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The numerical solution of continuum problems in unbounded
regions involves two essential approximations: first, the
continuum must be approximated by a discrete unit; and second,
the unbounded domain must be approximated by a finite domain.
The first problem is the one usually studied in numerical analy-
sis. The second has received mucﬁ less attention and is the
subject of the present paper.

The present work was motivated by the problem of the numer-
ical simulation of boundary layer flows in transition and turbu-
lent regimes. The prototype of such flows is the flow over a
semi-infinite flat plate undergoing transition to turbulence.
The geometry of this three-dimensional flow is infinite in three
directions. The fotmul#tion of satisfactory boundar& conditions
is simplest in the cross-stream directions. On both theoretical
and experimental grounds, periodic boundary conditions can be
justified in this direction. On the other hand, treatment of
the downstream direction is not so simple. The mapping techniques
of this paper cannot be used effectively for this aspect of the
transition problem. However, the techniques developed here are
appropriate for the treatment of the boundary conditions in the
direction normal to the boundary layer.

The present study is restricted to one special technique
for the treatment of the point at infinity: coordinate trans-

formation of the infinite domain onto a finite region. The
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utility of mapping methods are examined for six model problems,
two of which are critical components of the boundary-layer
transition study. These model problems are (1) the solution

of the one-dimensional diffusion equation in a semi-infinite
region; (2) the eigenvalues of the quantum-mechanical oscillator;
(3) the eigenvalues of the Orr-Sommerfeld equations for the
Blasius boundary layer; (4) the calculation of the Paikner-Skan
boundary-layer'profiles;‘(5) solutions of the wave equation; and
(6) shock-wave solutions to Burger's equation. The utility of
these mappings is determined by comparing the numerical solu-
tions of these six problems, using different mappings, with the
exact solutions.

It is concluded that mappings are an.effective way to solve
problems in infinite domains provided that the solution is simple
at infinity; If the solution oscillates at infinity, then infinity
must be an essential singularity of the solution and mappings fail.
When mapping is applicable, the proper choice of mapping should
be based on the criterion that the solution to the problem be
smooth in the mapped coordinate.

Mapping techniques, and in particular algebraic mappings,
are successful in the simulation of boundary layer flows because
the boundary condition in the direction normal to the boundary
layer is that the flow is a simple laminar free stream. The
algebraic mapping allows substantial economy in the number of
mesh points used in obtaining the numerical solution. The effi-
ciency of this mapping is most important in the context of multi-

dimensional numerical hydrodynamics, where economy in resolution

is vital.
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1. Introduction

The numerical solution of continuum problems in unbounded
regions involves two essential approximations: first, the con-
tinuum must be approximated by a discrete set; and, second, the
unbounded domain must be approximated by a finite domain. The
first problem is the one usually studied in numerical analysis.
The second has received much less attention and is the subject
of the present paper. We restrict the present study to one
special technique for the treatment of the point of infinity:
coordinate transformation of the infinite domain into a finite
region. One of the principle conclusions of the paper is that,
while transformationé are not universally valid, there is a class
of problems for which it is a very useful technique.

The presen£ work was motivated by the problem of the
numerical simulation of boundary layer flows in transition and
turbulent regimes. The prototype of such flows is the flow
over a semi-infinite flat plate undergoing transition to tur-
bulence. The geometry of this three-dimensional flow (see
Fig. 1) is infinite in three directions. The formulation of
satisfactory boundary conditions‘is simplest in the y direction.
On both theoretical and experimental grounds, periodic boundary
conditions can be justified in y . On the other hand, treatment
of the downstream x direction is not so simple. The mapping
techniques of the present paper cannot be used effectively for

this aspect of the transition problem. Techniques for the imposition
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of inflow and outflow boundary conditions (which are appropriate

