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Supplement to

Report AM-76-2

"On Thermodynemics and the Nature of the Second Law:

I. Single Phase Continua"

by

A. E. Greenfand Py M, Naghdi$

Abstract. The contents of this report supplement those of a previous report,
namely Report No. AM-76-2, entitled "On thermodynamics and the nature of the
second law: I. Single phase continua." 1In particular, the present supplement
contains some additional development concerning the mathematical statement of
the second law and restrictions on the heat conduction vector and internal
energy, as well as two examples which demonstrate some shortcomings of the
Clausius=-Duhem inequality. One of the examples,when studied with the use of
the Clausius~-Duhem inequality, leads to results that imply the possibility of
a perpetual motion of the second kind. In the second example, which is con-
cerned with a rigid heat conductor in thermal equilibrium, the Clausius-Duhem
inequality requires that if heat is added to the medium the resulting spatially
homogeneous temperature of the conductor decreases. Moreover, the inequality
denies the possibility of propagation of heat in the conductor as a thermal
wave with finite speed. The inequalities proposed here do not suffer from
these shortcomings. gt
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Ls Foreword

The contenﬁs of this report supplement those of a previous report, namely
Report No. AM-76-2 (April 1976), entitled "On thermcdynamics and the nature of
the second law: I. Single phase continua." In particular, the present Supplement
contains (&) scme additional development concerning the mathematical statement
of the second law and restrictions on the heat conduction vector and internal
energy, (b) two specific examples which demonstrate some shortcomings of
the Clausius-Duhem inequality and (c) a derivation of jump conditions =cross a
surface of discontinuity from the balance of entropy?

In order to make this Supplementary Report reasonably self-contained, in
the next two sections we collect the basic equations which result from the con-
servation laws and also provide some general background material from §§2,3 of
the previous report (Green and Naghdi 1976). 1In the present §4, we discuss a
revised version of the previocus development concerning the second law in a way
which considerably enhances the thrust of the main ideas presented in §4 of
Green and Naghdi (1976). Also, in the present §5, we recall the previous restric-
tion on Lhe heat conduction vector (see §5 of Green and Naghdi 1976) and then
introduce here a further restriction on the internal energy. Next, in ¢6 we
discuss some aspects of the Clausius-Duhem inequality and by means of two
specific examples examine the consequences of this inequality and contrast
these with the type of restrictions which result from our present thermodynamical
developments. Both examples demonstrate the shortcomings of the Clausius-
Duhem inequality in certain dissipative media. In fact, one of the examples
when studied with the use of the Clausius-Duhem inequality leads to results

that imply the possibility of s perpetusl motion of the second kind, while the

* - ' s - "
Previously in Report No. AM-76-2, we used the word "calory" in place of "entropy
mainly in order to avoid possible confusion with the latter in the existing

literature. However, we now believe that it is best Lo revert to the more
familiar terminclogy of entropy.

e




restrictions whicﬁ emerge from the inequality preposed here deny such a perpetual
motion. We close this Supplement by providing a derivation of jump condition
across a surface of discontinuity from the balance of entropy in §7. While the
derivation of the usual jump conditions from the conservation laws is straight-
forward and is well understood, the one that can be deduced from the balance of
entropy requires special care and this is the main reason for providing the

details of the derivation in §7.
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2. General background.

Consider a finite body ® with material points X and identify the material
point X with its position & in a fixed reference configuration. A motion of the
body is defined by a sufficiently smooth vector function E'which assigns position
£==£(5,t) to each material point X at each instant of time t. In the present
configurat.on at time t, the body ® occupies a region of space R bounded by a
closed surface of. Similarly, in the present configuration, an arbitrary
material volume of B occupies a portion of the region of space R, which we
denote by P(S R) bounded bv a closed surface df.

Let p= p(i,t) be the masec density in the present configuration and designate

the velocity vector at time t by l=:£’ where a superposed dot denotes material

time derivative. Further let R=:E(§,t) denote the body force per unit mass
acting on ® in the present configuration, t be the external surface force per
unit area acting on the boundary 3R, and Eﬁ=£ﬂ§,t; 2) be the internal surface
force per unit area acting on 3f with n as its outward unit normal; the field E,
called the stress vector, assumes the value E on 3R. In terms of the above
notations and under suitable continuity assumptions, the usual conservation laws

for mass, momentum and moment of momentum yield the following local forms:
b+ pdivvy =0 ,

div T+pb=pv , t=Tn , (2.1)

.{
T =T ,

; . b e
where T in (2.1) is the stress tensor, T° its transpose and 4iv stands for

2,3
the divergence operator with respect to the place x keeping t fixed.

In the interest of clarity and for later reference, we now repeat in some
detail from the previous report {Green and Naghdi 1976) the various nctations

pertaining to the thermal properties of the body and the equations for conservation
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of entropy and energy. Thus, we introduce first the absolute temperature at
each material point by a scalar field g= e(%,t):»O. Along with the temperature,
we admit the existence of an external rate of supply of heat r==r(£,t) per unit
mass, an external rate of surface supply of heat -h per unit area scting across
dR. Also, we assume the existence of an internal surface flux of heat
—h::-h(%,t; 2) per unit area across each surface 3f; the field h, called the
heat flux and measured per unit area per unit time, assumes the value h on AR.

