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SUMMARY

The numerical solut ion of continuum problems in unbounded

• regions involves two essential approximations: first, the

continuum must be approximated by a discrete unit; and second,

the unbounded domain must be approximated by a finite domain.

The first problem is the one usually studied in numerical analy-

sis. The second has received much less attention and is the

subject of the present paper.

The present work was motivated by the problem of the numer-

ical simulation of boundary layer flows in transit.ion and turbu-

lent regimes. The prototype of such flows is the flow over a

semi-infinite flat plate undergoing transition to turbulence.

The geometry of this three—dimensional flow is infinite in three

directions. The formulation of satisfactory boundary conditions

is simplest in the cross—stream directions. On both theoretical

and experimental grounds, periodic boundary conditions can be

justified in this direction. On the other hand, treatment of

the downstream direction is not so simple. The mapping techniques

of this paper cannot be used effectively for this aspect of the

transition problem. However, the techniques developed here are

• appropriate for the treatment of the boundary conditions in the

direction normal to the boundary layer.

The present study is restricted to one special technique

for the treatment of the point at infinity: coordinate trans—

formation of the infinite domain onto a finite region. The

*
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utility of mapping methods are examined for six model problems,

two of which are critical components of the boundary—layer

transition study. These model problems are (1) the solution

• of the one—dimensional diffusion equation in a semi-infinite

• region; (2) the eigenvalues of the quantum-mechanical oscillator;

(3) the eigenvalues of the Orr-Sommerfeld equations for the

Blasius boundary layer; (4) the calculation of the Falkner—Skan

• boundary-layer profiles; (5) solutions of the wave equation; and

(6) shock-wave solutions to Burger’s equation. The utility of

these mappings is determined by comparing the numerical solu-

tions of these six problems, using different mappings, with the

exact solutions.

It is concluded that mappings are an effective way to solve

problems in infinite domains provided that the solution is simple

• at infinity. If the solution oscillates at infinity, then infinity

must be an essential singularity of the solution and mappings fail.

When mapping is applicable, the proper choice of mapping should

be based on the criterion that the solution to the problem be

smooth in the mapped coordinate.

Mapping techniques, and in particular algebraic mappings,

are successful in the simulation of boundary layer flows because

the boundary condition in the direction normal to the boundary

layer is that the flow is a simple laminar free stream. The

algebraic mapping allows substantial economy in the number of

mesh points used in obtaining the numerical solution. The effi-

ciency of this mapping is most important in the context of multi-

dimensional numerical hydrodynamics, where economy in resolution

is vital.

iv
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1. Introduction

The numerical solution of continuum problems in unbounded

regions involves two essential approximations: first, the con-

tinuum must be approximated by a discrete set; and, second, the

unbounded domain must be approximated by a finite dcsnain. The

first problem is the one usually studied in numerical analysis.

The second has received much less attention and is th. subject

of the present paper. We restrict the present study to on.

special technique for the treatment of the point of infinity:

coordinate transformation of the infinite domain into a finits

region. One of the principle conclusions of the paper is that,

while transformations are not universally valid , there is a class

of problems for which it is a very useful technique.

The present work was motivated by the problem of the

numerical simulation of boundary layer flows in transition and

• turbulent regimes. The prototype of such flows is the flow

over a semi—infinite flat plate undergoing transition to tur—

bulence. The geometry of this three-dimensional flow (see

Fig. 1) is infinite in three directions. The formulation of

satisfactory boundary conditions is simplest in the y direction.

On both theoretical and experimental grounds , periodic boundary

conditions can be justified in y . On the other hand , treatment

of the downstream x direction is not so simple. The mapping •

techniques of the present paper cannot be used effectively for

this aspect of the transition problem. Techniques for the imposition

:~~
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of inflow and outflow boundary conditions (which are appropriate

in the x direction) will be discussed elsewhere. However,

the techniques developed here are appropriate for the treatment

of the z direction (normal to the boundary layer) . We shall

find that mapping techniques are successful in z because the

boundary condition at z = is that the flow is a

simple laminar free stream (in the present case, uniform flow).

The idea of mapping an infinite geometry into a finite

one is not original. For example, Van de Vooren and Dijkstra

(1] successfully applied coordinate transformatiáns to the

numerical solution of laminar flow past a flat plate; Davis [21

applied similar techniques to laminar flow past a parabola.

We will examine the utility of mapping methods for six

model problems, two of which are critical components of the

boundary—layer transition study. In Sec. 2 we study the solution

of the one-dimensional diffusion equation in a semi-infinite
• region. In Sec. 3, the eigenvalues of the quantum—mechanical

• harmonic oscillator are found using mappings. In Sec. 4 , the

• eigenvalues of the Orr-Sommerfeld equation for the Blasius boundary

layer are calculated, while in Sec. 5 mapping techniques are

applied to the calculation of Falkner-Skan boundary-layer profiles.

The examples of Sects. 6 and 7 illustrate the limitations of map— 
•

ping techniques. Finally, we summarize some heuristic rules

for the applicability of mappings.

2. One-Dimensional Diffusion Equation in a Semi-Infinite Domain

Consider the mixed initial-boundary value problem

2
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= u~~ (2.la)

u(x , t) = 0 t < 0 (2.lb)

u(0,t) = sin t t > 0 ( 2. l c)

F u(x,t) bounded as x + ~ . (2.ld)

One particular physical realization of these equations is

the Rayleigh shear flow in the neighborhood of an oscillating

flat plate [3]. As t -
~~ , the exact solution to (2.1) is

• asymptotically

u ( x ,t) - e sin ( t—x/ v’2) Ct -
~~ ~°) (2 .2 )

which is just a damped wave propagating with speed ~‘T
The only unusual feature of finite difference solution of (2.1)

is the treatment of the unbounded domain 0 < x < ~~~~ .. The unbounded

domain leads to no difficulty if we use the one-sided approximation

4

~ u (x , t) u ( x , t )— 2 u (x— h , t )+u(x- 2h , t)
• 3t — 2 , (2 .3)

h

which is formally first—order accurate in h as h + 0+ .

Unfortunately, explicit time-step methods for solution of (2.3)

are unstable when At = 0 (h
2 ) . For example, Euler time stepping •

requires that At/h2 + 0 as h 0+ for stability. :
On the other hand , centered space differencing methods

I •

F •

3
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• [which do y ield conditional stability restrictions of the usual

kind At = 0(h2)] lead to an unclosed set of equations . For

example, the second—order semi—discrete scheme

~u (x , t) u ( x +h , t ) -2u (x , t )+u (x-h ,t) (2 4)
3t — 

h 2

involves u (x+h , t) for every x , so that a f inite number of

equations in the same number of unknowns is never obtained in

a finite x—interval.

