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~init (IXU). The design philo4,hy, implementation details and hardware organ i-
zations of the structure loop components were documented in Part —

In this report , the design of the data loop is presented. In addition ,
the database command and control processor (DBCCP), which regulates the opera-
tions of both the structure and data loops and interfaces with the front—end
computer systems, is also presented. The DBCCP processes all DBC commands re— —

ceived from the front—en d computer systems , schedules the execution of the
commands on the basis of the command type and priority, enforces security on a
selective basis, clusters records to be stored in the DBC and routes the re-
sponse set to the front—en d computer systems .~ A number of table memories and
processors is incorporated in the DBCCP. TI iiajor memories include the corn—
inand argument table memory, the file informati~n table memory, the security
information table memory , the command status table ‘rtemcry and the database re—
sponse memory. The main processors consist of the structure—loop—interface
processor, the command—check—and—response processor and the command—translation
processor. Although the design of the DBCCP is straightforward , the details
are rather involved. To this end , we attempt to provide a coinprehc~ sive pre-
sentation in Section 2.

The data loop consists of two components , the mass memory (MM ) and the
security f i l t e r  processor (SFP). The design of the MM (presented in Section 3)
is based on the concept of partitioned conter~t—addr?ssab1e memory ( r C, \N) . In
this PCAM implementation , a partition is a cylinder of a moving—head disk unit
The cylinder is made content—addressable by incorporating traLk information
processors (TIPs) (one for each track of a cylinder) for concurrent processing
of the tracks of a cylinder. Furthermore, the disk read/write mechanism is
modified to allow parallel read/write of all the tracks of a cyliader. The
choice of a processor—ori~nted implementation using TIPs vs. a memory—oriented
implementation using a 1~~ge cylinder buffer is argued . Management of MM or-
ders, and their execution by the TIPs are discussed . Garbage collection and
space reclamation are also discussed in considerable details in terms of corn—
paction arid update operations of the MM. By far the most powerful oceration of
the NM is the search and reLrieve operation . The MM is capable of searching
for and retrieving racords which satisfy queries. Because the records in the
MM are addressed by content and carry no address ~ointers , they need no up-
dating as long as the records exist in the database. This is true even if
the security specifications of the database change frequently .

The security filter processor provides the type B security enforcement
and sorting . The type B security enforcement mechanism is provided for those
users who do not take advantage of the type A security mechanism based on the
concept of security atoms. The type A security incurs less security overhead .
However, it needs the user ’s cooperation . First , the user must understand the
security atom concepts; then, the user must convey the security requirements
in terms security attributes of his data records . On the other hand , the type
B security mechanism. does not require such user cooperation . Nevertheless ,
posterior checking of response data against full file sanctions is an expensiv

•,• undertaking . The sort aechanism enables the response data to be ordered by
values of ‘certain attributes. This is usually the way that the user applica-
tion programs would like to receive the records in the front—end computer
systems. The design of the SFP is presented in Section 4.

Finally , in Section 5 we have some concluding remarks . The conclusion
of the DBC design has prompted us to undertake a new series of studies. In
the new series, the feasibility of the DBC in supporting hierarchical , network
and relational data models and their related systems will be presented .
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1. INTRODUCTION

This is the last of the three—part series which deals with the design

of a back—end computer known as the database computer (DBC). The concepts

and capabilities of the DBC were presented in Part I [1]. Schematically,

the DBC architecture consists of two loops of memories and processors, namely

the structure loop and the data loop as depicted in Figure 1. The structure

loop is composed of four components: the keyword transformation unit (KXU),

the structure memory (SM), the structure memory information processor (SMIP)

and the index translation unit (DC)). The design philosophy, implementation

details and hardware organizations of the structure loop components were doc-

umented in Part II [8].

In this report, the design of the data loop is presented . In addition ,

the database command and control processor (DBCCP), which regulates the op-

erations of both the structure and data loops and interfaces with the front—

end computer systems, is also presented. The DBCCP processes all DBC commands

received from the front—end computer systems, schedules the execution of the

commands on the basis of the command type and priority, enforces security on a

selective basis, clusters records to be stored in the DBC, and routes the re-

sponse set to the front—end computer systems. A number of table memories and

processors is incorporated in the DBCCP. The major memories include the command

argument table memory , the file information table memory, the security infor-

mation table memory , the command status table memory and the database response

memory. The main processors consist of the structure—loop—interface processor ,

the command—check—and—response processor and the command—translation processor.

The command argument table contains actual parameters of the incoming

commands such as queries, clustering conditions and records for insertion .

For each active file, a file information table maintains information about

mass memory space allocation to the file and certain security related m i  or—

mation about the file. The security information table contains file sanctions,

atomic privilege lists and security descriptors. The command status table keeps

track of the state of execution of the outstanding commands, the whereabouts of

the command arguments, and the command priorities. The database response memory

contains the output from the data loop. The command—check—and—response processor

is capable of receiving commands from the front—end computer systems, responding

to their interrupts, performing security checks on certain commands, and forwarding

authorized response data to the front—end systems. The command translation pro-

cessor converts each access command sent by the front—end systems into a set of

_ _ _ _ _ _ _ _ _ _  •
~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~ 
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mass memory orders for subsequent access to content—addressable partitions

known as the minimal access units (MAUs). The structure—loop—interface pro-

cessor initiates requests for Information from the structure memory and re-

sponds to interrupts generated by the structure loop components (principally

by the IXU). Although the design of the DBCCP is straightforward, the details

are rather involved. To this end, we attempt to provide a comprehensive pre—

sentation in Section 2.

The data loop consists of two components, the mass memory (MM) and the

security filter processor (SFP). The design of the l~1N (presented in Section 3)

is based on the concept of partitioned content—addressable memory (PCAM). In

this PCA14 implementation, a partition is a cylinder of a moving—head disk unit.

The cylinder is made content—addressable by incorporating track information

processors (TIPs) (one for each track of a cylinder) for concurrent processing

• of the tracks of a cylinder. Furthermore, the disk read/write mechanism is modi-

fied to allow parallel read/write of all the tracks of a cylinder . The choice

of a processor—oriented implementation using TIPs vs. a memory—oriented imple-

mentation using a large cylinder buffer is argued . Management of MM orders , and

their execution by the TIPs are discussed. Garbage collection and space recla—

mation are also discussed in considerable details in terms of compaction and up-

date operations of the MM. By far the most powerful operation of the NM is the

search and retrieve operation . The MM is capable of searching for and retrieving

records which satisfy queries. Because the records in the MM are addressed by

contents and carry no address pointers, they need no updating as long as the

records exist in the database. This is true even if the security specifications

of the database change frequently.

• The security filter processor provides the type B security enforcement and

sorting. The type B security enforcement mechanism is provided for those users

who do not take advantage of the type A security mechanism based on the concept

of security atoms. The type A security incurs less security overhead . However,

it needs the user ’s cooperation. First, the user must understand the security

atom concept; then, the user must convey the security requirements in terms

security attributes of his data records. On the other hand , the type B security

mechanism does not require such user cooperation . Nevertheless, posterior checking

of response data against full file sanctions is an expensive undertaking . The

sort mechanism enables the response data to be ordered by values of certain attri—

butes. This is usually the way the user application programs would like to

receive the records in the front—end computer systems. The design of the SFP is

presented in Section 4.

_ - - •
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Finally, in Section 5 we have some concluding remarks. The conclusion of

the DBC design has prompted us to undertake a new series of studies. In the

new series, the feasibility of the DBC in supporting hierarchical, network and
relational data models and their related systems will be presented .
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2. THE DATABASE COMMAND AND CONTROL PROCESSOR (DBCCP)

Since the DBC Is designed to be a back—end computer in an integrated

information and computing system consisting of one or more front—end

computers, the user of such a system does not directly interact with the DBC.

Instead , the DBC receives all its commands from the front—end computers which

interface with the users. These systems are collectively known as the

• program execution system (PES). The existence of the PES has some

implications for the design of the DBC. In particular , we can assume that

commands received by the DBC do not have syntactic errors. We can also demand
certain rigorous commands formats from the PES ; such demands would be

• unreasonable if the DBC had to interact with users directly4 Nevertheless ,

considerable bookkeeping chores have to be performed by th~ DBC. These chores

relate primarily to keeping track of the commands and their arguments as they

• are processed by the various components of the DBC. The database command

and control processor (DBCCP) is responsible for calry 4nc out these and other

chores in a manner that will maximize the utilization of the components of the

DBC and ensure the iesponse requirements as set by the database administrator.

Basically, comrna~~is received from the FES (in predetermined formats),

are recognized by the DBCCP as either access commands or preparatory commands.

• Access commands are those that require the DBC to access the mass memory;

preparatory commands .~re those that precede and follow access commands and

• convey important housekeeping information. Access commands are further

divided into three categories — those that undergo the type A security check,

• those that undergo the type B security check and those that undergo no

security check. Type A security checks use the concept of security atoms

[1,2,3] to enforce security; type B security checks use file sanctiors [2 1
to enforce security . The category of access commands which do not

require any security checks, is used for loading the database with records

of a new file. In this case, the DBCCP merely makes sure that the user has

the right to create the file.

After undergoing security checks, access commands are translated into

orders that can be processed by the MM. During translation , an access command

involving insertion activates a clustering mechanism in the DBCCP. A record

to be inserted is “clustered” according to a set of clustering predicates

• • (called clustering conditions in [2]) specified by the file creator. These

clustering predicates enable the DBCCP to determine the MAli into which the

record must be inserted .



________  •-•‘- ---~~ • • — • • ,• --~~~~~~~~~~ -~~~-•-•------ ~~~~~
•—

~~~~
---

~~ ~~~~~~
—.

~~~~~~-~--- —
~~---••.----- --- ---

-6-

• Records retrieved by the MN, as a result of the execution of orders sei~~

by the DBCCP, are transmitted to the SFP. Here, the records may undergo

security checks if type B protection has been specified for the user on
• the file to which the records belong . It is important to note here the

difference in processing for the two types of protection mechanisms. In

specifying the type A protection for a user of a given file, the creator

of the file tacitly assumes that the file can be protected in terms of record

• aggregates called security atoms . [We shall give a more rigorous definition

of security atoms laterl. Such a specification enables the DBCCP to check

• for security before the access is made. The type B protection mechanism

is based on full file sanctions and can only be carried out after the access
• is completed . Type B protection is enforced by the SFP. Depending on

user requirements,a file creator may specify the type A protection for one

user and the type B protection for another . The SFP can also be instructed

by the DBCCP to sort records that are retrieved by the MM. The sorting is

done on the basis of values of some attributes specified by the user . Figure

2 illustrates ~~ command ‘paths ’discussed above.

In su”wiary, the DBCCP is charged with the following functions:

Accepting commands and their arguments from the PES.

Performing security checks on commands whenever possible.

Clustering records according to user requirements .

Interfacing with the structure loop components.

Translating PES commands into MM orders.

Interfacing with the security filter processor (SFP).

Maintaining various information tables needed to perform the

above functions.

In the following sections, we first discuss some of the subtleties of the

j DBC data model. Although the main concepts and facilities were discussed in

• 4 Part I, it is necessary to expand on the discussion here in order to gain a

fuller understanding of the data structures and algorithms of the DBCCP .

We then propose a physical organization of the DBCCP . This is followed by

a discussion of the data structures in the DBCCP and the logic of the

components of the DBCCP .

2.1 The DBC Data Model Revisited k
t As mentioned in Part I, the DBC directly supports the attribute—based

data modei (1,3,4]. An important unit of information within the DBC is 
•

• •
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a keyword which is an attribute—value pair.1 Information can be stored

into or retrieved from the DBC in terms of records; a record is made up

of a collection of keywords and a record body . The record body is composed

of a (possibly empty) string of characters.2 Records in the DBC are

subject to the following restriction : No two keywords in a record may

have the same attribute. This restriction is introduced to avoid a certain

logical problem.3 At first glance, this may appear to be a severe restriction

on the use of keywords. However, this is not the case. Since any multiple

occurrence of an attribute within a record can be mapped on to a set of

distinct attribute surrogates by the PES , the user can continue to use such

records.

Records may be grouped into files for reasons of acce.3sibility, security

and ownership. The DBCCP recognizes several types of keywords. Keywords

• are classified as directory type or non—directory type according to whether

they are stored in the SM or not. Directory keywords are classified as

simple, security or cluster keywords . Security keywords are used in the

formation and recognition of security atoms. Cluster keywords are used to

identify clusters [2].

A keyword predicate is of the form <attribute , relational operator, value>.

A relational operator could be one of (=, # , > , > , < , < ) .  A keyword K is

said to satisfy a keyword predicate T if a) the a t t r i bu t e  of K is

• Note 1. The definition of an attribute is largely intuitive. It can mean a
class, a quality, a characteristic , etc. In the attribute—based
model , an attribute in left undefined in order to encompass a wide
spectrum of meanings. A keyword is represented as (Attribute =
value).

Note 2. The definition of a record given here is a slight extension of the
definition given in Part I. This extension concerns the inclusion
of a record body in a record. In practice , a file creator may not

• wish to specify his entire record as a set of keywords, especially
If he .Ls certain that he will not query the file based on the contents r
of the record body .

Note 3. Consider the query ((PART NAIL)A(PART#NA1L)). If a record has two
keywords PART~NAIL, PART BOLT, then t h is r eco r d will satisfy (see
definition of a record satisfying a query later in the text) the

• above query although the query is illogical. This problem is
• eliminated by redefining the record as containing keywords

PART1=NAIL , PART2=BOLT. Then, the above query will not retrieve

4 the record . It can be shown that the record will satisfy no
illogical query, while enabling a user to specify any logical
query. It should be noted that in the above examples although
PART1 and PART2 are distinct attributes the domains of the values
of PART1 and PART2 may be identical .

Thi~ prob lem was I i r ~ t. br,~u~’ht to our •~ t t t n t  ion b I~~n l ap 17].  
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identical to the attribute in T and b) the relation specified in

the relational operator of T holds between the value of K and the value

in T. A query is a boolean expression of keyword predicates in the
• disjunctive normal form. Thus, a query is a disjunction of conjuncts.

Such conjuncts are known as query conjuncts. A query conjunct, of course ,

is a conjunction of keyword predicates. A record in a file satisfies a

-: query conjunct, if each and every predicate in the query conjunct is

satisfied by a keyword in the record . A record in a file satisfies a ~~~~~ if it

satisfies at least one query conjunct in the çuery . To give an example L I

the types of queries that may be recognized by the DBC, consider t~~e• j following:

If the above query refers to a file of employees of a department store, then

it will be satisfied by records of those employees working either in the toy

department and making less than 10,000, or working in the book department and

making more than 50,000. Notice that the query is meaningful only for the

specified file. Queries, as def ined above , are used not only to retrieve
records from the database, but are also used to specify protection requirements

and clusering conditions. Let us now discuss how these are achieved in the

DBC model.

When a user declares his intent to access a file, the PES provides

the DBCCP with the database c~pabilit~ of the user with respect to that

file. A database capab4lity is a couple of the form <(file name, default

access descriptor) ,file sanction set>. A file sanction is a conjunct of

keyword predicates and an access descriptor. A file sanction merely specifies

that records which satisfy the conjunct can be accessed by the user in

accordance with the access descriptor which encodes the types of access that

are permitted . The default access descriptor specifies the accesses allowed

on records not satisfying any of the file sanctions.

Consider now the type A protection. At the time the file is created ,

a set of security descriptors is provided by the file creator. A security

• descriptor generally specifies a range of values of an attribute such that

all the values in the range have the same protection requirement. An
• attribute occuring in a security descriptor is known as a securitL attribute

and a security atiribute and value pair is a secur~~y keyword if the value is

_ _ _ _ _ _  _ _ _ _ _ _ _  ---4



in the range specified in the security descriptor. Such a security keyword

is said to be derived from the security descriptor.

As records of a file are loaded into the DBC as a part of the file

creation process, the DBCCP extracts the security keywords of the records

and determines the security atoms to which the records belong. A security

atom defines a set of records each of whose security keywords is derivable

from a unique set of security descriptors. By the end of the creation

process, the DBCCP would have built a set of security atoms. Furthermore, no two

security atoms can have a record in common — an important property of the

security atom concept.

• For a user who has been provided with the type A protection , the file

sanctions of his database capabilities contain only security keyword

• predicates. [A security keyword predicate is a predicate whose attribute

is a security attribute as defined above]. When the user accesses the file ,
• the associated file sanctions are used to determine the access privileges

of the user on each of the security atoms. An access query can then be

accepted (or rejected) depending on whether the access type Is permitted

(or denied) on the atoms referred to by the query. We note that a file

• sanction can affect more than one security atom and a security atom can be

affected by more than one file sanction. When more than one file sanction

• affects a security atom, then the intersection of the access descriptors

of all such file sanctions is considered . The result of such an intersection

defines the (atomic) access privilege (list) of the user on that atomJ

Note 1. The notion of an atom defined in terms of minterms of keywords
for grouping of records having common keywords is due to Wong
and Chiang [5]. McCauley [3] applied it to describe security
sensiti~e information and called such atoms security atoms.
However, McCauley ’s security atoms had severe limitations when
used in real—world applications. The number of atoms could easily

• grow very large. The reason for this lies in his method of
• defining security atoms. Each security atoa was defined by a

unique set of security keywords occuring in the records of a file.
We shall now show how such a definition can cause an atoms—

• explosion (not an atomic explosion!). Suppose, for  example, a
database creator specifies that all records which have a security
attribute , called salary, with values between 10,000 and 100,000 are
to be protected in a certai - way. Then, if salary were the only
security attribute, then we could potentially have 90,000 security
atoms. It is easy to see that if there are two such (continued) •

~

• • • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • ~~~~•~~ • •  • • •• • •~~~~~~~~~~~~~ _ _ _
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Let us recapitulate all that we have said so far. There are four pieces

of information related to the type A security . First , security descriptors

ire provided by the creator of a file before the file is created. These

descriptors specify what to look for in the records as they are loaded into

the DBC. Second, a list of security atoms is created by the DBCCP by
determining the unique subsets of the security descriptors satisfied by the

security keywords of the records. Third , when a file is to be accessed by

a user, his file sanctions are made known to the DBCCP. By comparing the

security atoms and the file sanctions, the DBCCP creates an atomic access privilege

list AAPL for the user of the file. The AAPL is the fourth piece of

security related information maintained by the DBCCP.