in the x direction) will be discussed elsewhere. However,
the techniques developed here are appropriate for the treatment
of the 2z direction (normal to the boundary layer). We shall
find that mapping techniques are successful in 2z because the
boundary condition at 2z = = is that the flow is a
simple laminar free stream (in the present case, uniform flow).
The idea of mapping an infinite geometry into a finite
one is not original. For example, Van de Vooren and Dijkstra
[1] successfully applied coordinate transformations to the
numerical solution of laminar flow past a flat plate; Davis [2]
applied similar techniques to laminar flow past a parabola.
We will examine the utility of mapping methods for six
model problems, two of which are critical components of the
boundary-layer transition study. In Sec. 2 we study the solution
of the one-dimensional diffusion equation in a semi-infinite
region. In Sec. 5, the eigenvalues of the gquantum-mechanical
harmonic oscillator are found using mappings. In Sec. 4, the
eigenvalues of the Orr-Sommerfeld equation for the Blasius boundary
layer are calculated, while in Sec. 5 mapping techniques are
applied to the calculation of Falkner-Skan boundary-layer profiles.
The examples of Sects. 6 and 7 illustrate the limitations of map- %b

ping techniques. Finally, we summarize some heuristic rules

for the applicability of mappings.

2. One-Dimensional Diffusion Equation in a Semi-Infinite Domain

Consider the mixed initial-boundary value problem




u_ = u__ (2.1a)

, £ Tax
1 ~ u(x,t) =0 t<o0 (2.1b)
u(0,t) = sint t > 0 (2.1c)

u(x,t) bounded as x +» « ., (2.14)

.One particular physical realization of these equations is
the Rayleigh shear flow in the neighborhood of an oscillating

‘ flat plate [3]. As t =+ = , the exact solution to (2.1) is

asymptotically

u(x,t) -~ e-x//igin(t-x/JZ) (t + =) (2.2)

e i—..

| which is just a damped wave propagating with speed Ve »
The only unusual feature of finite difference solution of (2.1)
is the treatment of the unbounded domain 0 < x < =».. The unbounded

- domain leads to no difficulty if we use the one-sided approximation

g Y du(x,t) _ u(x,t)=-2u(x-h,t)+u(x-2h,t) (2.3)
' ot hf 3 ’

which is formally first-order accurate in h as h =+ 0+ .
Unfortunately, explicit time-step methods for solution of (2.3)
are unstable when At = 0(h2) . For example, Euler time stepping
requires that At/h2 + 0 as h + 0+ for stability.

On the other hand, centered space differencing methods

SRR S SRR SRS
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[which do yield conditional stability restrictions of the usual
kind At = O(hz)] lead to an unclosed set of equations. For

example, the second-order semi-discrete scheme

du(x,t) _ u(x+h,t)-2u(x,t)+u(x-h,t) (2.4)
ot §i 2 2
h

involves u(x+h,t) for every x , so that a finite number of
equations in the same number of unknowns is never obtained in
a finite x-interval.

The most obvious way to avoid the latter prdblem is to

impose a boundary condition at an artificial boundary x =1L ,

like

u(L,t) =0 . (2.5)

If L is fixed, the solution to (2.4-5) does not converge as
h + 0+ to the solution to (2.1). However in the double limit
L >+, h=+ 0+, convergence is achieved.

Another way to handle this problem is to use a non-uniform
grid. Such a grid is obtained by first mapping the semi-infinite
region 0 < x < = onto the finite region 0 < 2 < 1 and then

using the uniform grid

zy = /3 I I (2.6)

The boundary condition (2.1d) becomes simply




SR SS——

uJ finite.

We consider two mappings: an exponential ﬁap
3 = 1 = e-x/L (2.7)

and an algebraic map

N
1

X/(X+L) (2.8) % :

where L 1is a constant scale factor. In Fig. 2 we plot z
ve.sus x for the exponential map (2.7) with Vérious values of
L . In Fig. 3 we give similar plots for the algebraic map (2.8).
The points on the curves in Figs. 2 and 3 indicate the values
of x with zj = .04 (J = 25). For both maps, the eguivalent |
mesh in x is nonunifqrm with the most rapid variation
occuring with x >> L .

The exponential map (2.7) gives slightly better resolution
near x = 0 than the algebraic map (2.8) while the algebraic map
gives much better resolution than the exponential map as x =+ += |

*
In fact,

SV asei

X -x/L
x+L <4 b

for all x > 0 . Thus, if a uniform grid is used in the mapped

variables and L 1is fixed, the grid point 2z = Az 1lies at a
slightly smaller value of x with the exponential map than ;
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with the algebraic map. Conversely, the grid point 2z =1 - Az
lies at much larger x with the algebraic map (x ~ L/Az)
than with the exponential map (x ~ L n 1/Az) .