• The most obvious way to avoid the latter problem is to

impose a boundary condition at an ar t i f ic ial  boundary x L

like

u ( L ,t ) = 0 . ( 2 . 5 )

If L is fixed , the solution to ( 2 .4 - 5 )  does not converge as

h + 0+ to the solution to (2 .1) . However in the double l imi t

L ÷ + ~ , h -
~~ 0+ , - 

convergence is achieved.

Another way to handle this problem is to use a non-uniform H

• grid . Such a grid is obtained by f i rs t  mapp ing the semi-infinite

region 0 < x < onto the f in i te  reg ion 0 < z < 1 and then

• using the uniform grid

• = j /J 0 < j  < 3 . (~~.6)

• •

F The boundary condition ( 2 . l d )  becomes simply

4~~~

L~~
_I IIT — —~~ ~~~~~~~~~~~ •_—~ -

• - — • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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u~. f in i te .

• We consider two mappings : an exponential map

z = 1 — e~~~
’L (2 .7)

• and an algebraic map

z = x/ (x -fL) ( 2 . 8 )

where L is a constant scale factor. In Fig. 2 •we plot z

ve ..sus x for the exponential map ( 2 . 7)  with various values of - j

t . In Fig . 3 we give similar plots for the algebraic map ( 2 . 8) .

The points on the curves in Figs. 2 and 3 indicate the values F
of x with z~ = . 04j  (3 = 25) . For both maps , the equ ivalent

mesh in x is nonuniform with the most rapid variation

occuring with x >> L

The exponential map ( 2 . 7)  g ives slightly better resolution

near x = 0 than the algebraic map ( 2 . 8 )  while the algebraic map

gives much better resolution than the exponential map as x -.- ±~
p

In fact ,

• x+L

for all x > 0 . Thus , if a uniform grid is used in the mapped

variables and L is fixed , the grid point z = A z lies at a

slightly smaller value of x wi th the exponential map than

5
Lç
~~~~~~~~~ k. 
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with the algebraic map. Conversely, the grid point z = 1 - AZ

lies at much larger x with the algebraic map (x - L/Az)
• than with the exponential map Cx - L tn 1/Az)

The maps (2.7) and (2.8) are especially convenient because

they yield simple expressions for derivatives. With the ex-

ponential map (2.7), derivatives with respect to x become

~u(x,t) — l—z ~u(z,t) (2 9— 
L ~~ 

-

a
2u(x,t) 

= -
~~~~ 

(l— z) ( l— z) au(z ,t) 
- 

• (2.9b )

With the algebraic map (8) , derivatives with respect to x

• become

au(x ,t) 
— 

(l— z) 2 3u(z ,t) (2 b a)3x — 

L

-
~~~~ 

( l— z)~ ~~ (l—z)
2 9u(z,t) (2.lOb)

With these transformations and centered space differencing of

all z derivatives, a closed set of equations is obtained for the

numerical solution of problem (2.1).

Let us now compare some numerical results for the solution

of (2.1) using the three methods discussed above: restriction

to x < L , exponential mapping (2.7) , and algebraic mapping (2.8).

In general there are two kinds of numerical error truncation

6
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error and mapping error . In the case of the solution using the

restricted x—interval 0 < x < L , the truncation error is of

order h2 and the mapping error due to neglect of the interval

L < x < and imposition of u (L ,t) = 0 is of order exp(-L//2~)

• [see (2.2)]. It turns out that, in order to obtain an absolute

• error of 10~~ in the asymptotic solution (2.2) for t + ~~ at

x = 1 , numerical solutions using the restricted domain method

require L > 10 and h ~ 1/5 , or a total of at least 50 grid

• points (see Table 1).

The algebraic map allows accurate results to- be obtained much

more efficiently. For example, to achieve an error of less than

l0~~ as t + at x = 1 requires less than 15 grid points using

the algebraic map (2.8) with L = •1 (see Table 1).

The results given in Table 1 show that the algebraic map gives

a much better representation of the solution for large x than the

• results obtained by restricting the domain or the exponential map.

The reason for this behavior is simply that the amplitude of the

solution (2.1) is

f , — 
—L z/ [v’7(l— z ) ]

-
‘ 1~~z)  — e

in terms of the algebraic map (2.8) while it is

f2(z) = (l~ z)~~
’
~~

j 
7
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in terms of the exponential map ( 2 . 7 ) .  The function f
1
(z) and all

its derivatives vanish at z = 1 . On the other hand, f2
’ (1) =

(for L = 1) which induces a relatively large error when the exponen—

• • tial map is used. Observe from Table 1 that the errors obtained

using the exponential map do !~~ decrease as h2 as h + 0+ when

L < 2/7 . When L = 2/~ , f 2 (z)  and all its derivatives are finite

at z = 1 ; the error is less than b0~~ as t ÷ ~ at x = 1 with

only about 35 points. In general, if the exact solution or one of

its z—derivatives is singular at z = 1 (or x = ~ ), large

numerical errors result.

3. Eigenvalues of the quantum—mechanical harmonic oscillator

The eigenvalues A of the Rermite equation

u” - ~~-x
2
u = -Au, u bounded as lx i + ~~ (3.1)

are A = n + (n=0, 1,2,...). The corresponding eigenfunctions

• - are the Hermite functions exp(_
~
x2)Hen(x) , where He0 (x) = 1 ,

He1(x) = x , He2 (x) = x2—l , and so on. If n is even the

• eigenfunctions are even functions of x ; if n is odd , the

eigenfunctions are odd functions. We shall only study the even

eigenvalues and eigenfunctions.

The numerical solution of (3.1) requires a method for handling

the boundary conditions at ± • Here we compare two methods

- applied to the determination of the even modes. In the first

method , we assume that the function u is a function of x2

• 
alone and require

• I u ( L )  = 0 (3 .2a )

L~:i_~4 
______________ • _______ _________
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for some large L • In the second method , we make the algebraic map

z = 2 2 2 — 1 (3.2b)
x + L

and seek the solution as a bounded function of z for -l < z < 1.

• For both methods of handling the boundary conditions at

• , we use Chebyshev series [4] to represent the eigenfunction

u(x) • In the first method, u(x) is represented as

N
u(x) = Z anT2n ( x/L) , (3.3)

n=0

and the boundary condition (3.2a) is applied ; in the second

method , u(x) is represented in terms of the mapped variable

(3.2b ) as

N
u(x) = 

~ 
anTn(z) • (3.4)

n=0

Here Tn (Y) is the Chebyshev polynomial of degree n defined

by

Tn (cos 0) = cos nO

The details of the application of Chebyshev series to the

• numerical solution of ordinary and partial differential equations

are given in [4—5].

,

