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Theoretical Explanation of Spectral Slopes in
Stratospheric Turbulence Data and

Implications for Vertical Transport

I. INTRODUCTION

Stratospheric turbulence, like tropospheric CAT, takes the form of layers
which are broad in the horizontal direction (for example, 25 km) but thin in the
vertical direction (typically between 100 m to 1000 m depending on how measured
(Rosenberg and Dewan, 5 Anderson, - and Barat. 3 The power spectra of the turbu-
lent velocity fluctuations within such layers have slopes (on log-log plots) which
are roughly in the vicinity of -5/3 to wavelengths as long as 10, 000 ft, or possibly
as long as 40, 000 ft. (See Figure 1.) More specifically, these slopes fall in the
range of -1.5 to -1.7 for horizontal and ~1. 25 to -1.4 for vertical fluctuations
(HICAT data*). While one would expect slopes of -5/3 for spectra in the inertial
sub-range, one would not ordinarily expect to find them at wavelengths far exceed-
ing the scale for isotropy. Isotropy is found up to 100 to 150 ft in the case of
stratospheric turbulence (HICAT data*). The purpose of this paper is to explain
the presence of this anomalous -5/3 range of spectra in data from stratospheric

(Received for publication 30 September 1976)
*References to HICAT data are found in Crooks, et al, ref. 45.)

1. Rosenberg, N.W., and Dewan, E.M. (1975) Stratospheric Turbulence and
Vertical Effective Diffusion Coefficients, AFCRL-TR-75-0519,

2. Anderson, A.D. (1957) Free-Air turbulence, J. Meteorol. 14:477-494,

3. Barat, J. (1975) Etude expérimentale de la structure du champ de turbulence
dans la moyenne stratosphere, C.R.Acad. Sc. Paris 280(Serial B):691-693.
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! Figure 1. Typical HICAT Turbulence Spectrum
Showing -5/3 Slope Beyond the Isotropic Range

turbulence. As mentioned in the abstract, this is of use in the general vertical
transport problem.

It is generally agreed that CAT, and presumably most stratospheric turbu-

lence, is generated via the Kelvin-Helmholtz (K-H) instability mechanism

(Rosenberg and Dewan, . and Dutton4' 7). When the shear across a stratified layer

is sufficient to cause the Richardson number to go below 0,25, an unstable wave

s presumably builds up and eventually breaks down in such a way as to generate a
{ i layer of turbulence. Excellent experimental information and photographs will be

EEL e

4, Dutton, J.A. (1971) CAT aviation and atmospheric science, Rev.Geophys. &
9:613-657,

5. Dutton, J.A. (1973) Recent perspectives on turbulence in the free atmosphere,
in N. K., Vinnichenko, N. Z. Pinus, S.M. Shmeter, and G.N. Shur,
Turbulence in the Free Atmosphere, Consultants Bureau, New York,
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This point needs more carefull consideration «-«- than it has yet received."

found in the work of Thorpe, 8 Woods, 7.8 Battan, 9 and Ludlam., 10 The classic

11

theoretical paper is that of Rosenhead.

The K-H mechanism is responsible for turbulence to be found below the sur-
face of the ocean, and it has been said that the resulting thin layers of turbulence
which are thus generated intermittently in space and time, are the primary cause
of what vertical transport there is in the interior of the world ocean (Woods and
Wileylz). It is interesting to note that, in this connection, some stratospheric
and other physicists have become aware that there is a useful and close analogy
between the dynamics of the ocean and the stratosphere; for example, see Thorpe, 13
Rosenberg and Dewan, 1 Woods and Wiley, 12 ;nd Stewart and Bolgiano. 14

An anomalous -5/3 slope (that is, one found outside the inertial range) was not
seen for the first time in the HICAT spectral data by any means, but rather it has
been repeatedly seen in stratified media. For example, Pond et al15 reported the
results of an experiment where the theoretical lower limit of the 'mertiall range

p e
was k= 0.1 cm I (k is the wavenumber) whereas, in contrast, the k 5/8 spectrum

provided a reasonable fit to k = 0,005 Cm-ll In another case, Ste\\'art16 made the

following statement which is perhaps the most precise description of the problem at
hand: "It is well known that -5/3 spectra appear very frequently when one observes ]
along a horizontal path in a stratified fluid. These spectra are observed even when

it is quite apparent that the turbulence observed is very far from isotropic. -«

6. Thorpe, S.A. (1973b) Experiments on stability and turbulence in a stratified
shear flow, J.Fluid Mech. 61(Part 4):731-751.

7. Woods, J.D. (1969) On Richardson's number as a criterion for laminar-
turbulent-laminar transition in the ocean and atmosphere, Radio Sci.
13:1289-1298.

8. Woods, J.D. (1968) Wave-induced shear instability in the summer thermodine,
J. Fluid. Mech. 32:791-800. 1

9. Battan, L.J. (1973) Radar Observation of the Atmosphere, University of
Chicago Press.

10. Ludlam, F.H. (1967) Characteristics of billow clouds and their relation t.
clear air turbulence, Quart,J. Roy. Met, Soc. ?2:419-41-‘. 5.

11. Rosenhead, L. (1931) The formation of vortices from a surface of discontin-
uity, Proc. Roy. Soc. 134:170-192,

12. Woods, J.D., and Wiley, R. L. (1972) Billow turbulence and ocean micro-
structure, Deep Sea Research and Oceanic Abst. 12:87-121.

13. Thorpe, S.A. (1973a) CAT in the Laboratory, Weather.

and its detection, edited by Y.H. Pao and A. Goldberg, Plenum Press,
P 915-520.

15. Pond, S., Steward, R.W., and Burling, R.W. (1963) Turbulence spectra in
the wind over waves, J.Atm, Sci. 20:319-321,

14. Stewart, R.W. and Bolgiano, R. (1969) Comments in: Clear air turbulence q

16. Stewart, R.W. (1969) Turbulence and waves in a stratified atmosphere,
Radio Sci. 4:1269-1278.
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17, Pao, Y.H. (1973) Measurements of internal waves and turbulence in two-

In another case, Pao17 described this phenomenon in a stratified turbulent
flow as seen in a towing tank as follows: '"However, the turbulence is too weak to
have a distinct f-5/3 inertial range. This 'anomalous -5/3 subrange, ' we believe,
is due to the presence of the internal wave spectral peak, lifting up the spectral
curve as a result. ...However, our results (Figure 3) indicate that the presence
of the f_5/3 frequency range does not warrant the existence of an inertial subrange
in a stably stratified fluid." Figure 3 was a spectrum with -5/3 slope on the log-
log plot showing the anomalous -5/3 subrange.

Finally, in this connection, Dutton18 wrote the following: "One of the impor-
tant properties of atmospheric turbulence is that the -5/3 inertial subrange does
appear to exist, but for reasons unknown the -5/3 relation holds at much smaller

wave numbers than would be expected from the theory."

From the previous information, it is clear that the anomalous -5/3 effect in
stratified fluids is well known and that a theoretical explanation for it would be of
value at this time. (One further mention of this subject will be found in
Ellison. 1%

In order to gain some appreciation of how far the HICAT spectra differ from
the usual predictions of the theory for the inertial subrange, we now make a com-
parison. In the case of shear generated turbulence in the absence of buoyancy, the 1
maximum wavelength for isotropy is derived by comparing the mean rate of strain
to the rate of strain of the turbulence. The latter is, from a similitude argument,
given by (k3 q’;(k))1 /2,/’2,7 where ¢(k) i5 the three-dimensional scalar wavenumber
spectrum of the velocity fluctuations. Letting u be the scale of the mean velocity,
¢ the outer scale, S the mean strain rate (S~ u/f), € thgz rate of dissipation, s the

ol _E [
SR .%k Sf3

turbulent strain rate and using ¢ = 1.5 € , €~ u'i /f, and making s/S = 10,

Tennekes and Lumley20 showed that isotropy should not extend down much further

than the value of k where
ke = 350

This implies that the maximum wavelength for isotropy would not be much greater |

than about 2 percent of the outer 1engt'n.

dimensional stratified shear flows, Bound-Layer Meteorol. 5:177.

18, Dutton, J.A. (1970) Effects of turbulence on aeronautical sy ~ms, Progress
in Aeronautical Sciences, 11, edited by D. Klchemann el ai, Pergamon
Press, Oxford. s

19. Ellison, T.H. (1956) Atmospheric Turbulence, Surveys in Mechanics
(p._425), edited by T.H. Batchelor and R. M. Davies, Cambridge
University Press.

20, Tennekes, H., and Lumley, J.L. (1972) A First Course in Turbulence, MIT
Press, Cambridge, Massachusetts.

10
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When the drain of kinetic turbulent energy due to work done against the stable
buoyancy forces is taken into account, Lumley21 has shown that the inertial range

will not extend to lower wavenumbers than kb (inverse "buoyancy length') given by

N?
kb~ - (1)
where
2 g do :
N1 =6 & (2)

and where © is the average potential temperature, g the acceleration of gravity,
and N1 is the buoyancy frequency.

