective
fading. At a particular instant of time, the transfer function varies
3 with frequency; this frequency variation is caused by the time delays T
4 If we write
" 5 B S
Iih(/) 2 ”‘"(\w' )¢ J ’
)
then
» il 1 27y k!
H(e, f) = 2 B {f)e . (6)
k

This transfer function can be realized by a sequence of time-varving
elements in parallel [Ref, ol Each element is composed of a time-
variant random filter Bh(” followed by a frequency translator which

introduces the frequency translation A . Equation (6) 1llustrates

9




the presence and origin of time-selective fading., At a particalar fre-
quency, the transfer function varies with time; this time variation 1s
caused by the Doppler shilts A, ]
B MEDIUM SCATTERING FUNCTION

) 1.‘"([*!“'lL !
[f Rete t 1s the input to the medium, then the output of

an incremental channel possessing Doppler shift A and time delay — has

the form

. DL R PR 7 S N R )
Re xl(\k'~l),, [ ) )
s which is merely a cosine function with random amplitude and phase.  The
| g s
i ensemble average power of this cosine function can be expressed as
| | \ | |
g - EllAU ; 2 - AF e = 8 (X )
.,I" l“k“,” ] .‘.\I-“‘(\k,,) A ,
where
A T
I"w(\,') - ’ ‘ S (x,y)dxdy % ;
v . B
- ~-@® y
Thus the surface F_(X\,7) [the real quantity appearing in Eq. (4c¢)] plots
the average power scattered by the medium as a function of Doppler shift
and time delay. The derivative S (A, 7) 1s then the density of power
scattered by the mediam as a function of Doppler shift and time delay.
For this reason, S (A, 7) affords a particularly useful physical descrip-
tion of the medium and is called the medium scattering function [Refs. 7
and 8].
The spectral representation [Eq. (4a)] will be formally written in
4 o o .
terms of a nonstationary white-notse random freld v(N,7) rather than
the orthogonal-increment random field W(\,7) [Refs. 9 and 107,
; P27 (At=7f) -
Hit, ) | [e v(A, 7 )dAd7 , (7a)
where
4 Elvr O, m)v(N + £,7 + v)] S (A, TI () () . (7h) 1
1 |’
i
10




One can verify that Eqs. (Ta) apd (Tb) imply a two-dimensional ver-

ston of the Wiener-Khintchine theorem; that is, the time-frequency auto-
correlation function and the scattering function copstitute a Fourien

transform pair,
R, (a,B) [fet2mAe=TBLg (kv )dhds (Ba)

2

S (A7) [fecitntas=eBlip (u, BYdudp . (8b)

The above relationships rl‘:((s. (7) and (8)], which have been pointed
out by Bello [Ref. 11!, form the basis of a very fruitful and interesting

approach to the problem of charvacterizing randomly time-varying media,

To satisfy the condition 1n Eq. (Tb), we assume that the quadrature
components of the random field v(A,7) form a mutually uncorrelated family
of zero-mean random variables. This assumption implies that the constant
in Eq. (3b) is zero. It is also assumed that for a given A and 7 the
quadrature components of v(A,7) are identically distributed random vari-
ables. These assumptions (see Appendix A) lead to the following four-

correlation functions for the quadrature components of H(t,f):

bl l
E[”R“'””R(' o ) ] ETII,({,/'VI,({ +a,f + ] = = Re ‘[\’”(l,-')‘
kQ.I)
. : : 1 : : 3 ] I | \
EMH (e, PH (¢ + o f + B)] = -EllH (¢t,H(t +a,f+p)] = - Im{R (a,) ;
B (9h)
Wll(‘l‘('
Ut P = Ha Gt FY + &8 U, F) 4

In modeling a scattering medium, tt 1s reasonable to assume that the van-
dom field H(t,f) is Gaussian. In this case, the above assumptions imply
that the first-order probability density of the phase of H(t,f) is uniform.
This merely means that in the absence of prior information concerning the
behavior of H(t, f) one does not expect the phase of H(t, f) for a scattering
HH‘(‘IIIHI to l'n\ul' a regiron nl ph.|~(' \.|1|lt's at dany p.|l'l l(ll‘.xl [u!ln( n 1|n'
time=-frequency plane. In other words, 1f we choose an arbitrary ¢ and ¢

and observe the phase of the response of a scattering medium to a €W tone




at frequency 4+ f, at time ¢, there 1s no physical reason a preort that
the phase will assume some values at the expense of other values., The
above assumptions also imply that the quadrature components of H(t, ()

possess zero mean, a fact that 1s intimately related to the uniform phase

of HCeE EX,

We note that, when H(t,f) ts Gaussian and the conditions of Fqs. (9a)
and (9b) are satisfied, the time-lrequency autocorrelation function
If”(t, V) completely specifies the probabilivy law of H(t, f), and the

quadrature components of H(t,f) are homogeneous real random fields,

12




IV SYSTEM FUNCTIONS AND SYSTEM
AUTOCORRELATION FUNCTIONS

A. SYSTEM FUNCTIONS

In this chapter, four equivalent representations for the output of a
time-varying linear medium are deduced from the basic definition of
H(t,f) [Eq. (2)]. Each representation relates the input and output of
the channel through one of four system functions. FEach system function
completely describes the channel in one of four possible rectangular co-
ordinate systems. The four coordinate systems are formed by choosing
Doppler shift or output time for the first coordinate and time delay or
input frequency for the second coordinate. For example, H(t,f) is a
system function where the first coordinate is output time and the second
coordinate 1s 1nput frequency. Furthermore, any system function can be
obtained from any other system function through an appropriate Fourier
transform relation. From a system point of view (the most convenient for
our purposes), the spectral representation [Eq. (7a)l is a statement of
transform relationships that exist between the four system functions.

We begin by relating the input and output through the svstem function

HEE, f).

Let X(f) be the Fourier transform of the input complex envelope, then

- v2wfoe
x ¢t ) Re { X{fYe P =¥ 1% Te ' }

l e AW EN PRE.
= Re (\1[ e - } df
The response ol the medium to

“'.{\”)’I-""‘"'“"}

.

In addition to the Tour syste functions discussed 1n this section, Bello [Ref. 11! considers four syvs-
tem functions that are obtained by of sing Doppler shift or anput vtime for the first coordinate and
time delay or itput frequency for the second coordinate. In this mwanner, one obtains four pairs of
system functions which Hell Ref. 6| has defined to be dual operators, He also considers the four svs-
tem functions obhtarned by } sing output time or output frequency for the first coordinate and input
time or input frequency for the second wdinate,




is given by Eq. (2) as

) I f¥falit
Re {I!u,n\u»v }

Linearity of the medium tmplies that the medium response to x(t) can he

written

’ t2m(f+ f )
z{t) = ‘“l‘{ll(',’).\(’)f’ gt t}d/'

Re { ”({,f)‘(f}r“‘w“({]f"_rr“t} s

Thus we obtain the output complex envelope in terms of the Fourier trans-

form of the input complex envelope through the relation

z(t) = [ H(t,OX(fle?7regf | (10)

Equation (10) yields a Fourier representation of the output z(t) in terms
of the input frequency spectrum. In this representation a component of
the input at frequency f is weighted by the time-variant transfer func-
tion H{t,f), which reflects the time-vartable nature of the medium's fre-

quency characteristics.

The spectral representation [Eq. (7a)] can be written

HEt; F) I ke, 7Ye *27T Idy .
where
Wit 7y = | 1'(/\,7)9'3"’\’d\

The quantity h(t,7) is a system function that relates the input and out -

put in the following manner:
z(t)y = | k{t,7yx{t = 7)d2 ‘ (1)

In Eq. (11), the function h(t,7) is the channel time response at time ¢

due to a unit impulse applied in the time domain at time t - 7.

A third system function can be deduced by writing the spectral rep-

resentation in the form

14
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where

V(X, f) i e T AT
The output z(t) can be expressed 1o terms of system function VA, 7) as
Fft) = Vi = f,IX(f)e'*" " dfda . (12)

It follows from Eq. (12) that the Fourier transform of the output

z(t) 1s given by
Zlu) = Viu - f,1)X(f)df . (13)

In Eq. (13) the function V(X,f) 1s the medium frequency response at fre-
quency f t X due to a unit impulse applied in the frequency domain at

frequency f.

Finally, the output can be expressed in terms of the Doppler-delay
random field v(X,7), which appears in the spectral representation

[l‘]q. (7a)l, as

2(t) = JJ vix,7Ix(t = 7)ef2™ tdNdr . (14)

Equation (14) vields a representation of the output in terms of a system

function that specifies the incremental time-delay and Doppler-shi it

characteristics of the medium. In this representation, the term

pN, 7YXt = T)et?”

corresponds to the medium delaying the input stgnal by seconds, shift-

ing the input frequency spectrum by A cps, and multiplyving by the random

:

complex gain v(\,7). Figure 2 summarizes the relationships between the

four system functioas.! Ta this figure, {u —~ v) symbolizes a Fourter

transform from the u variable to the 1 variable.

-
The existeace of Z(f) 1s discussed n the following chapter.

t This diagrammatic representation 1s due to Bello [Bef, 1],

—
“
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hit.T)

VIA,T)

VA, f)

FIG.2 SYSTEM FUNCTION RELATIONSHIPS

B. SYSTEM AUTOCORRELATION FUNCTIONS

Four system autocorrelation functions serve to characterize the
second-order statistical properties of the system functions. We intro-
duce these functions by simply computing the autocorrelation function

assoctated with each system functioun:

h'ill'(t.mll(r t a,f + 8] = R, (a,B) 3 (15)

The function R, (a,F) 1s the medium time-ftrequency autocorrelation

function.

Elo* (N, 7)o(X + v, 7 + &)] SN IS () - (16

The function .\'l(‘\,/) 1s the medium scattering function.
Elh (t.,7Yhét + a,7 + )] = R, (a,7)8(&) - (17)

The function R, (®,7) is the delay-dependent time autocor relation

function of the medium.

EIVVL IV + v, f + )T = RNB)S) . (18)

The function R (\,3) is the Doppler-dependent frequency autocor-

|'4‘ln|( 10n ’Alllll'( 1on l\'. (Ill‘ Hll‘lll””l.

16




The delta function o(%) appears in Egqs. (16) and (17) because the

time-vartant transfer function H(t,f) is wide-sense statironary in f.

Similarly, the delta function 6(#) in Egs. (16) and (18) is due to the

wide -sense stationarity of H(t,f) in ¢. The delta functieons reflect
the fact that the spectral components of a wide-sense stationary pro-
cess possess the characteristics of nonstat tonary white noise

[Eqs. (7a) and (7b)]. A corresponding set of Fourier transform rela-
tions exists between the svstem autocorrelation functions, similar to
the relations that exist between the system functions. These relations

are summarized in Fig. 3.

sv()\.r) RN(G'B)

F3

Ry (A, B)

FIG.3 SYSTEM AUTOCORRELATION FUNCTION
RELATIONSHIPS

ke et il
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GENERALLZED MEASURES OF THE SECOND-ORDER
PROPERTIES OF AN ARBITRARY PROCESS

In many situations of i1nterest to a communication engin

put of
finite
serve

quency

cess }l

energy.,

appens to

eern ‘]\' "IIT
a dispersive medium is a nonstationary random process possessing
In this chapter, four useful functions are developed that
to characterize the second-order properties of the time and fre
structures of signals of this type. These functions. although
dviinvd fnr nonstationary ruanm prnrv\sv\. are mrAnlugln‘ Ahrn lhr pro
be stationary or even deterministic. The usefuluness of
the measures developed 1n this section in analvzing a radar or communica-

tron s
1tnput

system
We sha
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ystem incorporating a scattering medium lies in the fa
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t measures are related simply and naturally through

autocorrelation functions for a randomly time-varving

11 find that in the second-order theory of randomly tir
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ts that h
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a mathematical structure exists that extends

ave been developed for deterministic time-invariant

random 1nputs.
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he Fourier transform of R, ,(x.t) with respect
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.t z(t) be a complex process, and define the time-autocorrelation

(19)
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Since lfz('r,() 1s Hermitian wn «, .\'Z(I t) is a real function. [he eneray
density is nonnegative if and only if R (@, t) is a positive definite

fiunction of @ for all ¢.]|

To analyze the frequency structure of the process zCE),. 1t 1s con

venient to deal with the Fourier transform

Z(f) - wlt)e T gy . (21)
If z(t) is a random process, then Z(f) 1s a random variable. It can be

shown that the stochastic integral in Eq. (21) exists as a mean-square

limit of Riemann sums 1if and only 1f

When z(t) is a stationary random process, this condition i1s not satisfied
since the frequency components of a stationary random process possess the
characteristics of nonstationary white noise. If the process z(t) satis

fies the condition
Rz Ci =
then Fubini's theorem implies that the integral defining Z(f) exists witl

probability one [Ref. 12].

The random process Z(f) possesses the frequency autocorrelation
function [{Z( f,B) which is defined in a manner similar to the time auto
correlation function,

G f = : (22}

9 il

Ro(Ff.B) = E\Z f -

\

The frequency autocorrelation function also possesses the Hermitian property
Ry(f.B) R 3)
2 = z(t /

Finally, we define the ambiguity function ‘2(1.3) as the Fourier

transform of R,(«, t) with respect to t,

19
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z(t) 1s deterministic, then the above definition agrees with the

usual definition of the ambiguity function [Refs. 13 and 14

The Fourier transform relations between these second-order mea-

sures are displayed in Fig. 4, which 1s similar to the diagram used to

correlation functions.