We now define the ratio of the heat supply r to temperature as s =s(X,t) and

~

call this the external rate of supply of entropy per unit mass. Similarly we

define the ratios of h and h to temperature, respectively, as the external rate

of surface supply of entropy k per unit area of 3R and the internal surface

flux of entropy k=k(X,t ;n) per unit area of dP. These definitions may be

conveniently summarized by
r=0 , h=2¢k , h=gk . (2.2)

In addition, throughout R we assume the existence of a scalar field T=T7(X,t)

per unit mass, called the specific entropy, and an internal rate of production

of entropy €= g(X,t) per unit mass. The contribution of the latter to the
internal rate of production of heat is simply 6f per unit mass.
Although the external rates of volume supply and the external rates of

surface supplies of entropy and heat are related by (2.2) , we could regard

diye
k and h as independent internal fluxes with no a priori connecting relation
(2.2)3. Thén, instead of (2.2)3, we would have k=h/@+ \ where \ is an
independent flux subject to the condition A =C on 3R so that k=k on 3. For

a wide class of simple materials which are homogeneous in a reference configura-
tion, it has been shown by Green and Naghdi (1972) that A =0 everywhere in R
follows from the condition that A =0 on 3R. Hence, with little loss in

generality, we adopt the form (2.2), in the present paper.

3
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We now postulate a balance of entropy for every material volume cccupying
a part P in the present configuration and write

m

d ~

Egjpﬂdv=] Ms+§MV-J loida (2.3)
P P 3P

By usual procedures, it can be shown from (2.3) that k is linear in n, i.e.,

k:g.g s (2.4)

where p is called the entropy flux vector. Then, from (2.2)3 and (2.4),

h=6p-n and we may define the heat flux vector q by
qQ=6p - (2.5)
Under suitable continuity assumptions and with the use of (2.4), the field
equation resulting from (2.3) 8
oﬁ = p(s+g)-divp . (2.6)

At this point we introduce the first law of thermodynamics, known also as
the balance of energy, which states that heat and mechanical energy sre equiva-
lent and that together they are conserved for every material volume. Thus, with
referénce to the present configuration, the balance of energy may be stated in

the f‘ormT

¥
It is worth recalling here that in the special case of a gas or an inviscid

fluid and starting only with the energy equation and appropriate constitutive
equations, it can be demonstrated that two scalar functions 8,7 exist such
that an equation of the form (2.6) holds with s and k given by (2.2) : and
with peg=-p -+ g, g being the temperature gradient. This result served in
part as the motivation for the balance equation (2.3) which is applicable to
all single phase continua.

fA more primitive form of balance of energy involves an internal rate of p.nduc-
tion of energy. In order to deny the possibility that the combined thermal and
mechanical energy can continually be extracted from the body in clcced cycles of
deformation and temperature, the internal rate of production of energy ic ecxpressed
as the time derivative of an internal energy density e. See, in this connection,
Green and Naghdi (1971a, p. 42; 1972, p. 356).
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‘the specific Helmholtz free energy y = ¢(£,t) by

;—tj (5 pv -+ v+pe)av
P ~ ~

-]

where € = ¢(X,t) is the specific internal energy. With the help of (2.1) and

(pr + pb 'L)dv T I (2. Z-h)da p (2.7)
P b o

(2.6) and under appropriate continuity assumptions, the field equation resulting

from (2.7) is
-p(é'eﬂ)+2-2-p§6-g°§=0 , (2.8}

where D is the rate of deformation tensor, p is defined by (2.h), g=grad ¢

and grad is the gradient operator with respect to x keeping t fixed. Introducing

‘v o €'9'ﬂ 3 (2'9)

the energy equation (2.8) may be written in the alternative form

-p(@+ﬂé)+2-2-p§e—g-g=0 . (2.10)

~
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3. FExpressions for external mechanical work and external heat supply.
Results for elasticity.

or later use, We record here the expressicns for the external mechanical
3

work and the external heat supplied to a material volume P during the time interval

ot
)

o}
-

tléizéte. Guided by known results in elasticity, we first observe that

of an elastic material the response functions for {,T,e depend only on the deforma- 1

tion gradient F and the temperature § and are independent of their rates and the
~

temperature gradient g. Such an elastic material will be regarded as nondissipative

in a sense that will be made precise later; and, in conjunction with an expressiocn
for the external mechanical work supplied to any part @, will be used as a2 basis

for establishing in §&4 an inequality representing the second law cf thermody:

for dissipative materials. Keeping this background in mind, we assume that the
(=) b

constitutive response functions for e,T include also dependence on the set of

variables F,8,g and their higher space and time derivatives and refer to this set

collectively as U. Further, let e',ﬂ' denote the respective values of ¢,T when the

W
variables Yy are set equal to zero in the response functions. Thus, for exam

€ = €(£:9,U;“ s €, =€ \/ :9) = G(E’,a,o) )

where the dots in (3.1)3 refer to the higher space and time derivatives of F,8.2.

Then, with the help of (2.1) and the integral of (2.7) with respect to time, we
obtain

b = External mechanical work supplied to a part § of the body during the
t

t’)

1A

- : 3
time interval t. S

b}
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¥ = External heat supplied to a part § of the body during the time

1 i sSsts
interval tl__t__t2
t2

= J [I pr dv - J hda]dt
tl P o

t2 t2 3

= [ ole-efav|®+ [ 2 ] (ool - pwlav at (3.3)

e tl tl P
where

pw =-p(4’'+1'@)+1-D = p[iy-@'+(n-n')é]+p§e+g-g 5

It should be clear that in situations where e,T do not depend on the set of
variables (3.1)3, then e=¢’, M=1’, y=¢’ and the expressions (3.3)3 and
(3.4) simplify considerably.
We now recall the main constitutive results for an elastic material from
%3 of the previous report (Green and Naghdi 1976) and also obtain the appropriate
expressions for the external mechanical work and external heat supplied to a
part P. Thus, by the procedure indicated previously (Green and Naghdi 1976),
we require (2.l)u and (2.10) to be satisfied identically for all processes and

this leads to the results

2 2% 3 , BT
b= = wCe3%) , n=n'=-Y 1@y T (3.5)
~ = 38 ~ P ag 3 i
pE8 =-D-g (3.6)
A
where { is the Helmholtz free energy response function and
C = FTF (3-7)
is the Cauchy-Green measure of deformation. With the use of (3.6) and (2.5),
(2.6) reduces to
pr - div q = peT . (3.8)




