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1. INTRODUCTION

Digital filtering techniques are very appealing where complex
signal processing is desired. A major problem with digital filters
however is the effect of quantization errors due to finite precision
arithmetic. This thesis 1is concerned with roundoff errors(due to
truncation or rounding) occuring after each multiplication in 1linear
shift-invariant fixed-point recursive digital filters. The accumulation
of these errors appears as noise(error uncorrelated) or 1limit
cycles(correlated errors) at the filter output thus limiting the dynamic
range of the filter operating with a given wordlength. This paper will
be concerned with uncorrelated errors.

Any transfer function expressible as a rational fraction in z can
be realized by many filter configurations. The effect of roundoff
errors however is dependent upon the particular structure used. Thus
structures are sought which decrease the effect of roundoff errors.
Such structures often lead to increased hardware costs and this will
also be considered.

Long[1] presents the design of a lowpass Chebyshev filter using a
multiple feedback structure which is significantly less sensitive to
roundoff errors than the popular cascade structure. He was unable to
get similar results with a bandpass design using the multiple feedback
structure however., In chapter 3 of this thesis, Long’s lowpass filter
is transformed to bandpass and to narrowband lowpass in an effort to
obtain other multiple feedback filters with low roundoff noise output.

Also an equivalent multiple feedback structure using less hardware is
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presented. ' Chapter 2 discusses the modeling of roundoff errors as
uncorrelated random noise for analysis purposes, discusses the proper
scaling of filter structures, and gives a direct relationship between
certain network sensitivities and roundoff noise. Chapter 4 analyzes
the second order coupled form structure which can give better roundoff
noise performance than the popular direct form realization of a complex
pole pair. 1In chapter 5, the numerical analysis technique used to
obtain the noise output of a filter structure is discussed. Each of
four transfer functions is realized by four different structures and the

roundoff noise is determined for each.
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2. ROUNDOFF NOISE, SCALING, and SENSITIVITY

A. Modeling Roundoff Noise

In order to determine the roundoff noise propérties of a cigital
filter structure, the roundoff errors will be modeled as random noise
sources injected at the outputs of infinite precision multipliers with

the following assumptions:

1. The error sequence from a noise source is a sample function of a
stationary random process.

2. Samples from the same noise source are uncorrelated with each other
and are uncorrelated with samples from other noise sources and the
input sequence.

3. The probability distribution of the error process is uniform over

the quantization range.

This method of analysis has been shown to give good results when the
quantization level is not low and when the spectral content of the
filter input is fairly high[2]. Since the filter is 1linear shift
invariant, the total output noise variance can be determined by
superposition,

Each noise source results from the quantization of a multiplier
output word and its noise variance is given by (2.1) for the uniform
probability density function where d is the quantization increment.
Rounding will be assumed so that the mean is zero.

-

2
o e /12 (2.1)
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The variance of the noise at the filter output due to noise source
i is given by
v 2
Oi * No k=z_mlhni(k)| (2.2)
where hni(k) is the impulse response from the point where the noise is
injected to the filter output. The output noise variance can be

represented as a ratio of oi to oi

to eliminate the dependence on the
quantization increment d. (2.3) and (2.4) are equivalent to (2.2) and

are generally of more use in noise calculations,

2
o m
i 1 2
i F[nl“nﬁej‘%l do (2.3)
VO
2
f_i.aLﬁ ()H(-l -ld 2.4
ST ¥ R g Ty il
(o]

Hni(Z) is the transfer function in the z-transform domain from the noise
source to the output and Hni(ejw) is the corresponding Fourier transform
transfer function. The total noise variance at the filter output is

found using superposition and is given by

_— e (2.5)
02 i=] 02
o o

where M is the number of noise sources.
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B. Scaling

Before the noise variance of a filter can be calculated, overflow
constraints must be imposed and met at each summation point. This is
accomplished by scaling appropriate multipliers in the filter. The
theoretically calculated variance of an improperly scaled filter can be
radically different from that of the same filter properly scaled. Ffor

example, consider the following lowpass filters.

1-8 1-8
X
P X y
z-l z—l
" B
Figure 2.1a. Filter a Figure 2.1b. Filter b

The transfer functions of both filters are given by (2.6) yet their
noise variances due to the feedback multiplier B are as given in (2.7a)
and (2.7b) corresponding to Figures 2.1a and 2.1b respectively. Filter

b has been scaled in a2 manner to be described below.

o Y(z) 1-B A
H(z) = 5 e 0<B<1 (2.6)

o? 2
-&: ﬂ:—@-}—-—

2 2 (2.7a)
c 1-B

o

2
i' L (2.7b)
oi 1-g2 :

The noise output of filter a is less than that of filter b, however

filter a is improperly scaled allowing overflows to occur at the
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summation node and tnerefore is useless.
Various methods for scaling filters exist and each yields slightly
different scaling multipliers(2,3]. Scaling 1in ‘this thesis is

accomplished by satisfying the constraint

l(ejw)l =1 2.8)

max l Gi
“ML W T

at each node i where a summation occurs. Gi1(ejw) is the transfer
function from the input to the summation node i. This is the L -norm
discussed by Jackson[3]. Filters scaled with norms other than that of
(2.8) will have slightly different noise properties, however general
trends in the noise performance of a structure should be about the same.
Two's complement arithmetic 1is assumed so that overflows may occur
internally at a summation node with more than two inputs while the net

sum still meets the requirement of (2.8).