Rp(a,t)

Sz(f,t)

R, (1.8)

1 FIG. 4 TRANSFORM RELATIONSHIPS FOR
: THE MEASURES OF THE SECOND-
ORDER PROPERTIES OF A PROCESS

The autocorrelation functions R, (%, t) and R (f 5) measure the cor
relation properties in the time and frequency domains, respectively. of
the process z(t). Since these functions constitute a Fourrer transfor
pair, the correlation properties in the time domain determine those in

the frequency domain, and vice versa.

The ambiguity function ¥, (a, /) has the interesting property of
being the spectral decomposition of both the time variations of the ti

autocorrelation function and the frequency variations of the frequency

autocorrelation function. For a fixed time difference 2 Ii'll Y. t) is a
function of time, and v, (a,5), « onsidered as a function of 1S a spet
tral decomposition of the time variations of R (a,t). Similarly, for a
fixed frequency difference &, Rz(f,/) 1s a function of frequency and

P (. 5), considered as a function of @ is a spectral decomposition ol
the frequency varitations of RZ(I"')' It is also interesting to note

that the dependence of the time autocorrelation function on the time

display the relations between the system functions and the system auto-

«




difference @ is determined by the frequency variations of the frequency

autocorrelation function, and the dependence of the frequency autocor
relation function on the frequency difference /7 is determined by the

time variations of the time autocorrelation function.
The function S, (f,t) possesses an energy density interpretation in
the sense that the mean-square time envelope,

Eflzley] 1 = R (a,1) = S, (f.t)df

can be SII(IWH ta l\(‘ (l\(' average energy lil’ll.\'ll\ 10 lhl‘ time direction and

the mean-square frequency enve lope,

2
EMNECEY ] = Bzl ) = S 0F, )dd

1

can be shown to be the average energy density in the frequency direction.

We demonstrate this property of Sl( Y, t) tn the following consider-
ations. Let z(t) be applied to a rectangular bandpass filter with height
unity and cutoff points at the frequencies f, and f,; then the mean value

of the energy of the output y(t) can be written:

ELl lyce)|"del = EL lw(f) | df
b 2
= E[! (Z(f) '{r:‘
f
!
p)
- R,(f.0)df
fy *
1

S,(f t)Ydtdf
/1

Let z(t) be applied to a filter that multiplies the input function of

time by unity if t; S t = ¢, and by zero for t otherwise; then the mean

value of the energy of the output y(t) can be written:




o

EL[y(e)]| de) El] “la(e)] de

t o

= R0, 0)dt

- L (f, trdfdt
t 1 z

Thus, our interpretation of the function S (f ) leads to a natural
generalization of the spectrum concept employed in the theory of sta-

tionary random processes.

Moments of the energy density in the time and frequency direc-
tions are useful measures of the structure of the signal z(t). If we

define the normalized time and frequency energy densities

S, (f, t)df

e e e (24a)
P S, (f. t)dfdt

Nz(l,!)df

L (F) S — (24h)
i S,(f, t)dfdt

then the time and frequency moments can be defined

| dr ¥q'0.F)
np(z) = t"pr(t)dt (25a)
(=27i)" agn ¥ (0.0)]
A 1 dn Y (o, 0)
melz) - f "pe(f)df (25hb)

The mean signal time and the mean signal frequency of the process

1(z) and m;(z). respectively. I'he

z(t) are given by the quantities m,

quantaty

{n2(z) - [nl(a)]




1s a measure of the rms time dispersion of the process z(t), and the

quantity

1

{n(z) = Imp(z)]"}

is a measure of the rms frequency dispersion of the process z(t).

I[f z(t) isawide-sense stationary random process, then the four

signal measures can be written

h‘z(x,t) = h‘z(l) (26a)
Y (,8) = R, (a)d(B) (26b)
Ry (f.8) = S8,(f)8(8) 26c)
S, f. 1) = S.0f) (26d)

where Hz(d) and Sz(j') are the usual autocorrelation function and
power spectrum associated with a wide-sense stationary process. Note
that Eq. (26¢) states that the frequency components of a wide-sense
stationary random process possess the characteristics of nonstation-
ary white noise. Equation (26b) illustrates the tendency of the
ambiguity function to display both the time and frequency correlation
properties of the process z(t). When z(t) 1s wide-sense stationary,
‘»“Z(‘Y.‘-;) 1s the product of a time autocorrelation function RZ( X) and a
frequency autocorrelation 6(Z2). If z(t) 1s wide-sense stationary
white noise, then the ambiguity function becomes the product of delta
functions, 6(a)d(/7), which indicates the independence of stationary
white noise in both the time direction and the frequency direction.
Thus, the width of the ambiguity function in the @ direction 1s a
measure of the time interval in which the process remains correlated,
and the width of the ambiguity function in the “ direction 1s a mea-
sure of the frequency interval in which the frequency components re

main correlated.
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VI INPUT-OUTPUT TRANSFORMATIONS OF SECOND-ORDER MEASURES
FOR A RANDOMLY TIME-VARYING LINEAR FILTER

Let x(t) be the input complex envelope to a randomly tCime-varying
linear fillter with transfer function H(t,f). We allow x(t) to be deter

ministic or random; if Xx(t) is random, then it is assumed to he r1ndepen

dent of H(t,f). When z(t) 1s the output complex envelope, the second
order measures associated with z(t) are related to the second-order
measures assoctated with x(t) through the system autocorrelation functions.
These relationships are of interest because they vield a simple means of
determining the nature of the time and frequency dispersion suffered bn

signals transmitted over a dispersive medium.

The manner in which the medium transforms an tnput second-order mea
sure 1nto an output second-order measure is determined by the following

fundamental relations:

R (a, 4} JR, (o, 7)R, (@, ¢ 1) d7 (27a)
"z(' ) R, (w, 5), (a, 5) (27h)
Ry (£, 8) Ry (N, BYRy(f )d {(27¢)
SoRT it S 7X8 (F = At rYdhd (27d)

Fquation (27a) states that the output time autocorrelation fune-
tion is the result of convolving the time variations of the input time
autocorrelation function with the delay variations of the medium time
autocorrelation function.  Similarly, Eqg. (2Te) states that the out- 4
put frequency autocorrelation function is the result of convolving thi
frequency variations of the tnput lrequency autocorrelatton function
with the Doppler variations of the medium frequency autocorielat pon

function,

In Eq. (27b), the output ambiguity function is given as the product
of the itnput ambiguity function and the medium time fre UENCY  aulocors

lation function. This relation yields an immediate de criptiog I the
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dispersive effects of the medium on the second-order properties of 1nput
signals. For example, if the medium time-f{requency autocorrelation fune
tion is essentially constant over the region in the / plane occupred
by the input ambiguity function, then the medium 1s time-flat and frequency
flat relative to the input modulation. That 1s, the medium essentially
preserves the time and frequency structures of the rnput signal. On the
other hand, 1f the medium time-frequency autocorrelation function occupies
a very narrow region in the @ - £ plane compared to the region occupied
by the input ambiguity function, then the medium drastically alters the
time and frequency structures of the input signal, to the extent that the
structural characteristics of the output signal are determined by the
medium rather than by the input signal. Thus, if 1t 1s desirable to main-
tain at the output of the medium the time and frequency structures
possessed by the input signal, one should use input ambiguity functions
that are narrow compared to the medium time-frequency autocorrelation
function. However, if one wishes to measure the medium characteristics,
it is desirable to use input ambiguity functions that are wide compared
to the medium time-frequency autocorrelation. Similar conclusions can be
drawn from Eq. (27d), which states that the output energy density 1s the
result of convolving the input energy density with the medium scattering
function. Observe that, 1f the i1nput energy density occupies a very
narrow region in the time-frequency plane relative to the region occupired
by the medium scattering function in the Doppler-delay plane, then the
output energy density i1s essenttally determined by the medium scattering
function. When the medium scattering function i1s very narrow compared to
the input energy density, the output energy density is essentirally deter

mined by the input energy density.

A relationship that describes the output energy density in the time
direction and a relationship that describes the output energy density an
the frequency direction can be deduced from Eq. (27d). The output energy
density in the time direction 1s given by the mean-square time envelope

)

Ellzcery]” ] = S,(f, t)dt

which mayv be written

y

Ellz(t)]" ) S (A, 7)8, (] \, ¢ YdAdrdf v (28)
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In Eq. (28) the integration with respect to [ yvields the term
1 B I

S (] X, t = m)df Setl it r)d R0 8="7) Ellx(t )

The function

T ) S (A, 7)dA (29)
will be called the medium delay profile, since 1t yields the density of
power scattered by the medium as a function of time delay Ve perforn

the integration with respect to f and A 1n Eq. (28) and obtain

Ellate3l) TrEx(t = 7|2 lér . (30)

Equation (30) states that the output mean-square time envelope 1s ob
tained by convolving the input mean-square time envelope with the mediup
delay profile. A similar expression for the output energyv density 1n the
frequency direction can be obtained from the mean-square frequency

envelope,
ELNZ(HIT] S, (f, t)de
The function
A(A) S (A, 7)d 1)

will be called the medium Doppler profile, since 1t yvields the density ol
power scattered by the medium as a function of Doppler shift One can

write the output mean-square frequency envelope as follows

ELIX(PH | ] AN(MELX( )T ] dA :

Equation (32) states that the output mean-square frequency envelope s the

li"‘lllt ol '4‘(1\()‘\]!1;’ lll!‘ Illlllll mean-square l[l'l‘\l"ll'\ erne \H}v' with ECihe

medium Doppler profile.

The Doppler profile is the power spectrum of the wide sense stationar

time variations of the time-variant transfer function

EH (t, OYHCt + a, )] I.‘an 0)
A(A) Ry, 0)e iZnAa g
26
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Hence the power spectrum of the time variations of the medium response

to a CW tone at a fixed frequency is given by the Doppler profile.
The delay profile i1s the power spectrum of the wide-sense sta
tionary frequency variations of the transfer function,

EMH (e, HHCe, f + B)] R, (0, )

Tr) R (0,R) e *2775 dfs

Hence the delay profile vields the power spectrum of the variations
of the response of the medium at a fixed time as the input frequency

of the CW tone 1s varied.

By employing the following normalized delay and Doppler profiles,

(r) T(r) {
g\T T — (33a)
i [T(7) dr :
() A(A)
: . 1Y o 231
g JA(N) d : il
we obtain moments of the medium scattering function
| dn Ryl0, B)
np(H) = T TR R e e (34a)
(-27i)" dBn HH(U,(H .
= B=0
| dn RH(\Y.(‘H
m((l!) - _!,\"q\(.\hl\ = (34b)
i (9m i) dan By(0,0)
i3 a=|(

Mean-square time and frequency dispersions of the output process
z(t) can be computed by employing Eqs. (25a) and (25b):
ni(z) = [ng(z)]1? = wf(H) - [nh(D]? + n2(x) = [np(x)]? (35a4)
mi(z) - [mp(z)]? m() - [nl (]2 + ml(x) - [mgp(x)]? (36b)

These equations state that the output mean-square time (frequency) dis
persion is the sum of the input mean-square time (frequency) dispersion

and the mean-square time-delay (Doppler) spread of the mediam.




Figure 5 summarizes the relationships existing among the 1nput
second-order measures, the system autocorrelation functions, and the out

put second-order measures.

In this figure, input measures appear on the inner ring, med 1 um
measures on the middle ring, and output measures on the outer ring.
The symbols *, **, and °*, which denote single convolut ton, double con
volution, and multiplication, respectively, describe how quantities on
the outer ring arve obtained from the corresponding quantities on the

middle and inner rings.

R, (a,t)

Ry (a,7)

R, (a,t)

D
4

S,(6,1) = S,(AT) X XS,(ft) Vela,B) ¢ Ry@.p =y, @pB)

Ry (1, 3)

X

Ry, B)

v

R (t,3)

FIG. 5 SUMMARY OF INPUT, MEDIUM, AND OUTPUT SECOND -ORDER RELATIONSHIPS




VIE ANALYSIES OF DETECTION PROBLEM ‘

A. DISCUSSTON

On the basis of observing the process y(t) 1n the time itnterval

(0,T), the receiver must choose between the hypotheses: |

Hg:o yle)y = nlt); noise alone

”l: y(¢) = n(t) + z=(¢), stgnal plus noise.

In other words, the task of the receiver is to decide whether the prob-
ability measure governing the observed process y(t) 1s the noise probability
measure or the signal-plus-noise probability measure. The following
assumptions define the two probabtlity measures:

(1) The medium transfer function is a complex, homogeneous,

Gaussian random field with zero mean and time-{requency
autocorrelation function h’”( X,0).

(2) The complex envelope of the transmitted signal x(t) 1s
a known function of time.

(3) The noise complex envelope n(t) 1s a complex, stationary

Gaussian random process with zero mean and a white-noise

spectrum of intensity No and is independent of the ran -

dom field H(t,f). (See Appendix AL)

These assumptions imply that when Z(t) is present y(t) 1s, 1n general,

a complex nonstationary, Gaussian random process with zero mean and covari-
ance function that depends on the transmitted signal and the time-frequency
autocorrelation function lt‘"lx,.‘ﬂ. When z(t) is not present, the third
assumption tmplies that tn the interval (0,7), y(t) is equal to complex,
stationary, Gaussian noise with zero mean and a white-norse spectrum ot

intensity V.