~~~~~~~~~~
• - 
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-
• - In Tables 2—3, we present numerical results obtained by the

• methods described above for the even modes having exact eigenvalues

, .
~~
. , respectively. It should be apparent that the algebraic

• mapping achieves high accuracy much more efficiently than does

simple truncation of the infinite interval . Notice that for a

given number of Chebyshev polynomials N there is an optimal

choice of scale L that gives the most accurate result. Also

• 
observe that for fixed L there is rapid (faster than algebraic)

convergence of the eigenvalues as N + ~ in both methods . This

• is a general property of Chebyshev expansions. However, when

truncation to x l < L is used the eigenvalues converge to the

wrong answer unless the simultaneous limit L -
~
. 

~ is also taken.

In Fig. 4, we plot the eigenfunction corresponding to the

eigenvalue obtained using the algebraic mapping (3.3) for

• various numbers of Chebyshev polynomials N • The eigenfunctions

are all normalized by u(O) = -1. • Here the exact eigenfunction

of (3.1) with E — is — (l-x2)exp(—~-x
2) • Notice the very rapid

• convergence to the exact eigenfunction as N increases.

4. Orr-Sommerfeld Equation for Blasius Flow

The Orr-Sommerfeld equation governs two—dimensional linear

disturbances to incompressible parallel shear flows. We assume
I A

• 

-
~ that the (dimensionless) undisturbed flow velocity is U(z)x

where ‘c is a unit vector in the x-direction and that the

z—component of the perturbation velocity is proportional to the

real part of

10
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• w ( z ) e~~~~~~~~~
t)

where a , the longitudinal wavenumber , is assumed real

and c (usually complex) is the phase speed of the disturbance

propagating in x . If Im(c) > 0 , the disturbance grows

in time and the flow is unstable. It may be shown that the

linearized, incompressible, Navier—Stokes equations can be

reduced to the Orr-Sommerfeld equation

( d
2 

— 2)
2 

= iaR [ (U ( z )— c ) (_ ~~ — a2)w — U ” ( z ) w J  (4.1)

where R is the Reynolds number. On rigid no-slip walls, the

• perturbation velocity must -satisfy

w = w ’ = 0 . (4 .2 )

The problem (4.1) with the homogeneous boundary conditions (4.2)

is an eigenvalue problem for the phase speed c , assuming a

is given.

The laminar flow over a flat plate z = 0 , as in Fig. 1,

satisfies the conditions of the preceding paragraph except for

a slow variation in x which we neglect; 13(z) is the Blasius

• velocity profile which is determined by equations summarized in

Sec. 5. Linearized disturbances to the Blasius flow are governed

by (4.1) with the boundary conditions ( 4 . 2 ) .  As z -‘- , the

11
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ii
disturbance should remain bounded; it may be shown that this

- j condition becomes

w ( z )  — e~~~ (z + o~ ) (4.3)

if R is large and c is not close to 1.

The problem is to solve numerically the eigenvalue problem

(4.1) - (4.3) in the region 0 < z < • We will compare several

• methods for handling the boundary condition at ~ . First,

the region may be truncated to the region 0 < z <. L with the

artificial boundary conditions

w(L) = w ’ CL) = 0 (4.4)

imposed on the finite lid z = L • Second, the asymptotic

behavior (4.3) may be used to infer the improved boundary condition

w’ CL) + aw(L) = 0 (4.5)

on z — L • The other methods we will compare use the exponential

• and algebraic mappings (2.7-8) of the semi-infinite region

0 < z < into a finite domain.

• The exponential map

Z = 1 — 2e~~~
’h1 (4 .6 )

12
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transforms the region 0 < z < into -l < Z < 1 . Two

types of boundary conditions will be applied at Z = 1 (z —

w(Z) = 0( 1) (Z 1—) (4 .7 )

and
_ dw

- w = .

Z—l Z=l

The algebraic map

z• Z — 2 ~ -~~~ — 1  (4 .9)

also transforms 0 < z < ~ into -l < z < 1 • Three kinds of

boundary conditions will be applied at Z = 1 :

w(Z) = 0(1) (Z 1—), (4.10)

• = 0 , (4.11)

- • 
z=l

and
= = 0 (4.12)

Z=l Z=l

We have computed the eigenvalues of the Orr-Sommerfeld

equation for these various cases by expansion of w in series

of Chebyshev polynomials [4], the eigenvalues being found by

matrix eigenvalue methods (6]. Comparisons between the methods

are given for the case R = 580, a = 0.179, a case previously 
- I

I studied in some detail [7,8] . Results are given in Table 4

I - •

H.- 13
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only for the single unstable eigenvalue (Im c > 0 )  for

this choice of R , a • Here N is the number of Chebyshev

polynomials used to represent the modes. High resolution

numerical calculations yield the value

C = 0.36412286 + j 0.00795972 (4.13)

to eight decimal places. In all cases, w(0) = w’ (0) = 0 at

the rigid wall z Z = 0

Comparison of cases 1-4 with the ‘exact’ solution (4.13)

shows that the error in c incurred by truncation to z < L

is of order e 2
~~’ ; also, for fixed L , the convergence

with increasing N is very rapid, consistent with the expected

infinite order rate of convergence of Chebyshev series (4]. Cases

5,6 show that the ‘improved’ boundary condition (4.5) does not

help, at least for the values of N used in the present cal-

- 

- 
culations . In fact, use of (4.5) does improve the results if N

is large. We do not enter into these comparisons further because

they are not central to the present paper .