L. Use of Extra Scaling Multipliers to Reduce Noise

It was demonstrated above that scaling affects the output noise
variance of a filter. It is possible to improve the noise performance
of some scaled filter structures by selectively introducing extra
multipliers in the circuit. This will increase the cost of the filter,
but if power-of-two shifts are used to accomplish the scaling as
described by Jackson[2] the increase in cost will not be as much as it
would be if full precision multipliers were used. Consider the internal
summation node i of a filter as illustrated in Figure 2.2a. Such a node

would occur in the common cascade filter structure for instance. The
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On-1 bm

Figure 2.2a

On_l/c bm
FR-5147

Figure 2.2b

Figure 2.2. Introduction of Multiplier c
to Reduce Noise

B L o A st s o i i |
FR- 5146

Figure 2.3. Noise Reduction for Cascaded
Second Order Sections
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a’s include proper scaling for node i. The noise output due to errors

introduced at this node is given by

02 G2
n 3
— i (men ) s (2.9)
02 ol
o o

In Figure 2.2b, an extra scaling multiplier ¢ is introduced so that
there are two summation nodes j and i. The value ¢ is chosen so that
when the a’s are divided by ¢, the new overflow constraint at node j is
met exactly. By multiplying by c at the output of node j, the overflow
constraint at node i is also met exactly as before. The noise variance

from the m+n+1 multipliers in Figure 2.2b is given by

;2

= (m+1+c2n) —; : 2.10)
(o}
(o]

oonl::aw

From (2.9) and (2.10) it can be seen that the introduction of the

multiplier ¢ will reduce the output noise if

c<~/€—;I . (2.11)

The condition of 2.11 is often met. The effect ¢ has on reducing

the noise becomes greater as ¢ becomes smaller. For high Q filters, ¢
could easily take on values of 0.1 or less. In such a case the noise
introduced by the n multipliers entering node j is insignificant
compared to that of the m+1 multipliers entering node i. The noise from

the m+n+1 multipliers for this case is approximately
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o2 o2
<= (m+1) 5 (2.12)
) O
o] o

Figure 2.3 shows a cascade of two second order sections with the
multipliers of interest outlined by the dotted box. Here, n:z3 and m=z2.
If the second section has high Q, then the improvement in noise
generated by the outlined multipliers over an equivalent filter without
the scaling multiplier ¢ is -2.2dB as calculated below.

Improvement = 10 log : I‘];

= -2.2dB (2.13)

The overall improvement in total output noise of a filter obtained by
this technique will be determined by the rest of the filter and may or

may not result in a significant improvement in the total output noise.

D. A Relationship Between Roundoff Noise
and Certain Network Sensitivities

This section shows how the roundoff noise may be expressed exactly
in terms of certain network sensitivities. Fettweis[4] has developed a
similar relationship however it does not express the total roundoff
noise exactly.

Fettweis has shown[5] that the sensitivity of the input-output
transfer function Hyq witn respect to a multiplier @ directed from node

k to node i is given by

e
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Hni is the transfer function from node i to the output and is the
function required for the computation of the gain of the noise power

from node i. Solving (2.14) for H,; and substituting this in (2.3)

yields
2
o i dH 9
i 1 J‘ I 1 nll e
T T A e (2.15)
cg 21"_TT H‘kl o

This expression gives the roundoff noise variance in terms of the
sensitivity of H,q with respect to & divided by the gain Heq from the
input to the multiplier source node k. This gain Hk1 is dependent on

the filter structure. However if k=n, then (2.14) can be written as

2

o OH . 2

i 1 1 nl

2 wgn) ot ulh de (2.16)
Co -4 nl

Hm is the input-output transfer function and is not related to the
filter structure. Thus the noise variance due to a noise source at node
i is expressed exactly in terms of the sensitivity of a feedback
multiplier « from the output to node i. This multiplier is often

present in a structure although it need not be for (2.16) to hold.
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3. THE MULTIPLE FEEDBACK STRUCTURE

A. Motivation

The multiple feedback(MFB) or leapfrog digital filter structure is

shown in Figure 3.1. The transfer functions Ti(z) are of the form

-1 -2
Y5t T2 Tt

-1 -2
1 -Suz —5212

T,(2) = 3.1)

and are realized by first or second order sections. Long[1] used the
technique of numerical coefficient matching in the z-domain by solving
simultaneous nonlinear equations to design several filters of this type.
He determined the noise variances of these filters and compared them to
those of filters with the same transfer functions but realized with
different structures. In particular, comparisons were made to the
cascade of direct form second order sections. He designed three fifth
order lowpass Chebyshev filters using first order sections for the
Ti(z)'s as in Figure 3.2. The 002 and 004 multipliers are missing in
order to make the filter physically realizable. The transfer functions
of these filters had 0.5 dB ripple and cutoff frequencies of ;-. 2|
and g and are designated LP2, LP4, and LP8 respectively. For the
wideband LP2 transfer function, the MFB design was about 4 dB worse than
the cascade LP2 design. The LP4 MFB and cascade realizations showed no
appreciable difference but the LP8 MFB realization proved to be 10 dP
better than the LP8 cascade structure indicating that for narrowband

lowpass filters the MFB structure can significantly improve the signal

to noise ratio of a filter. Long also designed 6th order bandpass
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Chebyshev MFB filters using second order sections for the Ti(z)'s as
shown in Figure 3.3. These filters performed poorly compared to the
cascade structure. He attributes this result to a poor selection of the
free parameters in the filter design stage. Little is known about the
proper selection of the free parameters to obtain low noise filters.

The approach taken in this thesis is to take a proven low noise MFB
design and perform frequency transformations on the structure in an
effort to create low noise bandpass and narrowband lowpass filters.

Long”s LP8 MFB filter was used for this.

B. Modified MFB3 Structure

For the MFB structure in Figure 3.2, the transfer function for
T;(z) where i is even has a zero at z=0 in order to make the filter
realizable. The zeroes missing at z=-1 are added at the end of the
filter. This causes the filter in Figure 3.2 to have two unnecessary
zeros at z=0 which add phase shifts to the filter output. These extra
zeroes can be removed by reconfiguring the filter as shown in Figure
3.4. This new configuration also requires less hardware to implement.
To show that the filter of Figure 3.4 realizes the same magnitude
function as the Chebyshev filter of Figure 3.2, consider the general

case depicted in Figures 3.5a and 3.5b where

D, =1 -512-1 (3.2a)

-1
N, =0 40,2 (3.2b)

The transfer functions for Figures 3.5a and 3.5b are given by (3.3a) and
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(3.3b) respectively where N is the order of the filter.