The maps (2.7) and (2.8) are especially convenient because
they yield simple expressions for derivatives. With the ex-

ponential map (2.7), derivatiwves with respect to x become

g:(x,t) 3 lzz g:(z,t) : (2.9a)
2 -

dulx.e) . 1 . 3 -y du(z,t)

_8:2____. - (1-2) 3z (1-2) e s (2.9b)

With the algebraic map (8), derivatives with respect to x

become
2
du(x,t) _ (1-2) du(z,t)
X BT 92 (2.10a)
2%ulx,t) _ 1 2 3 2 3u(z,t)
._7__’_ = ._2. (l-z) _a; (1-2) a_z._;._ (2.10b)
X L

With these transformations and centered space differencing of

all 2z derivatives, a closed set of equations is obtained for the

numerical solution of problem (2.1).

Let us now compare some numerical results for the solution
of (2.1) using the three methods discussed above: restriction
to x < L , exponential mapping (2.7), and algebraic mapping (2.8).

In general there are two kinds of numerical error: truncation




error and mapping error. In the case of the solution using the
restricted x-interval 0 < x < L , the truncation error is of
order h2 and the mapping error due to neglect of the interval
L < x < = and imposition of u(L,t) = 0 is of order exp (-L/V2)
[see (2.2)]. It turns out that, in order to obtain an absolute
error of 10-3 in the asymptotic solution (2.2) for t + » at
x = 1 , numerical solutions using the restricted domain method
require L > 10 and h < 1/5 , or a total of at least 50 grid
points (see Table 1). |

The algebraic map allows accurate results to- be obtained much
more efficiently. For example, to achieve an error of less than
1003 as t+o at x =1 requires less than 15 grid points using
the algebraic map (2.8) with L =.1 (see Table 1).

The results given in Table 1 show that the algebraic map gives
a much better representation of the solution for large x than the
results obtained by restricting the domain or the exponential map.
The reason for this behavior is simpl& that the amplitude of the
solution (2.1) is

fl(z) = e-LZ/[/I(l-Z)]

in terms of the algebraic map (2.8) while it is

/Y2

£,(z) = (1-2)"
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in térms of the exponential map (2.7). The function fl(z) and all
its derivatives vanish at z =1 . On the other hand, fz'(l) = o
(for L = 1) wh;ch induces a relatively large error when the exponen-
tial map is used. Observe from Table 1 that the errors obtained
using the exponential map do not decrease as h2 as h »+ 0+ when
L<2/2. When L = 2V/2 , £,(2) and all its derivatives are finite
at z =1 ; the error is less than 10°% as t +® at x =1 with

only about 35 points. In general, if the exact solution or one of

its z-derivatives is sinqular at z =1 (or x = =), large

numerical errors result.

3. Eigenvalues of the quantum-mechanical harmonic oscillator

The eigenvalues A of the Hermite equation

u" - 1x%y = -Au, u bounded as |x| > = (3.1)
4

are A =n + % (n=0,1,2,...). The Forresponding eigenfunctions
are the Hermite functions exp(-%xz)nen(x) , Wwhere Heo(x) =1,
Hel(x) =x , Hez(x) = x2-1 + and so on. If n is even the
eigenfunctions are even functions of x ; if n is odd, the
eigenfunctions are odd functions. We shall only study the even
eigenvalues and eigenfunctions.

The numerical solution of (3.1l) requires a method for handling
the boundary conditions at + » , Here we compare two methods
applied to the determination of the even modes. In the first
2

method, we assume that the function u is a function of x

alone and require

u(L) =0 (3.2a)
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for some large L . In the second method, we make the algebraic map

z=2—i_f-l (3.2b)

and seek the solution as a bounded function of z for -1 < z < 1.
For both methods of handling the boundary conditions at

