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~~rhe HIVE project is concerned with studying high level virtua’ machine
architectures suitable for designing and implementing large , high-
integrity transaction processing applications such as c o x ~ication
switching and database access systems. The main aim of the work is to
develop a unif ied set of structural concepts and components in terms
of which al]. the different and often conflicting design aspects of
such systems can be coherently expressed. The approach followed has
been to embody these ideas in the specif icat ion of a high integrity
virtual machine, HIVE, and to implement HIVE and evaluate it experi-
mentally by using it to implement test—bed applications systems.

This work has involved considering not only the architecture of the over-
all run-time software during nor mal operation , but also various selec-
tive approaches to data protection, redundancy and recovery, and
methods for easing the task of describing, generating and integrating
all the software of an application in an incremental, evolutionary way.

This report is concerned primarily with the first two of these areas.
It presents the main points of the HIVE system as it stands at present,
with particular emphasis on the selective data redundancy and recovery
aspects, and also aiscusses the rationale behind the main design
principles of the system.
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~~. IWI’RODUCTION

The HIVk. project at RSRE (formerly SRDE) is concerned with investi-
gating high level virtual machine architectures suitable for
implementing large , dedicated transaction processing systems such
as communications switching and database access systems. Currently,
such systems are often de3igned and imp lemented according to many
different and frequently conflicting structural principles. These in
turn are often derived either from var ious aspects of the basic
system requirement (eg high integrity operation, modifiability, size,
real-time response etc) or else they resu’t from basing the design on
particular existing hardware and software components (eg a particular
computer system, operating system or language).

A basic aim of the HIVE research has been to develop a more unified
conceptual framework for designing and implementing these types of
system, providing a set of structual concepts and component& in terms
of which all the various aspects cf a system can be expressed
coherently. To allow experimental study and evaluation of these
ideas, we have proceeded by designing and implementing a high integ-
rity virtual machine, HIVE, and using it to implement , initially,
the application software for a test—bed message switching system.

The development of HIVE itself has involved 3 major areas:-

- the architecture of the overall run-time software systems in
normal operation;

- methods for allowing high integrity operation by selectively
protecting critical data during normal operation and re-
constructing the system after a fault ;

- methods for easing the task of generating and integrating all
the software for a given application in an incremental way.

The present report is concerned mainly with the first two areas. Its
aim is to present the main points of the HIVE system as it stands at
the moment, and in particular to describe our current approach to
data protection and recovery. However, we begin with a discussion of
some of the various types of structure found in transaction process-
ing systems, in order to introduce and explain most of the main
design principles on which HIVE itself is based.

~~. TRANSACTIONS AND FUNCTION S

The first obvious components of a transaction processing system are
the actual transactions being processed. Typically, such a system
processes many randomly arising transactions apparently independent ly
and in parallel , and each transaction will be represented during its
lifet ime in the system by one or more associated data areas. The
actions needed to process any given transaction can be represented as
a set of operations or functions which are to be executed on the data
of that transaction. Different transactions may need different sets
of functions , and functions may be hierarchically related , sequent—
ially related or both.
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Many different criteria may be used to partition the o’ier~ll process—
ing required into discrete functions, each corresponding to a
different structural view of the system. For examp le , f unctions may
be defined so as to give well—defined, compact interfaces between
them for which correctness and validity checks can be specified , or
to give clearly separated programming tasks during implementation.
Functions may be defined that can be asynchr onously scheduled for
execution at run time (eg to meet real time requirements, one function
might need to run 100 times more frequently than another~, , or chosen
to facilitate modification and expansion after cut— over . Alternat-
ively, the system might be hierarchically organised with functions
defined to support various different levels of abstraction. The
system might be designed around its database organisation with
operations grouped together according to which files they access, or
more general considerations of protection and redundancy could be the
dominant theme, with functional boundaries defined so they can be
enforced by hardware protection facilities and to allow redundant
copies of data areas etc to be maintained securely at run time.

It is clear that these criteria may conflict if considered independ-
ently and so some common framework in which they can all be expressed
coherently is desirable. We must therefore look at some of the
underlying structural components they imply.

5. CODE AND DATA - VERSIONS

The operation of a function on a transaction is likely to be imple-
mented as the execution of some module(s) of program code on the
data area(s) representing the transaction. Two other kinds of data
area are also likely to be required , namely workspace areas providing
te mporary, scratchpad workspace private to the functional program
itself, and one or more database areas. These exist permanently in
the system and will be read and/or updated by the functional code in
the course of its execution for any particular transaction. There
may be many of these database areas in the whole system, any of which
may be accessea by more than one function and together they constitute
the system’s dynamic, long_term memory. Examples include routing
tables, user database files, transaction audit files etc, etc.

~ihese varicus c ode and data modules must be stored in physical hard-
ware. They must be loaded into fast core stor e or its equivalent
when execution is required and we assume that in large, high integrity
~y~tems they must also be held on some form of backing store such as
discs both for economic reasons (too expensive to hold all the code
and data in core) and also to permit recovery from faults, as we shall
discuss later. For our present purposes, we will refer to this back-
ing storage as dis~s although its actual nature is not important.
This inm~ediately implies that a given code or data object may exist in
several different forms or versions simultaneously within the system, V

for example an executable version in core, working version on disc A,
backup version on disc B, cold start versions on discs A and B and
perhaps also some source code versions.

Our basic structual components ‘ transactions” and ‘functions’ (however
definedj are thus likely to be formed out of more primitive components
such as code and data modules, each of which in turn may be regarded
as a composite object consisting of several coexisting versions.
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4. PARALLEL PRCCESSING - CO~OPERATING E INGLE THREAD PRCGRAM~

Existing high level programming languages are almost entirely designed
around producing single thread programs , ie programs able tc: contain
only a single thread or path of execution at run time. Such languages
are thus often well suited to producing the code for a single function
processing a single transaction. However , an overall transaction
processing system is likely to consist of a whole set of sequentially
and hierarchically related functions which must be able to deal with
many transactions concurrently in parallel at various arbitrary stages
in their progress through the system. This raises 6evf~rn )  ir ’~portant
points about structure and languages.

A i .1 Separate Single Thread Programs

If we are producing a lar ge , complex system, we should nuL aim to
produce all the software as a single, large program bec~ u :.c thi:;
will make management of development and modification very thffi—
cult. Rather, the software should be implemented as a s~t of
separately compilable programs or program modules , each corres-
ponding to a separate function or group of functions in the
system. If we wish to use current high level languages, and all
the experience they represent, in writing these programs, then
each functional program should be written in single thread form ,
to process one transaction at a time.

4 .2 Co-operating Programs - Parallel Processing

The actual run—time system will thus consist of an interconnected
network of separate functional programs, and this overall system
cannot be singl€ thread even if it contains only a single hard-
ware processor. This is because it must maintain the appearance
of processing many transactions in parallel and so at any instant
some or many of the separate programs will be at various arbit-
rary stages in processing the various transactions currently in
the system, even though their execution has been temporarily
suspended because no processor is available to run them. This
simultaneous existence of a nunther of separate threads of
execution at run time is usually called parallel processing and
the separate threads are usually defined as or associated with
system components called processes. If, as is usually the case,
there are fewer real processors than processes wanting to run,
multiprogramming is required to time-share them.