UIZ
[

(3.3a)

(> I o)

Ha(Z) -

where k = N/2 N even

(N-1)/2 N odd

and

i

H(z) = e i (3.3b)

The denominators of (3.3a) and (3.3b) are given by

A = 1-(sum of all individual loop gains)+(sum of gain products
of all possible combinations of two non-touching loops)
-(sum of the gain products of all possible combinations
of 3 non-touching loops)+... (3.4)

The gain products in (3.4) for Figure 3.5a consist of terms of the form

N
-1 i
£ z s for 1i odd
Lt By Dy

N
-1 i+l
ti,i+lz D D for 1i even.

i i+l

(3.5a)

M ST A IR AR 5 C 3 WUMEMP ST PG o

L

The gain products in (3.4) for Figure 3.5b consist of terms of the form

t e ! -—Ei-—— for all i (3.5b)
1,441 D D ¢

Thus the denominators of H,(z) and Hy(z) will be the same when Ny=N;_,
for all even 1. This is the case for the Chebyshev filter of figure 3.2
since all zeroes lie at z=-1. The LP8 filter was designed using the new
structure of Figure 3.4. The noise variances were computed(as in

Chapter 5) for both old and new structures and differed by only 0.1 dB.
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C. Freguency Transformations

In order to transform from a lowpass filter of cutoff frequency Gc
to a bandpass filter centered at wc with bandwidth B the following
substitution is made for z~' in the lowpass prototype(6]

-2 -1

e ey ¥-1+b (3.6)
bz  -~az +1
where
a = Zlk— b = k—.1—
k+1 k+1
and cos w
c

¥ = Cos(8/2)

k = cot(B/Z)tan(Bc/Z).

This substitution transforms the general first order section shown in
Figure 3.6a to the second order section shown in Figure 3.6b. To
transform the MFB filters in Figures 3.2 and 3.4 to bandpass filters,
the substitution depicted in Figures 3.6a and 3.6b is made for each
first order section occuring in the prototype MFB filters. For the
transformed filter to have no delay-free loops, it is required that
B= ec (k=1,a=q,b=0). Performing this transformation on the filter of
Figure 3.2 is straightforward and results in the filter shown in Figure
3.7 where use has been made of the fact that all zeroes are at z=-1 in
Long’s LP8 filter. It should be noted that four more full precision
multipliers, two more delays, and three more summations are necessary
here than would be necessary for a 10th order MFB bandpass filter

designed like the 6th order filter in Figure 3.3.

Ehas S S SR




Figure 3.6a General First Order Lowpass Section

S
1+8b Q- a,b
2 |
a(l+.) ol *
T+8b Z | ala,

_b+B - i a,b-a

FR- 5149

Figure 3.6c Lowpass Transformation

Figure 3.6 The Transformation of a First Order Lowpass
Section to Bandpass and Lowpass

20
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Performing this transformation on the modified MFB filter in Figure
3.4 is slightly more complicated. FEach feedback path is considered to
be a multiplier-xl in Figure 3.6a2a and results in two feedback paths.
The transformed filter is shown in Figure 3.3 and has the same magnitude
characteristic as the filter of Figure 3.7. This filter requires the
same number of full precision nmultipliers as the other transformed
bandpass filter(Figure 3.7) however it requires fewer delays and
summations. In an analysis of the noise variance of a bandpass filter
design, the noise variance of the filter in Figure 3.8 was only 0.7 dB
worse than that of the filter in Figure 3.7. Since the noise properties
of both the o0ld and modified MFB structures appear to be similar, only
the modified structure and its transforms will be considered in the
noise analysis of Chapter 5.

In order to transform from a lowpass filter of cutoff frequency ec
to another 1lowpass filter of cutoff frequency wc , the following

substitution is made for z~' in the lowpass prototype[6]

z'l MaE SR (3.8)

0 -w
where c c}
sin( B
a-

This substitution transforms the general first order section of Figure
3.6a to that of 3.6c., Using this transformation on the modified MFB
structure(Figure 3.4) yields the filter shown in Figure 3.9. It should

be noted that this structure is physically unrealizable as it contains
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delay free loops.

Chapter 5.

It is included for comparison purposes only in
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3. THE COUPLED FORM

A. Structure

) The coupled form realization of a complex pole pair as proposed by

Gold and Radar(7] is illustrated in Figure 4.1,
o ™
0 w

x z z

b

(a4

-1
-—<—

Figure 4.1, The Coupled Form

The noise properties of this structure will be compared to those of the

direct form implementation shown in Figure 4.2.

Figure 4.2, The Direct Form

The transfer function for Figure 4.1 is

002-2

01
1- (Bl-o-Bz)z'1 + (BIS2 -orl':)z"2

H(z) = %.1)

and that of Figure 4.2 is




27
|
Bl -2

H(z) = 25

i "; 4.2)
1 - 2rcosfz l +r22 2

Thus these two filters realize the same pole pair if

51+32 = 2rcosf (4.3a)

2
3182 b bl (4.3b)
ao and al are set by the scaling required at nodes ny and ny in Figure
4.1, There is one free parameter available in designing this filter.

It is desired to select that parameter to reduce the output noise.

R

B. Sensitivity Apalysis

The sensitivity function §* is defined by
X

e B

x _y 3
:. Sy % Oy (4.4)
f The sensitivity functions of (4.1) are found to be

-

B, (1- eze'J‘”)e‘J“’

- - (4.5a)
1 1 - 2rcosfe Jm-H:ze 40

Sg

H 32 1- Ble-jw)e-jw

Tl A e 5 = (4.5b)
B2 1 - 2rcosfe jm-#-rze o

2, -2jw
; (3132 r e

H
& - (4.5¢)
. 1 - 2rcosfe jw-frze 2jo

S N I S ey e ey

— s
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s = 14sf (4.5d)
o t
1
si =1 (4.5¢)
0

where 2z has been replaced by er to point out the dependence on

frequency. (4.5c) can be minimized with respect to sl and 52 to obtain
B, = 82 = rcosf. (4.6)

Also, since (4.5a) and (4.5b) together are symmetric in Bl and 82 , this
seems a good choice for them. This selection is given by Oppenheim and

Schafer(6].

