AD=A036 217 OHIO STATE UNIV COLUMBUS COMPUTER AND INFORMATION SC==ETC F/G 9/2
THE ARCHITECTURE OF A DATAGASE COMPUTER. PART ITI. THE DESIGN O-—-ETC(U)
DEC 76 D K HSIAO,» K KANNAN N00014=75=C=0573 .
UNCLASSIFIED 0SU-CISRC=TR=76=3 NL

2| E

 —

cwm——
.
o
o
mw
n

I
I

22 e

——— M 32
= . o 12
R

=
(o]

o |

—
]

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-!963-A

— TECHNICAL REPORT SERIES

CORPUTER &
ANFURRIATIGN

aGIENCE

RESEARCH CENTER

it it ee

(STHiD
X ~Approved fon public 10lee

THE OHIO STATE UNIVERSITY COLUMBUS, OHIO

|
|
{
k1
4
i
i

v

L3
.

[Sl)

[]
[2T]

b

(GSU-CISRC-76~3)

THE ARCHITECTURE OF A DATABASE COMPUTER
PART III: THE DESIGN OF THE MASS
MEMORY AND ITS RELATED
COMPONENTS

by

David K. Hsiao and Krishnamurthi Kannan

Work performed under
Contract N00014-75-C-0573
Office of Naval Research

Computer and Information Science Research Center
The Ohio State University
Columbus, Ohio 43210
December 1976

- . - - T - wmpety
¥ ;N L S ol T4 e R AN
DETHIENRION IpaTuil
. vt W . @ o e W .

ap"L‘U'B.‘ foa Lurde red oo,
'Df‘Fﬂ"L‘J AN Uil ited

- ———

——

e S xS ettt ik

Geac. o iaas

Lotk 3

B ———

v VN

SECURITY CLASS'FICATION OF THIS PAGE (Whan Dma Entered.

READ INSTRUCTIONS
BEFCRE COMPLETING FORM

REPORT DOCUMENTAT!ON PAGE

REPORI NUMDESR 2. GOVT ACCESSICN NO. 3. PECI®'ENT'S CATALOG NUMBER

6su-c1snc-@’]",{—jé 3)
d.Subth sre——— e g 3 COVERED
ﬂ%‘t L"‘;‘""“"‘"""—M""w"' e 3
The Architecture of a Database Computer, Part III® L?echnical,leﬁ;;l.
'} The Design of the Mass Memory and its Related T T T T T T L R T T I
Components™ , . MING ORG. ORT NUM
PTG THOR(s) ¥ 8. CONTRACT OR GRANT NUMBER(s) e

-fPER-ORMNG BREANTZATION NAME AND ADDRESS

David K. /Hsiao \ / \ ; N80014-75-C—0573_‘[,"_-
-

Krishnamurthi/kannan Qb O

10. PROGRAM ELEMENT, PROJECT, TASK
AREA A WORK UNIT NUMBERS

Office of Naval Research [N
Information Systems Program xiiS:KI /\\ et T
Washington, D.C. 20360 & Q;[‘/ o g o
11. CONTROLLING OFFICE NAME AND ADDRESS M2 RERQRI DATE I =
/ / (Decm:_;‘-“iﬂi S \ { j“
AT TR ER T BAG|
141
1S. SECURITY CLASS. (of this report) ‘

14, MONITORING AGENCY NAME & ADDRESS(if dilferent trom Controlling Office)

15a. DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited}

Scientific Officer DDC New York Area
ONR BRO ONR 437

ACO ONR, Boston

NRL 2627 ONR, Chicago

ONR 10271P ONR, Pasadena

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Database computer; security; clustering, partitioned content addressable memory;
security atom; name mapping; structure memory; microprocessor; functional
specialization; keyword transformation unit; structure memory; structure memory
information processor; index transformation unit; mass memory; database command
track information processor: security filter processor. _—
20. ABSTRACT (Continue on reverse aide If necessary and identify dy block number)
This is the last of the three-part series which deals with the design of
a back-end computer known as the database computer (DBC). The concepts and
capabilities of the DBC were presented in Part 1. Schematically, the DBC
architecture consists of two loops of memories and processors, namely, the
structure loop and the data loop. The structure loop is composed of four com-

DD . :2:”73]473 EDITION OF 1 NOV 65 15 OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

A0 7

o

ponents: the structure transformation unit (KXU), the structure memory (SM), 5
the structure memory information processor (SMIP) and the index translation

\€>

ECURITY CLASSIFICATION OF THIS PAGE(When Pata Entered)

\imit (IXU). The design philosphy, implementation details and hardware organi-
| zations of the structure loop components were documented in Part “uz

In this report, the design of the data loop is presented. In addition,
the database command and control processor (DBCCP), which regulates the opera-
tions of both the structure and data loops and interfaces with the front-end
computer systems, is also presented. The DBCCP processes all DBC commands re-
ceived from the front-end computer systems, schedules the execution of the
commands on the basis of the command type and priority, enforces security on a
selective basis, clusters records to be stored in the DBC and routes the re-
sponse set to the front-end computer systems., A number of table memories and
processors is incorporated in the DBCCP. Thdﬂcajor memories include the com-
mand argument table memory, the file informatidn table memory, the security
information table memory, the command status table memory and the database re-
! sponse memory. The main processors consist of the structure-loop-interface
processor, the command-check-and-response processor and the command-translation
{ processor. Although the design of the DBCCP is straightforward, the details
{ are cather involved. To this end, we attempt to provide a comprehensive pre-
sentation in Section 2.

’ The data loop consists of two components, the mass memory (MM) and the
security filter processor (SFP). The design of the MM (presented in Section 3)
| 1is based on the concept of partitioned content-addrizssable memory (PCAM). In
‘ this PCAM implementation, a partition is a cylinder of a moving-head disk unit
i The cylinder is made content-addressable by incorporating track information
processors (TIPs) (one for each track of a cylinder) for concurrent processing
of the tracks of a cylinder. Furthermore, the disk read/write mechanism is
modified to allow parallel read/write of all the tracks of a cyliader. The
choice of a processor-orienied implementation using TIPs vs. a memory-oriented
implementation using a lafge cylinder buffer is argued. Management of MM or-
ders, and their execution by the TIPs are discussed. Garbage collection and

! space reclamation are also discussed in considerable details in terms of com-
% ' paction and update operations of the MM. By far the most powerful operation of
4 the MM is the search and reirieve operation, The MM is capable of searching
: for and retrieving rz2cords which satisfy queries. Because the records in the
% MM are addressed by content and carry no address vnointers, they need no up-
. dating as long as the records exist in the database. This is true even if
: = the security specifications of the database change frequently.
2 ‘ ' The security filter processor provides the type B security enforcement
and sorting. The type B security enforcement mechanism is provided for those
users who do not take advantage of the type A security mechanism based on the
concept of security atoms. The type A security incurs less security overhead.
However, it needs the user's cooperation. First, the user must understand the
security atom concepts; then, the user must convey the security requirements
in terms security attributes of his data records. On the other hand, the type
B security mechanism does not require such user cooperation. Nevertheless,
posterior checking of response data against full file sanctions is an expensivd
undertaking. The sort mechanism enables the response data to be ordered by
values of certain attributes. This is usually the way that the user applica-
tion programs would like to receive the records in the front-end computer
systems. The design of the SFP is presented in Section 4.

Finally, in Section 5 we have some concluding remarks. The conclusion
of the DBC design has prompted us to undertake a new series of studies. 1In
the new series, the feasibility of the DBC in supporting hierarchical, network
and relational data models and their related systems will be presented.

Vo s

< NN

q
4L i e

.
" 1 : SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

e I A L e

i e R R e ek

PREFACE

This work was supported by Contract N00014-75-C-0573 from the

Office of Naval Research to Dr. David K. Hsiao, Associate Professor of

. | Computer and Information Science, and conducted at the Computer and

| Information Science Research Center of The Ohio State University. The
Computer and Information Science Research Center of The Ohio State

ags University is an interdisciplinary research organization which consists

; of the staff, graduate students, and faculty of many University departments
and laboratories. This report is based on research accomplished in
cooperation with the Department of Computer and Information Science. The
research contract was administered and monitored by The Ohio State

University Research Foundation.

g s S e

R Ll
. L4 P ’
L o ¥4 kel §

.:. &

-

v VN

TABLE OF CONTENTS

ABSTRACT

INTRODUCTION
THE DATABASE COMMAND AND CONTROL PROCESSOR (DBCCP)

2.1 The DBC Data Model Revisited
2.2 The Physical Organization of the DBCCP
2.3 DBCCP Data Structures and Command Formats
2.3.1 Basic Data Formats
2.3.2 Command Formats
2.3.3 Table Structures in the DBCCP
A. The Command Argument Table (CAT)
B. File Information Table (FIT)
C. User Information Table (UIT)

D. The MAU Space Information Table (MAUSIT)

E. The Security Information Table (SIT)
F. The Command Status Table (CST)
G. The Database Response Memory (DRM)
2.4 The Command Check and Response Processor (CCRP)
2.4.1 Security Related Processing
2.4.2 Command Execution
2.4.3 Scheduling and Interrupt Handling
2.5 The Command Translation Processor (CTP)
2.5.1 MAU Selection and Command Scheduling
2.5.2 Command Translation
2.5.3 Interrupt Handling in the CTP
2.6 The Structure Loop Interface Processor (SLIP)
2.6.1 Data Structures in the SLIP
2.6.2 The SLIP Logic
A. Request Initiation
B. Interrupt Handling
C. Service Algorithms
2.6.3 Hardware Organization of the SLIP

Page

13
15
15
17
34
34
35
38
38
41
45
48
48
i) !
53
61
63
63
65
69
70
70
71
75
9
79
80

e ST AL

THE MASS MEMORY (MM)

The Design Philosophy

The Organization of the MM

The Mass Memory Controller (MMC)

s

Interface Processor (IP)

The Database Object Descriptor Table Memory (DODTM)
Order Queues (0Q)

The IP Logic

The Mass Memory Monitor (MMM)

Mass Memory Deletion Table (MMDT)

The MM Logic

The Hardware Organization of the MMC

The Track Information Processors (TIPs)

3.4.1 The Three Components of a TIP

3.4.2 The DIP Logic

3.4.3 The CIP Logic

The Track Multiplexer/Demultiplexer (TMD)

The Drive Selector (DS) and the Disk Drive Controllers (DDCs)
3.6.1 The Drive Selector (DS)

3.6.2 The Disk Drive Controllers (DDCs)

-

THE SECURITY FILTER PROCESSOR (SFP)

R

Design Considerations
4.1.1 Security

e

o

4.1.2 Sorting
Implementation Considerations

The Security Enforcement Module (SEM)

TR

Processing Element
Memory Controller (MC) and Query Memory (QM)
Sort Module (STM)

&

4.3 Some Comments on the SFP Implementation

e SIS

CONCLUDING REMARKS

REFERENCES

Page

83
84
85
88
88

94
98
100
100
100
103
105
107
Bl |
115
116
120
120
120

123
123
123
126
127
127
127
131
133
136

137

138

:

v

PRI s -

(4 = Sw Sul e e S R RS TR R S GaE SR SR Gae R e

R —

v NN

oonet®) T i ke

1. INTRODUCTION

This is the last of the three~part series which deals with the design
of a back-end computer known as the database computer (DBC). The concepts
and capabilities of the DBC were presented in Part I [1]. Schematically,
the DBC architecture consists of two loops of memories and processors, namely
the structure loop and the data loop as depicted in Figure 1. The structure
loop is composed of four components: the keyword transformation unit (KXU),
the strueture memory (SM), the structure memory information processor (SMIP)
and the index translation unit (IXU). The design philosophy, implementation
details and hardware organizations of the structure loop components were doc-
umented in Part II [8].

In this report, the design of the data loop is presented. In addition,
the database command and control processor (DBCCP), which regulates the op-
erations of both the structure and data loops and interfaces with the front-
end computer systems, is also presented. The DBCCP processes all DBC commands
received from the front-end computer systems, schedules the execution of the
commands on the basis of the command type and priority, enforces security on a
selective basis, clusters records to be stored in the DBC, and routes the re-
sponse set to the front-end computer systems. A number of table memories and
processors is incorporated in the DBCCP. The major memories include the command
argument table memory, the file information table memory, the security infor-
mation table memory, the command status table memory and the database response
memory. The main processors consist of the structure-loop-interface processor,
the command-~check-and-response processor and the command-translation processor.

The command argument table contains actual parameters of the incoming
commands such as queries, clustering conditions and records for insertion.
For each active file, a file information table maintains information about
mass memory space allocation to the file and certain security related infor-
mation about the file. The security information table contains file sanctions,
atomic privilege lists and security descriptors. The command status table keeps
track of the state of execution of the outstanding commands, the whereabouts of
the command arguments, and the command priorities. The database response memory
contains the output from the data loop. The command-check-and-response processor

is capable of receiving commands from the front-end computer systems, responding

to their interrupts, performing security checks on certain commands, and forwarding

authorized response data to the front-end systems. The command translation pro-

cessor converts each access command sent by the front-end systems into a set of

1

NR—

SRR

._,.
= e T 7L Sl .

Information Path
——=~ Control Path

VAl

SMIP <

IXU

from PES

Structure
Loop

e
to PES

MM: Mass
Memory
Security
Filter
Processor
Program

Execution
System

SFP:

PES:

KXU

KXU:

SMm:

SMIP:

Figure 1.

Architecture of DBC

IXU:

Data Base
Command &
Control
Processor
Keyword
Tronsformotio“
Unit

Structure
Memory
Structure
Memory
Information
Processor
Index

Translation
Unit

e i i il

—

SUPEE——— .

mass memory orders for subsequent access to content-addressable partitions
known as the minimal access units (MAUs). The structure-loop-interface pro-
cessor initiates requests for information from the structure memory and re-
sponds to interrupts generated by the structure loop components (principally
by the IXU). Although the design of the DBCCP is straightforward, the details
are rather involved. To this end, we attempt to provide a comprehensive pre-
sentation in Section 2,

The data loop consists of two components, the mass memory (MM) and the
security filter processor (SFP). The design of the MM (presented in Section 3)
is based on the concept of partitioned content-addressable memory (PCAM). 1In
this PCAM implementation, a partition is a cylinder of a moving-head disk unit.
The cylinder is made content-addressable by incorporating track information
processors (TIPs) (one for each track of a cylinder) for concurrent processing
of the tracks of a cylinder. Furthermore, the disk read/write mechanism is modi-
fied to allow parallel read/write of all the tracks of a cylinder. The choice
of a processor-oriented implementation using TIPs vs. a memory-oriented imple-
mentation using a large cylinder buffer is argued. Management of MM orders, and
their execution by the TIPs are discussed. Garbage collection and space recla-
mation are also discussed in considerable details in terms of compaction and up-
date operations of the MM. By far the most powerful operation of the MM is the
search and retrieve operation. The MM is capable of searching for and retrieving
records which satisfy queries. Because the records in the MM are addressed by
contents and carry no address pointers, they need no updating as long as the
records exist in the database. This is true even if the security specifications
of the database change frequently.

The security filter processor provides the type B security enforcement and
sorting. The type B security enforcement mechanism is provided for those users
who do not take advantage of the type A security mechanism based on the concept
of security atoms. The type A security incurs less security overhead. However,
it needs the user's cooperation. First, the user must understand the security
atom concept; then, the user must convey the security requirements in terms
security attributes of his data records. On the other hand, the type B security
mechanism does not require such user cooperation. Nevertheless, posterior checking
of response data against full file sanctions is an expensive undertaking. The
sort mechanism enables the response data to be ordered by values of certain attri-
butes. This is usually the way the user application programs would like to

receive the records in the front-end computer systems. The design of the SFP is

presented in Section 4.

et e bade e

Finally, in Section 5 we have some concluding remarks.

the DBC design has prompted us to undertake a new series of studies.

new series, the feasibility of the DBC in supporting hierarchical, network and

The conclusion of

relational data models and their related systems will be presented.

In the

¥

W ey

e i e

N 3

=5m

2, THE DATABASE COMMAND AND CONTROL PROCESSOR (DBCCP)

Since the DBC is designed to be a back-end computer in an integrated
information and computing system consisting of one or more front-end
computers, the user of such a system does not directly interact with the DBC.
Instead, the DBC receives all its commands from the front-end computers which
interface with the users. These systems are collectively known as the

program execution system (PES). The existence of the PES has some

implications for the design of the DBC. In particular, we can assume that
commands received by the DBC do not have syntactic errors. We can also demand
certain rigorous commands formats from the PES; such demands would be
unreasonable if the DBC had to interact with users directlv® Nevertheless,
considerable bookkeeping chores have to be performed by th: DBC. These chores
relate primarily to keeping track of the commands and their arguments as they

are processed by the various components of the DBC. The database command

and control processor (DBCCP) is responsible for carryins out these and other

chores in a manner that will maximize the utilization of the components of the
DBC and ensure the response requirements as set by the database administrator.

Basically, comgauds received from the FES (in predetermined formats),
are recognized by the DBCCP as either access commands or preparatory commands.
Access commands are those that require the DBC to access the mass memory;
preparatory commands are those that precede and follow access commands and
convey important housekeeping information. Access commands are further
divided into three categories - those that undergo the type A security check,
those that undergo the type B security check and those that undergo no
security check. Type A security checks use the concept of security atoms
[1,2,3] to enforce security; type B security checks use file sanctiors [2]
to enforce security. The category of access commands which do not
require any security checks, is used for loading the database with records
of a new file. In this case, the DBCCP merely makes sure that the user has
the right to create the file.

After undergoing security checks, access commands are translated into
orders that can be processed by the MM. During translation, an access command
involving insertion activates a clustering mechanism in the DBCCP. A record
to be inserted is ''clustered" according to a set of clustering predicates
(called clustering conditions in [2]) specified by the file creator. These

clustering predicates enable the DBCCP to determine the MAU into which the

record must be inserted.

oo (bl chne b g et

I s

RS S

B RN AT Y

Records retrieved by the MM, as a result of the execution of orders seut

by the DBCCP, are transmitted to the SFP. Here, the records may undergo
security checks if type B protection has been specified for the user on
the file to which thé records belong. It is important to note here the
difference in processing for the two types of protection mechanisms. In
specifying the type A protection for a user of a given file, the creator
of the file tacitly assumes that the file can be protected in terms of record
aggregates called security atoms. [We shall give a more rigorous definition
of security atoms later]. Such a specification enables the DBCCP to check
for security before the access is made. The type B protection mechanism
is based on full file sanctions and can only be carried out after the access
is completed. Type B protection is enforced by the SFP. Depending on
user requirements,a file creator may specify the type A protection for one
user and the type B protection for another. The SFP can also be instructed
by the DBCCP to sort records that are retrieved by the }MM. The sorting is
done on the basis of values of some attributes specified by the user. Figure
2 illustrates che command 'paths'discussed above.

In summary, the DBCCP is charged with the following functions:

* Accepting commands and their arguments from the PES.

* Performing security checks on commands whenever possible.

* Clustering records according to user requirements.

+ Interfacing with the structure loop components.

+ Translating PLS commands into MM orders.

« Interfacing with the security filter processor (SFP).

* Maintaining various information tables needed to perform the

above functions.

In the following sections, we first discuss some of the subtleties of the
DBC data model. Although the main concepts and facilities were discussed in
Part I, it is necessary to expand on the discussion here in order to gain a
fuller understanding of the data structures and algorithms of the DBCCP.
We then propose a physical organization of the DBCCP. This is followed by
a discussion of the data structures in the DBCCP and the logic of the

components of the DBCCP.

2.1 The DBC Data Model Revisited
As mentioned in Part I, the DBC directly supports the attribute-based

data model [1,3,4]. An important unit of information within the DBC is

R ———r—

=
¢
|
!
| Database Command and Control Processor (DBCCP)
- Security ik . Clustering Noate
E Check \ // Mechanism
E | Access Commands with / Insert \
{ Type A Protection // Commands \/.-
Access \ Access Commands with / N\ Non-insert /
e Commands‘ Type B Protection and / \,Commands /o
\\ Load Database Commands ; - ool .
Preparatory
~= Commands
'—— DBCCP Translate &
Housekeeper
| a
| |
. [H
j l
|
} Orders
Security Filter Processor (SFP) j
b . P | Security |____Type |
‘». ; - Check B
- ata
L | SR | Mass
4 b Data Memory (MM)
i Type A
! Data
1
|
! Figure 2. Command Execution in the Data Loop
4

a keyword which is an attribute-value pait.1 Information can be stored
into or retrieved from the DBC in terms of records; a record is made up
of a collection of keywords and a record body. The record body is composed
of a (possibly empty) string of characters.? Records in the DBC are
subject to the following restriction: No two keywords in a record may
have the same attribute. This restriction is introduced to avoid a certain
logical ptoblem.3 At first glance, this may appear to be a severe restriction
on the use of keywords. HKowever, this is not the case. Since any multiple
occurrence of an attribute within a record can be mapped on to a set of
distinct attribute surrogates by the PES, the user can continue to use such
records.

Records may be grouped into files for reasons of accessibility, security
and ownership. The DBCCP recognizes several types of keywords. Keywords

are classified as directory type or non-directory type according to whether

they are stored in the SM or not. Directory keywords are classified as
simple, security or cluster keywords. Security keywords are used in the
formation and recognition of security atoms. Cluster keywords are used to
identify clusters [2].

A keyword predicate is of the form <attribute, relational operator, value>.

A relational operator could be one of (=, #, >, >, <, <). A keyword K is

said to satisfy a keyword predicate T if a) the attribute of K is

Note 1. The definition of an attribute is largely intuitive. It can mean a
class, a quality, a characteristic, etc. In the attribute-based
model, an attribute in left undefined in order to encompass a wide
spectrum of meanings. A keyword is represented as (Attribute =
value).

Note 2. The definition of a record given here is a slight extension of the
definition given in Part I. This extension concerns the inclusion
of a record body in a record. In practice, a file creator may not
wish to specify his entire record as a set of keywords, especially
if he is certain that he will not query the file based on the contents
of the record body.

Note 3. Consider the query ((PART=NAIL)A (PART#NAIL)). If a record has two
keywords PART=NAIL, PART=BOLT, then this record will satisfy (see
definition of a record satisfying a query later in the text) the
above query although the query is illogical. This problem is
eliminated by redefining the record as containing keywords
PART1=NAIL, PART2=BOLT. Then, the above query will not retrieve
the record. It can be shown that the record will gatisfy no
illogical query, while enabling a user to specify any logical
query. It should be noted that in the above examples although
PART1 and PART2 are distinct attributes the domains of the values
of PART1 and PART2 may be identical.

This problem was first brought to our attention by Ron Fagin [7].

(ki 4N, L e Gl 2% i ’ . Db sl o ol

¥ sty oo O

b

1 T Samemay WA oore

L.

N ISR Neemior

¥ e |

T

VAT

SRS ¢ GRS

i ———

e)

identical to the attribute in T and b) the relation specified in j
the relational operator of T holds between the value of K and the value '
in T. A query is a boolean expression of keyword predicates in the
disjunctive normal form. Thus, a query is a disjunction of conjuncts.

Such conjuncts are known as query conjuncts. A query conjunct, of course,

is a conjunction of keyword predicates. A record in a file satisfies a

query conjunct, if each and every predicate in the query conjunct is

satisfied by a keyword in the record. A record in a file satisfies a query if it

satisfies at least one query conjunct in the query. To give an example of
the types of queries that may be recognized by the DBC, consider the
following:

((DEPT="TOY') A(SALARY<10,000)) v((DEPi="'BOOK"') A(SALARY>50,000))

If the above query refers to a file of employees of a department store, then
it will be satisfied by records of those employees working either in the toy
department and making less than 10,000, or working in the book department and
making more than 50,000. Notice that the query is meaningful only for the 1
specified file. Queries, as defined above, are used not only to retrieve i
records from the database, but are also used to specify protection requirements
and clusering conditions. Let us now discuss how these are achieved in the

DBC model.

When a user declares his intent to access a file, the PES provides

the DBCCP with the database capability of the user with respect to that

file. A database capability is a couple of the form <(file name, default

access descriptor),file sanction set>. A file sanction is a conjunct of

keyword predicates and an access descriptor. A file sanction merely specifies
that records which satisfy the conjunct can be accessed by the user in
accordance with the access descriptor which encodes the types of access that
are permitted. The default access descriptor specifies the accesses allowed
on records not satisfying any of the file sanctions.

Consider now the type A protection. At the time the file is created,
a set of security descriptors is provided by the file creator. A security

descriptor generally specifies a range of values of an attribute such that
all the values in the range have the same protection requirement. An

attribute occuring in a security descriptor is known as a security attribute

and a security attribute and value pair is a security keyword if the value is

ot o 4.—-—_1-:‘

-10-

in the range specified in the security descriptor. Such a security keyworad
f is said to be derived from the security descriptor.

As records of a file are loaded into the DBC as a part of the file
creation process, the DBCCP extracts the security keywords of the records
and determines the security atoms to which the records belong. A security
atom defines a set of records each of whose security keywords is derivable
from a unique set of security descriptors. By the end of the creation
process, the DBCCP would have built a set of security atoms. Furthermore, no two

i security atoms can have a record in common - an important property of the
security atom concept.

For a user who has been provided with the type A protection, the file
J sanctions of his database capabilities contain only security keyword

1 predicates. [A security keyword predicate is a predicate whose attribute

' is a security attribute as defined above]. When the user accesses the file,
the associated file sanctions are used to determine the access privileges
of the user on each of the security atoms. An access query can then be
accepted (or rejected) depending on whether the access type is permitted
(or denied) on the atoms referred to by the query. We note that a file
| sanction can affect more than one security atom and a security atom can be
g affected by more than one file sanction. When more than one file sanction
affects a security atom, then the intersection of the access descriptors
of all such file sanctions is considered. The result of such an intersection

defines the (atomic) access privilege (list) of the user on that atom.t

Note 1. The notion of an atom defined in terms of minterms of keywords
for grouping of records having common keywords is due to Wong
and Chiang [5]. McCauley [3] applied it to describe security
sensitive information and called such atoms security atoms.
However, McCauley's security atoms had severe limitations when
used in real-world applications. The number of atoms could easily
grow very large. The reason for this lies in his method of
defining security atoms. Each security aton was defined by a
2 unique set of security keywords occuring in the records of a file.
i We shall now show how such a definition can cause an atoms-
u explosion (not an atomic explosion!). Suppose, for example, a
! database creator specifies that all records which have a security
attribute, called salary, with values between 10,000 and 100,000 are
to be protected in a certain way. Then, if salary were the only
security attribute, then we could potentially have 90,000 security
{ atoms., It is easy to see that if there are two such (continued)

iy

N X

Let us recapitulate all that we have said so far. There are four pieces

of information related to the type A security. First, security descriptors
are provided by the creator of a file before the file is created. These
descriptors specify what to look for in the records as they are loaded into
the DBC. Second, a list of security atoms is created by the DBCCP by
determining the unique subsets of the security descriptors satisfied by the
security keywords of the records. Third, when a file is to be accessed by
a user, his file sanctions are made known to the DBCCP. By comparing the
security atoms and the file sanctions, the DBCCP creates an atomic access privilege
list AAPL for the user of the file. The AAPL is the fourth piece of
security related information maintained by the DBCCP.
In the case of the type B protection, file sanctions are not
constrained to be specified in terms of security keyword predicates. It
is, therefore, meaningless to attempt to build atomic privilege lists in
cases where the user has the type B protection. Without
AAPL, the DBCCP cannot carry out security checks before the accesses are
made (A request for record insertion is an exception to the above statement.
This exception is, however, handled by the security filter processor).
Let us now turn to the clustering strategies provided by the DBCCP.
Clustering is done on two levels in the DBCCP. First, the allocation of
MAUs to files is carried out in such a way, that no two files share an MAU.
How does this scheme help performance? To answer this question, we observe ;
that if files were to share MAUs, then it is likely that records of a file

would tend to be dispersed over a larger number of MAUs than would be the

(continued) security attributes, the number of atoms would be
astronomical indeed. In general, the maximum number of security
atoms in McCauley's system would be IIN, where N, is the
number of security keywords of the i-thlsecurity attribute.