In the HICAT data the measured thickness of turbulent layers ranged from
500 ft to 7, 000 ft with most of them under 3000 ft or about 1 km. Taking 1 km
as the outer length, the first criterion above implies that 20 m would be the
approximate maximum wavelength for isotropy. The bouyancy length criterion,
according to Zimmerman and Loving,22 Monograph I, CIAP gives such values
as 15 m, 51 m, and 40 m. As already indicated, the data showed that isotropy
in the HICAT measurements extended to wavelengths between 30 m and 45 m.
Thus, by all criteria the inertial range should not extend much beyond about
50 m or so. But, as already mentioned, the -5/3 spectrum (in the approximate
sense) extends to several thousands of feet if not tens of thousands of feet in
wavelength., It is precisely this discrepancy which we now set out to explain,

An imf)ortant observation, made by Gifford, = is that one should expect that
spatial aliasing effects will significantly extend the -5/3 range of wavenumbers to
smaller values in the one-dimensional spectra as compared to the three-dimen-
sional spectrum. In the example studied by Gifford, he showed that the -5/3 range
of the one-dimensional spectrum extended to a value of k about five times smaller
than the smallest -5/3 range value of k of the three-dimensional spectrum. Thus,
a three-dimensional spectrum with inertial range extending to 50 m could appear
out to 250 m in the one-dimensional spectrum due to spatial aliasing effects, But
as we have seen, we must explain -5/3 ranges out to wavelengths of 10, 000 to

40, 000 ft (say, beyond at least 5 km). This could only happen if the anomalous
21. Lumley, J.L. (1964a) The spectrum of nearly inertial turbulence in a stably
stratified fluid, J.Atm, Sci. 21:00-102.
22, Zimmerman, S.P., and Loving, N. (1875) The Natural Stratosphere of 1974,
CIAP Monograph 1, Final Report, DOT, CIAP., DOT-TST-75-51.
23, Gifford, F, (1959) The interpretation of meteorological spectra and correla-
tions, J.Meteorol, 16:344-346.

11
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-5/3 range in the three-dimensional spectrum extended at least as far as the

g 'outer length' of the 1 km layer thickness. The large 40, 000 ft range would be

compatible with an outer length of the largest layer thickness seen in HICAT. In

the following, we therefore set out to explain -5/3 ranges all the way to outer

length.

An important consequence of the anomalous -5 '3 range is that it can lead to

24 .
erroneous estimates of ¢ when the method of Stewart and Grant is employed. In

17 : A : .
other words, as Pao = has written, it'...should be considered as a caution flag

to those who derive turbulent energy dissipation rate ¢ from spectra measured
with relatively slow-response instruments...'. 7This is because the experimenter
could mistake a -5/3 range for a true inertial subrange, and the latter might begin
at wavenumbers higher than the resolution of his instruments. p
| The plan of this paper is briefly as follows. First we will examine the equa-
tions of motion as well as the spectral equations for turbulent motion and tempera-

ture fluctuations. The physics of these equations and their individual terms will

be discussed, and a spectral theory of K-H turbulence will be developed which
predicts a -5/3 range extending from the Kolmogorov microscale to the integral

or outer scale. A simple physical picture will then be given of the '"dual cascade"

responsible for the phenomenon.

20 SPECTRAL EQUATIONS OF TERBULENCE AND TEMPERATIE RE
FLUCTUATIONS IN STRATIFIED SHEAR FLOW

5
In this section, we shall follow the treatment given by Lin et al, “2 While

more suited to our purposes because of its generality, the latter treatment is

essentially along the same lines as that given in such standard works as Hinze, e

and Lumley and Panofsky. . First, we consider the Navier-Stokes equation. We

assume constant viscosity, incompressibility, and validity of the Boussinesqg

*A typical relation between turbulent diffusivity, Ke' and the dissipation rate, e,
1/3kf4/3

N

e is K = (const.) e where N = buoyancy frequency, and

. N SRR ; .. 22

i: Kk, =(const.) ¢ N°/“, (See Zimmerman and Loving. ")

! 24, Stewart, R.W., and Grant, H.L. (1962) Determination of the rate of dissipa-
K. tion of turbulent energy near the sea surface in the presence of waves,

J. Geophys. Res. 67:3177-3180,

. Lin, J.T., Panchev, S., and Cermak, J. (1969a) Turbulence spectra in the
5 buoyancy subrange of thermally stratified shear flows, Project Themis,
i Technical Rept. No. 1, College of Engineering, Colorado State University.

26. Hinze, J.O. (1959) Turbulence, McGraw-Hill, New York.

27, Lumley, J.L., and Panofsky, H.A. (1964) The Structure of Atmospheric
Turbulence, Interscience Publishers, New York.

3 2

31

12




e il N e B B o b oA

i
a2
-
approximation. Letting P be pressure, u the viscosity, Py the mean density, p
the density fluctuation, and Ui the i component of the velocity we can write
aU. aU. U,
i LY AR AN e S
Polat v Y axj T X pg; * “—QT(J. axj 3)
oU;
T o . (4)
i
_- Next we must have the equation for the temperature field which, in turn, con-
, trols the density. This is simply the convective diffusion equation for heat flow
! T 9T 4 9 9T
PoCp <W o oo M L £3)
where C_ is the specific heat capacity at constant pressure assumed cohstant, B »
is the thermal conductivity also assumed constant, and T is the temperature.
The equations for the two point correlations of the velocity and temperature
fluctuations are obtained in the usual manner, using Reynold's decomposition
Ui=Ui+ui 3 P‘:P+pi
peotpy . T=T+s
where the overbar denotes time average. Defining v = u /g, Vo = “T/(pocp)’ using
0/? = -pl/;, assuming stationarity of mean flow, and performing the usual manipu-
lations as well as the tensor contraction, we obtain i
B ' 1 I I L3 j
4 4 5 — o e 5 = Y id Uy :
Pl o it 1 1 [ 1
: ot (myug) + | 18y By¥g * By Uiy T 8y G (M
: v v VI (6)
B o) (B T g azuﬂ)
7 —_— - T — ! ———
- + e gy - wu) = = (049, 8') 835 + 2V Fr
y i T o i
!
‘ i 4
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I I 11
3(0'6) . =—— == dT 5 = dU
ot + (8'uz + 0ud Fo—+ rg—-(8'0) o
3 1 3
(7)
v v
22(6'0)

_a = ' - 'y =
- ar.(ae u; 06 uj) 2v

T or.or.
3 3

e =
where primes refer to displaced points x' = x randr, = x| - X, local homo-

5
geneity was assumed, the approximation —[T'I - ?1 = Tg = %dfljr"dx:g‘) was used, and
Uy and T were assumed to be functions of only the vertical coordinate, x,. The
reader should consult the references for further details.

We now physically identify terms, and since they all involve two point corre-

lations, it will be more convenient to consider the zero lag case.

1 = rate of change per unit mass of the kinetic energy fluctuations with

respect to time,

II = rate of production of velocity fluctuations due to the vertical transport
(u3) of horizontal fluctuations, uy, in the presence of vertical mean

shear, dl’l/dx:i.
111 = (as will be discussed below) the effects of the distortion and rotation of

turbulent motion due to mean shear.

IV = nonlinear convective effects involving vortex stretching of smaller eddies

by larger eddies.

Both III and IV are divergences, and energy is neither created nor destroyed by

them.

V = rate of work done against stable buovancy forces which results in the
increase of the potential energy of the temperature (or density) fluctuation
field.

VI = rate of turbulent energy dissipation into heat by viscosity.
In the case of Eq. 7 we have:

1 = rate of change of mean square temperature fluctuations with respect to

time.

II = rate of production of temperature fluctuations due to vertical transport
(u,;) of temperature fluctuations (6) in the presence of vertical mean
gradient dT/dx,.

14
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III = the distortion and rotation of temperature fluctuations due to mean shear
which is analogous to term III in the equation for kinetic energy above.
IV = nonlinear convective effects involving vortex stretching as in the kinetic

energy equation.
V = rate of temperature fluctuation dissipation by molecular diffusion effects.

The spectral equations are obtained in the usual manner by Fourier transfor-
mation of the two point correlations. We next consider the three dimensional
scalar wave number spectra obtained by averaging over spherical shells in k space.

Equations 6 and 7 are thus transformed into

| I I III
' du, 3B . du,
| LL—gt(k s S uw(ks t) dx1 s (“1 I l) . e
* . ¥ Jgp.Av. 9
(8)
v v VI
g 2
F(k, t) +-:¢wT(k, t) - 2vk“ ¢(k, t)
UT
and
| I it I
i 3 = OE, .. . dT
TRt & 5 e O o [ o Zhi) . .
ot wT ' - 1 3k, dxg
3 SP.AV.
v v (9)

2
Frp(k, t) = 200 k° dpp(k, t)

where x%‘ = x3/2, and where Ei i and ETi ; are the diagonal elements of the non-
averaged three-dimensional spectra. ;
The numbering of these spherically averaged spectral terms corresponds to

the previous numbering of the correlation terms. We now give the physical inter-

v NN

pretations. For Eq. (8) we have:

I - the rate of change with respect to time of ¢(k, t), the kinetic energy

spectral density at k.