L. Noise Analysis

To perform a closed form noise analysis, the transfer functions

from nodes n, and n, to the output are required. These are given by

(¢4 z-z

Y - 1 (4.7a)
Ly 1 -2rcosez-1-+rzz-2

(1 -Blz.]')z.1

- o 20 (4.7b)
~ 1 - 2rcosfz 1'+r2z 2

The transfer function from node ny to the output of the direct form is
-2

(o) = £ -, (%.7%)
Ry direct . 9,080z 1'+rzz e

It can be seen that the magnitudes of both (4.7a) and (4.7b) can be less

e e A AN
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than the magnitude of (4.7c). Substituting (4.7) into (2.4) and using
Jury’s tables of that integral(8], the output noise variances for a

single noise source at each node are found to be

2

%n, o? (1 +1%)

5 i 2 A e
00 (L-r")(1+r -2r"cos26)

o2 2 2

n, +Bl)(1 +r )-4ﬂlrcose

o i 2 e : (4.8b)
00 (l-r )(1+r -2r"cos26)

The output noise variance for a noise source at node ny of the direct

form version is given by
2

Q

n 2

1
- =y, = 5 1‘;' 5 ! (4.9)
o direct (1-r")(1+r -2r"cos26)

Therefore (4.8a) and (4.8b) can be rewritten as

%
=N, (4.10a)
g
0
@
=% = q +B§ . ‘L";Q BN, . (4.10b)
o l+r
¢ 2 2

OI‘I o'll

1 4rcosb 2
Thus if a1<1. then ;2-<N2 and if al< —1+r2 y t.hen;z— <N,. If these

conditions are met, a'xen the noise gain from each ngde of the coupled
form is less than that of the noise gain N, of the direct form. The
total noise output for each form will depend on the number of noise

sources at each node in the filters. For the coupled form, there are
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three noise sources at node ny due to 06 B., and t and there are two

1
noise sources at node n, due to al and Bz. For the direct form there
are three noise sources at node ng. The total noise outputs of the

direct and coupled forms are given by (4.11a) and (4.11b) respectively.

2

g

& = 3N, + 201 +B§ ° ‘i‘-’°—;9- BN, 4.11a)
C'o coupled l+r

2

“n

5 = 3N, (4.11b)
00 direct

Therefore the coupled form noise is less than the direct form noise if

o + 2 (1482 - 4rcosd gy (4.12)
¥ 53 TR

D. Closed Form Noise Calculations
The objective here is to select the parameters Bl' 52, and t in
Figure 4.1 so as to minimize the noise variance given by (4.11a). Since

Nz is a function only of the pole locations (4.9), it is sufficient to

minimize the following expression

R 2  4rcos®
NUM 3011 +2(1 +51 - ——1+r2 51). (4.13)

To do this, an expression for crl must be obtained. The overflow

constraints which must be met at the summation nodes n. and n, are given

by

e e ettt M.

= e ———— —_—
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ju % (1 'eze-ju)
max |H ()| = max | TR _zjwl =1 (4.14a)
mcwen Y] ~-M<w<™ ] -2rcosbe I 4 rle
-jw
a o
max |H ()| = max | 9 le_.w =l =1 (4.14b)
Mcw<n 92 Mcw<™ 1 -2rcosbe 7 +r°e -J

A closed form solution for ao and al from (4.14) is not readily

obtainable. It can be seen that ao and 01

not of t. If a closed form solution for al were available, it could be

used in (4.13) with 82 replaced by 2rcosé -B1 and a closed form

will be functions of 32 and

expression for the minimum noise could be found by taking the derivative
of (4.13) with respect to 81 and substituting the resulting El into
(4.11a). Since these expressions were not available, the following
algorithm was used to find the minimum variance on a digital computer.

Step 1: Select a value for B; (B, =2rcos® -Bl)

Step 2: Solve (4.14a) iteratively for «

Step 3: Solve (U4,14b) iteratively for o

Step U4: Solve (4.13) for NUM

Step 5: Repeat steps 1-4 until NUM is minimized

An alternative to selecting Bl to minimize the variance of the

coupled form is to setﬁ1 to unity. This eliminates the Bl multiplier
and reduces the number of noise sources at node n, from 3 to 2. This
will be referred to as coupled form A and the result of the previous

desipgn algorithm(variance minimized) will be referred to as coupled form

B. The variance for coupled form A is given by

2 02 02
o n, n,
5. b il 4.15)
% 0 ‘%
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By selecting 81=1, the parameters 52 and alt are determined by (4.3).

QO and al are found as in steps 2 and 3 of the previous algorithm. Then
the variance can be calculated from (4.15).

These calculations were made for various pole locations and the
results are plotted in Figures 4.3, 4.4, and 4.5. Each figure is a plot
of the noise variance in dB verses the angle © of the pole location for
a fixed pole radius r. Also included is the variance of the direct form
realization of the filter. The plots go to 6 =90° and they are
symmetric from 90° to 1SO°(81=-1 in form A for © >90°). From the graphs
it can be seen khat for large pole radius r and small pole angle g, both
coupled forms A and B offer significant improvement over the direct
form. At =0, coupled form B is 36.4 dB better than the direct form for
r=.99 and it is 27.2 and 16.5 dB better for r=.95 and r=.90
respectively. For small angles, c¢oupled form B is seen to be slightly
better than coupled form A. However for most angles less than 50°, form
A which has fewer noise sources is seen to be slightly better. These
results are tabulated in Table 4.1. The structures are 1listed in
descending order according to their performance. eo is shown in
Figures 4.3-4.5,

Angle Range
(o]

(o] (o]
Rank 0--90 90-50 s 50 -90

1] Form B Form A Direct

2| Form A Form B Form B

3| Direct Direct Form A

Table 4.1, Noise Performance of Second Order Structures




33

(66° = snIpe1) SUOTIOIS IIPI) PUODIDS 10J @ SNSIDA IIUBTIBA ISTON g€°% 2an81y

€SIG -44 wwm\—omo C_ m
06 ¢ 09 Gt 0¢ Gl 0
¥ ! | B T T 5 O
6
e e e e S S e——— e {0
I:I:/.
/o
a N\ qov
W04 4381 -==rmemm " /.
g WJo4 pa|dno) ---------- ,...
vV WJio4 pajdnon .._.