In the case of the type B protection , file sanctions are not

constrained to be specified in terms of security keyword predicates. It

is, therefore, meaningless to attempt to build atomic privilege lists in
cases where the user has the type B protection . Without

AAPL, the DBCCP cannot carry out security checks before the accesses are
made (A request for record insertion is an exception to the above statement.

This exception is, however,handled by the security filter processor).

• Let us now turn to the clustering strategies provided by the DBCCP .

Clustering is done on two levels in the DBCCP. First, the allocation of

MAUs to files is carried out in such a way , that no two files share an MAU.
• How does this scheme help performance? To answer this question, we observe

that if files were to share MAUs, then it is likely that records of a file

• - would tend to be dispersed over a larger number of MAUs than would be the

• (continued) security attributes, the number of atoms would be
astronomical indeed. In general, the maximum number of security
atoms in McCauley’s system would be TIN . where N1 is the

• - number of security keywords of the i—th security attribute.
In the DBC, the concept of security descriptor has been

• explicitly introduced to limit the number of security atoms
to reasonable levels. The database creator can now define atoms
to be a collection of records which have certain attributes whose
values are within a range indicated by a security descriptor.
He specifies a particular keyword value in a security descriptor
only if he needs to protect a record with that keyword value in a
way different from records with other neighborhood values. Consider,
the example used above. The security descriptor would specify the
range 10,000 < Salary ~ 90,000, and the system would construct only
one security atom if this is the only security sensitive information
in the records. In general, the maximum number of security atoms
is where N~ is the number of security descriptors specified

-• 
• for the i—th security attribute.

• ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -__ • ____ _ _ _____ _
__
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• I case if MAUs were not shared among files. Therefore, it is reasonable to

• 

- 

expect that queries for record retrieval would result in access to a larger

number of MAUs if MAIJs are shared among files than if they are not. Since

performance would undoubtedly improve if the average number of accesses

• per query is kept low, we conclude that allocating entire NAUs to a file

• is a sound decision. We may consider the above strategy, a file—level

clustering strategy. The second level of clustering is based on the

principle of enlisting the cooperation of the database file creator to

determine the position of a record within a set of MAtJs allocated to a file.

Since the file creator is not , in general , aware of the addresses of MAUs

allocated to his file, the DBCCP allows the creator to specify conditions

which may be satisfied by one or more records already existing In an MAU ,
in order that a new record can be inserted into that MAU. These conditions

have been called clustering conditions in Tart I [2]. A creator of a file

may elect not to specify clustering conditions for his records. In this

case, the DBCCP will assign records to MAUs in an arbitrary manner .

Two types of clustering conditions were identified in [2]. The mandatory

clustering condition (MCC) is a query which must be satisfied by one or more

records existing in an MAU in order that a new record may be inserted In that

MAU. Each record for insertion may be accompanied by at most one MCC. The - •

PES usually uses the same MCC with each of a group of records in order to

ensure that all member records of the group are inserted into the same MAU.

Frequently, more than one MAU may each have one or more records which

satisfy the MCC accompanying a record. In such cases, we need a

mechanism to choose one of the MAUs in which to insert the record . Such
• a mechanism is provided by the optional clustering conditions (OCCs).

An optional clustering condition is also a query similar to the MCC.

However , a record may be accompanied by several OCCs . pith each of the OCCs ,

• a weightage is associated . The insertion process then determines the MAU in

which the record is to be placed as follows : The set of MAUs each of which

has at least one record satisfying the MCC is first determined . For each of

the MAUs in this set, a cluster weight is calculated by summing the weights

associated with those OCCs that are satisfied by one or more records already

4 existing in the MAU. The record to be inserted is then placed in the MAtI

- • 
whose cluster weight is the greatest.

rn order for the above elu.’~terin~ mechanism to work , we need to determine

— — -• •—~~ .•~~~•— 
— ~~~~~~~~~~~~~~~~~ 4 .~ , —~~ —
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fr~~ I
if there exists records in an MAU which satisfies the clustering conditions.

Obviously, if we need to access the MAU for this prupose , we would have lost

most of the performance advantage gained due to clustering records. The
• situation can be remedied by introducing the concept of a clustering keyword .

Certain attributes of a file may be designated clustering attributes.

Keywords whose attributes are clustering attributes are termed clusterinZ
• keyword. A cluster is then defined as a set of records all of which have

the same set of clustering keywords. Each record in the file will then

• belong to one and only cluster. We now impose the restriction that

clustering conditions (MCC and OCCs) must be specified in terms of cluster—

ing keywords. With this restriction , we can use the SM to deter-mime if an

MAU has records satisfying a clustering condition. To do this, we store in

the SM for each keyword known to the DBC, the set of cluster identifiers of

the clusters, some of whose records contain the keyword . Now in case of

clustering keywords, either all of the records in a cluster will have the

keyword or no record In the cluster will have the keyword . Since we have

restricted clustering conditions to be composed of clustering keywords

only, it is clear that either all records in a cluster will satisfy a cluster-

ing condition or no record will satisfy the condition. Thus, if we retrieve

from the SM the set of cluster identifiers (and the MAUs in which the
• 

clusters reside) for each of the clustering keyword in clustering condition

and intersect these sets, we would have obtained the addresses of the MAUs

which have one or more records satisfying a clustering condition .

2.2 The Physical Organization of the DBCCP

In Figure 3 the physical organization of the DBCCP in shown. The DBCCP

is organized into three processors — the structure loop interface processor

(SLIP) , the command check and response processor (CCRP) and the command
translation processor (CTP); and several table memories accessed by one

or more of the processors. Some of the important table memories are shown

in Figure 3. These are the command argument table memory (CATM) , the securj~~
-. 

I information table memory (SITM) , the database response memory (DRM), the
command status table memory (CSTM) , and the file information table memori
(FITM). These tables contain most of the data structures manipulated by

the three processors.
• The SLIP is responsible for interfacing with the components of the

structure ioop (see Figure 1). It accepts service requests from the CCRP

~~~~~~ . •~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _____ _______________ ______
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the IXU the KXU

II- I
I ~~SLIP I

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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j To/From - S 

• To/From
the SFP Data Loop • the MM

r CATM : Command Argument Table Memory
,
- 

~ 
CSTM : Command Status Table ~emory

I Memories 4 FilTh File Information Table Memory
I DRM : Database Response Memory

~ SITM: Security information Table Memory

CCRP : Command Cheek and Response Processor
Processors ~ CTP: Command Translation Processor

k, SLIP: Structure Loop Interface Processor

Figure 3. Physical Organization of DBCCP
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and CTP , and issues appropriate commands to three of the four components of

the structure loop, namely, KXU , SM and IXU. The data received from the

loop as a result of the execution of these commands, are passed back to the

CCRP or the CTP. In order to ensure that the components of the structure

loop are utilized to the maximum, the SLIP must be capable of handling

multiple service requests and of matching service requests with response

data as soon as they are made available by the structure loop.

The CCRP is responsible for receiving commands from the PES, placing

• the arguments in the CATM, performing security checks if the type A

protection has been specified , and transmitting response data from the data-

base response memory to the PES. In applying security checks the CCRP

requests the services of the SLIP. Response data in the database response

memory is made available by the SFP.

When the CCRP has completed the processing of a command , the CT?

translates each of the command into a set of NM orders and transmits these

orders to the MM. The status of a command in the CSTM is used to indicate

when the CCRP has completed the processing of a command. it is important

to note that the three processors operate asynchronously and communicate

with each other only via status table. Such an arrangement makes it

possible for the three processors to operate concurrently at the maximum

possible rate.

In the sections that follow we first discuss the data structures

maintained by the processors in the table memories. We then present the

algorithms carried out by each of the processors. Data structures local to

the processors are also described .

2.3 DBCCP Data Structures and Command Formats

2.3.1 Basic Data Formats

The basic building block of query conjuncts , clustering conditions, and
file sanctions is the keyword predicate. A keyword predicate is of the form

<attribute, relational operator , value>. The format of a keyword predicate

is shown in Figure 4. Keywords occuring in records also use the same format,

with bits 3—7 set to zero. The format of a query conjunct is shown in

• Figure 5. This format is used in queries for retrieval/deletion, in file

sanctions and in clustering conditions. The format of a record as

transmitted by the PES is shown in Figure 6. The format of a query in the

disjunctive normal form and the format of a clustering condition are shown

• - 
_
~~•• •~~
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,r—Directory Entry Keyword
Indicator

/ Security Keyword Indicator = 00 Fixed Point Number

I 

Short Floating Point

~~~~~~~~~~~~~~~ ~f~
Len~th~ Value

~ Predicate Indicator

~~~~~ Predicate Indicator -

~

‘? ‘ Predicate Indicator

Figure 4. Format of a Keyword Predicate (T) as Received by the DBCCP

of Bytes # of T T T T 1 T
Conjunct Predicates , n 1 2 3 4

0 15 16 23

Figure 5. Format of a Predicate Conjunct (T1
AT
2
A . . . AT) as

Received by the DBCCP

~1

• -4

Ar gument

,,
,,~~~

Type = Record

~~~~~~# of Bytes # of Key— K K ~< 
Body of

in Record words, n 1 2 n Record

0 7 8  23 24 31

Figure 6. Format of a Record Received by the DBCCP
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in Figures 7 and 8, respectively. There are two types of file sanctions

recognized by the DBCCP. The first is used in the case when the type A

protection is specified for the user. The second type is used in the case

when the type B protection is specified f or the user. These are shown

in Figures 9 and 10. An access descriptor is associated with a file sanction .

The format of an access descriptor is shown in Figure 11. All descriptors

except the default access descriptor have their file privilege indicators

turned off. The file privilege indicators in a default access descriptor

(associated with a database capability) are used to indicate the user ’s

access privileges to the entire file. Security descriptors , which are sent

by the PES prior to the creation of a file have the format shown in Figure

12. A security descriptor plays a pivotal role in the determination of

security atoms. We shall have more to say about security descriptors when

we describe the algorithms in the CCRP. Pointers (see Figure 13) are used

by the PES to retrieve information from a particular area of th e MM.

2.3.2 Command Formats

There are seventeen basic commands which are recognized by the DBCCP. This

command set is by no means exhaustive, but is, never theless , complete in

the sense that it enables the PES to take advantage of all of the facilities

that are provided by the DEC. In any particular implementation , this command

set may be augmented for ease of use or to correspond to additional facilities

incorporated in the DEC. All the commands have the general format <command

• ID, command code, priority, user ID , argument set> . The command ID is used

to uniquely identify a command as it is processed by various components of

the DBC. Since we do not anticipate that the DEC will ever process more thaa

256 commands at a time, this field is chosen to be 8 bits. The command code

is used to indicate the service needed. The priority field indicates the

level of service requested. Seven levels of priority (1—7), may be specified .

The higher the priority number the better the service time is likely to be.

The priority numbers may be used to distinguish batch jobs from interactive

requests. The user ID and file ID identify the user requesting the service

and the file upon which the request is to be carried out. The argument set

carries arguments which are needed to identify • the data within the file

or to provide information about the file.

The open—database—file—for—creation command is required to be sent to

the DBCCP before records of the file are loaded into the DBC. See Figure 14.



Argument Type:

/5_
~

001
’ 
# of Bytes II of Con— ¶

- I in Argument juncts, k ~2 I
0 78 23 24 31 32

Figure 7. Format of a Query Received as an Argument of a PES Command

Argument Type:
— Clustering Condition

/ 11

002 
# of Bytes I/ of Con—
in Argument juncts , k 2 ‘k

0 7 8  23

Figure 8. Format of a Clustering Condition Received as an Argument of a PES Command L
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Argument Type:
,,— Type A File Sanction

/
• # of Bytes Access Conj un ct of Secur ity

- 

I in Sanction Descriptor Keyword Predicates

0 7 8 23 24 3 9 4 0

Figure 9. Format of a Type A File Sanction Consisting of a Conjunct
of Security Keyword Predicates and an Access Privelege of
16 Bits

Argument Type:
Type B File Sanction

# of Bytes Access Conjunct of
~~06 in Sanction Descriptor Keyword Predicates

0 7 8  23 24 39

Figure 10. Format of a Type B File Sanction Consisting of a Conjunct
of Keyword Predicates and an Access Privilege Set of 16 Bits L
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— Replace

- 
- Retrieve within Bounds

•~ Retrieve Ar •y
- - Delete A n y

• . 

- • 

/ ~ - Delete File

- - 
- 

. 

- , 
/ 

- -• Re t r ieve ~AU Addresses

— / / Access to Par t s  of a F i le
- / 5- • /

- / .

• - ‘ / 
/ 

- - 
10 11 12 13 14 15 

—

1
1 2 3 4 5 6 7 8 9 / / 

L

Access on File Bas is 
- 

~~trieve by Query

-
, - • -- Retrieve by Pointer

Ret rieve by Query with Pointer ~
- - De1~ te by Query

—- D e l e te  by Pointer

‘• - Insert

H

Note: A ‘1’ in a bit position indicates a right to perform the 
access ,

while a ‘0’ indicates a denial of the right.

Figure 11. Forwat of Access Descriptor
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- • 00 Fixed Point
• 01 Floating Point (short)

- Value Type
• . 10 Floating Point (long)

11 Alphanumeric

Argument Type: Descriptor

63 \

003 # of Bytes Security 
Att ib ~ ID Lower Upper

- in Argument Descriptor ID r U e 
Bound Bound

0 7 8  23 24 47 48
- - 

68—71 Not used

• 
,—
‘ 01 For Security Keyword

— Security Specification
• Descriptor -

~ 10 For Security Range
Type Specification

11 For Specifying that
all Keywords of the

- Attribute are to be
- 

- 

Considered Security
Keywords

5 Figure 12. Format of a Security Descriptor Received
- -1 as an Argument of a PES Command
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I

-I

Type = “Pointer” I

1
007

1 
Record ID 

I
MAU Address~ Cluster ID !Security Atom~J I

0 7 8 23 24 39 40 49 50 59

Figure 13. Forma t of a Pointer Used in a Retrieve—by-Pointer Command

I
~Command 

1
Comm:nd 

1Priority
~
User ID 

I
File ID Arg 1 Arg 2 ~Arg ~ J I

7 8 12 13 15 16 31 32 47 48 63 64 71 72 79

Arg 1: Number of -Attributes Needed (16 Bits) I
Arg 2: Number of MAlls Required Initially (8 Bits)
Arg 3: Additional MAlls Required (8 Bits)

Command Code = 01
Priority: 1—7 (Higher priority numbers command faster service)

Figure 14. Forma t of Open-Database—File-for—Creation Command

- 
I

• -j

‘Ii.
I
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This command provides information on the number of attributes the f i le  is

to have, the number of MAUs that need to be allocated initially, and the

number of MAU s that may be allocated if the initial allocation is

insufficient. Two other commands are needed to provide information on

• attributes and security descriptors . See rigures 15 and 16. Once these

commands are given , the DBCCP is ready to accept records to be loaded

into the DEC . This is done by means of the load—record command . See

Figure 17. It should be noted that records loaded by this c~.xnmand are not
• 

• subj ected to a security check. This is because the ri ght to creat e a f i l e

is checked at the time of the open—database—file—for—creation command , and
the load—record counnand is considered a part of the creation process. The

close—database—file command (See Figure 18) is used to indicate that t he

f ile may be deactivated , i .e . ,  to indi cat e that there will be no mor e

commands from the user on the f i le .

Since the processing for creation of a database fi le is d i f f e ren t  from

that for accessing a f i le , a separate command called the open—database—f ile—

for—access (See Figure 19) is provided . This command assumes that a file

whose ID is an argument of the command has already been created ~nd is

known to the DBCCP . There are certain restrictions when a file is opened

either for creation or for access. During creation , a user may not issue

= • any access commands . The only commands permissible are the 3 load commands

shown in Figures 15, 16 , and 17 . During file access , a user may not issue

a load—record or load—security—descriptor command . 14p is, however , required

to issue a load—attribute—information command following an open—database—

file—for—access command . This is necessary , because the keyword transformation
• unit (KXU) discards attributes information when a f i le  is closed t 2 ] .  The

access commands tha t may be issued when a f i le  has been opened for access

will now be described .

There are four commands tha t may be used to retrieve records of a f i l e .

The retrieve—by—query command (see Figure 20) will probably he the most

common type of retrieval request. In this command , a query made of keyword
predicates in the disjunctive normal form is used to identify records

desired by the user. The retrieve—by—pointer command (see Figure 21) is

used by the sophisticated user who knows exactly where the desired record

• is stored. The use of this command generally implies a greater privilege

accorded to the user than those who can merely use the retrieve—by—query

command . Furthermore, the processing of this command is less involved than
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1Cotnmand cotnmand

j Priority User ID File ID 
At t r ibute~ Inforrn:tion ]

• 0 7 8 12 13 15 16 31 32 47 48

- Command Code = 028

• Figure 15. Forma t of a Load_ Att r ibute— Informat ion  Command

I
Command ~~~~~~~~~~~~~~~~~~~~ ID (File Id ~D S ~~ i~~~~~~~

Y 
j Desc ripto r ij~

• 0 7 8 12 13 15 16 31 32 47 48 55

Co and Code — 03 - 
Security

- •
• 

8 Descriptor k

- ¶ Figure 16. Format of the Load—Security—Descriptor Command

I
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• 
Command 

J

Command fPr iority ~User ID File ID MCC 
k °~~l~

1 0 7 8 12 13 15 16 31 32 47 48

I Command Code = 04 81

• MCC — Mandatory Clustering Condition , ~? 0CC I Record to be 
10CC — Optional Clustering Condition R • R I Inserted

— Weightage Associated with OCC~

Figure 17. Format of the Load—Record Command

5;

~ 

Command Command 

I
Priority 

j
user ID File ID

0 7 8 12 13 15 16 31 32 47

Command Code = 058

Figure 18. Format of the Close—Database— File Command
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I
j

1 for type A Protection J
‘ 0 for Type B Protection

/
Command Command L. Default -# of File File Ti
- rriority lUser ID File ID .ID Code Access Sanctions 

- 
Sanction 1

0 7 8 12 13 15 16 31 32 47 48 49 63 64 79

File 1( - 
~Sanction

- 

• Command Code = 06 8 L • ~~~~~~~~~~~~~~~~~~~ - _  -•
~ 

- - - - - -  1
Database Capabil i ty

Figure 19. Format of a “Open Database File fo r Ac cess ” Command
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~
‘

Command Command . Sort At tn .— I
ID Code Priority User ID ~Fi1e ID I bute 1/ i Query

- 

I 0 7 8 12 13 15 16 31 32 47 48 63

Command Code = 078

Figure 20. Format of a Retrieve—by—Query Command

1C o ~~ and Co and 
J 

Pr iori ty 
J 

User ID File ID Pointer

0 7 8 12 13 15 16 31 32 47

Command Code = 10
8

Figure 21. Format of a Retrieve—by—Pointer Command
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the retrieve—by—query command. This is because directory information need

not be obtained from the structure memory (SM) to determine the MAIS’ address(es).