II - rate of "turbulent production' at k. éuw is the real part of the cross
spectrum between the streamwise and vertical components of the velocity

fluctuations.

15
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III = transfer in k-space of kinetic energy due to the distortion effects of
mean shear. It is from lower to higher values of k in the anisotropic
region. The reader may consult discussions in Hinze26 and Lumley and

Panot‘sky27 for further information.

v

transfer in k-space of kinetic energy due to the inertial cascade from low
values of k where production is important to high values of k, where
molecular dissipation occurs. It represents the net input or output (that is,
the '"build-up') of energy at k and when F = 0, the cascade is steady in
k-space since F = -9¢(k)/0k.

V - rate of turbulent buoyancy "production,' or, as in the present stable

case, buoyant ""dissipation." It refers to kinetic energy loss at k by
conversion into buoyant potential energy. q”wT is the real part of the
cross-spectrum taken between fluctuations of temperature and vertical

velocity.

VI = viscous dissipation rate at k considered negligible for all but the highest

values of k near the Kolmogorov microscale.
The terms for Eq. (9) are:

I = rate of change with respect to time of éTT (k,t), the temperature fluctua-
tion spectral density at k.

II = rate of production of temperature fluctuations at k. Comparison with
term V of Eq. (8) shows that multiplication of the present term by
(g/f)ﬁ‘_' (where T' = d?/dx*) gives term V for potential energy. In fact,

if Eq. (9) is multiplied by this "conversion factor,' our temperature

fluctuation equation becomes the equation for the potential energy of the

fluctuations.

transfer in k-space, due to mean shear. Lin et a12° appear to be the

111
first to have incorporated this term in the equation for temperature

fluctuations,

IV = the inertial cascade term for the temperature fluctuations.

v molecular heat dissipation rate at k which is assumed negligible for

small k.

We now turn to a more detailed physical description of the terms of these

equations in the context of K-H turbulence.

16




3. INTERPRETATION OF THE TURBULENCE PRODUCTION TERMS

3.1 Kinetic Energy (KE) Production Term=

Insight into the production terms II and V of Eq. (6) in the context of K-H
turbulence, is provided by the discussions of Ludlam10 and Busingerza’ 29 who
derived the critical Richardson's numbers on the basis of a simple physical model
for the potential and kinetic energy budget. In the following, we will see why the
production of turbulence from mean shear II and the buoyancy dissipation (or

negative buoyant '"production'), V, are approximately equal but opposite in sign

for Kelvin-Helmholtz turbulence. IL.ater on, this crucial observation will be used
to explain the -5/3 spectrum.

The following argument leads to Richardson number, R, - 0.25 as a necessary
condition for turbulent breakdown to occur when there is a shear across a stable
layer (cf. also Milesso). The argument is based on the fact that the available
kinetic energy from the shear flow must exceed the potential energy of buovancy
work (involved in the vertical transport of parcels of fluid across the laver in the
mixing process) if turbulence is to take place.

Consider the idealized case of a horizontal layer across which is a linear,
stable temperature gradient and a linear shear of the horizontal velocity. If
parcels of fluid of unit mass at the top and bottom of the layer are adiabatically
interchanged, one must do work against the buoyancy force, gA()/’(—)O where Af is
the change of potential temperature across the layer and (-)O is the average poten-

sk
tial temperature. A6 = (t.*l(:)/d>~:3)lsx3 where Ax, is layer thickness. The work

3
done to move one parcel across the layer is

(ax,)?

"Previously we have assumed incompressibi%iéy, however here we are considering
the more general case treated by Businger.

28. Businger, J.A. (1969a) Note on the critical Richardson number(s), Quart.
J. Roy. Meteorol. Soc. 95:653-654. B

29. Businger, J.A. (1969b) On the energy supply of clear air turbulence, in
Clear Air Turbulence and its Detection, edited by Y.H. Pao and
A. Goldburg, Plenum Press,

Miles, J.W. (1963) On the stability of heterogeneous shear flows, Part II,
J. Fluid Mech., 16:209-227,
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The potential energy, (PE), generated by an interchange of two parcels originally

located on opposite sides of the layer is therefore

. & do 2
PE =5~ &, (ax,)° . (11)

Next consider the kinetic energy, (KE), available from parcel exchange across
the layer, due to the shear, Letting L—'l be the mean horizontal velocity and Al—’l
be the difference in horizontal velocity across the laver, we find the following
available KE due to the averaging out of the parcel moments after interchange:

T e - S S g,
1\1-,»5[(1 (T, + al) .)(11 ZAII)]

TG
) 2
I(dx,; ) (AXB) 5

Equating KE - PE we get:

(12)

(06/ E’x.s)
R. = (gradient Richardson number) - 5 ——_———2- 0:.25 . (13)
x o ([;['1 'é)x.;)

We now relate this to Eq. (6). lLetting x' - x there, we see that term II is

proportional to [ulu3 df"l/'dx3] while term V is proportional to [u30 g/T]. The

ratio of these terms is: «
o e
R.f = (flux Richardson number) = —— ———— (14)
G T(u, u (AU /dx.,)
) 3
Letting Km be the eddy viscosity and Kh the eddy conductivity defined by
“ugug = Km dl'l/de
and
-()u3 = K, d'I'/dx3 (15)

we obtain




\

In the case where intimate mixing can occur, KE = PE implies R;=1as

shown by Businger29 with arguments similar to the above. This in turn implies
that turbulence will begin to decay when Ri = 1 due to a lack of net energy input.
In the case of K-H turbulence, the value of Ri must be roughly in the range of
0.25 to 1.0 for the "active life' that is, the energy ''fed" period of the turbulence
layer. It should be now clear that terms II and V of Eq. (6) physically relate to
KE and PE in the presence of the velocity shear and stable potential gradient.

Next we consider the corresponding terms II and V of the spectral equation,
Eq. (6), and we see that they are the spectral form of the KE and PE at a given k,
Their ratio is the spectral flux Richardson number,

Also, note that the "parcel interchange' picture of Businger is physically
related to the terms ﬁ:; and m These relate to the PE and KE of the turbu-
lence due to ug, that is, vertical transport. Unlike Businger's case, incom-
pressibility is assumed in our treatment; thus, potential temperature is replaced
by ordinary temperature.

Another point is that the production of turbulent KE can also be regarded from
a point of view that does not involve parcel exchange but rather an energy input
from mean shear to turbulence by means of vortex stretching, As Tennekes and
Lumley20 (P41) showed, a vertical shear tends to "feed" vortices by this process
if the latter are aligned at 45° from the horizontal.

3.2 The Potential Eaergy (PE1 Prodaction Terms

As mentioned previously, Egs. (7) and (9) for temperature fluctuations can be
regarded as the equations for potential energy. For example, when Eq. (9) is
multiplied by (g/?) /E' it becomes the "Pll spectral equation,'" There is but one
"production term, ' namely II. It represents the rate of increase of the squared
temperature fluctuations, 02, in the presence of a mean vertical temperature
gradient though the action of vertical transport by velocity fluctuations. For
example, an increase of 6 takes place when a fluid parcel is transported down the
gradient.

This mechanism of production is entirely analogous to the momentum case
discussed previously. Also notice that the buoyancy sink term, V of the KE spec-
trum equation, Eq. (8), corresponds to the buoyancy source term, II of the PE
spectrum equation, Eq. (9). This latter point explains a certain peculiarity
pointed out in discussions of the so called ""buoyancy subrange' (see for example

Lumley,21 and Bolgiano,sl‘ 32) namely that whenever the KE spectrum is made to

31. Bogliano, R. (1959) Turbulent spectra in stably stratified atmosphere,

J. Geophys. Res. 64:2226.
32. Bolgiano, R. (1962) Structure of turbulence in stratified media, J.Geophys.
Res. 67:3015-3023,
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be steeper than -5/3 by a predominant buoyancy dissipation effect, the PE spec-
trum is at the same time made less steep than -5/3. These slopes bear a recip-

rocal relation in general, and the above description enables one to see the

physical reason for this effect,

L INTERPRETATION OF THE CASCADE TERMS

As we have seen, the nonlinear convective terms of the equations of motion
lead to the divergence of triple correlation terms, IV, in Eqgs., (6) and (7). These
give rise to F and FTT' the cascade terms in Egs. (8) and (9). In an inertial
range, these terms equal zero, implying a steady flow down the scale cascade in
k-space. The -5/3 slope depends on a steady, conservative flow (without sources
sinks, "build-ups," or "decays' along the way). We now review the physics of

the cascade processes in the PE and KE spectra.