» , we use Chebyshev series [4] to represent the eigenfunction

u(x) . In the first method, u(x) is represented as

N

u(x) = } aT, (x/L) , (3.3)
n=0

and the boundary condition (3.2a) is applied; in the second

method, u(x) is represented in terms of the mapped variable
(3.2b) as

N

u(x) = } arT (z) . (3.4) 1
n=0

Here Tn(y) is the Chebyshev polynomial of degree n defined

by

Tn(cos 6) = cos nb

The details of the application of Chebyshev series to the
numerical solution of ordinary and partial differential equations

are given in [4-5].
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In Tables 2-3, we present numerical results obtained by the

methods described above for the even modes having exact eigenvalues

<% ’ % ,'% , respectively. It should be apparent that the algebraic

é'é m;pping achieves high accuracy much more efficiently than does
simple truncation of the infinite interval. Notice ;that for a
given number of Chebyshev polynomials N there is an optimal
choice of scale L' that gives the most accurate result. Also
observe that for fixed L there is rapid (faster than algebraic)

convergence of the eigenvalues as N + « in both methods. This

S

is a general property of Chebyshev expansions. However, when
truncation to |x| < L is used the eigenvalues éonverge to the

] wrong answer unless the simultaneous limit L -+ » is also taken.

| In Fig. 4, we plot the éigenfunction corresponding to the

eigenvalue % obtained using the algebraic ﬁapping (3.3) for

L nd b e p

? i various numbers of Chebyshev polynomials N . The eigenfunctions
are all normalized by u(0) = -1.. Here the exact eigenfunction {
of (3.1) with E = % is -(l-xz)exp(-%xz) . Notice the very rapid

convergence to the exact eigenfunction as N increases. 3

4. Orr-Sommerfeld Equation for Blasius Flow

E 1 The Orr-Sommerfeld equation governs two-dimensional linear
disturbances to incompressible parallel shear flows. We assume

E- - that the (dimensionless) undisturbed flow velocity is U(z)x

where X is a unit vector in the x-direction and that the

z-component of the perturbation velocity is proportional to the

' real part of

10
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where o , the longitudinal wavenumber, is assumed reail +
and c¢ (usually complex) is the phase speed of the disturbance
propagating in x . If 1Im(c) > 0 , the disturbance grows
in time and the flow is unstable. It may be shown that the
linearized, incompressible, Navier-Stokes equations can be
reduced to the Orr-Sommerfeld equation

2

2 2
(% - az) w = iaR[(U(z)-c)(—d—z - az)w - U (2)w] (4.1)
dz dz

where R 1is the Reynolds number. On rigid no-slip walls, the

perturbation velocity must satisfy

w=w'=0. (4.2) ]

The problem (4.1) with the homogeneous boundary conditions (4.2)
is an eigenvalue problem for the phase speed ¢ , assuming o
is given.

The laminar flow over a flat plate 2z =0 , as in Fig. 1,

satisfies the conditions of the preceding paragraph except for

a slow variation in x which we neglect; U(z) is the Blasius 5
velocity profile which is determined by equations summarized in
Sec. 5. Linearized disturbances to the Blasius flow are governed

by (4.1) with the boundary conditions (4.2). As 2z + » , the
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disturbance should remain bounded; it may be shown that this

condition becomes

w(z) ~ e %2 (z + =) (4.3)

if R is large and ¢ 1is not close to 1 .

The prcblem is to solve numerically the eigenvalue problem
(4.1) - (4.3) in the region 0 < z < @ . We will compare several
methods for handling the boundary condition at « ., First,
the region may be truncated to the region 0 < z < L with the
artificial boundary conditions

w(L) =w'(L) =0 (4.4)

imposed on the finite 1lid z = L . Second, the asymptotic

behavior (4.3) may be used to infer the improved boundary condition

w'(L) + aw(L) = 0 (4.5)

on z =1L . The other methods we will compare use the exponential
and algebraic mappings (2.7-8) of the semi-infinite region
0 < z< o into a finite domain.