The retrieve—by—query—with—pointer command (see Figure 22) is provided so

that the user may determine the pointer values of a set of records

satisfying a query and use these pointers as arguments in subsequent

retrieve—by—pointer conmiands. The fourth retrieval com m and is called the

retrieve—within—bounds command (see Figure 23) .  This command requires two

pointers as arguments. The two pointers are used as lower and upper bounds [
of a set of records of a file, all of which will be retrieved in response

to the command. The two pointers, must point to the same MAU address.

They may differ only in the record numbers. Cluster identifiers and security

atom names in the pointers are ignored . Record numbers are unique only 5-

within an MAll, therefore , it would be meaningless to specify pointers into

different MAUs. The use of this command implies a level of access jrivilege

that is higher than that of the other three commands . The right to use this [
command is indicated in the default access descriptor of the database

capability (see Figures 19 and 11). This command is particularly useful [
when the user wants to process all the records in a file (or in an MAU)

but has workspace only for a small fraction of the total number of records.

All the retrieval conunands except the retrieve—by—pointer command have a

sort option, i.e., the records that are retrieved may be sorted on the

values of one attribute.

The insert—record command (see Figure 24) is used to add records to a

database. While the load—record command was used in the creation process

for rapid loading of the database, this command is used as an update

command. Thus, this command undergoes the same kind of security check as L
do other access commands. The load—record command may not be used in place

of an insert-record command . [
There are three deletion commands recognized by the DBCCP . The

delete—by—query command (see Figure 25) is very similar (in processing) to

the retrieve—by—query command . It uses a query to identify those records

that have to be removed from the file. The delete—by—pointer command (see

• Figure 26) is similar to the retrieve—by—pointer command and is used to

delete a sepcific record . Quite often a user may wish to destroy the entire

file. This action is provided by the delete—file command (see Figure 27).

This conm%and not only releases the database areas (MAlls) occupied by the file,

but also the SM space occupied by keyword directory entries and auxiliary
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I Command Command . SortPriority User ID File ID . Query
L 

ID Code Attribute -

0 7 8 12 13 15 16 31 32 47 48 63

Command Code = 11
8

Figure 22. Format of a Retrieve—by—Query—with— Pointer Command

[Co~~and ~Co~~:nd ~Priority j User ID File ID Attribute 
Pointe~~ointerj

0 7 8 12 13 15 16 31 32 47 48 63

Command Code = 12
8

Figure 23. Format of a Retrieve-Within —Bounds Command
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Command Commuand Priority ~Jser ID File ID MCC • 0CC
1 

W
1!

0 7 8 12 13 15 16 31 32 47

0CC W Record
Command Code = 13

8 
n n~

Figure 24. Format of a Insert—Record Command

Command Comm:nd Priority User ID File ID Query 1
0 7 8 12 13 15 16 31 32 47

Command Code = 148

Figure 25. Format of a Delete—by—Query Command

• 

- 

tco
~~

and C~m~and ‘Priority User ID File ID Pointer

0 7 8 12 13 15 16 31 32 47

— Command Code = 15
8

Figure 26. Format of a Delete—by—Pointer Command

I

Ic0~i~ ~Command 
~Priority User ID File ID~ I

0 7 8 12 13 15 16 31 32 47 48 63
- .4

Command Code 168

Figure 27. Format of a Delete—File Command
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• 
information kept by the DBCCP. It should be noted that the delete—file

command does not involve file access, and , therefore , it does not require

an open—database—file—for—access command to prece~Ie it. Furthermore ,

at the time this command is given , the file shou]A not be open for access

by some other user . If it is, then the command will be rejected by the

DBCCP.

In database operations , it is frequently desired to update certain

fields of a record and retain only the updated version of the record. Such

a facility is provided for by the replace—record command (see Figure 28).

There are two arguments to this command — a pointer to the old record that

is to be replaced and the new record that is to replace the old record.

Internally , this command is divided into two parts — a delete—by—pointer

for the old record , and an insert—record coi-wm and for  the new record . A

user who wishes to use this comman d mus t have the privilege of rep lacing

records in the f i le  as indicated in the d e f a u l t  access descriptor (see Figure 11).

Furthermore, he should have the right to delete (by pointer) the record he

is replacing and the right to insert the new record . Thus a replace—record

command requires the user to have three kinds of access rights — record

replacement on a file basis, deletion by pointer and insertion of record.

This interpretation of the replace—record command is motivated by two factors :

first, we should enable the user to change any part of the record he wants

to replace; this includes values of security keywords as well. Second , given

the first factor, it would be illogical to associate the replacement privilege
— eit her with the security atom containing the old record or with the security

atom containing the new record .

Earlier, we described the retrieve—within—bounds command which was

useful in bulk processing. However, in order to use this command , a user

needs to know the MAD addresses in which his file is located . This knowledge

can be obtained by using the retrieve—MAD—addresses command , whose forma t

is given in Figure 29. The DBC responds by providing the user with a list

• of MAD addresses in which the file , identified in the command , is located .

Finally, the load—creation—capability—list command (see Figure 30) is used

to indicate to the DBCCP the identity of the users who may issue the command

• open—database—file—for—creation . Table I gives the list of DBC commands.

-5-. - 
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tonm%and Command Priority User ID I FL1e ID Pointer Record 1
0 7 8 12 13 15 16 31 32 47

Command Code = 17
8

Figure 28. Format of a “Replace—Record” Command

• 
Command Commn:nd Priority User ID File ID

Command Code = 20
8

Figure 29. Format of a Retrieve—MAD—Addresses Command

Ic0~r ~~~~~ 
~~~~~ k 

User ID
1 

.. l user IDk 1
Command Code = 21

8

Figure 30. Format of a Load—Creation—Capability-List ” Command ‘

I i1 .
• 

I —
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Table I. List of Commands Recognized by DBC

Code Command Function Command Type (A — access type
P — preparatory type

01 Open Database File for Creation P

02 Load Attribute Information P

03 Load Security Descriptor P

04 Load Records A

05 Close Database File P

06 Open Database File for Access P

07 Retrieve by Query A

10 Retrieve by Pointer A

11 Retrieve by Query with Pointer A

12 Retrieve Within Bounds A

13 Insert Record A

14 Delete by Query A

15 Delete by Pointer A

16 Delete File P

17 Replace Record A

20 Retrieve MAD Addresses P

21 Load Creation Capability List P

5• ••

~ 
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2.3.3 Table Structures in the DBCCP

A number of information tables are maintained by the DBCCP in order to

carry out the various commands issued by the PES. Here we shall discuss

several of the tables that are accessed by the CCRP and CTP via the

communication bus and the argument—and—structure—loop—response bus (see

Figure 3). Five separate memory elements contain these tables. More

specifically , the command argument table memory (CATM ) contains the arRument

table. The security information table memory (SITM) carries security

descriptors , file sanctions and atomic privilege lists of active users, while

the file information table memory (FITM) contains the file information table,

the attribute bit map, and the MAD allocation table. The command status table

memory (CSTM) holds the status information of commands currently under

processing. The database response memory (DRN) holds response data to be sent

to the PES. In order for a processor (CCRP , ~V’1, SFP , SLIP or CTP) to access

any of these tables , it must f i r s t  obtain control of the data bus (communication

bus or argument—and—structure—loop—response bus) to which the memory unit

containing the table is connected . As long as a processor has control of a

bus , no other processor can gain access to any of the table memories on that

bus. By providing for high bandwidth busses , one can reduce the amount of

time for which a processor needs to “lock” up a bus .

The above arrangement for serialization of access to table memories

eliminates most of the deadlock situations that might otherwise be anticipated .

However, there is one situation that requires consideration. Supposing, two

of the processors each have control over one of the two busses and then demand

— the use of the other bus. In this case the two processors will be waiting

indefinitely on one another causing a deadlock . This situation is overcome by

making it mandatory on each of the processors to release the bus it is holding
-
. -

~ before requesting the use of the other bus.

A. The Command Argument Table — This table contains queries , MCCs, OCCs
• and records that are received as arguments of DBCCP commands awaiting execution .

Each command argument occupies a contiguous block of memory . Since entries

in the table are of variable size , the following scheme is used to allocate ~-- I
• I and free memory. A doubly—linked AVAIL list of available memory space is

maintained . When an argument is to be placed in the table , the first—fit

method [6] is used to allocate sufficient space for the argument. ‘Then - •

an argument is to be deleted (because the command to which

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~- T ~ T~i--~~~ • .  ~~~ 
S 
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- . the argument belongs has been processed), space occupied by the argument is
- linked into the AVAIL list after ensuring that (possible) adjacent blocks

of free memory are properly collapsed . The AVAIL list is maintained by

using a small part of the free spaces themselves. The overhead due to

such links is small compared to the size of the blocks that are allocated

and freed. As the number of commands in the DBC increases, the argument

table will progressively become more and more full, until at some point,

the first—fit method will fail to yield enough space for an argument.

At this point the DBCCP will stop accepting further commands until more

space is freed. Although compaction could be resorted to consolidate all

the available pockets of memory space, we have chosen not to, for a number

of reasons. First , even if we perform compaction , the acceptance

of more commands will very soon exhaust the consolidated available space.

• Second compaction involves resolution of argument pointers in the command

status table. Since each command may have several arguments, the overhead

due to resolution of pointers can be significant . Third , even if we don ’t

perform compaction, space will become available when the processing of

existing commands in the DBC is completed , thus allowing new commands to

be accepted . In Figures 31 and 32 the formats of a free block and an

occupied block of memory are shown. 
-

B. File Information Table (FIT). There is one file information table

(FIT) for each file known to the system. The FIT is created at the time

-
. 

- - the file is created. It contains information about space allocated to the

file, and certain security related information. The FIT is a variable

length table and is composed of a set of fixed size blocks in the table

memory. The format of a file information table is shown in Figure 33. An

-
~~~~~~ FIT has five fields. The first field contains the file name . The file

- S - name is a 16 bit pattern generated by the PES. The second field contains

the identity of the file creator and information about its status (i.e.,

whether the file is active or not, etc.). The third field is a list of

attribute identifiers allocated to the file. It is useful to keep such

a list; since at the time the file is deleted , we need to reclaim the

attribute identifiers used by the file. Field 4 is a list of security

-
• descriptor identifiers. These identifiers identify the security

S descriptors of the file which are stored in another table memory called the

security information table memory (SITH). The format of a security

I
~~I.

- -- - - - —
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1
/ Tag to Indicate Block is in Use

/
/ n Bytes

H ~ Argument H~~~7~~~

Tag Indicates Block is in use

Figure 31. Details of a Block in Use in the Command
Argument Table Memory (CATM)

Tag to Indicate Block is Free

/ n B ytes
/ / 

- -  — A_ --

Size = 7 . I Link Size =0 
~ + 10 1Link Forward Backward Free Space ~0 

~ + 10
0 1  15 16 31 32 47 1

Tag to Indicate
Block is Free

Figure 32. Details of a Free Block in the Command
Argument Table Memo ry (CATM)
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(

2 Bit File~ 
00 File Not Active

- ~~~~~ Status 5-’ 01 Open for Access

• /
/ I l O  Open for Creation

Field 1 — File Name (16 Bits)

Field 2 # ] _  File Creator Identity (14 Bits)

Field 3 n Attribute Identifiers Assigned to File ~ 2xn Bytes

--

Field 4 # of Security Descriptors = k( 16 Bits)

k Security Descripto r Identifiers 2 k Bytes

# of MAUs Allocated # of Additional• Field 5 2 Bytes
- to File , n ~ 255 MAUs to be Allocated

- 

n MAD Indentifiers 2xn Bytes

- - Field 6 # of Atom Descriptors = m (16 Bits)

H m Atom Descriptors - Variable

- - I

Figure 33. File Information Table (FIT)
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• descriptor was snown earlier in Figu re 12. Field 5 identif ies all those MAUs
that have been allocated to this f i l e . It also keeps track of the number of

• MAUs that may be allocated to this file if the curr ent MAUs become full.

In field 6 the descriptions of security atoms which actually exist in the

field are stored . Each security atom descriptor has the format shown in

Figure 34.

The DBCCP maintains a list of file nain~~ and their FIT addresses in the

FIT memory. This list is consulted whenever- an FIT has to be accessed .

Although the total number of fi les in the system is likely to be large , say ,

in the range of 1,000 to 2,000, the size of the list remains small (4—8K bytes).

The f i le creation capabil i ty  list , which iden t i f i e s  the users who can create

files,is sto r ed in a fixed ar ea in the FIT’~.

The FITM also contains , two bit maps — an attribute bit map which keeps

t rack of the a t t r ibutes  that  have been allocated so fa r , and an MAU bit

map which keeps track of the HAUs that have been allocated so fa r .  The

attribute bit map is 64K bits in size (= 8K bytes)  and the MAD b i t  map is

32K bits (= 4K bytes).

C. User Information Tables (UITs).  There is one user information table for

each user who is currently active in the DBC , i .e . , fo r a use r who is

accessing one or more files in the DBC. A UIT has two fields. The first

field identif ies the user , the second field has information regard ing the

f i les he has opened for  creation/access . In par t icu la r , th e field has the j
- • f ile ID , a pointer to the set of file sanctions and a pointer to the privilege

; list for each of the files currently accessed by the user. The file sanctions

— are stored in the security information table (SIT). The size and format of the

UIT is shown in Figure 35.

D. The MAD Space Information Table (MAUSIT) . This table is used to keep track

of the amount of available space in the MAUs of the MM There is one ent ry in j
the MAUSIT for each MAD in the MM. Each entry has two fields . The first field

contains the number 8—byte blocks available in the MAD. This field occup ies

2 bytes and can, therefore, represent 2 —l blocks (?500K bytes). The second

f ie ld carries in formation about the space available in the track with  the largest

capacity. The space is measured in terms of the number of complete sectors —5

-

(1 sector = 128 bytes). The field occupies one byte , thus providing for a
S I

S
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Security~ ~ ot Security Security De— Security De—
Atom # Descriptors scriptor ID1 scriptor ID~

0 15 16 3l~ - -  -5

3n Bytes

Figure 34. Format of a Security Atom Descriptor in FIT

3

.~ ~
-
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User Identity (16 Bits) 2 Bytes

# of Files Opened n 1 Byte
— -

“
I

n File Identifiers

n Pointers to File Sanctions n (2 + 2 + 2 + 2)
n Pointers to Privilege Lists Bytes

S 
n Default Descriptors

Figure 35. Format of a User Information Table (UIT)
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maximum track capacity of 32K bytes. Each entry is, therefore , three bytes

long. For a database of l0~ — 1010 
bytes , we need between 2,500 to 25,000 MAUs. -

Thus, the maximum number of entries is 25,000. The required table memory is

about 75K bytes. The format of a table entry is given in Figure 36.

E. The Security Information Table (SIT). This table contains all security

related information. More specifically , it contains the security descriptors ,

the file sanctions and the atomic privilege lists. There is one set of

security descriptors for a file, there is one set of file sanctions for each

user for each file accessed by that user. Similarly,  there is one list of
atomic access privileges for each user for each file accessed by the user. (Of

course, atomic privileges are created only if the user has the type A

protection.)

The format of the file sanction has been shown in Figures 9, 10 and 11.

The atomic access privilege list is a list of pairs of the form <security atom

number, access privileges>. The format of such a pair is given in

Figure 37. This list is compiled at the time the file is opened for

access and is stored in the security information table.

Each security descriptor has a unique ID assigned by the PES. This

number is used by the CCRP to access the security descriptor. Security

descriptors are used during the file creation process in order to identify

security atoms defined by the input records. In order to access security

descriptors rapidly during this process, a small part of the SITM is used

as an access vector. The n low order bits of a security descriptor are

used to index the access vector. An entry in the access vector heads a

list of security descriptors all of which have the same n low order bits.

The value of n depends on the level of performance required of the scheme .

H- Typically, the value of 2n could be in the range of one—sixteenth to one

fourth the anticipated number of security descriptors (~2
16) in the system.

The remaining part of the table memory is dynamically allocated to contain

security descriptors, file sanctions and atomic privilege lists. File

sanctions and atomic privilege lists do not require access vectors, since

the users’ UITs point to the respective file sanctions -and atomic access privilege

list. In Figure 38 the organization of the security information table is

illustrated . Blocks of free and allocated memory are kept track of in a

• - 
1
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- 

# of sectors
# of blocks available available in track
for allocation in MAD- with largest capaci y

—.5 

-p
-- - - - - .5.

’-

2 bytes 1 byte

I

Note: One entry per each MAD
1 block onan MAD = 8 bytes; 1 sector on an MAD = 16 blocks

~-1
• ! -  Figure 36. Format of an entry in the MAD Space

Information Table (MAUIT)H - 
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[~~curity Atom # Access Privilege 1
15 16 31

Figure 37. Format of an entry in The Atom Access
Privilege List
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Avail List 

-

~

Access - - - —- - - - -~ 
. -  ‘

\ \  ~~ ‘-‘Vector 
\~H--~

’
~ 

‘