4.3 Process Strategies

Each time the single thread program for a given function is
applied to process the data of a given transaction , this is
regarded as a new , separate execution of this program. The
mechanism by which such a program is applied to deal with a
nuther of transactions, either physically sequentially with a
single incarnation of that program, or physically in parallel
with multiple incarnations, is in general beyond the scope of
single thread programming languages. The facilities required
are in some ways analogous to those of a job control language
but serious problems of integrity and protection are also
involved. This inherent need for parallelism plus the desir-
ability of using single thread programming languages for writing
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function modules, however they are defined , are thus fundamental
structural considerations. They have lead directly to two of the
basic elements of the HIVE system design, namely:-

— a virtual machine architecture (see below) which provides
a set of asynchronous, independent virtual processors,
each able to execute a functional process, together with
means for these to communicate;

— a system building facility based on a system desc~iptiori
language, SYD1~L, which allows separate functional programs
written in single thread form using a conventional high
level language (Coral 66 at present ) to be configured as
a set of co—operating, asynchronous processes mapped onto
an interconnected network of HIVE virtual processors.

r~ ABST~~CTI M AND VIRTUAL MACHINi~J

*e mentioned in pass ing that functions may be hierarchically related ,
ie that one may call on another, that they may be i mplemented in terms
cf simp ’er components such as code and data modules, and that simil-
arly a transaction, as it progresses through the system, may be
represented as an evolving set of associated data modules. These are
examples of the process of abstraction which is fundamental to
structuring complex systems in comprehensible ways. It involves
analysing a given component in terms of simpler, more “primitive’
lower-level” components (the top_down approach); or synthesising a
“higher level~ component as suitable combinations of existing,
already defined components (the bottom—up approach). Its aim of
course is to restrict the complexity of any one level (ie the number
of distinct components and their interactions) to comprehensible
proportions, at the expense of loss of detail. Abstraction is thus
only possible in well—structured systems, ie those in which the loss
of detail at a given level is unimportant because it does not affect
the essential behaviour being represented at that level.

Abstraction is a very general concept. One way of making it more
specific in order to apply it systematically to dedicated computer
systems is to define the levels of abstraction required as abstract
or virtual (computing) machines. More specifically, the virtual
machine at the i ’th level of abstract ion, VM(i), may be defined as
the complete set of facilities and resources needed for specifying
and executing level i programs. The facilities of VM(i) thus include
an instruction set in terms of which level i programs may be expressed
and including in particular means for manipulating the (abstract)
resources of VM(i) (see below) and means for ensuring data protection,
redundancy and recovery if required. Facilities must also be provided
f or invoking any compilation and system building processes needed to
convert source—form programs into an executable component of a run-
time system. The resources of VM(i) include storage resources for
holding the various versions of program and data; input-output
resources via which programs can communicate with each other and the
outside world ; and processor resources which can be applied to execute
programs in storage on data in storage according to certain conventions .

Our approach in designing the HIVE system is based on trying to
identify and specify a particular set of facilities and resources as
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Fig 1 HIVE Virtual Machines - Abstractions & Implementations

a stable, standardised high level virtual machine. (Fig 1) This
shculd be, on the one hand, at a sufficiently high level (with respect
to current hardware machines) to provide useful simplifications,
abstractions and hardware independence for the applications pro~~ammer
(ie Lh~ pro~-rammer writing for this virtual machine and above). On
the otner hand , it should not be at so high a level that it is only
suitable for one specific application.

I~ef ore discu~~ing virtual machines any further, we must first consider
one other iml crtont influence on the way an over;ll system may be
structured, namely the requirement for high integrity operation and
the associated need for protection, redundancy and recovery facilities.

6. HIGH INTEGRITY OPERATION

We define high integrity operation as the ability to maintain correct
transaction processing through a high proportion of fault incidents
of all kinds. The problems cf achieving this fall into two main
categories. The f i rs t  is what is done before a fault, during normal
oFeration, to prevent and eiiminate faults (eg by enforcement and
checking of structure), to detect faults, and to protect critical
data areas etc against the effect of faults using redundancy tech—
niques. The second category is the response to faults when they
occur and this includes many stages such as localisation, isolation,
failback, initial recovery, diagnosis, repair, restoration and final
recovery.

Our intention in this paper is to concentrate on the two key ways in
which high integrity requirements affect the system structure and the
virtual machine design. These are:-
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- the management of redundancy both in normal operation and
during recovery, ie what must be done in normal operation to
protect critical data areas and processes, and after a fault
to re—establish a viable software system given a set of viable
hardware resources (we are not particularly concerned here
about techniques for checkout and reconfiguration of the hard-
ware itself - we assume this can be done).

- the enforcement of separation and isolation between all the
various structural components at all stages of system implem-
entation and operation.

W consider these in turn.

7. REDUNDANCY

7.1 Requirements

The usual approach to designing a system with redundancy is bottom
up. Some form of hardware configuration is chosen , eg a dua]
system, sad a system is designed to operate on it. We wish to
take a more general , top down approach, by identifying which data
areas, processes etc actually need to be replicated to meet a given
integrity requirement, and then seeing how this can be implemented
efficiently. The practicability of this approach depends on cer-
tain characteristics of dedicated, transaction processing
systems. In particular, only part of the software of such systems
is intimately linked to real—time events in the outside world,
in the sense that if a fault occurred the effect would be immed-
iately apparent as loss of unrepeatable input data or loss of
output. If we wish to avoid this, we have no option but to
physically replicate these critical processes and data on
physically separate hardware , and we do not consider this further
in this paper.

The remainder of the software (which in many cases is the bulk
of it) is more decoupled from external, real-time events, so
that if a fault occurs , there is some time available in which
some form of reprocessing can be attempted before the external
behaviour of the system becomes unacceptable. In other words,
instead of providing complete physical replication of all pro-
cesses and data in these “less—real-time” parts of the system,
we have the possibility of replicating processes in time , ie
running them again in some way if a fault occurs, and only prov-
iding actual physical repl icat ion of those code and data areas
which are essential to allow processing to be retried.

From the hardware point of view , then, we wish to assume a
more general configuration in which the amount of redundancy
is not fixed to start with and to which redundancy can be
added selectively in various ways and in relatively small
increments, eg some form of store—based multiprocessor system
consisting of a number of processors, core store modules, disc
stores and input-output modules. The aim is to provide a given
level of integrity with less redundancy than would be needed in
a dual or triplicated configuration, and possibly with better
multiple fault tolerance and better flexibility and expandability.

Let us now consider what forms of recovery and reprocessing might
be required and how they might be achieved. We have established
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so far that the system is likely to be implemented as a set of
single thread, functional programs executing as a network of
parallel processes (NB : there is not necessarily a one—to-one
correspondence between programs and processes , eg a given program
might be associated with more than 1 process) . In turn , a
given process carrying out a given function for a particular
transact ion is likely to be implemented as a number of store
areas in core and on discs, holding one or more versions of
various types of data including code, database data , transaction
data and workspace data.

We can thus give a general statement of the recovery and
processing requirement using an ‘outside in’ or ‘worst first ’
approach from two viewpoints, as follows.