The results of cases 7-10 for the exponential map are very
- 

• disappointing. With the upper boundary condition (4.7)  the
- convergence rate is roughly like 1/N ; the boundary conditions

• (4.8) do not help. This behavior is explained as follows. The

asymptotic behavior (4.3 )  implies that , in the mapped coordinate

(4.6),

aLw . (l—Z) (Z + 1—) (4.14)

_ _ _ _ _ _ _ _ _ _ _ _  _ _ _  _ _ _ _ _ _ _ _  

— -  
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Since c&L = 0.179 for cases 7—10, it follow, that w has

a cusp singularity at Z = 1. This singularity in the

derivative of w at Z = 1 slows the convergence of the

Chebyshev series representation of w . The boundary conditions

(4.8) are inconsistent with the asymptotic behavior (4.3) since

lim w’ (Z) = ~ ; nevertheless convergence to the correct eigen—
Z+l—
value seems to be obtained, but th consistency destroys the

rapid convergence properties of Chebyshev series . -

• On the other hand, the algebraic map (4.9) works remarkably

well. Comparison of cases 11-16 with the ‘exact’ result (4.13)

shows that extremely rapid convergence is achieved at low values

of N . The reason is that in the algebraically mapped co-

ordinate (4.3) becomes

w — e L
~~~~~

’
~~~~ (Z + 1—)

Thus, w and all its derivatives with respect to Z approach

0 as Z 4 1- . In contrast to the exponential map, the

algebraic map gives nicely behaved solutions as Z + 1-

5. Application to the Falkner-Skan equation

Consider the semi-infinite flat plate shown in Fig. 1

-; in which the uniform inflow at x = 0 is tilted at an angle

with respect to the plate. It can be shown that the x

component of the velocity at z = is

rJ(x) — U0(X,L)
m (5.1)

I 15



Here U0 is the free stream velocity at x = 0 , £ is a length

scale and

m = ~/(2—8 ) . (5.2)

If ~ > 0 the flow is accelerated along the plate; this
- - case can also be interpreted as the flow over a wedge with an

included angle of ~ir . If B c 0 the flow is decelerated and

the flOw is just the same as occurs on the underside of the

plate when B > 0 . Finally if ~ = 0 the flow is parallel

to the plate and neither accelerates nor decelerates.

The requirement that the velocity at the surface of

the plate be zero leads to the formation of a boundary layer in

the immediate vicinity of the plate. This boundary layer flow

problem is solved by introducing the similarity variable

= z(~~(m+ l)u (x ) / vx ] 1”2 (5 .3)

and a stream function q,(x,z) related to the x and z corn—

ponents of the velocity, u and v by

u = 
‘

v = —

1.~

If we set

( • •i I 16
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* = [(~~1)VxU (x)]
1
~
’2f(~ ) , (5.6 )

where v is the kinematic viscosity, the laminar boundary

layer equations reduce to the Falkner-Skan equation

f ” t  + f f”  + B(l—(f’)2] = 0 . (5.7)

Here primes indicate differentiation with respect to ~
The boundary conditions for this equation are as follows:

Ci) The requirement of zero velocity on the plate

gives:

f(O) = f’(O) = 0 . (5.8)

(ii) The requirement that the flow velocity approach the

free stream value as z + ~~ implies

f ’ (~ ) -‘ 1 (~~ + +co ) (5 9)

Properties of the solutions to this boundary value problem -have

been extensively investigated [9].

We solved (5.7) - (5.9) numerically using a fourth—order

- •~ Runge-Kutta shooting method together with the mappings introduced

earlier. Some results of our computations are given in Table 5.

In this table, we give the errors in the approximate solution

for f’ Cri ) at r~ = 1 for the restricted domain, exponential

mapping and algebraic mapping for a variety of choices of scale

L for fixed total number Of grid points. It is apparent from these

I
17
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results that the algebraic mapping allows substantial economies in

the numerical solution of the Falkner-Skan equation. As in Sec. 4,
- • 

the efficiency of the mapping methods is most important in the

context of multidimensional numerical hydrodynamics, where

economy in resolution is vital.

6. Wave Equation

In this section we study the application of mapping to

the problem

utt = u ,~ 
( 0 < x < c o , t > 0 )

u(0,t) = f(t) Ct > 0) (6.1)

u(x,0) = ut(x,O) = 0 (0 < x < ~
) .

The exact solution to this problem is

~ f(t—x) x < t
u(x,t) = (6.2)

x~~~t

which represents an outgoing wave at x = + ~~~

If the semi-infinite interval 0 < x < ~ is replaced

by the finite interval 0 < x < L , boundary conditions must

be applied at x = L . If the boundary condition that is applied

is simply

u(L,t) — 0

waves reflect from the boundary; the exact soltuion to (6.1)

- - 
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i.

on the interval 0 < x < L with u (L ,t) = 0 is

u(x,t) = ~ ( f ( t — x — 2nL ) —fCt+x—2(n+l)L)] (6.3)

A 

n—0 

A

where f(s) = f(s) if s > 0 and f(s) = 0 if s < 0 . The

solution (6.3) consists of the original outgoing wave (6.2) to-

gether with reflected waves that begin to appear at t = nL,

n = 1,2,... If x is near 0 the solution (6.3) is a good

approximation to the exact solution (6.2) only for t < 2L when

the first reflected wave arrives at x = 0

There are other boundary conditions that can be applied

at x = L that do not yield reflected waves. If we set

Ut + U x = O  (6.4)

at x = L , the exact solution (6.2) is recovered. However,

we do not enter into a discussion of radiation boundary con-

ditions like (6.4) here; a full discussion of them will be given

elsewhere.

The mappings (2.7), (2.8) can also be applied to .the wave prob-

lem (6.1). For example with the algebraic map (2.8) (6.1) becomes

k 

• 32u 
= 

(l z)2 
~~ (l—z)

2 
~~ (0 < z < 1, t > 0) (6.5)

n
• 19
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To analyze these results, we note that there are basically

two kinds of errors in the numerical solution: first, there are

local truncation errors in the representation of the wave prop-

agating through x ; and, second, there are the reflected waves

from the artificial boundary at z = 1 . In practice, the first

kind of error is kept to within a few perCent with a second 
-

order difference scheme so long as the grid resolution Ax

satisfies

A x <~~ (6 .6 )

where A is the wavelength and M is a number of order 10;

roughly speaking, at least 10 grid points per wavelength are

required for an accurate calculation.

The error due to the reflected waves is more serious;

when the first reflected wave arrives the solution is completely

wrong! It turns out in practice that waves are reflected

appreciably either from the boundary at x = L if there is

no map or with a map, from the points x at which

Ax ~ ~~A (6.7)

When the local grid spacing gets larger than roughly ~- A

as it must for z close to 1 , waves can no longer be re- h.
- 

I :~ solved on the mapped grid . Since

dx L

:~ t 

(l_Z)a

20
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where a = 1 for the exponential map (2.7) and a = 2 for

the algebraic map (2.8) and since the grid spacing in z is

Az = 1/N , it follows that Ax = A when

1/a
- Z =

Thus, appreciable reflection of waves occurs near

x =4j~NAL (6.8)

with the algebraic map (assuming 2L << N A) and near

x = LLn~~~ (6.9)

with the exponential map. These results are consistent with the

numerical results plotted in Figs. 5—7.