With the help of (3.5), (3.6) and (3.2) to (3.4), we record below for an
~lastic material the expressions representing (1) work by body and surface
forces on any part f and (ii) supply of energy arising from the rate of supply

of heat and the surface flux of heat to f, both over a finite time interval

(t;StSt,):
.t, - .
w=j£[J pg-ng+J t . v daldt
t, P 1 A
It PRy
=I p(%x.!+e')dv 2-I2J poM ‘dv dt
P t .
ES
t t i .
3 J. ok v y+yav 2 + | QJ p7'6 dv dt (3.9)
P t t. P
1 1
and
t t
H=J2[J pr dv-J' q.Eda]dt=r2j‘ pen‘dvdt . (3.10)
t, P 3~ “t, Up

’

Since ¢’ and M’ are functions of § and C, it follows from (3.9) that the work done
on the body in any process -- represented by any path in the seven-dimensioual space
of temperature 6§ and deformation measure E;u-may be completely recovered by
reversing the path and returning to the initial values of 8,C and V. A similar
result holds for the heat supplied to the body. The external work supplied to
any part © of an elastic body is given by (3.9) and we make use of this fact
in §k.

In the next two sections we discuss the second law of thermodynamics, sas
well as restrictions on the heat conduction vector and the internal energy.
Although the contents of these two sections include some modifications of and
additions to the corresponding previous developments (§§L4,5 of Green and Nezhdi
1976), a gocd deal of the present §§4,5 overlap with the corresponding previous

developments in order to render this Supplement reasonably self-contained.

T e, e




4. The second law of thermodynamics.

In the first law it is assumed that mechanical energy can be changed into
heat energy and conversely, and no restriction is placed on the transformation
of one into the other. 1t appears to be a fact of experience that whereas the
transformation of mechanical energy into heat, for example through friction,
is not limited by any restrictions, the reverse process, namely the transforma-
tion of heat into mechanical energy, is subject to definite limitations. This
fact has been incorporated into a number of different statements which are then
usually called the second law of thermodynamics. It is often asserted that
the various statements of the second law are equi-alent although proofs of
these are far from convincing and usually limited to special situations. For
example a form of second law attributed to Kelvin (1851) Ty

(A) It is impossible to construct an engine which would extract heat

from a given source and transform it into mechanical energy, without bringing

about some additional changes in the bodies taking part. A slight variant of

this statement which involves periodic cycles is due to Planck and is known as
the Kelvin-Planck statement of the second law.
Another form of the second law is:

(B) It is impossible completely to reverse a process in which energy is

transformed into heat by friction.

There are other statements of similar character such as that due to
Carathéodory. A somewhat different idea seems to be involved in the form of
second law attributed to Clausius (1850):

(C lHeat cannot pass spontaneously from a body of lower temperature to
- - e - ——

a body of higher temperature.

*

The various versions of the second law are recalled here as statements (4),
(B) and (C). These or variants thereof can be found in standard books on
thermodyrnamics, e.g., Schmidt (1949), Zemansky (1968), Pippard (1960) and
ter Haar and Wergeland 266 ) .

10,
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A statement such as (C) does not necessarily involve the concept of mechanical

B = n——————

work since it could be applied to rigid heat conducting solids but many bocks
contain "proofs" that (C) is equivalent to (A) or (B).
Although the first two of the above statement convey the idea that some

restrictions must be placed on the interchangeability of energy due to heat and

e e sy e = et e

mechanical work, they are not precise. Attempts to make this notion precise in
the context of single phase continuum mechanics have led to controversy, although

there is a measure of agreement about many of the results which emerge from the

R s ot st

restrictions. Most trouble seems to center on the concept of entropy, even
though none of the above statements appear to involve entropy. In recent years
L it has become customary for some workers in continuum mechanics to postulate the

existence of a scalar function called entropy and an entropy inequality called

PR T P iy T

E the Clausius-Duhem inequality. With the help of this inequality restrictions
; are placed on constitutive equations, and some of these restrictions do seem

, to embody concepts contained in statements such as (A), (B) or (C). However, 5
| ! at the outset, it is not at all clear how the ideas contained in (A), (B) or

| (C) have been translated into the Clausius-Duhem inequality. Some writers have l;
F raised objections to this inequality for other reasons but it is not our purpose .E
[

;

to discuss these objections here.

N VN

In the present section, we reconsider a mathematical interpretation of some
form of second law of thermodynamics for single phase continua and adopt a state-
ment of this law which is similar to that of the statement (B) above. First we
observe that the expression (3.&}2, when evaluated for a given process, may be

either positive or negative depending on whether the external work is supplied to

or withdrawn from §°. 1uis eavernal work is also represented by \3:2), in terms

- |

of both thermal and mechanical variables but not every term in (2.2). need

necessarily be pcsitive (zero or negativo), even though the external work may be

o SR, S AR

positive (zero or negative). Thus, with reference to a dissipative materisl,

R ————

11,
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we assume that in every admissible process a part of external work is always

converted into heat which cannot be withdrawn from f as mechanical work and is
therefore nonnegative. This means that the external work can be expressed as
the sum of two parts, one of which is nonnegative and the other, depending on

the process, could be positive, zero or negative. Hence, we write

w = ui-+ub s ubizo -
The above also implies that
W= “i
and W is bounded below, the bound depending on the process.