~~~~~~ — —---5--.
for 

~~~~~~~~~~~~~~~ 
S 

-

Security ~~—r4’T~/ -  - -  - - / _/
_

__ -

Descriptors J”~i- - / 2 ’/ ’ . ~~~~~ - --H 
‘
-~~

‘
- - ~ ,/ — / ~~

‘ ‘ I . . •
— • 

- - -

_ _

~ 
I

,
,

~~~~~~~~~~~~~ 

~~~~

-i }
3 Security ~~~~~~Ty pe A File [ ~~ Free

Descriptors Sanctions Blocks

L~~~-\ Atomic Privilege 
1 

Type B File
L ist - - I J Sanctions

Note: Each entry in the access vector is the head of a list of
security descriptors . All descriptors in a list have the
same high order 8 bits in their identifier value. J
Figure 38. Security Information Table Memory
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~~~~
manner similar t~ the scheme used in the command argument table (i.e. maintenance

of AVAIL list etc.). However, unlike blocks of allocated (free) memory

in the command argument table , blocks of allocated (free) memory in the security

information table are stabler, in the sense that they are not released

(allocated) as frequently as in the command argument table.

F. The Command Status Table (CST). This t;~~ le is maintained by the D~C’~T

to indicate the status cf the commands accented by it. ‘I he table memo ry
• div id ed into three parts (see i-i gure 39): a ta~ 1e of priority Ust

headers (PLEI), a tabie of status information (SIT), and a taU~e of

argument pointers (APT). There is one entry for each priority level in

the table of priority iist headers. An entry in this table points to an

entry in the status information table. Fac~ command under proees~ iac~ has an

entry in the SIT (see Figure 40). All entries of commands at the same- level

of priority are chained together with the appropr ia te  en t ry  in the PU-I

pointing to the first entry in the chain . An entry in SIT has ten fields:

Field 1: An 8 bit status field reflects the progress of the r~mman d

through the DBCCP .

Field 2: An 8 bit field identifies the command to thu DBC.

Fietd 3: An 8 bit field specifies the command functiui.

Field 4: A 16 bit field identifies the file referred to by the

coumand .

Field 5: A 16 bit field identifies the user who caused the PE S

to issue this command .

3 Field 6: This 16 bit field stores the address of the contro~ iremorv

of the processor (CTP or CCRP) waiting fo r SLIP to provide s t ruc ture
information.

Field 7: This 8 bit field records the number of MM orders issued by

the CTP .

Field 8: This 8 bit f ield records the number of security violations

that are encountered in the execution of the command .

Field 9: This field points to the APT where pointers to the

arguments table are stored . There is one pointer in th~
APT for  each command argument .

Field 10: This field points to the entry of a command a~ the s— i r c

p r i o r i ty  level a~, tili s comt: 1n~

—
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AVAIL List - 
-

.i
I

- - — -5-- —- - .5 -

- 

~~~~~~~~~~~~~ /

Priority List Headers •
(PLA) . 

-

_ -
Status Information Table (SIT) -

3 
Argument Pointer Table (APT) -

LI
Figure 39. Organization of the Command Status Table (CST)
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/ 0 Command Processi ng not ini t iated L y CTP

1 Command Processing by CTP under progress

-- 0 Command Processing not ii-~p leted by CTP

f \ 1 Comrrand Processing comp leted by CTP

/ 
/ 
0 Command Processing not in wait mode

/ / 1 K I Command Processing in wai.t mode

/ I -
-

/ / ,~~ Not used

012 3 Yh~ 39 56 l~4
Corn— Return— - 

No. of - . 
- 
Ptr. to

- - - . . -- - .~ ointerI 
- 
5omman - mand File User from—wait  No.  01 ~-P~1 securi ty  - next corn—
ID 

- 
Code ID I ID address orders 

- 
v io1at ion~~

t0 ~~~~~~ mand a t

~ 5 678 15 16 23 24 4Q 55 71 72 79 80 87 88 103 ~~~~ ll~
- \ \\~~ 0 Command Processing not comp leted by CCRP priority .

\ \ \ 1 Command Processing completed by CCRP

\ \ / 0 Command Processing by CCRP not initiated

\ 1 Command Processing by CCRP under progress

; 0 Arguments of command not received yet

- 1 All arguments received

/ 
0 Non—Access Commands

Access Commands

Figure 4~ . Forma t of an entry in the SIT

I~
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G. The Database Response Memory (DRM) — This memory is used primarily by the

SFP to store records retrieved by the MM. It is also used by the DBCCP to store

accept/reject signals for non—access commands. The memory consists of two parts —

the response summary table and the response data area (see Figure 4la). The sum-

mary table has one entry for each command that has been executed (successfully or

unsuccessfully) by the DBC. Each entry has the format shown in Figure 4lb. There

are seven fields in each entry. The command ID , the command code, file ID, user

ID, and the number of security violations are as described in Section F above . There

is one fiela to indicate whether the command has been accepted or not and one field

to store the pointer to the response data if any. Since not more than 256 corn—

mands are expected to be processed by the DBC, the number of entries in the sum-

mary table is 256. The response data area is a large memory capable of storing

at least as many records as can be processed by the SFP at a time (see discussion

in Sec. 4.3). In Table II, we have indicated the type of response information

that may be sent to the PES for each of the commands accepted by the DBC.

2.4 The Command Check and Response Processor (CCRP)

As mentioned earlier, the CCRP is responsible for receiving commands

from the PES , performing security checks on them if possible and routing
response data from the security filter processor back to the PES. The

algorithm given in this section pertain to these and other auxiliary functions

of the CCRP. The CCRP is capable of being interrupted by three sources —

the PES whet-, it has a toinmand for execution, by the SLIP when structure

information is ready and by the SFP when there is response data to be

routed to the PES. The priority of the interrupts with respect to one
another is a design decision which must be made by considering the

relative importance of the three sources of interrupts with respect to

the execution logic of the CCRP. Later in this section we propose
a priority scheme which takes into account the relative importance of the
three sources. }
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Table II. DBC Response to Commands Issued by PES

Code Command Function Response

01 Open Database File for Creation Accept/Reject

02 Load Attribute Information Accept/Reject

03 Load Security Descriptor Accept/Reject

04 Load Records Accept/Reject , pointer to
record in ~ 1

05 Close Database File Accept/Reject

06 Open Database File for Access Accept/Reject

07 Retrieve by Query Accept/Reject , records without
pointers

10 Retrieve by Pointer Accept/Reject, record without
pointer

11 Retrieve by Query Accept/Reject , records with
pointers

12 Retrieve within Bounds Accept/Reject , records withou t
pointers

13 Insert Record Accept/Reject , pointer to
- • - 

- record in ~1M

14 Delete by Query Accept/Reject

15 Delete by Pointer Accept/Reject

~~ 
‘

~
. 16 Delete File Accept/Reject - •

17 Replace Record Accept/Reject , pointer to
new record in MM

— 20 Retrieve MAIJ Addresses Accept/Reject , addresses of
MAlls

21 Load Creation Capability List Accept/Reject 

- --- -- -5— - ------- - --- 
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2.4.1 Security Related Processing

In this section we present algorithms used to create atoms , and

algorithms for performing type A security checks.

ALGORIT 1~.1 A — To extract a security atom from a record fo r  inser t ion.

Input Arguments: 1. The record to be inserted with k security keywords
2. The security descrip tor identifiers from FIT

Step 1: Retrieve all security descriptors of the file from the SIT. -

Call the set of security descri ptor SD. Tue j—tD member of
SD is denoted by SD ..

— Step 2: Let the attribute i~entifier of the i—th securi ty keyword
be called A . and the value of the i — t b  secur i ty  keyword
be V.. Set i*-l, p*-l .

Step 3: Compa~e A~ with the attributes of the members of the set
SD. Call the set of security cescriptor with matching
attributes SD ’. Let there bL n elements in Si)’ .

Step 4: j÷l; [In step 5 we examine tie j—th security descriptor in
SD’].

Step 5: If security descriptor type specifies that the descriptor
is a keyword (see Figure 12) then compare V . with value
of the descriptor. If security descriptor type s p e c i f i e s  that
descriptor is a range of values, then compare V1 with the
lower bound and upper bound of range. If the comparison is
successful , then go to step 7. If comparison is net successful ,
then go to step 6. If security descriptor type specif ies  tha t
all values of the attribute are to be treated as a securit --
keyword then go to step 8.

Step 6: j -~-j+ 1; If j <n , go to step 5; else , i’ i +l .  i f  i<k , go to
step 3: else, go to step 10.

Step 7: [Security Descriptor describing keyword is found].
ATOM[p]÷SD’[j].ID [In this step , we merel y record the
security descriptor identifier of the p—ti-i element of the

- 
‘ atom describing the record. (see Figure 34)]. Co to step 9.

Step 8: [Each value of the attribute is a secur i ty  descriptor].
Compare the values of other secur i ty  desc r iptor s with the
value V of security keyword from the record. If a match occurs .
then se~ j to the identifier of matching descriptor in SD ’ ;
go to step 7. If match does not occur , then

low order 8 bit of
the ID of t he last

ATOM [p]-~-SD ’ [j 1• ID + ~ descri ptor in SD ’ with - + 1
the same high order l( jbi ts as SD ’[j].Il) 

. 
-

- 

i
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Add to SD the security descriptor defined by ATOM[p].
(see notes below)

Step 9: p~-p+l; i÷i+l. If i < k, go to step 3; else , go to step 10
Step 10: [ATOM[i] through ATOM[p—l] contains the desr;ription of the

atom to which the record belongs. If p~l then it
signifies that no security descriptor describes the record ,
and therefore the record belongs to security Atom 0].
Terminate.

-
- 

Response — Security atom description in ATOM [l) to ATOM [p—1).

NOTES: Step 8 implements an important facility provided by the DBC. A
security descriptor , as explained earlier, may specify tha t all
keywords of a particular attribute must be considered as security
descriptors. This specification enables a creator of a file to
convey to the DBC that keywords of art attribute are security

4 sensitive without having to actually know the values of the
keywords.

ALGORITHM B — To determine the access privileges accorded to a security
atom by a set of type A file sanctions.

Input Arguments : 1. A set F of n file sanctions each of which is in
the format shown in Figure 9

2. A security atom descriptor as shown in Figure 34.
3. A set of security descriptor SD

Step 1: From the set SD of security descriptors , extract the set
SD ’ of security descriptors defined by the argument
security atom.

Step 2: Form an access descriptor A. Set A~c ’ [c ’ denotes a bit
pattern of all is]. Set AFLAG-~-0.

Step 3: Denote the i—th member of F by 5~~~~. Let there be
predicates in

Step 4: [Test if s . is applicable to argument atom] j~ l.
Step 5: Check if T~j~ is covered by any of the security descriptors

in SD’. (By~covered , we mean the following : If T.4 is an
equality predicate, then a security descriptor — wh~~h
specifies the keyword in T~ . 

— covers T. - If T ..  is a
‘ > ‘ predicate, then ~ security d~~criptor~~zhich
specifies either a range of values and whose lower bound
is greater than or equal to the keyword value of T

~
. or a

~~
‘ -

.~ particular value greater than or equal to the keywor~ value
of T~4 — covers T~4. If T~4 is a ‘ > ‘ predicate, then
a secuttity descriptoi’—which sp~cifies either a range of
values and whose lower bound is greater than the keyword
value of Ti1 or a particular value greater than the keyword
value of T ~ — covers T . Similarly, if T.,. is ‘ < ‘

ii ii 13 
—

predicates , then a covering security descriptor would be
either one which specifies a range of values with the upper
bound being less than or equal to the keyword value of T1.
or one that specifies a keyword with a value less than or
equal to the value of Ti.. If T~ . is a ‘ < ‘ predicate
then a covering descripto~ would be3def ined exactly as f or
‘ < ‘ precidate except the defining conditions would be
strictly “less than” instead of “less than or equal to”.
The ‘

~~ predicate is covered if there does not exist a

- ~~~~~~~~~~~~~ -~~~~~~~
. - — -5—-  — - _________________________________
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security descriptor which either specifies a range of values
including the keyword value of the predicate or which SPCCII ic-s
a keyword value equal to the keyword value specified in the
predicate].

Step 6: If T.~ is thus covered , then j-’-j+l. If j>K1, then go to
step ~

‘ . If j<K1, then go to step . If T.. ~ not
covered , then go to step 8.

Step 7: [file sanction S 1 is applicable to atom]. A~- A A A 1where
Ai is the access descriptor associated with s~ . AFLAG’-l.
i-~--i+l. If i<n, go to step 4; else , go to step 9.

Step 8: [file sanction S i ~ S not a~p1icable to atom].
i-~i+i. If i<n , go to step 

~
; else , go to step 9.

Step 9: If AFLAG=O , then k-5AAA
def~ 

where A
d f is the de fau l t

access privilege descriptor provided i~~~ the data base
Terminate.

Response: ‘A ’ holds the acc ess pr iv ilege  ~cc~’rded to the ar~.unent atoi~.

Notes: The crucial step in this algorithm is step 5.  Althoug h the de f i n~ t le n
of “covering” seems formidable , efficient comparison hardware can ~~C -

constructed to execute step 3.

ALGORIT}~1 C: To determine if access ‘a ’ for a query conjunct Q is
allowed by the atomic access privilege list.

Input Argunents: 1. A query conjunct Q in argument table
2. The access type requested ‘ -:i ’

3. “he atomic access privilege list L.
4. The pointer to entry in CST
5. The request iden t i f i ca t ion  R— ID

Step 1: Obtain control of the argument and response bus in
preparation for issuing a request to the SLIP.

Step 2: Issue the request. Retrieve —securit y—atom (s)—for—query--
conjunct to the SLIP with the arguments Q, priorit y P
(from command status table), request identifier R—ID ,
file ID (from command status table).

- - 
- Step 3: Uait for response set from SLIP. [At this point control

goes back to the scheduling algorithm].
Step 4: [Control comes here after interrupt from SLIP]. If response

set S is empty , then set REJECTFLAC to 1.
Step 5: If response set S is non empty ,then , for each member s

of S, do step 6.
Step 6: Run down the atomic access privilege list L and e.:tract

the access pattern from s. If s is not found in L ,
then invoke algorithm B with the following arguments:
descriptor of atom s from Fir , file sanctions of user for
the file and the security descriptors for the file from Sfl.
Add response of algorithm B to L. If ‘a ’ is not in the
access descriptor for s, then delete s from S.

Step 7: Terminate.

Response : Query a is permitted on atoms in s~ t S.

2.4.2 Command Execution

The set of CCRP algorithms is used to process commands fi~~ i tie 1iD ~.

L
- ~~~~~~~~~~~~~~ 
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An interrupt from the PES signifies that it has a command that needs to be

executed by the DBC. There is one algorithm in this set for each of the

command that is recognized by the DBC. Control is given to the

appropriate algorithm by the scheduling algorithm after the command

has been entered in the CST and the arguments stored in the CATM by a

first—level interrupt handling algorithm (see Section 2.4.3).

ALGORITHM D: To process the command , open-.the -database-file--for-creation .

Input Arguments: 1. The CST entry in which the command is stored .
2. Three arguments shown in Figure 14.

Step 1: Extract user ID from CST entry and check against creation
capability list. If user does not have the right to create
a file, send reject signal to PES and go to step 5.

Step 2: Find the number of attribute identifiers requested
(argument 1 in Figure 14). Determine from the attribute
bit. map if there are enough attributes identifiers to meet
the request. If there are, then send identifier values back
to PES along with the command ID. If not , give a reject
signal to PES, and go to step 5.

Step 3: Create a file information table in the FITM. Also create a
user information table in the FITM , [Since the FIT and lilT
are variable length tables, this step allocates one block;
later more blocks may be acquired]. Store the attribute
identifier values allocated to the file in the FIT.

Step 4: Determine if the number of MAUs requested for initial
allocation to the file is available. (Use MAU allocation
bit map). If there are enough MAIJs, then record the addresses
of the allocated MAUs in FIT, set status bits in FIT to
indicate that the file is now open for creation. Store the
number of MAUs allocated and the additional number of MAils
that can be allocated , in the FIT. If the number of MAUs
requested to be allocated initially is not available, send

- - 
- reject signal to PES and go to step 5. Else terminate.

Step 5: Release space occupied by arguments in CATM, remove
- command from CSTM and terminate.

ALGORITHM E: To process the command , Load-attribute - information .

Input Arguments: 1. CST entry
2. The pointers to arguments in CATM.

Step 1: Check (from FIT) if the file is open for creation. If file
is not open for creation, send reject signal to PES and go

- - to step 7.
Step 2: Obtain control of the argument and response bus in preparation

for issuing a request to the SLIP.
- i ; Step 3: Issue the request, load--hash—algorithms—for—a—file to the

SLIP with the following arguments: file—ID , request ID,
pointer to hash algorithm in the argument table memory, and
priority of request from command status table.

Step 4: For each attribute in the arguments , issue the request , load—
attribute—information—for—an—attribute to the SLIP with the

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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following arguments: file ID, request ID, pointer to the
attribute information , the attribute identifier and the
priority of request.

Step 5: Wait for response from SLIP [At this point control is given
to the scheduling algorithm . The wait status bit is turned
on to indicate that the command processing is halted until
the SLIP responds; the return address points  to step 6 3 .

Step 6: If the KXU has rejected any of the above requests because ol
lack of space, then send reject signal to PES, release
argument table space , FIT , UIT, and MAU5 allocated in
algorithm D. If the KXU has accepted the requests th,en sen~l
an accept signal to the PES and release argument tah~e ‘-ac e
only. !

Step 7: Remove command from command status table. Termin~ tc.