Since the probability measures associated with the signal-plus-noise
and noise hypotheses are completely determined by theiyr respective covarg-
ance functions, it can be seen that the receiver's task of signal detection
is in essence one of determining which covartance function governs the

process y(t). In view of the dependence of the signal-plus-noise covariance
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function on an interaction between the trapsmitted signal and the dis-

persive characteristics of the medium, 1t is possible that a judicious

chorce of i1nput signal will produce a signal-plus-noise covariance func-

tion that in some sense yields the most efficrent alternative to the

‘ notse covariance function. Cast in more physical terms, this statement

i ratses the questions of the existence of a preferred energy distribution
in the time-frequency plane at the output of the medium and—if 1t ex-
ists —how 1t can be achieved through proper design of the transmitted

signal.

We assume that the receiver is an optimum Neyman-Pearson detector,
that 1s, that the detection procedure employed by the receiver yields
the smallest false-dismissal probability for a given false-alarm prob-
ability [Ref. 15]. By the fundamental lemma of Neyman and Pearson
Re f. ]h', the receiver can realize this optimum detection procedure by
computing any monotone increasing function of the likelihood ratio. This
results in a real-valued random variable, called the test statistic,
defined on the space of all possible observations {y(t)!. Hence the
receiver processes a particular observation y(t) and summarizes this
observation with a real number that is sufficient to effect the optimun
detection procedure. For a given false-alarm probability @, a threshold
L is determined that is exceeded by the test statistic with probability
1 equal to ® when noise alone is present. The receiver then decides that

the signal z(t) is present when the test statistic is greater than L and
1s not present when the test statistic i1s less than L. This procedure
vields the smallest obtainable false-dismissal probability among all the

detection procedures that have false-alarm probability equal to .,

B.  DERIVATEON OF THE TEST STATISTEIC

In order to calculate the likelihood ratio, we proceed 1n the usual
manner and treat the Karhunen-Loeve expansion of the process y(t) in the
interval (0,T). Since the book by Helstrom [Ref. 17] contains an excel-
lent Karhunen-Loéve exposition for the detection problem considered in
this study, 1t is sufficient to present only an outline of the main
results of Helstrom’s treatment and to briefly discuss and clarify points
that are pertinent to the present discussion. In this manner, we main-

a taitn continuity, introduce notation, and pornt out various tmportant

facts and relations used in later ‘li.l[»l"l\.




Let the covarirance functions o

Gaussitan processes itnvolved 1n

K,(¢,5) Ela*(t)z(s)
Kkt s) Eln*(t)n(s)
l\'yu,w Ely*(t)y(s)

The

\
(0,T) generates the process y(t)

1s discussed 1n Appendix B, which possesses the orthonormal series
expansion
2 ) 6ha )
)(') \nf”({ - (S36a
n
where
s
’ = f (t)y(t)dt 3 (36b)
B n 2
0
If the functions ‘f”((\\ are the eigenfunctions of the integral equation
r . . i =
{ A (2K, (r,8)dt it (5] , s€(0,T) , (37a)
0
then
(T o X =
(£ CeYE (t)dt ) (37b)
n m nm
0
and
S 1 \ S
E yn’n' { n ! \U)tnv ! (oic)
where ¢ is the Kronecker delta function. Since the covariance function
Kz((,x\ ts Hermitian and nonnegative definite, the eigenvalues are
real and nonnegative and can be arranged in descending order,
Ny Z Ay > s 0
The assumption that led to the relations involving the real and

tmaginary parts ol

31

the medium time-{requency

the various zero-mean tu':['|l'\
’

the detection problem be:

Karhunen-Lotve expansion of the process y(t) in the interval

the difference between y(t) and y(t)

auntocorrelation function




lvil.). (9a) ‘lll\i (O9h) lead to stmlatn I"¢ ].:llwn Lo the real el 1 2

nary parts ol the output covariance function Az‘(,\’. |.e
Z(t ) P O ) R T I
R !
It the Doppler-delay random field p(A,7r) satistic the orthog
condition of Eq. (7b) by possessing quadrature components that
mutually independent family of zero-mean random variables and
qoulJlnlv components at a given A and are identical ly dasti

then (see Appendix A)

: z
et SIER 2
The covariance and cross-covartance functions of the quadrature oo
nents of the complex envelope of a real narrvow-band stattonary pu

must also satisfy the conditions of Eqgs. (38a) and (38b)(Appendix A

Since the noise 1s stationary, v(t) ts the sum of two tndepend

cesses satisfying these conditions, which implies that, 11

then

30a) and (39b) cause

Oue can verufy that the conditions in Fgs.

expectation E Y(r’Y(\»' ta be zero for all ¢ and s. S e

1 I
Ely y [ | £ ()E (s)ELy(t)y(s)]d
P A a J

v |
the expectatron k yqu 1s 1dentically zero tor all n and m. Ihe twe
relations

Ely y { N )
DD " ( A
32




imply the following conditions on the covarrances and cross

of the quadrature components of the y.

|
L R e oY
E[‘YHR‘YMR] ﬁ‘-\nl-yml] 9 (&n B '\U) nm
E(y"R)'Mﬂ = E[)‘n[ym”] = 0y all m and n
where
'vn E Ynr B l.»ynl E

The above relations [Eqs. (40a) and (40b)] apply for the si

noise hypothesis; the corresponding relations for the noise

are obtained by setting A to zero.

We can now conclude that the quadrature components of

a mutually independent family of zero-mean Gaussian random

coyvariances

(40a)

(40b)

gnal-plus-

hypothesis

the ¥y form
G

variables

with variance (A + N )/2 under hypothesis H, and variance N /2 under

n i

hypothesis H.

The likelihood ratio [(y) can be formally obtained by

limiting ratio of the probability measures on a sequence of

the two hypotheses,

fly oeveny, (HY)
L(y) lim
: a=2 Fly ey ¥, 1)
o : X ) 2
52 T s T e
|+ == ) R 0
m = | \0 |

forming the

the ¥, under

s (41)

Equation (41) implies that a suitable test statistic has the form

(42)



If g(s,t) i1s the solution of the integral equation

"
Kl(l',.\)g(x,l)tl\' I"z("!) , (13)
0

1 |
g él(’-,') t _
| Nu

then g(r,t)  possesses the expansion

g(r,t) = Eﬁﬁ(ﬂfﬂ(r) (144)

and the summation for S in Eq. (42) can be obtained from a term-hby-

term integration of the expression [Ref. 17]

T o T .
S = [ y(s)gls, )y (t)dsd ! (he)

0 0

The optimum receiver realizes the quadratic-form processing indi-
cated in Eq. (45). Various optimum receiver structures have been de-
duced by Price [Ref. 18], Middleton [Ref. 191, and Kailath (Refs. 20,

21, and 22].

C. CHABACTERISTIC FUNCTION OF THE TEST STATISTIC

I[f we set

ly |
\n )n
= B
A + N <
n 0
in Eq. (42), then
S 2w , (16)
n
n
and the characteristic function of S under the hypothesis H 0,1,
1s given by
T ¥ < tamw
p(ulH ) Il o (ulH ) [l Ele i . (47)
" / n *n ! n }
One can easily determine that
taw. . |

Ele " n|H

| e (48a)
) (SR 7 T
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We

obtain the corresponding probability

resitdues,

e
A\ + N A t N,
- ‘” ) . o ( n ( | k 0
f\ S “ e ) M ————— SN e
0 9 \ N, § 4y \ F N
L X . 0
By using Egs. (50a) and (50b), an interesting relation
probability densities can be verified. Ihis relation
Fredholm determinant [Ref. 24
D(u) ( t 1)
and assumes the following tmpie forn

Grenander, »t al. [ Ref, 23] discuss a numerical technique for appr
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(49a)

(49b
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laws,
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(50a)
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Important properties of the statistic S are deduced from the

logarithm of the characteristic function.

If the Nth moment E[SN“IJ] exists, then log (uTHJ) can be ex-

Ps
panded in terms of the first N derivatives [Ref. 25],

.V n
- g (ta) ~
log dg(ull ) = = € [S|H )] —— + R, (u) . (%3
e S Pt J n
where
lim ful B (u) = 0 ,
= g
and the cumulants G, [S H}] are defined by
N (5 .
¢ slp.l = log o (ull ) - (51) 3
n J . : )
i du®

For the statistic S, the cumulants assume a particularly symmetric

form,
= 3
c ISl = 3 N (55) u
m=1 n
o5 Neh X
c [SiHy] = = |—— " (56)
8 m=1 N S
0 L
[f the covariance function Kz(x,t) 1s continuous, then by Mercer's
theorem [Ref. 26],
K.(s,ty = ZX £ () (s) - (57)

n

This series expansion for the kernel K,(s,t) implies that the cumu-

lants l.‘"[S“l,]. result from the n-fold integration

=i

'} \ n T ’T. 11 ¥ -
&Rl = ({ LR, '~‘1 k (11,1'”):“1...{!1" ; (58)
" 0 0 J '

Similarly, the series expansion of Eq. (44) for the kernel g(s,t) implies

that the cumulants ¢ [.\'“101 result from the n-fold itntegration
n
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The

The

limit of

where

The Wy will converge in mean square [Ref.

to the

where

mean and variance of

E(s|H ]
Var[s|d,]

E[S|H,]

Var[S HO]

statistiec S is

a sequence of

random variable

R
S
.
ey
= iy

g(f".{l) i g(t},r’,lldrl...dz

S are obtained from the first two

-
i K (e, thdt
9 7',Tl . ‘3
¢ = | J 1K (s, t)| dsdt
L 070

'Vo\n

= | g(t,t)dt
0 .Kn 0
9
VoA, o .
= I Wels, vl dadt

o 1 \" 0 0

a random variable that can be obtained

random

variables, W W

n

cumul ant s,

a8

(59)

(60a)

(60b)

(6la)

(hllll

the

{62a)

(62b)

l’ 2' ’
S = lim W 5
N
W, 2w
N a=1 n
27] (and hence in probability)
B AR
lim E[(S - W )?] - 0 ,
o n




and

mean-square convergence of the WY to S under both hypotheses follows as

a result of the condition

However, the above condition is implied by the continuity of K, (s, t)

on the square scl0,T], tel0,T], since |K,(s,t)| must then be bounded

z
on the square and
i
| | 2
2 - | ' 5’\2(\'_[) “dsdt A
g 0 0
In Ref. 28, Loeéve proves that convergence in probability is equivalent

to the stronger mode of convergence, convergence with probability one,

when the vandom variables w are independent. Hence, the W, converge
n

to S with probability one when the kernel K_(s,t) is continuous.



VIIT ASYMPTOTIC RELATIVE EFFICIENCY
OF RADAR SIGNAL

The receiver treated in this study 1s a Neyman-Pearson detector.
For a given false-alarm probability @, the receiver achieves the lowest
possible false-dismissal probability by comparing the statistic S with
a proper threshold. Since the probability law of the random variable
S under either hypothesis depends on the eigenvalues of the covariance
kernel K,(t,s), which, in turn, isdetermined by an interaction between
the input signal and the dispersive medium, the resulting false-
dismissal probability will, in general, depend on the structure of the

tnput stgnal.

In this chapter, we introduce the problem of designing an 1nput
signal that optimizes the efficiency of the Neyman-Pearson detection

procedure employed by the receiver.

The signal-design criterion discussed in this study 1s based on
the asymptotic behavior of the false-dismissal probability when the
decision-making element of the Neyman-Pearson receiver is presented
with a sequence of independent observations of the statistic S.  All
members of the sequence are either samples from the noise hypothesis
H

the signal-design aspects of the present problem 1n the realm of large

o or samples from the signal-plus-noise hypothesis H . The posing of
sample theory is justifiable not only because of important radar appli-
cations in which the transmitted signal 1s repeated several times and
communication applications involving the reception of several diver-
sity transmissions but also because an important underlying principle
of signal design can be evolved with tractable mathematics and well-
known results. Although the “single-sample’” receiver differs markedly
from the “multiple-sample” receiver, we shall show that the large
sample theory yields an important result that 1s interpretable as a
measure of the efficiency per observation presented to the receiver.
This measure serves as a reasonable suboptimum criterion for comparing
different transmisstons in lieu of the presently intractable minimun

error=probability criterion for the single-sample receiver.