In order to identify the two parts Wy and lW,, we note from (3.5), (3.6) and
(3.4) that in the case of an elastic material w=0 in (3.2) and the expression
for the external work supplied to @ reduces to (3.9). We now regard an elastic
material as being nondissipative in the sense that no restriction is placed on the
external mechanical work (3.9) supplied to P and identify “i with the right-hand
side of (3.2)3 after setting w=0. Keeping this in mind, we rewrite the last
inequality as

t5 b5 S
W= J (3 pv - v+pe’) - I I poN’ dv dt (4.1)
t. P

E "1 1

and assume that (4.1) holds for every thermo-mechanical process. The combina-

tion of (3.2) and the assumption (4.1l) yields

t
j ) pw dv dt = O (k.2)
2o g
&
for each part f of R and for all times tl,tz. Since tl,t2 are arbitrary and
pw has already been assumed to be continuous, it follows that
f pw dv = 0 (4.3)
v
for all arbitrary §. Hence,
ow = - p(%’ fq'é)+-T. Do (L. b)

for all thermo-mechanical processes. Also, from (3.3) and (4.4), we have

12.
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b4, t, .
Hs j ple-¢')av| < + I Zf o8N’ dv dt (4.5)
P ty t,°P

so that the external heat supplied to a part § of the body is bounded above in

every process. Alternatively, some of the heat supplied to the body in every
process is always nonpositive. This form of the law is related to the statement
(A) above. It should also be noted that the inequality (4.4) is not the same as
the Clausius-Planck inequality. However, in the special case for which y,T are
independent of the set of variables (3.1)3 so that y=¢’, N=1', ¢e=¢’, then
(k.4) does reduce to the inequality known as the Clausius-Planck; see, in this
connection, Day (1972, p. 49).

The right-hand side of the inequality (4.1) can be expressed in terms of w'
defined by (3.&)3. We consider a special case of this inequality appropriate for

a closed cycle of isothermal process in which & is constant and the velocity v

assumes the same value, respectively, at the beginning and end of the process. Thenf
. t2
§ [I Pb + v dv + J t.v daldt = f py ‘dv . (4.6)
5 o P tl

A result similar to (4.6) follows from (4.1) for processes which take place at
constant values of n' and spatially homogeneous 6 with the velocity . assuming
the same value, respectively, at the beginning and end of the process, provided
¢’ in (4.6) is replaced by ¢'.

We now turn to one other consequence of the inequality (4.4). Suppose H(t)
is the total rate at which external heat is supplied to a part P. Then, from

(3.3) and (L.33) we have

H(t) = H(t) §é@)-é%t)+j pom‘dv (4.7)
P
where the expression for H(t) is given by (2.33) but with t2 replaced with t and where
e(t) = j pe dv , €'(t) = J pe’ dv . (4.8)
P P

.r

It may be noted that a work inequality of the type employed recently by Naghdi
and Trapp (1975a) in the context of the purely mechanical theory is, in general,
a separate statement from (4.6). The former work inequality was stated in the
reference state and for processes which are closed spatially homogeneous cycles
of deformation.

130




When the temperature is spatially homogencous so that g§=g(t), it follows from i

(4.7) that in the time interval t Stst (since 8= 9(t)>0)

C
J {H(t) - E(e) +€/(0)} Grey £ 8 (8,) -87(8)) (4.9)
Hy
where
s’ =Jn pNdv . (4.10)
P

Moreover, in any closed cycle during the closed interval [tl’t2] in which S’

has the same value at t=1t, and t=t,, (4.9) becomes

2’
| y e 6.

, { y+e! 7—7 = (4.11)
i

! For all continua in whlch € does not depend explicitly on the set of variables

(3-1)3, e=¢’ and €=¢’' by (4.8). Then, (L4.11) reduces to

t
% ; :*

i The inequality (L4.12), derived here only for spatially homogeneous temperature
fields, is often called the Clausius inequality. It may be noted also that when
the material response is such that €=¢’, then (4.9) reduces to a statement of the

Clausius-Planck inequality for spatially homogeneous temperature fields.

1h.
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e Restrictions on heat conduction vector and internal energy.

So far we have discussed the second law of thermodynamics from the point
of view of interchangeability of heat and mechanical work. This has not
yielded any restriction on the form of the heat conduction vector, as can be
seen by the special example of an elastic solid in §3. Here we return to the
statement (C) in §4 and consider only the heat flux response in equilibrium

cases for which heat flow is steady. By equilibrium we mean that
x=0 , P=0 , B=0frall t ; (5.1)

where F and 9, as well as all other relevant functions, are independent of t

(but may depend on x). Then, it follows from (2.6) and (2.8) that

PE@ =-p-g , p(s*g) =divp , (5.2)

~

or

pr = psg = div(pe) = div g . (5.3)

For the equilibrium cases under discussion, we adopt the classical heat conduc-

tion inequality

-~q-g20 (5.4)

~

for all time-independent temperature fields. We recall that when q is parallel
to the temperature gradient g, (5.4) implies that heat flows in the direction
of decreasing temperature. In order to relate (5.4) more generally to the
statement (C) in §l4 we suppose that the external supply of heat is zero so

that the right-hand side of (5.3) vanishes also, i.e.,

15.
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si= p= 00 die e Q . (9.5)

Further, let a part anl of the boundary R be maintained at constant tempera-
ture 61 and a part anz of 3R be maintained at constant temperature 62, and that
no flow of heat take place across the rest of the boundary an-aﬁl- aﬂz.