In the DBC, the concept of security descriptor has been 5
explicitly introduced to limit the number of security atoms
to reasonable levels. The database creator can now define atoms
to be a collection of records which have certain attributes whose
values are within a range indicated by a security descriptor.]
He specifies a particular keyword value in a security descriptor !
only if he needs to protect a record with that keyword value in a
way different from records with other neighborhood values. Consider,
the example used above. The security descriptor would specify the
range 10,000 < Salary < 90,000, and the system would construct only
one security atom if this is the only security sensitive information
in the records. 1In general, the maximum number of security atoms
is N! where N! 1is the number of security descriptors specified
for the i-th secu%ity attribute.

-12- J

case if MAUs were not shared among files. Therefore, it is reasonable to

expect that queries for record retrieval would result in access to a larger
number of MAUs if MAUs are shared among files than if they are not. Since
performance would undoubtedly improve if the average number of accesses 3
per query is kept low, we conclude that allocating entire MAUs to a file
is a sound decision. We may consider the above strategy, a file-level

clustering strategy. The second level of clustering is based on the

; . principle of enlisting the cooperation of the database file creator to 1

F | determine the position of a record within a set of MAUs allocated to a file.

4 Since the file creator is not, in general, aware of the addresses of MAUs |
i allocated to his file, the DBCCP allows the creator to specify conditions 3
| which may be satisfied by one or more records already existing in an MAU, 3
’ in order that a new record can be inserted into that MAU. These conditions —

] have been called clustering conditions in Part I [2]. A creator of a file E

: may elect not to specify clustering conditions for his records. In this 4

case, the DBCCP will assign records to MAUs in an arbitrary manner.

Two types of clustering conditions were identified in [2]. The mandatory

| clustering condition (MCC) is a query which must be satisfied by one or more

! records existing in an MAU in order that a new record may be inserted in that
i MAU. Each record for insertion may be accompanied by at most one MCC. The
1 PES usually uses the same MCC with each of a group of records in order to

ensure that all member records of the group are inserted into the same MAU.

‘ - Frequently, more than one MAU may each have one or more records which
satisfy the MCC accompanying a record. In such cases, we need a

mechanism to choose one of the MAUs in which to insert the record. Such

Pale s Cacmed ot oo
\

AR

a mechanism is provided by the optional clustering conditions (OCCs).

N

.;. ;‘_’

R *
e 80+ Sl G

An optional clustering condition is also a query similar to the MCC.

L&

However, a record may be accompanied by several OCCs. With each of the 0CCs,

TR PRY
o

a weightage is associated. The insertion process then determines the MAU in
. which the record is to be placed as follows: The set of MAUs each of which §:
£ has at least one record satisfying the MCC is first determined. For each of '
the MAUs in this set, a cluster weight is calculated by summing the weights
associated with those OCCs that are satisfied by one or more records already
’ i existing in the MAU. The record to be inserted is then placed in the MAU
! E whose cluster weight is the greatest.

In order for the above clustering mechanism to work, we need to determine

R A AR, S RIS BT : Stpmeragry " Py

i

r 'T!":". e

e SS——

S —

if there exists records in an MAU which satisfies the clustering conditions.
Obviously, if we need to access the MAU for this prupose, we would have lost
most of the performance advantage gained due to clustering records. The

situation can be remedied by introducing the concept of a clustering keyword.

Certain attributes of a file may be designated clustering attributes.

Keywords whose attributes are clustering attributes are termed clustering
keyword. A cluster is then defined as a set of records all of which have
the same set of clustering keywords. Each record in the file will then
belong to one and only cluster. We now impose the restriction that
clustering conditions (MCC and OCCs) must be specified in terms of cluster-
ing keywords. With this restriction, we can use the SM to determime if an
MAU has records satisfying a clustering condition. To do this, we store in
the SM for each keyword known to the DBC, the set of cluster identifiers of
the clusters, some of whose records contain the keyword. Now in case of
clustering keywords, either all of the records in a cluster will have the
keyword or no record in the cluster will have the keyword. Since we have
restricted clustering conditions to be composed of clustering keywords

only, it is clear that either all records in a cluster will satisfy a cluster-
ing condition or no record will satisfy the condition. Thus, if we retrieve
from the SM the set of cluster identifiers (and the MAUs in which the
clusters reside) for each of the clustering keyword in clustering condition
and intersect these sets, we would have obtained the addresses of the MAUs

which have one or more records satisfying a clustering condition.

2.2 The Physical Organization of the DBCCP
In Figure 3 the physical organization of the DBCCP in shown. The DBCCP

is organized into three processors - the structure loop interface processor

(SLIP), the command check and response processor (CCRP) and the command

translation processor (CTP); and several table memories accessed by one

or more of the processors. Some of the important table memories are shown

in Figure 3. These are the command argument table memory (CATM), the security

information table memory (SITM), the database response memory (DRM), the

command status table memory (CSTM), and the file information table memory

(FITM). These tables contain most of the data structures manipulated by
the three processors.
The SLIP is responsible for interfacing with the components of the

structure loop (see Figure 1). It accepts service requests from the CCRP

“V‘

To/From To/From
the IXU the KXU
Structure Loop

|
|
|
|
,. |
(;Cpmmah&-A%é@hen%—aﬁd—ééyﬁé;ﬁ%éfiédp-Response Bug},

5

CATM |
| To/From
! the PES {7/ CTP |
| |
] STTM FITM l
l —_—" csT™ | |
A I TR R TN ‘
! X jcation\ B
L ARSI NN SRR
§ S e e e G
4 To/From A AN To/From {
i the SFP N\ Data Loop) the My 1B
{ f CATM: Command Argument Table Memory
: | CSTM: Command Status Table Memory
|
Memories FIt'M: File Information Table Memory
DRM: Database Response Memory
SITM: Security Information Table Memory
{ CCRP: Command Check and Response Processor
[::I Processors CIP: Command Translation Processor
1 SLIP: Structure Loop Interface Processor

Figure 3. Physical Organization of DBCCP

e

‘ o5 .
SNVEENE S S

NNy

and CTP, and issues appropriate commands to three of the four components of

the structure loop, namely, KXU, SM and IXU. The data received from the
loop as a result of the execution of these commands, are passed back to the
CCRP or the CTP. In order to ensure that the components of the structure
loop are utilized to the maximum, the SLIP must be capable of handling
multiple service requests and of matching service requests with response
data as soon as they are made available by the structure loop.

The CCRP is responsible for receiving commands from the PES, placing
the arguments in the CATM, performing security checks if the type A
protection has been specified, and transmitting response data from the data-
base response memory to the PES. In applying security checks the CCRP
requests the services of the SLIP. Response data in the database response
memory is made available by the SFP.

When the CCRP has completed the processing of a command, the CTP
translates each of the command into a set of MM orders and transmits these
orders to the MM. The status of a command in the CSTM is used to indicate
when the CCRP has completed the processing of a command. It is important
to note that the three processors operate asynchronously and communicate
with each other only via status table. Such an arrangement makes it
possible for the three processors to operate concurrently at the maximum
possible rate.

In the sections that follow we first discuss the data structures
maintained by the processors in the table memories. We then present the
algorithms carried out by each of the processors. Data structures local to

the processors are also described.

2.3 DBCCP Data Structures and Command Formats

2.3.1 Basic Data Formats

The basic building block of query conjuncts, clustering conditions, and
file sanctions is the keyword predicate. A keyword predicate is of the form
<attribute, relational operator, value>. The format of a keyword predicate
is shown in Figure 4. Keywords occuring in records also use the same format,
with bits 3-7 set to zero. The format of a query conjunct is shown in
Figure 5. This format is used in queries for retrieval/deletion, in file
sanctions and in clustering conditions. The format of a record as
transmitted by the PES is shown in Figure 6. The format of a query in the

disjunctive normal form and the format of a clustering condition are shown

PP T I iSRS i TRl i ok,

et 1 L

X e <

AR

16~

r~Directory Entry Keyword
Indicator

/" Security Keyword Indicator

/7 Cluster Keyword Indicator
,-Negated Keyword //'Value

00 Fixed Point Number o

01 Short Floating Point i

o Indicator /, Type = 10 Long Floating Point
“7'>' Predicate i
= 11 Alphanumeric
Indicator // i J
4 %
0 24 55,458 64 J
Attribute ‘
Yndentitias Reserved Length Value l
‘ ~._'S' Predicate Indicator 3
\\\ “'<' Predicate Indicator .
o]
“'>' predicate Indicator -
Figure 4. Format of a Keyword Predicate (T) as Received by the DBCCP
-
-
of Bytes # of T T T T 4]
in Conjunct |[Predicates, n 1 2 3 n
0 15 16 23

Figure 5. Format of a Predicate Conjunct (T1

Received by the DBCCP

Argument

///—’Type = Record

AT Ko «AT) as
n

2

Figure 6. Format of a Record Received by the DBCCP

of Bytes { # of Key- Body of
o in Record words, n !Kl K2 Kn Record
0 78 23 24 31

‘.

PRESSES ¥ Sl

17

in Figures 7 and 8, respectively. There are two types of file sanctions
recognized by the DBCCP. The first is used in the case whenr the type A
protection is specified for the user. The second type is used in the case
when the type B protection is specified for the user. These are shown

in Figures 9 and 10. An access descriptor is associated with a file sanction.
The format of an access descriptor is shown in Figure 11. All descriptors
except the default access descriptor have their fiie privilege indicators
turned off. The file privilege indicators in a default access descriptor
(associated with a database capability) are used to indicate the user's
access privileges to the entire file. Security descriptors, which are sent
by the PES prior to the creation of a file have the format shown in Figure
12. A security descriptor plays a pivotal role in the determination of
security atoms. We shall have more to say about security descriptors when
we describe the algorithms in the CCRP. Pointers (see Figure 13) are used

by the PES to retrieve information from a particular area of the MM.

2.3.2 Command Fofmats

There are seventeen basic commands which are recognized by the DBCCP. This
command set is by no means exhaustive, but is, nevertheless, complete in
the sense that it enables the PES to take advantage of all of the facilities
that are provided by tﬁe DBC. 1In any particular implementation, this command
set may be augmented for ease of use or to correspond to additional facilities
incorporated in the DBC. All the commands have the general format <command
ID, command code, priority, user ID, argument set>. The command ID is used
to uniquely identify a command as it is processed by various components of
the DBC. Since we do not anticipate that the DBC will ever process more than
256 commands at a time, this field is chosen to be 8 bits. The command code
is used to indicate the service needed. The priority field indicates the ;
level of service requested. Seven levels of priority (1-7)’may be specified.
The higher the priority number the better the service time'is likely to be.
The priority numbers may be used to distinguish batch jobs from interactive
requests. The user ID and file ID identify the user requesting the service
and the file upon which the request is to be carried out. The argument set
carries arguments which are needed to identify the data within the file

or to provide information about the file.

The open-database-file~for-creation command is required to be sent to

the DBCCP before records of the file are loaded into the DBC. See Figure 1l4.

{ Th

G e

3 il i ot s ik
v e i

i SIS et e

v NNy

Argument Type:

Z/r---Query

—~— 1 T
of Bytes # of Con- i i

001 in Argument | juncts, k Q1 QZ i S e P

0 78 23 24 31 32

Figure 7. Format of a Query Received as an Argument of a PES Command

Argument Type:
~— Clustering Condition

I/,
of Bytes # of Con-
i in Argument | juncts, k Ql QZ Qk
0 78 23

Figure 8. Format of a Clustering Condition Received as an Argument of a PES Command

TR

Ca g B i il
e U] Tl e

Argument Type:
— Type A File Sanction

of Bytes Access Conjunct of Security

005 in Sanction |Descriptor Keyword Predicates

0 78 23 24 39 40

Figure 9. Format of a Type A File Sanction Consisting of a Conjunct
of Security Keyword Predicates and an Access Privelege of

16 Bits

Argument Type:

/<//f—-Type B File Sanction

-

006 # of Bytes Access Conjunct of
in Sanction |Descriptor Keyword Predicates
0 78 23 24 39

Figure 10. Format of a Type B File Sanction Consisting of a Conjunct
of Keyword Predicates and an Access Privilege Set of 16 Bits

’ - -
SRS L ——

(WS

- Replace

‘Retrieve within Bounds
.~ Retrieve Any
._ Delete Any

.- Delete File
. Retrieve MAU Addresses
Access to Parts of a File

P

LI e 13 @ - IS

L ek -

Access on File Basis 7 ////

:///&»Retrieve by Pointer ‘
.. Retrieve by Query with Pointer g

. Delete bv Query

~_Delete by Pointer

<. Insert

A '1l' in a bit position indicates a right to perform the access,

Note:
while a '0' indicates a denial of the right.

Figure 11. Format of Access Descriptor

Bl RN KT T ey

Value Type

| 00 Fixed Point

11 Alphanumeric

S —————

N

—ta

al i :."_ . e

e S ST SRS

. Security
///r— Argunént Typas Descriptor
of Bytes Security Lower | Upper
003 in Argument |Descriptor ID L eeefhute 1 Bound | Bound
78 23 24

Figure 12.

“ " Security
Descriptor < 1

" 68-71 Not used

For Security Keyword
Specification

For Security Range
Specification

For Specifying that
all Keywords of the
Attribute are to be
Considered Security
Keywords

Format of a Security Descriptor Received
as an Argument of a PES Command

e i ks ST

. 01 Floating Point (short)
10 Floating Point (long)

b

SE——.

. ’
R

NNy

///-Argument Type = "Pointer"

~y
007 | Record 1ID MAU AddressiCluster ID (Security Atom
0 78 23 24 39 40 49 50 59

Figure 13. Format of a Pointer Used in a Retrieve-by-Pointer Command

T T

Command |Command ' ' ‘
D Code Priority|User ID |FileID | Arg 1 2 Arg 2 !Arg 3

7 8 12 13 15 16 31 32 47 48 63 64 71 72

Arg 1: Number of -Attributes Needed (16 Bits)
Arg 2: Number of MAUs Required Initially (8 Bits)
Arg 3: Additional MAUs Required (8 Bits)

Command Code = 01

Priority: 1-7 (Higher priority numbers command faster service)

Figure 14. Format of Open-Database-File-for-Creation Command

79

IR T R ST RS R s ks

1
|

This command provides information on the number of attributes the file is

to have, the number of MAUs that need to be allocated initially, and the
number of MAUs that may be allocated if the initial allocation is
insufficient. Two other commands are needed to provide information on
attributes and security descriptors. See Figures 15 and 16. Once these
commands are given, the DBCCP is ready to accept records to be loaded
into the DBC. This is done by means of the load-record command. See
Figure 17. It should be noted that records loaded by this command are not 1
f subjected to a security check. This is because the right to create a file
is checked at the time of the open-database-file-for-creation command, and
the load-record command is considered a part of the creation process. The

close-database-file command (See Figure 18) is used to indicate that the

e ——

file may be deactivated, i.e., to indicate that there will be no more
commands from the user on the file.

Since the processing for creation of a database file is different from
that for accessing a file, a separate command called the open-database-file-
for-access (See Figure 19) is provided. This command assumes that a file
‘ whose ID is an argument of the command has already been created and is
{ known to the DBCCP. There are certain restrictions when a file is opened
| either for creation or for access. During creation, a user may not issue
‘ any access commands. The only commands permissible are the 3 load commands
shown in Figures 15, 16, and 17. During file access, a user may not issue
a load-record or load-security-descriptor command. He is, however, required
to issue a load-attribute-information command following an open-database-

file-for-access command. This is necessary, because the keyword transformation {

Pl
i 2 unit (KXU) discards attributes information when a file is closed [2]. The
|
, ! access commands that may be issued when a file has been opened for access
4i€ will now be described.

There are four commands that may be used to retrieve records of a file.
The retrieve-by-query command (see Figure 20) will probably be the most
\ common type of retrieval request. In this command, a query made of keyword
predicates in the disjunctive normal form is used to identify records
desired by the user. The retrieve-by-pointer command (see Figure 21) is
| used by the sophisticated user who knows exactly where the desired record
3 is stored. The use of this command generally implies a greater privilege
accorded to the user than those who can merely use the retrieve-by-query]

command. Furthermore, the processing of this command is less involved than

ID Code

Command | Command Prioritkaser ID File ID

Attributes Information

and Hash Code Text

0 78 12 13

Command Code = 028

15 16 31 32 47 48

Figure 15. Format of a Load-Attribute-Information Command

Command | Command
iD Code

e

Prisrity (User ID |File Id

#

of Security Security

|
|
i
i

Descriptor, k ! Descriptor

T

8

0 78 12 13

Command Code = 038

iy
B
FOEIPL L L R AL

15 16 31 32 47 48

55

L

(

Security
Descriptor k

{ , . Figure 16. Format of the Load-Security-Descriptor Command

Saike.

-25-

; Command |Command 7 { | # of | :
! { ! i | P
D Code Priority !{User ID }File ID iMCC occs, k OCCIE Cw11 g
0 78 12 13 15 16 31 32 47 48
Command Code = 04 ' - 81
, i ' | Record to be
_ MCC - Mandatory Clustering Condition, % JoccR o it

! 0CC - Optional Clustering Condition

Cw1 - Weightage Associated with OCCi

Figure 17. Format of the Load-Record Command

g

u.’ g C°‘{‘;'and Cg‘:’;‘:"d Priority | User ID File ID

- J 0 78 12 13 15 16 31 32 47

3

4 ; Command Code = 058

Y | Figure 18. Format of the Close-Database-File Command
|

s

TG = AT TR TP o I P g

i -26-
]
i
1 for type A Protection
: | /70 for Type B Protection
| /
3 l/
b Command | Command ! Default # of File ! File 7
E | " ID Code Priority Pser . file o Access | Sanctions Sanction llé
0 78 12 13 15 16 31 32 47 48 49 63 64 79

' |
{ i | File

‘ l ' " lSanction k f
E Command Code = 064 Lw"‘ SR SRR T NJ

|
é (Database Capability
E Figure 19. Format of a '"Open Database File for Access' Command

J,

k| ; |
;|
Z

|
|
|
|
|

} i)
Command | Command : Sort Attri-
D Pode Priority|User ID File ID !bute 4 '

0 78 12 13 15 16 31 32 47 48 63

Query

T T T R T YT

Command Code = 078

Figure 20. Format of a Retrieve-by-Query Command

e —— .

Command | Command
ID Code

78 12 13 15 16 31 32 47

Priority| User IDiFile j8)) ! Pointer
i \

ik s 2
NNy SO
o

Command Code = 108

.
peetl 14 S L

Figure 21. Format of a Retrieve-by-Pointer Command

o e

e S ——

PSS S

the retrieve-by-query command. This is because directory information need

not be obtained from the structure memory (SM) to determine the MAU address(es).
The retrieve-by-query-with-pointer command (see Figure 22) is provided so

that the user may determine the pointer values of a set of records

satisfying a query and use these pointers as arguments in subsequent

retrieve-by-pointer commands. The fourth retrieval command is called the

retrieve-within-bounds command (see Figure 23). This command requires two
pointers as arguments. The two pointers are used as lower and upper bounds
of a set of records of a file, all of which will be retrieved in response

to the command. The two pointers, must point to the same MAU address.

They may differ only in the record numbers. Cluster identifiers and security
atom names in the pointers are ignored. Record numbers are unique only
within an MAU, therefore, it would be meaningless to specify pointers into
different MAUs. The use of this command implies a level of access privilege
that is higher than that of the other three cormmands. The right to use this
command is indicated in the default access descriptor of the database
capability (see Figures 19 and 11). This command is particularly useful
when the user wants to process all the records in a file (or in an MAU)

but has workspace only for a small fraction of the total number of records.
All the retrieval commands except the retrieve~by-pointer command have a
sort option, i.e., the records that are retrieved may be sorted on the
values of one attribute.

The insert-record command (see Figure 24) is used to add records to a
database. While the load-record command was used in the creation process
for rapid loading of the database, this command is used as an update
command. Thus, this command undergoes the same kind of security check as
do other access commands. The load-record command may not be used in place
of an insert-record command.

There are three deletion commands récognized by the DBCCP. The
delete-by-query command (see Figure 25) is very similar (in processing) to
the retrieve-by-query command. It uses a query to identify those records
that have to be removed from the file. The delete-by-pointer command (see
Figure 26) is similar to the retrieve-by-pointer command and is used to
delete a sepcific record. Quite often a user may wish to destroy the entire
file. This action is provided by the delete-file command (see Figure 27).
This command not only releases the database areas (MAUs) occupied by the file,

but also the SM space occupied by keyword directory entries and auxiliary

Command |Command

i
Ve Sort 1
D Code Priority !User ID‘Flle 1D

! Attribute
{ 0 78 12 13 15 16 31 32 47 48 63

Query

Command Code = 118

Figure 22. Format of a Retrieve-by-Query-with- Pointer Command

s — .

1 T
Command | Command | | Sort i PointerPointer
D | Code ;Priority User ID File ID Attribute | 1 }) |
0 78 12 13 15 16 31 32 47 48 63 1
Command Code = 12
J 8
5; Figure 23. Format of a Retrieve-Within —Bounds Command 1
|

b E 8
.. 7
» 4 i it P
== x " —— e AN R T R T TV i i ’ M

T T T T ,
Command | Command ! syl At i ' # of . i I g
D | Code | Priority User ID |File ID {MCC | oo 'oCC, W, |
0 78 12 13 100 (SR i [47
} ~-ioccn§ W 1 Record
Command Code = 13 |

8

Figure 24. Format of a Insert-Record Command

| Command TCommand Z ; e, !
ID | code |Priority | User ID File ID | Query

0 78 12 13 15 16 31 32 47

Command Code = 14

8
{ Figure 25. Format of a Delete-by-Query Command
3
!
] ! |
Co¥gand ngggznd |Priority | User ID! File ID Pointer
0 78 12 13 15 16 31 32 47

v NNy

Command Code = 158

v 1L vl et

Figure 26. Format of a Delete-by-Pointer Command

1
Command ;Command Default Access

| ‘ j |
L5 | cod Priority User ID File ID 23+ B B
5 0 78 12 13 15 16 31 32 47 48 63

Command Code = 168

| Figure 27. Format of a Delete~File Command

b ki oo it

information kept by the DBCCP. It should be noted that the delete-file

command does not involve file access, and, therefore, it does not require
an open-database-file-for-access command to precede it. Furthermore, j
at the time this command is given, the file should not be open for access
by some other user. 1If it is, then the command will be rejected by the }
DBCCP. '

In database operations, it is frequently desired to update certain
fields of a record and retain only the updated version of the record. Such
a facility is provided for by the replace-record command (see Figure 28).
There are two arguments to this command - a pointer to the old record that
is to be replaced and the new record that is to replace the old record.

Internally, this command is divided into two parts - a delete-by-pointer]

i ———

for the old record, and an insert-record command for the new record. A

user who wishes to use this command must have the privilege of replacing

records in the file as indicated in the default access descriptor (see Figure 11).
Furthermore, he should have the right to delete (by pointer) the record he

is replacing and the right to insert the new record. Thus a replace-record

command requires the user to have three kinds of access rights - record

replacement on a file basis, deletion by pointer and insertion of record.

i This interpretation of the replace-record command is motivated by two factors:
first, we should enable the user to change any part of the record he wants

to replace; this includes values of security keywords as well. Second, given

the first factor, it would be illogical to associate the replacement privilege

ki

either with the security atom containing the old record or with the security

atom containing the new record.

J
E f 0 Earlier, we described the retrieve-within~bounds command which was
? f useful in bulk processing. However, in order to use this command, a user
5% needs to know the MAU addresses in which his file is located. This knowledge
| can be obtained by using the retrieve-MAU-addresses command, whose format
f is given in Figure 29. The DBC responds by providing the user with a list

) of MAU addresses in which the file, identified in the command, is located.
Finally, the load-creation-capability-list command (see Figure 30) is used :
to indicate to the DBCCP the identity of the users who may issue the command

{ open-database-file~for-creation. Table I gives the list of DBC commands.

i

ey

il

R P

o

Rt e o

i

i ——

ey N .
e T e -

Command Command ;0 5¢y yser ID , File ID Pointer | Record
1D . Code ! ' !

0 78 12 13 15 16 3332 47

Command Code = 178

Figure 28. Format of a '"Replace-Record" Command

Command | Command ! T ;
ID Code PriOritY}User 1D ;File 1D

Command Code = 208

Figure 29. Format of a Retrieve-MAU-Addresses Command

Command ECommand 1 . System | # of | 1
D | ‘cade iPriority D s , k ' User ID1 . A[User IDk

0 7 8 12 13 15

Command Code = 218

Figure 30. Format of a Load-Creation-Capability-List" Command

L B E

e .

M LS S

- —

N 1

-33-

Table I. List of Commands Recognized by DBC

Code Command Function Command Type (A - access type
P - preparatory ty

01 Open Database File for Creation P

02 Load Attribute Information P

03 Load Security Descriptor P

04 Load Records A

05 Close Database File B

06 Open Database File for Access B

07 Retrieve by Query A

10 Retrieve by Pointer A

11 Retrieve by Query with Pointer A

12 Retrieve Within Bounds A

13 Insert Record A

14 Delete by Query A

15 Delete by Pointer A

16 Delete File P

17 Replace Record A

20 Retrieve MAU Addresses P

21 Load Creation Capability List P

. “a

AT

SRS SR

$ \ele

LAk

2.3.3 Table Structures in the DBCCP

A number of information tables are maintained by the DBCCP in order to

carry out the various commands issued by the PES. Here we shall discuss
several of the tables that are accessed by the CCRP and CTP via the
communication bus and the argument-and-structure-loop-response bus (see
Figure 3). Five separate memory elements contain these tables. More
specifically, the command argument table memory (CATM) contains the argument
table. The security information table memory (SITM) carries security
descriptors, file sanctions and atomic privilege lists of active users, while

the file information table memory (FITM) contains the file information table,

the attribute bit map, and the MAU allocation table. The command status table

memory (CSTM) holds the status information of commands currently under

processing. The database response memory (DRM) holds response data to be sent

to the PES. 1In order for a processor (CCRP, MM, SFP, SLIP or CTP) to access

any of these tables, it must first obtain control of the data bus (communication
bus or argument-and-structure-loop-response bus) to which the memory unit
containing the table is connected. As long as a processor has control of a

bus, no other processor can gain access to any of the table memories on that
bus. By providing for high bandwidth busses, one can reduce the amount of

time for which a processor needs to '"lock" up a bus.

The above arrangement for serialization of access to table memories
eliminates most of the deadlock situations that might otherwise be anticipated.
However, there is one situation that requires consideration. Supposing, two)
of the processors each have control over one of the two busses and then demand j
the use of the other bus. In this case the two processors will be waiting
indefinitely on one another causing a deadlock. This situation is overcome by i
making it mandatory on each of the processors to release the bus it is holding

before requesting the use of the other bus.

A. The Command Argument Table - This table contains queries, MCCs, OCCs l
and records that are received as arguments of DBCCP commands awaiting execution.
Each command argument occupies a contiguous block of memory. Since entries
in the table are of variable size, the following scheme is used to allocate
and free memory. A doubly-linked AVAIL list of available memory space is
maintained. When an argument is to be placed in the table, the first-fit
method [6] is used to allocate sufficient space for the argument. When

an argument is to be deleted (because the command to which

-

.

9
1

N 3

e .

-35-~

the argument belongs has been processed), space occupied by the argument is
linked into the AVAIL list after ensuring that (possible) adjacent blocks
of free memory are properly collapsed. The AVAIL list is maintained by
using a small part of the free spaces themselves. The overhead due to
such links is small compared to the size of the blocks that are allocated
and freed. As the number of commands in the DBC increases, the argument
table will progressively become more and more full, until at some point,
the first-fit method will fail to yield enough space for an argument.

At this point the DBCCP will stop accepting further commands until more
space is freed. Although compaction could be resorted to consolidate all
the available pockets of memory space, we have chosen not to, for a number
of reasons. First, even if we perform compaction, the acceptance

of more commands will very soon exhaust the consolidated available space.
Second compaction involves resolution of argument pointers in the command
status table. Since each command may have several arguments, the overhead
due to resolution of pointers can be significant. Third, even if we don't
perform compaction, space will become available when the processing of
existing commands in the DBC is completed, thus allowing new commands to
be accepted. In Figures 31 and 32 the formats of a free block and an

occupied block of memory are shown.