/

ALGORITHM F: To process the command , 1oad-security—descri pto~ -

Input Arguments: 1. CST entry
2. The pointer to CATN \~~cre the sec~tity descri~ tor

are stored .

Step 1: Check (from FIT) if f i l e  is ur ~en fo;~
4’
~eatior.. If file is

not open for creation , send rejec;- signai to PFS and
go to step 4. 

,.
i’

Step 2: For each of the security dc~’ci-iptors in the argument table
do step 3.

Step 3: Find space for the 4e~~riptors in the SITM. If space i s
not available g~~-t

’
~ step 5. Move descriptor intc space

allocated . 1~p~ate access vector b y l inking  the descri p to r
in the ~j~~~

’of discriptor s wi th  the same hi gh order  S
bit~ .~~ identifier value (see Figure 38).

Step 4: ‘ove conunand from CSTM. Release argument space in CAT~-1.
Terminate.

~~~~~~~~ 5: Send reject signal to the PES , release FIT, U li i’L\Us illocated
to file , and SITM space if any. Co to step ~~.

ALGORITHM C: To process the command load—record .

~~ Input Arguments: 1. CST entry
- — 2. The pointer to CATM block where record is stored

Step 1: Check (from FIT) if file is open for creation. If file
~ - is not open for creation , then send reject signal to PES and

go to step 8.
Step 2: Invoke algorithm A to determine the security atcm to which

the record belongs.
Step 3: Using the response from algorithm A , check against the

security atom descriptors in the FIT of the file. If the
response matches one of the descri ptors in FIT , then retrieve
the corresponding security atom number (see Figures 33 and

- - 34). Call it AN and go to step 6.
Step 4: if the response of algorithm A does not iftatch any of th e

descriptors in the FIT , then obtain control of the argument
-
‘ and response bus , and issue the request , “allocate security

atom name for a file ”, with t ile name as the argument.
Wait for SLIP response.

Step 5: - If the SLIP response indicates that there arc no more atom

-- -~~~~~~~
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names available, go to step 7, else, call the new atom name
AN.

Step 6: Store AN in the CATM space (along with the record), set bit
in CST entry to indicate that processing is completed and
terminate. -

-
Step 7: Send reject signal to PES. 

-

Step 8: Release space in the CATM allocated for the record and other
arguments of the command. Remove command from CSTM. Terminate.

ALGORITHM H: To process the command, Close-database—file.

Input Arguments: 1. CST entry .

Step 1: Check to see that the file is open . If it is already inactive ,
then send reject signal to PES and go to step 3.

S t e p  2 :  I f f ile was open for access , then release space in S 1TM used
for storing file sanctions . Also release space in UIT used
for storing the file name and pointers . If this was the last
file opened by the user , then release space occupied by the
entire UIT.

Step 3: Remove command from CST and terminate .

ALGORITHM I: To process the command , open—database—file—for—access .

Input Arguments: 1. CST entry .
2. The pointer to file sanctions in CATM . —

Step 1: Check if the file is already open for creation. If so, then
send rejection signal to PES and go to step 7

Step 2: If type B protection is specified , then move file sanctions
to SITM , and send file name and SITM address to SFP and then
go to step 5.

Step 3: If type A protection is specified , then move file sanctions
to the SITM .

Step 4: For each of the security atom descriptor found in the FIT of
the file, invoke algorithm B to determine the access privileges
accorded to the security atom. Form the atomic access privilege
list , and store in the S1TM.

Step 5: Enter file name, pointer to file sanctions and pointer to atomic
access privilege list in the UIT.

Step 6: Turn on bit in FIT to indicate file is open for access.
Step 7: Remove command from CST, release space in CATM and terminate .

ALGORITHM J: To process the command , retrieve—by-query .

- - Input Arguments: 1. CST entry
- - -

, 2. The pointer to file sanctions in CATM
Step 1: Check if the file is open for access and also if the UIT

contains the file name (see step 5 of algorithm I). If not ,
- send reject signal to PES , remove the command from CST and

terminate . 
- -

Step 2: Extract the default access descriptor for the user. Check •

if the user has a “retrieve—any” privilege (see Figure 11). -
~~~~-

- If so, then go to step 5.
Step 3: If type B protection is specified , then go to step 6.
Step 4: If the type A protection is specified , then invoke algorithm — 

-

- -

C with the necessary arguments (i.e., access type = ‘retrievc---
by—query ’, conjunct=rt1

) for each of the conjuncts in 
~~

- : -
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Step 5: Store the response set S in the CATM and place a pointer

in the CST.
Step 6: Turn on appropriate bit in the CST entry to indicate that

processing of the conunand by CCRP is complete . Terminate. —

ALGORITHM K: To process the command, retrieve—by—pointer .

Input Arguments : 1. CST entry
2. Pointer to CAT~-1 block where the record pointer

is stored
Step 1: Check if the file is open i c r  access and also if  the 1’TT

contains the file name (3ee steo 5 of a l g o r i t h m  r ) .  If not
go to step ~~.

Step 2: Extract the defau l t access descr iptor for the user. Check
if the user has a “retrieve—any ” pr ivilege (see Figure 11).
If so go to step 5.

Step 3: If type B protection is specified for the user , then go
to step 5.

Step 4: If type A protection is specified , then look up atomic access
privi lege set for the user in the SIT~f . If the retrieve—b y—
pointer  access is not allowed on the secur i ty  atom spec i f i ed
in the pointer, then go to s tep  5.

Step 5: Turn on appropriate bit in the CST entry (see Figure 40) to
indicate that processing of the command by CCRP is complete.
Terminate.

Step 6: Send reject signal to PES, release CAT~ space and rer’ove
command from the CST. Terminate .

ALGORITHM L: To process the command , re t r i eve—hv—auerv - -w i th—noin t e r s .

Input Arguments: 1. CST entry
2. The pointer to ~ATM where the query is stored

Step 1: Do steps 1—6 of algorithm J except in step 4, use access tYpe
retrieve—by—query-with—po inter , and in step 2, check for
“delete—any ” privilege .

ALGORITHM M: iu  process the r e t r i e v e — w i t h i n — b o u n d s  co~ ih r n d .

Input Arguments: 1. Command status table entry
2. Pointer to argument table.

Step 1: Check if the file is open for access and if the lilT contains
the file name. (Step 5 of algorithm I.) If not , then-send
reject signal to PES, remove command from CST and terminate.

Step 2: Check the default access associated with the database
capability for the right to retrieve within bounds. If the
right is not granted then go to step 4.

Step 3: Turn on the appropriate bit in the CST entry to indicate
that processing of the command by CCRP is complete,
terminate.

Step 4: Send reject signal to PES, release CATM space and remove
command f rom CSTM . ~I ,-rr iina t c .
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- ALGORITHM N: To process the delete—by—query command .

Input Arguments: 1. CST entry
2. A pointer to the CATM where the query is stored .

— Step 1: Execute steps 1 through 5 of algorithm J except in step 4,
use access type = delete—by—query .

ALGORiTHM 0: To process the delete—by—pointer command .

Input Arguments: 1. CST entry
2. A pointer to CATM where the record pointer is stored.

Step 1: Execute steps 1 through 5 of algorithm K except in step 4 use
access type = delete—by— pointer, and in step 2 check if user
has “delete—any ” privilege .

ALGORITHM P: To process the delete—file counnand .

Input Arguments: 1. CST entry
2. Default access descriptor .

Step 1: Check the CIT to see if the file is open for access (by
some other user). If it is open then go to step 6.

Step 2: Check the argument default access descriptor to see if the
user has the right to delete the entire file. If he does
not have the right , go to step 6.

Step 3: For each attribute identifier in the FIT, issue the request
delete—attribute—information to the SLIP.

Step 4: Release all MAUs allocated to the file, all attribute identifiers
allocated to the file, all security descriptors in the SITM.
Release space occupied by the FITM.

Step 5: Remove command from CSTM and terminate.
Step 6: Send reject signal to PES and go to step 5.

ALGORITHM Q: To process the insert—record command.

Input Arguments: 1. CST entry
2. A pointer to CATM where the record to be inserted

- 

- 

. is stored .

Step 1: Check if file is open for access and if the user information
table contains the file name. If not , then send reject signal

-‘ to PES, remove command from the CST and terminate.
Step 2: If type B protection is specified for the user go to step 13.
Step 3: Invoke algorithm A to determine the security atom descriptor

for the record.
Step 4: Check the response from algorithm A against the security atom de-

scriptors in the FIT then retrieve the corresponding atom number .
Call it AN. If the response does not match , then go to step
9.

Step 5: Look up the atomic access privilege list to determine if the access
“insert” is permitted on atom name AN. If it is not go to
step 7.

Step 6: Store AN in the CATM (along with the record), set bit in CSTM
entry to indicate that processing is completed . Terminate.

Step 7: Send reject signal to PES.
Step 8: Release space in CATM for the record and other arguments of

the command . Remove command from CST. Terminate.

_ _ _ _ __ _ _ _ __ _ _ _ _  ~~~~~~~~~~~~~ 
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Step 9: (Naw security atom]. Invoke algori thm B to determine the
access privilege accorded to the security atom by the file
sanctions. Call the access privilege granted to the new atom ,
A.

Step 10: [Allocate a new security atom name]. Obtain control of the
argument and response bus, and issue the request. ‘ Allocate
security atom name for a file wi th  a f i le n~ini as ar~w~ient to
the SLIP. Wait for response from SLIP.

Step 11: If the ‘SLIP response indicates  that  tnere  are n~ pore atom
names available, go to step 7 , else call it AY .

Step 12: Insert the pair (AN, A) into the access privilege list.
Insert security atom descriptor into the FIT. Go to step

r - Step 13: Send record for security check to the SFP. Wait for response
from SFP.

Step 14: If SFP permits access “insert”, then sp4~ bit in CST entry
to indicate that the processing is co~(p1eted . ~u rm in dt e .

ALGORITHM R; To process the replace—record command .

Input Arguments: 1. CST entry
2. Two pointers  one to ti~c-- CATh block where the new

recor ’j is stored and one to the CAIN bi ck ~d !er (- a
pointer to the old record is stored .

Step 1: Check if file is open for access and if ~IT contains the file
name. If not , go to step 10.

Step 2: Look up default access descriptor (in the lIT). If user
does not have “replace” access privilege , then ~o to step 10.

Step 3: If the type B protection is specified go to step 11.
Step 4: Extract the security atom name from the old record pointer

associated with the command . Call it AN.
Step 5: Look up the atomic privilege list for AN. If the access

“delete—by—pointer” is not permitted , then go to step 10.
Step 6: [Check if record may be inserted]. Execute steps 3, 4, 5, 6,

9, 10, 11 and 12 of algorithm Q to determine if Insertion is
permitted .

Step 7: If algorithm Q permits ‘ insert”, then set the bit in CST
entry to indicate that processing is completed. Tern~nate.

Step 8: If algorithm Q does not permit “insert”, then send reject
signal to PES.

Step 9: Release space in CATM for the record and pointer argument of
the command . Remove command C rcr- CST. 7erminatc.

Step 10: Send reject signal to PES and go to step ~- .

Step 11: Send record to SF? for security check. Wait for response
from SFP.

Step 12: If SFP permits “insert”, then set the bit in CST entr-; t~
indicate processing by CCRP is comp lete. Terminate.

Notes: In order for a user to issue a “replace ’ command , ho nust have the
privilege to “replace” a record on a file basis (see Figure 11).
This is -Iiccked in ~tcp 2 :11 ovt-. ~~~~~~ t h e  fi l~- ~; r t  i - n- mu~~
grant i m the - jr lv ii o;-e to ( f e - i  v to he re c~ rd t he r e~ I ;iced . I

- -  - ,
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the user uses a pointer to indicate the record to be deleted , he
must have the delete—by—pointer privilege on that record. For a
user having type A protection, the delete—by—pointer access
privilege must be granted on the security atom defined by the
pointer. This is done insteps 4 and 5 above, Third , the file
sanction must grant the user the privilege to insert the new record
into the file. For a user having type A protection, the “insert—
record” access privilege must be granted on the security atom defined
by the record. This is done in a manner similar to the steps in
algorithm Q.

ALGORITHM S: To process the conunand , retrieve—MAU—addresses.

Input Arguments: 1.CST entry

Step 1: Extract default access descriptor for the user on the file
from the S1TM . Check if the retrieve—MAli—addresses privilege
is granted by the descriptor. If not , then send reject signal
to PES, remove command from CST and terminate.

Step 2: Retrieve from FITH, the addresses of those MAUs that have been
allocated to the file. Send the addresses to the PES. Remove
command from CST and terminate .

ALGORITHM T: To process the command , load—creation—capability--list.

Input Arguments: 1. CST entry
2. A pointer to the CATH where user IDs are stored .

Step 1: Check to see if system ID matches with system ID stored in the
SITM. If it does not, go to step 3.

Step 2: Store the user identifiers in the creation capability list in -~~

the FITM. Remove command from CST and terminate.
Step 3: Send reject signal to PES. Remove command from CST and

terminate.

Note: This command is used to provide the DBC with a list of users who are
— - 

authorized to create files in the DBC

-H

J
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2.4.3 Scheduling and interrupt handling

As the name suggests, this set of algorithms provides the CCRP the

ability to control the sequence of events taking place in the DBCCP.

Included in this set are che scheduler which constantly monitors t:e CS’F to

determine the next command for execution, and interrupt handlers to h.~nd io

interrupts from three sources — the SLIP , the SF1’ and PES. An interrupt

from the PES has the hi ghest priority ; if the CCRP is executing a cor.~~and

processing algorithm or the scheduling algorithm , an interrup t from thL

PES will result in control being transferred to the PES interrupt handler

(algorithm V below). However if the CCRP i~ executinc an interrupt handiin~.

algorithm, no other interrupt will be honored until the interrupt handlinF

- - algorithm has executed completely. An interrupt from SLIP will not be

honored if the CCRP is executing a command p rocessing or secur i ty  re1ate~
a1gorithn~. The interrupt from SLIP must wait until the comi~and proccssit~
algorithm has finished . There are two types of interrupts t~~:1t can he raised

by the SFP. Correspondingly.there are two interrupt handl in~: at~ ’ri t ~~:.-; in -

the CCRP. The data interrupt  from SFP is raised when the SF1 h:~s r c

data to be sent to the PES. This interrupt has the same kinci 01 ;-r i o r it v

enjoyed by the PES . The security interrupt from SFP is primarily intended

to communicate security clearance/denial for certain types of commands from

users having type li protection . This interrupt has the same priority as

the SLIP interrupt.

In summary, the interrupt from PES and the data interrupt from SF1 ha~’e

the highest priority. The interrupt from SLIP and security interrupt have
— 

lower priorities. The priority of CCRP a lgor i thms  varies with respect to

the CLIP, SFP , and the PES, depending on the type of algorithms being

executed .

,i -
~~~

-

~ 
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ALGORITHM U: To schedule the next event in the CCRP.

Input Arguments: 1. CST

Step 1: Check if an interrupt trots SLIP is pending. If so give :1
control to algorithm W.

Step 2: Check if a security interrupt from SFP is pending. If so
give control to algorithm X.

Step 3: From the CST, pick up the first unexecuted command with the
highest priority.

Step 4: Check if all arguments of the command has been received . If
not skip the entry and choose the next one at the same priority
level. If none exists, go to step 3 to obtain another command
at the next level.

Step 5: Determine from cominand code, the processing algorithm to be
executed. Turn appropriate bit on to indicate that CCRP
processing of comm and has been initiated. Give control to the
algorithm determined above.

ALGORITHM V: To process the interrupt from PES.

Input Arguments: None

Step 1: Obtain fixed part of the command (i.e., the command code,
priority, user ID , file ID and number of arguments to
follow) from PES.

Step 2: Allocate entry space in CST f or the command and argument
pointers. (See Figure 39).

Step 3: Enter the command information in the entry allocated in
step 2. Link up command entry in the appropriate priority
list.

Step 4: Determine if command is an access type command or a non—
access type command. Turn on the appropriate bit if it is an
access type command .

Step 5: If arguments of the command are available then for each
argument, allocate storage in the CATM, and store the arguments.
Place a pointer in the CST.

Step 6: Terminate.

Note: Arguments of a command may be given after a pause following
the fixed part of the conunand . This implies that the above

— interrupt algorithm may be entered at step 5 instead of
step 1.

ALGORITHM W: To process an interrupt from SLIP.

Input Argument: None

Step 1: Receive response data from SLIP over the argument and
response bus.

Step 2: Identify by means of the request—ID and the CST entry,
the restart address of the processing algorithm waiting
for this response.

Step 3: Give control to the algorithm identified in step 2.

ALGORITHM X: To process the security interrupt from SFP.

Input Argument : None
I.

Step 1: Receive security information from SFP over the communication
bus.

— _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Step 2: Identify by means of the request—ID and the command status
table, the restart address of the processing algorithm
waiting for this response.

Step 3: Give control to the algorithm identified in step 2.

ALGORITHM Y: To process the data interrupt from SFP.

Input Argument: None

Step 1: Receive data from SFP. Store data in database response
memory. If buffer is full or data is exhausted , go to
step 2.

Step 2: Transmit data in database response meiz~ory to PES. If
more data is pending, go to step 1. Remove command er.t’~y from CST.

2,5 The Command Translation Processor (CTP)

The CTP is responsible for converting each of the access commands sent

by the PES into a set of MAU orders. When a database file is being created

or when a new record is to be inserted , the CTP has the additional

responsibility of selecting the MAU in which the  record will u l t ima te ly

reside. In carrying out these functions, the CTP makes use of the data

structures described earlier in Section 2.3. These data structures , which

reside in the table memories accessed via the command argument—and—structure-

loop—response bus, and the conuaunication bus, are shared among the three processors

of the DBCCP. In this section we describe the algorithms executed by the CT!’.

¶ These algorithms may be divided, logically , into service algorithms,

— 
conversion algorithms and interrupt handling algorithms. Service algorithms

provide the scheduling function , and the MAli selection function. Conversion

algorithms translate access command into one or more ~-U’1 orders. The CTP

is capable of being interrupted by the SLIP and by the MM. Interrupt

handling algorithms are designed to take care of these interrupts.

2.5.1 MAU Selection and Command Scheduling

ALGORITHM A: To select an MAU into which a record may be inserted .

Input Arguments: 1. Record to be inserted (in Argument table)
2. Mandatory clustering condition (MCC)
3. Set of optional clustering conditions (OCCs) and

weights.

Step 1: [To obtain the MAUs whose records satisfy the MCCI. Let
the number of conjuncts in the MCC be n , denote the i—tb
conjunct of MCC by Q1. Set u-i ; Set S~~ç~- .

Step 2: Obtain control of the argument and response bus in
preparation for issuing a request to the structure ioop
interface processor.

Step 3: Issue the request , “Retrieve the MAP addresses for the
query Q~” to the SLIP with arguments request—identification ,

4 file identification. 