Summarizing these we have

6 = el on anl s 6 =6, on aﬂz 5

{ >
? (5.6)
{
! g+n=0 on aR-M -M, .
4 By (5.5), and (5.6i i we have
I g nda + J g-nda=0 . (5.7)
' anl Bﬂz
§ If we assume that heat flows into the body across anl and out of the body
! across anz, then
X q:ndaz0O . (5.8)
R,
Also, we need the result
’ f 7 r
. (=6,) | g-nda=-| ®genda=-; Qrgav , (5.9)
7 R R ?

2
the truth of which can be verified with the help of (5.5), (5.6) and (5.7).

Since (5.4) is assumed to hold for all time-independent temperature ficlds,

it follows from (5.4), (5.8) and (5.9) that

————

.e., according to (5.9) and (5.10), heat flows from the higher to the lower

temperature in the body. We observe that the result (5.10) would etill follow

L e T gy Y
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if we replace (5.4) by

v

q-g dv

-J 0 (5.11)

R
for all time-independent temperature fields.

The condition (5.4) or (5.11), which hold in equilibrium cases, will be
utilized in the rest of the paper to impose restrictions on the constitutive
equation for the heat flux vector. For many materials of interest, the thermo-
mechanical response of the medium is characterized in terms of certain kine-
matic and thermal variables (such as E and 9) and their gradients but not their
rates. In such cases, once the heat flux response function has been restricted
by either (5.4) or (5.11), the resulting conditions remain valid for all values
of kinematic and thermal variables and not just the time-independent ones. For
example, with reference to the elastic material discussed in §3, the constitu-

tive equation for the heat conduction vector has the form

A
L2 .%(E’e’;%) 3 (5.12)

A
-q(F,0,8) g 20 (5.13)

for all arbitrary time-independent values of its arguments. It follows that

the condition (5.13) must hold even if F,8,g are functions of both X and t.
Finally we suppose that the continuum is at rest with £==g for all time

and with the deformation gradient E everywhere constant for all time. Then, E::g

everywhere and it follows from (2.1)l that p is independent of t. In addition, we

restrict the temperatwre field to be spatially homogeneous so that g=6(t).

Keeping these in mind, from combination of (2.6) and (2.8) we have

pr =div q = pé .
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Since v=0 everywhere no mechanical work is supplied to the body. Then, using
~ o~

(5.14), the heat supplied to a part @ of the body during the time interval

=ts= ;
tl_t_t2 is
t, it 3
:ﬁ=J‘ [J‘ pr dv-J g-gda]dt=j. pe dv (5.15)
t, 'P op P ty ]
llow suppose that the body has been in a state of thermal equilibrium during
some period up to the time tl with constant internal energy € and constant :
temperature 8 - Then, recalling again the statement (C) in §4, we assume that
whenever heat is supplied to a part @ according to (5.15), the temperature
8(t) throughout the part will be increased, i.e.,
t2
(6]," > O whenever ¥ >0 . (5.16)

i
Assuming now that pe is continuous and remembering that p is positive and indepen-

dent of t and P is arbitrary, it follows from (5.15) and (5.16) that

o(t) - B = 0 whenever ¢(t) - e >0 (5.37)

for all t> tl.




6. A comparison with the Clausius-Duhem inequality.

In this section, we consider the Clausius-Duhem inequality and also by
means of two specific examples examine the consequences of this
inequality and contrast these with the type of restrictions which result from
the present thermodynamical restrictions proposed in §§4,5. Both examples
demcnstrate the shortcomings of the Clausius~Duhem inequality in certain dis-
sipative media. In fact, one of the examples when studied with the use of the
Clausius-Duhem inequality leads to results that imply the possiblity of a
perpetual motion of the second kind, while the restrictions which emerge from
the inequality proposed here deny such a perpetual motion.

We recall that much of the development in continuum thermomechanics in
recent years has been based on the conservation equations for mass, momentum,
moment of momentum and energy, where the field equation corresponding to (2.7)
is not an identity for all thermo-mechanical processes. Restrictions on
constitutive equations are then obtained with the help of the Clausius-Duhem

inequality, namely

q-n
d pr ~ o~
- pTMav - dv + da, =0 4 (6.1)
dt IP IP ) fap 0

where the temperature 9 (>O) and entropy T| appear for the first time. If we

identify © and T in (6.1) with the corresponding quentities defined in §2, then

under suitable continuity assumptions the inequality (6.1) yields

)"

pog =-p(y+M8)+T-D-p.g =z O (6.2)

~ o~

for all thermc-mechanical processes.

The above inequality should be contrasted with the inequality (4.4). For i‘
materials whose thermo-mechanical response is such that §,7 are independent of i;
the set of variables (3.1)3, the Helmholtz free energy and the entropy reduce 51
to§ §=4¢’s, M=7'; and then, after recalling the expression for w in (3.4), the fi
§It may be noted that the cases in which y=y¢’, N=7' include a fairly large i

class of materials of interest.
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Clausius-Duhem inequality becomes

v

POE = pw-D - ¢ i [ (6.3)

155 w,n,z, and hence w, do not depend explicitly on the temperature gradient g
and its history, then it readily follows from (6.3) that pw 20 which is the same

as our inequality (4.4). Further, if it were true that p-. gz 0 (and hence q -

~

QE(D
for all thermo-mechanical processes, then (6.3) again yields pwz 0. However, the
Clausius-Duhem inequalily itsell denles this possivility: for equilivrium processes
w=0 by (3.&)l and (6.3) then implies that p-g=0. Apart from these observations,
it is clear that provided p.g<O0, the Clausius-Duhem inequality (6.3) could allow
pw to be negative for some materials undergoing particular admissible processes.
But a result of this kind does not, in turn, rule out the possibility of a response
in a dissipative material which permits a perpetual motion of the second kind.
Indeed, we construct below an example and demonstrate the existence of a thermo-
mechanical process which, when subjected to restrictions demanded by the Clausius-
Duhem inequality, gives rise to a cyclic motion for a dissipative material in
which heat is continually supplied to the whole body and continually withdrawn
as work so that the efficiency of the process over each cycle is unityT We
also discuss a second example of a different type and demonstrate still other
differences which emerge when the Clausius-Duhem inequality (6.3) is employed
instead of the inequality (4.4) of the present paper.