B

gp Ul dOUDIIDA

T




34

(G6* = SNIpeEI) SUOTIDIS IIPIQ PUOIIS I10J @ SNSISA IDUBTIBA ISTON +H°# 2In31J

R e saaibaq ui g
06 G/ 09 S 0¢ Gl o)

WJOH JO3UIQ =-=memememm e
g Wio4 pajdn0y) ---m-mmem-- i
Vv Wio pajdnon ~J
| | | | |

@)
(QV)
gp Ul 92UDIIDA

o
v




35

(06° = sSnTpel) SUOTIDIS IIPIQ PUODIIS 10F @ SNSIIA IOUBTIBA ISTON C°4 2In8Tg

ol saalbaq ul g
06 GL 09 % (0] Gl O

&

i 1

S

foia e g ,ol. — ON MW
WO $98UI( ==mvmememm N =

g WJo4 pa|dn0y) ----eeeeeo- S o

Vv wuo4 pajdno)
| | _ 1 _

@)
v




-

Gl el e

36

A plot of‘B2 verses Blfor r=.95 is shown in Figure 4.6. It can be
seen that at 6:900, Bl=0 and a2=o and coupled form B reduces to the
direct form. The discrepancy in the noise variances of Figure 4.4 at
this point is due to the fact that the noise calculation for the minimum
variance in form B was made with 5 noise sources while that of the
direct form was made with 3. This difference in noise sources also
explains why coupled form B did not perform as well as the direct form
for larger angles. It can also be seen in Figure 4.6 that sfusz for
coupled form B which is the choice indicated by the sensitivity analysis
of Section B. Experimentally, it was found that if the noise gains at
nodes n; and n, are weighted equally as in (4.15), then the minimum

variance occured at exactly alzs =recose .

2
The result that coupled form A performs better than coupled form B

for angles between 6 _ and 50° and is not much worse for angles less than

0
eo makes this form appealing since it requires only two full precision
multipliers as compared to three required for coupled form B. Thus the
low noise performance of the coupled form can be obtained with the same

number of full precision multipliers that are required in the direct

form,




Figure 4.6 Bz versus Bl for Coupled Form B (r = .95)
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5. NUMERICAL NOISE ANALYSIS

A. Analysis Technigue

The analysis method used for computing roundoff noise is based on
the signal flow graph representation of a digital filter. The actual
noise analysis program used(NOISE) was written in FORTRAN by Long[1]
based on the method of Jackson[2]. This method is briefly described
below.

Using the signal flow graph representation, any digital filter

structure with N nodes can be put in the matrix form

<
—~
N
~
"

27 HyY(2)+H,Y(2)+0(2) (5.1)

where Y(z) = Nx1 vector of node output values
U(z) = Nx1 vector of node input values

H, = NxN matrix of coefficients for
branches with no delay

Hd = NxN matrix of coefficients for
branches with one delay

The (m.n)t'h element cof Hc(or Hy) 1s the coefficient of the multiplier in
the branch with no delay(or with one delay) directed form node n to node

m. (5.1) can be rewritten as
(I-2"THy-H,)¥(z) = U(z) (5.2)

The complex gain from node i to node k at any frequency woz(n/T where T

is the sampling rate can be found by solving the linear simultaneous
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equations (5.2) with the following substitutions
z) = [0...... 010......01% (5.3a)
ithtelement
and
3w
S (5.3b)

The gain from node i to node k is then given by the kth element of the
solution vector Y(ejwo). A modified version of the IBM scientific
subroutine SIMQ was used to solve the set of complex linear equations
(5.2). It was found that for filters with very narrow bandwidths,
double precision arithmetic was required in computing (5.2).

To compute the noise power output of a filter based on the model of

Section 2.A, (2.3) and (2.5) are used. Substituting (2.3) into (2.5)

and summing over the network nodes rather than the noise sources yields

02 1 o
< =i oy (5.4)
g -
0
where
N 2
~ o= jw
M) = ki ln @l (5.5)

and N = number of nodes
kj = number of error sources at node i

Hni(ejw) = transfer response from node i to the output

ﬁ(w) is the power spectral density of the noise. All Hni(ejw) are

obtained at once by substituting
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LR | i 01t (5.6)

in (5.2). By the interreciprocity property, Hni(eju) is given by the

ith element of Y(ed¥). The integral of (5.4) is approximated by the

trapezoidal rule as

2 Ng;l
TS S v A & N
v (NO) +N(@m)] + a5 Ve (5.7)
CT0 P P
where
wi=i-x¥ - i=0,l,...,Np.

A value of Np=50 was used for all examples listed in Section 5.B. This
value for Np gave results accurate to at least six decimal places when
NOISE was run on second order structures for which the closed form
variance could easily be computed by hand.

A measure of the noise power over a band of frequencies can be made

by changing the limits of the integral of (5.4) to obtain

2 w
i T
T'if N(w)dw (5.8)
o0 g
where
B=w_-w

- S |

w, = upper frequency (normalized w.r.t. T)
mi = lower frequency (normalized w.r.t. T).
The integral of (5.8) has been normalized with respect to the bandwidth

B and is approximated by (5.9) for computer evaluation.