B. File Information Table (FIT). There is one file information table
(FIT) for each file known to the system. The FIT is created at the time
the file is created. It contains information about space allocated to the
file, and certain security related information. The FIT is a variable
length table and is composed of a set of fixed size blocks in the table
memory. The format of a file information table is shown in Figure 33. An
FIT has five fields. The first field contains the file name. The file
name is a 16 bit pattern generated by the PES. The second field contains
the identity of the file creator and information about its status (i.e.,
whether the file is active or not, etc.). The third field is a list of
attribute identifiers allocated to the file. It is useful to keep such

a list; since at the time the file is deleted, we need to reclaim the
attribute identifiers used by the file. Field 4 is a list of security
descriptor identifiers. These identifiers identify the security
descriptors of the file which are stored in another table memory called the

security information table memory (SITM). The format of a security

——d

" Tag to Indicate Block is in Use

i
n Bytes {
r—-A-‘-_- - —— A, \ ;
Size =] ’//,7/// |
: n + 3 Bytes ArguRent 11 sy .{{2{4 I
’ 0 15 o
j ‘?-Tag Indicates Block is in use 2
' . Figure 31. Details of a Block in Use in the Command f
i Argument Table Memory (CATM)
E ‘ a
;
|
é t //—“ Tag to Indicate Block is Free
- ! n Bytes
R e "“‘A_"_‘_"""\
Size = Link ! t i Size =
0: n+ 10 [Link Forward Backward Free Space fQJ,“ + 10
01 15 16 31 32 47 4
k. A

Tag to Indicate
Block is Free

Figure 32. Details of a Free Block in the Command
(Argument Table Memory (CATM)

MENE § SERENSRSES

o -8 it
e

Field 1

Field 2

Field 3

Field 4

Field 5

Field 6

37~

f
;
2 Bit File! 00 File Not Active

/= Status 1 01 Open for Access

/// | 10 Open for Creation

File Name (16 Bits)

/] File Creator Identity (14 Bits)

n Attribute Identifiers Assigned to File

#f of Security Descriptors = k(16 Bits)

k Security Descriptor Identifiers

of MAUs Allocated ' { of Additional
to File , n < 255 MAUs to be Allocated

n MAU Indentifiers

“ 4

of Atom Descriptors = m (16 Bits)

m Atom Descriptors

2xn Bytes

- -

r 2 k Bytes

|
|

2 Bytes
N

|
?ZXn Bytes

J

. Variable

et

Figure 33. File Information Table (FIT)

R, e e e " e

—————— e R .

NNy

descriptor was shown earlier in Figure 12. Field 5 identifies all those MAUs

that have been allocated to this file. It also keeps track of the number of
MAUs that may be allocated to this file if the current MAUs become full.
In field 6 the descriptions of security atoms which actually exist in the
field are stored. Each security atom descriptor has the format shown in
Figure 34.

The DBCCP maintains a list of file names and their FIT addresses in the
FIT memory. This list is consulted whenever an FIT has to be accessed.
Although the total number of files in the system is likely to be large, sav,
in the range of 1,000 to 2,000, the size of the list remains small (4-8K bytes).
The file creation capability list, which identifies the users who can create
files,is stored in a fixed area in the FITM.

The FITM also contains, two bit maps - an attribute bit map which keeps
track of the attributes that have been allocated so far, and an MAU bit
map which keeps track of the MAUs that have been allocated so far. The
attribute bit map is 64K bits in size (= 8K bytes) and the MAU bit map is
32K bits (= 4K bytes).

C. User Information Tables (UITs). There is one user information table for
each user who is currently active in the DBC, i.e., for a user who is

accessing one or more files in the DBC. A UIT has two fields. The first

field identifies the user, the second field has information regarding the

files he has opened for creation/access. In particular, the field has the

file ID, a pointer to the set of file sanctions and a pointer to the privilege
list for each of the files currentlv accessed by the user. The file sanctions
are stored in the security information table (SIT). The size and format of the

UIT is shown in Figure 35.

D. The MAU Space Information Table (MAUSIT). This table is used to keep track
of the amount of available space in the MAUs of the MM. There is one entry in
the MAUSIT for each MAU in the MM. Each entry has two fields. The first field
contains the number 8<byte blocks available in the MAU. This field occupies

2 bytes and can, therefore, represent 216-1 blocks (=500K bytes). The second
field carries information about the space available in the track with the largest
capacity. The space is measured in terms of the number of complete sectors

(1 sector = 128 bytes). The field occupies one byte, thus providing for a

Security|# of Security } Security De-
Atom # Descriptors i scriptor ID1

1 { Security De-
i e ; scriptor ID_

0 15 16

Figure 34.

R ———

31_
sk

3n Bytes

Format of a Security Atom Descriptor in FIT

o il

P —

T ———

e ¥

User Identity (16 Bits)

of Files Opened = n

n File Identifiers

n Pointers to File Sanctions

r-»‘

n Pointers to Privilege Lists

n Default Descriptors

Figure 35.

Format of a User Information Table (UIT)

2 Bytes

1 Byte

n (2+2+2+2)
Bytes

|
(
3
i

SRR NITPECY 5 T PG

s 2
~ :

=4]=

maximum track capacity of 32K bytes. Fach entry is, therefore, three bytes
long. For a database of 109 - 1010 bytes, we need between 2,500 to 25,000 MAUs.
Thus, the maximum number of entries is 25,000. The required table memory is

about 75K bytes. The format of a table entry is givean in Figure 36.

E. The Security Information Table (SIT). This table contains all security
related information. More specifically, it contains the security descriptors,
the file sanctions and the atomic privilege lists. There is one set of
security descriptors for a file, there is one set of file sanctions for each
user for each file accessed by that user. Similarly, there is one list of
atomic access privileges for each user for each file accessed by the user. (Of
course, atomic privileges are created only if the user has the type A
protection.)

The format of the file sanction has been shown in Figures 9, 10 and 11.
The atomic access privilege list is a list of pairs of the form <security atom
number, access privileges>. The format of such a pair is given in
Figure 37. This list is compiled at the time the file is opened for
access and is stored in the security information table.

Each security descriptor has a unique ID assigned by the PES. This
number is used by the CCRP to access the security descriptor. Security
descriptors are used during the file creation process in order to identify
security atoms defined by the input records. In order to access security
descriptors rapidly during this process, a small part of the SITM is used
as an access vector. The n low order bits of a security descriptor are
used to index the access vector. An entry in the access vector heads a
list of security descriptors all of which have the same n low order bits.

The value of n depends on the level of performance required of the scheme.
Typically, the value of 2™ could be in the range of one-sixteenth to one

fourth the anticipated number of security descriptors (5216) in the system.

The remaining part of the table memory is dynamically allocated to contain

security descriptors, file sanctions and atomic privilege lists. File

sanctions and atomic privilege lists do not require access vectors, since

the users' UITs point to the respective file sanctions and atomic access privilege
list. In Figure 38 the organization of the security information table is

illustrated. Blocks of free and allocated memory are kept track of in a

|

-

r ').v =
S ¢ ESS—

s NN

 —— S,

Note:

=42~

R - SR o= st o st

. # of sectors
of blocks available available in track

LY

for allocation in MAU with largest capaci
Bt el 5
v NSER D e —— g . EAN oy e e »
2 bytes 1 byte

One entry per each MAU

1 block onan MAU = 8 bytes; 1 sector on an MAU = 16 blocks

Figure 36.

Information Table (MAUIT)

Format of an entry in the MAU Space

2l s ot i

-

= A
et o

T B e A NS

Security Atom f i Access Privilege
0 15 16 31

Figure 37. Format of an entry in The Atom Access
Privilege List

- e —

L bl

AN N

S B

)
Avail List)

Access
Vector
for
Security

7

N

/'

\\\
\\

2

Note:

Descriptors

Security]Type A File Free
Descriptors —| Sanctions Blocks
Atomic Privilege '!E! Type B File
List {{1{] Sanctions
Each entry in the access vector is the head of a list of
security descriptors. All descriptors in a list have the
same high order 8 bits in their identifier value.
Figure 38. Security Information Table Memory

- L IS LR RER A, T 10D TR e ,, kot TR PR YT ek

—— . IO e .

N i

v NNy

=45

manner similar to the scheme used in the command argument table (i.e. maintenance

of AVAIL list etc.). However, unlike blocks of allocated (free) memory

in the command argument table, blocks of allocated (free) memory in the security

information table are stabler, in the sense that they are not released

(allocated) as frequently as in the command argument table.

F. The Command Status Table (CST). This table is maintained by the DBCCP
to indicate the status of the commands accepted by it. The table memorv is
divided into three parts (see Figure 39): a table of priority list
headers (PLH), a table of status information (SIT), and a table of

argument pointers (APT). There is one entry for each priority level in

the table of priority list headers. An entry in this table points to an
entry in the status information table. Each command under processing has an
entry in the SIT (see Figure 40). All entries of commands at the same level
of priority are chained together with the appropriate entry in the PLH

pointing to the first entry in the chain. An entry in SIT has ten fields:

Field 1: An 8 bit status field reflects the progress of the command
through the DBCCP.

Field 2: An 8 bit field identifies the command to the DBC.

Field 3: An 8 bit field specifies the command functien.

Field 4: A 16 bit field identifies the file referred to by the

command.
Field 5: A 16 bit field identifies the user who caused the PES
to issue this command.
Field 6: This 16 bit field stores the address of the control memory
of the processor (CTP or CCRP) waiting for SLIP to provide structure
information.
Field 7: This 8 bit field records the number of MM orders issued by
the CTP.
Field 8: This 8 bit field records the number of security violations

that are encountered in the execution of the command.
Field 9: This field points to the APT where pointers to the
arguments table are stored. There is one pointer in the
APT for each command argument.
Field 10: This field points to the entry of a command af the same

priority level as this command.

i Skt kit S

SO L

S 5 SIS

~N

0

Priority List Headers
(PLA)

Status Information Table (SIT)

Argument Pointer Table (APT) 3

Figure 39.

AVAIL

List

D

Organization of the Command Status

Table (CST)

=

/,0 Command Processing not initiated ty CTP
-
[\ 1 Command Processing by CTP under progress

, 0 Command Processing not completed by CTP

[“\‘1 Command Processing completed by CTP

/ ; 0 Command Processing not in wait mode

T

/ 1 Command Processing in wait mode

_i /

/
2 Not used =

B e

, .
012 3HZH 39 56 : 104
IR Com- ! | Return- " No. of °05nte£ Ptr. o
g next com-—

[‘Command mand File}User from-wait No. of MM security o AP
i orders violations . mand at

!
| : SERRR
i ,) ol
531 ({1 ID ' Code | ID i ID address

\Q 678 15 16 23 24 &0 55
0 Command Processing not completed by CCRP

71 72 79 80 87 85 103U 110
priority,

/
\\h_\ 1 Command Processing completed by CCRP

\ /0 Command Processing by CCRP not initiated
1 Command Processing by CCRP under progress

, 0 Arguments of command not received yet

NNy

.1 All arguments received

LT

, 0 Non-Access Commands

/

\ 1 Access Commands

Figure 40. Format of an entry in the SIT

|

bl A Ze sl o

G. The Database Response Memory (DRM) - This memory is used primarily by the

SFP to store records retrieved by the MM. It is also used by the DBCCP to store
accept/reject signals for non-access commands. The memory consists of two parts -
the response summary table and the response data area (see Figure 4la). The sum-
mary table has one entry for each command that has been executed (successfully or
unsuccessfully) by the DBC. Each entry has the format shown in Figure 41b. There
are seven fields in each entry. The command ID, the command code, file ID, user
ID, and the number of security violations are as described in Section F above. There
is one field to indicate whether the command has been accepted or not and one field
to store the pointer to the response data if any. Since not more than 256 com-
mands are expected to be processed by the DBC, the number of entries in the sum-
mary table is 256. The response data area is a large memory capable of storing

at least as many records as can be processed by the SFP at a time (see discussion
in Sec. 4.3). 1In Table II, we have indicated the type of response information

that may be sent to the PES for each of the commands accepted by the DBC.

2.4 The Command Check and Response Processor (CCRP)

As mentioned earlier, the CCRP is responsible for receiving commands
from the PES, performing security checks on them if possible and routing
response data from the security filter processor back to the PES. The
algorithm given in this section pertain to these and other auxiliary functions
of the CCRP. The CCRP is capable of being interrupted by three sources -
the PES wher it has a command for execution, by the SLIP when structure
information is ready and by the SFP when there is response data to be
routed to the PES. The priority of the interrupts with respect to one
another is a design decision which must be made by considering the
relative importance of the three sources of interrupts with respect to
the execution logic of the CCRP. Later in this section we propose

a priority scheme which takes into account the relative importance of the

three sources.

~49-

-

: " Response -
k. | ~ Summary
Table

(256 Entries)

' o

e o — e

Response Data Area

—mn——

’ Figure 4la. Database Response Memorv

= 0 Reject Command

-;; i = 1 Acceot Command
P, Ed
v ¢ - \
.l - 63
. | \
v | T ' | .
- # of Secur.Command|{ || Pointer to
- Command ID } File ID |User IDly,) ations | Code !? Response Data
0 15 16 31 32 47 48 55 56 60 61 64

Figure 41b. Format of an Entrv in the Pesponse Summary Table

-50-

Table II. DBC Response to Commands Issued by PES

Code Command Function Response
]
' 01 Open Database File for Creation Accept/Reject
! 02 Load Attribute Information Accept/Reject
: 03 Load Security Descriptor Accept/Reject
04 Load Records Accept/Reject, pointer to
record in MM
05 Close Database File Accept/Reject
06 Open Database File for Access Accept/Reject
! 07 Retrieve by Query Accept/Reject, records without
‘ pointers
; 10 Retrieve by Pointer Accept/Reject, record without %
{ pointer
11 Retrieve by Query Accept/Reject, records with
pointers
12 Retrieve within Bounds Accept/Reject, records without
pointers
13 Insert Record Accept/Reject, pointer to
i record in MM
; ! 14 Delete by Query Accept/Reject i
Be | 15 Delete by Pointer Accept/Reject |
B 1 |
| 16 Delete File Accept/Reject i1
17 Replace Record Accept/Reject, pointer to 'ﬂ
{ new record in MM -« 13
| 20 Retrieve MAU Addresses Accept/Reject, addresses of :ﬂ
: MAUs 5
23 Load Creation Capability List Accept/Reject
|

-51-

2.4.1 Security Related Processing
In this section we present algorithms used to create atoms, and

algorithms for performing type A security checks.

ALGORITHM A - To extract a security atom from a record for insertion.

}; Input Arguments: 1. The record to be inserted with k security keywords
2. The security descriptor identifiers from FIT

Step 1: Retrieve all security descriptors of the file from the SIT.
| Call the set of security descriptor SD. The j-th member of
' SD is denoted by SD,.
Step 2: Let the attribute identifier of the i-th security keyword
be called A, and the value of the i-th security keyword
be V.. Set™ i«l, p<«l.
Step 3: Compare A, with the attributes of the members of the set
SD. Call the set of security descriptor with matching
attributes SD'. Let there be n elements in SD'.
Step 4: j*1; [In step 5 we examine the j-th security descriptor in
SD'].
Step 5: If security descriptor type specifies that the descriptor
is a keyword (see Figure 12) then compare Vi with value
of the descriptor. If security descriptor type specifies that
descriptor is a range of values, then ccmpare V., with the
lower bound and upper bound of range. If the comparison is
successful, then go to step 7. 1If comparison is not successful,
then go to step 6. If security descriptor type specifies that
all values of the attribute are to be treatec as a securitv
i keyword then go to step 8.
Step 6: jej*ly If J<n, go to step S5 else, icitl, If 1<Kk, go to
step 3; else, go to step 10.
Step 7: [Security Descriptor describing keyword is found].
ATOM[p]+SD'[j].ID [In this step, we merely record the
: security descriptor identifier cf the p-th element of the
g atom describing the record. (see Figure 34)]. Go to step 9.

e it el e

J Step 8: [Each value of the attribute is a security descriptor].
| BE Compare the values of other security descriptors with the
| value V, of security keyword from the record. If a match occurs,
Py . | then set j to the identifier of matching descriptor in SD';
-f:g go to step 7. If match does not occur, then

low order 8 bit of

the ID of the last
g 1 ATOM[p]«SD'[j].ID + < descriptor in SD' with ;| + 1 .
B -\ . the same high order 16 J 3
{_bits as SD'[j].ID

it S daiaci ol ¢

TR TS TE T

Add to SD the security descriptor defined by ATOM[p].
(see notes below)
Step 9: pep+l; i«i+l. If i < k, go to step 3; else, go to step 10
Step 10: [ATOM[1] through ATOM[p-1] contains the description of the
atom to which the record belongs. If p=1l. then it
signifies that no security descriptor describes the record,
and therefore the record belongs to security Atom 0].
Terminate.

Response - Security atom description in ATOM[1] to ATOM[p-1].

NOTES: Step 8 implements an important facility provided by the DBC. A
security descriptor, as explained earlier, may specify that all
keywords of a particular attribute must be considered as security
descriptors. This specification enables a creator of a file to
convey to the DBC that keywords of an attribute are security
sensitive without having to actually know the values of the
keywords.

ALGORITHM B - To determine the access privileges accorded to a security
atom by a set of type A file sanctions.

Input Arguments: 1. A set F of n file sanctions each of which is in |
the format shown in Figure 9
2. A security atom descriptor as shown in Figure 34.
3. A set of security descriptor SD

Step 1: From the set SD of security descriptors, extract the set
SD' of security descriptors defined by the argument
security atom.

Step 2: Form an access descriptor A. Set A<«e' [e' denotes a bit
pattern of all 1ls]. Set AFLAG+O.

Step 3: Denote the i-th member of F by ;- Let there be Ki
predicates in s,.

Step 4: [Test if s,. islapplicable to argument atom] j<«l.

Step 5: Check if : is covered by any of the security descriptors
in SD'. [B%jcovered, we mean the following: If T,, is an
equality predicate, then a security descriptor - whiéh
specifies the keyword in Ti' - covers T,.. If T, K is a
'>' predicate, then d security desdcriptor which
specifies either a range of values and whose lower bound
is greater than or equal to the keyword value of T,, or a
particular value greater than or equal to the keywo%a value
of '1'i - covers Ti" If Ti' is a '>' predicate, then
a secu;ity descripto}—which sp%cifies either a range of

values and whose lower bound is greater than the keyword

value of Tij or a particular value greater than the keyword
value of Ti - covers Ti « Similarly, 1£f T, , is "<’
predicates, %hen a coveriné security descripto%onuld be
either one which specifies a range of values with the upper |

bound being less than or equal to the keyword value of T,

or one that specifies a keyword with a value less than or

equal to the value of Tyse If T,, is a '<' predicate
then a covering descripto} would beé’defined exactly as for

'<' precidate except the defining conditions would be

strictly "less than'" instead of '"less than or equal to".

The '# predicate is covered if there does not exist a

NNy

Step 6:

Step 7:

Step 8:

Step 9:

security descriptor which either specifies a range of values
including the keyword value of the predicate or which specifies
a keyword value equal to the keyword value specified in the
predicate].
If T.j is thus covered, then j<«j+l. If j5K;, then go to
step 7% If jjﬁi, then go to step 5. 1If Ti' is not
covered, then go to step 8. J
[file sanction sy is applicable to atom]. A«AA A4 where
A, 1is the access descriptor associated with sj. AFLAG+1.
i+i+l. If i<n, go to step 4; else, go to step 9.
[file sanction sy 1is not applicable to atom].
i«i+l. If i<n, go to step 4; else, go to step 9.
If AFLAG=0, then A<AAA , where A is the default

i) ., def : e
access privilege descriptor provided in the data base
capatility. Terminate.

Response: 'A' holds the access privilege accorded to the argument atom.

Notes: The crucial step in this algorithm is step 5. Although the definition

of "covering' seems formidable, efficient comparison hardware can be
constructed to execute step O.

ALGORITHM C:

Input Arguments: 1. A query conjunct Q in argument table

Step 1l:

Step 2:

Step 3:
Step 4:
Step 5:

Step 6:

Step 7:

Response: Query a is permitted on atoms in sct S,

2.4,2 Command Execution !

The set of CCRP algorithms is used to process commands from the PES.

o

To determine if access 'a' for a query conjunct Q is

allowed by the atomic access privilege list.

L |

2. The access type requested 'a
. The atomic access privilege list L.
. The pointer to entry in CST

. The request identification R-ID

“© e W

Obtain control of the argument and response bus in
preparation for issuing a request to the SLIP.

Issue the request. Retrieve-security-atom(s)-for-query-
conjunct to the SLIP with the arguments Q, priority P
(from command status table), request identifier R-ID,

file ID (from command status table).

Wait for response set from SLIP. [At this point control
goes back to the scheduling algorithm].

[Control comes here after interrupt from SLIP). If response
set S is empty, then set REJECTFLAG to 1.

If response set S 1is non empty,then, for each member s
of S, do step 6.

Run down the atomic access privilege list L and extract
the access pattern from s. If s is not found in L,

then invoke algorithm B with the following arguments:
descriptor of atom s from FIT, file sanctions of user for
the file and the security descriptors for the file from SIT.
Add response of algorithm B to L. If 'a' is not in the
access descriptor for s, then delete s from S.
Terminate.

N OROE S TR T R ST RSP o c i . D il e e i

e
s
i

r4

5 An interrupt from the PES signifies that it has a command that needs to be]
executed by the DBC. There is one algorithm in this set for each of the 4

T

command that is recognized by the DBC. Control is given to the
appropriate algorithm by the scheduling algorithm after the command

i

has been entered in the CST and the arguments stored in the CATM by a

Y -

first-level interrupt handling algorithm (see Section 2.4.3).

V.

ALGORITHM D: To process the command, open-the-database-file-for-creation

Input Arguments: 1. The CST entry in which the command is stored.
1 2. Three arguments shown in Figure 14.

R .

Step 1: Extract user ID from CST entry and check against creation
capability list. If user does not have the right to create

t e
[{ a file, send reject signal to PES and go to step 5.
E Step 2: Find the number of attribute identifiers requested F
! (argument 1 in Figure 14). Determine from the attribute :
bit map if there are enough attributes identifiers to meet 1
the request. If there are, then send identifier values back 3
1 to PES along with the command ID. If not, give a reject
signal to PES, and go to step 5. -1
Step 3: Create a file information table in the FITM. Also create a E
user information table in the FITM, [Since the FIT and UIT
are variable length tables, this step allocates one block; n

later more blocks may be acquired]. Store the attribute
identifier values allocated to the file in the FIT. 1
Step 4: Determine if the number of MAUs requested for initial -l
f allocation to the file is available. (Use MAU allocation ;
§ bit map). If there are enough MAUs, then record the addresses
of the allocated MAUs in FIT, set status bits in FIT to
indicate that the file is now open for creation. Store the
number of MAUs allocated and the additional number of MAUs
that can be allocated, in the FIT. If the number of MAUs
requested to be allocated initially is not available, send
reject signal to PES and go to step 5. Else terminate.
E 3 Step 5: Release space occupied by arguments in CATM, remove
command from CSTM and terminate.

s —

T

e
\

3{ i ALGORITHM E: To process the command, Load-attribute-information,
E Input Arguments: 1. CST entry
‘ 2. The pointers to arguments in CATM.
f ! Step 1: Check (from FIT) if the file is open for creation. If file
! is not open for creation, send reject signal to PES and go
{ to step 7.
Step 2: Obtain control of the argument and response bus in preparation

for issuing a request to the SLIP.
| Step 3: Issue the request, load-~hash-~algorithms-for-a-file to the
SLIP with the following arguments: file-ID, request ID,
pointer to hash algorithm in the argument table memory, and
priority of request from command status table.
Step 4: For each attribute in the arguments, issue the request, load-
attribute-information-for-an~attribute to the SLIP with the

R S

Step 5:

Step 6:

Step 7:

ALGORITHM F:

following arguments: file ID, request ID, pointer to the
attribute information, the attribute identifier and the
priority of request.
Wait for response from SLIP [At this point control is given
to the scheduling algorithm. The wait status bit is turned
on to indicate that the command processing is halted until
the SLIP responds; the return address points to step 6]. !
If the KXU has rejected any of the above requests because of 1?
lack of space, then send reject signal to PES, release H
argument table space, FIT, UIT, and MAUs allocated in :
algorithm D. 1If the KXU has accepted the requests then send
an accept signal to the PES and release argument tabfe space
only. s
Remove command from command status table. Termin?te

p
To process the command, load-security—descriptqé.

7

Input Arguments: 1. CST entry 4

Step 1:

Step 2:

Step 3:

ALGORITHM G:

s
2. The pointer to CATM where the segptltv descriptor

are stored.
Check (from FIT) if file is open fo /atior. If file is
not open for creation, send rewec; signal to PES and
go to step 4.
For each of the security uCSLrlptorS in the argument table
do step 3. o
Find space for thi/gpstriptors in the SITM. If space is
not available go-to step 5. Move descriptor intc space
allocated. UﬁQ’:e access vector by linking the descriptor
in the L}Sf’bf discriptor s with the same high order §
bits identifier value (see Figure 38).
nove command from CSTM. Release argument space in CATM.
Terminate.
Send reject signal to the PES, release FIT, ULl MAUs allocated
to file, and SITM space if any. Go to step 4.

To process the command load-record.

Input Arguments: 1. CST entry

Step 1:

Step 2:

Step 3:

Step 5:

2. The pointer to CATM biock where record is stored

Check (from FIT) if file is open for crcation. If file
is not open for creation, then send reject signal to PES and
go to step 8.

Invoke algorithm A to determine the security atom to which
the record belongs.

Using the response from algorithm A, check against the
security atom descriptors in the FIT of the file. 1If the
response matches one of the descriptors in FIT, then retrieve
the corresponding security atom number (see Figures 33 and
34). Call it AN and go to step 6.

If the response of algorithm A does not match any of the
descriptors in the FIT, then obtain control of the argument
and response bus, and issue the request, "allocate security
atom name for a file'", with {ile name as the argument.

wWait for SLIP response.

If the SLIP response indicates that there are no more atom

TR T Y T Y T~ o oo i . b

.~

names available, go to step 7, else, call the new atom name
AN.

Step 6: Store AN in the CATM space (along with the record), set bit
in CST entry to indicate that processing is completed and
terminate. 5

Step 7: Send reject signal to PES. :

Step 8: Release space in the CATM allocated for the record and other
arguments of the command. Remove command from CSTM. Terminate.

ALGORITHM H: To process the command, Close-database-file.
Input Arguments: 1. CST entry.

Step 1: Check to see that the file is open. If it is already inactive,
then send reject signal to PES and go to step 3.

Step 2: If file was open for access, then release space in SITM used
for storing file sanctions. Also release space in UIT used
for storing the file name and pointers. If this was the last
file opened by the user, then release space occupied by the
entire UIT.

Step 3: Remove command from CST and terminate.

ALGORITHM I: To process the command, open-database-file-for-access.

Input Arguments: 1. CST entry.
2. The pointer to file sanctions in CATM.

Step 1: Check if the file is already open for creation. If so, then
send rejection signal to PES and go to step 7

Step 2: I1f type B protection is specified, then move file sanctions
to SITM, and send file name and SITM address to SFP and then
go to step 5.

Step 3: I1f type A protection is specified, then move file sanctions
to the SITM.

Step 4: For each of the security atom descriptor found in the FIT of
the file, invoke algorithm B to determine the access privileges
accorded to the security atom. Form the atomic access privilege
list, and store in the SITM.

Step 5: Enter file name, pointer to file sanctions and pointer to atomic
access privilege list in the UIT.

Step 6: Turn on bit in FIT to indicate file is open for access.

Step 7: Remove command from CST, release space in CATM and terminate.

ALGORITHM J: To process the command, retrieve-by-query.

Input Arguments: 1. CST entry
2. The pointer to file sanctions in CATM

Step 1: Check if the file is open for access and also if the UIT
contains the file name (see step 5 of algorithm I). If not,
send reject signal to PES, remove the command from CST and

" terminate.
Step 2: Extract the default access descriptor for the user. Check
s if the user has a "retrieve-any" privilege (see Figure 11).
g If so, then go to step 5.

Step 3: If type B protection is specified, then go to step 6.