Let us suppose that the set of variables {£,¢,ﬂ,§,g} are functions of the
set [e,p,g,g}, where E is the velocity gradient. Then, either by the method of
the present paper or by the use of the Clausius-Duhem inequality, it can be shown
that {,7,e are, in fact, independent of E,% and reduce to functions of p,d only;

they also coincide with §’,n’,e’, respectively. Moreover, invariance under super-

posed rigid body motions demands that the stress tensor T and the heat conduction

.,-

A similar cyclic motion was examined for a different purpose previously (Green
nd aghdi 1971), where it was demonstrated that Cauchy elasticity is not admis-
sivle within the ordinary framework of thermomechanics with an energy equation
of the form (2.7).

20.
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vector q be isotropic functions of p,8,D,g. From this class of viscous materials,

we choose a particular set of constitutive equations in the discussion of our
first example.
Example 1. Consider an incompressible viscous fluid characterized by the

following constitutive equations:

y'=y=c(e-6log®) , N =N=clogoe , e =¢=co8 ,

E=-p£+ze ) Ie=p(2HE'C‘E£L) s (6.’4—)
2
g =~Kg-ppelg
where c,p,u,x,K,B are constants and p is an arvitrary function of x and t. The
Clausius-Duhem inequality (6.2) is satisfied identically if
B=0 4, KB2O , BEa . (6.5)

The constant a is chosen so that o>0. Consider now the homogenecus ncn=-

isothermal deformation specified by

X, = Xl exp{B(l-cos wt)} , x, = X2 exp{~B(1 - cos wt)} , %y =
(6.6)

8= 9o +tAx,(2+sinwt) .

N Y

In (6.6), the coefficients A,BR are constants (but not necessarily positive),

ao and @ are positive constants and the value of § 1is taken to be large encugh
o)

vy <

so that § is always positive. The corresponding velocity, temperature gradient

and rate of deformation tensor at time t are

v = Bw(x,e. - x.e_)sin wt g = Ae. (2 +sin wt)
= LW + Ve .2 s s .;‘l\t. SIS 44 "W, s
N, 4 ot
(6.7)
N e Bale -0 Re 5 + R o
D t“b{;&gf& € uN,_)}s:n. wt , trD=0 .
The moticn (6.6) end the temperature distribution (6.6) are very
1,2,3 4
smooth. They have continuous derivatives of all orders with resp=ct to Xi and t.

2,
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Morcover, (6.6) and all their derivatives return to their same values after each

interval of time 2m/w, as do all the functions in (6.7) and (6.4). Let the body

occupy a region Ro in its reference configuration at time t=0 and let H(t) be

the total rate at which external heat is supplied to the whole body at time t.

Tuen, with the help of (3.3), (3.4) and (6.4) to (6.7), we have :

\ £ - r. o, - -\ o “ / ol - -
H(t) = J pr uv-—f q-nda = j (paﬂ'-:L s DJav = | (p80'-T -D)av
R ) R R o

= P«E2w2[a:-.2f2 +sin wt)

1 ~

where M is the mass of the body and where we have chosen the origin of the X
axes to be at the center of mass of the body in its reference cohfiguration.

We now choose o to satisfy the inequality

wt? >huz0 (6.9)

7]

s0 taat the expression (6.8) for H(t) is always nonnegative for all time.

The total heat supplied to the whole body in the time interval 0=t

HA
n
=)
S~
i—‘
o

then given by

,.ZTT/w ' 5 5 - o
¥= | H(t)dt = nMB w[4(aa® - ) + % aA”] (6.10)

)

and during this interval no heat is emitted. Moresover, from (3.2) and (6.4)
to (6.7) we see that the total external mechanical work extracted from the

whole body during the same time interval is

] \ e / q
=l = TMB u;[lf(o(,ﬂ. -, E ak 2 . (6.11)

[his process can be continued for an indefinite number of - i )3
: & - 2 A} A ak 1 2 LT £ b5 ~ -~ Pl ~mrway ] o y 3 . + R 7
motion in which the efflciency of the processy; namely =W/H is uas tc unity
since == H>0). This corresponds to & perpetual motionn of the ¢ i kind,
. ¥ v Tates 41 ¥ “r “’t. vy
iNC 1t ao¢ OV V1i0LG e Ul nergy GUAaTLOIl. LO Cld i ‘ - &
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desirable to provide here a definition for perpetual motion of the sccond kind

with particular reference to the type of medium considered in Example 1: Consider

an incompressible viscous fluid, which is characterized by the set of conctitu-

tive equations (6.4). We say a fluid of this kind gives rise to a perpetual

=)

motion of the second kind if there are periodic motions and temperature fields

~ : , Ps '\ 2t iy , ooy fvr A /s Now s P ey
of period T such that (i) x(X,0)=x(X.7) =03 (ii) ¢(X,0)=¢(X,1); (iii) the rate of
~ ~ ~ o~ ~ ~ ~

supply of external heat to the whole body and the rate at which work (minus the changei
in kinetic energy) is withdrawn from the whole body are both positive st each instant
of time, and consequently the total heat Y supplied to the whole body and the total
work -W withdrawn from the whole body during a period are both positive; and (iv) no
heat is emitted from the whole body during the motion so that the ratio -W/H=1.