L1 Inertial (KE) Cascade

Since the inertial cascade plays a key role in this paper, it will be useful to
examine it closely. First we will consider the famous treatment by ()nsagerB:
which, to date, seems to be the most informative one available. Next we shall
discuss the vortex stretching mechanism responsible for it, and finally the
Heisenberg concept will be mentioned since it gives an interesting physical picture
and will be used later,

()nsager'33 proceeded by directly Fourier transforming the Navier-Stokes
equations. The nonlinear convective term depends upon the difference of wave-
numbers, (+ k' t-l;). Assuming that k, as well as differences of k, are of the
order of (1/L) where "L is the size of the largest eddies, he found that k' would
be at most 2/1L, where k is regarded as the driving mode and k' the mode receiving
the energy, Applying this reasoning to subsequent cascade steps results in a geo-
metric progression. For this reason, the wavenumber doubles at each step:
hence, Ak between steps = k. The amount of energy transferred at each step is
therefore of the order k¢(k). Let Q(k) represent the flux of energy past wavenumber

k in k-space. Then, in the continuous limit,

ko(k
Q) = ——::L)) (16)

33. Onsager, L. (1949) Statistical hydrodynamics, Nuovo Cimento 6:(Ser, 9,
Supp. 2):279-287. i
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where 7(k) is a characteristic time for a step at wavenumber k. On apparently

dimensional grounds, Onsager chose
" 3 :
r=1/4 kia(k) . (17)
Alternatively, Corrsin34 deduced this result physically from

_ kinetic energy per step (18)
T~ Tenergy transler rate

He obtained a denominator by analogy with Uy (€] Ei/axk):

(spectral velocity)3 ~ (k¢) 3/2 ) k5¢3 (19)
(spectral length) — ~ (1/k) i

k¢ 1
(k) = ——— = QED. (20)
K563 k3¢

Using this in Eq. (16)
Qk) = p03/2 32 (21)

Assuming that the cascade in k space is divergenceless and conservative,

m=-F-0 . (22)
Setting:
:: Qk) = ¢ , (23)
' i)y w210 x93 (24)

This of course agrees with the usual result obtained by a similitude argument.
The doubling at each step accelerates the cascade and therefore causes the

amount of energy at k to decrease with increasing k in a way which is analogous to

the manner that a convectively accelerated stream of incompressible fluid will

become more narrow as it speeds up.

34, Corrsin, S. (1958) Local Isotropy in Turbulent Shear Flow, NACA RM 58-B11.
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Physically, the cascade comes about by the vortex stretching action of the

larger eddies on the smaller ones. Mathematically, this is represented by term

IV in Eq. (6). It can be shown, however, that

211 a.u.u ) u.u.s (25)
; ox; \Z i, 371 i
where
s 1 ‘}Ui Ju b5
= et (26)
52 dxi oxX

But (-uiu_isi].) is the amount of energy per unit mass and per unit time gained by a

disturbance with velocity components u;u; in strain rate 845 (see Tennekes and
20 = : i Y ; !

Lumley”" p. 257). If, for example, there is compression in the y direction and

stretch in the x direction (Figure 2) the energy exchange rate is equal to

Q= s(u; - u%) . (27)

2 : 2
Since w, is increased and wo decreased, u, increases while uy decreases. Hence,
(u2 - u‘f) starts at zero and becomes positive. The net effect is to increase the

energies of eddies by this deformation. The cascade is therefore visualized as

the transfer of energy by the distortion effects of large eddies upon the smaller
eddies. The interested reader should consult the excellent discussion of Tennekes
and Lumle_v20 for further quantitative information about this process., They show
for example that this leads to a derivation of the -5/3 slope. Since \'2 ~ ko

dimensionally,

3 ke
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Figure 2. Illustration of Vortex-Stretching Mechanism of the Turbulence

Cascade
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Q(k) ~ ko(k) s(k) (28)
and, also dimensionally
sl ~ @ t/2 (29)
Equations (23), (28), and (29) thus lead directly to
2/3 -5 /3

o(k) ~ e/ k 7 . [see Eq. (24)]

The computationally useful concept of Heisenberg is that the energy transfer

. . op i 26
across k can be regarded as a turbulent viscosity effect (see Hinze )

k k
f F dk = -2 v(k)f k? ¢(k) dk (30)
(6] O

where v(k) is the effective turbulent viscosity defined (from dimensions)

o«
v(k) ”f Q@ dk = oK(K) (31)
k.i
Kk

where ¢ = 1.
Various generalizations of this approach have been advanced and we shall

35
later make use of a very general one due to Panchev.

1.2 Temperature Fluoctuation (PE) Cascade

The mechanism of the previous inertial cascade represents a small version
of the ""turbulent production process' due to average shear. In a similar manner,
the temperature cascade is a small version of the production process due to mean
temperature gradient.

As above, the cascade term IV in Eq. (7) is the divergence of a triple corre-
lation. Considering IV as a one point correlation, we follow the treatment of

Tennekes and Lumley. Briefly, IV can be represented as a miniaturized form of

35. Panchev, S. (1971) Random Functions and Turbulence, Pergamon Press,
New York.
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—_— 5 3 ~ o«
(Hu ),) (73— ) - (temperature variance production rate) . (32)
' i

We estimate au., by wl (8T axq) and where y and { are representative velocity and

length,
X ;
I v’ k2 O(kz) P (33)
9 (34)
| —
| The miniaturized (T ’ax.;), that is, the gradient of the '"larger eddy" acting in the
! "smaller eddy'" is
!
) ] [3 "
(gradient of temp) k1 oTT(}\) (35)
Ko = kl' Let Qg be the flux past k in the temperature cascade. We than have
Q. = k! {k ok K5 6o (K) (36)
A 2 2 2 R : '
2 .
! Assuming k1 < k2
K72 g (k) o o(k) 37)
QO ( Orprr o 5 (37

This derivation shows the important point that the scaler temperature cascade
is due directly to the action of the velocity field on the temperature field, This

important point will be used below.

- -

S0 R TURBELENCE AND APPRONIMATE CANCELLATION OF KE
» PRODUCTION TERM=

The only way to explain an anomalous -5/3 spectrum is to assume that one has
a situation which is equivalent to the conservative steady cascade. In the present
case we argue that in K-H turbulence, terms II and V in Eq. (8) essentially cancel
each other over all wavelengths [rom microscale to outer scale. This can be true
only if the two terms are approximately equal and opposite and in addition have the
same dependence on k. To prove the latter, it is necessary to show that the tem-

perature field is determined by the velocity field. This, however, has already

21 ;
been done by L.umley” and the necessaryv assumptions are: (1) both Reynolds

o —
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number and Peclet number must be high enough that molecular effects can be
ignored, (2) (9T /at) = 0; and (3) {2 3°T/ax? Ly }/(8T/ax,) << 1 where Ly is the
Eulerian space integral scale, LE :u'TL (Corrsin” ) where u' is the r.m,s.
velocity and TL the Lagrangian time scale. Strictly speaking, the mean tempera-
ture is changed in time in K-H turbulence. However, we make the approximation,
for an interval of interest, that we have stationarity.

Briefly, Lumley's proof begins with

99, ~ [089 . T \ _ .
5 “i(axi*axi) . (38)

which is Eq. (5) withyp. =0, T = T+6,4 = U, +u; and 8T /ot = 0. Equation (38)
1s in Eulerian form. Lumley solved (38) under his above stated assumptions to

arrive at

_ . {aF e
alx, t) = (a"i ) (% - a;(x, t)) (39)
where ;(;(’, t) is the position at t = 0 of that fluid particle which will arrive at x at
time t. In our problem, where we assume a vertical temperature gradient con-
Tt}

it

stant in space and time, we have ((3T/dx;)
ox,t) = Tz -z ) . (40)

Physically, Eq. (40) is easy to understand. The temperature fluctuation is
all due to the vertical displacement of parcels from their initial position to new
positions where, by virtue of the gradient, they are at temperatures different from
the mean (compare Section 4. 2 above).

The conclusion of LLumley's proof is that, from Eq. (39) we can infer
: (-a'T"

nlx, t) uJ. G, &) —,-371> (xi - ai) uj (x', t)

(41)

i

(-BT/"axi)(Aij)

Since Ai' depends only on the velocity field, the proof is completed.
s
Using the fact that the velocity field controls the temperature field Lumley'1

went on to show, by means of a similitude argument that

s R I o B 7 -
b (42)
3
36, Corrsin, S. (1963) Estimates of the relations between Eulerian and Lagrangian
scales in large Reynolds number turbulence, J.Atm. Sci. 20:115-119,

owT Y
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where (‘13i',; a constant of order one. This result is an application of the
Kovasney~ ' formalism which says the spectral forms are determined by the local
spectral flux.