Consitder the I'nllux\lng SeqUenct of tests that can be [H'I"'I"u'l] by

the \('\m‘nlwl’vul'.\nn Alt'l(‘(l!'l'. |‘n| ecach n 1. _7. the detector must
choose ln tween ”l o1 ”” on the basis ol n Illlh']»t'lul(‘l:l observations,
S A e et S . of the stacistie 5. We conclude from |'.q. {52) than

1’ ) ' &

the likelihood ratio for the nth test can be written

Therefore,

—_ o
i n j=]
is a sufficient statistic. Lev L, L,, ..., be asequence of thresholds
satisfying
) ) \
! n — Ln ”n

In this manner, we generate a sequence of tests possessing false-alarn

probability equal to ®«. The false-dismissal probability of the nth
test will be denoted by 3
n = P n I,” ”l

Various investigators have studied the asymptotic behavior of
[Refs. 29, 30, and 31]. Kullback [Ref. 31] presents a simple deriva-
tion for the following theorem which Chernoff [Ref. 29| attributes to

unpublished work of C. Stein.
Theorem:

For anv value of o < a |

. '/\HiN.
lim ) e h G (64)

where T(H :H ) 1s the Kullback-Leibler information number,

1
f(s|H,)
/(ll"lll) ffots |1 ) bog ss=————w=—=gg . (65)
\ o v f(s|H,)

10




Thus the number f(# :H ) measures the exponential rate at which the

false-dismissal probability approaches zero with an 1ncreasing number
of observations. When n is large, maximizing I'(H :H ) corresponds to
minimizing the false-dismissal probability. For this reason, we inves-
tigate the properties of a transmission X(t) that maximizes the asso-

ciated Kullback-Leibler information number [(H < ;x).

The above result can also be tnterpreted tn terms of the asymp-
totic relative efficiency of two competitive choices, x (t) and x_(¢t),

for the transmitted signal. For each input signal, we construct a se-

quence of tests possessing false-alarm probability @. There results a
sequence of false-dismissal probabilities {4 } for input signal x,6t)
and a sequence of false-dismissal probabilities 15 b for input signal
X, (t). [f two sequences of 1ntegers, «‘n" and *.n,‘f, can be found so
thatv 0 = 3 , then it follows from Eq. (64) that
”1 V:.:
ooony I(II“:H]'.X_‘)

by == = (66)

nyem N FCH o2l ixy)

n

y

Thus the right-hand side of Eq. (66) is the limiting ratio of the num-
ber of times each signal must be transmitted to yield the same false-
dismissal probability for a given false-alarm probability. [If
I(HOZHI;XI) > I(HO:HI;X‘_‘)’ then, in this sense, the signal xl(!' 1S more
efficient in reducing the false-dismissal probability per transmission

than the signal x_ (t).

Kullback [Ref. 31] bases his proof of Eq. (64) on the easily es-

tablished 1nequality

|
I(H”:”l) = log l_-—“— t (1 = o) log (6T)

n

He observes that, since the right-hand side of this inequality monoton-
ically i1nereases with decreasing B for @ < F = - l, one obtains a
lower bound to the minimum possible £ | say ,‘;. for a given I(H :H,)

and a fixed value of a, 0 < o < 1. We note that, for the single-sample
receilver, maximizing I(H“:Hl\ corresponds to minimizing the lower-bound

*
' for a given a.

11




IXN  MAXIMIZING THE KULLBACK-LEIBLER INFORMATION NUMBER

A.  PRELIMINARY CONSIDERATIONS

By using the relation between the two probabi livy laws in Eq. (52)
and the definition of J(H ;:H;) 1n Eq. (65), the Kullback-Leibler 1nfor-
mation number can be expressed i1n terms of the eigenvalues of the

kernel l\’z(t, g )

1 ! !
ICH :H;) = log I)<%>'—EA<|]I[|, (68a)
Ny N
\n l \“An
FiHg el ) = 3 log |1T #-—=)=— 2.— - (68b)
: n N, Ng » Ny + A,

Denote by » the nth eigenvalue normalized to the noise i1ntensity,

! N,
then
l(”“'.”‘) o IH;: (1 + .") =3 : i (69)

We shall also refer to the noise-normalized eigenvalue » —as the SNR

of the nth degree of freedom of the process y(t).

In this chapter, the fact that the eigenvalues are constrained by
the dispersive properties of the medium 1s ignored, and the problem of

maximizing [(Hy :H;) under the simple constraint

12
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is investigated. The results of the present chapter are then inter

preted 1noa later chapter to develop useful signal-design criteria

when the eirgenvalues are constrained by a dispersive medium, Dince
e
> r.. ot ® 2
2 A : K. (e, t)dt = Iz\_ z(t)| dt
n z
n ] 0

the inequality (70) bounds the average signal energy-to-noise intensity

ratio at the output of the medium. This is equivalent to bounding

energy of the transmitted signal.

We are concerned with the behavior of I(Hj :H,) over all Cauchy

& v
.\'('llll('ll('f's 1 >n ‘”, 1 Ut ““llll“ﬂill JN-€ ;Illli nonincreasing terms sat l-\’\ 1ng
kU
n —
n \“

Our task 1s to find a sequence

X EH
: ‘Y pin=1 0 "n+1 ; "no, £ & _\—
such that [(H;:H;) 1s maximized. Since
n
0 l““’ Ak \n) = et "n
n

convergence of the sum

implies convergence of the sum

bog: €1 = 2. ) .=

n N 1 +

For any sequence y € 1, let y" denote the finite sequence obtained

from the first m coordinates of

the




Slr:sllJll\_ | et J l"'[l('li’ t e finitte sut
m

n
m
; n =
(™) log L1 & W% = a———r (71)
m
n=1 »
then [(H“:III' evaluated at y 1s defined as the limit
PCH s s H ) lim ¢ (™)
0 1 m
n
[t is clear that the finite sum ¢ will possess a constrained relative
extremum at a point where all »" are equal. This follows since both
Y and the constraint
mn
" K.
1 N
are symmetric in the "
n
In the remaining sections of this chapter, we prove that [(H :H,

d('lll('\"\‘ dan ~Ilr.~n|llll‘ maximum at o \l'illl"[l‘ o In IV[‘\\“\.\\HL' d |1|I||'
number of nonzero equal coordinates with coordinate values 1n the
vicinity of 2. The proof of this statement 1s based on finding a s«
quence ¢ ¢ | that satisfies the following condition:

For a given available SNR Ed N, there exists an integer Nsuch th

(") {¥™)
& -

for all m > N and all

Since [(II“I/II) i1s defined as the limit of the 4 the at
dition 1tmplies the existence of an absolute axi
Assume there 1s a € |" such that
Lim y (L%) | ar (o*®
m -
Ry -
Ihl'[l 1t lnllu\\s from l'ln"uw]ll,”\ I\[..‘u rt 3 | t hie 1t that

there 1s an i1nteger M such that

)
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i
for all m > M, which contradicts the assumed property of the
sequence o
The existence of a preferred sequence of normalized eigenvalues
implies the existence of a preferred distribution of avairlable SNR
* among the degrees of freedom at the output of the medium. This s

not surprising. It is intuitively clear that all distributions are
not equivalent, as it is clear that the performance of a communica-
tion system depends on the strength and number of i1ndependent di-

versity paths when the total SNR 1s fixed.

In addition to being physically reasonable, our results are 1in
accord with the findings of other investigators who have been con-
cerned with problems related to the one treated 1n this study. We
have mentioned the work of Pierce [Ref. 1| in which he concludes that
a SNR in the vicinity of 3 for each degree of freedom minimizes an
upper bound for the error probability in the symmetric binary-
signaling case. In Ref. 32 Wainstein and Zubakov pose the following
question: How many transmissions (denote by N) of a given signal are
required to achieve a specified @ and 2 with the minimum expenditure
of total SNR, if each transmission is independently perturbed by a
time-invariant, zero-mean, complex Gaussian gain? By appealing to
the central limit theorem (which requires very large N and moderate

t and £), they find that the optimum value of N, in general, depends

on both @ and 3; however, for @ = 2 the optimum value of N vields a
SNR of exactly 2 for each transmission. In Ref. 33 Price investigates

the error-probability behavior of an “on-off” communication svstem

] transmitting a constant-envelope pulse over a purely time-varyving
channel with exponential correlation function. For a given available
SNR and fixed time constant in the exponential correlation function
his results indicate the existence of an optimum pulse duration.
Since the eigenvalues depend on the product of the channel time con
stant and the pulse duration, his work 1mplies the existence of an

optimum set of normalized eigenvalues.

B. FIRST MAXIMIZATION PROBLEM

Let m and k be fixed integers, with k m, and set m = k
Denote by the e and y the restrictions of the y to the correspond
] L
ing k- and j-dimensional spaces. In this section, we treat the prol

lem of maximizing the sum

15




e = A

1
!
(St S ( )
Py ,
subject to the constraints
k ¢
(i) 0 < 1 . n b Bt ket s R
4 n
! ) > ]
) ya 1 ’ n 15, "l o S S
The tunction y, is the contribution to ¥ due to apportioning part of
the available SNR to degrees of freedom possessing individuoal SNR Tess
than or equal to unity. Similarly, ¢ is the contribution due to de
grees of freedom with individual SNR greater than unity.

Problems involving finding the absolute extrema of functions are
considerably simplified 1f the functions happen to be convex or con
cave in the region of 1nterest. Although the decomposition of U 1nt
the two functions ¢, and ¢ may seem artificial, we demonstrate that
this decomposition leads to a simplification 1n that ¢, 1s convex and

. 1s concave, subject to the constraints (1) and (11) Ihe convexity
or concavity of these functions follows as an 1mmediate consequence of
the following lemma [Ref. 34
t Lemma:

Let r be any positive integer and O_ an open convex set in ©_ I'he

function ¢ is convex (concave) on O if the quadratic forr

Qy" . h") = Z E/;[rh: ~— U (") 200", RT) 0

for all ¥" « O, and all h™ « “r. Strict convexity or strict con
cavity results 1f the inequality is strict for every h' 0
Sl“l('
Tuhi
QUy" k") Z: S i = {72)
=y JE IR 40
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the function 1s strictly convex 1n any open convex set

Wy

the constraint (i), and the function  is strictly concave

open convex set satisfying the constraint (i1).

The fact that the first partial derivatives

are nonnegative implies that , achieves its maximum value,

to the constraint (1), at the point whose cocsrdinates are

We now investigate the behavior of v in the region
p el S S H 1 AU

and on the hyperplane H (¢), defined by the equation

[f ¢ has a constrained relative extremum in the hyperplane H (¢) at

]

some point yJ, then the Lagrange multiplier rule ensures the existence

0
of a constant o such that »{ is a critical point of the function
)

P (r?) IS (X 9 = 6]

] } - | n
We observe that all second partial derivatives of ¢ are
the second [i.llliul derivatives of Y s Hence, the lemma implies
P, 1s strictly concave in the region 1’, for all choices of the con
stants and ¢. Concavity of p, ensures that this function

at most one critical point 1in [”. which (if 1t exists) must

solute maximum of the function i1n this region. Since
metric function of the ,’1 n = 1,2, ..: 7 (the value ol
under all permutations of the coordinates of a particular

critical point can occur only at a point where all the

This statement follows from the observation that a critic

a point possessing at least two unequal coordinates 1mplie

istence of another critical pornt obtained by permut ing

satisiying




unequal

the

must

s i1ndeed a

strict

be

coordinates

concavity of f‘

the pnin(

remains

Lo

eritical

partial derivatives,

are

1s sufficient

Z2Er0.

The

to

(because of the symmetry of ; ), which contradicts
Furthermore, since 15 so chosen that
the critical point is in the hyperplane H (c¢), this critical point
) 3
y S|k n | . _—
n
J
demonstrate that a can be so chosen that the point
' & Y
g _ n L 2 I
]
point. A critical point occurs when the j first
J
n
[]( yd ) = —
P
y! (181 yd)*©
n “n
choice
JC
I e
ensure the occurrence of a critical point when all
Hence, the function attains a con

coordinates are equal to c¢/j.

strained absolute maximum in the hyperplane H (c) at this point.

k
b,

nates m[uul

of

value

partial

1S positive

We

)

conc lude

b o4 ('k)

J

¢ I8

that

|1||(lt'l'

a point "

the

derivative,

for

]

determined to be the
— ( I
V ( J ' (-'
noJ
all n
[ «
0
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maximum
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that maximizes the
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( SECOND MANIMIZATION PROBLEM

lu this section, we investigate the ;rlwlllm:. of determining a

dimension r such that v 1s maximum under the conditions that all
r r
coordinates of »" are equal and : :‘ s In other words, the

1
n
optimum division of an available SNR among degrees of freedom pos

sessing equal SNKR will be determined.

For a given r,

and
(“ o ! & \
( i) = ! |u;_r 1 * = /
F ! |4k €y I//
Let
.
U
—_— v
r
then
o )J 3 ¢ ge i) L13)
n X
111l n
where
oz €L = x) 1 s
e(x) e : ((4)
X B e

The function e(x) measures the efficiency of distributing the

available SNR, ¢, among degrees of freedom with SNR equal to x. \
plot of the negative of the function e appears in Fig. 6. One can
vertfy that e achieves its maximum value at the point a 2.16
(accurate to two decimal places). Observe that the maximum of e 1s
rather broad and the value 2.16 i1s not very critical. he function ¢
varies by no more than |1 percent for 1.9 ¥ Loy However e de
creases very rapidly for x decreasing below 1.5 and decreases mono

tonically from 90 percent of the maximum for x increasing above 4.7

For a given ¢y, the optimum dimension can be found by choosing

an integer r* such that the value of the function plotted 1n Fig. 6

19
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at the point x* = ¢, r* is the mintmum obtainable value for all pos-

sible choices of x = ¢, 'r. In general, this procedure will yield a

SNR in the vicinity of 2 for each coordinate. ln view of the rela-
tively broad minimum of this function, an excellent first approxima-
tion to the optimum dimension can be determined by simply referring

to the curve.