1. It must be possible to recover from major crashes such
as loss of core or a faulty processor provided a viable
hardware configuration still exists, and this is likely to
involve major recovery and reconstruction action eg complete
reloading of core and garbage collection of diacs.
It is desirable to recover from less major faults such as
loss of an individual disc unit or corruption of the data
of a particular transaction with less drastic recovery
action, eg reloading a disc, reprocessing particular
transactions or repeat ing certain processes , without
disturbing the rest of the system.

2. It must be possible to re—establish a ‘cold start ’
or ‘day one’ version of the entire system, with no memory
of any of its previous activity, provided a viable
hardware configuration still exists. It is highly
desirable to be able to recover the database data areas
comprising the system ’s long—term memory in a form from
which processing of new and possibly also existing
transactions can be resumed. It is also desirable to be
able to recover the data of transactions currently in the
system in a form from which their processing can be
completed or repeated.

We consider these from the ‘outside in’ again , starting with the
recovery of the complete system after a major crash, since it
turns out that the more minor or local recovery actions can then
be dealt with by quite straightforward extensions to the basic
approach. These will be discussed later in the description of
HIVE itself.

7. Cold Start Recovery

The reconstitution of a ‘cold— start’ version of the complete
system can be provided quite readily by requiring that:—

1. All the code of the system is made read—only so that
it is never modified by normal operation of the run-time
system. Particular instances or versions of various code
areas may of course be corrupted by a fault at runtime or
replaced by other versions in the course of modification
procedures. We ignore the latter for our present purposes
although it can be included by obvious extensions.

A set of similarly read—only constant data areas is
provided which contains presets or initialisations for all

7



the data areas in the system which are read-write at run time .

3. Enough copies of these code and constant data areas are
held on separate storage media eg discs, to give an adequate
probability that an uncorrupted copy can be found and loaded
after a crash by a recovery bootstrap.

This replicated read-only code and constant data thus forms an
ultimate backstop from which the system can resume processing
with no memory of any of its previous activity, le containing no
dynamic data generated by any previous execution of the system.

7.3 Dynamic Recovery

The real nub of the redundancy and recovery problem is thus the
ability to recover a version of the complete system including all
or part of this dynamic data and we approach this in several
stages.

1. complete description of the state of the system at
an arbitrary instant involves specifying the state of every
bit of storage, every processor, every peripheral and so on.
In general it is virtually impossible to record such a
system state on some external device since this would involve
halting the entire system instantaneously and then extract-
ing all the state information without perturbing it in any
way.

d. If we wish to safeguard dynamic data against fault
effects there seem to be only two basic ways round this
problem, both of which involve redundancy during normal
operation. The first is the conventional approach of sett-
ing up one or more complete extra systems to act as standbys,
each of which does the same processing as the on-line system,
so t hat they all contain the same or similar internal states
(depending on how closely they are synchronised) . The
standbys thus act as complete and continuous records of the
state of the on—line system. However, this involves a lot
of redundancy which is not necessarily used very effectively,
and as mentioned earlier, we are interested in the alter-
native, more general approach. This is to safeguard the
on-line system by providing one or more extra storage
devices, eg discs, on which we record only a limited amount
of state information, just sufficient to reconstruct a
viable system from which processing using dynamic data can
be re—initiated after a fault.

3. More specifically, after a major fault we must be able
to drive the entire system (or some viable subset of it)
into a state in which:—

a. all the various data areas are self-consistent
internally and mutually consistent with each other ;

b. the processing actions required to continue from
that state are known, eg where each program should be
entered ;

c. the data areas have a high probability of being
“correct” ie consistent with the situation in the
outside world and the past activities of the system.

8



complete systcm ‘;t~~ ’~~ satisfying conditions . arid b. ca~i
be generated from the read-only code and constant data back-
stop alone. To wholly or partially satisfy c. requires that
at least some of the read—write data areas must instead be
recovered using dynami c data stored redundantly in the
system during normal operation , but in such a way that a.
and b. are still satisfied. This is not a trivial problem,
but it can be eased considerably by noting that the overall
state re—established using dynamic data and satisf ying ~1l
these conditions is not necessarily one which the system
ac tually passed through before the fault .

~~. There are two main ways in which we can limit the amount
of dynamic data which has to be safeguarded and made avail-
able for recovery:—

- 1imitation~ by type or extent :  instead of trying to
record the state of all read—write storage , safeguard
certain selected data areas only ;

— limitation in time: instead of trying to record data
at every microstep, instruction step, etc , reco r d it
much less frequently at certain selected instant i- .

hn obvious way to limit the types of data to be safeguarded
is according to the penalties of losing each type in a fau l t .
The database areas are the most important since they comprise
the syste m ’s long term dynamic memory. Transaction data
areas are next , because their loss requires current trans-
actions to be reinput from the outside world.. Local work-
space areas are least important because they have no exter-
nal significance and can in principle be regenerated by
rerunning processes from suitable initial conditions (ie
suit~ bie database an~ transaction data). Similarly, to
limit the frequency with which the various dynamic data
areas are recorded , we can r ank them according to  how fast
they change , and it iS fortunate that the order is the same.
That is, database areas change less frequently than trans-
action data , which in turn changes less often than workspace
data, and the faster the data changes, the less worthwhile
it is to try and safeguard it for recovery.

5. An example of limitation in time only is the “snapshot
dump ’ used in batch processing systems. This involves
stopping the comp lete system at infrequent intervals and
recording its entire state. However, this is rarely feas-
ible in real time systems because the snapshots need to be
much more frequent , ie up to date , since it is not usually
acceptable to rollback the outside world by several hours,
say. Also, it is rarely acceptable to stop the system for
long enough to record its entire state anyway.

Similar arguments apply to limitation by type only. It
would be very difficult to maintain continuous records of
selected data areas and even if it were possible, the
chances of them being unaffected by a fault would be low
because there would be very little ‘decoupling in time ’.

6. To be practicable , therefore, a selective redundancy
approach requires a combination of these techniques, based
on making redundant records of the state of selected dynamic
data areas at selected points in time , in such a way that

9



there is an adequate probability that a viable system can
always be recon~tructed after a fault at any instant using
the current dynamic records plus the read-only backstop.
It is fairly obvious that the database areas must be safe-
guarded , and that temporary workspace areas are very diffi-
cult to safeguard. We will show later how transaction data
can be dealt with as extensions of database data , but for
the present let us consider how database data areas can be
safeguarded. The key question here is how we select suitable
times at which to update the redundant records of their
states.

7. To answer this , we must recall that  the systems we wish
to protect are basically structured as networks cf co-
operating but asynchronous parallel ;roce&sei , each execut-
ing a single thread functional program. tiny selective
redundancy scheme should therefore be compatible with this.
In particular , it would seem undesirable that it should
introduce a large amount of extra coupling or ryrichronir;m
between otherwise asynchronous processes, for examp le by
forcing ~ill the processes in the system to halt simultan-
eously in some special state while the states of some of
their dynamic database areas are recorded. J ccordingly,
‘he approach we have evolved in HIVE considers each asyn—
c~ ronous process and each database separatel y, and the
epochs at which their states are to be recorded are defined
locally and independently for each one, rather than system -

wide or globally. Further, we find thr suitable local
epochs can be readily identified by exploiting the basically
cyclic nature of these single thread processes as follows.