The exponential map

7 -z/L

l - 2e

(4.6)
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transforms the region 0 < z < *® into -1 <2Z <1 . Two

types of boundary conditions will be applied at 2 =1 (2 = ®):

w(Z) = 0(1) (2 » 1-) (4.7)
and
w = 21". = 0 : (4.8)
s = Bl

The algebraic map

z = 2555 -1 (4.9)

also transforms 0 < z < = into =1 <2< ) Three kinds of

boundary conditions will be applied at Z =1 :

w(z) = 0(1) (z + 1-), (4.10)

w =0, (4.11)
|21
and
W = v =0 . (4.12)
z=1 z=1

We have computed the eigenvalues of the Orr-Sommerfeld
equation for these various cases by expansion of w in series
of Chebyshev polynomials [4], the eigenvalues being found by W
matrix eigenvalue methods [6]. Comparisons between the methods
are given for the case R = 580, a = 0.179, a case previously

studied in some detail [7,8] . Results are given in Table 4 2aa

13




only for the single unstable eigenvalue (Im ¢ > 0) for

this choice of R, a . Here N is the number of Chebyshev

polynomials used to represent the modes. High resolution

numerical calculations yield the value

! c = 0.36412286 + i 0.00795972 (4.13) 1

‘ to eight decimal places. 1In all cases, w(0) = w'(0) = 0 at ?
‘ the rigid wall z =2 =0 . .
Comparison of cases 1-4 with the 'exact' solution (4.13)
shows that the error in ¢ incurred by truncation to 2z < L
% is of order e-ZaL ; also, for fixed L , the convergence

with increasing N is very rapid, consistent with the expected’

infinite order rate of convergence of Chebyshev series [4]. Cases
! 5,6 show that the 'improved' boundary condition (4.5) does not
help, at least for the values of N used in the present cal- 1
culations. In fact, use of (4.5) does improve the results if N 4
is large. We do not enter into these comparisons further because
; f they are not central to the present paper.
The results of cases 7-10 for the exponential map are very

disappointing. With the upper boundary condition (4.7) the |

f ' convergence rate is roughly like 1/N ; the boundary conditions

(4.8) do not help. This behavior is explained as follows. The i
asymptotic behavior (4.3) implies that, in the mapped coordinate 32?
(4.6), i
: v - (1-2)%F (z + 1-) (4.14) -

14
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Since aL = 0.179 for cases 7-10, it follows that w has

@ cusp singularity at 2 = 1. This singularity in the
derivative of w at Z =1 slows the convergence of the
Chebyshev series representation of w . The boundary conditions
(4.8) are inconsistent with the asymptotic behavior (4.3) since
lim w'(2) = ® ; nevertheless.convergence to the correct eigen-
sziae seems to be obtained, but thé.!%consistency destroys the
rapid convergence properties of Chebyshev series.

On the other hand, the algebraic map (4.9) works remarkably
well. Comparison of cases 11-16 with the 'exact' result (4.13)
shows that extremely rapid convergence is achieved at low values

of N . The reason is that in the algebraically mapped co-

ordinate (4.3) becomes

o0l (1+2) /(1-2)

W ~ (Z-’l-)

Thus, w and all its derivatives with respect to 2 approach
0 as Z + 1- . In contrast to the exponential map, the

algebraic map gives nicely behaved solutions as 2 -+ 1l- .

5. Application to the Falkner-Skan equation

Consider the semi-infinite flat plate shown in Fig. 1
in which the uniform inflow at x = 0 is tilted at an angle
-%Bﬂ with respect to the plate. It can be shown that the x

component of the velocity at 2z = » is

U(x) = Uy(x/2)™ (5.1)

15



Here Uo is the free stream velocity at x = 0 , £ is a length

scale and

= -

El m = 8/(2-8) (5.2)

2

| If B >0 the flow is accelerated along the plate; this

o R RS

case can also be interpreted as the flow over a wedge with an
included angle of Br . If B< 0 the flow is decelerated and
the flow is just the same as occurs on the underside of the
plate when B8 > 0 . Finally if B = 0 the flow is parallel
to the plate and neither accelerates nor decelerétes.

The requirement that the velocity at the surface of
the plaﬁe be zero leads to the formation of a boundary layer in
the immediate vicinity of the plate. This boundary layer flow

problem is solved by introducing the similarity variable

e — o S ———.

n = z[%(m-*l)u(x)/vxll/2 (5.3)

i 5 and a stream function ¢ (x,z) related to the x and 2z com-

! ponents of the velocity, u and v by

ST

LSl R {5.5)

S mas feo o S

If we set

S T e e SR L

16

o SR REPPGIT B P 4T

Ty pra sl P TR TR Gy ¢ m




R

|
{
|
(
|
i
i
1
3
2

£

v = LD vxo 1 2em) (5.6)

where V is the kinematic viscosity, the laminar boundary

layer equations reduce to the Falkner-Skan equation

£" 4+ ££" 4+ B[1-(£')%] =0 . (5.7)

Here primes indicate differentiation with respect to N .
The boundary conditions for this equation are as follows:

(i) The requirement of zero velocity on the plate

gives:

£(0) = £'(0) =0 . (5.8)

(ii) The requirement that the flow velocity approach the

free stream value as z + « implies
£f'(n) » 1 (n++=) . (5.9)
Properties of the solutions to this boundary value problem have

been extensively investigated [9].