It should be mentioned that Lumley's proof of Eq. (42) rested on one more

assumption, namely '"local inertiality’" (cf. I.umley'“ -
(e/k)/(de/ak)> 1 . (43)

Physically, this assumption means that the transfer of energy in or out of the
cascade is but a small fraction of the throughput. This assumption is consistent
with the conclusion which follows from it below,

In a similar way, one can show

au :
: D il 1/3 , -7/3
Puw -(2 Xy > . = A4

where, hopefully, C1 = Cg,.
In Eq. (8) let us assume that at the value of k of interest, we can ignore
molecular dissipation: that except for the effects of production terms, the cascade

is steady and conservative; and that ¢ = 0. In tanis case, using F = (-de /3k),

dl_'- :Jr = p
de 1.g JORE Tt e g i 1 1 ;
e Vaw W;— :i_: b = € k C(1 - Ri) (———(‘lx'{ ) (45) :

where 9¢/0k is the change of throughput with respect to k, and Ri* is the gradient

Richardson number. Recalling Ri = [(g/ T)-dT fdx,| ’(d[—'1 ’dx,g)"3 we see
0.25 = Ri = 1 (46)

for K- turbulence in view of the previous discussion, This implies that (3¢ /9k)
will remain small except for large wavelengths. In order that (3e /dk) << € /k, we

have as a lower limit on Kk, kc,

*It is assumed that Ri = Rf.

37. Kovasznay, L.S. (1948) Spectrum of locally isotropic turbulence, J.Aeron.
Sei., 15:741-753.

38, Lumley, J. L. (1967a) Theoretical aspects of research on turbulence in
stratified flows, in Atmospheric Turbulence and Radio Wave Propagation,

edited by A. M. Yaglom, and V.I. Tatarsky, Publishing House "Nauka, "
Moscow.
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-7/3,=n ST 7 oaa
o, (UL < Ri 67 o K (47)

where

(T*I) = dU, [dx, . (48)

The following estimates will be employed:
Uy ~ U/L (49)

where L is the outer length, Also

u3
=5 G (50)

L )
where u is the rms value of the velocity fluctuations and (‘1 is a constant which
takes the buoyancy into account.

According to Woods and Wiley, 12 the rate at which turbulence loses energy
to viscous dissipation is much greater (up to a factor of 10) than the rate at which
the turbulence does work against gravity by changing the density (temperature)
profile, This implies C1 is near unity.

Defining C, as
u - C2IU11 (51)

and Eqgs. (49), (50) and (51) in (47), we obtain

4/3 (1 -Ri )
(k L)"/" =—55— . (52)
c 2352
Cl C2

Letting Ae be the maximum wavelength for inertiality, that is, kc = 2‘7‘/)‘c' we have

: 1/2 .3/2 \3/4
A = (27LCy/°Cy/ %)/ - Ri)

(53)
From this relation it follows that, as long as C1 and (‘2 are not zero (that is,
assuming there is turbulence and thus u # 0) there always exists a value of Ri less
than unity such that Ao = L. Thus, the -5/3 range can extend to the outer length
23

for Ri sufficiently close to unity. The effect described by Gifford“” will make the

-5/3 range extent to about 5 A in the one-dimensional spectrum,

27
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In addition to all the above mentioned explicit assumptions, it was also
implicitly assumed that the dynamic effects of the inertial cascade are not small
in their effects in comparison to mean shear effects, in other words we assume
that the mean strain rate is not large compared to the eddy strain rates. In our
judgment, all the above assumptions are appropriate for the approximate descrip-
tion of K-H turbulence. This weak interaction assumption is justified on the basis
that, unlike boundary layer or wall turbulence, the mean structure is too weak to
permanently "feed'" the turbulence directly. In actual fact, the layer is fed, to a
large degree, at the turbulent-laminar interface, by layer spreading

({378 & Woodsg' 7).

6. THE DUAL CASCADE MODEL AND THE ANOMALOL S, R-H 5737 SPECTRLE M

6.1 Cascade Model

We now put the spectral equations into a form more amenable to their resolu-
tion and visualization. First we integrate Eqs. (8) and (9) from 0 to k and then
integrate them from 0 to » and subtract the former from the latter. Using

w0

e = /2vk2¢ dk - (KE dissipation rate) (54)
o

and
o
N=J2v k2¢ dk = (temperature fluctuation (PE) dissipation rate) (55)
T i
o
% 26 )
(Hinze, p.179), we obtain
1 11 111 v v VI
w0 k k o o
p 2 . B e Y
f é dk -e+2l/fk d:dk-f F dk 2 fow.rdk-llf by K
k o o k k
VIl (56)
k
oK, . .
o | ("1 aTl"l> dk Ty
A 3 SP. AV.
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for the KE spectrum, and

I 1 I v v
w k k 00
o 1 2 ——
f bopep dk = (=N) + 20, f k® O dk -f Foop 9k = T f 6 9K
k 5} ) k
VI (57)
- T ‘ [ 2 dk
1f \ 1 9K,
o > /Sp. Av.

for the PE spectral equation, where we have used

k )
fF dk = —f Fdk , (58
o k

s omy . OB, &
f k) 5K, dk = -f ky i dk . (59)
o 5 ISP, AV. k S Sp. AN,

Referring back to the identification of terms for Egs. (8) and (9), the physical
meaning of most of the above is straightforward. As for the "k-transfer" terms
IV and VII in Eq. (56) and IV and VI in Eq. (57), they refer to the energy (PE or
KE) transferred out from the range 0 to k into the range k and higher.

In the following, we shall consider Eq. (57) as having been multiplied by ’
(g/’?)(’lT')-l so that we can regard it literally as the PE spectrum. Equations (56)

and (57) thus describe two energy cascades that are coupled through the (except

for sign) common term V. Figure 3 gives a schematic diagram of the dual cascade !
7 represented by these equations. We imagine the cascades as being analogous to h
S pipes, large at the large scale (or small k) end, (symbolizing the large amount of

energy stored there), and small at the high k end. For the most part, the "narrow-

ing of the pipes'" is due to the acceleration of the cascade discussed previously.
But, at the high k end we imagine the pipes as becoming increasingly porous to
symbolize the dissipation from the molecular effects, N and e. The process of

""going down the pipes'' is the cascade,

“Woods and Wileyl2 point out the € is significantly larger than N. This is clear ;
from the fact that Ri is presumably below 0. 25 at the start of the turbulence. -

b
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Figure 3. Dual Cascade Model

The source, if we ignore the ¢ term, is the turbulent production at the large
end of the KE cascade. We imagine the energy as entering through the wall of the
pipe. The PE cascade is fed by draining from the KE cascade through the "porous
pipe walls." This can be considered as a generalization based upon Lumley‘s21
"porous pipe' concept. Note that between the "fed" scale and dissipation scale
there is a conservative region for both pipes, and this of course represents the
inertial range.

The most important point to note about the above picture is that it suggests
the physical explanation of the anomalous -5/3 range. If we imagine that, in the
KE cascade, the input due to production and output due to '"buoyancy drain'' are
approximately equal to each other for all values of k where they are important,
then their net effects will approximately compensate or cancel, and the ""shape of
the KE pipe, " that is, the slope of the turbulence spectrum, must approximate the
-5/3 shape. This is because the '"flow" would then only depend on the cascade
term, F, which accelerates, as Onsager demonstrated, in just such a manner as
to give -5/3 as slope.

The above explanation leaves out a number of things. In the first place, the
direct spectral transfer due to mean shear has been omitted. More importantly,

if production and buoyancy terms exactly cancelled, the KE spectrum would have

30
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no source at all, In K-H turbulence, however, if we assume Ri - 0. 25 for insta-
bility to occur, then we are guaranteed that during the initial phase of the turbu-
lence, production will exceed "drainage’” so that there will be a net feeding of the
"KE pipe," and relation (43) assures us that '"local inertiality" will exist and hence
to a good approximation the -5/3 shape will prevail. As for mean shear effect=

on the cascade, we have already assumed that the interaction between mean shear
and turbulence vorticity is "weak' in K-H turbulence, and, even including" shear
transfer' effects, it will be shown below that we would still expect -5 /3 for the
slope in the ""anisotropic' region.

Once Ri = 1 and the decay phase of the turbulence begins, the "source’ of the
turbulence will be the slowly decaying large eddies (¢) and, since both shear and
temperature gradient within the layer will have been destroved by the mixing
process, we would expect a -5/3 slope on the basis that local inertiality would hold
even more accurately than during the initial phase, In this second phase, both KE
and PE cascade should have a -5/3 slope which is in contrast to the initial phase
where the PE slope, in the anisotropic region, wculd be significantly flattened (if
not in fact reversed in sign) due to the effects of '"production' without a compensat-
ing drain. g On the other hand, at the very start of the turbulence regime, we
might expect a e dependence in the KE spectrum due to "'strong interaction'

(cf. Gisina39).