8. Consider a process P which executes some code C and
accesses database area D. When it is run to process a
given transaction it must be given access to the data T of
that transaction, and to a local workspace area W which can
be ini tiali sed appropr iately fr om a read-only version held
as part of the backstop. As it runs , it writes into W
preparing updates for D and T. At the end of the execution
these can be inserted in D and T, the access to T can then
be lost , the contents of W can be discarded and the process
enters an idle state waiting for the next transaction. The
amount of dynamic information needed to specify the state of
the process at any instant thus varies cyclically and is at
a minimum when the process is idle between successive exec-
utions. The instant when a process enters such a minimum
information state is called a regeneration point (by analogy
with renewal theory) and this is the obvious point at which
to up da te the redundant records of dynamic data areas assoc-
iated with that process which are to be safeguarded, such
as the database D.

9. Our basic model of the safeguarding and recovery proc-
edures is thus the following. The system is regarded as a
set of asynchronous functional processes and a set of separate
read/write databases, where each database is a composite
object consisting of 2 or more data areas on separate stor-
age media. Each process is permanently bound to its part-
icular code areas and may also be permanently bound to one
or more 0q the databases. Each database is permanently
associated with at least one process. Each process executes
cyclically to process transaction data acquired in ways to
be described later .

10



During the execution of a process P associated with a data-
base D, D is locked agaiftst all other processes and P is
given read—write access to one version of D on’y, the work-
ing version. We now require that if any faults or inconsist-
encies are detected during the execution of P they must
either be corrected or else P must be prevented from
completing its cycle. This means that if P does complete i ts
execution i.e reach its next regeneration point , we may assume
that it has executed correctly as far as it can tell , and
in particular that the working version of D ziow represents a
new, self consistent state for D, as far as P can tell. The
working version can thus be used to update the other version(s)
of D one at a time , so that there is at the most only one
version of D which is inconsistent at any time due to normal
updating action. Similarly, if P does not reach it~ regener-
ation point because of a fault which cannot be corrected , the
minimu m action required is to backdate the working version
from one of the others, so that for exa mple P may be re-run.
(J.n alternative, nearly equivalent scheme is to give P read—
only access to a version of D and allow P to prepare updates
for D in its own local workspace W. The various versions of
D can then be updated from W one at a time if and when P
completes it s cycle successfully. If not , no action is needed
on D except to unlock it).

If a crash occurs at any instant , all the processes in the
system are re-established in their idle states and with each
database in the state recorded at its last regeneration point
before the Crash. (Checksum or other facilities ~re used to
ensure that a partially updated or corrupted version can be
detected , and this must be updated or backdated from other
versions). This therefore satisfies ~ of the conditions
given earlier for a selective redundancy scheme, because the
reconstituted databases are always self consistent (they
always correspond to a regeneration point ie successful
completion of a process’s cycle) and for the same reason the
processing action needed to continue from then on is known.
The other conditions, ie consistency between different data-
bases and with the outside world , both depend on how trans-
action data is handled and safeguarded and this will be
discussed later in the description of HIVE.

Finally, we note that with this approach it is helpful for
some purposes to regard the state of the overall system at
any inst ant as being defined basically by the various read-.
only and read-write data areas which are safeguarded on
backing store, rather than by the state of all the disc and
core locations in the system. This safegjiarded state is thus
the state that would be established in the system if it
crashed at that instant, and it changes in discrete steps
each time a process reaches a regeneration point. Rather
than safeguarding what is in core by recording snapshots or
checkpoints at various times, this approach thus is based
on allowing processes to make dynamic incursions into core
to try and reach their  next regeneration point . If this is
successful, the safeguarded state is changed in a discrete
Step. If it is not, the safeguarded state remains the same.

11



8. ENFORCEMENT OF STRIETIRL AND PRtYftET1ON

We noted earlier that whatever at ructural concepts and components havi~
been used in designing a system, it will finally be implemented and
run as a set of storage areas containLng code and datn , located on
discs and/or in core. To allow high integrity operstion , the way is
which these are organised and accessed must ¶~atisfy main requirements,
as follows.

8.i Separation and Isolation

The conceptual separation and independence between the various
code and data areas implied and required by the structual
concepts must be enforced at all stages of development and
operation. For example, if the execution of a given code module
is only supposed to modify 2 particular data areas , it should be
prevented from accessing any other code and data in the system
as a result of design errors or hardware failures. Likewise, if
a programmer specifies how a given data area is to be initialised
at system build time , we must ensure that this area is only initial-
ised from that source, and that the initialisation is not applied
to other data areas. Other examples include ensuring that code
is not modified dur ing execution , that data is not executed as
code, that read-only data is not written to, and so on.

This all requires a suitable blend of many different  hardware and
software techniques probably at several levels of the system and
thr oughout the whole pr ocess of development and run time operation.
Examples include hardwar e base-limit—access registers, compilers
and run time checking software , and the design of these facilities
is also heavily involved with fault detection requirements.

A particular requirement for separation and isolation has already
been noted , in safeguarding a read-write data area by maintaining
several versions of it on physically separate hardware with an
updating procedure which ensures that versions are updated sequen-
tially and that partially updated or corrupted versions can be
detected after a crash. It is important to note that the access
path to each version must also be protected to the same extent,
so that for example, loss of one disc device does not cause loss
of the information needed to find and access files on other discs.

8.2 Abstraction, Naming and Secure Access

So far, we have highlighted the need to enforce separation between
the various code and data areas, However, the whole basis of the
“levels of abstraction” approach requires us to associate simpler
components together to form “higher level” ones. For example, a
process is an association of certain code and data areas of
var ious types.

Since ultimately the whole run-time system is held as the contents
of store areas on disc and in core , all the associative or rela-
tional information about how areas are related and grouped must
itself be held as the contents of such store areas , unless it has
disappeared entirely by run-time. This can raise difficulties in
enforcing separation and isolation unless considerable control is
exercised over the means by which one component is able to refer-
ence another.

Consider the simple example of a process P consisting of a code
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area U , a workspace area W and a database area D executing on a
transaction data area T. Assume each of these areas is held as

a separate , contiguous segment of core defined by base and limit

values , so that each area can only be accessed at run time by
loading the appropriate base-limit values into one of the hardware
protection registers of a processor. how can the code segment C
gain access to the database segment D? If C is allowed to
supply base—limit values directly, eg by computing them in the
processor’s registers, then we have no protection at all since
C could supply any binary pattern it chose and this would be
interpreted as base-limit values by the hardware. This would
also be true if the base—limit values were obtained from locat-
ions in any read-write segment to which C can get direct access,
or if C could supply any form of global name for D which the
system will translate unconditionally into D’s base-limit values.
Three necessary conditions for maintaining protection follow
from this:-

i Loading the base—limit registers (or equivalent oper-
ations) must not be done by application code but by trusted
“system code” or microprogram forming part of the virtual
machine implementation itself.

ii The parameters required by this code (ie the base—limit
values etc) im~st be specified by the applicat ions code as
location parameters, and the locations concerned must be in a
segment which cannot be accessed directly by the applicat ions
code, only by system code. That is, applications code can
only refer to a segment by quoting a name for the “system
location” holding the access information.

iii The name used to refer to a segment must be local in
some sense to the program, process or whatever is requesting
the access. That is, it must be automatically or implicitly
prefixed with the (global) identity of the program or process
making the request , so that it is only looked up or inter-
preted in a system area associated exclusively with that
pr ogram or process. If not, ie if segment names are global,
not local, then a program could specify any global name it
chose and gain access to the corresponding segment, if it
exists, just as though it had specified the actual base-limit
values.