In the first maximization problem, we have found that the funct
achieves its maximum in the region defined by constraint (11) at
point where each coordinate is equal to ¢ /). The above result demo
strates the existence of an optimum value for the dimension j that

results in coordinate values in the vicinity of 2.

Furthermore, it 1s evident from the above arguments that the k
coordinates equal to unity in the solution to the first maximization
problem are in fact wasteful and their combined SNR is more efficien

employed if coordinate values in the vicinity of 2 are chosen.

We now combine the results of the first and second maximization

problems and obtain the following maximization principle.

Maximtzatton princeple:

The Kullback-Leibler information number 1s maximized subject to th

constraint on the available SNR,

by choosing m degrees of freedom possessing SNR E 'mN, (that s,

N = E” m for n = 1,2, ...m) in the vicinity of 2, such that
o E,
o e B
nN, Ny
where
log (1 + x) |
pla) = =P ZL o
X I + x

tor any integer r.

1on

o

tly

o




\ THE KULLBACK-LEIBLER INFORMATION NUMBER UNDER
THE CONDITION OF “LOW-ENERGY COHERENCE™

A. DISCUSSTON

Important practical problems exist i1n which the noise-normalized

eigenvalues of the kernel K_(t,s) are necessarily small owing to a

z
severe scattering of transmitted energy in the dispersive medium and
a practical limitation on the peak power transmitted his situation

can occur, for example, in the detection of radar-astronomical target

Price has studied this problem in detail and refers to the case 11

which the largest normalized eigenvalue %, is much less than unity
the “low-energy-coherence (LEC)" condition [Ref. 35 he import
constraint to be considered in problems of this nature 1s the maxi

achievable SNR of each individual degree of freedom rather than the
total SNR which, in practice, can be made large by obtaining many degree

of freedom with transmissions possessing large durations or bandwideh

Price has shown that under the condition of LEC the quadratic-forn
processor of the Nevman-Pearson receiver [Eq. (45)] approaches a S\R .
maximizing quadratic-form processor [Ref. 35]1. The latter suboptimu q

processor computes a statistic,

Tl .
\ | y*(t)m(t,s)y(s)dtds

0 0

such that the recerver-output SNR,

{EM Hil = EIM|H
@] - 6
Vac IMIH

1s maximized, subject to an energy constraint on the transmitted

signal, over all possible choices of the kernel m(¢ ) \lthougl q
the statistic M is of the same form as the statistic S the Kernel 1
m(t,s) 1s much simpler to compute than the kernel g(t ) i 4

easily verified that K(M) is maximized when m(t ) 1s equal to the

kernel I\I(f,-‘ Re | 35
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Price [Ref. 8] also investigated the problem of finding a trans

mission (of fixed energy) that maximizes the receiver-output SNR, 70S)
under LEC conditions for the Neyman-Pearson detector He concluded that

A(S) is maximized by maximizing the quantity

ay 2| 2y | 2 £
“f“(v,;‘ﬁ 'z("') drd/

~ul>|ml to an energy constraint on x(E).

In view of the equivalence of SNR-maximizing processing and Neyvman
Pearson processing for LEC conditions demonstrated by Price (with the
resulting conclusion that increasing ' improves the error performance
of the detection system), it is clear that maximizing the above quantity

1s an optimum signal-design strategy for LEC conditions.

Since the criterion of maximizing the Kullback-Leibler 1nformation
number is based on large sample theory, we are not ensured that this
criterion will, in general, yield signal-design procedures that minimize
the false-dismissal probability at a given false-alarm probability for
the single-sample receiver. However, in this chapter we demonstrate that
maximizing the number I(H :H ) under LEC conditions is equivalent to
maximizing the ratio H(S) and hence is identical with Price's criterion

for suitably small normalized eigenvalues.

In addition, 1t is demonstrated that the key phenomenon in the LE(
case is the approach of the noise-normalized statistic S’V to a normal
random variable. It will be shown that, as S/N  approaches normality,
maximizing I(”“t/ll) minimizes the false-dismissal probability for any
false-alarm probability, under the reasonable restriction that the false
alarm probability is not chosen so small that a false-dismissal prob

ability less than one-half cannot be achieved.

B. EQUIVALENCE OF THE KULLBACK-LEIBLER INFORMATION NUMBER
AND THE RECEIVER-OUTPUT SNR FOR LEC CONDITIONS

For . I, the terms involved in the expression for I(H H, 1
pearing in l“l' (69) possess the expansions
y |
log (1 ) ( ) A - )
B k=1 A
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From Eq. (77), we obtain the limiting value of [(H :H ),

| L 5.2
im { I(Hy:Hy) E 2 ¥
AR
2y,

Therefore, under LEC conditions, the Kullback-leibler information number

is dominated by the sum of the squares of the normalized ergenvalue

The maximization of I(H :H ), subject to an energy constraint, 1is
achieved by maximizing the variance of S under hypothesis H, [Eq. (60b)
: T B o A
K, (s, t) “dsdt { 79a
n 4
n (U Y

subject to the constraint on the mean of S under hypothesis f

Eq. (60a)

7 . -
o [\Z|r,llv/l < E L7




For the Neyman-Pearson detector, the ratio H(S) assumes the forn

) y 2
\("/x :
n
n n n
R(S) - o Tl AL i
N oA 2 " 2
« U0 n p e
n \N, * I8 B
0 n

£ A 1, h(S) approaches > ": which demonstrates the equivalence of

n
“”0:”1) and R(S) when the normalized eigenvalues are suitably small.

To relate the integration in Eq. (79a) to the input signal, it is
more convenient to deal with the autocorrelation function R (a,t)

[Eq. (19)],

Rz(l.l) = K |t -

X
Z 9

o

Hereafter, we assume that the medium has finite memory L. that 1S,

h(t, ) () |0 e i

and that the transmitted signal x(t) is zero outside a finite time
interval of duravien T,. Then, if the duration of the observation
interval T is equal to L + T,, the integral in Eq. (79a) can be

)

written as an integration of the squared magnitude of R (x,t) over the
z

entire @& — t plane, ’

The integral in Eq. (81) can be expressed in terms of the four
second-order measures of the process z(t) (Fig. 1) by applying the

Parseval relation,

Since




: s
the quantity > A~ is conveniently related to the input signal as foll

2
n H

\ similar argument applied to the sum of the eigenvalues yields

= 1\“(:‘.‘1 =y (o, /3) At/u{.‘ (
X

L3
.';\n nl\l(t,(hlt IR, (0, t)dt b, 05100 = /{th,ul_xuyu\
The energy constraint, A < E . bounds the maximum input energy

n
£,(0,0) since R,(0,0) is a constant.

Rewriting Eq. (83),

'I" L 1 VB Ly
If”(,, LG

ZA? R2(0,0)/5(0,0) 1' dod)
s £ [(11R, (0,00 [ (0,0)
| H ) x
we conclude that i is maximized (subject to the constraint ; £

n
by choosing a signal x(t) that maximizes

-)*; 'H;(, By % | g2 )| 2dad 4
‘.;(0,0\
where
0 1]
lf”((),m | and b (0,0) |

and scaling this signal so that 1ts energy 1s maximum.

G APPROACH OF THE NOISE-NOBMALIZED STATISTIC TO NORMALITY

In this section we briefly 1nvestigate the limiting probability
law of the noise-normalized statistic S'N. under LEC condition Fro

Eq. (42) the noise-normalized statistic can be written as the su

N 2 5 1Y
\ n N_( N )
0 0 n (
| ot
R A
1
N, | + N_)

ah




"o SN IR

|

.|H|!

| ;
t (85hb)
A s n

then, under hypothesis H,, the v are exponentially distributed with

} characteristic function (| iy u)” ' and Pllim } S/N = 1 for
” n Lo \ 0

; l\Z(\.H continuous.

The independent random variables {v | obey the central limit theoren

if Lypunov's condition [KHef. 36! is satisfied:

i
i | N !
fim o ¥ Bl = Hiy 2P 00 (86)
l: N-e® 2 +5 i S iy
E L —— 1
LVar(V,) 3
N
for some o > 0. Let o 1, then
Ellv = Etp )|*" = WATIRT £ = 1
n n n n
) 1
E 1 3 : El(: y )= NE[ (2 ) } 3y ®
n n n n n n r

and i

iz ]

{ { [ }3 2 Al y |
| Var (¥, _ 2 _

=1 u .

Therefore, the sum of positive terms on the left-hand side of Eq. (86)

1s bounded above by the quantity

N
< 3
3 n-} g’
A 1 A .
n=1 " I 1
Hence S/N, approaches a normal random variable with mean 5%  and
. 2 "
variance 2.) AT
n g
n -
N
I § e 0
o \ Y
n<l L




'IVII('

The

n

output of

and

under LEC

LEC condition tmplies the inequality

-l[ili\('

ratio

carn

oo l S0 \il \ erges;

\lthough the

tuput to

output
for

made vanishingly

false-dismissal

where © 15

L.

n
half and is minimized subject to the constraint

surtably

l('.\’.\'

miLzing

limit.

o f

mately
ever,
this

for

errotl

at

the

n

'”li.\' conclusion 1s based on .\lmp|l‘ arguments that are true

the
SNR.

the system performs

smal l

Sﬂ\i\‘ l s

not be z

this can

the medium i1s 1nf

are all

conditions. The f
recetver and th
It
then bhoth tnput and output SNKR must be appropriately large.

¥ .. Ghe &
n

probability

lim
s 3
2y
n
S 2
&y
n
the unit
than y

for

loss in
achieved

P"i ('('v S

question.

the SNR-maximizing receiver

SRR ),

all

,H'

('l S1gn

A'IY'[I

n

and

Besides obt arning quantitative measures

probability

(B

normal probability

the prob

E

Consequently, we do

the abov

thorough analy

calculated bou

strategy of ma

riterion)

condityons

ero unless

DCCUT (Hll\

N e,

less than

1rst summation

e .\'l'('(\(\d

ati1o of the

l‘(‘l'l‘m(‘bi

ability ot

net readi

system performance when

e signal -

sts of the

nds for the

Nitmrzing

. Price

a8

1ts

prevatl.

the

1S
summation

of

n
As this ratio approaches zero,

dismissal

obtain

case

incurred

)
y o vVerges
n 41 %

ayerage

the

the
s

detection

to

distribution.

quantirtative
tmiting
strategy

Ref.

oppo

that

summations

implies

the

@t

Al el 4

thre

thi

Yot

appro

1s emploved.

(as uiv}lnxnw] to the Nevman-Pearson

1

shold

“l‘i"\ Ing

in general, be quite large for practical systems operati

satistactor: s
”l‘-‘-l\"'l
: b

Can

ntaing

XA

t hie




X1 EQUIVALENT NUMBER OF DEGREES OF FREEDOM

[n Eq. (46) the statistic S has been expressed as a sum of expo-

pentially distributed random variables,

The Karhunen-Lodve expansion decompases the output of the medium 1nto

independent degrees of freedom {z }, and w_ is the contribution of the

nth degree of freedom to the statistic S.
The ratio
B[S,
\«II \.w“]
is a useful measure of the statistical stability of 5. [f there are

only N degrees of freedom with eigenvalues all equal to A, then the

above stability ratio becomes

For the infinite-dimensional case, 1t 1S convenient to define a quantity

as the l“llll\.l\"ll\ number of degrees ol freedom,

E=-LS|H

1 Ifz(ll_l)r/! A b=(0;0)
Var | S ”‘ “”z(!"} '.!l'!/! b (e, ) Jod




Expressed in terms of the input-signal and medium properties, the oquiva

lent number of degrees of freedom of the output process becomes

= ) (89)

[ no . 0 : 2 ]
J ”S’”('. ) fry (@, )| dad;

If, in the infinite-dimensional case, most of the energy of the process

z(t) 1s contained in a finite set of de grees of freedom

with approximately equal eigenvalues, then T, 18 a measure of the num-

ber of degrees of freedom in this dominating set.

It 1s 1nteresting to observe that the quantity - an EBg. (89) i
itdentical to the inverse of the limiting form of the energv-normalized
Kullback-Leibler information number [Eq. (84)] for LEC conditions.
Therefore, maximizing [(H,:H,) for the LEC case is achieved by minimiz-

ing the equivalent number of degrees of freedom.

This result supports intuitive reasoning based on physical considera-
tions. The LEC case is characterized by a lack of sufficient available SNR
to distribute among the many degrees of freedom introduced by the medius
The receiver must then detect the presence of a large number of vervy noisy
degrees of freedom. We improve detection capability by choosing an tuput
signal that minimizes the number of degrees of freedom and hence produce

degrees of freedom with higher SNR than would otherwise be obtained.