~~~~~~~~~~~ ••
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‘ I
Step 4: Wait for response set from SLIP. [At this point control goes

back to the scheduling algorithms. When an interrupt occurs,
control is returned to step 5].

Step 5: Call the response set S’ . S~-SUS’. i+i+1. If i~n , then
go to step 2.

Step 6: If S is empty, then go to step 18.
Step 7: Define w {(f,W) ( fcS and W is a constant equal to 0)
Step 8: [To select one MALI out of the set S]. Let there be m

optional clustering conditions. The j—th 0CC has K
conjuncts. The p—th conjunct of the i—tb 0CC will
be denoted by Q~ . The cluster weight of the j—th 0CC is
denoted by C4. -‘ Set j-~-l, pi-l, T.1-+.

Step 9: Obtain contro~. of the argument and re~ponse bus in
preparation for issuing a request to the SLIP.

Step 10: Issue the request, “Retrieve th~ MALI addresses for the
query Q~” to the SLIP with the arguments: request ID,
and file identification.

Step 11: Wait for response set from SLIP. [At this point control
goes back to the scheduling algorithm. When an interrupt
occurs, control is returned to step 12].

Step 12: Call the response set T~. T.’-T.UT~’. p+-p+l. If p~K.
then go to step 9. ~ -~ ~

Step 13: For each MALI address f in T. do step 14.
Step 14: If fe S , then rep lace (f ,W) in3 w by (f ,W+C.).
Step 15: j+j+l. If j~.m , then set p-’-l, T.+~ and go3 to step 9.
Step 16: From the set u, select the couple~s) {(f i,Wi)} such

that W~~W~ for all £~N where N is the cardinality of
0.

Step 17: Extract the MALI addresses from the coupl~~ selected in
step 16. Call the set of such MAU addresses e. Terminate.

Step 18: [No MALI has at least one record to satisfy the MCCI. Set
e÷4. Terminate.

Response: 0 contains the set of MAUs found eligible to contain the
record. }

ALGORITHM B: To initiate the translation of an access command.

Input Arguments: 1. CST

Step 1: Check if an interrupt from SLIP is pending. If so give
control to algorithm H.

Step 2: Check if an interrupt from MM is pending. If so give
control to algorithm I.

Step 3: Extract the status information of the first command in
the highest nonempty priority list.

Step 4: Check if the command is an access command or a non access
command .

Step 5: If the command is an access command go to step 7, else go
to step 6.

Step 6: Extract the status of the next command at the same priority.
If no command at the same priority exists go to step 9,
else go to step 4.

Step 7: If the command is being processed by CCRP and processing is - ;
not complete then go to step 6.

Step 8: [Access command that can be translated is found]. Determine
H 

- 
from the command code the access algorithm to be executed . 

LI
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~
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- - Turn on appropriate bit in the status information table entry
to indicate that the CT? processing of the command has been
initiated. Give control to the algorithm determined above.
[All processing algorithms return control to step 1 above].

Step 9: Extract the first command in the next highest non—empty
priority list and go to step 4. If no such list is available
go to step 1.

Response: None

2.5.2 Command Translation

There are five algorithms under this category which handle the eight

access command s listed in Table I in Section 2.3. Two

counters known as the database object counter and the order number counter

are maintained by the CTP. The first is used to uniquely identify an

argument of an MI’1 order. The second counter is used to identif y the order

itself.

ALGORITHM C: To process a load—record or insert—record access command

Input Arguments: 1. CST entry

Step 1: From the CST entry , extract the pointer to the mandatory
clustering condition (in the CATM) and the pointers to the
optional clustering conditions .

Step 2: Invoke algorithm A with the pointer retrieved in step 1
and the file name as the arguments.

Step 3: [The set 0 contains the response of algorithm A] If
the set e is emp ty , then go to step 17.

Step 4: For each member f of B do step 5.
Step 5: Look up NAU space allocation table for f. Extract amount

of space available in the f—th MAC. Call it bf.
Step 6: Define the set ~~

‘ 
~(f ,bf) f € B and b

f 
record

size). If B’ is empty go to step 17.
Step ~: From the set B’ choose the MAU f such that the

corresponding value of bf is smallest. If more than one
such MALI should be found, make an aribitrary choice (say
the first one) among the NAt’s. Call this choice f~ .

Step 8: [Determine cluster number for recrod]. For the set~ of cluster
keywords occurring in the record , issue the request “Retrieve
cluster identifier with count”, to the SLIP with the following
arguments: a) file name , b) request identifier (obtained
from the command status table) and c) pointer to CATh
block where the cluster keywords are stored .

- - Step 9: Wait for SLIP response. [At this point control goes back
to the scheduling algorithm . When the SLIP response is
available, control is given to step 1.0 via the interrupt
handler].

Step 10: If tile response is empty, therm go to step 1].. else ~o to
step 14.

L - Step 11: Issue the request , “Allocate cluster identifier for a file ’
to SLIP with the following arguments: a) file name , b)
request identifier (obtained from the CST entry).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - — _ _ _ _ _ _ _  T~~~ii - - -
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Step 12: Wait for SLIP response. [At this time control is given back
to the scheduling algorithm. When the SLIP response is
available, control comes back to step 13].

Step 13: If the response is empty go to step 22.
Step 14: Call the cluster identifier in the SLIP response set c.
Step 15: Obtain the database object counter value K. Obtain the

order number counter value. Concatenate it with the
command identifier in the command status table. Call the
concatenation N. Increment both counters. Issue the MM
order , “Insert Recor d” with the following arguments: a)
database object number K, b) order number N, c) the
MALI address and d) the database object consisting of
the record and the triple <MALI address f

5, clusteridentifier c, security atom name sa> . [The MAU
address is determined in step 7 or 21 and the cluster
identifier is determined in step 14. The security atom
identifier (if Type A protection is specified) is stored
in the argument table by CCRP.

Step 16: Update the MAU space allocation table entry for f5 
by

the number of bytes occupied by the record . Go to step 24.
Step 17: Extract the set of addresses of MAUs allocated to the file

fro FIT. Call this set B.
Step 18: From the MAU allocation table, obtain the space available

for each of the MAli address in B. Call the space
available in the MALI ‘f ’  b

Step 19: Form the set e’ {(f,b~ ) ¶ f c 0, bç ~ record size). If
0’ is empty go to step 20, else go to step 7.

Step 20: [Allocate new MALI]. Search the MALI bit map for a free MAU.
If no MAU is found go to step 22.

Step 21: Call the MALI allocated in step 20 f5. Go to step 8.
Step 22: Reject the command by sending a reject signal to PES.
Step 23: Release space occupied by the record and clustering

conditions in the CATM and remove command from CST.
Terminate.

Step 24: [Update SM]. For each nonclustering keyword in the record ,
issue the request , “Insert index term” to SLIP with the
following arguments: a) index term (f ,c,sa), b) transformed
keyword value T(K) available in the record .

Step 25: For each clustering keyword in the record , issue the request ,
“Insert index term” to SLIP with the following argument:
a) index term ((f ,c,sa), q) where q is the number of
clustering keywor~s in the record, b) trans~jrmed keyword
value T(K) available in the record.

Step 26: Set appropriate bit in CST entry to indicate processing
of coniniand by CTP is completed . Release space occupied
by record in CATM. Terminate.

ALGORITHM D: To process a retrieve—by—query—with—pointer retrieve—by—
query or delete—by—query access command.

Input Arguments: 1. Pointer to entry in command status table. . 

-

Step 1: From the entry in the CST, extract the pointer to the CATM :~
-
~where the query is stored.

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Step 2: Let there be m query conjuncts. For each of the query
conjunct Q. do steps 3 through 8.

Step 3: Issue the r~quest, “retrieve MALI addresses” to the SLIP
with the following arguments: a) file name, b) request
identification (from command identifier in status table),
c) pointer to CAT~-1 where query is stored .

Step 4: Wait for SLIP response. [At this point control goes back
to the scheduling algorithm . When the SLIP response is
a ailable, control is given hack to step 5 via the
int3rrupt handler.]

Step 5: Obtain the database object c~iunter value K.
Step 6: For each of the MALI addresses in the SLIP response, do

step 7.
Step 7: Concatenate the command identifier (from the command status

table) with an order number read off the order number
counter. Call it N. Increment the order number counter.
Issue the ~~~ order , “Retrieve/Delete—by—query or retrieve—
by—query—with—pointer ” with the following arguments:
a) database object number K, b) order number N, c) the
MALI address f and d) the database object (Q., set of
security atoms names if specified by CCRP). ~

Step 8: Increment database object counter.
Step 9: Release space occupied by the query, and set the appropriate

bit in the CST entry to indicate that processing by CTP
is completed . Terminate.

ALGORITHM E: To process a retrieve—by—pointer or delete—by—pointer access
command.

Input Arguments: 1. CST entry

Step 1: From the entry in the CST entract the pointer to the CATM
where the record pointer is stored.

Step 2: From the pointer extract the MAC address f. Obtain the
database object counter value K. Concatenate the command
identifier with the order number read off the order number
counter, call it N. Increment both counters. Issue the
MM order, “Retrieve/delete by pointer” with the following

.‘ arguments: a) MAU address f , b) database object number
K , c) order number N, d) pointer consisting of the
triple <record identifier , cluster identifier , security

- 
H atom number> .

- -
~ Step 3: Release space occupied by the pointer in the CAT~ , and set

the appropriate bit to indicate that CTP is completed.
Terminate.

ALGORITHM F: To process a replace—record access command .

Input Arguments: 1. CST entry.

Step 1: From the entry in the command status table, extract the -

pointer to the argument table where the record to be
inserted and the pointer to the old record are stored .

Step 2: [Insertion of new record]. For the set of cluster keywords
occuring in the new record , issue the request , “Retrieve
cluster identifier with count ’, to the SLIP with the
following arguments: a) file name, b) request identifier
(from command status table) and c) pointer to argument
table where the cluster keywords are stored .

~

- -- - -- - . - - -~~ - - - - -

- 
-- -

.
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Step 3: Wait for SLIP response. [At this time point , control goes
back to the scheduling algorithm. When SLIP response is
available , control is given to step 4 via the interrupt
handler].

Step 4: If the response is empty then go to step 5, else go to step
8.

Step 5: Issue the request, “Allocate cluster identifier for a file”
to SLIP with the following arguments: a) filename, b)
request identifier (from command status table).

Step 6: Wait for SLIP response. [At this time control is given back
to the scheduling algorithm . When the SLIP response is
ava ilable , control comes back to step 7].

Step 7: If the response is empty go to step 16.
Step 8: Call the cluster identifier in the SLIP response set c.
Step 9: Obtain the database object counter value K. Obtain the

order number counter value. Concatenate it with the
command status table. Call the concatenation N. Increment
both counters. Issue the MN order, “Insert Record” with the
following arguments: a) database object number K, b) order
number N, c) the MAU address f extracted in step 7, d)
the database object consisting of the record and the triple
<MAU address f, cluster c, security atom AN> . The
cluster c is determined in step 8. The atom number AN
is determined by CCRP. (See algorithm Q under CCRP).

Step 10: Update the MAU space allocation table entry for f by the
number of bytes occupied by the record .

Step 11: [Update SM]. For each nonclustering keyword in the record ,
issue the request, ‘lnsert index term” to the SLIP with the
following arguments: a) index term (f,c,AN),  b) transformed
keyword T(K) available in record .

Step 12: For each clustering keyword in the record , issue the request ,
“Insert index term” to SLIP with the following arguments:
a) index term ((f,c,AN),q) where q is the number of

- - clustering keywords in the record , b) transformed clustering
keyword value T(K) available in the record.

Step 13: [Delete old record]. Extract pointer to the old record from
the argument table.

Step 14: From the pointer extract the MAU address f. Obtain the data—
- - base object counter value K. Concatenate the command

identifier with the order number counter value. Call it N.
Increment both counters. Issue the MM order, “Delete—by—
pointer” with the following arguments: a) MALI address f ,
b) database object number K, c) order number N, d) pointer
consisting of the triple <record identifier , cluster
identifier, security atom number> .

Step 15: Release space in CATM occupied by the new record and
pointer to old record . Set appropriate bit in CST entry
to indicate that processing by CTP is complete. Terminate. - 

-

Step 16: Send reject signal to PES. Release space in CATM occupied
by new record and pointer to old record and delete the -