We solved (5.7) - (5.9) numerically using a fourth-order

Runge-Kutta shooting method together with the mappings introduced

earlier. Some results of our computations are given in Table 5.
In this table, we give the errors in the approximate solution
for £f'(n) at n=1 for the restricted domain, exponential

mapping and algebraic mapping for a variety of choices of scale

L for fixed total number of grid points. It is apparent from these




e —

results that the algebraic mapping allows substantial economies in
the numerical solution of the Falkner-Skan equation. As in Sec. 4,
the efficiency of the mapping methods is most important in the
context of multidimensional numerical hydrodynamics, where

economy in resolution is vital.

6. Wave Equation

In this section we study the application of mapping to

the problem

u =u (0 < x <>, t>0)

u(o,t) = £(t) (t > 0) (6.1)

u(x,0) = ut(x,O) =0 (0 < x < »)

The exact solution to this problem is

£ (t-x) X < t
u(x,t) = (6.2)
0 x>t

which represents an outgoing wave at x = + »
If the semi-infinite interval 0 < x < » is replaced
by the finite interval 0 < x < L , boundary conditions must
be applied at x = L . If the boundary condition that is applied

is simply

u(L,t) =0

waves reflect from the boundary; the exact soltuion to (6.1)

craam o
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on the interval 0 < x < L with u(L,t) =0 is

u(x,t) = J [E(t-x-ZnL)-%(t+x-2(n+1)L)] (6.3)
n=0

where £(s) = £(s) if s >0 and £(s) =0 if s <0 . The

R Bt e i s O st

‘ solution (6.3) consists of the original outgoing wave (6.2) to-

‘ gether with reflected waves that begin to appear at t = nL,
n=1,2,... , If x is near 0 the solution (6.3) is a good
approximation to the exact solution (6.2) only for t < 2L when
the first reflected wave arrives at x =0 .

There are other boundary conditions that can be applied

|
! at x =L that do not yield reflected waves. If we set

u, +u, =0 (6.4)
at x =1L , the exact solution (6.2) is recovered. However,
& J we do not enter into a discussion of radiation boundary con-
;‘ ditions like (6.4) here; a full discussion of them will be given
} ! elsewhere.
t . The mappings (2.7), (2.8) can also be applied to the wave prob-

lem (6.1). For example with the algebraic map (2.8) (6.1) becomes

2

T R T W,

A 2
9%u _ (1-2)° 3 at s N
a——z = —L2 E T (1-2) T (0 <z<1, t>0) (6.5)

e B e S R SRS
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To analyze these results, we note that there are basically
two kinds of errors in the numerical solution: first, there are
local truncation errors in the representation of the wave prop-
agating through x ; and, second, there are the reflected waves
from the artificial boundary at z =1 . 1In practice, the first
kind of error is kept to within a few per¢tent with a second
order difference scheme so long as the grid resolution Ax

satisfies

(6.6)

2>

Ax <

where A is the wavelength and M is a number of order 10;
roughly speaking, at least 10 grid points per wavelength are
required for an accurate calculation.

The error due to the reflected waves is more serious;
when the first reflected wave arrives the solution is completely
wrong!' It turns out in practice that waves are reflected
appreciably either from the boundary at x = L if there is

no map or with a map, from the points x at which

Ax 2 %—A (6.7)

When the local grid spacing gets larger than roughly %X

as it must for 2z close to 1 , waves can no longer be re-

solved on the mapped grid. Since

o

T
oo ey g ¥
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e d ATt s Tl athe M O
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where a = 1 for the exponential map (2.7) and a = 2 for

the algebraic map (2.8) and since the grid spacing in 2z is

Az = 1/N , it follows that Ax = %-A when
1/a
1-z= (&)

Thus, appreciable reflection of waves occurs near

X S\J%NAL (6.8)

with the algebraic map (assuming 2L << NA) and near
x =L tn 5% (6.9)

with the exponential map. These results are consistent with the
numerical results plotted in Figs. 5-7.