Step 4: If the type A protection is specified, then invoke algorithm
‘C with the necessary arguments (i.e., access tvpe = 'retrieve-
by-query', conjunct=”1) for each of the conjuncts in 0.

ARG T s R RN i, LI A AT . e R G G e Ly

i

Step 5: Store the response set S in the CATM and place a pointer

' in the CST.
Step 6: Turn on appropriate bit in the CST entry to indicate that
processing of the command by CCRP is complete. Terminate.

ALGORITHM K: To process the command,retrieve-by-pointer.

Input Arguments: 1. CST entry
2. Pointer to CATM block where the record pointer
is stored
Step 1: Check if the file is open for access and also if the UIT
contains the file name (see step 5 of algorithm T). If not
go to step 6.
Step 2: Extract the default access descriptor for the user. Check

if the user has a ''retrieve-any" privilege (see Figure 11). 4

If so go to step 5. -
Step 3: If type B protection is specified for the user, then go

to step 5. f

Step &: If type A protection is specified, then look up atomic access
privilege set for the user in the SITM. If the retricve-by-
pointer access is not allowed on the security atom specified
in the pointer, then go to step 5.

Step 5: Turn on appropriate bit in the CST entrv (see Figure 40) to
indicate that processing of the command by CCRP is complete.
Terminate.

Step 6: Send reject signal to PES, release CATM space and remove
command from the CST. Terminate.

ALGORITHM L: To process the command, retrieve-bv-querv-~with-pointers.

Input Arguments: 1. CST entry
2. The pointer to CATM where the queryv is stored

DR ———

Step 1: Do steps 1-6 of algorithm J except in step 4, use access tyvpe=
retrieve-by-query-with-pointer, and in step 2, check for
"delete-any" privilege.

‘ ALGORITHM M: ‘'lo process the retrieve-within-bounds command.

Input Arguments: 1. Command status table entry
2. Pointer to argument table.

Step 1: Check if the file is open for access and if the UIT contains
the file name. (Step 5 of algorithm 1.) If not, then'send
reject signal to PES, remove command from CST and terminate.

{ Step 2: Check the default access associated with the database

’} capability for the right to retrieve within bounds. If the

right is not granted then go to step 4.

Step 3: Turn on the appropriate bit in the CST entry to indicate
that processing of the command by CCRP is complete,
terminate.

‘ Step 4: Send reject signal to PES, release CATM space and remove

i command from CSTM. Terminate.

|

f
|

UU——

ALGORITHM N: To process the delete-by-query command.

Input Arguments: 1. CST entry
2. A pointer to the CATM where the query is stored.

Step 1: Execute steps 1 through 5 of algorithm J except in step 4,
use access type = delete-by-query.

ALGORITHM O: To process the delete-by-pointer command.

Input Arguments: 1. CST entry
2. A pointer to CATM where the record pointer is stored.

Step 1: Execute steps 1 through 5 of algorithm K except in step 4 use
access type = delete-by- pointer, and in step 2 check if user
has '"delete-any' privilege.

ALGORITHM P: To process the delete-file command.

Input Arguments: 1. CST entry
2. Default access descriptor.

Step 1: Check the CIT to see if the file is open for access (by
some other user). If it is open then go to step 6.

Step 2: Check the argument default access descriptor to see if the
user has the right to delete the entire file. If he does
not have the right, go to step 6.

Step 3: For each attribute identifier in the FIT, issue the request
delete-attribute-information to the SLIP.

Step 4: Release all MAUs allocated to the file, all attribute identifiers

allocated to the file, all security descriptors in the SITM.
Release space occupied by the FITM.

Step 5: Remove command from CSTM and terminate.

Step 6: Send reject signal to PES and go to step 5.

ALGORITHM Q: To process the insert-record command.

Input Arguments: 1. CST entry
2. A pointer to CATM where the record to be inserted
is stored.

Step 1: Check if file is open for access and if the user information
table contains the file name. If not, then send reject signal
to PES, remove command from the CST and terminate.

Step 2: If type B protection is specified for the user go to step 13.

Step 3: Invoke algorithm A to determine the security atom descriptor
for the record.

Step 4: Check the response from algorithm A against the security atom de-
scriptors in the FIT then retrieve the corresponding atom number.

Call it AN. 1If the response does not match, then go to step
9.

Step 5: Look up the atomic access privilege list to determine if the access

"insert" is permitted on atom name AN. If it is not go to
step 7.

Step 6: Store AN in the CATM (along with the record), set bit in CSTM
entry to indicate that processing is completed. Terminate.

Step 7: Send reject signal to PES.

Step 8: Release space in CATM for the record and other arguments of
the command. Remove command from CST. Terminate.

o s il - s e o i A e '-"'A

————

[

B

s s e

e e —

NNy

.

Step

Step

Step
Step
Step

Step

9: [New security atom]. Invoke algorithm B to determine the
access privilege accorded to the security atom by the file
sanctions. Call the access privilege granted to the new atom,
A.

10: [Allocate a new security atom name]. Obtain control of the
argument and response bus, and issue the request. '"Allocate
security atom name for a file" with a file name as argument to
the SLIP. Wait for response from SLIP.

11: 1If the *SLIP response indicates that there are no more atom
names available, go to step 7, else call it AN.

12: Insert the pair (AN, A) into the access privilege list.

Insert security atom descriptor into the FIT. Go to step 5.

13: Send record fox security check to the SFP. Wait for responsec
from SFP,

14: If SFP permits access "insert', then sgf bit in CST entry
to indicate that the processing is coplpleted. Terminate.

ALGORITHM R: To process the replace-record command.

Input Arguments: 1. CST entry

Step

Step

Step
Step

Step

Step

Step
Step
Step

Step
Step

Step

Notes:

2. Two pointers one to the CATM block where the new
record is stored and one to the CATM block where a
pointer to the old record is stored.

8 i Check if file is open for access and if UIT contains the file
name. If not, go to step 10.

2s Look up default access descriptor (in the UIT). If user

does not have 'replace' access privilege, then go to step 10.

¢ If the type B protection is specified go to step 11.

4: Extract the security atom name from the old record pointer
associated with the command. Call it AN.

5: Look up the atomic privilege list for AN. If the access
"delete-by-pointer'" is not permitted, then go to step 10.

6: [Check if record may be inserted]. Execute steps 3, 4, 5, 6,
9, 10, 11 and 12 of algorithm Q to determine if insertion is
permitted.

7: If algorithm Q permits "insert', then set the bit in CST
entry to indicate that processing is completed. Terminate.

8: If algorithm Q does not permit "insert', then send reject
signal to PES.

9 Release space in CATM for the record and pointer argument of
the command. Remove command from CST. Terminate.

10: Send reject signal to PES and go to step 9.

11: Send record to SFP for security check. Wait for response
from SFP.

12: 1If SFP permits "insert'", then set the bit in CST entry to
indicate processing by CCRP is complete. Terminate.

In order for a user to issue a ''replace" command, he nust have the
privilege to ''replace" a record on a file basis (see Figure 11).
This is checked in step 2 above. Sccond, the file sanctions must
grant him the:-privilege to delete the record to be replaced. Since

T T R T T 1 P A PR < A T 4 A

-60-

the user uses a pointer to indicate the record to be deleted, he

must have the delete-by-pointer privilege on that record. For a

user having type A protection, the delete-by-pointer access

privilege must be granted on the security atom defined by the

pointer. This is done insteps 4 and 5 above, Third, the file

sanction must grant the user the privilege to insert the new record \
into the file. For a user having type A protection, the "insert- |
record" access privilege must be granted on the security atom defined

by the record. This is done in a manner similar to the steps in

algorithm Q.

ALGORITHM S: To process the command, retrieve-MAU-addresses.
Input Arguments: 1.CST entry

Step 1: Extract default access descriptor for the user on the file
from the SITM. Check if the retrieve-MAU-addresses privilege
is granted by the descriptor. If not, then send reject signal J
to PES, remove command from CST and terminate.

Step 2: Retrieve from FITM, the addresses of those MAUs that have been)
allocated to the file. Send the addresses to the PES. Remove
command from CST and terminate.

ALGORITHM T: To process the command, load-creation-capabilityv-~list.

Input Arguments: 1. CST entry
2. A pointer to the CATM where user IDs are stored.

e

Step 1: Check to see if system ID matches with system ID stored in the

SITM. If it does not, go to step 3. {
Step 2: Store the user identifiers in the creation capability list in S
the FITM. Remove command from CST and terminate.
Step 3: Send reject signal to PES. Remove command from CST and
terminate. }

Note: This command is used to provide the DBC with a list of users who are
authorized to create files in the DBC j

¢ S

e Vi

et

W

2.4.3 Scheduling and Interrupt Handling

As the name suggests, this set of algorithms provides the CCRP the
ability to control the sequence of events taking place in the DBCCP.
Included in this set are the scheduler which constantly monitors the CST to
determine the next command for execution, and interrupt handlers to handle
interrupts from three sources - the SLIP, the SFP and PES. An interrupt
from the PES has the highest priority; if the CCRP is executing a command
processing algorithm or the scheduling algerithm, an interrupt from the
PES will result in control being transferred to the PES interrupt handler

(algorithm Vbelow). However if the CCRP is executing an interrupt handling

_algorithm, no other interrupt will be honored until the interrupt handling

algorithm has executed completely. An interrupt from SLIP will not be
honored if the CCRP is executing a command processing or security related
algorittuu. The interrupt from SLIP must wait until the command processing
algorithm has finished. There are two types of interrupts that can be raised
by the SFP. Correspondingly.there are two interrupt handling algorithms in
the CCRP. The data interrupt from SFP is raised when the SIT has response
data to be sent to the PES. This interrupt has the same kind of priority
enjoyed by the PES. The security interrupt from SFP is primarily intended
to communicate security clearance/denial for certain types of commands from
users having type B protection. This interrupt has the same priority as
the SLIP interrupt.

In summary, the interrupt from PES and the data interrupt from SFP have
the highest priority. The interrupt from SLIP and security interrupt have
lower priorities. The priority of CCRP algorithms varies with respect to

the CLIP, SFP, and the PES, depending on the type of algorithms being

executed.

i

ALGORITHM U:

To schedule the next event in the CCRP.

Input Arguments: 1. CST

Step 1:
Step 2:
Step 3:

Step 4:

Step 5:

ALGORITHM V:

Check if an interrupt trom SLIP is pending. If so give
control to algorithm W.

Check if a security interrupt from SFP is pending. If so

give control to algorithm X.

From the CST, pick up the first unexecuted command with the
highest priority.

Check if all arguments of the command has been received. If
not skip the entry and choose the next one at the same priority
level. If none exists, go to step 3 to obtain another command
at the next level.

Determine from command code, the processing algorithm to be
executed. Turn appropriate bit on to indicate that CCRP
processing of command has been initiated. Give control to the
algorithm determined above.

To process the interrupt from PES.

Input Arguments: None

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:
Note:

ALGORITHM W:

Obtain fixed part of the command (i.e., the command code,
priority, user ID, file ID and number of arguments to

follow) from PES.

Allocate entry space in CST for the command and argument
pointers. (See Figure 39).

Enter the command information in the entry allocated in

step 2. Link up command entry in the appropriate priority
list.

Determine if command is an access type command or a non-
access type command. Turn on the appropriate bit if it is an
access type command.

If arguments of the command are available then for each
argument, allocate storage in the CATM, and store the arguments.
Place a pointer in the CST.

Terminate.

Arguments of a command may be given after a pause following
the fixed part of the command. This implies that the above
interrupt algorithm may be entered at step 5 instead of
step 1.

To process an interrupt from SLIP.

Input Argument: None

Step 1:

Step 2:

Step 3:

ALGORITHM X:

Receive response data from SLIP over the argument and
response bus,

Identify by means of the request-ID and the CST entry,
the restart address of the processing algorithm waiting
for this response.

Give control to the algorithm identified in step 2.

To process the security interrupt from SFP.

Input Argument: None

Step 1:

Receive security information from SFP over the communication
bus.

-63- ' !l
|
|4

Step 2: Identify by means of the request-ID and the command status
table, the restart address of the processing algorithm
waiting for this response.

Step 3: Give control to the algorithm identified in step 2.

ALGORITHM Y: To process the data interrupt from SFP.

Input Argument: None

Step 1: Receive data from SFP. Sture data in database response
memory. If buffer is full or data is exhausted, go to
step 2.

Step 2: Transmit data in database response memovry to PLS. If

more data is pending, go to step 1. Remove command entry from CST.

2,5 The Command Translation Processor (CTP)

The CTP is responsible for converting each of the access commands sent
by the PES into a set of MAU orders. When a database file is being created
or when a new record is to be inserted, the CTP has the additional
responsibility of selecting the MAU in which the record will ultimately
reside. In carrying out these functions, the CTP makes use of the data
structures described earlier in Section 2.3. These data structures, which
reside in the table memories accessed via the command argument-and-structure-
loop-response bus, and the communication bus, are shared among the three processors
of the DBCCP. In this section we describe the algorithms executed by the CTP.
These algorithms may be divided, logically, into service algorithms,
conversion algorithms and interrupt handling algorithms. Service algorithms
provide the scheduling function, and the MAU selection function. Conversion
algorithms translate access command into one or more MM orders. The CTP
is capable of being interrupted by the SLIP and by the MM. Interrupt

handling algorithms are designed to take care of these interrupts.

2.5.1 MAU Selection and Command Scheduling

ALGORITHM A: To select an MAU into which a record may be inserted.

Input Arguments: 1. Record to be inserted (in Argument table)
2. Mandatory clustering condition (MCC)
3. Set of optional clustering conditions (OCCs) and
weights.

Step 1: [To obtain the MAUs whose records satisfy the MCC]. Let
the number of conjuncts in the MCC be n, denote the i-th
conjunct of MCC by Qi' Set 1i«l; Set S<9¢.

Step 2: Obtain control of the argument and response bus in
preparation for issuing a request to the structure loop
interface processor.

Step 3: Issue the request, '"Retrieve the MAU addresses for the
query Q." to the SLIP with arguments request-identification,
file identification.

Step

Step
Step
Step

Step

3 Step

ORI S

Step

Step

Step
Step
Step
Step

S

Step

] Step

T

ALGORITHM

v
. . ~
NN

.

Step

- Step
Step
Step
Step

Step

Step

Step

* Step 4:

. oo

(o <IN i)}

10:

11:

12:

13:
14:
15
16:
dL7s

18:

Response:

B:

115

2:

e

8:

Wait for response set from SLIP. [At this point control goes
back to the scheduling algorithm. When an interrupt occurs,
control is returned to step 5].

Call the response set S', 8«SUS'. i«i+l. If i=n, then
go to step 2.

If S 1is empty, then go to step 18.

Define w = {(f,W) | feS and W 1is a constant equal to 0}
[To select one MAU out of the set S]. Let there be m
optional clustering conditions. The j-th OCC has K,
conjuncts. The p-th conjunct of the j-th OCC will

be denoted by Qp. The cluster weight of the j-th 0CC is
denoted by C.. Set j«l1, p+tl, T.«¢.

Obtain controi of the argument and response bus in
preparation for issuing a request to the SLIP.

Issue the request, '"Retrieve the MAU addresses for the
query Q?" to the SLIP with the arguments: request ID,
and file J identification.

Wait for response set from SLIP. [At this point control
goes back to the scheduling algorithm. When an interrupt
occurs, control is returned to step 12].

Call the response set TP. T.+T UrP, péptl. If p=K,
then go to step 9. J 4. 3 4 J
For each MAU address f in T. do step 1l4.

If feS, then replace (fW) in’ w by (f,WC,).

j«j+l. If j=m, then set p«l, T.,«¢ and go~ to step 9.
From the set w, select the couple%s) {(f,,W.)} such
that W.zW, for all 4£<N where N is the cardinality of
w.

Extract the MAU addresses from the couples selected in
step 16. Call the set of such MAU addresses 6. Terminate.
[No MAU has at least one record to satisfy the MCC]. Set
6«¢. Terminate.

6 contains the set of MAUs found eligible to contain the
record.

To initiate the translation of an access command.

Input Arguments: 1. CST

Check if an interrupt from SLIP is pending. If so give
control to algorithm H.

Check if an interrupt from MM is pending. If so give
control to algorithm I.

Extract the status information of the first command in
the highest nonempty priority list.

Check if the command is an access command or a non access
command .

If the command is an access command go to step 7, else go
to step 6.

Extract the status of the next command at the same priority.
If no command at the same priority exists go to step 9,

else go to step 4.

If the command is being processed by CCRP and processing is
not complete then go to step 6.

[Access command that can be translated is found]. Determine
from the command code the access algorithm to be executed.

[N———

[OR——)

B e i e
s

A

Turn on appropriate bit in the status information table entry
to indicate that the CTP processing of the command has been
initiated. Give control to the algorithm determined above.
[All processing algorithms return control to step 1 above].

Step 9: Extract the first command in the next highest non-empty
priority list and go to step 4. If no such list is available
go to step 1.

Response: None

2.5.2 Command Translation

There are five algorithms under this category which handle the eight
access commands listed in Table I in Section 2.3. Two
counters known as the database object counter and the order number counter
are maintained by the CTP. The first is used to uniquely identify an
argument of an MM order. The second counter is used to identify the order

itself.

ALGORITHM C: To process a load-record or insert-record access command
Input Arguments: 1. CST entry

Step 1: From the CST entry, extract the pointer to the mandatory
clustering condition (in the CATM) and the pointers to the
optional clustering conditions.

Step 2: Invoke algorithm A with the pointer retrieved in step 1
and the file name as the arguments.
Step 3: [The set 6 contains the response of algorithm A] If

the set © 1is empty, then go to step 17.

For each member f of 6 do step 5.

Look up MAU space allocation table for f. Extract amount

of space available in the f-th MAU. Call it b,.

Step 6: Define the set 6' = {(f,bf) | f ¢ 6 and bf > record

p Vg
size}. If €' is empty go to step 17.

Step : From the set ©' choose the MAU f such that the
corresponding value of b, is smallest. If more than one
such MAU should be found, make an aribitrary choice (say
the first one) among the MAUs. Call this choice f .

Step 8: [Determine cluster number for recrod]. For the set of cluster
keywords occurring in the record, issue the request "Retrieve
cluster identifier with count'", to the SLIP with the following
arguments: a) file name, b) request identifier (obtained
from the command status table) and c¢) pointer to CATM
block where the cluster keywords are stored.

Step 9: Wait for SLIP response. [At this point control goes back
to the scheduling algorithm. When the SLIP response is
available, control is given to step 10 via the interrupt
handler].

Step 10: If the response is empty, then go to step 11, else jo to
step l4.

Step 11: 1Issue the request, "Allocate cluster identifier for a file"
to SLIP with the following arguments: a) file name, b)
request identifier (obtained from the CST entry).

Step
Step

v &

-66-

Step 12: Wait for SLIP response. [At this time control is given back
to the scheduling algorithm. When the SLIP response is
available, control comes back to step 13].

Step 13: If the response is empty go to step 22.

Step 1l4: Call the cluster identifier in the SLIP response set c.

Step 15: Obtain the database object counter value K. Obtain the
order number counter value. Concatenate it with the
command identifier in the command status table. Call the 4
concatenation N. Increment both counters. Issue the MM
order, "Insert Record" with the following arguments: a)
database object number K, b) order number N, c¢) the
MAU address f_ and d) the database object consisting of
the record and the triple <MAU address f s? cluster
identifier c¢, security atom name sa>. [The MAU
address is determined in step 7 or 21 and the cluster
identifier is determined in step l4. The security atom
identifier (if Type A protection is specified) is stored
in the argument table by CCRP, :

Step 16: Update the MAU space allocation table entry for f_ by
the number of bytes occupied by the record. Go tosstep 24,

Step 17: Extract the set of addresses of MAUs allocated to the file
frox FIT. Call this set 6.

Step 18: From the MAU allocation table, obtain the space available
for each of the MAU address in 6. Call the space
available in the MAU a6

Step 19: Form the set = {£,bg) f f € 0, b, = record size}. If
8' 1is empty go to step 20, else go Eo step 7.

Step 20: [Allocate new MAU]. Search the MAU bit map for a free MAU.

If no MAU is found go to step 22.

Step 21: Call the MAU allocated in step 20 f . Go to step 8.

Step 22: Reject the command by sending a rejegt signal to PES.

Step 23: Release space occupied by the record and clustering
conditions in the CATM and remove command from CST.

Terminate.

Step 24: [Update SM]. For each nonclustering keyword in the record,
issue the request, '"Insert index term'" to SLIP with the
following arguments: a) index term (f ,c,sa), b) transformed
keyword value T(K) available in the record.

Step 25: For each clustering keyword in the record, issue the request,

"Insert index term'" to SLIP with the following argument:
a) index term ((f ,c,sa),q) where q is the number of
clustering keywords in the record, b) transformed keyword
value T(K) available in the record.

Step 26: Set appropriate bit in CST entry to indicate processing
of command by CTP is completed. Release space occupied >
by record in CATM. Terminate.

ALGORITHM D: To process a retrieve-by-query-with-pointer retrieve-by-] .
query or delete-by-query access command. :

Input Arguments: 1. Pointer to entry in command status table.

Step 1: From the entry in the CST, extract the pointer to the CATM :Kf
where the query is stored.

e ittt ey

.

Step 2:

Step 3:

Step 4:

Step 5:
Step 6:

Step 7:

Step 8:
Step 9:

ALGORITHM E:

Input Arguments: 1. CST entry

Step 1:

Step 2:

Step 3:

ALGORITHM F:

Input Arguments: 1. CST entry.

Step 1:

Step 2:

-67-

Let there be m query conjuncts. For each of the query
conjunct Q. do steps 3 through 8.

Issue the r%quest, "retrieve MAU addresses'" to the SLIP
with the following arguments: a) file name, b) request
identification (from command identifier in status table), |
c) pointer to CATM where query is stored.

Wait for SLIP response. [At this point control goes back

to the scheduling algorithm. When the SLIP response is
available, control is given back to step 5 via the
interrupt handler.]

Obtain the database object counter value K.

For each of the MAU addresses in the SLIP response, do

step 7.

Concatenate the command identifier (from the command status
table) with an order number read off the order number
counter. Call it N. Increment the order number counter.
Issue the MM order, "Retrieve/Delete-by-query or retrieve-
by-query-with-pointer" with the following arguments:

a) database object number I, b) order number N, c) the
MAU address f and d) the database object (Q., set of
security atoms names if specified by CCRP).

Increment database object counter.

Release space occupied by the query, and set the apprepriate
bit in the CST entry to indicate that processing by CTP

is completed. Terminate.

To process a retrieve-by-pointer or delete-by-pointer access ;
command .

From the entry in the CST entract the pointer to the CATM
where the record pointer is stored.

From the pointer extract the MAU address f. Obtain the
database object counter value K. Concatenate the command
identifier with the order number read off the order number
counter, call it N. Increment both counters. Issue the
MM order, "Retrieve/delete by pointer" with the following
arguments: a) MAU address f, b) database object number

K, c) order number N, d) pointer consisting of the

triple <record identifier, cluster identifier, security
atom number>.

Release space occupied by the pointer in the CATM, and set
the appropriate bit to indicate that CTP is completed.
Terminate.

To process a replace-record access command.

From the entry in the command status table, extract the -
pointer to the argument table where the record to be
inserted and the pointer to the old record are stored.
[Insertion of new record]. For the set of cluster keywords
occuring in the new record, issue the request, "Retrieve
cluster identifier with count', to the SLIP with the
following arguments: a) file name, b) request identifier
(from command status table) and c¢) pointer to argument
table where the cluster keywords are stored. 7

e — - e ——m#

Step

il is oo

Step

Step

Step

Step
Step
Step

T

Step

Step

Step
9 : Step

Step

§ Step

Step

O 0~

10:

1L

12:

13:

14:

15

16:

q Notes:

Wait for SLIP response. [At this time point, control goes
back to the scheduling algorithm. When SLIP response is
available, control is given to step 4 via the interrupt
handler].

If the response is empty then go to step 5, else go to step
8.

Issue the request, '"Allocate cluster identifier for a file"
to SLIP with the following arguments: a) filename, b)
request identifier (from command status table).

Wait for SLIP response. [At this time control is given back
to the scheduling algorithm. When the SLIP response is
available, control comes back to step 7].

If the response is empty go to step 16.

Call the cluster identifier in the SLIP response set c.
Obtain the database object counter value K. Obtain the

order number counter value. Concatenate it with the e

command status table. Call the concatenation N. Increment
both counters. Issue the MM order, "Insert Record" with the
following arguments: a) database object number K, b) order
number N, c) the MAU address f extracted in step 7, d)
the database object consisting of the record and the triple
<MAU address f, cluster c¢, security atom AN>. The
cluster ¢ is determined in step 8. The atom number AN

is determined by CCRP. (See algorithm Q under CCRP).

Update the MAU space allocation table entry for f by the
number of bytes occupied by the record.

[Update SM]. For each nonclustering keyword in the record,
issue the request, ''Insert index term" to the SLIP with the
following arguments: a) index term (f,c,AN), b) transformed
keyword T(K) available in record.

For each clustering keyword in the record, issue the request,
"Insert index term" to SLIP with the following arguments:

a) index term ((f,c,AN),q) where q is the number of
clustering keywords in the record, b) transformed clustering
keyword value T(K) available in the record.

[Delete old record]. Extract pointer to the old record from
the argument table.

From the pointer extract the MAU address f. Obtain the data-
base object counter value K. Concatenate the command
identifier with the order number counter value. Call it N.
Increment both counters. Issue the MM order, ''Delete-by-
pointer' with the following arguments: a) MAU address f,

b) database object number K, c) order number N, d) pointer
consisting of the triple <record identifier, cluster
identifier, security atom number>.

Release space in CATM occupied by the new record and

pointer to old record. Set appropriate bit in CST entry

to indicate that processing by CTP is complete. Terminate.
Send reject signal to PES. Release space in CATM occupied
by new record and pointer to old record and delete the
command from CST. Terminate.

The replace command is translated into 2 MM orders by the above
algorithm. First, the new record is inserted, and then the old
record is deleted. Steps 2 through 12 are responsible for the
insertion process, while steps 13 and 14 generate the delete
order. The insertion process is similar to the processing

T R TR R R T

S g

T
e

i B e e

e -

N

for an "Insert Record" command except that no clustering is
attempted here. The rationale for this is that the user
usually wants the new record to be located in the same MAU]
as the old one. The deletion process is the same as the
processing for a delete-by-pointer command.

ALGORITHM G: To process a retrieve-within-bounds access command.

Input Arguments: 1. CST entry

Step 1: From the entry in the command sﬁytus table, extract the
pointer to the argument table.

Step 2: Extract from the argument table/the lower bound and upper
bound of the set of records to be retrieved. [The bounds
are actually pointers in the format shown in Figure 13]. i

Step 3: Check if the MAU addresses specified in the two bounds are
the same. If they are not, go to step 7.

Step 4: Extract record identifiers from the two bounds. Call them
Rl (lower bound) and R2 (upper bound).

Step 5: Obtain the database object counter value K. Obtain the
order number counter values. Concatenate it with the
command identifier in the command status table. Call the

N. Increment both counters. Issue the M

etrieve within bounds', with the following 3

ents: a) database object number K, b) order number 4

, ¢) the MAU address extracted in step 3 and d) Rl and R2.

Release space occupied by the pointers in the CATM. Set

appropriate bit in CST entry to indicate that processing

by CTP is completed. Terminate.

Step 7: Send reject signal to PES. Release space occupied by the
pointers in the CATM. Remove command from CST. Terminate.

2.5.3 Interrupt Handling in the CTP.

The algorithms in this section are executed when inte:rupts from the
SLIP or the MM are to be serviced. The CTP can be interrvjted by two sources -
the SLIP and the MM. The SLIP interrupts the CTP when it has received
structural information from the structure loop. This information must
have been previously requested by a processing algorithm (see Section 2.5.2
above). The MM requests an interrupt a) to indicate non-acceptance of an
order due to a security violation (type B protection), b) to transmit
MAU space information and c) to transmit update information to be sent to
the SM during a compaction operation (see discussion under section 3.6).
Aninterrupt from either the SLIP or the MM is accepted . ihe CTP only
when the CTP is executing step 1 or step 2 of the scheduling algorithm
(see algorithm B above). When the CIP is executing a processing algoritim
or servicing an interrupt or when the CTP is scheduling the execution of a

new command from the status ta»le, all interrupts are masked off.