Now we pose the following question. Suppose that N ,

the number of grid points, is fixed and that we wish to calculate
d

- • 
~. k wavelengths of the solution (6 .2 )  accurately for as long a

• time as possible. Since the scale of the maps is a free para—

meter , we• can choose L to maximize the time interval of accuracy .

The question is: for hOw long do the various mappings maintain

an accurate solution? We analyze three cases:

Ci ) z = x/L . In this case, the calculation is accurate

until roughly t = 2L when the first reflected wave arrives

(assuming L >> kA). Since we must choose = Ax ~ A/M

(where M ~ 10) it follows that

21
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e
accuracy M

(ii) z = x/(x+L) . In this case (6.8) shows that the first

reflected wave arrives at x = 0 at t = ~2NAL . However,

- • 

1 small local truncation error for the first k wavelengths

about x = 0 requires that, for z near 0 , Ax < A/M

Thus, we must also require L ~ NA/M . Thus, the optimal

time of accuracy is roughly

t =JINAaccuracy ~~M

(iii) z = 1 — 
~~~~~ • Eq. (6 .9 )  implies that the first reflected

waves reach x = 0 at t = 2L £n(NA/2L) . As in Ci) and (ii) above,

L < NA/M so that

• 
~

• 

taccuracy = NA £n (M/2)

These results show that , if high accuracy is desired so M >> 1 ,

then the algebraic map (ii) gives the longest time of accuracy

followed by the exponential map (iii) and the restricted domain

(i) . However , for the cases plotted in Figs . 5 - 7 the exponential

map gives the largest value of taccuracy

• 22
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• 7. Burger’s equation

In this section we consider the utility of mappings for

the problem

( 0< x < ~~ , t >  0) (7.1)

u(x,0) = f(x) (7.2)

u ( 0 ,t) = g(t )  . (7.3)

Because of the nonlinearity of this problem, there are choices

of f(x) and g(t) for which mapping is an effective technique

to solve the problem numerically and other choices of f Cx)

and g(t )  for which mapping is not effective. In general,

if the solution approaches a constant as x -. ~ uniformly in

t , mapping is effective; if the solution violates this condition

-• mapping is not effective. We will now give examples to illustrate

these remarks.

If f (x) = e~~ - 1 , g Ct) = 0 , then the solution to

(7 .1—3 ) satisifes

u(x,t) ‘s.’ — tanh Ct • +oo ) • (7•4)

For this problem , mapping methods work well. In Fig. 8 we plot

the results of numerical integration of (7.1—3) using a second—

ç order centered difference scheme together with the algebraic

23



map (2.8) with L = 1 . The results plotted in Fig. 8 illustrate

the way in which the asymptotic solution (7.4)  is achieved in

time.

On the other hand, if f Cx) = 0 , g (t) = 1 , then the

solution to (7.1—3) is given asymptotically by a propagating

wave

H x4t
u(x,t) 1 — tanh 2v (t + co) . (7.5)

For any of the numerical methods with a fixed grid to

treat the boundary at x = ~ , there will be a time T beyond

which the spatial resolution is not sufficient to reproduce

u Cx ,t) accurately. If the domain is restricted to 0 < x < L

the asymptotic result (7.5) implies that the solution is accurate

only for

t < 2 L .
.4

• If one of the mappings is used the solution becomes in-

accurate when the shock location at x = t is within a

region of poor x resolution. On the basis of the results

in Sec. 6 [see (6.7)] we expect that large errors will result

when the shock thickness 2~ is larger than Ax . For

both the algebraic and exponential maps

•‘ 4 -  - •
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dx L
— 

(l_z)a

where a 1 for the exponential map and a = 2 for the

algebraic map. Therefore if Az — 1/N , the effective

resolution Ax = 2’v when

L 1/a
l z

~~ ~~~~

where we assume that L << 2Nv. Thus, the solution using

the algebraic map is expected to deteriorate at

xalg z 2Nv~~~~~ (7.6)

- 

- 

; while the exponential map should give results that deteriorate

near

Xexp ~ 2Nv (~~~) £n . (7.7)

Note that ( 7 .6—7 )  shows the explicit dependence of xalg and

xexp on the small parameter L/2Nv ; observe that xexp << Xalg
• These predictions are consistent with the results plotted in

Figs. 9—10.

~H 25
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8. Conclusion

We conclude from the examples given above that mappings

are an effective way to solve problems in infinite domains

provided that the solution i~ simple at infinity. If the

solution oscillates as x ~ then co must be an essential

singularity of the solution and mappings fail. Unfortunately

this implies that mappings are nearly useless for many important

physical problems.

When mapping is applicable, the proper choice of mapping

dhould be based on the criterion that the solution to the

problem be smooth in the mapped coordinate . For many problems

this criterion favors algebraic mappings over exponential mappings.

:~4 4 - -
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• I
Table 2. Convergence of approximations to the eigenvalue

• 
A = 4.5 of the quantum-mechanical harmonic
oscillator using N+l Chebyshev polynomials.

Map L N A
- 

Truncation 4. 0 10 5.20628 14857
4.0 30 5.20628 12800

—L < x < L 8.0 10 4.57205 38006
- 1 8.0 20 4.50000 00394

8.0 30 4.50000 00395
16.0 20 4.56679 36320
16.0 30 4.50000 17110

- 32.0 30 5.47165 94003

Algebraic 4.0 20 4.50029 00880
2 4.0 30 4.49999 99641

z = 2 
x2
X
+ L2 

— 8.0 10 4.56858 45536
¶ 8.0 20 4.50002 73879

8.0 30 4.49999 99985
16.0 20 4 .50000 02905
16.0 30 4.50000 00000
32.0 10 4.49656 47888
32.0 20 4.49999 98895
32.0 30 4.50000 00000

- • ; 64.0 20 4.49999 99898
128.0 20 4.49999 96979
256.0 20 4 .62092 09932

I

H
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Table 3. Values of the eigenvalues A of the quantum-
• mechanical harmonic oscillator obtained with

the algebraic map and N = 20 (21 Chebyshev
- polynomials).

0.5 2.5 4.5

1 .5000 0171 2.5016 8050 4.4889 8957
2 .5000 0004 2.5001 2172 4.496 8 0153
4 .5000 0000 2.5000 0347 4.5002 9009

8 .5000 0000 2.5000 0000 4.5000 2739

16 .5000 0000 2 .5000 0000 4.5000 0029
32 .5000 0000 2.5000 0000 4.4999 9989

I 
64 .5000 0000 2.5000 0000 4.4999 9999
128 .5000 0000 2.5000 0000 4.4999 9970

256 .5000 0680 2 .5040 4612 4.6209 2099
-

- 512 .5046 4052 2.7962 9628 6.3984 1320
-4

-
I 

—

I •

~l• 
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Table 5. Errors in solution of the Falkner—Skan equation
• using 11 grid points. -

Method L Error in ~~‘ (1)

8 0 f ’ (l)- — 0.4606 3259
Restricted Domain 1.0 5.4 K

2.5 5.2 x io 2
5.0 1.3 K

7 5  *

________________________ 10. *

Exponential Map 1.0 —1.1 K

2.5 —1.2 K

5.0 —i.Ô 10
_i

7.5 —8.2 ~
________________________ 10. —6.9 ~

Algebraic Map 1.0 . s.e * io
.6

2.5 —4.7 K
5.0 —2.8 K io 6
7.5 —4.0 ~ io

6
10. —6.7 * 10~~

B - — .1 f’ (l)  — 0 . 3 6 3 0  0791

Restricted Domain 5.0 4.2 x

______________________ 7.5 •

Exponential Map 5.0 —8.8 x io 2

_______________________ 7,5 —7,3 x io 2

Algebraic Map 5.0 —4.6 x
7.5 —6.4 K

B — .1 f’(l) = 0.5274 2343

Restricted Domain 2.5 3.2 *
5.0 1.4 *

_______________________ 7,5 *

Exponential Map 2.5 — 1.3 x
5.0 —1.1 X

_______________________ 7.5 —8.7 X io— 2

Algebraic Map 2.5 —5.5 x io 6
5.0 —1.]. x 1o~~

- 
- • 7.5 —1.6 K

* No acceptable (monotonic) solution. -

31

-- ~~~~~~~~~~~~~~~~~~~~~~~~ • - • • - - - • - - -- —



/ 04)
ID

u—I
04
4)
40

C 1-40 ~l4I-I

0 -4
1 14

‘ .1.1 
~1.I

I
I

• I •

40
4.)

• 

• 
a)

32

-~- ~~~~~~~~~~~~~~~~~~~~~~~~ SF1I~~~~~ M~~. ~~~~~~~ ~~~~ - -



• _\ ‘4.4

k
5;’ O O i ~
0
— O W

‘I
I 14 u-4 4)
1

0
N
11%

0