The criterion of minimizing the equivalent number of degrees of
freedom in the LEC situation also yields intuitively satisfvineg result
for the general structure of the transmitted signal. We first observe
that this criterion dictates the choice of an input signal with ambigu-

4;}(! ) 2 which resembles

ity function possessing a squared envelope |
the squared envelope of the time-frequency autocorrelation function

)
‘“llll( =,~'\“". In this manner, the common volume shared by these two func-
tions is maximized; the Schwartz inequality bounds the maximum achiev-

‘Ifill' common \v||||mn',

\H;;l!,.““,:(y") ‘IH/'_ ( | II‘);( X, ) "{“/) ( _;‘[ X, ) .,I‘g,l)
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| f ‘H”l k5 ) 1s the sn]ll.ll‘n'tf "Il\l‘l“"l‘ of the ambirguity functiron of a
deterministic signal, then 7 is minimized if and only 1
1) - . () o
P (e, 5) R (e, B)

The above statements imply that the shape of the input energy den-

Sity NXH.I) should resemble the medium scatterine function S ARyT)

[f S (A, 7) is wide in A and narrow in 7 (large Doppler spread and small :
time-delay spread), we should transmit a signal that is wide in fre- 1;
quency and narrow in time duration, for example, a narrow pulse. Send- 3
ing a narrow pulse through a medium with a large Doppler spread and a

small time-delay spread corresponds to transmitting a signal with an

energy distribution in the time-frequency plane that 1s least likely to 3
be severely diffused by the dispersive medium. In this manner, we min- 2
imize the variability (number of degrees of freedom) of the output pro- >
cess Elt).

On the other hand, if a long-duration signal is transmitted, the .‘:
rapid time variations of the medium (1mplied by the large Doppler spread) y
are given full opportunity to severely distort the transmitted signal.

This 1mplies an excessive generation of degrees of freedom for LEC con-
ditions as opposed to the short-duration transmission.

It 1s interesting to compute 7, when the medium 1s time- and i
frequency-invariant, that is, when

H:,;lr, i = for all & and
This 1s the time-frequency autocorrelation function for the time- and
frequency-flat medium which merely multiplies the input signal hy a .
random complex gain. It is evident that the output of such a mediu !
contains only one degree of freedom; hence L
-
()" o(a, ) | *dad l. ;

Equation (91) is a well-known relation which is usually derived fro

the basiec definition of ¥ (a,5) given in Eq. (23) [Ref. 1

Ol
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i XII  SIGNAL DESIGN FOR RANDOMLY DISPERSIVE MEDIA
i
B
i A. DISCUSSTON
The general problem of choosing an input signal that maximizes the
5 : : g 0
| Kullback-Leibler information number when the eigenvalues are constrained
by an arbitrarily dispersive medium 1s difficult and at present is un-
solved. The sclution to this problem involves maximizing the quantity "
/ .'
1 No (T P Y 1 e ]
I(Hy:H) = | | g(t,t,x)Mdtdx — — [g|t,t,—] dt y (92) |
0 0 Vo 0 Vo J
. , , !
where g(r,t,x) is the resolvent kernel for the integral equation
(T ,
gl il o [ Or shal s diR)ds = l\z(r,{ ) . (93)
0
However, by using the results obtained for the simple energy-
. - % . - 4
constrained case (finite number of nonzero eigenvalues), 1t is possible
to deduce an optimum shape for the output energy density 3,6 s 2 Y+
When the medium is dispersive, the assumption of a finite number of
nonzero eigenvalues implies, in general, that the output process is
limited in both time and frequency. Hence, the resulting nonrealizable
optimum output energy density based on a finite number of eigenvalues
must be approximated by a realizable energy density. 1
We have shown that I'(Hy:H,) is maximized when the available SNR
is distributed equally among the eigenfunctions so that each degree of {
freedom possesses a SNR 1n the vieinity of Ls In this -'|.|;~!'x W
demonstrate that to obtain a group of equal eigenvalues 1t 15 suffi- o
crent that the energy density Nz”’“ be constant over a region in
the t - f plane,
|t 1s convenitent to deal with a time- .||||i!|4‘x|1:xxr\- shitted proce
2z(t) with mean signal time and mean signal frequency equal to zero,
3
[,\'zly’f)r{y,[l 1\ (U4a)
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o

r.\'zt; t)dedf 0 (94h )

B: AN OPTIMUM SHAPE FOR THE OUTPUT ENERGY DENSITY

Stnce 1t 1s assumed that a finite duration i1nput produces a

finite mnullm:nn\wn z(t) 1s zero for t outside the finite i1nter

val (=T/2, TFr2) Therefore the ergenfunctions ‘ (t) can be defined
to be zero outside the interval (=T/2, T '2), and the integration can

be pvri'nrmmi over all t in the integral equation defining the ei1gen

functions and the eigenvalues |Eq. (37a)
| £ ) s )dt F s)
LA/ Alll { “]J

ln this section we are concerpned with the covariance kernel

K, (f ) of the frequency process Z(f), where

z
Z(f) 2t )e TETL Gy (O5«)
-Ill«l
y Crg® r
AZ¢/,| ElZ LRYZ () (95h)
The kernel AZ("J 1s the double Fourier transform of the kernel
L )
AZ
Alt' ) o Qe isiie t (96)
Let l‘.'(vl be the Fourier transfor i the nth eirgenfunction
l,\rr I"«ri F'tdt
then the functions lliW constirtute an orthonormal set and satisfy

the following integral equation

heretore, the kernel K,(f ) possesses eigenfunction F ()} and
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lu Ref. 37, Zakai proves that if z(t) 1s time |

function /\ZH f) is continuous and

then the sample representation,

sati1sties

. k
o) 27(%) S 11 'l'(y = 7)

of the nonstationary random process Z(f) converges with probability o

to Z(f) Since

o +a +x

+",
I\ZU.H

df < I\'zu EYdf = K

I

- X

Z(r)\;«ff =

E

ted and 1t the

z(t) | dt

(98)

the process Z(f) possesses a sample representation with probability

one if the average energy at the output of the

the function KZ(I f) 1s continuous.

kernel K (f, %) can be expanded

Kig CFe ) = Zz I\l<£l‘;> S 1N
k b

We now assume that .\'Z(l &) s

in the interval (=T/2,T/2):
PCE)

0

me«

fium 1s finmite

Equation (98) implies that

(SRS

constant 1n the
1

for = el ol -
c s

for t otherw)

This assumption implies that the autocorrelation

‘l?’( ‘?ﬂ
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has the form
Rq(y 3} = S, (f tjeTrEMRrgy - = TP F)Y sine 7S (101)
lt follows that the kernel f\z(! y) 1s given by
! iRy ‘
KaCfn) I'Pl——— | sin¢ CEn = il (102a)
B
which vields
T1. 0k | . ,
EVZ] - tor R =
Ky(k Ty T - ! (102b)
0 for k = |
The expansion of Eq. (99) can now be rewritten
o af :
it
n . n
K(f. ) Z L 'l‘(y = ,‘.) T sine »<, - _—_) (103)
5 I [ I
I';qndllun (103) can be recognized as Mercer' theoren Ref. 26 where
the eigenfunctions and eigenvalues of the kernel I\z\' y) are given by
E_(f) T sin I'(’ ‘:) (104a)
) 1
and
. ” I :
F LG
1 n
" l'(-) (104b)
) I ]

[t 15 now possible to deduce a (nonrealizable) shape -*Z(' t) torn
the output energy density that 1s optimum 1n the sense that a1t pr
duces the maximum number of degrees of freedom with SNR 1n the et AR
of 2 and hence maximizes the Kullback-Leibler information number For
convenrence 1t 1s assumed that the avarlable SNR 2 0,0 \‘ 1 1
even multaple of 2.16, the optimum SNR of an individual degree {
freedom. (In general the SNR pet legree of {freedo 18t be letermined
by applying the maximization principle |
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.\'z(!,t) 2.16N, for

(106a )

0 for (f,t) otherwise

then Eq. (104b) 1mplies

LR R e

= =1 2016 for o W
.\‘0 1.\” l‘\o b 32N,
,zq()’lﬂ
= 0 for n
1. 32N

(106b)

The “pillbox” shape -\'z(f'.t) achieves the proper SNR per degr

e
of freedom. Furthermore, any time- and frequency-limited shape that
achieves the same number of degrees of freedom as S, (f.t) must posses
a time-bandwidth product equal to or greater than the time-bandwidth

product of .\'z( Fi ).

C. MEAN-SQUARE APPROXIMATION OF THE OPTIMUM
ENERGY DENSITY
A

Since S (f,t) is limited in both time and frequency, 1t can not
be realized as a true energy densitv at the output of the medium.
Moreover, the particular dispersive properties of the medium coustrain
the allowable shape that the output energy density can assume How
ever, if this particular pillbox shape can be closely approximated
with a realizable energy density, then we are ensured of the existence
of a dominating set of degrees of freedom with the proper SNR o
this end, we seck an input signal x(t) such that the associated out

put energy density S,(f.t) minimizes the (normalized) mean square ery

.\'zlr t) = S, UF. 1)) 3dfdt
(x) £10%)

v‘x‘l‘(f.['l/ltl'l

Oh6




Ut e g = -

The broad minimum of the negative of the efficiency function
plotted 1n Fig. 6 indicates that the optimum SNR of 2.16 per degree of
freedom 1s not critical in the equal-e¢igenvalue case. Similarly, the
performance of the system will not be highly sensitive to small dif
ferences between the eigenvalues as long as their magnitudes are in
the vicinity of 2. By minimizing the error «(x), we are 1n effect
generating a preferred eigenvalue distribution based on approximating
the nonrealizable optimum shape \z (f,t). We remark that if z(t) is not
time-limited, the minimization of the error €(x) in Eq. (107) is still
meaningful.  That is, the optimality of the shape S,(f,t) lignoring
physical realizability) depends only on the fact that we assumed zero

mean Gaussian probability laws for the output and white-noise processes.

The mean-square error can be expressed directly in terms of the

input ambiguity function and the medtum time-frequency autocorrvelatian

function. Let
z((i_Ul
W ——e
2. 16N T
then
(0,0) f )
efw) =k = Z : H I\';;(r_ 3) -K”(u-‘) 2 sinc 7 Wt sine T 'lf"'l! (o, SYLdod3
2. 16N, 4 '

(1og)

Therefore, the best mean-square approximation to the pillbox S (f:t) 18
obtained by choosing an input signal x(t) with ambiguity function

# o0, 5) that maximizes the quantity

. - .
(x) = /f;;(!‘ ).;\(L 312 sinc W & sin T "‘[1’;,1 t, A a, B)rdad

(109)

The problem of obtaining the ambiguity function that maximize:

d(x) is difficult and has not been solved. However, the quantity A(x)
can be used to choose an input signal from a finite class of « peta
tive transmissions or it can be used to optimize a parameter of an
otherwise specified signal. In addition, we shall arrive at an 1n

portant |mpl|t.|l 1ton concerning the structure of ef {1« 1ent transmissions

by deriving an upper bound for J(x).
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The auantity J(x) can also be expressed 1n terms of the output

energy density,

)
= F/2 W/ g (f t)dfd S2(f. t)dfdt
; TV 7/2 -an/2
AMx) = = EYI0)
.SZ(_( t)dfdt .\‘Z(/ t)dfde |-

By using the Schwartz inequality

L2 W72 1
1 3 =
; | Sl(r,r)d/dr < ('I‘H)-'[{l.\'z“(r.rwy({r] ) EALID
=Fl2 =RBf2
and noting that the equivalent number of degrees of freedom 7, can

0
be written

1 [ ;\‘ZH H,H.M]:

2 Cred .
‘.;’\’.‘)‘ dads '-\'z(‘ t)daftdt

the following upper bound on &(x) 1s obtained:

l\ N I-
2wy — (T )72
i s : L1T3)
(TH)?

0

Observe that the upper bound 1s Laximum when

(0,0)
v z i
g L= il e (114)
= ](v\“
and the maximum value of this bound is 2,168, v, (0,0). his choice

ot o -nl'lt'.spl\ntl.\ to choosing the (mean) “-to-varitance ratio of the

statistic S (under hypothesis Hl‘ equal to the (mean)“-to-variance
ratio of a statistic derived =« a finite number of degrees of

freedom with individual SNR equal to 216
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An interesting and useful conclusion follows as a result of the
upper bound 1n the i1nequality (113). For the normalized mean-square
error to be less than unity [J(x) positivel, it is necessary that

TH (0, 0)
! 7 — = (115a)
B 8.64N,
or
~ , 8.64V,
-1 { [po B Rl B 55 : .
7o) = || IRg(x.5)] (a,5)] dod (115b)
( 0 ‘ H X b (0. 0)
: z
The inequality (115a) places a lower hound on the equivalent number
of degrees of freedom required to effectively approximate the pillbox
energy density S (f,t). [If this inequality is not satisfied, then
the L, norm of the error, S 0f.t) = S (f,t), is greater than the L,
norm of the function we are attempting to approximate.
D.  HIGH-SNR CASE
[f the available SNR, 2L0,0)/N o is large and the medium 1s not
highly dispersive, then it i1s likely that we will have
: 8. 64V,
‘H“(x, ) dadis >> (116)
“ " s (0.0) '
2 L0
We define an available SNR to be high (relative to the dis persive
state of the medium) if the inequality (116) is satisfied For ex
ample, 1f
L 1
< y
l‘ 2 I |
—  for ,
S ) dN\d7 LB
B B
p Y
() for ) otherw se
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and LB << 1 (an underspread medium), then

“ H;;(l,r')’:d{(/.' 3 ]

LE

It ,z(“.“) 8.()1.\'“ > 1, then the inequality of (116) is satisfied.