In contrast to the implication of the Clausius-Duhem inequality employed

-

n the above discussion, suppose we adopt the inequality (4.4) of the present
2 5

b

paper. Then w20 and no restriction is placed on the coefficient 8 which occurs

in the expression for q. It follows from (6.8), (6.9) and (6.10) that

i.e., work is done on the body and is continually withdrawn as heat. Clearly,
the use of the inequality (4.4) in the above example does not lead to a
perpetual motion.

The second example that we wish to consider is of somewhat different
character and is concerned with heat conduction in a
tropic rigid solid. It is well known that the classical thecry of heat conduc-
tion does not allow heat to be propagated with a finite wave speed. Amcng the

many attempts to provide a heat conduction theory in which heat can

with a finite wave speed, we mention the one by Bogy and Naghdi (1970, who
suggested that ¢ be added to the list of independent varizbtles In ithe

he Clausius-Duhem ineguality

constitutive equations. They made use of
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place restrictions on the constitutive response functions and also showed that
for a theory which is linearized about a constant eguilibriwn temperature,
heat not only could not propagate with a finite wave speed but ite propagation
was governed by an elliptic differential equaticn. We illustrate this here
with a simple example and contrast the results with those which follow from
% < B e R Lol
our present inequality (L.k).
3 Fxample 2. The conduction of heat in a fixed homogeneous isotropic rigid
solid may be characterized by the constitutive equations
! e ( S ) . o e
1 y=co(l-log g) , M=c log 6-ab/e ,
(6.13)
e =ecgal 5 g ==Kz
~ ~
where c,a,K are constants and a#0. The Clausius-Duhem inequality (6.2) is
then identically satisfied provided
|
¢
GRS e (6.14)
and the energy or the heat conduction equation becomes
. = o B Sy
pr E Uy § = plcd=ad) (6.15)
- 4 2 . e T o A 2 - -~ 8 T ST AF L Y ~ P S F o2 3
/ where ¥ 1is the Laplacian operator. In view of (6.14), the differential equa-
7.9 tion (6.15) is elliptic and does not allow heat to be prepagated as a wave.
=l Moreover , suppose that the solid is in thermal equilibrium prior to the tim:
tl with a:_al and € =c@,. Then, if heat is continually supplied to every part
1 : o
of the solid when t:>t], it follows from (5.15) and (6.13) that
co-o® >ch - (6.16)
With the help of the positive integrating factor exp(-ct/a), integration of
tbove inequality between the limits tl and t yields

3 ol
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S e el e

-oz(e-el)exp(-ct/a) >0 or -a(e-el) 1O

But >0 by (6.lh)l and the last result implies that if heat is continually
supglied to the solid, then its temperature decreases since e<:el.
We now turn tc the theory of the present paper, which also admits constitu-

/

tive assumptions of the form (6.13). Recalling the definiticns for N e’

given in §2, we write

’ / /4

=% s N =clogg , ¢ =c@ . (6.18)

The inequality (4.4) is satisfied without imposing any restriction on « (or «)
and it is easily seen from (5.4) that again KZ0. For the present problem, with

the use of (6.13) the condition (5.17) states that
o(t) > 8, whenever c@-o® > 8 (6.19)

for t>tl. Using the same procedure as that which led to (6.17), we now obtain

the result 8> 8 whenever (6.17) holds so that
0>a . (6.20)

This is in direct contradiction to the inequality (6.1&)l demanded by the
Clausius-Duhem inequality. Again, suppose that heat is supplied to the solid
so that its temperature becomes 8(t) = el+-A(t-tl). Then, from (5.17) and (6.13)

we have
A > 0 whenever A[c(t-tl) -a] >0 (6.21)

for all t>t In view of (6.20), the result (6.21) can only hold if ¢>0.

ll
Furthermore, since 0>« and K20, wave propagation with a finite wave speed is
possible and the waves are damped.

The above examples clearly demonstrate that the results obtained with the

29
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use of the Clausius-Duhem inequality can sometimes be very different from those

found by the procedure and ideas of the present paper. In the first example,

the Clausius~Duhem inequality permits a perpetual motion of the second kind .
in the sense usually stated in books on thermodynamics. In the second example,

the Clausius-Duhem inequality demands an undesirable restriction on the response

of a rigid heat conductor and thus denies the possibility of propagation of

heat as a wave with finite speed. Also, when the rigid conductor is subjected

to a spatially homogeneous temperature field, the inequality requires that when

heat is supplied to the conductor in a state of thermal equilibrium, the

temperature of the conductor must decrease.




B s

T Basic jump conditions.

First we recall here the jump conditions which can be derived from the
conservation laws for mass, linear momentum and moment of momentum. Consider a
surface of discontinuity £(t) in the present configuration of the body &nd let
the normal velocity of a typical point of this surface be denoted by u. Then,
sssuming that the external body force E is bounded on the surface ¥, the jump

conditionswhich can be derived from the conservation laws mentioned above are

(7.1)
Cev(w-v)-tll=0
In (7.1), v is the unit normal to § chosen in a specified direction,

W= v-uy (7.2)
and we have used the notation [[f]] = f2- fl, f2 and fl being the values of f on
either side of . Similarly, assuming that both the body force b and the
external rate of supply of heat r are bounded on ¥, the jump condition at the
surface of discontinuity £ which can be derived from the conservation of
energy (2.7) is

(3 pvev+pedw-v=-t.v+nll=0 . (7.3)

The above well-known jump conditions (7.1) and (7.3) at a surface of

1,2
discontinuity are derived with the use of the transport theorem. To elaborate,
let ¢ be any function per unit mass which takes different values Ql and $2 on
either side of some surface of discontinuity in . Then (see Truesdell and

Toupin 1960, Eq. (192.4)),
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1 ™~ 2l \\‘ [ i :\ "
3t ) esav = | -—%%f—ldw; ppy-n da-llppdluda , (7.4)
P P ap g

‘nere the notations u and [[ pp]] have been introducesd previously in (7.1) and

(7.2) and where a part of the surface of discontinuity ¥ is denoted by ¢ (=7)

bounded by a closed curve dg.