(Note: From the protection viewpoint, the use of apparently
global names plus a list of which processes, programs etc are
allowed to access each “global” name is equivalent to the local
name scheme since access still depends on the identity of the
requesting process).

All these various requirements are incorporated in the HIVE
capability mechanism outlined below. The basic result is a means
whereby data areas can securely contain references to other data
areas in terms of locally defined names. These local names are
interpreted by system code at run time as specifying particular
locations within system data areas which in turn specify the type,
current physical location and current status (eg locked) of the
area(s) to be referenced. Associations between various applic-
ation areas can thus be represented securely withi n such areas
as relations between the appropriate local names.
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9. THE HIVE ViRTUAL MJ~CHI~ s

We have discussed at sn ’ .~ ngth ~i number of d i f fe ren t  aspects of
structure — transactions, functis~s, code and data , physical
representation, paralle~ ~rocesstng and single thread programs, levels
of abstractions and virtual machines, redundancy, regeneration points
and the enforcement of separation. We now wish to show how the high
level virtual machine approach can provide a framework for all these
structural concepts, b y giving a short description of the main points
of the HIVE virtual machine at RSRE. More detailed descriptions of
some aspects will be found in Refa 1-3.

The facilities and resources provided by the HIVE virtual machine are
the high level equivalents of those of the hardware virtual machine
VM(o ) mention~ d earlier, as follows, (see Fig 3).

9.1 Virtual Processors

A HIVE virtual machine provides an arbitrary number of v i r tua l
processors (VPs ) which apparently run asynchronously and inde-
pendently in parallel. They are analogous to the physical
processors of the hardware in that they incorporate a basic path-.
of—execution logic and can be applied to execute processes, eg a
functional program on some data. VPs are the basic entity to
which other HIVr~ resources can be allocated, and VPs are multi—
programmed together over whatever real processors exist in the
hardware. However, HIVE VPs have certain additional properties
compared to hardware processors, in order to simplify the applic-
ations programmer’s task. Apart from the fact that we may have
an arbitrary number of VPs, the main difference is that each VP
in a HIVE system is dedicated at system build time to execute a
particular functional program, and does so for the data of only
one transaction at a time . This means that such programs can be
written in single thread form, and that a VP must be non-
interruptible in the sense that the arrival of a request to
process another transaction cannot affect the VP’s processing of
its current transaction (see below). Note that we may still of
course allocate several VPs to perfor m the same function on
different transactions in parallel, ie the mapping between
functional programs and processes executing on VPs is not necess-
arily one—to-one.

9.~: Store Resources — Protected Objects

The basic HIVE store resources are a set of protected objects in
core (core segments) and on disc (file segments or files for
short) which correspond roughly with the store areas we have
discussed hitherto. Protected objects are grouped into a number
of logically separate regions, some of which must also be physi-
cally independent. Each protected object is defined by a
resource descriptor which defines the object’s physical location,
type (eg code) and status (eg locked). All the resource descrip-
tors for objects in a given region are themselves held within a
predefined protected object in that region, so that the region
can be logically self-contained. The implementation of a HIVE
system must include a suitable set of hardware (eg base—limit—
access registers etc) and software facilities (eg run—time checks
on capabilities, file accesses etc) to ensure that phyBical
separation between protected objects is enforced.
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9.3 Capabilities

A VP is given access to the various protected objects comprising
the process it is to execute , such as code and data segments in
core and on disc , by being given capabilities for them, on a
‘ need t o know” basis. In the present implementation each VP is
represented by a system data area called its VP Base which defines
various parameters of the VP, (eg its priority), provides space
for saving its current register image and state data, and also
de fines all the capabilities the VP currently has by means of a
caplist. The size of each VP’ s caplist is defined at system
build time, and each entry may be void or may contain a resource
descriptor index ie a reference to a resource descriptor in the
form of an index down a set of resource descriptors. It also
contains a field specifying the kind of access that VP is allowed
to the resource (eg read-only, read—write, execute—only etc).

A VP refers to a resource for which it has a capability (ie a
non-void entry in a pre-declared slot in its own caplist, by quot-
ing its local name for that resource, which in HIVE is ultimately
just the index number of the appropriate slot in its caplist. By
defining suitable macros, applications programmers may of course
use arbitrary local names in their source code . Different VPs may
thus share access to the same resource by each having a capability
for it, specifying different access rights for each VP if required,
and each VP will thus have its own local name for the resource.
The set of capabilities currently in a VP’s caplist defines its
current protection regime (see Fig 2) and no VP is allowed to have
capabilities for any system code or data areas such as VP Bases,
resource descriptors, etc.
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A single capability may also be used to refer to a composite object
consisting of a set of coexisting versions of a given data area,
each held as a protected object in a different HIVE storage region.
This is achieved simply by requiring that the resource descriptor
index used to identif y any version of a given object shall be the
same for all regions so tha t a single capability holding a single
resource descriptor index value is sufficient to refer to any
object of the set. Which version will be accessed at any time
then depends on which region(s), ie which resource descriptor
lists, the capability is applied to and this in turn depends on
the system code setting up the access. For example~, normal run—
time code i~.ght give access to either of 2 read-write versions of
a database area, whereas recovery code might also be able to
access 2 cold—start versions in the read-only backstop.

9.~f Message Passing

A VP’s input/output facilities are provided by a message passing

~~chani..m. Each VP has 2 message 
interfaces, the normal interface

and the blocking interface (see Fig i). Each interface consists
of a set of input routes and output routes over which messages
may be received and sent to other VPs in the system and also to
hardware devices. Each VP again uses its own local naming scheme
to refer to its own routes and so at run—time it is not aware of
what its routes are connected to. Arbitrary fan-in and fan-out
of routes is allowed, ie a given output route of a VP may be
connected to input routes of several VPs and a given input route
of a VP may receive messages from output routes of several VPs.

A message has 3 basic attributes:-

- it is a stimulus which may cause a VP to be scheduled to
run;

— it may contain data parameters being passed directly from
a data segment of the sending VP to data segment(s) of the
receiving VP(s)

— it may contain capabilities for core and/or file data seg-
ments being passed from the caplist of the sending VP to
the capliat(s) of the receiving VP(s) .

The basic cycle of execution of a VP consists of pr ocessing one
message off its normal input interface. The basic way of hand-
ling a transaction in a HIVE—based system is thus to construct a
message containing data parameters and capabilities for the
various data areas currently comprising the transaction, and to
pass this from VP to VP for the various stages of processing
required. Receiving such a message over its normal interface is
therefore the way in which a functional VP gets new work to do,
ie new transaction data to process, and it passes it on to other
VPs by sending suitable message(s) over its normal output inter-
face. The requirement that a VP in a cycle of execution should
be non-interruptible, ie that the arrival of new messages should
not affect the processing of the current message, means that the
message input interface must incorporate a gueue in which messages
are buffered until the VP is ready to deal with them. This does
not, of course, mean that the hardware processors are non-
interruptible. Indeed the execution of a VP can be suspended at
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many points at the hardware leve l, but the VP is unawar - ~~ I h i

Simi larly, a) though we may ~ay the V~ i n  non -reontr ant  wi t s
respect to messsgs’s , ~~~‘ it can only process one at a time , we
require the code of applications programs in a HIVE system to be
reentrant 60 that , for example, several YPs could execute it in
par allel , using di f ferent  data areas.