In the high-SNR case, it is important to choose a signal x(t)

with ambiguity function Y %(a,5) that counteracts lf;;( L, 5) in the

X
mtegral

”*nﬁ“-””‘ po(a, ) “dadp

and causes the result of the nxlrur‘.i\l(:n to be small enough to satisfy
the 1nequality (115b). Both ‘H;;(‘r.,') " and .;‘ (&,8)]| achieve a max-
itmum value of unity (at the origin) so that the above integral is
always less than the integral on the left-hand side of the 1n
equality (116). In contrast to the LEC case in which the above
integral 1s maximized in order to minimize the number of degrees of
freedom, we must, in the present situation, generate degrees of free
dom by making this integral appropriately small. 1In general, this can
be accomplished most efficiently by choosing an input signal witl
ambiguity fune l'inn that tends to minimize the common volume shared by
both “f;;( 1u')|~ and .;}( l,.'):~. (Of course, one must not make the
Inl(-;:l'.il too small and thus generate an excessive number of degrees ol

freedom with too small a SNR.)

An attempt to obtain a small common volume shared by the two
) y
functions \H’l;( t, 5)| and ;.:l X, 8) | has the effect of concentrat Ing
transmitted signal energv in the region of the time-f{requency plane
where the scattering introduced by the medium is most severe: hence

the above signal-design strategy results in transmitted signals pos

sessing time-frequency structures that emphasize the susceptibility of
the signal to the dispersive effects of the mediur In thi annet
one obtains an output that is sufficiently random in the sense that it
15 assocrated with an .nim[u.lir'|\ large number of degrees of freedon

for the avairlable SNR.

For example, af I)’”\r ) 18 narrow 1n * and wide in then one
should choose an input signal with an ambiguity function that i wide
in @ and narrow in /. This dictates transmitt tng a narrow-band

T0




long-duration signal (for example, a long pulse) for detecting the

presence of a (;ll'gl'l possessing a >m-ll] time del ay >}\llu|-1 .|nll a large

Doppler spread. The resulting output wi 11 be a rapidly time-varying
process of long duration. Extending this argument to other possi
bilities vields Table 1, which tabulates the desired relative magni

tudes of signal bandwidth and duration for various combinations of

Doppler and time-delay spreads for the high-SNR case.

Fable 1

STGNAL PARAMETERS FOR VARTOUS CHANNEL
CONDITTONS—HIGH-SNR CAS]

MEDIUM PARAMETERS SIGNAL PARAMETERS REPRESENTATIVE
Doppler Spread Time=Delay Spread Bandwidth Duration EXAMPLES
lLarge Small Small Large Long Pulse
Small Large Large Small Short Pulse

Constant -Envelope
-\}ll'('.u! Spect run

Small Small Large Large

The derivatives of A\‘l(y,[) at the origin possess the form

— —S5,(f.t) = (=)™ Gi2mn

Y1 am <\ v /3 vl <
[> Ry, B0, (o, B)dod;
(f,e1=(0,0)

The choice of an 1nput stenal that achieves a small common volume for

the functions lf;;( :.-‘M_ and ‘.;’( -',.‘)\h will also tend to make the

the product, R,(a,5)y (@, 2), small in the a-0 plane.

magnitude of
X

From the above equation, 1t can be seen that this has a flattening

effect on the output energy density, since the derivatives at the

origin will tend to be small.




NI THE KULLBACK-LEIBLER INFORMATION NUMBER
VERSUS DIVERGENCE AS A CRITERION
FOR SIGNAL DESIGN

randomly time-varying and frequency-selective and the receiver

between the Ewo craiteria.

formation numbers

5

.Illl;,}l,) =0 RS el ) 1([11:Héi
f oS H )
JH. . H ) = WS = Fols i A Tng =
1 ) S 1 S { F JESEH )
1 0 BEERE 3 VPSS, st
For LEC conditions (v, 1), the divergence is dominated

sum of the squares of the nortse-normalized eigenvalues,

FOR T Y s p (=1 )yt
} : & r |
La IH H )
n
Therefore, for suttably sma!l normalized clgenvalues, AXIMYIZLY
divergence 1s equivalent to maximizing the Kullback-Leibler inf
number T(H :H ) [Eq. (78)]. Both eriteria, in view of the apg
~y

}

maximirzing the divergence between the signal-plus-noise and noise

1 s

Ihe divergence is defined as the sum of two }\ullli.lnlv\—lr"ll\ll‘r

'y

Grettenberg [Ref. 38] has suggested the signal ~design criterion

hy

potheses. Since maximizing either the Kullback-Leibler information

number or the divergence is a suboptimum strategy when the medium is

o

Neyman -Pearson detector, i1t is of interest to discuss the difference

Ln

the

01




normality of the statistic S _\‘“_ yreld an optimum signal-design strat-

egyv for LEC conditions.

We can conclude, from the lemma on page 46, that for any finite

dimension m, the divergence,

m m '”
RCHS JHL Y = S i ;
n= 1 n=1 1 + 7y
n
1S convex 1n any open convex set in the region
n i I:l)
= 0, = 2 ,m, il vn__\
n 0
and hence attains i1ts maximum in the (m — 1)-dimensional boundarv of this

region. Reiterating this argument until the dimension is unity, we
. . . . . . »
conclude that the divergence 1s maximized in the region by choosing

one degree of freedom possessing the total available SNR.

The divergence criterion of choosing one degree of freedom i1nde-
pendent of the available SNR is in marked contrast to the criterion of
dividing the available SNR equally among degrees of freedom with indi-
vidual SNR i1n the vicinity of 2. Since the divergence 1s a convex

function of the » , this criterion will tend to minimize the number of

degrees of freedom at the output of a dispersive medium. When the
ivarlable SNR 1s large and the medium is not highly dispersive (high-
S\R i1 issed 1n the last chapter), maximizing I'(H :H,) dictates
lesign strategy that is in opposition to the strategy dictated
\ ng JH, ,H_ ). The first strategy directs one to generate de-
freed it the output; the second strategy directs one to
Lamait the number of degrees of freedom at the output.
| TEL the results obtainable by using the two criteria and to

hed Light on the above difficulty, we have computed various typical
receiver operating points for the Neyman-Pearson detector. Table 2
tabulates the false-dismissal probabilities, /3 I(HH://:i and 5 (N 3 T
obtained, respectively, by maximizing I(Iluzllli and .71/1‘,H‘*. for the
same value of false-alarm probability ®#. The various error probabil-

tties were computed from the gamma probability law; the number of




lable
COMPARISON OF VARLOUS RECEIVER OPEBATING POINTS
ACHEEVED BY THE KULLBACK-LETBLER INFORMATION-NUNMBER
AND DIVERGENCE CRITERTA

SN
TCH =H. ) J(H H
I ; {(0,0)/N 0 1
ik L i : 0
10 dl 5 1.31 £ 10 ! 1.090 x 10~ -8 g
13 dt 10 7% 10 * .18 x 107 1.19 X N
1o dl () 6 x 10~ ).29 x 107 .17 x 5
17.8 dt 30 2.18 x 10 133 % TOT X &
19 di TV 0 O i 7 x 1074 x 107
0 dt () £.65 % 10 2 « 107 8. 75 ¥ —2
degrees of freedom used to compute ¥ and [‘”.,?”‘ ) Vdenoted By

was determined by dividing the available SNR by the near-optimum val
of Z. Similarly, the error probabilities, @ and J(H - H.)], werk

puted by using one degree of freedom with the total available SNR.

At moderate values of SNR, the computed points in Table 2 displa
y I'(H . :H
and 'H'I(H;’Hn).' {f the avajtable SNR is 20 db and a false-alar pr

a striking difference 1n the false-dismissal probabilities

ability of 4.65 X 107° is chosen, then J(H,,H_ )| 1s more than 10

times greater than =& Il/l‘}:IIE)

The i1mprovement 1n error-probability performance gained by divaid
ing the SNR among 1ndependent degrees of freedom 1s not surprising.
“\ receilving many lit'L’!‘rr\' of freedom (with the proper \\HI, W obtawn
a diversity improvement affording a protection against the time- and

llt'i‘ll(-“t\-\l'l(wll\(' effects of the medium that 1s not obtained bv re-

ceitving a ~(-;r|.|l with only ope deegree of freedom. If all the received
signal energy resides 1n one degree of freedom, 1t 1s more probable for
this one degree of freedom to be 1n a time- or fre juency-selective
(that 1s, the gain of the medium is low for the particular degree of
freedom) than 1t 1s for many independent degree ot freedom to rmult

neously bhe ina time- ot 'l"']ll"lll v=selective null.
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AV CONCLUSTONS

In attacking the problem of designing efficient signals for trar
mission over randomly dispersive media, we have proceeded along tw

fairly distinet lines of analysis the mathematical characterizatior

of the medium and the analysis of the detection proble

By viewing the medium transfer function as a homogeneous rand
field on the time-frequency plane, we have introduced a unitred syste
theory of random filters which has provided the necessary framework in
which to cast the signal-design problem. In addition, i1t has been de
onstrated throughout this study that this model atfords a comprehen

sive and superior physical viewpoint for the communication engine

: task of l['t'.lling systems that tncorporate dispersive media. The vara

3

i ous second-order measures of the time and frequency structures ot a
process and their resulting transformations through a dispersive me

dium provide not only a fundamental and complete second-order theor

for the statistical description of such signals but also a useful

physical interpretation of the dispersive effects of the medium on
input signals.

The analysis of the detection }-Inlblc" has ultimatels eq 1 Lhe
choice of maximizing the hullback-Leibler 1nformation 1 ber a i
signal-design strategy. The number I'(H :H .x) (whicl iv be regarde

1 as an asymmetric distance between the signal-plus-norse and

probability laws) 1 a measure of the abilitv of the Ne 1= Pe
detector to discriminate against fl, when H  1s true and the t

stgnal 1s Xx. However ] (H H.:x) also measures the exponentia 1

at which the false-dismissal probability approaches zero for an 11
creasing sequence of observations when the fals alas probability
frxed. In this sense [(H, :H, ;x) may be regarded as a me e f 1l

ability of the detector to discriminate against M. when |

and indeed, 1t 1s this propexty ol LCH +H, % that ha been explorte
in the present study [t is elear that the Kullback-l.eabler informa
tron numbers should not be rigidly 1nterpreted a

casures of the ability of the detector t {1 riminate one vpothe
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trom the other, since the performance of the detector under one hy
pothesis 1s not lluhﬂ”ﬂhhﬂ” of 1ts performance under the other. For
example, maximizing a measure of the detector’s capability to discrim
Inate against M, when Hy is true may imply, for a fixed False-alarm
probability, that a lower threshold can be employed, which, in turn,

may imply a lower false-dismissal probability.

We have shown that the criterion of maximizing L(H tH,;x) yields
an optimum signal-design strategy (the false-dismissal probability 1s
minimized at any reasonable false-alarm probability) for suitably
small noise-normalized eigenvalues at the output of the medium.
Additionally, it has been shown that this criterion, in the general
case, dictates the very reasonable signal design strategy of trans-
mitting a signal that produces an output possessing degrees of free-
dom with individual SNR in the vicinity of 2. In other words 8 8 1
desirable to apportion the available SNQ equally among degrees ol
freedom with the proper individual SNR and hence to obtain a diversit
protection against the time- and frequency-selective fading phenomena

of the medium.

In contrast to the divergence criterion which tends to minimize
the degrees of freedom at the output of the mediuwm at all SNR, the
Kullback-Leibler information-number criterion tends to limit or gen-
erate degrees of freedom at the output as a function of the available
SNR and the dispersive state of the mediuan Geometrically, this be

havior is explained by the convexity of the divergence as a function

of the noise-normalized ergenval ue whereas the Kullback-Leibler
information number is convex or concave in a regron where the noise
normalized eigenvalues are all less than o greater than one

respectively.

On the one hand, if the available SNB and the dispersive state
of the medium are such that the SNRR of an individual degree of free
dom is necessarily small, then maximizing I(} ”x X) tends to limit
the region in the time frequency plane occupied by the output stgnal
energy. This strategy directly combats the medium di spersion.  On
the other hand, 1f the avatlable SNIU and the dispersive state of the
medium are such that the SNR of an individual degree of freedom tends )

to be large, then maximizing In, H, .X) tends to enlarge the reglon

Th
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in the time-frequency plane occupred by the output signal energy
This strategy uses the medium dispersion to create the desired number
of degrees of ftreedom.

The results of the medium-characterization and detection-praobler
analyses have been combined to yield synthesis constraints on the in
put ambiguity function. One constratant amounts to designing an 1npul
signal that minimizes the number of degrees of freedom at the output
of the medium when the SNR of each degree of freedom 1s small It
1s achieved by maximizing the common volume shared by the squared
envelopes of the medium time-frequency autocorrelation function and

the 1nput ambiguity

energy density resembli

constraint ensures the

density that 1s nonzero

in the output time-freq

nonrealizable de
of

Kullback-l.eibler

energy

freedom with SNR 1n

inform

For

equivalent

the high-SNIi ¢

number of de

cess to effectively

concluded that, 1 f the

lll"ll 1t des

of

pPersLve;

~.u~|'-p|lh|||\\ the t

medium. This strategy

the medium to achieve a
lIV'L'Ir"‘ of diversity 1s
by the squared envelope
function and the input
lently, by choosing an
trom the medium scatter

approximate

SN[ 1

function or, equivalently, choosing an i1nput
ng the medium scattering function. The other
best mean-square .|iv}|l'-'\|':..|l ton Lo an energy
yllltl constant (\lll\ QV.er ) Ir'IX‘ln‘L'u\.sl regilon
uency plane. We have shown that the latte:
nsity ‘vl'n\l\h'\ ||||' maximumn llilf‘.b"l ol degrees
the vicinity of 2 and hence maximizes the
ation number.
ase, a IU\\(‘I' b(nllll\i ]l-l\ l)l'«'ll -‘l\’lnnwi tot the

grees of freedom required by the output pro

the optimum densitv. We

cenergy

S and the medium 1s not highly

large

irable to transmit signals that emphastize the

ransmission to the dispersive effects of the

amounts to using the disperston itntroduced by

desirable diversity reception [he required
achieved by making the common volume shared
s of the medium time-frequency autocorrelation
ambiguity function suirtably small o1 equiIva

tnput energy density sufficiently different

ing function.
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COMPLEX ENVELOPES




APPENDIX A

E 3 COMPLEX ENVELOPES

This appendix 1s concerned with defining the complex envelopes of

the various signals that enter in the system analysis.