Qlaq
onN N

N, -1
~ 2—},—; (N@)) +N@,)] + % 1%1 N,) (5.9)
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where

w, =1 > i=0,1,...,Np.

[
= l""

B. Examples For Comparisopn of Filter Structures

The filter structures which will be compared in this chapter are
the standard cascade structure, the modified multiple feedback
structure, and the coupled form second order sections in cascade form.
The coupled forms of Chapter 4 were modified by placing a zero after
each first order section. This and the fact that the total noise
variance of a section in a cascade structure depends on the other
sections means that the use of coupled form B(51=Bz) no longer
guarantees minimized noise power. It is expected that the performance
will be comparable however.

Two lowpass Chebyshev filters and two bandpass Chebyshev filters
will be used for the comparisons. All have 0.5 dB passband ripple.
Also, all have fairly narrow bandwidths since Long s results and those
of Chapter 4 indicate that the MFB and coupled form structures will be
of greatest interest for the narrow bandwidth case. The magnitudes of
the transfer functions are pictured in Figures 5.1-5.4. The two lowpass
filters have 0.5 dB cuttoff frequencies of g- and é%- and will be
designated LP8 and LP80 respectively. The two bandpass filters have 0.5
dB bandwidths of % . Their center frequencies are .437" and = and

8
these filters will be designated BP1 and BP2 respectively.
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\

The filters and their coefficients are given in Figures 5.5-5.11
and Tables 5.1-5.8. The coefficients for the MFB structures come from
Long’s MFB filter and transformations of it. The ordering of the
cascaded second order sections in Figures 5.5, 5.8, 5.9, and 5.11 is
based on Jackson[2]. All filters satisfy the scaling requirement of
(2.8). This was accomplished on the computer using the techniques of
Section 5.A to determine the maximum gain at each summation node. Also,
the technique of Section 2.C was used to reduce the noise of each filter
where possible. The BP2 filter was not constructed with coupled form B
since its noise properties are similar to those of coupled form A.

Each multiplier in a filter with coefficient other than one is
counted as a noise source including those scaling multipliers which may
not be full precision multipliers. The multipliers whose coefficients

are one may be replaced by a direct path between nodes in the filter.

” . - T I S Wi I
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LP8 Filter
Section i 1 2 3
Bli .86555015 1.72815082 1.72669227
BZi - ~-.79460336 -.91793529
00. <5 .25 .25881416
1
ali 5 e .51762833
021 & .25 .25881416
Si . 13444980 .066452714 . 14586934
LP30 Filter
Section i 1 2 3
Bli .98587045 1.97651463 1.98965721
521 - -.97724146 -.99124730
001 09 .25 .25
ali D 25 o
021 - .25 .25
S1 .014129550 .000726930 .001590090

Table 5.1. Cascade Realization of Fifth-Order Chebyshev
Lowpass Filters (Figure 5.5)
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51
LP8 Filter (Figure 5.6)
Section i 1 2 3 4 5
Bi .73984200 1 1 1 .73984366
aOi .50580116 .50142226 5 51741791 .52696216
011 .50580116 .50142226 .5 S17T41791 .52696216
S1 .27256869 .21088026 .20847000 .25423218 .40029000
t -~.27027892 -.10586551 -.18621970 -.26794146 -
i,i+1
LP80 Filter (Figure 5.7)
Section i 1 2 3 y 5
31 .97090509 1 1 1 .97090530
001 .50005464 .50003204 5 .50008994 .5
011 .50005464 .50003204 .5 .50008994 D
si .030617308 .021013212 .020581892 .025968065 .047181503
t -.16848062 -.058317808 -.098877889 -.14450219 -
i,i+1
-ati 141 .13820345 .047837684 .081108833 .11853412 -
Table 5.2. Multiple Feedback Realization of Fifth-Order Chebyshev

Lowpass Filters

s S e AT b
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Lp8 Filter
Section i 1 2 3 4 5
Bi .86555015 1 .76137695 1 .84242903
QOi D &5 5 .50925680 .50887813
ali 5 5 5 .50925680 .50887813
si . 13444992 .27848330 .23862360 .38390200 .37947373
ti,i+1 - -.27848290 - -.39071902 -
LP80 Filter
Section i 1 2 3 4 5
81 .98587045 1 .97687799 1 .99045223
001 9 > P .5009135 .50008438
@, 5 .5 .5 .5009135 .50008438
s1 01412955 .031438434 .023122020 .04092788 .03883737
t1’1+1 - -.031438400 - -.040934790 -
Table 5.3. Coupled Form A Realization of Fifth-Order

,

Chebyshev Lowpass Filters (Figure 5.8)
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) LP8 Filter
; Section 1 1 2 3 y 5
’ B1 .86555008 .87690008 .87690008 .91959842 .91959842
o .5 .50310306 .5 .50929654 .50887813
| .. 5 .50310306 5 50929864  .50887813
s, . 13444992 .38532380 .17139564 .39371173 .36998840
ti 141 - ~.2G745568 - -.38354994 -
LP80 Filter
Section i 1 2 3 y 5
a1 .98587045 .98840539 .98840539 .9952204 1 99522041
¥y 5 50003097 .5 50009156 .50009166
@ .5 .50003097 .5 .50009156 .50009166
s, .014129550 .041564330 .017488070 .041767851 .038055630
4 € 141 - -.033877570 - -.041175320 -
Table 5.4, Coupled Form B Realization of Fifth-Order Chebyshev