~~ -

command from CST. Terminate. - 
- -

Notes: The replace command is translated into 2 MM orders by the above - - -
~~~~~

algorithm. First, the new record is inserted , and then the old
- - record is deleted . Steps 2 through 12 are responsible for the

insertion process, while steps 13 and 14 generate the delete
order. The insertion process is similar to the processing

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — — -------- ~
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for an “Insert Record” command except that no clustering is
attempted here. The rationale for this is that the user
usually wants the new record to be located in the same fl.AU
as the old one. The deletion process is the same as the
processing for a delete—by—pointer command .

ALGORITHM G: To process a retrieve-.within- bounds access command .

Input Arguments: 1. CST entry

Step 1: From the entry in the cotnmar.d ~t~tus table, extract the
pointer to the argument table.  

/

Step 2: Extract from the argument table/the lower bound and upper
bound of the set of records to be retrieved . [The bounds
are actually pointers in the format shown in Figure 131.

Step 3: Check if the MAU addresses specified in the two bounds are
the same. If they are not , go to step 7.

Step 4: Extract record identifiers from the two bounds. Call them
Rl (lower bound) and R2 (upper bound).

Step 5: Obtain the database object counter value K. Obtain the
order number counter values. Concatenate it with the
command identif 1n the command status table. Call the
concatenat N. Increment both counters. Issue the ~ -l
order “ etrieve within bounds”, with the following
a ents: a) database object number K, b) order number

c) the MALI address extracted in step 3 and d) Rl and R2.
St : Release space occupied by the pointers in the CATM . Set

appropriate bit in CST entry to indicate that processing
by CTP is completed . Terminate.

Step 7: Send reject signal to PES . Release space occup ied by the
pointers in the CATN . Remove command from CST. Terminate.

2.5.3 Interrupt Handling in the CTP.

- - The algorithms in this section are executed when inte rrupts from the

SLIP or the MM are to be serviced . The CTP can be interri- ted by two sources —

- 
- the SLIP and the MM. The SLIP interrupts the CTP when it has received

structural information from the structure loop . This information must

have been previously requested by a processing algorithm (see Section 2.5.2

above). The MM requests an interrupt a) to indicate non..acceptance of an

order due to a security violation (type B protection), b) to transmit

MALI space information and c) to transmit update information to be sent tc

the SM during a compaction operation (see discussion under section 3.6).

An interrupt from either the SLIP or the MM is accepted ., he CTP only

when the CTP is executing step 1 or step 2 of the scheduling al gorithm

(see algorithm B above). When the CTP is executing a processing algoritie~
- 

:- or servicing an interrupt or when the CTP is scheduling the execution of a

new command from the status ta ’lc , all interrupts are masked off. 

- - - - - _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _
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ALGORITHM H: To process an interrupt from the SLIP.

Input Argument : None -

Step 1: Receive response data from SLIP over argument and response
bus.

Step 2: Identify by means of the request identifier and the command
status table, the restart address of the processing
algorithm waiting for this response.

-

- 
Step 3: Give control to the algorithm address identified in step 2.

ALGORITHM I: To process an interrupt from the MM. — -

Input Arguments: 1. Cause of interrupt.
2. Order number.

Step 1: If cause of interrupt is security violation, go to step 4.
Step 2: If cause of interrupt is to update MALI space allocation . -

table, go to step 7.
Step 3: If cause of interrupt is update information, go to step 5.
Step 4: [Security violation]. From order number, extract command

identifier. With the help of the command ID, locate the
entry in CST for the command . Increment the count of
security violation in the entry . Terminate.

Step 5: [Update SM]. For each 4-tuple of the form <Transformed
keyword, MALI address, cluster number, security atom name> ,
issue the SLIP request, “Delete an index term” with the
above 4—triple as the argument.

Step 6: Receive (from MM) amount of space available in the MAU .
Update the MALI space allocation table accordingly. Terminate.

Step 7: [Update MAli space allocation table]. Receive data pertaining
to maximum space available on a track of an MALI. Store this
information in the appropriate field of the entry in the MAU
space table [see Figure 36]. Terminate.

2.6 The Structure Loop Interface Processor (SLIP)

: Unlike the CCRP and the CTP which manipulate data structures described

in Section 2.3, the SLIP maintains local data structures in order to carry

out its functions. In the following discussion, we first examine the data

structures in the SLIP, and then present the algorithms executed by the

SLIP. Finally we propose a hardware organization to realize it.

2.6.1 Data Structures in the SLIP

Service requests generated by the CCRP and CT? are placed in queues

known as the request queues. Certain requests which have higher priority

than others must be executed before requests of lower priority are

executed. The status of a request after it has been placed in the queue
‘ must be maintained by the SLIP. When a request has been serviced , the SLIP

must cause an interrupt to the appropriate processor (CCRP or CT?). The

result of a request must be made available on the command—argument-and- I
structure—loop—response bus when the CCRP or CT? is ready to receive the

_ _ _ _  
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information. With this discussion as the background, we are ready to

examine the main data structure maintained by the SLIP, the request status

table (RST).

As shown in Figure 42a,the RST has two parts : a list of pointers one

for each priority level, and a table of status laformation entries , one
- 

- 
for each request. The entries in the table at the same priority level are

linked together. Requests within a priority level are treated on a FIFO

basis. The entry for the first request at a priority level is pointed to

by the appropriate entry in the list headers block. The format of an entry

in the table of status information is shown in Figure 42b . There are eight

fields in an entry . The first field identifies the file referenced by the

request. The second field identifies the request itself. Since several

requests may be in various stages of comp etion at various components in

the structure loop , it is important to tag each request in this way in

order that the response from the loop can be ultimately paired with the

corresponding request. [The request ID is generally the command ID in the

CST described in Section 2.3. The CCRP or CTP merely transmits the command

ID at the time of requesting service from the SLIP]. The request source

field indicates which processor (CTP or CCRP) placed the request. The

request code identifies the service desired by the requestor . A list of

possible request codes and their explanation is given in Table III. The

status field indicates the progress made by a request towards completion.

More specifically, the status bits indicate whether a request has been

initiated or not, whether it has been completed or not , error codes from

the structure loop components.etc . Each of the requests can have a

• variable length arguments. These arguments are stored in the CATM

described earlier. A pointer to the argument area is stored in the sixth

field. The seventh field contains a pointer to the result buffer where the

structure information requested by the CTP or CCRP is stored . The last

field points to an entry of a request at the same priority level and which

arrived next in time sequence. The number of entries in the RST is a design

parameter which is to be determined on the basis of the anticipated proces—

sing speeds of the structure loop components and the CRT and CCRP .

2.6.2 The SLIP Logic

The logic of SLIP consists of algorithms which are executed a) in

response to requests placed in the request queues , b) in response to

interrupts generated by the structure loop components (principally by the

- ~~- —a- - -~~~ --_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Table III. Request Types Accepted by SLIP

— —

Code (octal) Request Type

001 Retrieve MAU addresses

002 Retrieve cluster identifier with count

003 Retrieve security atom names

004 Retrieve MALI address , cluster idenitfier and security atoms

005 Insert index term

006 Delete index term

007 Load attribute information for an attribute

010 Load hash algorithms for a file

011 Allocate MALI number for a file

012 Allocate cluster identifier for a file

013 Allocate security atom name for a file

014 Deallocate MAU number for a file

015 Deallocate cluster identifier for a file

016 Deallocate security atom name for a file

017 Translate MALI address into MAU number

- 
- 020 Delete attribute information for file

021 Deallocate all NAU numbers, cluster identifiers and security
atom names for a file

~;
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Table of Status Information

• - Figure 42a. Format of Request Status Table (RST)
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- 
0 Entry Free

- 
- / ~ 1 Entry not Free

/ - - 0 Request not initiated
- ‘ / ‘

\ 1 Request initiated *

- - 0 Request not processed

/ - \ 1 Request processed L
/ ~ 

- /0 Processing not successful

/ / Processing successful

Result
File Request - Request ~Argument Bloc k Next request with r
ID ID Code Pointer Pointer same priority

0 15 16 23 ~24 31 36 39 40 55 56 71 72 87 
—

- Error

- 
Code --

-
• ~ 1 Request Source is CCRP

“ 0 Request Source is CTP -

I

- - Figure 42b. An Entry in the table of status information 
-
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IXU) , c) for the maintenance of request queues and d) for communicating
with the CTP and CCRP over the command—argument—and—structure—loop—
response bus. We, therefore , classify these algorithms as request—
initiating, interrupt—driven and service algorithms.

A. Request Initiation — Under this category , there is one algorithm for

each of the requests identified in Table III.

ALGORITHM A: To retrieve MAU addresses

Input Arguments: 1. The file name F—ID from RST entry
- - 2. The conjunct of keyword predicator of the from

T(K1)AT(K2)AT(K3)A . . .AT(K ) from CATH
3. The request identifier R—~D from RST entry

Step 1: Issue to the IXU, the command , “extract—from--the—next—set—
of—index—terms— (whose request identifier is R—ID and which
belong to file F—ID)—the—MAU—address”.

Step 2: For every keyword predicate in the argument , conjunct do
steps 3 and 4.

Step 3: Issue to the SM the command, retrieve—the—index—terms—of—
the—keywords—which—satisfy—the—predicate—T (K.). [The
predicate type (‘‘ , ‘# ‘ , ‘s’, ‘< ‘ , ‘ >- ‘ , ‘~t ’3 and request
ID are sent as arguments of the command ]

Step 4: Issue to the KXU the command , transform—the—keyword—K1—
belonging—to—file--F—ID—into—its—encoded—form. Place the
transformed value in bits 8—55 of predicate.

Step 5: Issue to the SM, the command , “Reset”,. [This command
indicates the completion of a set of “retrieve 1 commands
given in step 3.

Step 6: Set status bits to indicate that the request has been
- - 

-
- - initiated . Terminate.

— ALGORITHM B: To retrieve cluster identifier with count.

Input Arguments: 1. The file name F—ID from RST
-- 2. The conjunct of keywords with count q f ro m CATM

— 3. The request identifier R—ID from RST

Step 1: Issue to the IXU, the command, extract—from—the—next—set—
of—index—terms— (whose request identifier is H—ID and which
belong to the file F—ID)—the—cluster—identifiers.

Step 2: For every keyword in the argument conjunct do steps 3 and
4.

Step 3: Issue to the SM the command , retrieve-with—count-the—
index—terms—of—the-keyword (whose transformed valve is to
be obtained from KXU). [The request—ID is sent as an
argument].

Step 4: Issue to the KXU the command , transform—the—keyword—K1—
belonging—to—file—F—ID—into—its—encoded—form. Place
transformed value in bits 8—55 of keyword .

Step 5: Set status bits in RST (see Figure 42b)to indicate that the
request has initiated . Terminate.

—
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ALGORITHM C: To retrieve security atom names.

Input Arguments: 1. The file name F-ID
2. The conjunct of keyword predicates
3. The request identifier R—ID

Step 1: issue to the IXU, the command , extract—from—the—next—set—of—
index—terms— (whose request identifier is H—ID and wh ich
belong to the file F—ID) the—security—atom—name .

Step 2: For every keyword predicate in the argument conjunct do
steps 3 and 4;

Step 3: Issue to SM the command , retrieve—the—index—terms—of—the—
keywords—which--satisfy— the—i redicate—T(K.). [The predicat .~
typ e (‘ = ‘ , ‘~~~ ‘ , 

‘~~~ ‘
, 

‘
~~~

‘ , ‘ > ‘ , ‘~~‘), and~request ident i f ier
are sent as arguments of the command].

Step 4: Issue to the KXU the command , transform—the—keyword—K1—belonging—to—file F—ID—into—its encoded form. Place
transformed value in bits 8—55 of predicate.

Step 5: Issue to the SM the command reset .
Step 6: Set status bits in the RST (see Figure 42b) to indicate that

the request has been initiated . Terminate.

ALGORITHM D: To retrieve MAU addresses , cluster identifier and security
atom names.

Input Arguments: 1. The file name F—ID
2. The conjunct if keyword • 

-

3. The request identifier R—ID

Step 1: Issue to IXU the command , extract—from—the—next—set-of—index—
terms (whose request identifier is R—ID and which belongs - - -

to the file F—ID) the MAU addresses the cluster identifiers
¶ 

and security atom names.
Step 2: Execute steps 2—6 of a’gorithm C.
Step 3: Terminate.

- - ALGORITHM E: To insert an index term for a keyword .

Input Arguments: 1. The index term i
2. The count (q) if keyword is clustering

keyword
3. The transformed value of keyword T(K)

Step 1: If argument keyword is security/clustering keyword then go
to step 3; else go to step 2.

Step 2: Issue to the SM the command , insert—index—term—i—for --the—
keyword—whose—transformed—value—is—T(K) . Go to step 4. 

¶

Step 3: Issue to the SM the command , insert—index—term—(i ,q)—for—
the—keyword—whose—transformed—value- is—T(K).

Step 4: Set status bits in the RST (see Figure 42b) to indicate that
the request has been initiated , and processing is comp leted
successfully.

Step 5: Terminate.

ALL ;ORITHM F: To delete an index term .

input Arguments: 1. The index term i
2. The transformed value of keyword T(K).

ii
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Step 1: issue to the SM the command , delete—index—term—i—for—the—
keyword—whose—transformed—value--is-T(K).

Step 2: Set status bits in the RST (see Figure 42b) to indicate
that the request has been initiated , and processing is
completed successfully.

Step 3: Terminate.

ALGORITHM G: To load attribute information for an attribute.
— Input Arguments: 1. The attribute identifier A—ID .

2. The attribute infornation in the CAm .

Step 1: Issue to the KXU the command , create—an—AlT--block—for—the—
attribute—identifier—A—ID. [The attribute information is
sent as argument to this command].

Step 2: Set status bits in t i-u RST to indicate that the request
has been initia ted , ad completed successful.

Step 3: Terminate.

ALGORITHM H: To load hash algorithm s for a file.

Input Arguments: 1. The file name F—ID
2. The number of hash algorithms ‘k’
3. The hash algorithms

Step 1: Issue the command to the EXU , build—a— set—of—k-hash—
algorithms—for—the—file F—ID.

Step 2: Transmit the k hash algorithm to the KXU . —

Step 3: Set status bits in RST to indicate that the r equest  has
been initiated , and processed successfully .

Step 4: Terminate.

Notes: In algorithm C and H, if the KXT rejects the input on account
of lack of table space , then the status of the reques t is se t
to unsuccessful completion (bit 35 is set to 0) and the error
code is set to indicate cause of rejection .

ALGORITHM I: To process an allocate/deallocate request to IXU .

Input Arguments: 1. The file name F—ID
2. The MAU number , cluster identifier or securitY atom

number in case of a deallocate request
3. The MALI address M

f 
in case of an flAU number request.

Step 1: For a deallocate request , issue the command , deallocate-for-
f lie F—ID—the—MAU—number—cluster—identifier—or—secur itv-atom--
name—specif led—by—the—second—argument. Go to step 3.

Step 2: For an alloeate—MAU—number—request , issue the command
allocate—an—MAU—number—for—the—absolute—MAU—address—M f—
and—file—F—ID . For -an allocate—cluster-identifier/security—
atom—name--request , issue the command , allocate—cluster-
identifier/security—atom name.

Step 3: Set status bits in the RST to indicate request has been
initiated . Terminate.

-F
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I;’
ALGORITHM J: To translate MALI address into the corresponding MALI number

Input Arguments: 1. The file name F—ID
2. The MALI address Mf

Step 1: Issue the command to the IXU, convert—MALI—address into Mau number .
Send F—ID and Mf as arguments.

Step 2: Set status bits in RST to indicate that the request has been
-
. - initiated . Terminate.

ALGORITHM K: To delete attribute information for a file.

Input Arguments: 1. The file name F—ID
2. Number of attributes m
3. The m attribute identifiers

Step 1: Issue the command to the KXU , delete—AITs—and hash—a lgorithms—of—
a—file , and send F—ID and m attribute identifiers to KXU as
arguments.

Step 2: Set status bit in RST to indicate that the request has been initi-
ated and processed successfully. Terminate.

ALGORITHM L: To deallocate all Mau numbers, cluster identifiers and security
atom names for a file.

Input Arguments: 1. The file name F—ID

Step 1: Issue the command to the IXU, deallocate—all—index—translation—
information, and send file name F—ID as an argument.

Step 2: Set status bits in RST to indicate that the request has been initi—
ated and processed successfully . Terminate.

I

~
— .
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B. Interrupt Handling — Under this category are algorithms executed in

response to interrupts generated by the IXU .

ALGORITHM A: To process the IXU interrup t for transmission of retrieved
MAU addresses, cluster idevlifian security atom names or
triples of the form <MAU addresses , cluster identifier ,
security atom names> .

Input Arguments: 1. The request identifie’ H—ID
from IX1J (source 2. The number n of retrieved items
of interrupt) 3. The n items

Step 1: Locate the entry in the RST for the request H—ID.
Step 2: Allocate in the result buffer enough space to store n of

the retrieved items. If there is no space, then go to
step 5.

Step 3: Place a pointer to the memory (allocated in step 2) in the
RST entry. Receive the items from IXU, and place them in
the result buffer.

Step 4: Set status bits in RST to indicate successful comp letion
of the request. Terminate.

Step 5: [No space in result buffer]. Reject output from IXU , ~lac~
request at the beginning of the queue and terminate.

ALGORITHM B: To process the IXU interrupt from transmitting allocation
information.

Input Arguments
from IXU: 1. The request identifier R—ID

2. The MALI number/cluster identif icr/security atom name

Step 1: Locate the entry in the RST for the request H—ID.
Step 2: Receive the MAU number/cluster identifier/security atom

name from IXU and place it in the result field (field 7
in Figure 42b)of the RST entry located in step 1.

Step 3: Set status bits in RST to indicate successful comp letion
of the request. Terminate.

1

I - . 
-- 

C. Service Algorithms — Under this category , there are algorithms which

place a request in the RST, remove a request from the RST. allocate space in

the result buffer.

ALGORITHM A: To place a request in the RST

Input Arguments: 1. The file name F—ID
2. The request identifier R—ID
3. The request code
4. A pointer to the arguments in CATM
5. The priority of the request

Step 1: Allocate the first entry in the list of available entries
(see Figure 42a) in the RST for the current request. If the
list is empty, go to step 4.

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ 
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Step 2: Place file name, request identifier , request code and
argument pointer in their respective fields. Clear
status field. Set the status bit to indicate entry is
occupied .

Step 3: Link the entry into the appropriate list of priority.
Terminate.

Step 4: [RST is full]. Reject request. Terminate.

ALGORITHM B: To locate and remove requests that have been processed by the
struction loop.

Input Argument: None

Step 1: For each priority list in the RST do steps 2 through 4.
Step 2: Scan the list of requests for the i—th priority level.

For each request whose status indicates completion do
step 3 through 4.

Step 3: Determine the response for the request fror- the result
field or result buffer and send it to the CCRP or CTP
(depending upon the origin o~ the request.)

Step 4: Set the status bits in the entry to indicate that the entry
is available for allocation . Link the entry into the list
of available entries. Release result buffer space by
invoking algorithm C.

Step 5: Terminate.

Note: This algorithm is continually executed , so that as soon as
requests are processed , their responses can be sent to their
respective sources (CTP or CCRP).

ALGORITHM C: To allocate or deallocate memory in result buffer as and
when requested. one block at a time.

Input Argument: This address of the memory block if deallocation is
desired , or the size of memory if allocation is desired .

Step 1: If deallocation is requested go to step 4.
Step 2: [First Fit]. Determine the first block in the chain of

available blocks, whose size is large enough for the
request. If no such block is found , go to step 5.

Step 3: Transmit address determined in step 2 to requestor.
Terminate.

- - 
- 

Step 4: [Deallocation]. Link block at the end of the list of
available blocks. Terminate.

Step 5: [No space in resu’t buffer]. Reject request. Terminate.

2.6.3 Hardware Organization of the SLIP

From the above discussions on the data structures and the algorithms

executed by the SLIP, we find that there is a need for concurrency of

execution of service algorithms on one hand and interrupt and structure

loop initiating algorithms on the other hand . Requests which are made by the

CCRP and CTP over the command .argument -and structure -loop-response bus are

placed in the RST by the service micorcontrol unit (MCU.-l) (See Figure 43). 

-- -—-~~~~~ -~~~~~~--. _ _
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ROM—l contains micro instruction sequences for all service algorithms .

- -
~~ ROM—2 contains micro instruction sequences for all interrupt and loop

initiating algorithms .

Figure 43. Hardware Organization of Structure Loop Interface Processor
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while requests already in the table are initiated by MCU--2. Accesses to the

RST by the two control units are serialized by means of F.-.ardware locks.

Information from the structure ioop is stored in the result buffer under

the control of MCU2, while information is moved out of the result buffer

by MCU1. Here again hardware locks are used to ensure that only one unit

has access to the buffer at any given time.

The RST and result buffers are small random access memories of sizes

in the range 16—32K bytes. The control units are microprogra~~ied to

incorporate the algorithms discussed earlier . The ROM 5 (ROM-l and

ROM—2) have one program for each of the algorithms. The microcontrollers

generate the appropriate ROM addresses to execute them. MCU—2 has three

interrupt lines one each for IXU, SM and KXU . The IXU uses its interrupt

line to indicate that it has decoded index terms for a particular request.

The MXLI uses the interrupt line to indicate that it is ready to accept

the next keyword for transformation. The SM interrupts only to indicate

an error condition. In addition to the interrupt lines, the MCU—2 has

control lines by which it can monitor the activities of the IXU , SM and

KXU and grant access to the structure—loop-interface bus (SLIB) . MCU—2

can also initiate transfer of arguments for various commands from the

command—argument--and-structure -loop-response bus (CASRB) to the SLIB. The

~MCU—l responds to requests on the CASRB by queuing the requests in the

RST. It is also responsible for transferring data out of the result

buffer and sending it to the proper requestor via the CASRB . The two

microcontrollers share all of the logic capabilities of the SLIP. As

shown in Figure 43, the two controllers can gain access to (on a specialized

basis) the scratch pad registers, and a simple arithmetic and logic unit.

-4.
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3. THE MASS MEMORY (MM)

The mass memory (MM) is the repository of the database. Contemporary

database management systems also store their databases in mass memories

(although the MM is conceptually and physically different from contemporary

mass memories). In addition, most of the systems store meta—information

about their databases in mass memories. Examples of such information are

pointers, indexes, and security related information. In order to access a

piece of data in these systems, one must first access the meta—information . It

is , therefore, likely that such or ganizations can lead t o an excessive number

of accesses to a relatively slow mass memory. A related problem in software -

laden systems is that the load on the central processor tends to increase sub-

stantially as the number of accesses increases. This is because each access 
- 

-

to a mass memory is preceded by several tens of processor instructions re—

quired to prepare and issue an access command .