= o e %

e e —

-70-

ALGORITHM H: To process an interrupt from the SLIP.
Input Argument: None

Step 1: Receive response data from SLIP over argument and response
bus.

Step 2: Identify by means of the request identifier and the command
status table, the restart address of the processing
algorithm waiting for this response.

Step 3: Give control to the algorithm address identified in step 2.

ALGORITHM I: To process an interrupt from the MM.

Input Arguments: 1. Cause of interrupt.
2. Order number.

Step 1: If cause of interrupt is security violation, go to step 4.

Step 2 If cause of interrupt is to update MAU space allocation
table, go to step 7.

Step 3: If cause of interrupt is update information, go to step 5.

Step 4: [Security violation]. From order number, extract command
identifier. With the help of the command ID, locate the
entry in CST for the command. Increment the count of
security violation in the entry. Terminate.

Step 5: [Update SM]. For each 4-tuple of the form <Transformed
keyword, MAU address, cluster number, security atom name>,
issue the SLIP request, ''Delete an index term' with the
above 4-triple as the argument.

Step 6: Receive (from MM) amount of space available in the MAU.

Update the MAU space allocation table accordingly. Terminate.

Step 7: [Update MAU space allocation table]. Receive data pertaining
to maximum space available on a track of an MAU. Store this
information in the appropriate field of the entry in the MAU
space table [see Figure 36]. Terminate.

2.6 The Structure Loop Interface Processor (SLIP)

Unlike the CCRP and the CTP which manipulate data structures described
in Section 2.3, the SLIP maintains local data structures in order to carry
out its functions. In the following discussion, we first examine the data
structures in the SLIP, and then present the algorithms executed by the

SLIP. Finally we propose a hardware organization to realize it.

2.6.1 Data Structures in the SLIP
Service requests generated by the CCRP and CTP are placed in queues

known as the request queues. Certain requests which have higher priority

than others must be executed before requests of lower priority are
executed. The status of a request after it has been placed in the queue
must be maintained by the SLIP. When a request has been serviced, the SLIP
must cause an interrupt to the appropriate processor (CCRP or CTP). The
result of a request must be made available on the command-argument-and-

structure-loop-response bus when the CCRP or CTP is ready to receive the

T TR e o v . T s

el el el il

St

é

g

B R e

.

S E R e

el o

bl

NNy

information. With this discussion as the background, we are ready to
examine the main data structure maintained by the SLIP, the request status
table (RST).

As shown in Figure 42a,the RST has two parts: a list of pointers one

for each priority level, and a table of status iaformation entries, one

for each request. The entries in the table at the same priority level are
linked together. Requests within a priority level are treated on a FIFO
basis. The entry for the first request at a priority level is pointed to
by the appropriate entry in the list headers block. The format of an entry
in the table of status information is shown in Figure 42b. There are eight
fields in an entry. The first field identifies the file referenced by the
request. The second field identifies the request itself. Since several
requests may be in various stages of completion at various components in
the structure loop, it is important to tag each request in this way in
order that the response from the loop can be ultimately paired with the
corresponding request. [The request ID is generally the command ID in the
CST described in Section 2.3. The CCRP or CTP merely transmits the command
ID at the time of requesting service from the SLIP]. The request source
field indicates which processor (CTP or CCRP) placed the request. The
request code identifies the service desired by the requestor. A list of
possible request codes and their explanation is given in Table III. The
status field indicates the progress made by a request towards completion.
More specifically, the status bits indicate whether a request has been
initiated or not, whether it has been completed or not, error codes from
the structure loop components.etc. Each of the requests can have a
variable length arguments. These arguments are stored in the CATM
described earlier. A pointer to the argument area is stored in the sixth
field. The seventh field contains a pointer to the result buffer where the
structure information requested by the CTP or CCRP is stored. The last
field points to an entry of a request at the same priority level and which
arrived next in time sequence. The number of entries in the RST is a design
parameter which is to be determined on the basis of the anticipated proces-

sing speeds of the structure loop components and the CRT and CCRP.

2.6.2 The SLIP Logic
The logic of SLIP consists of algorithms which are executed a) in
response to requests placed in the request queues, b) in response to
interrupts generated by the structure loop components (principally by the
\
)

\

TN N X

Table III. Request Types Accepted by SLIP
Ag -
Code (octal) Request Type
001 Retrieve MAU addresses
002 Retrieve cluster identifier with count
003 Retrieve security atom names ;
004 Retrieve MAU address, cluster idenitfier and security atoms
005 Insert index term
006 Delete index term
007 Load attribute information for an attribute !
| 010 Load hash algorithms for a file f
g 011 Allocate MAU number for a file
’ 012 Allocate cluster identifier for a file
t 013 Allocate security atom name for a file
014 Deallocate MAU number for a file
015 Deallocate cluster identifier for a file
016 Deallocate security atom name for a file
017 Translate MAU address into MAU number
i 020 Delete attribute information for file
4 E 021 Deallocate all MAU numbers, cluster identifiers and security
Foi atom names for a file

4
3
i

S SRR I L/ W 0

Y:‘Priority i

|

E . SR

- PR - R e

1 S R

. 3 e 0

41 _

! ST e D p
1 o USRI |

1 7 5 3

Priority List Headers

D

—

Table of Status Information

Figure 42a. Format of Request Status Table (RST)

i i X

e —— e

e e N s

NNy

74~

_ 0 Entry Free

S
/ \ 1 Entry not Free

/' + 0 Request not initiated
/ / \ 1 Request initiated
f // . 0 Request not processed
/
/ 7 Ve Request processed
/ X ,0 Processing not successful
Ja '*\1 Processing successful
1775
T ? iR i . Result
File ! Request 3’ Request :I i Argument Block Next request with
b T iD | | Code ; 238 ! Pointer ; Pointer |same priority
15 16 23 24 Sl 36 39 40 55 56 71 72
\ Error
\ Code

ek 1 Request Source is CCRP
B 0 Request Source is CTP

Figure 42b. An Entry in the table of status information

-,

-

IXU), c) for the maintenance of request queues and d) for communicating

with the CTP and CCRP over the command-argument-and-structure-loop-
response bus. We, therefore, classify these algorithms as request-

initiating, interrupt-driven and service algorithms.

A. Request Initiation - Under this category, there is one algorithm for

each of the requests identified in Table III.

ALGORITHM A: To retrieve MAU addresses

Input Arguments: 1. The file name F-ID from RST entry
2. The conjunct of keyword predicator of the from
T(Kl)AT(Kz)AT(K JA.. . AT(K) from CATM
3. The request identifier R-1D from RST entry

Step 1: Issue to the IXU, the command, "extract-from-the-next-set-
of-index-terms- (whose request identifier is R-ID and which
belong to file F-ID)-the-MAU-address'.

Step 2: For every keyword predicate in the argument, conjunct do
steps 3 and 4.

Step 3: Issue to the SM the command, retrieve-the-index-terms-of-
the-keywords-which-satisfy-the-predicate-T(K;). [The
predicate type ('=', '#', '=', '<', 's', '=2') and request
ID are sent as arguments of the command]

Step 4: Issue to the KXU the command, transform-the-keyword-K,-
belonging-to-file-F-ID-into-its-encoded-form. Place the
transformed value in bits 8-55 of predicate.

Step 5: Issue to the SM, the command, '"Reset',. [This command
indicates the completion of a set of '"retrieve' commands
given in step 3.

Step 6: Set status bits to indicate that the request has been
initiated. Terminate.

ALGORITHM B: To retrieve cluster identifier with count.

Input Arguments: 1. The file name F-ID from RST
2. The conjunct of keywords with count q from CATM
3. The request identifier R-ID from RST

Step 1: Issue to the IXU, the command, extract-from-the-next-set-
of-index-terms-(whose request identifier is R-ID and which
belong to the file F-ID)-the-cluster-identifiers.

Step 2: For every keyword in the argument conjunct do steps 3 and
4.
Step 3: Issue to the SM the command, retrieve-with-count-the-

index-terms-of-the-keyword (whose transformed valve is to
be obtained from KXU). [The request-ID is sent as an
argument].

Step 4: Issue to the KXU the command, transform-the-keyword-K,-
belonging-to-file-F-ID-into-its-encoded-form. Place
transformed value in bits 8-55 of keyword.

Step 5: Set status bits in RST (see Figure 42b) to indicate that the
request has initiated. Terminate.

7=

ALGORITHM C: To retrieve security atom names.

Input Arguments: 1. The file name F-ID
2. The conjunct of keyword predicates
3. The request identifier R-ID

Step 1: Issue to the IXU, the command, extract-from-the-next-set-of-
index-terms-(whose request identifier is R-ID and which | 8
belong to the file F-ID) the-security-atom-name. }A

Step 2: For every keyword predicate in the argument conjunct do i3
steps 3 and 4; { 4
Step 3: Issue to SM the command, retrieve-the-index-terms-of-the-

keywords-which-satisfy-the-predicate~T(K.). [The predicate
V¥ AR T Vo bt taat .1 . A

type ('=', '#', '<', 's', 'S',) '2'"), and request identifier
are sent as arguments of the command].

| Step 4: Issue to the KXU the command, transform—the-keyword—Kl—

| belonging~to-file F-ID-into-its encoded form. FPlace

i transformed value in bits 8-55 of predicate.

{ Step 5: Issue to the SM the commamd 'reset’.

| Step 6: Set status bits in the RST (see Figure 42b) to indicate that
the request has been initiated. Terminate.

ALGORITHM D: To retrieve MAU addresses, cluster identifier and security
atom names.

Input Arguments: 1, The file name F-ID
2, The conjunct if keyword
| 3. The request identifier R-1ID

Step 1: Issue to IXU the command, extract-from-the-next-set-of-index-—
‘ terms (whose request identifier is R-ID and which belongs

i to the file F-ID) the MAU addresses the cluster identifiers

' and security atom names.

Step 2: Execute steps 2-6 of algorithm C.

Step 3: Terminate.

ALGORITHM E: To insert an index term for a keyword.

Input Arguments: 1, The index term i
2. The count (q) if keyword is clustering
I keyword
3. The transformed value of keyword T(K)

Step 1: 1f argument keyword is security/clustering keyword then ge
to step 3; else go to step 2.

Step 2: Issue to the SM the command, insert-index-term-i-for-the-
keyword-whose-transformed-value-is-T(K). Go to step 4.

Step 3: Issue to the SM the command, insert-index-term-(i,q)-for-
the-keyword-whose-transformed-value-is-T(K).

Step 4: Set status bits in the RST (see Figure 42b) to indicate that
the request has been initiated, and processing is completed
successfully.

Step 5: Terminate.

ALGORITHM F: To delete an index term.

Input Arguments: 1. The index term i
2. The transformed value of keyword T(K).

ST

~
e s b

Step 1: Issue to the SM the command, delete-index-term-i-for-the-
keyword~whose-transformed~value-is~T(K).

Step 2: Set status bits in the RST (see Figure 42b) to indicate
that the request has been initiated, and processing is

P | completed successfully.

' Step 3: Terminate.

e

ALGORITHM G: To load attribute information for an attribute.

Input Arguments: 1. The attribute identifier A-ID.
2. The attribute information in the CATM.

i Step 1: Issue to the KXU the command, create-an-AIT-block-for-the-
! attribute-identifier-A-ID. [The attribute information is
sent as argument to this command].

: Step 2: Set status bits in th¢ RST to indicate that the request

; has been initiated, :ad completed successful.

l ‘ Step 3: Terminate.

ALGORITHM H: To load hash algorithms for a file.

~ Input Arguments: 1. The file name F-ID
i 2. The number of hash algorithms 'k'
{ 3. The hash algorithms

Step 1: Issue the command to the KXU, build-a-set-of-k-hash-
algorithms-for-the-file F~ID.
Step 2: Transmit the k hash algorithm to the KXU.

! Step 3: Set status bits in RST to indicate that the request has
! been initiated, and processed successfully.
Step 4: Terminate.

4 ! Notes: In algorithm G and H, if the KXU rejects the input on account
of lack of table space, then the status of the request is set
to unsuccessful completion (bit 35 is set to 0) and the error
3 code is set to indicate cause of rejection.

ALGORITHM I: To process an allocate/deallocate request to IXU.

Input Arguments: 1. The file name F-ID
2. The MAU number, cluster identifier or security atom
number in case of a deallocate request

3. The MAU address Mf in case of an MAU number request.

{ Step 1: For a deallocate request, issue the command, deallocate-for-

: file F-ID-the-MAU-number-cluster-identifier-or-security-atom-
name-specified-by-the-second-argument. Go to step 3.

Step 2: For an allocate-MAU-number-request, issue the command

f ! allocate-an-MAU-number-for-the-absolute-MAU-address-M -

| and-file-F-ID. For an allocate-cluster-identifier/security-

! atom-name-request, issue the command, allocate-cluster-

! identifier/security-atom name.

E i Step 3: Set status bits in the RST to indicate request has been

|

NS

e

f initiated. Terminate.

T

.

P —

A N I T A e ST S

78

ALGORITHM J: To translate MAU address into the corresponding MAU number,

Input Arguments: 1. The file name F-ID
2. The MAU address M

Step 1: Issue the command to the IXU, convert-MAU-address into Mau number.
Send F-ID and M. as arguments.

Step 2: Set status bits in RST to indicate that the request has been
initiated. Terminate.

ALGORITHM K: To delete attribute information for a file.

Input Arguments: 1. The file name F-ID
2. Number of attributes m
3. The m attribute identifiers

Step 1: Issue the command to the KXU, delete-AITs-and hash-algorithms-of-
a-file, and send F-ID and m attribute identifiers to KXU as
arguments.

Step 2: Set status bit in RST to indicate that the request has been initi-
ated and processed successfully. Terminate.

ALGORITHM L: To deallocate all Mau numbers, cluster identifiers and security
atom names for a file.

Input Arguments: 1. The file name F-ID

Step 1: Issue the command to the IXU, deallocate-all-index-translation-
information, and send file name F-ID as an argument.

Step 2: Set status bits in RST to indicate that the request has been initi-
ated and processed successfully. Terminate.

i — e

e ———

B. Interrupt Handling - Under this category are algorithms executed in

response to interrupts generated by the IXU.

ALGORITHM A: To process the IXU interrupt for transmission of retrieved
MAU addresses, cluster idevlifian security atom names or
triples of the form <MAU addresses, cluster identifier,
security atom names>.

Input Arguments: 1. The request identifier R-ID
from IXU (source 2. The number n of retrieved items
of interrupt) 3. The n items

Step 1: Locate the entry in the RST for the request R-ID.

Step 2: Allocate in the result buffer enough space to store n of
the retrieved items. If there is no space, then go to
step 5.

Step 3: Place a pointer to the memory (allocated in step 2) in the
RST entry. Receive the items from IXU, and place them in
the result buffer.

Step 4: Set status bits in RST to indicate successful completion
of the request. Terminate.

Step 5: [No space in result buffer]. Reject output from IXU, place
request at the beginning of the queue and terminate.

ALGORITHM B: To process the IXU interrupt from transmitting allocation
information.

Input Arguments
from IXU: 1. The request identifier R-ID
2. The MAU number/cluster identifier/security atom name

Step 1: Locate the entry in the RST for the request R-ID.

Step 2: Receive the MAU number/cluster identifier/security atom
name from IXU and place it in the result field (field 7
in Figure 42b) of the RST entry located in step 1.

Step 3: Set status bits in RST to indicate successful completion
of the request. Terminate.

C. Service Algorithms - Under this category, there are algorithms which
place a request in the RST, remove a request from the RST allocate space in

the result buffer.

ALGORITHM A: To place a request in the RST

Input Arguments: 1. The file name F-ID
2. The request identifier R-ID
3. The request code
4., A pointer to the arguments in CATM
5. The priority of the request

Step 1: Allocate the first entry in the list of available entries
(see Figure 42a) in the RST for the current request. If the
list is empty, go to step 4.

AL S - e e T A

-80- }i

Step 2: Place file name, request identifier, request code and
argument pointer in their respective fields. Clear
status field. Set the status bit to indicate entry is
occupied.

Step 3: Link the entry into the appropriate list of priority.
Terminate.

Step 4: [RST is full]. Reject request. Terminate.

ALGORITHM B: To locate and remove requests that have been processed by the
struction loop.

Input Argument: None

Step 1: For each priority list in the RST do steps 2 through 4.

Step 2: Scan the list of requests for the i-th priority level.
For each request whose status indicates completion do
step 3 through 4.

Step 3: Determine the response for the request fror the result
field or result buffer and send it to the CCRP or CTP
(depending upon the origin of the request.)

- Step 4: Set the status bits in the entry to indicate that the entry

Q is available for allocation. Link the entry into the list]

of available entries. Release result buffer space by

invoking algorithm C.

% Step 5: Terminate.

Note: This algorithm is continually executed, so that as soon as
requests are processed, their responses can be sent to their
respective sources (CTP or CCRP).

{ ALGORITHM C: To allocate or deallocate memory in result buffer as and
i when requested,one block at a time.

Input Argument: This address of the memory block if deallocation is
desired, or the size of memory if allocation is desired.

Step 1: If deallocation is requested go to step 4.
Step 2: [First Fit]. Determine the first block in the chain of
available blocks, whose size is large enough for the

{ 4 request. If no such block is found, go to step 5.
Bl - Step 3: Transmit address determined in step 2 to requestor. }
b { Terminate.
Step 4: [Deallocation]. Link block at the end of the list of
available blocks. Terminate.
;~ Step 5: [No space in resu.t buifer]. Reject request. Terminate.
. i
P -\ 2.6.3 Hardware Organization of the SLIP
E | From the above discussions on the data structures and the algorithms
executed by the SLIP, we find that there is a need for concurrency of
- execution of service algorithms on one hand and interrupt and structure
E | loop initiating algorithms on the other hand. Requests which are made by the

CCRP and CTP over the command-argument -and structure -loop-response bus are

placed in the RST by the service micorcontrol unit (MCU-1) (See Figure 43).

WY

R T T

o ———

— —— — Control Signals

777777777: Data Paths
\ Request L_
) Buffer [Status __:fljf-"~""»-—)
Tahle - - = "
f R i o
| - -~
\ 77 \ -
‘ - \ '1/
/ —"‘-‘—-—-‘——"—V/
T S J
A Meu-1 McU-2 N
ey -
AH0E j D
et |
i / \ o
f ROM-1 Vi ROM~2 ‘ \
. i '\ ¥
/ il £ oy,
' ! i ~
1 !

Scratch Pads, Reg-
isters, Flags and
Simple Arithmetic
and Logic

e Command-Argument-and-Structure-Loop-Response Bus

Notes:

Figure 43.

——— Result Buffer

R s SSmeae=

~f=

Structure-Loop-Interface Bus

To/From
the IXU

-

-

To/From
the SM

To/From
the KXU

Scratch Pad Registers and ALU are shared by MCU-1 and MCU-2.
MCU-1 is a Micro control unit for executing service algorithms.

MCU-2 is a Micro control unit for processing interrupts and executing

loop initiating algorithms.
MCU-1 and MCU-2 have the micro instruction address generation logic

and operate concurrently.

ROM-1 contains micro instruction sequences for all service algorithms.
ROM-2 contains micro instruction sequences for all interrupt and loop

initiating algorithms.

Hardware Organization of Structure Loop Interface Processor

S

b

while requests already in the table are initiated by MCU--2. Accesses to the
RST by the two control units are serialized by means of hardware locks.
Information from the structure loop is stcred in the result buffer under

the control of MCU2, while information is moved out of the result buffer

by MCUl. Here again hardware locks are used to ensure that only one unit
has access to the buffer at any given time.

The RST and result buffers are small random access memories of sizes
in the range 16-32K bytes. The control units are microprogrammed to
incorporate the algorithms discussed earlier. The ROMs (ROM-1 and
ROM-2) have one program for each of the algorithms. The microcontrollers
generate the appropriate ROM addresses to execute them. MCU-2 has three
interrupt lines one each for IXU, SM and KXU. The IXU uscs its interrupt
line to indicate that it has decoded index terms for a particular request.
The KXU uses the interrupt line to indicate that it is ready to accept
the next keyword for transformation. The SM interrupts only to indicate
an error condition. In addition to the interrupt lines, the MCU-2 has
control lines by which it can monitor the activities of the IXU, SM and
KXU and grant access to the structure-loop-interface bus (SLIB). MCU-2
can also initiate transfer of arguments for various commands from the
command-argument--and -structure-loop-response bus (CASRB) to the SLIB. The
MCU-1 responds to requests on the CASRB by queuing the requests in the
RST. It is also responsible for transferring data out of the result
buffer and sending it to the proper requestor via the CASRB. The two
microcontrollers share all of the logic capabilities of the SLIP. As
shown in Figure 43, the two controllers can gain access to (on a specialized

basis) the scratch pad registers, and a simple arithmetic and logic unit.

-2t R ot et R R ol ol A e i
’ .

AT ——

3. THE MASS MEMORY (MM)

The mass memory (MM) is the repository of the database. Contemporary

database management systems also store their databases in mass memories
(although the MM is conceptually and physically different from contemporary
mass memories). In addition, most of the systems store meta-information
about their databases in mass memories. Examples of such information are
pointers, indexes, and security related information. In order to access a
piece of data in these systems, one must first access the meta-information. It
is, therefore, likely that such organizations can lead to an excessive number
of accesses to a relatively slow mass memory. A related problem in software -
laden systems is that the load on the central processor tends to increase sub-
stantially as the number of accesses increases. This is because each access
to a mass memory is preceded by several tens of processor instructions re-
quired to prepare and issue an access command.

Both these problems of excessive number of accesses to the mass memory

and of increased load on the processor may be alleviated to a great extent if

the meta-information is separated from the database and manipulated by a
functionally specialized processor. In the proposed DBC such a:separation
leads to the architectures of the structure memory (SM) and of the mass memory
(MM). The SM (whose design details appear in [8]) contains information about
the database; this information is subject to frequent changes even though the
contents of the database do not change. Thus the information in the structure 1
memory may be said to be update-variant. Examples of such information are
security specifications which are different for different users, and can &
change with time, although the database files on which these security specifi-
cations apply may not have undergone any change.

On the other hand, consider the information contained in the mass memory.
In the proposed DBC, the MM contains database files which are composed of
records. Unlike records in contemporary systems, these records do not carry
pointers or any other type of metg—information. Thus, any change in the meta-
information does not affect the contents of the MM. We may, thus, regard

information in the MM to be update-invariant. The separation of update-

variant and update-invariant information provides us with three advantages:

First, the number of accesses to the MM is limited to that required to access data;
second, accesses to data (in the MM) may be performed concurrently with accesses

to meta- (i.e., structural) information (in the SM); and, third, the complexity

of the logic of either of the two components would be less than the complexity of

a single component managing both update-variant and update-invariant information.
This last advantage is especially important in hardware systems such as the proposed
DBC.

e

|
t

St

-84-

In this section we propose a hardware organization of a mass memroy to

3 to 1010 bytes., The principal

support a database of size in the range of 10
operation carried out by the mass memory logic is the search operation. The
concept of a partitioned content addressable memory (PCAM) which was success-
fully employed in the design of the structure memory (SM) and that of the
secucture memory information processor (SMIP) is once again employed here to
ensure acceptable performance. The MM is designed to reduce, substantially,
the effective access time to a partition. Furthermore, each partition is
searched by a group of processing elements, thereby reducing the search time
of a partition. These two features together with matching performance of

other components will enable the DBC to be used in on-line environments.

3.1 The Design Philosophy

In the design of the SM, we used a transformation on data (keywords)
to identify the sectors (or modules) of one or more partitions to which the
search operation can be confined - Since the principal MM operation is the
search operation, it is intuitively tempting to use a transformation of some
sort to limit the search space. But such an approach, on closer examination,
becomes impractical. We advance an important reason for this. First, we
realize that rotating moving head magnetic recording devices are still the
only cost-effective technology for large databases [9]. Given this, we are
immediately confronted with the rather disparate access times and transfer
rates of the device on one hand, and the large amount of sequential data
available per access on the other hand. If we are to extract optimum performance
from such a device, it is imperative that we place data in a way that allows
information searched per access to be as close to the maximum as possible. An
arbitrary transformation of data to determine its position in the MM will not,
in general, result in optimum placement. However, a placement strategy based
on the predicted or known data usage patterns should work better. Such a
placement technique (called clustering) was introduced in Section 2 to determine
the partition in which a data unit (i.e., record) must be placed. The MM
design, thus, does not concern itself with where to access for a piece of
data, but with how best to minimize the inherently large access times, and with
how to locate (and retrieve) a piece of data (from) within the partition
(i.e., MAU) defined by a single access.

To address the first of the design problems, we have proposed overlapping
of access and transfer operations. It is well known that on any given device

only one operation (ie., an access or a data transfer) may take place at any

Mt ——————t

[—;

-

7 3L

s B ST 4

R e ol o e o D S

e b .

bl

I Rt St o i s

-85-

given instant. However, in a system with several such devices, data transfer
on one device may be overlapped with accesses on other devices. The second
problem may be addressed in two different ways. In the first method, data
associated with a single access may be read into a high speed random access
memory and manipulated therein by a processor. The advantages of this scheme
are the avilability of a large RAM which allows known software techniques to
process data and that record deletions can be handled in a straightforward
manner. The main drawbacks of this scheme are the rather low utilization of
the RAM (typically, 3-10% of the RAM will contain information satisfying the
query); and that data cannot be processed on-the-fly, since the transfer rate
can be very high (160 MBS for a device with 800K bytes/sec transfer rate and

20 tracks transferring in parallel). The second method employs a set of
processing elements to process data on-the-fly. Each element is equipped

with a small RAM to store retrieved information. The advantages of this scheme
are high utilization of all hardware resources, and the ability to process

data at the maximum rate at which data can be transferred from the MM. The
main disadvantage of this scheme is its inability to reclaim immediately

space occupied by deleted information. The choice of the method to be

employed is dictated by factors like cost and anticipated usage of the DBC,
etc. If the cost of significant underutilization of hardware can be traded for
instantaneous updates, then the first method is superior to the second, 1If,
however, the delay in space reclamation is not critical, then the second method
is better. We chose the second method because we believe that, although
hardware costs show a downward trend, we still need to ensure adequate utiliza-
tion of components and that delays in space reclamation will not be noticeable
in most databases unless the MM is operating very close to its full capacity.
In many contemporary systems, space is reclaimed when the load on the system is

not at its peak. Such an arrangement has worked satisfactorily.

3.2 The Organization of the MM

The overall organization of the MM is shown in Figure 44. The database
resides in data volumes mounted on moving-head disk drives. It is desirable
to have a one-to-one correspondence between the volumes and the drives; but
this is not essential, if the volumes are transferable. However, with disk
technology moving towards higher bit densities, mechanical tolerances will not
allow frequent interchange of volumes (disk packs) between disk drives [10]. Our

design is independent of the above consideration. A volume is composed of 200-

400 cylinders. A cylinder is the smallest unit of access in the MM and has been

" &) . - C " o T o w— e -
o TPl P A2 1 — = X
|

: t ~86- i
| I
| i
Database 2
Volumes Track ;
N Disk Information :
i3 e Drive Processors &
\: ‘ Controllers (TIPS) ’
SN A
\\ \. N\ \ - ‘
\ ~ \§ (TIP
|) 2 == DDC, ’
BN TS TIP
! .) * 2
| - ¥ | '
| EQ | : P,
N Jd “Fiooc, RE= -
: /W/ 2 \-"\ \I/ [To SFP
| o> / f
. : | / /4—+ |
. < | ; / MM
| N P ™o =3 Con- = From
| ‘ e - troller| DBCCP
r. : ;
, > s ‘
) ! T
| it o |
: Y |
| —
N \\~ //l'/ l
? 1 =F4oec__, f, L ' 1
% 4 | o | |
| \ 3 é
g | } I~ 3 s |
, //,_{t '
4 8' I
| E . !
! 8| Tlpl | 3
x | I
SOMNGEIME S ‘

Figure 44. Organization of the Mass Memorv (MM)

|
]

S

PSR

NNy

-87-

called the minimal access unit (MAU) [2]. Each cylinder consists of a set of |

tracks (usually in the range of 20—40); there is one track per disk surface. The j

access mechanism consists of a movable set of read/write heads, one pair per
disk surface. The heads are moved in unison to access all the tracks of a
cylinder. Data transfer to/from a cylinder is achieved by activating all the
read/write heads concurrentiy. Although previous design. [11] have taken
advantage of the fact that the read and write heads on a track could be
positioned a short distance from each other, we do not favor such an arrangement.