Now we pose the following question. Suppose that N ,
the number of grid points, is fixed and that we wish to calculate
k wavelengths of the solution (6.2) accurately for as long a
time as possible. Since the scale of the maps is a free para-
meter, we can choose L to maximize the time interval of accuracy.
The question is: for how long do the various mappings maintain
an accurate solution? We analyze three cases:
(i) 2z = x/L . 1In this case, the calculation is accurate
until roughly t = 2L when the first reflected wave arrives

(assuming L >> kA). Since we must choose % = AX < A/M

(where M = 10) it follows that
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accuracy M

(ii) 2z = x/(x+L) . In this case (6.8) shows that the first
reflected wave arrives at x =0 at t = 'JZNAL . However,
small local truncation error for the first k wavelengths
about x = 0 requires that, for z near 0, Ax < A/M .
Thus, we must also require L g NA/M . Thus, the optimal

time of accuracy is roughly

taccuracy =J e

(iii) z =1 - e-x/L . Eg. (6.9) implies that the first reflected

waves reach x =0 at t = 2L &n(NA/2L). As in (i) and (ii) above,
L < NA/M so that

t = 2 NA 2n(M/2)

accuracy M 3
These results show that, if high accuracy is desired so M >> 1 ,
then the algebraic map (ii) gives the longest time of accuracy
followed by the exponential map (iii) and the restricted domain
(i). However, for the cases plotted in Figs. 5 - 7 the exponential

map gives the largest value of taccuracy .
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7. Burger's equation

r'; In this section we consider the utility of mappings for

the problem
3_“.4.“3_“:\)32“ (0 < x <o, t>0) (7.1)
t ax ;;7 - d
% u(x,0) = £(x) (7.2)
i
| u(0,t) = g(t) . (7.3)

Because of the nonlinearity of this problem, there are choices
of £f(x) and g(t) for which mapping is an effective technique

i to solve the problem numerically and other choices of £(x)

and g(t) for which mapping is not effective. 1In general,
if the solution approaches a constant as x + « uniformly in
t , mapping is effective; if the solution violates this condition

mapping is not effective. We will now give examples to illustrate

L4

these remarks.
& If f(x) = e "=} » g(t) = 0 , then the solution to
(7.1-3) satisifes

u(x,t) ~ - tanh 7"; (t + +) . (7.4)

, ] For this problem, mapping methods work well. 1In Fig. 8 we plot

the results of numerical integration of (7.1-3) using a second-

order centered difference scheme together with the algebraic
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map (2.8) with L =1 . The results plotted in Fig. 8 illustrate
the way in which the asymptotic solution (7.4) is achieved in
time.

On the other hand, if £(x) = 0, g(t) =1, then the
solution to (7.1-3) is given asymptotically by a propagating
wave

x-3t

u(x,t) ~ 1 - tanh = (t » =) . (7.5)

For any of the numerical methods with a fixed grid to
treat the boundary at x = ©» , there will be a time T beyond
which the spatial resolution is not sufficient to reproduce
u(x,t) accurately. If the domain is restricted to 0 < x <L ,
the asymptotic result (7.5) implies that the solution is accurate

only for

t < 2L .

If one of the mappings is used the solution becomes in-
accurate when the shock location at x = %t: is within a
region of poor x resolution. On the basis of the results
in Sec. 6 [see (6.7)] we expect that large errors will result

when the shock thickness 2v is larger than Ax . For

both the algebraic and exponential maps

24
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dx _ _ L
dz (1-2) %

where a =1 for the exponential map and a = 2 for the

algebraic map. Therefore if Az = 1/N , the effective

resolution AxX = 2V when
1/a
L
l-z"(fN—v) '

where we assume that L << 2Nv. Thus, the solution using

the algebraic map is expected to deteriorate at

alg ~ 2NV (7.6)

while the exponential map should give results that deteriorate

near

2NV

L
xexp x 2Nv (iﬁV) n =% (7.7)
Note that (7.6-7) shows the explicit dependence of xalg and
xexp on the small parameter L/2Nv ; observe that xexp << xalg .