6.2 The Anomalous -5’3 Range

We now proceed in the spirit of Section 5 to derive the KE spectrum in the
manner used by Lumley21 in his derivation of the buoyancy range equations. We
start with Eq. (45) and integrate to obtain

e 55/3 <1 -%(5'1)2“ - Ri) 552/3 £33 ) (60)

where the constant of integration has been chosen to make ¢ — £ when k — o
(so is the viscous dissipation). Now the condition given by Eq. (43) assures us
that the spectrum will be determined locally by the spectral flux and that the

A log-log plot of the tem&erature spectrum derived from HICAT showed

(Vinnichenko and Dutton%*V) a -5/3 power law on the average. The implication of
the above reasoning is that most of the data were taken in the decay phase,

39. Gisina, F.A. (1966) The effect of mean velocity and thermal gradients on the
spectral characteristics of turbulence, Izvest. Atm. and Oceanic Phys.
2:804-813.

40, Vinnichenoko, N.K., and Dutton, J.A. (1969) Empirical studies of atmos -
pheric structure and spectra in the free atmosphere, Radio Sci, 4:1115-
1126, -




spectrum will remain approximately isotropic since anisotropic inputs or outputs

are a small fraction of the "throughput' ¢. In other words, we have the condition
where the cascade is "locally inertial in wavenumber space' (a phase attributed to
Corrsin by Lumley). This allows the use of all the customary forms familiar in
the inertial subrange, but with '"variable ¢' as Lumley21 has put it.

Thus we find that

800 = a3 23 [1 - S (@21 - Ry 2/ i3] (61)

From this we immediately arrive at the conclusion that: (1) for high enough k we
have the ordinary inertial range relationships, and (2) under the restriction of
Eqs. (43), the -5/3 relation holds for all scales up to the outer length which is
also indicated by Eq. (47) whenever we are concerned with K-H turbulence at a
stage where Ri is sufficiently close to unity. It should be mentioned in passing
that Lumley41 also explained an anomalous -5/3 spectrum, in a different context,
by means of this constant flux mechanism,

Another approach to the anomolous ~5/3 slope is the following. th.; time we
use Eq. (56) to derive the -5/3 slope of the KE spectrum of K-H turbulence under
the assumptions of weak interaction between turbulence and mean profile, and
stationarity (of both mean and turbulent quantities). We shall make use of the
Heisenberg concept mentioned previously. In addition, we shall make use of

Tchen's idea of using the Boussinesqg's concept to represent terms VI and VII

together as a '"dissipative effect'" (see Tchen?? and Hinze2%). We shall also treat
term V in a similar way (cf Gisina3?).
Thus, for terms VI and VII we have:
i 4 o W1 | PRI 62)
; f Pwu 1 9kg = m o
e :
where
o0
v () = o'a f‘/%ﬁ dk = o'a K (k) (63)
k

41, Lumley, J.L. (1967b) The inertial subrange in nonequilibrium turbulence,
in Atmospheric Turbulence and Radio Wave Propagation, edited by A. M.
Yaglom and V.I. Tatarsky, Nauka, Moscow.

42, Tchen, C.M. (1953) On the spectrum of energy in turbulent shear flow,
J. or Res., of NBS 50:51-62,
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and for term V

0
Jooppax-£ ( » (k))T' (64)
s wT T H

S fos

where

o
vy (k) = @'e f‘lf% dk = o"oK (k) . (65)
g k

We can thus write Eq. (56) as

| k
' e - 2(u + oK(K)) szd:dk + aK(k) (66) *
|
{ o
where
as oo (F')2 - ,%(r"o"T" . (67)
To solve (66), one uses the technique of Agostini and Bass?? and
i Chandr'esekhar44 namely, that of defining
| k
r(k) = f k% o(k) dk , (68)
O
or
6 - -1—2- g% (69)

k

In the resulting differential equation, which can be solved by direct quadrature,

the boundary condition is I' = ¢ /2y when k - », giving for constant of integration

| 3
B TR O R »
B CONST - + (e . au) . (70)

43. Agostini, L., and Bass, J. (1950) Publ. Sci. et Tech. Ministere Air 237,

44, Chandrasekhar, S. (1949) On Heisenberg's elementary theory of turbulence, |
Proc. Roy. Soc. London, 200A:20, 4
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Thus, as Gisina39 has shown in a different context,

-4/3
; 2/3 3 4 b
8(k) - (98—> e +an)?/? [1 + -—Bv—‘i—-—] R (1)
* (362 (e + av)

For values of k of interest, this gives a k_5/3 dependence, The most impor-
tant part of this result to notice, other than the -5/3 slope, is the fact that the
""constant' no longer simply depends on g, as it would in a classical inertial range.
Rather, it also contains (ay) which involves the production and bouyant dissipation
terms. As mentioned in the introduction, this could lead to an erroneous deter-
mination of € if the investigator makes the mistake of perceiving an anomolous -5/3
range as an inertial range.

It should not be overlooked that Eqs. (61) and (71) are not consistent. Only
the ~5/3 exponent is consistent. This lack of consistency is excusable, perhaps,
on the grounds that the Heisenberg approach usually does give physically incorrect
results outside of the wavenumber range of primary interest (cf Hinze‘szﬂ
discussion of the Heisenberg result for the dissipation range).* In view of the
necessity for an inertial range between the anisotropic production range and the
dissipation range, we should choose the relation (61) as being more correct at
large ) since it includes the inertial range as a high wavenumber limit in contrast
to (71) which does not. From (61), the remark above about determination of &
still holds.

7. SPECTRAL NONLINEARITIES

In both HICAT data (Crooks et a1*9) and in the tropospheric data of Reiter and
Burns?® it has been noted that there are "humps'" and "dips'", sometimes
called "gaps'' in the KE spectra. Various attempts have been made to

-lﬁ)‘

explain these (Cf. Reiter and Burns One such explanation, Paot”, was

based on a numerical simulation in which it was found that, with high degrees

*The explanation for the somewhat incorrect nature of the Heisenberg formalism
is that it reflects distant wavenumber interactions, whereas close wavenumber
interactions are in reality much more important.

45, Crooks, W.M., Hoblit, F, M., and Prophet, D.T., et al (1967) Project
HICAT: An Investigation of High Altitude Clear Air Turbulence, Tech.
Rept. AFFDIL.-TR-67-123. AD824 865, AD824 904, AD825 369 (1967).
See also AD846 086, AD847 497 (1968). x

46, Reiter, E.R. and Burns, A, (1966) The structure of clear-air turbulence
derived from "TOPCAT" aircraft measurements, J.Atm, Sci. 23:206-212.

47. Pao, Y.H. (1968) Turbulence Velocity and Scalar Spectra in Stably Stratified
Fluids, Boeing Scientific Research Laboratories, D 1-82-0680, AD677-585.
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of stability, the nonlinearities would occur. Unfortunately in these simulations the
production term due to shear was omitted.

Another possible explanation is the following. In Eq. (56), let us ignore
terms I, III, and VII, and in'Eq. (57) omit I, III, and VI. We then have

i L IV v VI
o0 o
2L o g - T —
e = dek+.:r__ f 6,7 dk - T f‘%u dk (72)
[6] k k
k IV - v
L —) ) :
N =ls fFTTdk - fd’w'r dk . (73)
| o k
1
| 25, 48

These equations have been treated by Lin et al™" and by taking the limiting
form of the generalized eddy-viscosity approximation due to Panchev’? they

arrived at the following nondimensionalized representation |

3C Y
5/2 3/2 | ('%)(‘74> 13 i
1 x°/¢ & (X) « JTy XN e < (X)) P (X) (74)
| 1 g
1 VI
|
I ('%)"( ‘)2> 1/2)+(Cy/2)
‘ & FIT XN N = e =
I v i
s S c /2|
2 12 N T R ha By .
1 3 ® Sy (3 Cpl X (X)) dpp(X) s (75)

where Eq. (74) corresponds to (72), and (7:’)):" corresponds to (73). The numbering

of terms is retained. Also, ¢ and & T oare the nondimensionalized spectra, and

o
X is the nondimensionalized wavenumber, 1° - a parameter characterizing tur-

4 bulence production due to mean shear, l'1 a parameter characterizing the

.

. bouyancy dissipation which depends on mean temperature gradient, and I\’I‘ =3

parameter characterizing the production of temperature fluctuations which depends
temperature gradient. Parameters C, and Cy4, both of which can range from 0 to 1, i
represent a generalization of Tchen's concept of strong and weak interaction between

turbulence and mean shear and temperature gradient respectively. "0" means

weak interaction and '""1'" means strong interaction in the sense that the vorticity

“Compare term IV of Eq. (75) with Eq. (37).

48, Lin, J.T., Panchev, S., and Cermak, J.E. (1969b) A modified hypothesis
on turbulence spectra in the bouyancy subrange of stably stratified shear
flow, Radio Sci. 4:1333-1337.
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squared term (in the Heisenberg expression for '"dissipation') is the square mean
gradient or shear in the ""weak'' case, and the square vorticity* or equivalent form
for temperature fluctuations in the range 0 to k in the "strong’ case (cf Hinze?“
pp. 264, 265). Finally, note that in Eqs. (74) and (75), the spectral transfer terms
are those of Onsager and Kovasnay.