This is because, at high track densities (1000 tracks per inch and hicher),
the required mechanical tolerances may well deprive the disk technology of much

of the cost-effectiveness brought about by the higher densities. In our design,
therefore, we assume a combined read/write mechanism.
Each MAU in the system is uniquely identified by a numbe' , tnown as its
MAU address. A disk volume contains a set of consecutively addressed MAUs.
The set of disk drives is partitioned into groups of 8-16 drives for access

and control pruposes. Each such group is controlled by a disk drive controller

(DDC). This partitioning of disk drives for access and control purposes is
not to be confused with the PCAM partitioning of the data which is used for

enhancing performance. The DDCs are controlled by the mass memory controller

(MMC). Data that are retrieved from the disk volumes are routed to a set of

track information processors (TIPs) by a drive selector and a track multi-

plexer/demultiplexer (TMD). The drive selector is controlled by the MMC. The

TIPs can request the services of a bus called the IOBUS for transferring database
information to the MMC. The IOBUS is also used by the MMC to send control in-
formation and data to the TIPs.

The MM operates in two basic modes -- the normal mode and the compaction
mode. In the normal mode, orders sent by the DBCCP are decoded by the MMC and
queued according to the MAUs referred to by the orders. The MMC then requests
a DDC to seek the cylinder corresponding to a MAU for which a queue of requests
exist. When the MAU is thus accessed, the MMC sends the orders one at a time i
to the TIPs. While the TIPs are busy executing the orders, the MMC can request
the DDCs to position the read/write mechanisms to other MAUs for which there
are non-empty queues. Thus the access time of a MAU is at least partly over-

lapped by useful work performed by the TIPs. The extent of overlap is determined

by such factors as the average number of orders waiting to be executed for a
MAU and the number of different MAUs for which there are non-empty order quecues.

The information retrieved by TIPs from the database is sent to the SFP for

security clearance. Records which are identified by a delete order under the

LR S\)

-88-

normal mode are tagged by the TIPs for later removal during the compaction
mode. When the DBCCP orders the MM to reclaim the space occupied by the
records with deletion tags, the MM enters the compaction mode. During the
compaction mode, MAUs in which tagged records exist are accessed, and data in

each of the tracks is read into the MMC by the TIPs. The MMC then writes back

those records which are not tagged. There are two reasons for handling deletions

in this manner. First, if reclamation of space occupied by deleted records were
to be attempted in the normal mode, one of two undesirable things will occur:
either, we will have to provide a track-size buffer with each TIP resulting in
low utilization of the buffer during retrieval, or we will have to reclaim

space in segments of the track, each segment size being equal to the size of a
TIP buffer. 1In the latter case, the number of revolutions required to sweep

the entire track for reclamation will be a multiple of the ratio of the track
size to the TIP buffer size. During the normal mode of operation, a single
delete operation could hold up retrievals for several revolutions. This is
undesirable. Second, we may expect during the course of a 24-hour day, periods
of light load. Such periods usually result in low utilization of system
resources. By operating the MM in the compaction mode during these intervals of
light load, we may be able to achievea more equitable distribution of load on

the DBC.

3.3 The Mass Memory Controller (MMC)

The mass memory controller (MMC) is organized into two subcomponents --

the interface processor (IP) and the mass memory monitor (MMM). The IP

is responsible for interfacing with DBCCP, maintaining the database object

descriptor table memory (DODTM), maintaining MM orders in the mass memory

order queues (MMOQ), and switching from normal to compaction mode. The MMM
is responsible for scheduling orders to be executed with the help of the MMOQ,
issuing orders to the DDCs to position read/write heads, initiating TIPs to
execute the orders on the contents of a MAU and keeping track of space avail-

ability in the MAUs.

3.3.1 Interface Processor (IP)
A. The Database Object Descriptor Table Memory(DODTM) - This table memory
contains database objects which are used as arguments of the orders issued by
the DBCCP. Each object is identified by a unique identification tag assigned to
it by the DBCCP. A database object in this table could either be a query, a

record or a pointer. The formats of these three objects are shown in Figure

45. The format of a keyword as it appears in a query or a record is also shown.

{

N sy, R o (O iy |

Y (|

.y
4.

Y e
S

L

oo

S—

Ay

-89-

" Directory Entry Keyword Indicator
- Security Keyword Indicator

//f——Cluster Keyword Indicator

//i//»“‘Negated Keyword Indicator

Hash Function Length Value

/74?\8 55 ‘t_\“38 63

// | = 's' Predicate Indicator
/ L '<' Predicate Indicator | != 00 Fixed point number; length =
/ i 4 bytes
A 1> . |
=Frcgicare (lndicates \“Value‘{= 01 Short floating point; length =
1t : Type | 4 bytes
= Fredicake Tadsicatar i= 10 Long floating point; length =
8 bytes
‘= 11 Alphanumeric; length < 31 byte
Figure 45a. Format of a Keyword Predicate in a Querv or Record
Sent by DBCCP as an Argument of MM Order
//"Object Type = 00 (Query)
Usage # of Bytes # of Pred- T T T
Count in this Query icates=n il 2 el iy n
0 5 8 23 24 31
Figure 45b. Format of a Query Conjunct Residing in the DODTM
" Object Type = 01 (Record)
Usage Cluster ID #f of Bytes in Record |# of Key— ¢ i K 1 e g
Count Security Atom Name this Record| ID iwords ,n| 1| 2 |
0 L 31 32 47 48 63 64 7l

% IK 'Record Body
| o |

Figure 45c. Format of a Record Residing in the DODTM

— e — —

OHIO STATE UNIV COLUMBUS COMPUTER AND INFORMATION SC==ETC F/6 972
THE ARCHITECTURE OF A DATAbASE COMPUTER. PART ITI. THE DESIGN O==ETC(U)

DEC 76 D K HSIAO» K KANNAN NO0014=75=-C~0573 '
UNCLASSIFIED OSU=CISRC=TR=76=3 NL

B |
END
o |

AD=A036 217

o & hee B

I _— f22 m"2.2
:: |gg =
[9

ol

—
.
c—
[1%
r
£r

= e
22 1t nee

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

B e U

Object Type = 10 (pointer object type 1)

e | Usage

. |_count Record ID | Cluster Identifier Security Atom Name
R | 0 58 23 24 47

’ Figure 45d. Format of a pointer object (type 1) residing
in the DODTM

e — g —— e

. Object Type = 11 (pointer type 2)
Ll

vaage Record ID 1 Record ID 2 :1
Count

0 5 8 23 24 39

" o
Yo

Figure 45e. Format of a pointer object (type 2) residing :
in the DODTM ! 1

kA A R RS 3 s

B — -

-9]1-

The keywords in a query or record areassumed to be sorted in ascending order
' of their attribute identifier. This sorting is done by the PES before the
query or record is sent to the DBC. Since database objects are placed in the
table only to be accessed later when the MM order is scheduled to be executed,
there must be a rapid mechanism to locate and retrieve database objects from
the table. The table is, therefore, organized in two parts -- an associative
memory (AM) and random access memory (RAM). An entry in the AM has two fields --
an object identification tag and a pointer to a location in the RAM. The
RAM holds the database objects pointed to by the AM. The AM can be searched
i on the basis of database object identifiers; the response is the pointer to the
i RAM location where the corresponding database object is stored. In Figure 46,
the organization of the table is shown. Since each MM order is associated with
t at most one database object and since we do not expect more than a hundred orders
’ waiting to be executed, we can correspondingly set the maximum number of entries
in the AM to be in the neighborhood of 100. Each entry in the RAM is either
a query, a record or a pointer. Recall from [2] that we estimated that in the
worst case, queries will seldom have more than 15-25 predicates. The same may
be said to be true of records. According to Figure 45a, a keyword may occupv
| not more than 39 bytes (= 31 bytes value + 8 bytes overhead). Thus a query
% in the worst case will seldom exceed 1000 bytes in size. Records could, of

‘ course, be larger than this size, since the record body could be arbitrarily

e

long. The size of a pointer database object (Figures 45d and 45e) is either
5 or 6 bytes. When the database has been established, (i.e., when most of the

& files have been created), we expect a large percentage of retrieval requests

3 g and a low percentage of insertion requests. Since only insertion requests
require records as a database object argument, we may conclude that the average

size of a database object would be very close to 1000 bytes. Thus, a RAM of

N R T

size 100K bytes (= 100 x 1000) is appropriate for storing the DODT. The size

of the AM can now be determined. Each entry occupies 4 bytes (i.e., 14 bits

for the object identifier and 18 bits for pointer into the RAM). Thus the
size of AM is in the neighborhood of 400 bytes (see Figure 46).

| Memory in the RAM is allocated and freed in a manner similar to the

scheme used for the CATM as described in Section 2.3.3. f

The DODT is used in an entirely different manner during the compaction mode
f of operation. During this mode of operation, the MMM uses the DODT to identify
| those keywords whose transformed values have been deleted from a cluster-security
|

atom partition existing in a MAU. The RAM portion of the DODT is divided into

~-92-

f Avail List Header

e

| Forward Link }

Backward Link

4 . Database Object Identifier
| (14 bits) Pointer to RAM 1
i (18 bits)
| ¢
| N
i — e
N<100 { . |
| o <100 K
1 . >
e)3
A st o |
Associative ;
Memory (AM)
(400 Bytes) }
E \ f |
1 ; |

g3,
. | Random Access
: Memory (RAM)
Bytes Contains Variable
Size Data Base Objects

AL S

! Figure 46a. Organization of Database Object Descriptor Table (DOTB)

el o
a5

]

3 -93-
1
|
.
S i
- Tag Indicates Block is in Use \ Tag Indicates
g *. Block is in Use
i N
w2y
Size = n+3 s
1 Bytes Database Object = n Bytes J_/;é{
1 15 16 0 7
5
Figure 46b. Details of a Block in Use in the RAM
|
i;;Tag Indicates Block is Free «—-Indicates Block is Free
‘: L \\ T
F g o D| Size = n+10{ Link Forward |Link Backward } ? !!Size = n+10
i | 01 15 16 39 40 R 15
f § Free Area
o Figure 46c. Details of a Free Block in the RAM
b
2
E |
| :
|
|
;|

f*f‘

ST SN R o ST O 1T

§
!
£
f
H
§
é
H
H

=94 =

two parts: record storage and list storage (see Figure 47). The record
storage contains records from the MAU which are not deleted. The list storage
contains lists of transformed keyword values which were present in deleted
records. Each list corresponds to a particular cluster-security atom pair. The
records in the record storage occupy about 80% of the RAM while the list
storage occupies about 207% of the RAM. Allocation in the record storage is in
terms of variable size blocks. Since the entire record storage is released
only after the records have been written into the MAU, there is no need to
keep track of intermediate available blocks of memory. Allocation in the list
storage is in terms of fixed length blocks of 8 bytes for the nodes of the
lists and 6 bytes for each list header.

The AM is not used during the compaction mode of operation.

B. Order Queues (0Q) - Order queues, as the name implies, are used to keep
track of MM orders (sent by the DBCCP) which are awaiting execution. There

is one queue for every MAU for which ore or more orders are awaiting execution.
Order queues are maintained on a first-in-first-out (FIFO) basis. Two data
structures are proposed in Figure 48a to manage order queues. The queue

headers table (QHT) is used to carry information about the queues. More

specifically, each entry in the QHT has three fields: The first field has
status information about the availability of a MAU for processing. The

second field contains the MAU address and the third field points to the first
order to be executed on the MAU. The second data structure is called the order
table (OT), which contains the orders themselves. The format of an order when
it is received by the MM is shown in Figure 48b and its format when stored

in the OT is shown in Figure 48c. The number of different MAUs for which
orders may be pending is determined by the number of entries avilable in

the QHT. This in turn depends on such factors as the number of MAUs that need
to be accessed in order to keep the track information processor busy, and the
distribution of MAU addresses among the cylinders of disk volumes.

In order to clarify the above observation, we shall give estimates of how
each of the factors can influence the number of order queues to be maintained.
First, supposing the TIPs can process, on the average, an order four times as
fast as a MAU access, then it follows that it is profitable to maintain at
least four queues for five different MAUs each of which is in the process of
being accessed by the disk drive controllers. Second, supposing the distribution
of MAU addresses is localized to a particular disk drive. Then, it is not

possible to overlap the data transfer and processing by the TIPs with the

o o b i NS ki e i, A e Sl

G L S

T

SIRBEREE S SRS o

P P

NN

List il

Headers

6 bytes

each \§>\
NN\

\,

100K*

Record Storage for Records

without Deletion Tags

Lists of transformed
. keyword values. Each
node is 8 bytes.
 ———
Figure 47.

Organization of RAM portion of DODT
during compaction mode of operation

e

ok

Sy o o o

e

s Sk 63 b R e

i ——

FREEE. 5. S

— so
=1

Queue Headers Table (QHT)

MAU Pointer into
Address Order Table
1 Byte 2 Bytes 2 Bytes
e e ey

1
3
(
]
1
5

S
\

= 0 Entry not in use
= 1 Entry is in use

= 0 MAU not accessed yet

= = 0 This queue not processed yet
= 1 This queue is being processed

O\

= 1 MAU accessed & ready for processing

MAU access order issued

Figure 48a.

MAU access order not issued yet

Order Table (OT)

6 Bytes per Order

x/

.

" # of orders awaiting execution for this MAU

Order Queues

b

o TR AR e B ST AT B

T

|
{
{
!
1

e ————_ .

i

I

E |

3
i

N NN

MAU Database [Order ' Order Database Object 1
Address |[Object # Code Number
0 15 16 31 32 39 40 S . o T

Variable Length

MAU Address ranges from O through 216 1

Database Object Number ranges from O through 216 -1

Order code can be: 001lg Retrieve-by-query, 002g Retrieve-by-pointer,
003 Retrieve-by-query-with-pointer, 004g Retrieve-within-bounds,
0055 Delete-by-query (type A protection), 006g Delete-by-query (type

B protection), 0074 Delete-by-pointer (type A protection), 010g
Delete-by-pointer (type B protection), 0llg Imnsert-record, 000g
Reclaim-space (compaction mode).

Figure 48b. Format of MM order sent by DBCCP

| Order | Pointer to
Database Object # ' Code | Order # | next order
15 16 23 24 39 40 5

Figure 48c. Format of MM order stored in OT

TR

il

b b e >

————e
*
.

T R T R
- SEREES

e et e ... st i

&

"

!

TGP TV PR IR, o T

-98-

access of the MAUs. 1In this case, it does not pay to maintain separate queues
for different MAUs. Over a period of time, however, we may expect a more
favorable distribution of MAUs addresses. Thus it is useful to maintain
separate queues; but the extent of overlap and, therefore, the number of
queues that should be maintained can be determined only by a simulation study.
Each entry in the QHT occupies 5 bytes as shown in Figure 48a. Thus for a table
of n entries, we need 5n bytes. Typical values of n are in the range 5-10.
Earlier, we estimated that the number of orders that might be pending
execution would rarely exceed 100. This estimation will enable us to compute
the size of the order table. Each entry in the 01 (see Figure 48c) occupies

7 bytes. Thus, the table size need not exceed 700 byvtes.

C. The IP Logic - Algorithm A below is the main algorithm executed by the IP

on receipt of an order. Storage management algorithms B and C are invoked

by the algorithm A to maintain the DODT. Algorithm A also detects the compaction
order of the DBCCP and takes appropriate measures (in step 9) to initiate

compacticn of MAUs in which records with deletion tags may be present.

ALGORITHM A: To process an MM order from the DBCCP

Input Arguments: Input MM order from DBCCP in the format shown in
Figure 48b and the database object used as argument
of the order

Step 0: 1If order code is '000' (see Figure 48b).then go to step 9.

Step 1l: Use the database object identifier to search the DODT (see
Figure 46a). 1If the object is already in DODT, then increment
usage count and go to step 4.

Step 2: Invoke Algorithm B to allocate space for the database object.
If Algorithm B is not successful, then reject the order and
terminate.

Step 3: Place the (sorted) object in the DODT in the block allocated
to it in step 2. Set usage count to 1.

Step 4: Check if there is a queue for the MAU referred to in the
argument order. If there is a queue, check if the MAU is
being processed currently (see Figure 48a). If so, go to
step 7. If there is no queue for the MAU then go to step 7.

Step 5: [Order may be added to queue] Check if there is a free entry
in the OT. 1If not, go to step 6. Enter the order into OT
and link it to the queue for the MAU. Terminate.

Step 6: [No space in OT] Reject the the order; reduce the usage
count in database object in DODT. TIf the usage count is zero,
then release space occupied by the object by invoking algorithm
C. Terminate.

Step 7: [New queue to be created] Scan QHT for a vacant entry. If

no vacant entry is found, go to step 6. Call the entry number
| 3 |

p'.
Step 8: Place MAU address in QHT [p] .+ Clear QHT [p] « Bo to
step S 8-23 0-7

TR . . e e e e e e

L it

Aghh o il 4L

S T el G i ol g e Y

& i

SRE——— .

SRS

W 0 ISR)

Step 9:

ALGORITHM B:

e

~99-

[Compaction Mode] Stop accepting any more orders until
compaction is completed. Extract MAU addresses from the
mass memory deletion table (see Section 3.4.2) and place
them in the QHT. For each such MAU place the order 'compact'
with order code '000' in the order table. If QHT is full,
then wait until new entries become available and then store
the MAU addresses from the deletion table.

To allocate space for a database object in DODT

Input Arguments: Size of object, say, m.

Comments:

Step 1:
Step 2:
Step 3:

Step 4:
Step 5:

Step 6:

Step 7:

Step 9:
Step 10:

ALGORITHM C:

Input Arugments: Q, the address of the returned block

Step 1:

Step 2:
Step 3:

Step 4:
Step 5:

Address of AVAIL list header (see Figure 46c¢)

The links FORWARDLINK and BACKLINK referred to below are
as shown in Figure 46¢c.

Set Q < FORWARDLINK (AVAIL).

If Q = A (null) then go to step 10.

Compare (m+3) with size of block pointed to by Q. If (m+3)
is greater.then go to step 4, else,go to step 5.

[Try next block] Q <« FORWARDLINK (Q). Go to step 2.
[Got it] If size (Q) > (m+l13) then do: P+ (4mt3; else,
go to step 7.

FORWARDLINK (BACKLINK (Q)) <« P;

BACKLINK (FORWARDLINK (Q)) < P;

SIZE (P) < SIZE (Q) - (m + 3);

TAG (P) <« 0; TAG (P + SIZE (P)) <« O3

FORWARDLINK (P) <« FORWARDLINK (Q);

BACKLINK (P) <« BACKLINK (Q);

TAG (Q) « 1; TAG (Q + m + 2) < 13

Go to step 9.

FORWARDLINK (BACKLINK (Q)) < FORWARDLINK (Q);

BACKLINK (FORWARDLINK (Q)) <« BACKLINK (Q);

TAG (Q) < 1; TAG (Q + SIZE (Q)) < 1;

Return with Q as the address of the allocated block.
[Unsuccessful] Return with Q set to zero.

To return a block of memory to the AVAIL list.

Extract size of the block and call it m

Set Ql + Q.

If TAG (Q - 1) is 1 then go to step 4.
[Collapse lower bound] P < Q - SIZE (Q - 1);
P1 <« FORWARDLINK (P);

P2 « BACKLINK (P);

BACKLINK (Pl) <« P2;

FORWARDLINK (P2) <« P1;

SIZE (P) « SIZE (P) + SIZE (Q);

Q « P;

P « Q + SIZE (Q). If TAG (P) = 1 then go to step 6.
[Collapse higher bound] Pl « FORWARDLINK (P);
P2 <« BACKLINK (P);

BACKLINK (P1) <« P2;

FORWARDLINK (P2) <« Pl;

SIZE (Q) « SIZE (Q) + SIZE (P);

P « P + SIZE (P);

Step 6: [Add to AVAIL]
SIZE (P-1) <« SIZE (Q);
FORWARDLINK (Q) « FORWARDLINK (AVAIL);
BACKLINK (FORWARDLINK (AVAIL)) < Q;
BACKLINK (Q) <« AVAIL;
FORWARDLINK (AVAIL) <« Q;
TAG (2) « 0; TAG (P) <« 0;

Step 7: Terminate

3.3.2 The Mass Memory Montior (MMM)
A. Mass Memory Deletion Table (MMDT) - The MMM maintains a deletion table to

Lt

keep track of the MAUs in which there are records tagged for deletion. This ;
table is created during the normal mode of operation and is used during the
compaction mode to access the MAUs in which compaction must be performed.

There is one entry in the MMDT for each of such MAUs. The first entry in

the MMDT records the number of entries n that are in use currently. This is
followed by the addresses of n MAUs. Each MAU address occupies two bytes, and
if we do not anticipate more than N different MAUs in which deletions have

been made in the time period between two compaction onﬁﬁfs from the DBCCP, then
the size of the MMDT need only be 2N bytes. Typical values of N are in the
range 500-1000.

B. The MMM Logic - The MMM controls the DDCs (disk drive controllers) via
the control bus (CBUS) (see Figure 44). The CBUS has an appropriate number of
address lines by which each of the DDCs can be addressed to the exclusion of
others. The CBUS also carries status and control lines by which the MMM can
control and communicate with DDCs. The MMM also controls the TIPs via the IOBUS.
The IOBUS is operated in a master-slave mode with the MMM assuming the master
role and the TIPs assuming the slave roles. The IOBUg‘consists of
bidirectional data lines over which data transfer« between the TIPs and the
MMM can take place, status and control lines whigh enables the MMM to selectively
activate and interrogate the TIPs.

The MMM executes the following algorithms in the course of carrying out
its functions outlined earlier. In these algorithms, all dialogues with the
DDCs are carried over the CBUS and all dialogues with the TIPs are carried over
the IOBUS. Algorithm A continuously monitors the QHT with a view to keeping
the TIPs and the disk drives busy. Algorithm B is responsible for the detailed ' Ll
dialogue with the TIPs after the algorithm A has found a MAU that has been :
accessed and is ready to be processed. Among other things, algorithm B

answers interrupts from the TIPs when they have output to be sent out of the

MM or when they have finished e¢xecution of an order. Once activated by

-101-

algorithm A, algorithm B executes concurrently with algorithm A, until

the list of orders for the MAU have been executed by the TIPs.

ALGORITHM A: To scan the MMOQ continuously (on a round-robin basis).
Input Arguments: QHT (see Figure 48a)

Step 1: [Initialize] p « 0;
Step 2: p < p+ 1; if p > N, then p « 1. [N is the number of entries
in QHT].
Step 3: If QHT[p],3 '0', then go to step 2; else, go to step 4.
Step 4: If QHT[p], '0', then go to step 5; else, go to step 7.
Step 5: [Initiate access to MAU] MAUADDR <« QHT[p]S_2 ;
Decode MAUADDR into disk drive controller number d, drive
number k and cylinder number c.
Step 6: Interrogate disk drive controller d, to determine if drive
is free. If it is free, then issue a cylinder seek on drive k for
cylinder ¢ and set QHT[p]0 to 'l'. Go to step 2.
Step 7: If QHT[p], = 'O', then go to step 8; else, go to step 10.
Step 8: [Check if seek is complete] MAUADDR < QHT[p]8_73.
Decode MAUADDR into drive controller number d, ~
E drive number k and cylinder number c.
: Step 9: Interrogate drive controller d to determine if seek on drive
k has been completed. If so, then set QHT[p]l < '1' and go to
step 10 else go to step 2.
Step 10: [Initiate processing if nccessary] If QHT[p]2 = '0" then go to
‘ step 11; else, go to step 2.
‘ Step 11: Interrogate if IDLE flag is on to determine if the TIPs are idle.
If so, then go to step 12; else go to step 2.
Step 12: [TIPs are idle] Invoke algorithm B with the following arguments:
number of MAU orders given by QHT[p], ., address of first order

stored in the OT for the MAU and given by QHT[p]24—39' Go to
step 2.
'
Note: In steps 4 through 6, we try to initiate cylinder seeks for

MAUs which have not been accessed yet. In steps 7 through 9
we check on seeks already issued during a previous scan. In
steps 10 through 12, we try to initiate the TIPs by invoking
algorithm B.

J
B
H ALGORITHM B: To initiate the execution of orders by the TIPs or accept
data retrieved by the TIPs.
i Input Arguments: 1. The number M of orders pending execution
' 2. The address of the first order in the OT
; { Step 1: [Initialize] p <« 1. Send 'reset' signal to all TIPs.

[See Section 3.4 for effect of 'reset' signal on the TIPs]

E | Step 2: Pick up the p-th order from the OT. If order code indicates

i a insert-record order, go to step 6. Tf the order code indicates
a delete order, then go to step 5, if the order code indicates a

compact order, go to step 15.
i Step 3: [Retrieve type] Broadcast the order (either a retrieve-by-

! query, retrieve~by-pointer, retrieve-by-query-with pointer or

| retrieve-within~bounds) to all the TIPs over the IOBUS.

: : Step 4: Wait for interrupt. Uhen interrupt occurs, go to step 7.

] Step 5: [Delete type] Broadcast the order (either a delete-by-query or

| delete-by-pointer) to all the TIPs over the I0BUS. Turn on
- DELETE flag. Go to step 4.

o
- o

NSRS ——

Step 6:

-102-

[Insert order] Broadcast the order, find-available-space-in~
track, to all the TIPs over the IOBUS. Turn on INSERTION flag.
Go to step 4.

INTERRUPT ENTRY
Step 7:

Step 8:

Step
Step
Step
Step

Step

Step

Step

Step

Step

Step

Step

11:
12
13:

14

153

16:

157

18:

20:

If TNSERTION flag is on go to step 8. If DELETE flag is on
go to step 9; else, go to 1l4.
[Select track to place record] Turn off INSERTION flag. Read
from each TIP, the amount of space available. Choose rhe track
which has the maximum available space. Call this track i .
Compute the total amount of space available on the MAU after
the current record is inserted. Call this m. Also compute
the maximum available space on any one track (in terms of sectors
where one sector = 128 bytes). Call this n. Send the order, insert-
record to TIPi Send the pair (m,n) to the DBCCP via the

max
communication bus. (See Section 2) Go to step 4.
[Check if there was any deletion] Turn off DELETION flag. If
TIPs indicate that some records were tagged for deletion then
go to step 10; else go to step 13.
Store MAU address in MMDT. If order code indicates that type
B protection was involved, then go to step 1l1l; else, go to
step 13.
[Clearance by SFP required] Send the records and record IDs
output by TIPs to SFP. Wait for SFP response.
Send SFP response back to TIPs.
Delete the order from OT. p <« p + 1. If p > M, then request
TIPs to write back all deletion tags (see explanation in
Section 3.4), set IDLE flag on and halt; else, go to step 2.
[Receive retrieved records] If TIPs have records to be output,
then receive them and send them to SFP. 1If TIPs indicate end-of-
data then go to step 13; else, go to step 4.
[Compaction] Request the TIPs to read the tagged records. [This
read operation is generally done in one disk revolution.]
As TIPs transmit tagged records over the IOBUS identify and store
in an area in the DODT, the cluster numbers and security atom
names in the tagged records. Also create a list of transformed
keyword values for each pair of cluster number-security atom pair
occuring in the tagged records. Discard the rest of the records.
Request the TIPs to read untagged records. [Since the memory
available to the MMM is smaller than the MAU capacity, the MMM
will divide the TIPs into segments which are processed sequentially.
Thus, if, say, 80K bytes are available to the MMM and the MAU
capacity is 320 K bytes, then the TIPs are divided into 4
segments. TIPs in the same segment are requested to read their
tracks concurrently, and are written into concurrently. Steps
17 through 21 are repeated for each segment.]
As the records from the TIPs come in, store them in the record
storage (one revolution).
For each record in the record storage determine if any of the
cluster-security atom pairs in the list header matches the
cluster-security atom pair of the record. 1If so, go to step 20,
else go to step 21.
Call the matching cluster-security atom pair (c,s). Compare the
transformed keyword value in the (c,s) list with the transformed
keyword values in the record under consideration. If a match
occurs, delete the transformed keyword value from that list.
[Steps 19 and 20 take one revolution approximately)

i —

~103-

Step 21: Write the records in the record storage back into the tracks
via the TIPs. (One revolution)

Step 22: Examine the lists in the list storage. For each non-empty list
do step 23.