~~~~~
‘.O
•

- - •



_ _ _  

- - -

~~

--- -

~~~~~~~~

0
• N ‘.~~1 0

A I 0 ) .
00• I ..

~I
~~ ~1~ ’.

• - I N
1 0)

-‘I- o.c
1 — ~,~I4 )
‘u • 0

1~
.14

I’

• 04
0

40 0)
S W

0 .-I
.14 40
4 0 >

. 14
—

I II -

Ia - 0 0-l e
1 — O X  ~—

I 0
1 “.4
I• U

x

. 1  \
0

N ..4

.14
0

• — Pt
1-I
> 0

4’;

ID

.14
rz.u

N
- - 34 

- L~~~~~~~~~-~~—- --~~- • - - ~~~~~~~~~ •—~~—- ~~~~~~~~~~~~~~~~~ ____



r~~~~~~~~~~~~
rii

~TTi~~ T111 11 — I

~~~~ .4 I

40 14
II ID

ID

‘l.I~~~~o
0 It

S ~. 11.4
• — .0

— C1I C’4 W

I
.0

ID 0 4 0)
•

40 ~ ‘> 0 0
0 — 1 -4
I D a) ’ )

• -4 .0 -4

W 1 4 4 )

ID1 4 . 0 0 )
0 4 ) - I

44 ‘4.4o40 0 ) 0 . - f
It
• . .  0 0 ) 1 1~~~~~~

—

0) -1.) Z~~0 ’O ~~
— “4 .14~~ ,4 I

- S x W 4 )  04U~ .0 — 14
- -4 0 m w

ID
14 (5’. .-.

- -  0 4)  14- 4 0 4 0 0
14 .-t O IW .-4 -4

•14 41 u-I

- 
- z _ .

‘d 0 •
~~~ IIW o o

- C

- • • 1i . O W O
04 .0~~1404 14 0 ) 4 .~40 40 >1 0

~ 

- ,  - - - . - - ~~~~ ---—- - - ~ --



-

Iii!
_ _ _

____  
_ _ _ _ _  

g4 •g
— I D . 0
_ _ _ _

_______ 4) 0
— —.--- ‘0

-
~~~~~~

=
~~~~~ 

_ _ _ _  
.8.0

_ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_ _ _  

_ _ _ _  ~ .ti
_ _ _  

- .

0 ) 1 4

0 1 W  —

- __ _

~~~~~~~~~~
.— --— 0 0

_____ 
4 ,0 )

_______ 
0 ~~

~~~~~ 
— 1.4

______ 4’

~~~~~~~~~~~~~~~~~~ EE ii~~
__  ID

• ~II
__

~~~_~_~~~~~~~~~~

I I i I I , 1 I I I I I I  ~ ‘
In 0 ‘t~’. r.~

• ‘.

U 36

i~ _~i___ __ —~~~~ ~~~~~~~~~~ —— ~~~ — ~~~~ 
____



--

,
1

0
—~~~~ — 0

_ _ _ _ _ _  

IT
_ _ _ _ _ _

•1

~

_ _ _ _ _ _ _ _  

40

- - 

—=
~
=---- Tm—

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
C

I u-I

H ~~~~~~

- II

—i.-. - 14

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  4’
_ _ _ _ _ _ _ _ _ _

4
— 

__Ii•___

_i—

-

~~~~~ _

__

—
: — -

~~~~~~~~ 5-4 14

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
0 4 0

_ _ _  
ID

______ _______ 0 . 0

___  
____  4’

~~~~~~~~~~~~ 2 ’ -=.--
_ _ _ _ _  

0 14
• ~~~~

=—,—-— - 4’
14

______  4’

-

~~~~~~~~
- I

I~~~~I I i I i I i I i~~~~~~~~~~~~ I I i I I i Iin 0 inI
Dl
-4
144

-

5

- 
• 

37
S -

- - - — —_ -  
- - - .••— - --••;- . - - - •- - 

~
— • •

~~~J-~~ --~~~ -L- .~~~. —--— _____________________ -~~~~~~



TI

~,
1 ~

40
_______________________ 0)

_ _ _ _ _ _ _ _ _  

40
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  U.’
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _•