L.in et al29 solved these equations 108 —
numerically for a number of cases. One i \5/3
particular case is of special interest 10
here, and it is given in Fig. 4 which is B
copied from their Fig. 6. It shows both —_—
the KE and temperatures spectra. This -
example has the following values for the
parameters: Cg4 = 0.3, Cg = 1, I§=0.01, 103 -
[ = 0.001, and FT = 0.001. From these
parameter values, it can be seen that 102
shear effects in this example are less

10' +

®(x)

important than bouyancy effects. The
figure displays the -5/3 slope in the KE
spectrum at both high and low ends, but 10° -
a -2.75 in the midrange where bouyancy
dissipation effects become dominant,

1074 =
This brings out two important points. -

First, it clearly illustrates the anoma- ot
L
lous -5/3 range effect. In that range,

-5 3/
X a/3¢3/2

+~

the spectral transfer term,

-3 I 1 1 1 I
is essentially constant in the numerical 10 10°4 ‘10’3 ‘|o-z ‘|0-| ‘|0° ‘IO'

simulation, and this is in accordance X =
with our previous discussion. Second,
this figure may provide an explanation Figure 4. Minus 5/3 Spectrum With
for some of the spectral nonlinearities "Jog'" Due to Turbulence Production
seen in the data. No doubt, by adjusting {Riter Lin et al, 13Gaa)
the parameters so that production is
relatively dominant over bouyancy, one could cause the intermediate range slope
to be flatter (rather than steeper) than -5/3. Note that "jogs" also appear in some
HICAT data.

It should be emphasized that the idealized treatment that we have given for
the spectra of K-H turbulence would predict a -5 /3 slope for all k between the

inner and outer length (assuming a = 0, that is, a perfect balance between produc-

*This refers now to velocity fluctuations.
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tion and bouyancy). * However, in reality, neither "a" will be zero nor will strengths
or production and bouyant dissipation interactions (between fluctuations and mean
quantities) match perfectly. Hence, spectral nonlinearities should hardly come as
a surprise. Perhaps the more surprising aspect of the data is the extent to which
it is linear in the majority of cases published. In any case, it is exactly such

nonlinearities which could lead the unwary to an erroneous value for =.

8. TURBULENT DECAY AND GENERATION OF LARGE EDDIES

8.1 Introduction

Section 8 examines two further aspects of stratospheric turbulence in relation
to the anomalous -5/3 spectrum. The first concerns the possibility that turbulence
persists for a relatively long time after the energy input has stopped, that is, after
Ri = 1. It can then be argued that in situ measurements of stratospheric turbulence
are much more likely to be of decaying turbulence rather than turbulence with
energy input. The second aspect to be discussed concerns the generation of large
horizontal eddies by the mean shear during the ""energy production' phase of the
Kelvin-Helmholtz event. The possibility will be discussed that such large eddy
structures could play the role of an outer length during the decay period. This
would provide an additional rationale for the presence of -5/3 slopes at consider-
ably large wavelengths.

If in fact the -5/3 spectra are only observed well beyond the time when there
is energy input, then the above theory (based upon compensation between production
and bouyant dissipation) would be replaced by a theory based on the idea that pro-
duction and bouyancy in the layer are negligible.

In the discussions below, we shall assume that radiation effects can be
neglected. This is reasonable since, according to McClatchey et al, - there
would be no more than 1°K change per day from radiation effects in the strato-
sphere. A second assumption is that atmospheric billow events result in fairly
complete mixing within the layer so that during decay, mean potential temperature
gradient and mean shear are negligible (Turner99), This assumption is important,
not only for present purposes, but also for the purpose of explaining vertical
transport in the stratosphere by turbulence (see Rosenberg and Dewanl)., It would,

therefore, be very useful to validate this assumption by in situ measurements.,

*Note that there is a k™ dependernice at large values of k beyond the inner scale.

49, McClatchey, R., Kuhn, W.R., Bailey, P., and Ellington, R. (1975) The
Natural Stratosphere of 1974 CIAP Monograph 1, Final Report, DOT,
CIAP, DOT-TS7-75-51, p. 4-77.

50, Turner, J.S. (1973) Bouyancy Effects in Fluids, Cambridge University Press,
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However, one can interpret the radar study of Browning and Watkins, which is

mentioned below, as lending some support to our assumption.

6.2 Decay

From the above we see that an important question is "How long does strato-
spheric turbulence persist?' In the initial stages, the turbulence consists of a
breaking K-H wave which takes less than 5 min to turn over (5 min is about the
period for a bouyancy oscillation cf Woods and WileylZ). In the ocean, where
this process occurs at low Reynolds number, one would estimate the turbulence
duration as being on the order of the turnover time (\\'oods7). Such is not the
case in the atmosphere due to high Reynolds number there. We would therefore be
interested to know how long the turbulence persists beyond the time it is fed by
the mean shear through layer spreading etc. (the latter being, presumably on the
order of 5 min).

First, let us consider experimental observations. Apparently, the only
available direct measurements of turbulent persistence in the stratosphere are
those of the HICAT program. The longest observation to be found there was
14 min and 14 sec. In contrast to the stratosphere, there are many observations
of CAT in the troposphere which are of interest provided we remember that the
turnover time there is about double that of the stratosphere. These involve both
radar and radiosonde measurements. Boucher®Z has published a radar observa-~
tion of tropospheric CAT which occupies a 500 m thick layer and which persisted
for 1 hr. Perhaps the most useful radar study in this connection is that of

Browning and Watkins °1 who, as mentioned above, described a typical K-H billow

. sequence as consisting of 20 min of visible billow structure followed by a double

layer of turbulence persisting for 2 hr, This observation is consistent with the
idea that beyond the initial 20 min the turbulence continues for about 2 hr without
bouyancy damping (mean gradients inside the layer having beer destroyed by
mixing). At the top and bottom edges of the layer, enough entrainment continues

to occur with sufficient intensity as to cause (for 2 hr) an observable reflection

due to the inhomogeneities of index refraction thus generated. If this interpretation
is correct, one can expect that stratospheric turbulence occurs for hours rather

than minutes.

51. Browning, K.A., and Watkins, C,D. (1970) Observations of clear air turbu-
lence by high power radar, Nature 227:260-263,
52. Boucher, R.J. (1973) Mesoscale history of a small patch of clear air tur-

bulence, J. of Appl. Meteorol. 12:814-821.

53. Vinnichenko, N.K., Pinus, N. Z., Shmeter, S.M., and Shur, G.N. (1973)
Turbulence in the Free Atmosphere, Consultants Bureau, New York.
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The radiosonde observations reported in Vinnichenko et al93 are consistent
with the idea that the decay of atmospheric K-H turbulence takes hours. They say
that the probability that the turbulent situation remains unchanged at 12 to 20 km
altitude is less than 50 percent over the period 1.5 to 6.0 hr.

In the troposphere, persistence can be due to factors other than decay, for
example, continually increased mean shears due to the deformation effects of
moving fronts. In the stratosphere one can imagine that mountain waves could
prolong turbulence. The above must be viewed in this context,

A crude theoretical estimate of decay time can be obtained as follows. (Com-
pare problem 1.2 of Tennekes and I.umlw;zﬂ). Let us imagine a cubical box of
volume I.‘)‘ containing atmosphere in turbulent motion. Assuming no energy source,
the turbulent decays, but, since L is [ixed, we can assume the length scale is
congtant and equal to L., We derive an expression for the decay of kinetic energy,

-——— as follows:

T B R S B (76)
Integrating, we find the decay time is

u.
1

At = 3L (< -L) (77
[
where u; is the initial turbulent velocity and Ug is the final velocity.

In this crude model let us set I. = 1000 m, the observed HICAT turbulence
layer thickness mentioned earlier. For ug and up, let us use the value for "strong'
turbulence and ; the value for "weak'" turbulence, respectively, as found in
Vinneshenko et;l'w, p. 190 namely, y;
At = 3 hr * which is consistent with the above considerations. Obviously, At depends

2.5 m/s and up = 0.25 m/s. In this case,

greatly on what we choose for up and the above choice is perhaps conservative.