Step 23: Transmit the transformed keyword value in the list and the
corresponding triple (MAU address, cluster number, security
atom name) to the DBCCP via the communication bus. Go to step
13.

Note: Since the time for executing a compaction is important, let
us calculate the time on the basis of the above algorithm. The
time required for reading all tagged records is one revolution
[step 15]. The time required to read a segment of the TIPs is
one revolution. Each segment also requires n revolutions to
be processed and one to write back. Thus each segment requires
n+2 revolutions to be compacted. Assuming there are m segments.
Then the time for compaction of a MAU is 1 + m x(n + 2).
Typical value of n is between 1 and 2, and typical values of m
is between 3 and 6. Thus, the number of revolutions to compact
a MAU ranges from 10 to 25 revolutions. Assuming a 20 msecs disk
revolution time, we obtain a figure in the range of 200 to 500
msecs for MAU compaction.

3.3.3 The Hardware Organization of the MMC

The organization of the MMC is shown in Figure 49. The internal data bus

(IDB) is the main data path inside the MMC. It connects all the table memories

(DODTM and OQTM) with the mass memory order argument buffer (MMOAB) and the

mass memory data buffer (MMDB). The MMOAB is used to receive argument data of
the MM order from the communication bus before they are transferred into the
DODTM. The MMDB is used primarily as a buffer between the IOBUS on which

TIPs place their retrieved data and the SFPBUS which transmits data to the SFP.
The MMDB is also used during compaction as a stager between the IOBUS and the
internal data bus. The interface processor (IP) is microcoded and executes
the algorithms given in Section 3.3.1C. It responds to request signals from
the DBCCP and controls the transfer of data from and into the MMOAB. The MM
monitor is implemented with two microsequencers. Microsequencer MC-2 is
responsible for executing the algorithm B given in Section 3.3.2B. It is
responsible for controlling the activities of the TIPs, controlling the data
transfers on the IOBUS, and data transfers to and from the MMDB. MC-2 also
receives interrupt signals from the SFP and TIPs. The microsequence MC-~3

is responsible primarily for scanning the order queues on a round-robin basis,
initiating the MC-2, if idle and controlling the DDCs. Finally, the bus
arbiter is responsible for processing requests for control of and access to

the IDB and resolving contentions for the control of the IDB.

7 To Disk Drive

<f/ Communication Bus 4 Controllers
i .
/
/7 4- m—
/ /\ ; / !
[| MM Order 1 ——1 MC-3 }--4 ROM3 l
| Argument F—r
Buffer) ol 1 S
\ (RAM) 5] ™1 Mc-2 g -{ ROM2 }
\ / 2 oS |
\ ’
He L/ MM \Monitor _ _J
From MC-1 & / 'From SFP
DBCCP = " g
M
ROM 1 r ' Order ‘ -
3 Queue -
= Table (RAM)
Interface Processor n
3)
Lan]
o
£ e =
% AM A & L
f f Database Object : S N
D iptor Tabl
escriptor Table T,
Buffer e -E‘}:__—_—i i
: RAM ¢)
r: .]
P | o
L-.A E —
E' Bus =
- Arbiter g
E Ll
3 & ‘s
From/To f— -
‘ SFP (‘, s SFP Bus ’) 8 :
4 :}
Data Path

———> Request Lines
—_——_-—

, i) Control Lines

T = T & T T T N T

Figure 49. The Organization of the Mass Memory Controller (MMC)

-105~

- ‘ ¢ !‘
: |

3.4 The Track Information Processors (TIPs)

A track information processor (TIP) is responsible for manipulating the
contents of a track belonging to a MAU. The number of TIPs is equal to the
number of tracks in a MAU and is usually in the range 20-40. The TIPs are
capable of searching the tracks for records satisfying a user query in one
revolution of the rotating device. If the amount of information to be
retrieved from a track does not exceed the size of the buffer attached to the
TIP, then the retrieval operation can be performed in the same revolution as the
search operation. If the buffer size is not large enough, then additional
revolutions will be necessary for completing the retrieval operation. Assuming
that the size of the buffer is designed to accommodate the information retrieved
for most of the queries, we may conclude that, on the average, a retrieve-by-

query order will require about one disk revolution for completion. A delete-by-

query order always takes exactly one disk revolution for completion when the user
has type A protection. As explained before, reclamaticn of space occupied by
tagged records (compaction) does not take place during the normal mode of
operation of the TIPs. When a user has the type B protection, then the records
defined by the query must be cleared for security by the SFP. The SFP is
designed to respond immediately to a clearance request from the MM. Nevetheless,
the TIPs must wait for an unknown period of time before proceeding with the

next order. Thus, a delete-by-query order usually takes longer to complete

when the user has the type B protection. Retrieval-by~query-with-pointer and
retrieval-within-bounds, each take on the average, close to one revolution to
complete. Retrieval-by-pointer takes exactly one revolution to complete where
the user has the type A protection. As before, only tagging of the record
pointed to by the order is accomplished during the normal mode of operation.

When the user has the type B protection, a delete-by-pointer order will take

longer than one revolution to complete, for reasons mentioned above. An insert-
record order takes one revolution to complete. Finally, the execution of a set
{ of orders on a MAU is followed by one disk revoluation time during which the

} TIPs write back deletion information on the respective tracks (the need for this

will become apparent when we discuss the TIP logic). This represents a constant
overhead (of one disk revoluation) associated with each set of MAU orders. In

Table IV , we summarize the times (in units of disk revolutions) for various

MM orders.

e e ent e e icome o

FPESE CADRIET I WSS 2ee

L2

e e e i i

<

A

-106-

Table IV. TIP Execution Times for Various MM Orders

Order Type

Time in Disk Revolutions

Retrieve-by-query

one for most queries;greater than one
if retrieved information is large

Retrieve-by-pointer

one

Retrieve-by-query-with-
pointer

one for most queries;greater than one if
retrieved information is large

Retrieve-within-bounds

one for most queries;greater than one if
retrieved information is large

Delete-by-query
(Type A protection)

one

Deletgyggsrointer
(Type A protection)

one

Delete-by-query
(Type B protection)

at least one

Delete-by-pointer
(Type B protection)

at least one

Insert

+ N -

one

:.\-.'7(

e

s
1

.-
-
~

p o AL S

3.4.1 The Three Components of a TIP

Each TIP has three subcomponents - the disk drive interface processor (DIP),

the controller interface processor (CIP), and the buffers for the

query, retrieved information (records), track header information and
communications. The DIP is responsible for receiving/transmitting data as
demanded by the multiplexer/demultiplexer (TMD) and carrying out the MM orders
listed in Table IV. The CIP is responsible primarily for communicating with
the mass memory controller over the IOBUS. Such communication involves
acceptance of orders and database objects from the MMC and transfer of data
retrieved by the DIP to the MMC.

The communication buffer and the buffer for the track header information are
small random access memories. The query memory is a sequential access memory
with a capacity to store the largest single query that may be encountered by
the MM. Earlier, we had estimated this size to be in the neighborhood of 1K
bytes. The record buffer is also a sequential access memory. This memory is
divided into individually accessible segments. Each segment should be capable
of storing the largest record that may be anticipated (in practice, records will
rarely exceed 4K bytes in size). The motivation for dividing the record
buffer into segments is to enable the DIP and CIP to operate concurrently, i.e.,
the DIP can be dumping information into one segment, which the CIP might be
transmitting information from another segment to the !MC via the IOBUS. The
readout rate of the query memory and the transfer rate of the record buffer
should be high enough to keep in synchronization with the data transfer rate
of the disk. Organization of a TIP is shown in Figure 50. The format of the
communication area between CIP and DIP is shown in Figure 51. The format of a
track as perceived by a TIP is shown in Figures 52a, 52b, and 52c. Each of the
TIPs utilizes a bit map to remember the positions of the records which were
found to satisfy the search criterion (i.e., a query or a pointer) during the
execution of a delete order. Each record on the track is represented by a
unique bit in the bit map. When a record is to be deleted, the corresponding
bit is turned on. This bit map is stored in the first sector of the track.
Before processing of a track is to begin, this bit map is read into the TIP buffer.
After the last order for a MAU has been executed, the bit map is written
back on the track. 1In processing a retrieve order, this bit map is consulted
to ensure that no deleted records are retrieved. During the compaction mode of

operation, the bit map is used to distinguish between tagged and untagged rec-

ords. Since we don't expect more than 1000 records in a track, we need a bit

map of size 128 bytes (=1024 bits).

T

. T

Controller
Interface

Processor (CIP)

Disk Drive
Interface
Processor (DIP)

To/From IOBUS

)

(m Bit Data &

To/From TMD

6 Byte Communication

Programmable — Programmable
Control Control
: ' TT] i Y
ERERE (i
' 1|11 16 x 16 Bie ||
i i
Assembly | §‘i R)
Disassembly | ”i‘
Registers Pl (L
l i
L‘ ALU
jjj [—
T T
]
16 Bit Memory Bus >
@ B
) 4

Area and 256 Byte Track

Header (RAM)

NN X

Figure 50.

N

B

Record Buffer(s)
(Sequential Access)

Query Buffer (about 1 Kbytes)
(Sequential Access)

Organization of Track Information Processor (TIP)

n Bit Control) -

At St

gl

.L__YA

e

.

S L (R i e e e

Blis S 2o 2w 2

i —— e~

!
|
(
|
{
|
A
i

ORDER CODE = 0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101

Retrieve~by-query
Retrieve~by-pointer
Retrieve~by-query-with-pointer
Retrieve~within-bounds
Delete-by-query (Type A protection)
Delete-by-query (Type B protection)
Delete-by-pointer (Type B protection)
Insert record

Read Tagged Records

Read Untagged records

Reset

Write track header

Find space available on track

01234 5617

|
| (A
1 i

! SO o T 1)

1 RESERVED

of Bytes

MAU Address Transferred

- ¥ N -—~—8

v

\\
e

{ | '— Read/Write Errors
RUEES
)

/[Buffer Overflow

/

/
[MAU Mismatch

Figure 51.

e Order Code
— Successful completion

1516 31 32

Format of Communication Areca
between CIP and DIP in TIP buffer.

47

il s

v VN

Index Gap - Denotes beginning of track

Deletion
Bit Map

A < e —

r=

] T

Sector 1 ! Sector 2 ! Sector 3 ; ' : ' ' Sector n

g

L - 8
!

J

Track Header

Figure 52a. Track Format

MAU
ADDR

‘ I {
Track | # of # of sec-L # of Iiogﬁ secﬁ # of kecord ID

H byt :
ADDR | clusters|urity ato recordsiavailable.az3113b1¢ Counter :Reserved

0

I}
15 16 23 24 39 40 55 56 71 72 79 80 95 96 111 112

Figure 52b. Format of the first secteor
on a track.

Inter-Record Gap

A ;i

i '
Record | Cluster Atom | No. of | Keywords Record po=

ID ID Name keywords l Body

1 RRREN - W | R W A, . .

Record Header

Figure 52c, Format of a record in track

ol

B b o ARG

2 B F2

e ———

N T

Each track is divided into a fixed number of sectors for purposes of
allocation (see Figure 52a). The first two sectors are used by the TIPs to
store the bit map mentioned above and other housekeeping information.

We are now in a position to describe the various algorithms executed by
the DIP and CIP. In these algorithms the query buffer is referred to as QBUFFER,
and the record buffer is referred to as RBUFFER. When one segment of the record
buffer is full (empty).the next buffer is automatically selected for data

transfer, provided it is empty (full).

3.4.2 The DIP Logic

There are thirteen algorithms executed by the disk drive interface
process (DIP).
ALGORITHM A: To process the retrieve-by-query order.

Time: One disk revolution for most queries; more than one revolution
if a) a large amount of information is retrieved and b) the
buffer segments are filled up faster than they can be emptied
by CIP.

Code: 0001

Input Arguments: 1. A query in the format shown in Figure 45b. [Predicates
are assumed to be in sorted order according to
attribute identifier.

2. A MAU address.

Step 1: Compare argument MAU address with MAU address stored in the track
header information buffer (see Figure 51). If the two addresses
don't match, then reject order, Set N to 0. [N is a counter giving
the number of records retrieved], and terminate; else, extract
number of predicates in the query. Call it n.

Step 2: Let number of records in the track be p. [This information is
available in the track header information buffer]. Set j<O.
POINTER1<0; POINTER2<O0. Send read signal to DDC.

Step 3: j<j+l; if j>p, then terminate.

Step 4: If the j-th bit in the deletion bit map is on (i.e., if the record
is deleted) then skip j-th record and go to step 3.

Step 5: Read the number of keywords in the j-th record. Call it q;
set k<l.

Step 6: Set i<l.

Step 7: Extract the attribute identifier A, from the i-th predicate of the
query. Also extract predicate type T, ('=','#', TR TR g Iy
'>') and value type V.. If i<n, then extract Ai+ and see if
A=A If so, extract Ty4q and Vigg and set 1+}+1.

Read the attribute identifier B of the k-th keyword in the j-th
record.

Step 9: Compare A, and B. If A >B then go to step 1l4. 1If A <B then go
to step £ y .

Step 8

Step 10: [Values to be compared.] Read value from track, compare with value(s)

extracted in step 7, [In the comparison, predicate tvpes T, and

Ti+l and value type Vi determines the type of comparison made. |

G, S RSP e——————

e ———. - o A

SRS S

Step 11:

Step 12:
Step 13:

Step 14:

Step 15:

Response:

Note:

ALGORITHM B:
Time:

Code:

If the comparison is successful, then RBUFFER[POINTER1] « keyword;
update POINTER1, i«i+l. If i>n, then go to step 13. If comparison
is unsuccessful, then go to step 15.

k<k+l; if k<q then go to step 7; else, go to step 15.

[Record satisfies query]

RBUFFER[POINTER1] « rest of record. POINTER2<POINTER]l; n<«n+l;

go to step 3.

[Wrong attribute] RBUFFER[POINTER1] < keyword.

k«k+l; if k<q then go to step 8; else, go to step 15.

[Record does not satisfy query] POINTER1«<POINTER2; skip j-th
record; go to step 3.

RBUFFER contains retrieved records; POINTER1 points to the last
byte in the buffer that is occupied.

1. In step 11 or in step 13, if POINTERl indicates overflow of
RBUFFER, then processing is discontinued, and is resumed after
one revolution.

2. 1In step 2, a read signal is given to the DDC to start reading
the track. DDC waits until the track index gap is detected before
starting data transmission.

To process the retrieve-by-pointer order.

one revolution

0010

Input Argument: 1. A pointer to a record in the format given in Figure

Step 1:
Step 2:
Step 3:

Step 4:
Step 5:

Step 6:
Step 7:

Step 8:

ALGORITHM C:

45d.
2. A MAU address.

Extract record identifier, cluster number and security atom number
from argument pointer.

Send 'read track' signal to DDC [see note 2 under algorithm A].
Compare argument MAU address with MAU address stored in track
header information buffer. If the two addresses don't match,
then reject order and terminate.

Read the number of records in track. Call it p. j<«l-

From the j-th record in track, read off the record ID, its
cluster number and security atom number. Compare with argument
record ID, cluster number and security atom name.

If comparison is successful (i.e., an exact match occurs), then
read the rest of the record into RBUFFER, set N«l. Terminate.
If comparison is unsuccessful skip j-th record. j<j+l. 1If
j<p, then go to step 5.

Set N<0; terminate.

To process the retrieve-by-query-with-pointer order.

Time: same as for algorithm A
Code: 0011
Input Arguments: 1. A query in the format shown in Figure 45b. |Predicates
are assumed to be in sorted order according to attri-
bute identifier.
2. A MAU address.
Step 1: Execute steps 1 through 15 except step 5 is modified as follows:

"RBUFFER[POINTER1] « MAU address, cluster identifier, security

[N

P
v %

R ad S

. '—Y's o _:._,,‘ -

N

Ll

i,
f
é

atom name, record identifier; update POINTERl; read the number
of keywords in the j-th record. Call it q; set k<«l."

ALGORITHM D: To process the retrieve-within-bounds order.

Time: Same as for algorithm A
Code: 0100

Input Arguments: 1. Two pointers in the format shown in Figure 45e.
2. A MAU address.

Step 1-2: Execute steps 1 and 2 of algorithm A

Step 3: j<«j+l1; if j>p then terminate.

Step 4: 1If the j-th bit in the deletion bit map is on (i.e., if the
record is deleted). Then skip the j-th record and go to step
3.

Step 5: Compare the record identifier of the j-th record with the lower
bound and upper bound record identifiers in the argument pointer.
If the record identifier falls in between the two bounds then go
to step 6; else, skip j-th record and go to step 3.

Step 6: RBUFFER[POINTERLl] « j-th record; update POINTER] and POINTER2.
n<n+l; go to step 2.

ALGORITHM E: To process the delete-by-query order with type A protection.

Time: Same as for algorithm A
Code: 0100
Input Arguments: Same as for algorithm A

Step 1-10: Execute steps 1 through 10 of algorithm A.

Step 11: [Modified version of step 11 of algorithm A] If comparison is
successful, then i<i+l; if i>n then go to step 13. If comparison
fails go to step 15.

Step 12: Execute step 12 of algorithm A.

Step 13: [Record satisfies query] Set j-th bit of deletion bit map to 1.
Go to step 3.

Step 14: ke«k+l; if k<q, then go to step 8, else go to step 15.

Step 15: Skip j-th record, go to step 3.

ALGORITHM F: To process the delete-by-pointer when user has type A protection.

Time: Same as for algorithm B
Code: 0101
Input Arugments: Same as for algorithm B

Step 1-5: Execute steps 1 though 5 of algorithm B

Step 6: 1If comparison is successful, (i.e., an exact match occurs), then
set j-th bit of deletion bit map to 'l'. Terminate.

Step 7: Execute step 7 and 8.

ALGORITHM G: To process the delete-by-query when user has type B protection.

Time: One disk revolution plus a variable length of time.
Code: 0110

Input Arguments: Same as for algorithm A

ikt s M i ok i i el -

Step 1-2:
Step 3:

_Step 4-12%

Step 13:

Execute steps 1 and 2 of algorithm A
i<j+1l; if j>p, then go to step 16
Execute steps 4-12 of algorithm A
[Record satisfies query]
RBUFFER[POINTER1] <« rest of record, j.
POINTER2 < POINTER 1; n+n+l; go to step 3.

Step 14-15: Execute steps 14-15 of algorithm A

Step 16:
Step 17:

ALGORITHM H:

Time:
Code:

Wait for response from SFP.
For each record position returned by SFP, turn on the corresponding
bit in the deletion bit map.

To process the delete-by-pointer order when the user has type B
protection.

One revolution plus a variable length of time.

0111

Input Arguments: Same as for algorithm B.

Step 1-5:
Step 6:

Step 7:
Step 8:
Step 9:
ALGORITHM I:
Time:
Code:

Execute steps 1 through 5 of algorithm B
If comparison is successful (i.e., an exact match occurs), then
read the rest of the record into RBUFFER, and store the record
position j into RBUFFER. Go to step 8.
Execute step 7 of algorithm B.
Wait for response from SFP.
If SFP response indicates deletion is allowed, then turn on
j-th bit in the deletion bit map.

To insert a record in the track.
One revolution

1000

Input Arguments: A record in the format show Figure 45c.

Step 1:

Step 2:
Step 3:

ALGORITHM J:
Time:

Code:

Send "write' signal to DDC. [This signal prepares the DDC for
data transfer from the TIP to the track. As in the case of the
"read" signal, the DDC waits unttl the beginning of the track

is under the read/write mechanism before accepting data for writing].

Increment record ID counter, read the counter valve and store it
in the record.

Write the record after the last record in track.

Update number of bytes still available in track and number of
complete sectors available in track. [Note that this update
takes place in the TIP's local buffer area which stores the track
header information. (see Figure 50 and Figure 52b)] Terminate.

To read the tagged records on a track.

If the record buffer is filled faster than it can be emptied,
and if the amount of information retrieved is large, then more
than one revolution will be necessary.

1001

Input Argument: A MAU address

Step 1:

Verify that the argument MAU address is the same as the MAU
address in the track header.

e e s O A s i - - .

-115- ;

Step 2: Send ''read" signal to DDC. [See note 2 under algorithm A.]

Step 3: Let number of records in track be p; NO;

Step 4: For j = 1 through p do step 5

Step 5: If the j-th bit is turned on in the deletion bit map, then read
the j-th record into RBUFFER. mnrntl. 1If RBUFFER becomes full,
then discontinue processing for the rest of the revolution. If
the j-th bit is not turned off, then skip j-th record.

Step 6: Terminate.

ALGORITHM K: To read the untagged records on a track.
Time: Same as for algorithm J
Code: 1010
Input Argument: A MAU address

Step 1-4: Execute steps 1 through 4 of algorithm J

Step 5: If the j-th bit is turned off in the deletion bit map, then read
the j-th record into RBUFFER, n<«nt+l. TIf RBUFFER becomes full,
then discontinue processing for the rest of the revolution.
If the j-th bit is turned on, then skip the j-th record.

Step 6: Terminate.

ALGORITHM L: To process the reset order
Time: Time to read the first 2 sectors from the track.
Code: 1011
Input Argument: None

Step 1: Send '"read" signal to the DOC. [See note 2 under algorithm A]
Step 2: Read sector 1 and 2 from the track into the track header
information buffer. Terminate.

B L P I S UTN LIRS R AR I, Yo C e)

ALGORITHM M: To write back a track header.
Time: Time to write the first 2 sectors of the track.

Code: 1100

NNy

Input Argument: None

Step 1: Send 'write' signal to the DDC [see step 1 of algorithm I].
Step 2: Write track header information buffer into first two sectors
of track. Terminate.

3.4.3 The CIP Logic

ALGORITHM A: To load the communication buffer with an MM order, and the query
or record memorv with an argument of the MM order.

Input Arguments: Data from IOBUS.

Step 1: Read order from IOBUS.

Step 2: 1If the order is find-space-available-on-track, then go to step
65

Step 3: If the order is insert-record go to step 5.

Step 4: Read the argument of order and store in query memory. Place
order in communication buffer. Terminate.

NSR————

et —

-116-

Step 5: Read the argument of order and store in record buffer. Place
order in communication buffer. Terminate.

Step 6: Read, from track header information buffer, the number bytes
available on track and the number of sectors available on the
track and send them to MMM via IOBUS. Terminate.

ALGORITHM B: To transfer information from the buffer to the IOBUS.
Input Arguments: None

Step 1: For each segment of the record buffer do step 2.

Step 2: If the segment if full, then transmit the information from
buffer segment to IOBUS.

Step 3: Terminate

3.5 The Track Multiplexer/Demultiplexer (TMD)

This piece of hardware is responsible for routing data between the drive
selector and the TIPs. During a read operation, data from the drive selector
is distributed (demultiplexed) to the set of TIPs in a round-robin fashion.
During a write operation data from the TIPs is multiplexed to the drive selector
also in a round-robin fashion. The time taken by the DDC to transfer a data
unit to (from) a track is called the cycle time. A data unit is usually in
the range 16-64 bits and is resident completely on a single track. Since all
of the N tracks constituting a cylinder can be read from or written into
concurrently, and since there is a one-to-one correspondence between the
tracks of a MAU (cylinder) and the TIPs, it follows that the TMD must handle
N data units within a cycle time. The above statement also implies that data
units are always transfered to (from) a given track from (to) a corresponding
TIP. The cycle time may thus be divided into N time slices; each time slice
is assigned to transfering a data unit between a track and its corresponding TIP.
In order to gain an insight into the timing considerations involved, let
us illustrate the above discussion with a typical example. Let us assume the
following parameters: device rotating speed is 2400 rpm, track size is 16K
bytes, data unit size is 32 bits and number of tracks per MAU is 20. Then time
to read or write one data unit is about 6.25 usec. This means that the time
slice is about 312 nsec. If we assume no buffering in the multiplexer/demulti-
plexer or in the drive selector, then the propagation delay for a data unit to
travel between a DDC and a TIP must be less than 306 nsec. With gate delays
of 10-20 nsecs with current TTL technology, the maximum number of gates in the path
of propagation of data is in the range 30-15. TFrom Figures 53, 54, and 55,
we learn that ti number of gates in the path of propagation from the DDC to

the TIP is 7. Amplification and inversion of signals will introduce an

Pr el e

TR,

-117-

: Read

| Signal

Levels
i-th Bit Line From

from Drive Selector TIPs

~ To TIP;

. To TIP;

e)———- To TIP3
j ‘;
|
|

To TIPy

To TIPs

— }’— To TIPg

{ To TIPy

Y

- iy To TIPg

To TIPg
:

L _ ,///->

Decoder

To TIP;p

| I

Count-by-Ten

! !

I Synch from
Drive Selector

Figure 53. Logic required for demultiplexing a bit from the drive selector

: to 10 TIPs. If a data unit has n bits, then n such segments
are required.

=118~
g |
q A
From DDC - i
3 %
From DDC; o
3 3 V ;
L d 3
] q A |
[From DDC, >
' |
i d ‘
{ A
From DDC o
e - To TMD |
A A :
From DDC, > ‘
3 ~ A
. From DDCg .=
E ¥
3
- A
From DDCg 3
4 From DDC7 -
:, ' Input <
o) Control -
! 1 = | s A | e« Pulse I 158
: — 0 =0 L0 From ; ;j
E MMC 2.5
Control Flip Flops e
! 1S
E
i‘ . Figure 54. Propagation of one bit through the device selector.
5 | For a data unit width of n bits, n such segments will
i be required.

il di e £

ANV AR S S R T - i e R

To/From ~a——j—t e——1— :

Track 1

| |
| ol o B o 1o N
I

|

|

|

|

|

|

¥l

P——_, To/From

The Drive
Selector

" T

The Multiplexer/Demultiplexer

To/From h—l—r——
Track (N-1) |
= l | /{/
B | gy =T
: . To/From ﬂ/
¥ | ; : Track N ' | : l

| I I
2 / it _I N
Assembly/Disassembly __ Input/Output

A Registers Registers

T

! Figure 55. Flow of Information through Disk Drive Controller

-120-

additional 2-3 gate delays. Allowing 75 nsecs for data skewing at the
receiving end and delays due to cable length, we are still well under the limit

of 306 nsecs. For a recording density of 16K bytes per track, we have tabluated,

in Table V the time slices available for various disk rotating speeds, data

unit sizes and tracks per MAU (cylinder). From the table, it is clear that

when the rotating speed is increased and/or when the number of tracks that .
are read or written into is increased, the data unit size must progressively

increase in order to provide for an adequate time slice. If the time slice is

smaller than a threshold value, propagation delays can cause unreliable data

transmission.

3.6 The Drive Selector (DS) and the Disk Drive Controllers (DDCs)
3.6.1 The Drive Selector (DS)
This subcomponent is controlled by the MMM and is responsible

for gating the proper device drive controller's output to the input of the
multiplexer/demultiplexer and gating the output of the TMD to the proper
DDC's input. The DS achieves this function by using a group of flip flops
to control gates which route data (see Figure 54). The flip flops are set
by signals from the MMM.

3.6.2 The Disk Drive Controllers (DDSs)

The DDCs are responsible for the following control functions over
the disk drives: selecting a disk drive for read/write operations,

initiating disk arm movements, providing buffering of data between
the drives and the drive selector, and initiating error recovery procedures

during data transfers. The DDCs are controlled by the MMC until a data transfer
is initiated. During data transfer, signals from the TIPs are used to determine
the amount and direction of data transfer. The CBUS is used by the MMM to
communicate orders to the DDCs. The CBUS has an adequate number of address §~
lines (logzm where m is the number of DDCs) to address any of the DDCs to ‘
the exclusion of other DDCs and status control lines which enable the MMC to

monitor the activities of each of the DDCs. .