H I
- I

-
~~~~~ 

-
~~~~~~~~~ 0

u-I

_ _ _ _  
_ _ _ _ _  4 ) 1 1

_ _ _ _  
_ _ _ _  

•

_ _ _ _  
_ _ _ _  14.0

-~~~~~~~~~~~= - .
• 

~ ~~~~~~~~~~~~~~~~~~~ 01 01

~~~~~~~~~~~~~~~~ 

— 
0 1 0 1

~~~~~~~~~~~~~~~~ 
_ _ _ _ _  

4)

~~~~~~~~~~ —= — 2 ~~~~~~~—. ~Z~~~_ 0’
-

~~~~~~
--- .--= ~~~~~~~~~~~~~

.=~~z _ _ _ _ _  

-I
______ 

~~~~~~~~~~~~~~~~~~ 4)

~~~
=;:_

~
_

~ _ _ _ _

_______ 
‘ — ~~~~~ 4) “4

_ _ _ _ _  
-~~~~~~~~ 

0 .~
• - - _~~~~~~~~~~~~~~~~~~~~~~~

I I I I _ I  I I I , I . I I i I I I
In

1
0’Pt

• 144

38
•
ls I 

- - - — _ 
- - 

—•- - _ -  ‘~~~~~~~~~~I_~:_~~~~ —_----



- — --- -— •.—••------- ---- — •- ——---~~~~
-

0
o •1.4

4.)
N . 0 0

41 .-I
— •14

- .
14

0 — 0 .
- _

0 .4 )
N O VI

H - 0 0 4 N
4 0 0 4 0

>I V I
5-4 0)

4 0 0
I 0

14 4 0 . 0 40
I 1 4 4 . )

1 01.0
1 0 *1.1 01I I I D l O 4 )
I u-I 0
Ii — 4 0 4 ) - I

/ 1  0 0
J I ~~ I D 1 4 I D

/ f i
•

~~~~~~~~~~~~~~~~~~~~~ _.•~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

0 I D
~, I
,
,•  I

II
—
I- / ~~~ 0 — I I D

~~ l - 0 ~~~ IU 
~~~~ I • V II I ID

I N II
// 0 v t ’ 0~~~/ 0 0 1 0)

/
~~ 1~ 4 4.) 14 0

4 0 1 4  01 PtV 45 •,

‘

5- 
- 0 > 1 4

-,

./‘ ID 0
0’ 01 0 1 4
1 4 • ~ 0

_., 0 ’ ) I D 1 4
0) .0

~0•~~ 
,.

4- N 0~~~~~f 0

H I
• 4- 0 I D~~~~~~Ifl4- — 

.1.) 0 > -4 0
4- -4 1 4

• - 4 )0 +

~~~~~~~~~~~~~~~~ ~- -~~~~ -—~~~~ - —- - —— — —  
-

~~~~~~



— 
— — 

--——

~~~

-— -• -‘ --=- — --- — - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
----- —

~~~ ‘5’

~~~~~
• ID 0) ~‘ 1 4 0— 14 0) 40 -4 14.4 .

• - 0 01 . 0 4 ) 0 1  Ifl
~~‘0 >  0 ) 1 4 4 ’ -

- 0 1 4 4 )  O I D N  -
0 ) 4 00 . 0 0 0. 1 4  . I D U I
4) U 4) . 0 . 1 4 > C M 0 4 .

I 4) I D 0 ) N• I I - 0 0 4 ) —  0” 0
0)~~~~ N 0  .14 —

I IDIn~~~~~~1 4 . 4 0 a ’ . O 0
~ I II ~-4

I ~~~o~~ I 1 14 11’. . 0 )  Q~~0) 0)
•~~~~ I • 40 •N . 1 4 4 J 0 ) 0 I  I

4)— —4 . - 4 0 - C C 0’ I4 .4
$ 1 4 ’  0 ’ 0 0 ) 0
-) ~~0 I O 4 ) .04J M

.-4 .-~~0) 14 ‘0 0 i..4
Vt - e  0 4) 4 ) 0 0 1 4

I) .14 0 4 C C 0 0 C~~~4) • 4 ) 0 4 0 0 .
‘4 .0.4
‘ i i  

~~~
- x . c o~~~ 0 1.)

V .~~I . 4  41 1 4 0 0 4 ) > 4 0
-~~~~~~ ID

(5,~ “ .Q 4 ) 4~~0 W ’ 0 V
0’ 0 ) ’ 0  4) 0

- 0 0 —  0 4 ) 4 )
I D — 4 ID~~~~ 40~~~~.0 o .0 m

• I . E O i O U’ .  0 4 ) P t E 4 ,-4
‘4 I - 4 0 4 - 4. 1 414 ‘0V I 4’ 40 I 4 . .r - I D 0 ) . 0w -

V • •~~~~~~ I D 0 1~~~~ 4) 0 1 1. 0
V ‘w V

I 
O~~~~~~~~~~ I~~~19 14~~

• 0 14 .14 Pt 0) Pt -
V t • 0 4 ~ 4 ) . 0 4 )  .14CDI P t 0

\
\ I 0 0 1 4 4  §4~~~~I D ’ 0 0 4 0

\ I 
~~~~~ 1 4’ 0~~~~0 1 0 1 4

- . 1 4 . 0 )0 . 0 1 4 0
U ‘ 0 m . 4  4 0 0 1 .)  0

- 00  ~~9 ,
~ 0 ) 4 0 0 4

~~ . ~~‘ 14
-4 01.1 4 0 4 0 1 4 P t

in .‘U .0 V t - —
t — - 00 4 )  ‘I.4 C~~~ 0
V .‘~~~~ .M P t .O O W O p t  • ‘o

U’. I 0 0 0 ) 1 4 1 4  0 11) 01
• V 0 0 4  4 0 0 . 0 0) 0  >U .0 0 > O’ ID~~~~—4 -II >’

.~ ‘4 0 ) . 0 . 0  , 4 I DO I J II’. I D1 4S, 0 ) E~~ W ’ M 0 4 1 4 4 0  1 q 7 0
0 0 1 0 1  .0 0 ) I 4 O N .Q>— ~~~~~0 4J~~~ 40

40~~~~~~0~~
I~~~~4

\ 
‘—4 0 .4.) Cl 0 0 ) 0

,.J • lI4 N . .0 .0 B •
S 0 1 4 1 4 0 4’ E - s 0 1 4

-t .. ‘ ~1 ) P t.1 4  14 e~~0)

‘I ~l~~~~7 0 0 0 ) —  .4
41 1 4 1 4 0 4 1  • 0 1 ’

V u-I 4’ 00
V 0 ) 0 0 . 0  4 0 0 ., 0 1 4
s, • S,

-‘

WI’ 

0 

40 

• 
~ _ _ _ _ _ _ _ _ _ 4 .~~~— --- — -~~~~ ~~~~~~~~~~~~~~~~~~~~~~ -



-~~~~~L~~H 5 : I~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~

-- “ -