=

Lowpass Filters (Figure 5.8)
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i
|
L e
I Section i 1 2 3 b 5
[ Bh. 37311002 14314536 60248480 -.00246690 75585144
521 -.86555015 -.88881844 -.89399960 -.95643961 -.95974207
l 001 .51036701 50257077 .51057782 50572018 5
: a21 -.51036701 -.50257077 -.51057782 -.50572018 -.5
,_ si .13171900 .20517000 .31547000 .20439000 .73774000
BP2 Filter
Section i 1 2 3 y 5
511 1.64022622 1.60767978 1.75730982 1.87161502 1.94068386
aZi ~.85804902 -.93840000 -.86555015 -.92605818 -.97819190
001 1.07547972 .90399127 .90956961 84101291 2.50940195
021 -1.07547972 -.90399127 =.90956961 -.84101291 -2.50940195
: s1 065995086 .053728000 .21435000 .28722000 . 10346000
!
Table 5.5. Cascade Realization of Tenth-Order Chebyshev
.{ Bandpass Filters (Figure 5.9)
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58
BP1 Filter
Sectlg_n_iL__ e 2 £R 3 4 5
Bli .34796840 4 A 4 .34796873
EZi -.73984200 -1 -1 -1 -.73984366
001 .50580116 50141044 .5 .52830427 .52679691
021 -.50580116 -.50141044 -.5 -.52830427 -.52679691
S1 .27256869 .21088026 .20422700 .25423219 .40019600
-ti i+1 .27027892 .10806750 .18621970 .262u8184 -
at, ;. -.054055783 -.021613500 =-.037243940 -.052496368 =
BP2 Filter
Section i 1 2 3 4 5 .
511 1.63889532 1.88395880 1.88395880 1.88395880 1.63889690
Bzi -.73984200 -1 -1 -1 -.73984366
ao1 2.49279940 2.08444795 1.54182728 2.52734089 2.50938850
021 -2.49279940 -2.08444795 -1.54182728 -2.52734089 -2.50938850
s .054918343 .051084467 .067606500 .052049375 .084058000
-t .22638713 .078527574 .29496800 26122411 -
1,141
aty 4 -.21325201 -.073971351 -.27785377 -.24606773 -
Table 5.6. Multiple Feedback Realization of Tenth-Order
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BP1 Filter
Section i 1 2 3 y 5
Bi 1 .11933007 1 .015981910 1
°0i 64514000 .79134000 .67286000 .T4773000 .64509000
ali .64514000 -.79134000 .67286000 -.T4773000 .64509000
Si .13390000 .98267000 .20547000 .99777000 .32181000
t1,1+1 -1.17707805 - -1.30010299 - -1.02131797
BP1 Filter(Contipued)
Section i 6 7 8 9 10
Bi .24824219 1 -.02301361 1 .35779676
aoi .79164000 .70407000 .71017000 .62546000 .79302870
011 -.79164000 .70407000 -.71017000 .62546000 -.79302870
S1 .98014000 .20438000 1.00041000 .71182000 1.0463000
ti,i+1 - =1.39056036 - -.91981667 -
Table 5.7. Coupled Form A Realization of Tenth-Order

Chebyshev Bandpass Filter (Figure 5.11)
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BP2 Filter
- Section i 1 2 - 4 5
Bi 1 .T4913762 1 .77303993 1
aOi .51518560 2.0900057 .52228205 1.7309708 .52198295
I ali 51518560 -2.0900057 .52228205 -1.7309708 .52198295
Si .13646288 .48308654 .096567230 .55629730 .38955737
o -.43760739 - -.56913959 - -.18840886
i,i+l
BP2 Filter(Continued)
Section i | A e G 8 o 9 10
Bi .81142998 1 .89883662 1 .95943788
001 1.74215060 52175786 1.7562198 52144475 1.76660582
ali -1.74215060 52175786 =1.7562198 52144475 -1.76660582
si .55030243 .479975231 .55000000 50737774 55474390
- -.094859640 - -.064832620 -

i, 141

Table 5.8. Coupled Form A Realization of Tenth-Order
Chebyshev Bandpass Filter (Figure 5.11)
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C. Results of the Noise Analysis
2
c
The total noise variance _% (vquation (5.7)) was determined for
o

each of the filter realizations described in Section 5.B. Also, the
normalized power in the passband of each filter _gﬁ was computed by

o
(5.9) where w_, and . were chosen to be the uppeg and lower 0.5 dB

2 1
cuttoff frequencies. The results are listed in Table 5.9 where the
total normalized noise variance and the normalized passband noise power
are expressed in decibels. The entries for the MFB LP80 filter are
shaded to indicate that this filter is not physically realizable since
it contains delay free loops.

Except for the nonrealizable case, the multiple feedback structure
gave the best noise performance. For the fifth order LP8 transfer
function, the total noise variance of the MFB structure was 10.4 dB
better than the cascade form. For the tenth order BP1 and BP2 filters
it was 4.4 and 11.2 dB better respectively. It was expected that for
the tenth order bandpass filter BP2, the MFB structure would show even
greater improvement over the cascade form than for the fifth order LP8
filter since the BP2 filter has 10 poles grouped fairly close together
near z=1 while the LP8 filter has only 5. The reason that it actually
showed only 0.8 dB improvement(from 10.4 to 11.2 dB) is believed to be
due to the fact that the transformation from lowpass to bandpass
introduced four extra feedback paths in the filter which added more
noise sources to the structure. The fact that the MFB structure did not
show much improvement over the cascade structure in the BP1 case was
expected since in Chapter U4 it was seen that the direct form second

order section has the least noise variance when its poles are at ;90°.
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Coupled Coupled
Filter Cascade MFB Form A Form B
2
o?102 | 26.9 16.5 19.2 19.3
LP3 2 2
OPB/OO 34.7 23.5 26.4 26.5
Y LR
o’foz | w91 [/23.9 | 22.71 23.0
LP80 2 2 ;{
OPB/OO 73.8 /;3}.7 45.4 45.7
o?/6% | 23.9 19.5 27.8
n 0
BP1 2 2
oPB/o0 40.0 26.3 34.8
o?/02 | 3.0 31.8 37.0
n 0
BP2 2 2
OPB/O'O 50.3 38.6 44 .6
a2
Table 5.9Y. Normalized Noise Variance -% and2
o
0 (o)
Normalized Passband Noise Power _EE in dB.
%
Coupled Coupled
Filter Cascade MFB Form A Form B
LP8 5 6 5 7
LP80 5 10 5 7
BP1 10 15 10
BP2 10 15 10

Table 5.10.