Usually, a DDC controls between 4 and 16 disk drives. The DDC can initiate

data transfer operation on any one of the drives and initiate arm movements

.
oo

3 on any of the drives. Since data transfer takes place on all the tracks of a

k] cylinder, concurrently, the DDC provides for a set of assembly/disassembly of

E | registers. There is also a set of input/output registers which can be read or

f written into by the drive selector. Thus, there is one pair of assembly/dis-

assembly and input/output registers for each track of a cylinder (sce Figure

55). The input/output registers serve two purposes. They serve as the interface

A —— 3 x
TIRARIEY SRR T AP T g s d o Lsiak PS5 —

I ettt . e S h B

Table V. Time Slice in Nanoseconds as a Function of Rotating
Speed, Number of Tracks and Data Unit Size

RPM 20 Tracks 30 Tracks 40 Tracks

2400 [76.3 152.6 305.2 610.4(50.8 101.6 203.2 406.4 [38.1 76.3 152.6 305.2
3000 |61.0 122.0 244.1 488.2|40.6 81.4 162.8 325.6 [30.5 61.0 122.1 244.1
3600 |50.8 101.7 293.5 496.9|33.9 67.8 135.6 271.26|25.4 50.8 101.7 203.5
LI

64 8

16 32 64

16 32

64

Number of

Bits in a Data Unit

~122-)
‘ between the driver and the drive selector, and they allow data units to be 5
. assembled/disassembledwhile data is being read from or written into the input/
| output registers. The size of these registers is the size of the data unit that f

i § is chosen for safe multiplexing/demultiplexing.

[e Y]

2000,

~

g

i e

4. THE SECURITY FILTER PROCESSOR (SFP)

The security filter processor (SFP) is responsible for providing security

clearance for users who have the type B protection and for sorting the response
data from the MM if the user has requested sorted output. As was mentioned

in Section 2, the enforcement of a security policy for a user, who has the type

B protection, cannot be carried out until after the information has been

accessed by the MM. The information accessed by the MM is in the form of records.
The security policy for a user is encoded in file sanctions contained in the
user's database capability. Thus, the SFP must determine, for each of the !
records accessed by the MM, the file sanctions that are applicable to the 7
record and whether the access requested by the user is granted by all of the
applicable file sanctions. A file sanction is applicable to a record if the

record satisfies the query contained in the file sanction. A record is said

to have been cleared for security if all the file sanctions that are applicable to é
it grant the access requested by the user. Records, which are cleared for
security, can be sorted on the basis of the values of an attribute chosen by

i the user, before transmission to the user. In this section, we propose an

‘ organization of the SFP which can perform the above functions in an efficient

manner by employing circulating memories [12,13].

4 4.1 Design Considerations

4.1.1 Security

Although we mentioned above that the security policy for a user
having the type B protection cannot be enforced until after the access to the

MM, there is one exception. Insertion of a record can (and should) be cleared i

for security before the record is inserted. This implies that the DBCCP will

A SR X

b request the SFP for a security check on all insert-record commands issued by

users with the type B protection. Thus, there are two sources, namely,

S

the MM and the DBCCP, from which requests for security enforcement may be
encountered by the SFP. Requests from the MM pertain to the retrieve-and-
delete commands.

E ! Enforcement of security policies for a user with the type B protection
involves comparisons of the keywords of records with the keyword predicates of
the file sanctions. In order to handle the high retrieval rate of the MM in a
manner that does not ~reate a bottleneck, the SFP must be capable of performing
fast comparisons. Although, conventional comparator circuits employing 1
bipolar logic is a possible (and expensive) solution, the emergence of cheap
sequential access memories with on-chip logic (CCDs) provides us with an

interesting alternative.

S —

=124~

In Figure 56, we have shown how such memories might be used to carry out
several comparison operations in parallel. The operation of the scheme may be
briefly described as follows: records from the MM or the DBCCP which are to
be checked for security clearance are placed in a randomly accessed record
memory (RM). We require a RAM to store these records, because, in general,
only some of the records will be cleared for security and we need to retrieve
only these records and discard the rest.It is possible that clearance of records
will not be sequential but at random. A query associated with a file sanction
in the database capability of the user is loaded into a sequentially accessed

query memory (QM). The comparison memory (CM), which consists of a set of

circulating memory-processing element pairs, is then loaded with the keywords

of each of the records in the random access memory. The processing elements
have two functions: searching for a particular keyword satisfying a particular
keyword predicate or acting as a connector between two adjacent data paths. The
first function is useful in determining if a record satisfies a query, and the
second function is designed to handle the variable length of the keywords and
the variable number of the keywords in a record. The keywords in the record

and the keyword predicates in the query are assumed to be in sorted (ascending

or descending) order of attribute identifiers. The memory controller (MC)

reads a keyword predicate from the query memory, and broadcasts this information
to all the processing elements which are not acting as connectors. The fact

that keywords are ordered enables the processing elements to search only up to

a point (in the circulating memory) where the attribute identifier is greater
than the search attribute identifier supplied by the memory controller. At the
end of one complete circulation time, the comparison memory would have determined
which of the keyword sets satisfy the query and which of them do not. On the
basis of this knowledge, the memory controller can proceed to determine if the
access requested by a user is permitted by a file sanction on the records
satisfying the file sanction query. Those records on which the access is denied
are deleted from the random access memory. By repeating the above procedure

with each of the file sanctions in the database capability of the user, the memory
controller can determine the set of records on which the desired access is
permitted by the database capability.

Since security enforcement is often regarded as an overhead, it is impor-
tant for us to have an idea of the time taken by the SFP to perform the opera-
tions discussed above. Using CCD technology, it is possible to obtain up to
10 MBS shift rate. Assuming that in the worst case, file sanction queries are

unlikely to have sizes more than 1K byte, the time required to determine whether

b Bl o st b e St e e A i Al 3 W

WSS

s

R W

-

W
[—PL /)
Request Lines | - y,
From DBCCP from MM &| DBCCP / : -
‘ 5 s
| %)
| \ ‘ :
4 4 B
Query % /
Memory (QM))
(a Sequential Memory A H)
Access Memory) @« — —| Controller |~ —=# /7
(MC) i
\) =
| \ =) ik
' .
: :
L SR
Record Memory (RM) Pn -—
From MM or DBCCP ——a] (a Random
; Access Memory) / —
AN
S
v / I
I
= o
\(E
S

Comparison Memory (CM)
(Circulating Memory-Processor Pairs)

Figure 56. A Scheme to Utilize Sequential Access Memories for Fast Comparison

=126~

Thus, if the data-

records satisfy a query or not, is of the order of 1 msec.
base capability contains n file sanctions, the time taken to complete the

{ security clearance is n milliseconds. Typical values of n lie in the range
10 to 100.
A 4.1.2 Sorting

The technology considerations which were discussed above in the de-

sign of a security enforcement schem also apply to sorting. Intelligent
storage systems which combine cheap sequential access memories with simple

RPe—

—

logic capabilities can be used to sort records that are to be sent to the user.

e

As mentioned earlier, the sorting of the records is done on the basis of the

values of a single attribute which occurs in the records tc be outputted to
{ the PES. Thus, it is only necessary to load the intelligent memory with the
appropriate values and pointers to the records containing them. After the
sorting of the values is completed, the records can be outputted in the sorted |
order of the attribute-value pairs.

In discussing the operation of the intelligent memory used in sorting,

we once again refer to Figure 56. The RAM is used for storing records which
are to be sorted. The circulating shift registers in the comparison memory
will each contain an attribute value and a pointer to the RAM where a record
containing the attribute-value pair is stored. The memory controller can
issue commands to the processing elements to compare the contents of adjacent
circulating registers. Depending on the sort criterion and the attribute
values, the processing elements will either interchange the contents of the :
two adjacent circulating registers or allow the circulating registers to

retain their original contents. Such an operation may be performed repeatedly
until the contents of the circulating registers are in sorted order according
to the attribute-value pairs. The query memory is not used in this sequence

of operation. The maximum time taken to sort n circulating registers have been

J shown to be 255 where r is the circulation time [11].)

From the above discussion, one might gain the impression that the same

piece of hardware may be used for both security checks and sorting of records.

While such an approach is entirely feasible, it is not desirable. We advance -

several reasons for this. First, from the point of achieving maximum concurrency
within the SFP it is desirable to have separate units for security checking and
sorting. Under this scheme, records which have been cleared for security may 128

i
be sent to the sorting hardware for sorting, thus freeing the security hardware is
to handle the next batch of records for security clearance. Second, although,

B e ——————

e asinat AL RO S N S N I..—:\, EA

SR %

{
'
1
B2l @
b
-
{
|
4
'.
|

-127-

in principle, the hardware for comparison operation and sorting are similar, they
are by no means identical. If we use the same hardware for both operations, we
would need to design features which may be required for one or the other
operations but not both. An example is the query memory which is used in
security checks but not in sorting. Several other features will be discussed

in the next section. Third, deletion in the MM cannot be completed (for users
with type B protection) until security clearance is obtained from the SFP.

This reinforces the need for concurrency discussed above. Thus, we conclude,

that we should have separate units for security checks and for sorting.

4.2 Implementation Considerations

In accordance with the discussions in the last section, the SFP is implemented
using two modules which can function concurrently. These are the security

enforcement module (SEM) and the sort module (STM). In this section, we present

details of the components of the two modules and how they interact to produce

the desired result, namely security enforcement and sorting.

4.2.1 The Security Enforcement Module (SEM)
A. Processing Element - By far the most important component of the SEM is the

processing element (PE) in the comparison memory (CM). In Figure 57, we have

shown the five components that comprise a PE. These are comparators, the path*
control, the data routing logic, the timing control and the argument registers.
The comparator makes serial comparisons between the contents of a path and those
of the P and Q registers. The type of comparison is specified by the four
search specifier lines S1-S4. The lines S5 and S6 specify the value type of the
comparison arguments. The path control is responsible for proper connections
between adjacent paths. When the PE is in the search mode (control line C= o),
then the path control's function is to maintain the connection between Li and L;
and L and L!

i-1 i-1°
then the path control's function is to maintain the connection between Li and

When the PE is in the connect mode (control line C = 1),

Li_l, and L and Li. The data routing logic directs data from the input data

i-1
line D1 to either of the two registers in the PE or the path Li' When the

control line C1 of PE, is low (= 0), then loading of P, Q or path Li can be

5 4
achieved by maintaining one of L1, L3, L3 high. If Ci is high (= 1) no loading

can take place. The timing control unit is responsible for generating all the

signals at the appropriate times for the correct functioning of the three units

L

described above. The timing control unit takes as input the signals Ci’ Ll‘)

and L3 generated by the memory controller. The fifth component of the PE

consists of four sequential access memory elements - A, B, P and Q registers.

*A circulating register is called a path in this discussion.

-128-

| |
i
A Register P Register |
0 7.8 63 ’
f B Register Q Register
| 0 7 (0] 63 !
i
Be & 4 By
2 f ¥ ¥
i L"‘- —-L'
Search T ~ " (ARG i Path i
Specifiers§ — _ e qu Control
SI—S‘b, == = ? ' r—"]"' s
| $5,56 ¥ i—‘I T T 3
| -+ — - — 5 — - 4—51
£ Ty
Sl e e —1» —_—— s — — '
‘ e 4—'"""——1_ | | & ~— " Clock for
{ | | : Path Li
Data I ‘ Timing
D1 —= Routing e ‘1~—---T—~~ Control
Logic | l
IR
| 2 . PH
k| - L_;_____J-JLI31. \\\
‘ |
E | _— L2\
; L1
o

Figure 57. Block Diagram of a PE (see Table IV for explanation of control lines)

O e e i e s e

NNy

TABLE VI. Lxplanation of Control lines in Figure 57

Broadcast Control Lines (common to all PEs)

Ll: Load path; L2: Load P-register; L3: Load Q-register

Dl: Serial data for P and Q registers and path Li
- Attribute Search

0001
0010
0011
0100
= 0101
0110
0111
1000
= 1001
1010
= 1011
= 0000

S1-S4: Search Specifiers

LI I |

won

- Search
- Search
- Search
- Search
- Search
- Search
- Search
- Search
- Search
- Search

for
for
for
for
for
for
for
for
for
for

Comparator

S5,86: Value type specifier = 00 fixed point

wonon

Dl: serial data input

value eq
value #
value <
value <
value >
value

Q < value
Q < value
Q < value
Q < value
inactive

v

-1 - MR - I - AL - T <

01 floating point short
10 floating point long
11 Alphanumeric

al to P

A AJALA

Lao e~ M- Bl o

Individual Data and Control Lines (one of each line for each PE)

i

Li connected to L'

Li - Input from data path i

L; - Output to data path i

Li+1 - Input from data path i+l

Li+1 - Output to data path i+l

Ci - Connect control line = 0
=1

Si - Search successful indicator

- Search failure indicator

L. connected to L;, L

i+1’

i+l

i
connected to Ii+1i

A}
Li+l connected to Li

-130- L3

A and B registers are called difference registers, and P and Q registers are -
known as value registers. The value registers can be loaded from the data :
line D1. The difference registers are used by the comparator in floating J
point comparisons.

We are now in a position to describe how the PE is used to carry out a]
search operation for a set of keywords belonging to a record satisfying a E
query conjunct of keyword predicates. Assume that a set of keywords has been i
loaded into the i-th data path. (We shall describe the loading operation later -

=

in this section.) The memory controller orders PE; to get into the search

mode (Ci = 0). The P register is then loaded (L2 = 1) with the attribute identifier. ..J

The search specifiers are then set to "attribute-search" (S1-S6 = 0001) by the 3
memory controller. The comparator compares the next 16 bits with the 16 bits __l
in the data path Li' If the bits match then the signal Si is raised and path _;

movement is halted to await the next instruction from the controller. If the

data path contents are greater than those of the P-register, then the F,
signal is raised. T1f the data path contents are less than those of the P-register,

then the data path Li is shifted beyond the value bits following the attri-

i —.

bute identifier. The shift count is maintained by the A register which is loaded

with the length of the value field in the data path. ([Recall from Figure 4

Lasc e

{ that the length of a keyword is recorded between the attribute and the
corresponding value] A comparison is again attempted with the next attribute
identifier in the data path. If the end-of-path is reached, without an
attribute match, then the line Fi is raised. When an attribute match is

obtained by PEi’ then the memory controller initiates a value comparison between

the value in the keyword predicate and the value in the dat path. The lines Sl-

NNy

B S6 are set accordingly, and the registers P and Q are loaded before the compari-

' son begins. Fixed point comparison is straightforward. In the case of
floating point comparison, the comparator has to remember the exponent
difference between the comparands, since the values need not be normalized.
The A register is used to store the difference between the exponents of the
P~-register value and the data path value, while the B-register is used to store
the difference between the exponents of the Q-register value and the data path
value. The mantissas are then compared. During the comparison, additional
zeros are inserted in front of either the P-register bit stream or in front

A of the data path bit stream depending on the sign of the difference stored in
A-register,

Sometime, the query conjunct has two keyword predicates belonging to the

1
{
t same attribute. This implies a between~the-limit type of search. In such cases,

NNy

the memory controller loads both the P and Q registers with the upper and lower
bounds of the search. The PE then carries out simultaneous comparisons between
the contents of the P and Q registers on one hand and the data path on the
other. The signal Si is raised by the comparator if the comparison of values is
successful; the signal Fi is raised if the comparison is not successful.

Once the F signal is raised by a PE, it cannot participate in further
search operations until the data path contents are replaced (Ll = 1). When the
memory controller has processed all the keyword predicates in the query or
when all the PEs have shifted their respective data paths through a full cycle,
the controller reads the S-signals of all the PE elements which were in the
search mode. The records whose sets of keywords were processed by PEs with
the S-signaltrue. satisfy the query conjunct in the query memory.

A memory chip usually contains several PEs of the type described above.

The chip also contains the data paths processed by the PEs. There are as many
data paths as there are PEs. A PE may, however, process several paths connected

in tandem as shown in Figure 58.

B. Memory Controller (MC) and Query Memory (QM) - The memory controller (MC)

has a number of important functions which may be enumerated as follows:
Interfacing with the DBCCP via the communication bus.
. Responding to requests for security checks from the MM and DBCCP.
. Controlling the comparison memory, the query memory and the record
memory (see Figure 56).

The MC needs file sanctions belonging to a user database capability in order
to enforce security. These file sanctions are stored in the security infor-
mation table memory (SITM) in the DBCCP. The MC is able to access the SITM by
competing for control of the communication bus with the processing components
of the DBCCP. The MC will accept requests for security checks from the MM
and the DBCCP, with the MM enjoying a higher priority than the DBCCP. The MC
controls the comparison memory by issuing the correct sequence of broadcast
signals (see Table VI) and by monitoring the response signals of the comparison
memory. The MC controls the query memory by overseeing the loading of file
sanction queries into the query memory and by reading out keyword predicates
from it as arguments to the comparison memory. The record memory is used by the
MC to store records for which security clearance is to be determined. The
record memory is also used to maintain (separate) queues of requests from the MM
and DBCCP.

We now describe the logic of the MC as it processes a security clearance

S — — - ——————— A ——————— O A R S St < e e e P — - S
-

-132-
i
i
, 4
: 1
? ‘1
D1] p
L 2
\ 1
C.=0|
) it - 1
0 .
\ i Eh e
! 1 s
b
3
P | '
C3 1 L 3
-
3
Note: The same arrangement can be used for processing the 1
; contents of the three paths by a single processor Pl.
g - ! P2 and P3 merely maintain the interconnection between
- | adjacent paths. :
1 Figure 58. Multiple Paths (3) in Tandem Shown Here During Loading
{

e e R R

el

il ot

v NN

S -

-133-

request. First, the command identifier is extracted from the request. This
identifier is used to access the command status table (CST) and retrieve the
user ID of the user who issued the command. This ID is then used to access

the user information table (UIT) to obtain the address of the file sanctions in
the security information table. The query associated with a file sanction is
then loaded into the query memory. The keywords of the records in the record
memory associated with the request under processing, are loaded into the comparison
memory as follows: the '"connect" signal C, of all the PEs (see Figure 57)
except the first PE (see Figure 58) are raised high. This forces all the PEs
except the first to allow data to be exchanged between adjacent paths. As

the bit stream of a keyword set reaches its assigned path, the connect signal
of the corresponding PE is lowered, thus '"trapping'" the keyword set in the

data path. 1If there are n paths in a chip, and if we assume that all chips in
the comparison memory are loaded simultaneously, the time taken to load the
comparison memory is n path circulation periods. After the loading of the
comparison is completed, the MC proceeds to systematically search for keywords
in the data path which satisfy the keyword predicates of the query conjunct in
the query memory. The MC also maintains the correspondence between the sets of
keywords in the data paths and the records in the record memory in which the
keyword sets occur. At the end of one search operation, the records which have
keywords satisfying the file sanction query in the query memory are identified.
The access descriptor associated with the file sanction is looked up to check
if the access rcquested on the records is granted. If it is not, then the
records which satisfied the query are deleted from the record memorv.

The above process is repeated for each of the file sanctions in the user's
database capability. The records, which survive the deletions at the end of
each of the search operation, are then sent to the DBCCP or the MM. These are
the records for which the requested access is granted by the database capability

of the user.

4.2.2 Sort Module (STM)

Records which are cleared for security by the SEM, and are to be sent to the
PES (via the DBCCP) are sorted by the sort module (STM) if the sort option has
been specified by the user. The STM uses hardware very similar to the hardware
used by the SEM. The STM consists of three components - a sort memory, a sort
memory controller and a record memory. The sort memory is implemented by a
set of sequential access memories called data paths and by a corresponding set

of processors. Each processor can receive inputs from two adjacent data paths.

The sort method used is the odd-even transposition sort described in [14]. Each data

e ——.

=5 1

path is loaded by the sort memory controller with a value of the attribute specified
in the sort option and which occurs in a record to be sent to the PES. The

data paths are designed to be long enough fo hold values up to 31 bytes long

(recall from section 2 that alphanumeric values can be no longer than 31 bytes).

The sort memory controller also loads into each data path a pointer to the

record in which the keyword, with the value in the path,occurs. The maximum time
to sort is given by n/2 path circulation periods, where n is the number of paths
in the sort memory. The record memory contains the records while the sorting is
in progress.

As in the case of the SEM, the processing element (PE) in the sort memory
is an important component. We have shown a block diagram of a PE in the sort
memory in Figure 59a. The logic of a PE is as follows. A PE can function in three
modes -~ the load mode, the sort mode, and the read mode. During the load mode
all PEs except the PEO (see Figure 59b) connect Li to L;_l and Li—l to Li.
PEo connects data input line Din to Lo. All the data paths in the sort memory
can be loaded in n circulation periods. After loading is completed, the sort

memory controller raises the sort signal S_ for half a circulation period. This

E
begins the sort mode. During the next half a circulation period, the sort signal
S0 is raised. The sort signal SE initiates all even numbered processors to
compare adjacent path contents, while the sort signal So initiates all odd
numbered processors to compare adjacent path contents. When the contents of
adjacent paths are different and they meet the sort criterion (ascending or
descending order), then the contents are interchanged between paths by the
processor. For example, if the sort order specifies ascending order, and if
Li—l > Li’ Li is connected to Li-l and Li—l
is always bit serial, and, therefore floating point numbers should be normalized

is connected to L;. The comparison

for correct sorting. The shifting of data paths past the processing element {s
synchronous. If during a circulation period, no exchanges take place, the sort
memory controller recognizes this fact by sensing the signal marked x. This
signal is propagated from one PE to the next; at each PE the incoming signal is
ORed with an exchange signal locally generated.

After the sorting is completed, the sort memory enters the read mode if
the signal R is raised by the memory controller. During the read mode, all PEs

except PEO connects Li to L! and L to Li. PE0 connects Lé to D The

i-1 i-1 out’
sort memory controller retrieves the records from the records memory in the
order in which pointers are retrieved from the sort memory. The retrieved records

are sent to the DBCCP and palced in the data response memory (see Figurc 41).

|
:
-
;
:
2
1
:
E

NNy

(From Previous PE)

Ly

Lin

=
|

-135-

x(To next PE)

Exchange Signal

(Internal Propagation)

R - Read out Signal

e
|

Sort Mbde Control Signal
Load Mode Control Signal

_________ 3 :
% I in
|
i 1
]
S It — Path "1
Comparator | — — — 1 _ _,l &
— L Control P
i-1"" | i-1
“k\\ /,?1
\ #
~ 7 D
\ / Out

N Z.

Timing

Control

SHE 5.

i

| | |

e Sppg L

Figure 59a.

Block Diagram

of a PE in the Sort Memory

o

Lo
Din —»—Ai— — -~ e
D out —e—— — —— L‘
0
P L
2 ¥ =

7
/ e i
i 7 L'y
‘\ (\ L2
v 22

\\
T,

Figure 59b.

DRI 248 MY g, om0

Three - Path Sort System [All paths are moved synchronously]

o

B e

T

R T S oy ey = "y e

-136-

4.3 Some Comments on the SFP Implementation

The capacities of the record memory in the SEM and in the STM are

designed to accommodate the records associated with most of the security
and sort requests. However, a single MM order can retrieve all the records in
1

a MAU, In such a case, the SFP cannot accept all the records at one time We
could have designed an SEM and an STM whose memory capacities equal that of a
MAU, Such a decision, however, would entail changing these capacities as and
when the MAU capacity changes due to technological reasons, We would like to
avoid such changes in the interest of a stable design. Therefore, the

SFP will accept only as many records as can be loaded into the record memory at
a time, The remaining records of a request, will be accepted after the current
batch has been cleared for security. The size of the comparison memory is
related to the size of the record memory. The comparison memory should be

able to accept all the keyword sets of the records loaded into the record
memory, The sizes of the STM record memory and the STM sort memory are the same
as their counterparts in the SEM. This is because it is possible that all the
records in the SEM are cleared for security. In this case, they will be sent
to the STM which should be in a position to accept them so as to force the SEM
to process the next request.

In our design of the SFP, we have assumed fairly high data shift rate (1OMBS)
and the ability of the technology to integrate logic with memory. These two
rule out bubble memory technology for the present and in the near future. CCDs
are better suited to our requirements. The refresh problem in CCDs can be
handled elegantly by merging the regenerating logic with the PEs. In addition,
the data paths in the comparison memory must have individual clocks to enable
them to be shifted asynchronously. In case of the sort memory, the data paths

are shifted synchronously and therefore a single common clock will suffice.

A —— .

it —

5. CONCLUDING REMARKS

In the preceding sections, we have endeavored to present the design details
of three components of the DBC: the DBCCP, the MM and the SFP. The MM and the
SFP formed the data loop as shown in Figure 1. The DBCCP played essentially
the role of an interface between the environment represented by the PES on the
one hand and the structure and data loops on the other. As in an earlier
report [7], one of the main objectives in writing this report was to demonstrate
the feasibility of the DBC as envisioned in [2].

An important aspect of the design is the level of modularity achieved within
each of the components. The DBCCP had three processors, and a number of table
memories; the MM had a set of track processing elements communicating with a
controller whose logic was shared by two subprocessors, while each of the track
processors was an assemblage of two micro-sequencers and small sequential mem-
ories; and the SFP had two intelligent memories in tandem. The identification
of these subcomponents enabled us to adopt a step-at-a-time approach to the
DBC design. Of course, such a design has the usual salutory effects on reliabil-
ity and fault isolation.

As a result of the current effort, two avenues of further work are suggested
herein. First, a cost-performance evaluation and functional verification of
the proposed design must be undertaken before a prototype can be built. Such
a study is now in progress. Second, from a user point of view, the capabilities
of the machine to support existing data models must be demonstrated. Since the
DBC directly supports (i.e., with hardware data structures) an enhanced version
of the attribute based model [2], software interfaces to map other data models
into the DBC-supported model must be constructed. This area is aiso being

investigated. We believe that such interfaces are easier to build and more

efficient than contemporary databases built on the conventional hardware.

e B S

I

T)

10.

11.

12.

13.

14,

REFERENCES

Hsiao, D. K., Systems Programming - Concepts of Operating and Database Systems,
Addison-Wesley, Reading, MA, 1975, Ch. 6.

Baum, R. I., Hsiao, D. K. and Kannan, K., "The Architecture of a Database

Computer, Part I: Concepts and Capabilities', The Ohio State University,

Tech. Rep. No. OSU~CISRC-TR-76-1, (September 1976).

McCauley, E. J. III, "A Model for Data Secure Systems', Ph.D Dissertation,
Department of Computer and Information Science, The Ohio State University

Tech. Rep. No. OSU~CISRC-TR-75-2, (1975).

Hsiao, D. K. and Harary, F., "A Formal System for Information Retrieval

from Files", Communications of the ACM, 13, 2, (February 1970), 67-73;)
Corrigenda, CACM (March 1970).

Wong, E. and Chiang, T. C., "Canonical Structure in Attribute Based File
Organization'", Communications of the ACM, 14, 9, (September 1971), 593-597.
Knuth, D. E., The Art of Computer Programming, Vol. I - Fundamental Algorithms,
Addison-Wesley, Reading, MA, 1973.

Fagin, R., "Some Comments on the Architecture of a Database Computer",

Personal Communication to D. K. Hsiao, (December 1976).

Hsiao, D. K. and Kannan, K., '"The Architecture of a Database Computer,

Part II: The Design of Structure Memory and its Related Processors",

The Ohio State University Tech. Rep. No. OSU-CISRC-TR-76-2, (October 1976).
Hoagland, A. S., '"Magnetic Recording Storage'", IEEE Transactions on Computers,
C-25, 12, (December 1976), 1283-1289.

Bremer, J. W., "Hardware Technology in the Year 2001", Computer, 9, 12,
(December 1976), 31-36.

Ozkarahan, E. A., et al., "RAP: A Rotating Associative Processor for

Database Management', Proceedings of the AFIPS National Computer Conference,
44, (1975), 379-387.

Edelberg, M. and Schissler, L. R., "Intelligent Memory", Proceedings of
AFIPS National Computer Conference, 45, (1976), 393-400.

Stone, H. S., "The Organization of Electronic Cyclic Memories", Computer,

9, 3, (March 1976), 45-50.

Knuth, D. E., The Art of Computer Programming, Volume III: Sorting and il

PR | 3 "
| SRS] oo

Searching, Addison-Wesley, Reading, MA, 1973.