This value for duration disagrees with the results of IB»adgl(.*‘\';34 who calculated

decay time on the basis of constant e¢. In general, however, ¢ decreases with
time and this prolongs the duration of decay. On the other hand, the value cal-
culated for duration depends very much upon the final turbulence velocity; thus, a
question arises concerning what final velocity should be considered reasonable.
Zimmerman and lLoving=“ calculated several values of ¢ from the HICAT spectra
which ranged from 262 to 24 em?/secd, Converting these to initial and final
velocities and again assuming . = 1000m, we find At = 20 min, and this is four
times longer than the turn over time, Thus, even by this conservative estimate,
it is reasonable to suppose that most of the HICAT turbulence data is in the decay
phase.
54, Badgley, F.I. (1969) Large scale processes contributing energy to clear air
turbulence, in Clear Air Turbulence and Its Detection, edited by Y. H. Pao
and A. Goldburg, Plenum Press, New York.
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8.3 Generation of Large Horizontal Eddies by Shear, and Cascade

There is a possibility that, in the anisotropic shear turbulence which we are
here considering, the turbulence cascade starts at a scale much larger than the
"outer scale' of turbulent layer thickness. If such were the case, it would not be
possible to treat this situation theoretically with the help of present theories of
turbulence. On the other hand, if such an effect were actually present, it would
further explain an anomolous -5/3 range to unexpectedly large scales., In the
following, we shall state the case for this possibility., We shall assume that the
effect would be seen only during the decaying stage of the turbulence., But, as the
above discussion indicates, we would expect that this stage is significantly more
probable than the initial ''fed" stage, in any in situ observation. This implies
that the anomalous -5/3 slope could be more often due to the absence of both
production and bouyant dissipation terms rather than their mutual cancellation.

In such cases, the measured value of € would become reliable even in the
anomalous range.

Terms VII in Eq. (56) and VI in Eq, (57) describe the rotation and deformation
effects of mean shear on turbulence. The latter consist of compression at 135°
and stretching at 45° where 0° is taken as downstream and 90° is vertical, and a
positive value for shear is assumed. This effect of shear is duscussed in a
number of places, eq Pllillips:—’;—), Town,cnd"", Lumloy‘w, }\Iofl’a:t%, and Lumley
and Pano[‘sk}'27. In the above discussion, we have referred to it as a transfer of
energy in k- space due to mean shear. At 135° the transfer is from lower to
higher wavenumbers and at 45° it is from higher to lower wavenumbers. Lumley
and Panofsky27 showed that the spherically averaged effect is a transfer to higher
wavenumbers. However, the geometry of the situation clearly indicates that, for

horizontal eddies, the transfer is to larger scale.

As discussed in Phillips'-’s the generation of large and elongated eddies in the
horizontal direction is not only theoretically expected but has been observed
experimentally in wall turbulence. Panofsky and Deland? have studied such
55. Phillips, O.M. (1969) Shear-flow Turbulence, Annual Rev. of Fluid Dynamics

Vol. I, edited by W, R. Sears, and M. Van Dyke, Annual Reviews, Inc.,
Palo Alto, California,

56. Townsend, A.A. (1956) The Structure of Turbulent Shear Flow, Cambridge
University Press.

(31}
~1

Lumley, J. L. (1964b) Spectral energy budget in wall turbulence, Phys.
Fluids 7:190-196.

58. Moffatt, H.K. (1967) The interaction of turbulence with strong wind shear, in

Atmospheric Turbulence and Radio Wave Propagation, edited by A, M.

Yaglom, and V., 1. Tatarsky, Nauka, Moscow,

59. Panofsky, H.A., and Deland, R.J. (1957) Structure of turbulence of O'Neill,
Nebraska and its relation to the structure at Brookhaven, National
Laboratory, Upton, l.ong Island, AFCRC-TR-58-201, AD-146 843,

J. Geophys. Res, 64:2226-2229,
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elongated eddies in the boundary layer with co-spectral techniques. It is perhaps
fair to say that large persistent horizontal eddies should be found in the turbulent
shear layers of the stratosphere (having been generated during the strong inter-
action,early time of the turbulence) and that for this reason, significant amounts
of energy may be found at scales exceeding layer thickness. During the decay
phase, shear and temperature gradient will be absent, and term I of Egs. (56)

and (57) would be the only source of energy. The unanswered question is, can
some anisotropic analogue of "F'" and "FTT" describe the cascade processes in
such a way that an approximate -5/3 slope of the one-dimensional horizontal
spectra occur out to scales exceeding layer thickness during the decay» In other
words, could the large eddies generated by the shear at the start of the turbulence
act later, during decay, as the prime energy source of the turbulence, and could
an anisotropic cascade result which approximates the inertial cascade? Unfor-
tunately, these questions must remain unanswered at present. If the answers were
affirmative, however, it would probably also help one to explain why the slope of
the vertical velocity spectra are flatter at large scale than the horizontal velocity
spectra in the HICAT data.

9. CONCLUSIONS

The HICAT data contain spectra which have an approximately -5/3 slope out
to wavelengths orders of magnitude larger than expected for an inertial range.

; : 9
In order to explain this we have employed treatments based on those of Lumlo‘\"‘l,

S
Gisina‘m, and Lin'a, all of which lead to a -5/3 slope for K-H turbulence the outer

length when Ri is close to unity. A key assumption in some of these treatments
was ''local inertiality.' Since current theory relies upon spherical averages, it
cannot explain the large wavelengths for -5/3 that are observed. To bridge the
gap, we have invoked the concept of Gifford which accounts for such effects in the
one-dimensional spectra on the basis of spatial aliasing.

In addition, some remarks were made regarding the generation, by mean
shears, of large elongated horizontal eddies which might, during the decay phase,
act as the energy source for the turbulence, The speculation was advanced that
an anisotropic cascade effect might help to explain extremely long wavelength -5/3
regions.

The practical impact of these considerations to the determination of ¢ from
measured spectra was also noted. In addition, it can be concluded that one need

not resort to wave theory to explain -5/3 slopes at large wavelengths.
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Notes Added in Proof

1 - The Kelvin Helmholtz type of turbulence discussed in this paper is intrinsically
a non-stationary, developing flow with weak interaction between turbulence and

the mean shear (as has already been pointed out in the text). For this reason it is,
strictly speaking, not correct to omit the contribution to the kinetic energy cascade
made by the decay of the larger eddies. As mentioned in the text, when Ry
approaches the value 1, there would be virtually no net input of energy to the
cascade if large eddy decay were ignored, and, Townsend has shown that [ J Fluid
mech, 3, 361-372(1958)] R¢ could not reach the value of unity but would be con-

strained by the relation
(1-Rp) = ¢/ (Tw U").

The energy balance with decay can be described as follows. Let D be defined
as the rate of kinetic energy input to the inertial cascade by the decay of the largest
eddies and let P be turbulent production through mean shear, B the bouyant dissi-

pation, F = —£__, i.e. the conversion factor from temperature fluctuation

TT
dissipation to potential energy dissipation, g the temperature fluctuation dissi-

pation rate, and = the kinetic energy dissipation rate. We then have

B=Fr0 and

D+P=B4+E,
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The second of these equations can be derived from Eq. 6 by retaining term
number [. It should also be mentioned that keeping this term would modify our
interpretation of Fig. 3, p. 30 in the sense that the large eddies would be con-
sidered to be slowly emptying reservoirs of energy which then cascades down the
scale, i. e. down the more narrow parts of the pipes.

As Rf approaches unity, P approaches -F= g+ hence e approaches D. We
therefore can have quasi-inertiality at large wavelengths when D is significant.
Thus, when P and B are significant in size, and when Ry is near unity, then the
condition for a -5/3 sloped spectrum is d¢/dk << D/k. Eq. 61 for the spectrum
should be viewed in this light.

Note also that we have assumed that R; = R;. Here again D would have to be
significant in value, since otherwise, as Townsend (op. cit.) has shown

| —F—R=(1-R)(R)<E_"12
£g i f ) ¢ aﬂ-)

From all these considerations we now see that the assumption of weak shear-
interaction has a double significance: (a) the decay rate, D, must be assumed
significantly large in order to allow quasi-inertiality, and (b) a strong interaction
would give a k™1 spectrum rather than a k™ /3 spectrum as was shown by Gisina,

f op. cit,

In Eq. 71, when a = 0 we would have ¢ = 0 if D were equal to zero. This again
emphasizes the need for the condition that D # 0 if the -5/3 formalism is to be
consistent. However, we have not taken into formal consideration the input of
energy due to layer spreading. This could be done superficially by incorporating
that input in the term D above. On the other hand there exists no theory at present

that gives the spectral distribution of this input due to layer spreading.

2 - It should be emphasized that the more sophisticated model of L.in, which was
described in the text, makes possible a number of nonlinear spectral shapes which
would make a measurement of ¢, by means of the spectrum, incorrect. On the
other hand, when both the turbulent production and bouyancy dissipation terms

are very small, then such measurements of ¢ should be correspondingly accurate.

As seen from the arguments given, such a state of affairs may well be the more

probable one for stratospheric measurements. Nevertheless the most feasible way

———

to check this is by measurements of the spectrum at sufficiently high k such that

the wavelengths are well within the true inertial range.
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3 - The text mentions the need to find experimental evidence for adiabatic lapse

rates in the stratosphere following turbulent breakdown. Fig. 6.33 on P. 6-76
from Loving (1975), [ The Natural Stratosphere of 1974, CIAP Monograph I,
Final Report, DOT, CIAP., DOT-TST-75-51] seems to provide a published
example of this.
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