A cycle of execution is always terminated by the VP’s application
code calling the U4D virtual instruction (see below) which indic-
ates that its regeneration point has been reached. One of tne
parameters of END is an “OR ’ mask on all the VP’s normal input
routes which allows the application program to exercise dynamic
control over the selection of the message to be processed on the
next cycle. On END, the routes allowed in the mask are inspected
sequentially and the first message found on an allowed route is
selected for processing on the next cycle. If no suitable
message exists, the VP becomes idle until a message arrives satis-
fying the condition .

To facilitate local recovery actions, the nor mal output  in ter face
of each VP is also buffered. That is, when a VP executes the
SENDN virtual instruction at any point in its cycle to output a
message over its normal interface, the message is not despatched
at that time but is held in an output buffer. It is only released
into the rest of the system if and when the VP calls END. Thus,
if the VP aborts or wishes to repeat its cycle because a fault
has been detected, the messages in the output buffer can be dele-
ted without having had any effect on the rest of the system.

In the course of a cycle, a VP may call on another VP to perfor m
some task for it by sending it a message via a route on its block-
ing output interface. On this interface, output messages are not
buffered but are despatched immediately . Such a route will
usually be connected (at system build time) to a normal input
route of the called VP where the message will be queued if necess-
ary until the VP performe a normal cycle of execut ion to process
it. When it calls END, a message is sent back to the blocking
input interface of the calling VP to indicate completion. Mean-
while, the calling VP may continue processing and may then await
one or more replies from one or more called VPs by executing the
BL(EK virtual instruction. This again requires an “OR” mask to
be supplied as a par ameter , but this t ime the mask applies to the
input routes of the blocking interface. BL~~K causes the VP’sexecution to be suspended unless or until a message is present on
one of the allowed blocking input routes, when it delivered and
processing continues.

Communication between VPs and hardware devices is also carried out
using the same basic message passing mechanisats, and fur ther
details of these topics will be found in Refs 1—3 .

9.5 Instruction Set

The instruction set which a VP can execute may be thought of as
consisting of :-

- the basic instruction set of the underlying, real hardware
processor(s) , (excluding certain priveleged facilities,
depending on the implementation) for manipulating data
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within protected objects in a VP’s current protection
regime ;

- a set of virtual instructiop~ (VIa) for manipulating the
resources of the HIVE machine as such.

Several VIa have already been mentioned in passing eg END as~
BLOCK. It is iimaaterial to the applications programmer how a VI
is implemented - whether as macros, procedures, hardware micro-
program or even special purpose pr ocessors. A VI may be thought
of as a procedure which is executed as part of the VP’s applic-
ation code except that all VIs are executed in a separate prot-
ection regime from that of any VP. This is because VIa usually
involve access to critical “system” data areas such as VP Bases
and resource descriptors needed to implement the virtual machine
itself .

The VIa required form a fairly compact set, and the main VIs are
a~ fol lows :—

CREI~TE , DELETE - f or creating and deleting protected
objects (core and file segments)
dynamically at run time via capa-
bilities declared at system build
time

SEIZE , USE , RELEASE - for accessing protected objects at
run time in various ways, eg
exclusive read—write access to
shared core or file segment

SENDN - for sending messages over the normal
SENDB and blocking interfaces

END - for controlling message queues and
BLOCK the cycle of execution, including

sequential updates of safeguarded
databases

CALL, RETURN - for transferring control between
different code segments

MNE - for moving capabilities with a VP’s
caplist

READ, WRITE - for moving data and between core and
LOAD, FREE file segments

CHECKPOINT - for creating and manipulating safe-
CREATE DISCAP guarded copies of dynamically-
R~~~WER DISCAP created objects eg transaction data
DELETE DISCAP files (see below)

In the present implementation the VIs are provided as a set of
C oral 66 recursive procedures which can be multithreaded , ie
executed in parallel by a number of YPs. The VI protection regime
is defined by a set of capabilities in a caplist, the public
caplist, which is not part of any VP Base and which can only be
accessed via a particular hardware instruction. VIe are invoked



by inserting standard macrc calls in the F ource code of an appli-
cation s program and the nacro expansiom ri ’ ri l with parameter
passing and the in:;~~ tion of the call on the ~pecial hardware
instruction. Some further di~ cus. ~on of l~e implementation er
the various levels i nvolved , the ways in ~h1~’h Vis can call each
other , and the use of a combination of Vl~ . ~nd VU to implement.
the filing facilit~ e~ themselves, will be found in the Referencer .

9.6 Languages

Ms mentioned earlier , one of the logical conseq~~nces of the HIVE
aprroach to system architecture is that the applicaticnc programmer
requ ires two comp lementar y types of forma i l anguage in order to
implement a system. The first is a local programming language
for specifying the sequential , ~ngie-thread al gor i thms for
individ c~ l functional programs. More or less any conventional
high_level programming language wou)d be more or less suitable
for this, providing that

a. it allows the insertion of cafls on tirtual instruct-
ions (eg as code macros) as well as real hardware instruct-
ions,

b. it allows the object code and data of a program to be
organised as a number of separate, relocatable segments
suitable for mapping into HIVE protected objects referred
to via HIVE capabilities and acce~~.ed via hardware base—
limit registers or the equivalent at runtime.

Obviously many other factors enter into the choice of a suitable
language eg efficiency, block structure , data representation
facilities, style, degree of protection and checking at compile
and runtime, and not least, availability. The local programming
language used in HIVE at present is Coral 66 (Refa 3 and ~s i  and
HIVE is presently implemented on a Computer Technology Modular
One system which provides only 3 base-limit rr ’gisterc in each
processor for protected access to core. The Coral 66 compiler
for this machine allows the object code and data it generates to
be consolidated into a number ( > 3) of separate segments but
otherwise it is an implementation of standard Coral 66 and we
have made no significant modifications in order for it to be used
to generate code for HIVE VPs. Any of the normal programming
constructs and structures allowed by the l anguage - tables,
arrays, procedures, blocks etc — can be used freely within a set
of protected objects constituting a runtime process executing
on a VP.

The second type of language required is a system description
language. This is quite a different sort of language and its
purpose is to enable system designers and application programmers
to specify how individual programs written in the local, algor-
ithmic language(s) are to be mapped on to a set of HIVE protected
objects and VPs, and how these VPs are to interconnected to form
a complete, executable system. Specifically, the system descrip-
tion language SY’DEL which we have defined and implemented for
HIvE has 3 main aime:-
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a. to a l low a comp lete system to he described in a way
which is sufficiently formal and precise to be held as a
database from which a suitable “back end’ system building
program can automatically build the initial core and disc
images of a complete executable system (including all the
correctly initialised system data areas such as VP Bases)
given the object code and data segments of its applications
programs;

b. to allow the SYDEL database representing the desired
system to be built up incrementally over an extended period
of time as information about its various components becomes
available ;

c. to design SYDEL itself as a general, extensible
language which is not specific to HIVE by providing
facilities in the language allowing the components of the
system to be described (eg VPs, Coral programs etc) to be
defined dynamically as part of the SYDEL database itself,
rather than as part of the SYDEL compiler.