~~~~~~~~~ 

- — -

~~

- -- --- -_ 

I

.14
1 4 0  0 04
0 1 4 0 . 00 0 - .0 1 4- - 
~~ 1 4 0 ) 1 4 0 ) 4 ) 0 0 ) 0

‘ 0 4 0 4 0 0 40 4 0 5  14.~0 ) 0  ‘0 0 P t 0 4)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  — 

~~~ 4 0 0 )  . 1 4 4 0 > 1 4 . 00
.I’ ~ I 14 4 ) 0 0 0 0  4 . ) .
‘ ~ 0 . > . 0 01 4 V •  N

.1 0) O l i4) .0 0 m ’14 14
%~ 0~ • ‘~ • V • 0 0) 0 0 • 0

• L - ~~ -.~~~ in ~ — 14 11) 0 .- •14 4) ’D V
L %\ a U ’ U C’l Ø 0 0

~~~~~~~~~~~~~ - 
~~~~~~~~~~~~~~~~~~ 0 4 0

‘II 0 .44  - 4 - 4 1 4 4 ) -
• ‘t ~ 1 .1 4 N  0 ) — O D ’ .  40- 0

1 1 14 1 4 4 0 4 ) 4 ) 1 4,
%.~~~~ I I D -.- - I IV 1 B 0 N ’ Ol l ø  ~‘‘• ‘V I 0 . ~~ . 0  ‘ 0 1 4 .0

-

v~ 
\ 

-

4) .14 0 ) 0 ) Q4 . 0 .014.

~~~ 

-

~~~~~~~ 1it~!1ili!\ ~4 I
4 0 ’ 0 ’ n 4) 0 0 4 0 ) 4 0

in ‘4•4~~~~ V 0)~~~ Pt V
0

0~~~~~~~~t 4 0, g .ç~~~~~~~~~
11

~~~~~~

\\~$ ~~~I D W 0 % 4 4 ) 0
0.

Pt M V  0 0 0 40 0 0
V 4 ) . Q  P 4 4 ) 4 )  P t 1 4
S in 0 0 1 0 ) 4 ) 1 4 . 4  4 )4 )  0 •

eiS 0’
~~’ “ 0 0’ 4 0 4 0 ) 0 4 0 V 4 ) > 1  -

1 -il’. ~~ 14 ~ 0~~ IrI 0 14
• — ‘4q 40 0~ P 4 0 > 4 0 . 0 0
• I SI I D . 0 ’ 0 4 0  C l >V 4 0 0 0 )  ‘ 4 0

• ‘ - ~ ‘- . 0 X B . . 00 0 14 4)

~ 
1 0 ) 4 )  0 1 4  . 0 0. 0 0

— .1 0 40 11 0 4) . 0 u ’ . W I D
in ‘. rs.VI. V ’144 14.I 0 #1 . 0 0 4

V ‘4. 0 0  0 . 0 0  - 0 0 )
V - 4 0 0  4 ) 4 ) - U ’ .  0
\ . i  ‘V 0) . 1 4 . 4 )  40 . - . . 0) 1 4

• 4) ..4 Q O P t . -
- ‘1 0 0 )  1 4 4 0 ’ 0 N- N O

I \I  • in • ~14 0) 0 0 •.
-

_ ‘t — ~0a 0 4’1 Pt . 0
- . 0 0 4  40~~-.. 0 1 4  ‘-4

0 . 1 4 0)  1 4 0 )0  ‘4.4
• V I . 0 . 0 0 00) ~~~Pt U 0 ’ D
- S 0 ) 0 ) 0 0 4 0 1 4 4 0 4 )  0H
- ‘ el  0 5 0 ) 4 0  $ 4 0  0

1 .  - • 
• 2 .0 > 0 . 0 4 0 D ’$4 14 -

V V 4 ) 1 4 4 )  14 0  0 0 4 0 0
- *  I I N 0 0  V 4 4 > .

\ ‘44 Its
-~ S 0 0 ’  4~~~ P t 0 )f~. O O 0

- V 0 144
V S. 0 . 4. . 0  40 1 4 4 0 4) I n
V V 0 0 )0 4 ) 4 )  • N

• V V • ‘ ~‘ P t 0. . .4 . 0 . C~~.- IN
V 4) 14~~~~4 ) 4 ) 4 ) . V
V P 4 . 0  P t N N 0  •

V S 0 ) 0 N ’ 0 0~~~~ V~~~.40 ’ I .4 0
V V 0 0  0’t  4)

0,Pt 7 u - 4  0) V u - I
40 4 ) 0 0 0  ‘-4

I I 
‘
~*1 0 4 )’ 0 . 0 0 4) 0~~~~ •~~~~~~~~~ I

~~ .0~~~~4 0 P t 4 0 0 ) 1 4~~~~04
- • in 0 vi 0 vi vi 0 ‘ - 4 1 4 0’  144~~4 0 ) . 4• - In vi ‘4 ‘4 — —

• 0
PhI’

- I  0

I 0’
Pt
144

- 41
‘I

___________________________________________________ - - ~~~ . • - 



_ _ _ _ _  
---~~~~ —--  ~- --- ----- -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 

References

I 1. A. I. van de Vooren and D. Dijkstra, J. Eng. Math.
4 (1970), 9. — ___ _ _ _ _

• 2. R. T. Davis, ~I. Fluid Mech. 51 (1972), 417.

• 3. G. K. Batchelor , “An Introduction to Fluid Dynamics” ,
- ~- Cambridge U. Press , London , 1967 , p. 191.

4. S. A. Orszag, 3. Fluid Mech. 50 (1971) , 689 .

5. D. Gottlieb and S. A. Orszag, “Theory of Spectral Methods
for Mixed Initial-Boundary Value Problems”, to be
published .

6. 3. H. Wilkinson, “The Algebraic Eigenvalue Problem”,
Oxford U. Press , London , 1965.

7. R. Jordinson, Phys. Fluids 14 (1971) , 25 35.

8. L. M. Mack, 3. Fluid Mech. 73 (1976), 497.

9. K. Stewartson, “Theory of Laminar Boundary Layers in
Compressible Fluids”, Oxford U. Press , London, 1964.

-‘C.

42

________________________ -• ~ •~~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~-2~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~~ —~~ - ______