These predictions are consistent with the results plotted in

Figs. 9-100
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8. Conclusion

We conclude from the examples given above that mappings
are an effective way to solve problems in infinite domains
provided that the solution is simple at infinity. If the
solution oscillates as x + = then <« must be an essential
singularity of the solution and mappings fail. Unfortunately
this implies that mappings are nearly useless for many important
physical problems.

When mapping is applicable, the proper choipe of mapping
should be based on the criterion that the solution to the
problem be smooth in the mapped coordinate. For many problems

this criterion favors algebraic mappings over exponential mappings.
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E; { Table 2. Convergence of approximations to the eigenvalue
g | A = 4.5 of the quantum-mechanical harmonic
oscillator using N+1 Chebyshev polynomials.

* Map 5 N A
e i 4.0 10 5.20628 14857
4.0 30 5.20628 12800
| TmIxZXE 8.0 10 4.57205 38006
| 8.0 20 4.50000 00394
8.0 30 4.50000 00395
16.0 20 4.56679 36320
F 16.0 30 4.50000 17110
32.0 30 5.47165 94003
:
: Algebraic 4.0 20 4.50029 00880
2 4.0 30 4.49999 99641
| 3. o g - 8.0 10 4.56858 45536
{ 8.0 20 4.50002 73879
' 8.0 30 4.49999 99985
! 16.0 20 4.50000 02905
16.0 30 4.50000 00000
% 32.0 10 4.49656 47888
32.0 20 4.49999 98895
: 32.0 30 4.50000 00000
g ¢ 64.0 20 4.49999 99898
1 128.0 20 4.49999 96979
ki 256.0 20 4.62092 09932 ;
1 3
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Table 3. Values of the eigenvalues
. mechanical harmonic oscillator obtained with

the algebraic map and N = 20 (21 Chebyshev
polynomials) .

A of the quantum-

A

L 0.5 2.5 4.5

1 .5000 0171 2.5016 8050 4.4889 8957

2 .5000 0004 2.5001 2172 4.4968 0153

4 .5000 0000 2.5000 0347 4.5002 9009

8 .5000 0000 2.5000 0000 4.5000 2739
16 .5000 0000 2.5000 0000 4.5000 0029
32 : .5000 0000 2.5000 0000 4.4999 9989
64 .5000 0000 2.5000 0000 4.4999 9999
128 .5000 0000 2.5000 0000 4.4999 9970
256 .5000 0680 2.5040 4612 4.6209 2099
512 .5046 4052 2.7962 9628 6.3984 1320
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j : Table 5. Errors in solution of the Falkner-~Skan equation
] using 11 grid points, i
Method L Erxror in £'(1l)
B=0 £' (1) = 0.4606 3259
% Restricted Domain 1.0 5.4 x 10t
2.5 5.2 x 1072
5.0 1.3 x 1074
7.5 L]
10. “
Exponential Map 1.0 -1.1 x 107! 1
. 2.8 -1.2 x 107!
% 5.0 -1.0 x 10°!
; 7.5 -8.2 x 1072
’ 10. -6.9 x 10”2 e
Algebraic Map 1.0 - 5.8 x 1078
2.5 -4.7 x 10”7
5.0 -2.8 x 10~°
7.8 -4.0 x 10°°
3 10. -6.7 x 10~
!
| B = -.1 £'(1) = 0.3630 0791
Q Restricted Domain 5.0 4.2 x 107*
7.5 .
Exponential Map 5.0 -8.8 x 10~2 -
7.5 -7.3 x 1072
Algebraic Map 5.0 -4.6 x 1078
2 7.5 -6.4 % 10°°
| B = .1 £'(1) = 0.5274 2343 ;
' Restricted Domain 2.5 3.2 x 102
5.0 1.4 x 10°¢
1 1eS *
: Exponential Map 2.5 =1l.3 x
5.0 -1-1 x
7.5 -8.7 x
| Algebraic Map 2.5 -5.5 x
I 5.0 -1.1 x
i 7.5 -1.6 x
|
i

* No acceptable (monotonic) solution.
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