We now make use of (7.4) to obtain the jump condition from the entropy

balance equation (2.3). It is convenient to consider a special region for P in
the form of a cylinder but one which is still arbitrary. Let x~ (i=1,2,2), be

a set of convected coordinates and let the equaticn x~ =
1 >

of discontinuity ¥ with position vector r=r(x ,x ,t). Then, a point x in the
neighborhood of ¢ may be represented as
IS S L. 2
X = £(x X ,t)~+x3zfx A Wi,

For our present purpose, a part P of the body in the present con-

S

figuration may be defined by surfaces x~ = 2 o on each side of

¢ and a surface f(xl,xz,t) = 0 which envelopes the part g of g .

Let BPn refer to a part of Jdf specified by the cylindrical surface

L \ Py e
£lx ox ,6) =0 so that M%ﬂo=aPﬂo=acandlet5ﬁi=BP-OQ = g'Ug", where

¢’ and ¢” refer to the surfaces xj==f a, stand for the complement of ag‘ in

3P. Then, using (7.4), application of (2.3) to the special region under

consideration leads to

e
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k)
A i a (6] g
a ! . . .
r.[ [z (pM) - ps - pzl] 1% da + (pTNv -n+k)ix~ds
B ot s L ~
et o0 - o
'
~n -
+J (pMv.n+k)| . d_x’rJ‘ (pMv-n+k)| , ia”
ol X =qr o e 1x7=-c
Frr o
s 'LL PT]]JU da = 0 s (7.6) 1
" o
3 o
' where da is un element of area of the surface g, ds is the arclength on the
boundary curve dg while da’ and da” stand for the elements of area of the
surfaces x3==a and x3==-a, respectively. Within the region f under considera-
{
i ‘g - ol - = =
; tion, we assume that a(pﬂ)/at, k and the external supply of entropy ps are
| S . , . .
i finite but that the internal rate of production cof entropy pZ may become
inbounded on . We assume that pg is integrable and tnat !
s 2 p
lim | pZax” = g )
e i PSS = RS (7.7)
a-0 =y
‘ = 3 a W Ao R 3 o .2 - Ra fr s e + Y+ b oy
! 1 where £ 1s a bounded function of X ,x ,t on £. Recalling that the normals to
! : T 4 3
the surfaces x“=_ o as o—0 become ¥ v, then from (7.6) in the limit as =0
~
we obtain
:
{
[ Tpnw s uerll~ pBlda = ¢ 8
u\ ..p‘.‘-~ " 44 P:, = (7'0) }
o}
“ for all arbitrary o, where w is defined by (7.2). With the usual continuity 4
v ~
3 -
5 1 . 1 . . - . .
4 R assumptions on ¥, we then obtein from (7.8) the Jump condition
-,'A E
.| 1
- | e - : :
E 1 Lpliw-v+kll= pg . (7.9)
-! o i
1 It is possible to demonstrate the reason for an assumption of the form i
.
(7.7) for g in the special case of an elastic material. In the absence of a e
.. 4
1 surface of discontinuity in @, it is indicated in §3 that pg89 =-D-g for an ;f
12
1 ;
1"1’" ran vy : o (I ﬁ) AanEadteres Waktkh o and e s " L Fpr 9 ¥
The volume integral in (7.6) contains both s and €, but only the latt field iy
i requires a constitutive equation which depend : 10 ytion k2
for the integrability of € in the form (T+T7) 1 latter part
of this section. i
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arbitrary elastic material.

Suppose that the terperature distribution and its

gradient in @ are given by

o
6 = (el-*ee)/E-x"(el-ee)/'doz .

where 9;, 9, (Ql} 92) are constants. If now o—~Q, we have a surface of
[
discontinuity, say £, with a finite jump in § across ¥ but with g becoming
~
unbounded on this surface. However, since k (and hence p) in (2.4) is assumed

to remain finite, it can be easily shown that ths third term of the first

integral in (7.6), namely

_— - g o P v(6,+8,) . 3
jj pgd.?(dda:j 1 Pe— e A : (7.
oo oo : =

tends to a finite limit as o¢—»0. This result clearly supplies a motivati

the more general assumption (7.7). In the case of an elastic material, an

additional observation can be made regarding the limiting value g. The function
€ in the integrand of (7.7) is always nonnegative, since for an elastic material
pE ="2,‘§/6 z O for any process. Hence the limiting value of the integral in
(7.7) must also be nonnegative, i.e., §§ =0,

Before closing this appendix, we observe that since Q‘which depends of g
has been assumed to remain finite in the neighborhood of ¥, the conductivity

tensor associated with p must tend to zero in this neighborhood.
=
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kind. In the second example, which is concerned with a rigid heat
conductor in thermal equilibrium, the Clausius-Duhem inequality
requires that if heat is added to the medium the resulting spatially
homogeneous temperature of the conductor decreases. Moreover, the
inequality denies the possibility of propagation of heat in the con-
ductor as a thermal wave with finite speed. The inequalities
proposed here do not suffer from these shortcomings.
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