E 3 1. INPUT COMPLEX ENVELOPES
[n communication and radar applications, the transmitted signal 1s

the result of amplitude and phase modulating a CW tone. That 18; iR
any particular application, an amplitude modulation A(t) and a phase
modulation (t) are basic system inputs that define the transmitted
stgnal

’ x(t) = A(t) cos 2m[f t+ ¢(t) : (A1)
The input complex envelope is a complex function of time with amplitude

; A(t) and phase ¢(t)

4 X(t) = Al¢)er=Tle) : (A.2)

Equation (A.1) can be rewritten in terms of the input complex envelope
Som oy

x(t) Re ix(t)e ‘ . (A, 3)

In general, the complex envelope x(t) can be quite arbitrary. The

amplitude and phase functions need not be related, or, equivalently,
the quadrature components of x(t) can be chosen independent Ly, For ex
ample, practical applications exist in which the quadrature component
ol x(t) may be derived from two independent bainary information OUTCe
or one ol the <|l|.||ll.v|t|(t components may Serve I | ;»linl Lone to be

used 1n the demodulation process at the receiver, while the other quad-

rature component 1s information modulated.
It assumed that the demodulation proce emploved by the re-
' cerver 1 the 1nverse of the modulation proce emploved by the
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transmitter. That is, i1f the receiver were directly connected to the
transmitter, then, in the absence of additive noise, the receiver would
exactly reproduce the input amplitude and phase modulation functions.

[t has been assumed that x(t) is a narrow-band signal; pract tcal parrow-

band systems closely approximate the above idealized assumptions.

2. OUTPUT COMPLEX ENVELOPES

The svstem functions associated with the randomly dispersive me
diam explicitly define the output complex envelope as a transformation
of the input complex envelope. For example, we can write the output

complex envelope 1n the form
A6 IR B S R T o 5 ;),-*-"’1\1‘{-(1; . (A.4)

When the transfer function H(t,f) is homogeneous, we have found that the
system function v(A,7) in the above equation must, 1n general, be a
nuns(u(iundry'rnmplvx|whilv-nnnsv random field,

*

El ('l,flit'(‘-,,z‘,)] =GN e SN = A (T T ) . (A.5)

To satisfy the condition in Eq. (A.5), it has been assumed that the
quadrature components of the random freld v(A,7) forma mutually uncor-
related family of zero-mean random variables, and additionally, 1t has
been assumed that for a given A and 7 the quadrature components ot
v(A,7) are identically distributed random variables. These assumption
lead to the following conditions on the quadrature components of the

random field v(A,7):

l A
k vy, H’H( Ly :‘ - k‘l” I,‘lr,( T an) = - Q¢ (A, b & Jo e )
(A.6Ha)
l""n"l"'x”1":"',"‘ = 'I('x"'"n";'f’ 0 for all A, » Ay, and
(Aol
The physical significance of these assumptions merits some discu

S1LOMN., We have l||(|~lptt-(n-|l the ”.v‘t'l]t-{ delav random fireld (A,T) n
terms of a decomposition of the medium tnto incremental Doppler<shutt

time-delay channels. In this decomposttion, t he t/"'[\l'\ number

8o




v, 7)dAdT corresponds to the randem amplitude and phase introduced

by an incremental channel. The orthogonality relation of Eq. (A.5) 1s

equivalent to the following relations:

Elo g y,7 om0+ Elo (7 o (g, 7,)] = S (A7 08N = A,)8(r, = 7,)
(A.Ta)
Elv g o7 v (7)) = Elv J(A |, 7 D p(hg,7,)] = 0 . (A.7b)
It 1s reasonable to assume that the guadrature components valA,7)
and v (A, 7) are i1dentically distributed random fields. This assumption

and Eq. (A.7a) lead to the condition of Eq. (A.6a). It has been assumed
that v p(A,7) and 1',(*.,f) posses zero mean. Since our assumptions so far
have implied that vy (\,7) and v, (A,7) are individually uncorrelated in
the A\ = 7 plane, a reasonable 1nterpretation of Eq. (A.7b) leads us to
assume that the random fields l'H('\") and zr[(.\,l) POSS€Ss z2ero Cross
correlation for all shifts in both arguments. In other words, we as-
sume that the orthogonality condition of Eq. (A.5) is obtained bv a com-
pletely uncorrelated scattering mechanism. This assumption implies

Eq. (A.6b). For the zero-mean Gaussian medium, the relations of Eq. (A.0)
simply imply that the incremental channels are statistically i1ndependent
and that each incremental channel introduces a uniformly distributed

random phase and a Rayleigh-distributed random gain.

Fquations (A.6a) and (A.6b) imply that

Elv(N),7)v(rA,,7,)] = 0 (A.8)
for all N Tys Ay, and 7,. We can deduce the following relation from
Egs. (A.4) and (A.8),

Elz(t)z(s)] = 0 = for all t and s. (A.9)

Finally, Eq. (A.9) implies that

Elz ((t)z ()] = Elz,(¢)z,(s) (A 10a)
’2‘.:”(/):’1\) = ‘f‘.‘:lll):“hl - (A, 10b)
41




o COMPLEXN ENVELOPES OF STATIONARY RANDOM PROCESSES

If n(t) is a real stationary random process with spectral density

(one-sided) S, (f), then n(t) has the spectral representation [Ref. 4

n(t) = cos 2nAtdu(N) + | san 2mAtdu(A) (A.11)

where u(A) and v(A) are real orthogonal -increment random processes with

El{du(n)}?] = E[{duv(N)}* S (A)dA
and
Eldu(N)dv(A) = ()
The complex envelope of n(t) relative to the frequency f 15 developed
by shifting the process n(t) by f  cps in the frequency domain. In
Eq. (A:11), let A = f. + f and define:
(I(f“ = ) u((‘ — 3 () § f
o ()
alf * ) Fe f
G e ) SR L f n)) 0 f
a7
”(]‘ t f) i J
v f + ,; + vl f {f) { t f
1"‘(1)
v(f t f) { f
IR A 3 ot £ () f
ED
v f i) ¢ y
I'he above [our proce ( po ¢ s orthogonal itncrements, and the LT
ments of the u processi ire orthogonal to the increment i the
pProcesses. ['he pectral representation in Eq. (A l) can be written i
the tor
82




nit) x(t) cos 2uf ¢ y{t) sin 2nf 1 - (A 423

where x(t) and y(t) are real stationary random processes with spectral

represent ations

v(t) = | cos 2nfetduy(f) t sin 2nftdv, (f) (A.13a)

u
] 1]
y(t) = sin f"f{(/u;(ﬂ = cos 2nftdv (f) . (A.13b)

The following relations can be verified by direct computation:

R (1) = Elx(t)x(t + 7)] S _(f) cos 2nf7d (A.14a)
R (r) = Elylelyle + 73] = R.(7) (A.14b)
R ry = Blaledybe + 1)) = B A7) = S__(f) sin 2nf7d
(A.14¢)
where
§ 4fo ¥ 43 8 Fy £ 0 f<f§
S (f) (A.15a
§ by T 0 y y
and
S (o & TV = 2kl f) 0 f f
\x\(’) (A.15b)
\”u~ f) / /

If nl(t) is white noise with spectral intensity N,, then

83
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and

(A.l6b)

In the analysis of narrow-band systems, in which the spectra of the
quadrature components of the received signals are significantly non-
zero only 1n a range of frequencies much less than the center frequency
R P, vs essentially flat and S L) is essentially zero relative
to the frequency range of interest. We then obtain the approximations:

R (7) = 2N 3(T) (A.17a)
and
Rokh- mifi o (A.17hb)

i
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APPENDIX B
SIGNIFICANCE OF THE ERROR BETWEEN THE OBSERVED PROCESS
AND ITS KARHUNEN-LOEVE EXPANSION
The statistic S 1s based on the process (1) instead of the ob

served process y(t). Price [Ref. 35] points out that, in general, the

two ;-x'n(t‘s; are not equivalent, because of the difficulty 1n obtaining

a complete set of orthonormal functions that satisfactorily represent

a process containing white noise. However, Price offers a plausible

argument for ignoring the difference between the two processes.

In this appendix we extend one of Price's arguments [Ref. 35 and

i prove that the quadrature components of the error process € (t) defined
i :
! by the relation
' y(t) y(t) +e€(t) (B. 1)
1

are mutually independent of the quadrature components of the process
] y(t) for all time shifts under both hypotheses. We first prove that
! .k'_w'A )e( t) L0 SEMINERT S i = € A (B.2)

/‘.'V\. sVE( L) > K \.E(Il f.(\) (B-3
’ B < n n
. T
Ely elt Eliy(t) = wit) y (s)f (s)ds
0

i T

) i )
K. (s, t)E (s)ds = 3 £ (K (s,.r)F (s)drds|f (t)
y F n o * y . =

LK. (s, ) + N.o(1t uf”u\»./\

z 0
T AT g
X f () IK, (s, ) + No.o(1 s ( L{p,ﬁl'ﬂl"’
nl 070 " E ' # J
o (Tet -
(A + NIE () b £ (Y (YN N ,,«‘,}l_"'
n i et .‘( 0 " - n

(A + NI () (A + NIE (1) 0

n
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Observe that the above arguments apply to the noise hypothes by LU g
the 'n L0 ZEero. We conclude from I:vl. (B.3) that

ST -

Ely (s)e(t) 0 s, it 0.7

under both hypotheses.
The expectat 1on
[‘_\( s)elt)

15 also: equal o zero for s;t € (0, 7T):

Ely(s)e(t)] = SE[y e(t)If (s) 4 (B. 4)
n n n
. ) _ A Vi *
Ely e(t)] = I:[yui =y (&) _w\bfnx\;,/\j|
0

0 m

v " R : g
I‘“)‘(Hy(\\}f’(\}:{\ —F fmillf virvis) ' f (\|,/,,{\r F(t)
! 00 - 5 B

0

ST RCE
I'.‘:y(liyhf Ely(r)y(s) 0

under either hypothesis Hence, from Eq. (B.4) we conclude
El¥(s)6(¢)] (N s, t € (0,7) (B.5

The relation
+r\*
Ely (s)e(r) 0

implies the following conditions on the quadrature components

Simylarly, the relation

Elv(s)€(t) = (0
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implies the additional conditions on the quadrature components:
(v\)',{(:»“" Ely  (s)e ()] 0 (B.8)
Ely ;(sYepa(t)] + Ely p(s)e (¢t) 0 : (B.9)

Solving Eqs. (B.6) through (B.9) yields zero for all four expectations.
Since the random variables possess zero-mean Gaussian distributions,
the quadrature components ¢ ) and €, (t) are mut ually independent of

the quadrature components y,(s) and y, (s).

'
Equations (36a) and (36b) imply that the process y(t) can be written

. T X 0 *
y(t) :[ l(\)f,'\’llx]fll) : :[ n«\»f:\hh]f«‘v : (B.10)
n 0 ) " n 0 g 4

For (ll.\l'l'l'.\'l‘\(‘ media that possess a continuous covariance kernel
K,(t,s) (a reasonable assumption for physical media), the orthonormal
functions ‘f" (t)} form a complete set for representing the output

process z(t),

. I -‘ \
z(t) p3 ;r.l\\ln\wzh]f”ui . (B.11)
n 0

Equations (B.1), (B.10), and (B.11) 1mply that the error €(t) 1s given by

T
elt) nit) f[ n(\\f:(\r.:'\:]frlll (B.12)

Therefore, under either hvpothesis, the error €(t) depends only
on the noise m(t) and contains no information concerning the presence

or absence of the signal z(t)|Ref. 35]. In this case it 18 clear that

the |n«l«"n'n<1:~n'«‘ of the processes e(t) ana Yt follows as a resuln v
a noise component of the process m(t) that 1s 1n a space ort hogonal
the space spanned by the eigenfunctions 1 f-. (t) a consequence ol
Eq. (B. 12 )] We can aregue (heuristically) that, since the signa
ponent is zero in the direction of this or thogonal space, there
need to consider observations from this space. (This 1s easily
In the finite lll!(ll‘ll.~l'!ll«ll case, ) In other ‘.w»l-i~~, T O |

particular coordinate of the observation contains noise

independent of the noise on all the other coordinate
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by obtaining this coordinate. No information is obtained concerning the

presence or absence of the signal. No information is obtained concerning

the noise on coordinates that may contain signal. More precisely, 1t is
necessary only to consider the projection of the noise m(t) on the space

spanned by the signal process for the detection problem treated in this

study.
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