SYDEL is not , therefore, an algorithmic language for specifying
sequential programs, but rather an assertive language for making
statements about the structure of a system and the relations
between its components , eg between programs and VPs, VPs and VPs
and so on. It is currently implemented in Coral 66 on our Modular
One machine and further details are given in Ref 5.
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Fig 3 Main Components of the Bare HIVE Machine
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10. MAIN POINTS OF HIVE

HIVE as described so far may be summarised as follows:-

The “bare HIVE machine” (Fig 3) provides a set of asynchronous, i~ i~ p-
endent virtual processors, a set of protected objects (core and fi~~~
existing in various regions, and an instruction set consisting of the
instructions of the basic hardware plus a set of virtual instructions
for manipulating HIVE resources eg protected objects and messages, as
such. A VP may access a protected object only if it has a capability
for it in a slot in the caplist in its VP Base.

VPs can communicate with each other and the outside world by sending
and receiving messages over the input and output routes comprising
their norma l and blocking interfaces, where messages are queued in
various ways if necessary. In a running, HIVE-based system, each VP
is assigned permanently to execute a particular functional applications
program in a cyclic manner , processing one message at a time. Capa-
bilities for the necessary code and permanent database areas can
therefore be given to VPs permanently at system build time and the
connectivity of routes between VPs can also be set up permanently at
this t ime . The individual applications programs are single thread
and written in a local, conventional high level language (currently
Coral 66). A system description language, SYDEL, is provided to
describe the mapping between pr ograms and VPs and the interconnection
between VPs. The SYDEL compiler builds up a database containing this
information which can be used to build the initial care and file images
of the initial run time system.

VP may create new protected objects dynamically at runtime, refer-
enced via capabilities which it must have declared at system—build
time, and it may pass such objects securely to other VPs by sending a
message containing the appropriate capabilities. When a VP receives
such a dynamically created object in a message from another VP, a
capability for it is copies from the message into a predeclared slot
in its caplist, via which it may then be referenced.

Thus a VP may create a new data object , referencing it via a pre_
decThred and previously void capability in its caplist, say C5. It
can then load it with data , send it to other VPs in a message, delete
its own capability for it , and repeat this sequence , if required ,
during its current cycle of execution. It can use the same local
name (C5.’ for each new object and the same set of Coral 66 declarations
within each new object , and it has secure, protected access to each
new object until it has finished with it. HIVE thus allows the bind-
ing between code and data objects to change dynamically but securely
at runtime , through the intermediaries of VPs, messages and capa-
bilities, whilst still retaining the use of conventional high level
languages such as Coral 66.

A running HIVE-based system t hus consists of a network of inter-
connected , functional VI—r (Fig ~~ with transactions moving through
this network as data and groups of capabilities in messages. Such a
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~y~’~t~ rr must . be imp~emen t eu  at the HiVE v i r tua l  machine level as ti :et
protected objects , aince t his is all tha t , is available , which will is
turn be mapped onto actual  hardware fesources at lower levels. Hi gher
level a~ ut ract ion s  such ~ia program~ , processes ( to run on VPc ,’ , trana-

actions, databases, subsystems of processes, etc are representsd at
runtime by al lowing capabili t iea for protected objects to be held in
VP Bases and messages, and by then allowing VPs to form arbitrary
relationships between the capabilities it has itself , by manipulating
its own local names for them within its own protected objects.

11 • REDUNDANCY AND RECOVERY IN HIVE

We may now describe the facilities provided in HIVE to support the
implementation of the selective approaches to  data safegu~ rding and
re cov~:ry out luied ear l ier . Following the ‘ out side in ’ approach as
befor e , w~ begin by considering various stages or levels of major
-‘ecove ry ur is ’- progressively mor e dynami c data , and then consider
stages of progressively more minor or local recovery involving less
di sruption to the overall system.

11 .1 Cold Start Global Recovery

2his ~c achieved by providing multiple copies of the read-only
backstop, which consists essentially of the initial core and disc
images constructed by the system building facilities from the
representation of the system in the SYDEL database. The initial
core image contains all the virtual instruction code and initial-
ised versions of all the ‘system ’ data areas such as VP Bases
and resource descriptors. Loading this into core therefore
cor responds to re—establishing the networ k of applications VPs
with all their permanent capabilities for code and database
objects and routes, with the database objects initialised to
their “cold Start” states. This “empty” network of VPs init-
ially contains no messages or dynamically created data objects.

11.2 Database Recovery

Safeguarding and recovery of the contents of read-write file
object s is achieved by means of the following procedures and
faci l i t ies  during normal operation. Each database object is
declared as a composite object comprising at least four versions,
namely two read-only, cold start versions forming part of the
backstop, and two read-write versions for use at run-time . When
a VP V having a permanent capability for such a database D begins
a cycle of execution, D is locked out to other VPs and V is given
access to only one of the read-write versions of D, the working
vers~ ss. If and when V completes its cycle successfully and
reachea ~ts re;< t r-egeneration point, the ENIJ virtual instruction
then cau ”r the other read-write version(s) of D to be updated
one at a t ime from the working version. If the regeneration
point is not reached , the working version is backdated from one
of the others. When updating or backdating are complete, D is
unlocked for further access by any VP with a suitable capability.

To redu-.e overheads, the filing system code keeps track of which
page s of the working version have actually been modified during
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the cu—rent cycle , and eiil y these pages are up d a t e d  in the o th er
version ( s)  by END. For each version of a f ile , a c h e c k s u m  ~
also maintained is the file header for each page of the t i l e .
These checksums are only up da ted in the header ‘~her i a~ i up da t ing
of the f i le pages in that  version is; c m ~lE’t e. This enabL es
partially updated or corrupted f~ 1ei to be aet ~ cted duri ng
recovery .

I f a major system crash occurs at some arbitrary instant , the
various discs in the system wil l  contain:-

a. the various rep licated read— onl y f i les  co mprising the
backstop ;

~
‘ . t so  or more ver sLonr  of each of the permanently exist-
ing read-write database files, some of which may be inter-
nally inc onsistent because they were in the course of being
written to or because they were corrupted in the crash ;

c. various dynamically created files which are not repli-
cated , holding transaction data etc.

The basic principle used in recovering the discs after a crash is
that the only file objects recons t i tu ted  are those accessible via
capabilities in the initial core image of the read-only backstop.
Basically, therefore , the only file objects which can be accessed
af ter  a major crash are those for which per manent capabilities
have been inserted in a VP Base at system-build time. Two ways
in which this is extended to allow safeguarding of transaction
data are described later.