Number of Full Precision Multipliers
Required For Each Filter.
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It is interesting to note however that the norralized passband noise
power of tne cascaded second order sections for BP1 is 13.7 dB worse
than that of the MFB filter. This indicates that while the total noise
variance of the cascade form is not much worse than that of the MFB form
for BP1, much more of its nuise power is concentrated in the passband.
The coupled forms also performed well as expected from Chapter 4
for the lowpass filters. Coupled form A was 7.7 dB better than the
rascade form for LP38 and 26.4 dB petter for the very narrowband LP30
filter, Coupled form B was slightly worse than form A as expected
making form A preferable tc form B since it contains fewer multipliers.
Tne MF3 filter was 2.7 dB better than coupled form A for LP8 which is
reasonable since it is observed thzt the network structure of tne LPE
coupled form filter(Figure 5.8) is exactly that of the MFB filter(Figure
5.6) with every other feedvack path eliminated. The extra feedback
paths in the MFB fiiter allow more free parameters in its design. The
performance of coupled form A for the BP2 filter fell halfway between
that of the MFB structure and that of the cascade structure showing that
for poles near z=1, this form is superior to the cascade filter. For
the BP1 filter, coupled form A was 3.9 dB worse than the cascade form
which was expected since the coupled form did not perform as well as the
direct form for poles near the imaginary axis in Chapter 4. However the
normalized passband noise power of the cascade filter was 5.2 dB worse
than that of the coupled form filter, again indicating that the cascade
form has much more noise power concentrated in the passband. Finally it
is seen that the nonrealizable LPE0O MFB filter had about the same noise

variance as the coupled form although the result of the LP3 filter
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design indicates that better noise performance can be obtained. This
discrepancy is thought to 1lie in the fact that the frequency
transformation used to obtain the filter introduced four extra
multipliers which count as noise sources. This filter was included for
comparison only and would have to be redesigned to eliminate the delay
free loops for a more meaningful analysis. Such a design could result

in lower output noise.

D. Hardware Considerations

Table 5.10 compares the number of full precision fixed point
multipliers required for the filters of Table 5.9. Since the cost of
these multipliers is a major portion of the cost of a filter it is
desired to use as few as possible while at the same time reducing the
noise power output of a filter. The noise output of a filter decreases
by about 6 dB for each bit added to the register length of a filter[6].
Therefore for a given signal-to-noise ratio, filter structures with
lower output noise can be realized with shorter register lengths. From
Table 5.9, it can be seen that the lowpass LP8 MFB filter is better than
the coupled form filters by les. than 1 bit. However the MFB filter
requires one more precision multiplier(2 multipliers are unity) than
coupled form A for a fifth orde~ filte~r., The choice between the two
structures here is not clear cut however both offer between a one and a
two bit improvement over the cascade structure for the LP8 case and a
five bit improvement for the LP80 case. If the LP80 MFB filter is
redesigned to eliminate the extra multipliers, it may be possible to get

a six bit improvement here. For the BP1 filters, the MFB structure
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offers less than a one bit improvement over the cascade form while
requiring five more full precision multipliers. In this case it might
be better to add one bit to the cascade structure rather than to use the
MFB structure. For the BP2 filter the MFB structure is two bits better
than the cascade form and the decision is not clear. It should be noted
that the bandpass MFB filter design method used by Long would contain
only one feedback multiplier for each stage instead of two as in Figure
3.3 however it is not known if this method will result in similar
performance. Coupled form A is one bit better than the cascade form for
the BP2 filter and might be used since it does not require any more full
precision multipliers than the cascade form.

Finally, it was found that use of the scaling technique of Section
2.C resulted in a savings in noise power of from one to three dB for the
filters constructed. Thus unless noise reduction is a much greater

factor than cost, the technique would not be very useful here.
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6. CONCLUSIONS

The transformed multiple feedback structures performed well with
the proven LP8 MFB filter structure used as a prototype. The best
performance relative to the cascade structure was achieved when the
poles were grouped near z=1 as in the LP8, LP80, and BP2 filters. The
MFB structure was also better than the cascade form for the BP1 filter
whose poles are near z=+j although the improvement was not as great.
The problem with using the frequency transformations of Section 3.C on
the MFB filter is that the transformed filters are physically mere
complex than their prototypes. Also, if the transformation attempts to
change the filter bandwidth, feedback paths are introduced which make
the filter physically unrealizable. Thus the design of MFB filters
cannot be accomplished in general by these frequency transformation
techniques. The results of Chapter 5 indicate however that MFB filters
can be designed to outperform corresponding cascade filters(direct form
2nd order sections) for any pole locations. More research should be
concentrated on finding a design technique to minimize the noise of
multiple feedback filters.

The coupled form second order section was shown in Chapter 4 to
have less noise variance than the direct form for poles near z=+1. 1In
Chapter 5, filters constructed with cascaded coupled form sections also
performed well for poles in this region when compared to filcers
constructed with cascaded direct form sections. For narrowband lowpass
filters(LP8 and LP80) the performance of the coupled form approached

that of the MFB structure. It is interesting to note that the modified
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(
lowpass MFB structure reduces to the cascaded coupled form structure

when every other feedback path is removed. The simplicity of coupled
form A combined with its noise properties make this an attractive filter
structure to use when the filter poles are near zz+1.

For both the MFB and coupled form structures, the technique of
selecting certain free parameters to be unity resulted in improved noise
performance due to the elimination of noise sources. It was shown in
Chapter 4 that the performance of a filter designed this way can
actually be better than that of a filter whose noise variance has been
minimized with respect to the free parameters. This method of reducing
roundoff noise 1is also appealing because the number of costly
multipliers required can be reduced. Where free parameters are
available in a filter structure, the investigation of this technique for

noise reduction may be profitable.
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