The recovery procedure for database files is thus as follows.
First , the read —on ly ini t ia l  core image is bootstrapped in from
the backstop,  as for a cold start , and th is  image also contains
r ecovery coae , which is entered.  Its main task is to garbage—
collect the f i l ing system by going through all the V I’ Bases in
the ini t ia l  core image and examining in turn each permanent file
capabil i ty  in each cap lis t .  For each such capabil i ty ,  it t r ies
to access each version of the f i le in turn.  For each version
which is st i l l  accessible , the checksums are evalu ated to  detect
partially update d or carrup ted pages, and where possible the
appropriate  upda t ing or backdating from other versions (including
the cold star t  versions if necessary) is carried out. then this
process is comp iet e , any areas of discs which have not been
accessed are placed on the free space list of the f i l ing system
and full normal processing can then continue . The basic effect
of this level of recovery is thus to re—establish an ‘empty ’ net-
work of idle applica ions VPs together with their permanent read—
write database files, with each such file in the state prevailing
at the most recent regeneration point of the last VP to access it.

11.3 Transaction Recovery

At least two approaches are possible to the safeguarding of trans-
action data which is normally to be processed in the system as
dynamically created and undup l i ca ted  core or f i le  objects .  They
are both based on forming checkpoints of such data at suitable
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sihges in its processing (eg ar scan as it has f i rs t  been input
to  the syste m and ident i f ied  as a t ransac t ion) .  Di f fe ren t  approa-
ches result from requiring different degrees of isol ation and
protection on the checkpoint data of d i f ferent  transactions.

The f i r st approach is simp l y t o  form transaction checkpoints by
writing the data of each transaction into a common, permanent ,
sa fegu arded database file (called a checkpoint file) which can be
accessed and recover d in the way already described after a crash.
Any VP which has a responsibility for forming checkpoints is
designated a checkpoint VP although it may have other funct ions
as well. When a crash occurs, the various transactions then in
t he syst em could have been at any stage of processing and many
indeed have been on the input queues of several VPs at once. The
recovery act ions required are thus to recons t i tu te  the “empty ’

network of VPs and their associated read-write databases, as des-
cribed already, and then to run the checkpoint VP(s). For each
transaction currently represented in its checkpoint file, each
checkpoint VP can then create suitable dynamic core or file
objects and initialise them from the data in the checkpoint file,
which still remains as a safeguarded database file in case of
further crashes. The checkpoint VP may then initiate the re-
processing of the transaction by sending a message containing
capabilities for the newly—created transaction data objects to
the appropriate VP(s) in the reconstituted network.

Before the crash , a given transact ion T may have bee n processed
by some V1-~s in the network but may not have reached others. If
T is inserted for reprocessing from a checkpoint af ter  a crash ,
it will therefor e in general pass through some stages of process-
ing twice (or more if a series of crashes occursi. This may be
reflected in the contents of safeguarded databases associated
with these VPs , and also possibly in signals sent to the outside
world.  Ensuring that a transaction may in fact be processed
satisfactorily by a VP which has already processed it before is
an application - dependent problem. It is equivalent to satisfy-
ing two of the recovery conditions given earlier , ie that data-
bases are mutually consistent with each other, with transaction
data and with the past history of the system.

HIVE provides a basic facility to assist in this, in the form of
a marker bit in every message. When set (by a checkpoint VP) this
indicates to any receiving VP that the message originates from
the initiation of a reprocessing attemp t on the associated trans-
action . ~~~~ set, the bit remains set in all subsequent messages
generated in the course of that reprocessing attempt, and so each
VP can determine whether it may have seen that transaction before.
The general problem of defining the principles to be used in
designing a HIVE application system containing a set of asynchronously -
safeguarded databases so that tran saction recovery is always possible
could be highly relevant to the design of physically distributed systems ,
where thi. sort of approach may be unavoidable.

The second approach to safeguarding transaction data is in fact
just a more sophisticated version of the first , providing greater
isolation between the checkpoint data of different transactions.
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This is done h :. che ckpo~ n t i n g  the dat a af each traru nctiun in a
separate dynamical ly  created f i le  which is itself safegu arded.
This in turn involves:

a. allowing the dynamic creation of composite file ah erts

comprising 2 or more versions,

b. putting the capabilities for such files in special
database files which provide safeguarded ext.’n: i onc on disc
of a checkpoint VP’s normal car;int in core. Suitable vir-
tual instructions are needed to do this to maintain security.

In recovery, these disc-cap files are first acce~ scu and checked
out as database files by the garbage collector in the normal way.
Then each dynamic capability in each such file is examined in turn
and checked out in the same way, as though it were for a permanent
database file. Transactions can then be reformed and reinserted
into the reconstituted network of VPs in the way already described.

11.~- Local Recovery

Two less drastic forms of recovery are immediately possible with
the facilities described above. First, individual transactions
can be selectively reprocessed with very little perturbs ion to
the system, by simply causing a checkpoint VP to re-insert suit-
able messages by reference to its checkpoint file or disc-cap file.
Secondly, if an individual VP detects a fault which prevents it
completing its current cycle correctly, it can attempt to repeat
the cycle without affecting the rest of the system. This is
because, if a repeat is required:-

a. any messages sent over the normal output interface are
buffered until END and can be deleted ;

b. any alterations to the working version(s) of any data-
base(s) accessed by the VP can be reversed by back-dating
from the other version(s).

i~. MAIN POINTS OF HIVE R~~~NDANC Y ~ND RJ~~OVERY

HIVE thus provides very considerable scope for implement irg selective
approaches to redundancy and recovery via a small number of quite
simple concepts and facilities, which may be summarised as follows .
The long-term read—write application data areas are organised as a
number of separate databases each associated aermanently ~ith one ormore VPs. E~ach database is held as a composite file object consisting
of ~ or mcre versions on physically separate regions of HIVs storage,
all refe r~-r,c’-ri vi a the same capability .  Database f i les are updated
asynchruso~siy whenever the VP(s) which access then reach a regener-
ation r~~int, ie successfully complete a cycle by executing END.

Recovery after a major crash re—establishes an emp ty network of VPs
with their permanent capabilities for code and database objects and
with ~~‘~h database object in the stat e corresponding to the most recent
regeneration point of its associated VP(s). I~ny dynamically created
file or core objects for which capabilities do not exist in the read-
only backstop core image will be lost on major recovery unless special
precautions are takes using safeguarded disc_cap files.
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The simplest way of safeguarding transaction data is to write check-
points of it into safeguarded database fil’~s, from which reprocessing
may be initiated following database recovery after a crash, by re-
generating su~table dynamic data objects and messages which are sent
to the appropriate VPs in the system. There are many different ways
in which these facilities can be used in the applications software.
For example, a VP with access to database D can also be given access
to a second database D’ which it only writes to once every 110 execu-
t ions , say, in order to form a complete second line of defence for D.
A number of less drastic, local recovery actions is also readily poss-
ible, including reprocessing selected transactions and repeating
particular VPs without disrupting the rest of the system.

13. CC*4CLUSICZ’l

Dedicated systems present many different requirements - flexibility,
high integrity, ease of development , efficiency, real-time response.
Many different structural concepts exist , in terms of which various
aspects of these systems can be described and designed, including
transactions, functions, single thread programs and data, programming
languages, levels of abstraction , co— operating parallel processes ,
selective data redundancy, isolation and pr otection , and various
approaches to recovery. The HIVE high level virtual machine is based
on a relatively email set of basic concepts and components - virtual
processors, protected objects, capabilities, messages and routes,
virtual instructions, conventional high level languages and a system
description language. We believe it to be a significant step towards
providing a more coherent , unifie d framework in which all the var ious
requirements and aspects of dedicated, high integrity systems can be
expressed.
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