Both these problems of excessive number of accesses to the mass memory

and of increased load on the processor may be alleviated to a great extent if

the meta—information is separated from the database and manipulated by a

functionally specialized processor . In the proposed DBC such a1separation

leads to the architectures of the structure memory (SM) and of the mass memory

(MM). The SM (whose design details appear in[8]) contains information about

the database; this information is subject to frequent changes even though the

contents of the database do not change. Thus the information in the structure

memory may be said to be update—variant. Examples of such information are

security specifications which are different for different users, and can 
I 

-

change with time, although the database files on which these security specif i—

cations apply may not have undergone any change.

- - On the other hand, consider the information contained in the mass memory .

In the proposed DBC, the MM contains database files which are composed of

records. Unlike records in contemporary systems, these records do not carry
- - pointers or any other type of ineta—information. Thus, any change in the meta—

information does not affect the contents of the MM. We may , thus , regard

information in the Nil to be update—invariant. The separation of update—

variant and update—invariant information provides us with three advantages:

First, the number of accesses to the MM is limited to that required to access data;

second , accesses to data (in the MM) may be performed concurrently with accesses

to ineta— (i.e., structural) information (in the SM); and , third , the complexity

of the logic of either of the two components would be less than the complexity of

a single component managing both update—variant and update—invariant information .

- - 
This last advantage is especially important 1~n hardware systems such as the proposed

- 
- - DBC.

a

~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- - —:i----’-- — -—-- ---- -
—.-.-,----“ -

~~

---—---. ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~

-
~~~

---
~~ ~~~~~~~~~~~~~~

-
~~~~~

---- - - — --
~-- -—-- -

- _ _ _ _ _ _ _ _ _  -- - -

—84—

In this section we propose a hardware organization of a mass memroy to

support a database of size in the range of 1O9 to 10
10 

bytes. The principal

operation carried out by the mass memory logic is the search operation. The

concept of a partitioned content addressable memory (PCA.M) which was success-

fully employed in the design of the structure memory (SM) and that of the

~~~ucture memory information processor (SMIP) Is once again emp loyed here to -~ 
-

ensure acceptable performance. The MM is desi gned to reduce , subs tan tial ly,

the effective access time to a partition . Furthermore , each partition is

searched by a group of processing elements , thereby reducing the search time

of a partition . These two features together with matching performance of

other components will enable the DBC to be used in on—line environments.

3.1 The Design Philos~p~~
In the design of the SM, we used a transformation on data (keywords)

to identify the sectors (or modules) of one or more partitions to which the

search operation can be confined - Since the principal MM operation is the

search operation , it is intuitivel y tempting to use a transforma t ion of some

sort to limit the search space. But such an approach , on closer examination .

becomes impractical. We advance an important reason for this. First , we

realize that rotating moving head magnetic recording devices are stiLl the

only cost—effective technology for large databases [9]. Given this , we are

immediately confronted cith the rather disparate access times and tr~insfer

rates of the device on one hand , and the large amount of sequential data

available per access on the other hand . If we are to extract optimum performanc e

from such a device , it is imperative that we place data in a way tha t  allows

information searched per access to be as close to the maximum as possible. An

arbitrary transformation of data to determine its position in the MN will not ,

- - . 
- 

in general, result in optimum placement. However , a p lacement s t ra tegy based

4 on the predicted or known data usage patterns should work better. Such a

placement technique (called clustering) was introduced in Section 2 to determine

the partition in which a data unit (i.e., record) must be placed . The MM

design , thus , does not concern itself with where to access for a piece of

data , but with how best to minimize the inherently large access times , and with

how to locate (and retrieve) a piece of data (from) within the partition

(i.e., MAU) defined by a single access.

To address the first of the desi gn problems , we have proposed ov crl ;ippit -~g

of access and transfer operations. It is well known that on any given device

onl y one opera t ion ( Ic. , an access or a data transfer) ma x’ take plai- c — It . any

___________________ - ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~
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given instant . However, in a system with several such devices , data transfer

on one device may be overlapped with accesses on other devices. The second

problem may be addressed in two different ways . In the first method , dat.i

associated with a single access may be read into a hi gh speed rando m acce ss

memory and manipulated therein by a processor . The advantages of this scheme

are the avilability of a large RAN which allows known sof tware  techniques to

process data and that record deletions can be handled in a straightforward

manner . The main drawbacks of this scheme are the rather low utilization of

the RAN (typ ically, 3—10% of the RAM will contain information s a t i s f y ing the

query); and that data cannot be processed on—the—fl y, since the transfer rate

can be very high (160 MBS for a device with 800K bytes/sec transfer rate and

20 tracks transferring in parallel). The second method employs a set of

processing elements to process data on—the—fly. Each eleaent is equipped

with a small RAN to store retrieved information. The advantages of this scheme

are hi gh utilization of all hardware resources , and the ability to process

data at the maximum rate at which data can be transferred from the MM. The

main disadvantage of this scheme is its inability to reclaim immediately

space occupied by deleted information. The choice of the method to be

employed is dictated by factors like cost and anticipated usage of the DBC ,

etc. If the cost of significant underutilization of hardware can be traded for

instantaneous updates , then the first method is superior to the second , If ,

however , the delay in space reclamation is not critical , then the second method

is better. We chose the second method because we believe that , although

hardware costs show a downward trend , we still need to ensure adequate utiliza—

tion of components and that delays in space reclamation will not be noticeable

in most databases unless the MN is operating very close to its full capacit y .

In many contemporary systems , space is reclaimed when the load on the system is

not at its peak. Such an arrangement has worked satisfactorily.

- - 3.2 The Organization of the MN - - -

The overall organization of the MM is shown in Figure 44. The database

resides in data volumes mounted on moving—head disk drives. It is desirable: ‘~ to have a one—to—one correspondence between the volumes and the drives; but

this is not essential , if the volumes are transferable. However , with disk

technology moving towards higher bit densities , mechanical tolerances will not

allow frequent Interchange of vo l umes (disk packs) between disk drives [10]. Our

design is Independent of the above consideration. A volume is composed of 200—

400 cy linders. A cylinder is the sm;i l lest u nit of w-ess ill tiW ~-t~’1 and t I S  bet -t i

- -.- —--. —i---. —~~~~~~ -~ -- _~~I________ —~~~ — ~~~~~~~~~ -_-.--~ ----—- — — — — -a.—- — — — - — -
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called the minimal access unit (MAO) [21. Each cylinder consists of a set of

tracks (usually In the range of 20—40); there is one track per disk surface. The

access mechanism consists of a movable set of read/write head s, one pair per

disk surface. The heads are moved in unison to access all the tracks of a

cylinder. Data transfer to/from a cy linder is achieved by activating all the

read/write heads concurrently. Although previous design~. [11] have taken

advantage of the fact that the read and write heads on a track could be

positioned a short distance from each other , we do not favor such an arrangement.

This is because , at high track densities (1000 t racks per inch and h i c ’he r ) ,
the required mechanical tolerances may well deprive the disk technology of much

of the cost—effectiveness brought about by the higher densities. In our design,

therefore, we assume a combined read/write mechanism .

Each MAU in the system is uniquely identified by a numbe . ~nown as i t s

MAU address. A disk volume contains a set of consecutivel y addressed >IAUs.

The set of disk drives is partitioned into groups of 8—16 drives for access

and control pruposes. Each such group is controlled by a disk drive controller

(DDC). This partitioning of disk drives f or access and con trol purposes is

not to be confused with the PCAM partitioning of the data which is used for

enhancing performance. The DDCs are controlled by the mass memory controller

(NNC) . Data that are retrieved from the disk volumes are routed to a set of

track information processors (TIPs) by a drive selector and a track multi —

plex er/demultiplexer (TMD). The drive selector is controlled by the MMC . Th e

TIPs can request the services of a bus called the IOBUS for transferring database

information tü the MMC. The IOBUS is also used by the NMC to send control in-

formation and data to the TIPs.
The MM operates in two basic modes —— the norma l mode and the compacti on

-- mode. In the normal mode , o rders sent by the DBCCP arc decoded by th e MMC and

queued acco rding to the MAUs referred to by the orders . The MNC then rec1 uests

a DDC to seek the cylinder corresponding to a MAO for which a queue of roquests

exist. When the MAO is thus accessed , the MNC sends the orde rs one a t a t ime

to the TIPs. While the TIPs are busy executing the orders , the MMC can request

th e DDCs to position the read/write mechanisms to other HAUs for which there

are non—emp ty queues. Thus the access t ime of a MAU is at least partl y over—

- 

- 
lapped by useful work performed by the TIPs. The extent of overlap is determined 

-

by such factors as the average number of orders waiting to he executed for a

MAli and the number of different MAUs for which there are non—empty order queues.
- : 

J The In f o r m a t i o n  r et r i e v e d  by TIPs from t he database is seat t o  the ~FP f o r

secu r i t y  c learance .  Records which  a re  i d e n t i  f i e d  by a d e l e t e  order  u n d e r  the
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normal mode are tagged by the TIPs for later removal during the compaction

mode. When the DBCCP orders the MM to reclaim the space occup ied by the

records with deletion tags, the MN enters the compaction mode. During the

compaction mode, MAIJs in which tagged records exist are accessed , and data in

each of the tracks is read into the MMC by the TIPs. The MMC then writes back

those records which are not tagged . There are two reasons for handling deletions

* 
- in this manner. First, if reclamation of space occupied by deleted records were --

to be attempted in the normal mode , one of two undesirable things will occur:

ei ther , we will have to provide a t rack—size  b u f f e r  wi th  each TIP resulting in

low utilization of the buffer during retrieval , or we will have to reclaim

space in segments of the track , each segment size being equal to the size of a

TIP buffer . In the latter case , the number of revolutions required to sweep

the entire track for reclamation will be a multip le of the r a t io  of the t r ack

size to the TIP b u f f e r  size. During the normal mode of operat ion , a sing le

delete operation could hold up retrievals for several revolutions . This is r
undesirable. Second , we may expect during the course of a 24—hour day, periods

of light load . Such periods usually result in low utilization of system

resources. By operating the MN in the compaction mode dur ing these in te rva l s  of

light load , we may be able to achievea more equitable distribution of load on

the DBC.

3.3 The Mass Memory Controller (MMC)

The mass memory controller (MMC ) is organized into two subcornponents — —

the interface processor (IP) and the mass memory monitor 04MM). The IP

is responsible for interfacing with DBCCP , maintaining the da tabase 
~~~~~~

descriptor table memo~~ (DODTM), maintaining NM orders in the mass memo~~
order queues (MNOQ) , and switching f rom norma l to compaction mode. The MMM

is responsible for scheduling orders to be executed with the hel p of the MNOQ,

issuing orders to the DDCs to position read/write heads , initiating TIPs to

execute the orders on the contents of a MAU and keeping track of space avail—

ability in the MAUs .

I
3.3.1 Interface Processor (IP)

A. The Database Object Descriptor Table Memory(DODTM) — This table memory [
contains database objects which are used as arguments of the orders issued by

the DBCCP . Each object is identified by a unique identification tag assi gned to

it by the DBCCP . A database object in this table could either be a query, a

record or a pointer. The formats of these three objects are shown In Figure

45. The forma t of a keyword as it appears in a quer-~’ or a record is also shown .

~ 
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/~~~ 
Directory Entry Keyword Indicator

/ ~
—- Security Keyword Indica tor

Cluster Keyword Indicator

~~
Negated Keyword Indicator

Hash Function Length Value I
55 T58 63

//  

— ‘
~~~

‘ Predicate Indicator

/ / L ‘-cz ’ Predicate Indicator 00 Fixed point number; length =
/ • 

- 4 bytes
/ 

— 

~ Predicate Indicator L Value = 01 Short floating point; length

• Type 4 bytes
> Predicate Indicator

= 10 Long floating point; length =
8 bytes

= 11 Alphanumeric; length ~ 31 bvt~

Figure 45a. Format of a Keyword Predicate in a Ouerv or Record
Sent by DBCCP as an Argument of MM Order

~~~ 
Object Type = 00 (Query)

Usage # of Bytes # of Pred-J T T T
Count in this Query icates=n I 1 2 • n
0 5 8 23 24 31

- 

- 
Figure 45b . Format of a Query Conjunct Resid ing in the DODTM

d

Object Type = 01 (Record)

Usage Cluster ID # of Bytes in Record 1 # of Key—i K K
Count Security Atom Name this Record ID words ,n 1 2

0 5 8 31 32 47 48 63 64 71

~~ 
K Record Bod~~~

J

• - Figure 45c. Format of a Record Residing in the DODTN
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Object Type = 10 (pointer object type 1)

• Usage Record ID Cluster Identifier Security Atom Name
Count

H 0 58 23 24 47

Figure 45d. Format of a pointer object (type 1) residing
in the DODTM

Object Type — 11 (pointer type 2)

/
Usage Record ID 1 Record ID 2
Count

0 5 8  23 24 39

Figure 45e. Format of a pointer object (type 2) residing
in the DODTN

___________ ____________________________________________________
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~ I The keywords in a query or record are.~ssumed to be sorted in ascending order

of their attribute identifier. This sorting is done by the PES before the

query or record is sent to the DBC. Since database objects are placed in the

table only to be accessed later when the MM order is scheduled to be executed ,

there must be a rapid mechanism to locate and retrieve database objects from

the table. The table is, therefore , organized in two parts —— an associat ive

memory (AN) and random access memory (RAN). An entry in the AN has two fields ——

an object identification tag and a pointer to a location in the RAN. The

RAM holds the database objects pointed to by the AM. The AN can be searched

on the basis of database object identifiers; the response is the pointer to the

RAN location where the corresponding database object ~s stored . In Figure 46,

the organization of the table is shown. Since each MM order is associated with

at most one database object and since we do not expect more than a hundred orders

waiting to be executed , we can correspondingly set the maximum number of entries

in the AM to be in the neighborhood of 100. Each entry in the RAN is either

a query, a record or a pointer. Recall from [2] that we estimated that in t he

worst case, queries will seldom have more than 15—25 predicates. The same may

be said to be true of records. According to Figure 45a, a keyword may occupy

not more than 39 bytes (= 31 bytes value + 8 bytes overhead). Thus a query

in the worst case will seldom exceed 1000 bytes in size. Records could , of

course, be larger than this size, since the record body could be arbitraril y

long. The size of a pointer database object (Figures 45d and 45e) is either

5 or 6 bytes. When the database has been established , (i.e., when most of the

files have been created), we expect a large percentage of retrieval requests

and a low percentage of insertion requests. Since onl y insertion requests

• 1 require records as a database object argument , we may conclude that the average

size of a database object would be very close to 1000 bytes. Thus, a RAN of

size lOOK bytes (= 100 x 1000) is appropriate for storing the DODT. The size

of the AN can now be determined . Each entry occupies 4 bytes (i.e., 14 bits

for the object Identifier and 18 bits for pointer into the RAN). Thus the

size of AM is in the neighborhood of 400 bytes (see Figure 46).

Memory in the RAN is allocated and freed in a r’anner similar to the

scheme used for the CATM as described in Section 2.3.3.

The DODT is used In an entirely different manner during the compaction mode

of operation. During this mode of operation , the MMM uses the DODT to identif y

those keywords whose transformed values have been deleted from a cluster—security

atom partition existing in a ~1AU . The RAM portion of the I)ODT Is divid ed i n t o

~i;L ~4 .
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Avail List Header

• Forward Link

Backward Link

Database Object Identifier
\(14 bits) r Pointer to RAN

(18 bits) 

• 
.

N~lOO 
( • - • - .

~~~~~~~~~~ 

• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_
- /i ...__ ______

~~

.. - ~1OO K

ii :. :-•-•• :~~~~~~
AssocIatIve
Memory (AN) \ .

(400 Bytes) )
- _____ — 

I 
- -. —-

J
Random Access

Memory (RAN)
Bytes Contains Variable
Size Data Base Objects

Figure 46a. Organization of Database Object Descriptor Table (DOTB) :
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~~~~~ Tag Indicates Block is in Use \ Tag Indicates

\ Block is in Use

• 
~ 1~~
’;t;s~~

3Ht&
~~
se Object = n Bytes

Figure 46b. Details of a Block in Use in the RAN

• 
• 

Tag Indicates Block is Free —-Indicates Block is Free

\_ _ _ _ __ _

h[Size = n+1O~ Link Forward Link Backward I Size = n+lO

0 1 15 16 39 40 63-.~~~~~~~~.O 1 15
Free Area

Figure 46c. Details of a Free Block in the RAM
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• two parts: record storage and list storage (see Figure 47). The record

storage contain3 records from the MAU which are not deleted . The list storage

contains lists of transformed keyword values which were present in deleted

records. Each list corresponds to a particular cluster—security atom pair. The

records in the record storage occupy about 80% of the RAN while the list

storage occupies about 20% of the RAN . Allocation in the record storage is in

terms of variable size blocks. Since the entire record storage is released

only after the records have been written into the MAU, there is no need to

- 
- keep track of intermediate available blocks of memory. Allocation in the list

storage is in terms of fixed length blocks of 8 bytes for the nodes of the

lists and 6 bytes for each list header.

The AM is not used during the compaction mode of operation.

B. Order Queues (OQ) — Order queues, as the name implies, are used to keep

track of MM orders (sent by the DBCCP) which are awaiting execution . There

is one queue for every MAU for which one or more orders are awaiting execution.

Order queues are maintained on a first—in—first—out (FIFO) basis. Two data

structures are proposed in Figtire 48a to manage order queues. The gueue

headers table (QHT) is used to carry information about the queues. More

specifically, each entry in the QHT has three fields: The first field has

status information about the availability of a MAU for processing. The

second field contains the MAU address and the third field points to the first

order to be executed on the MAU. The second data structure is called the order

table (OT), which contains the orders themselves. The format of an order when

it is received by the MN is shown in Figure 48b and its format when stored

in the OT is shown in Figure 48c. The number of different MAUs for which

orders may be pending is determined by the number of entries avilable in

the QHT. This in turn depends on such factors as the number of MAUs that need

to be accessed in order to keep the track information processor busy, and the

distribution of MAtJ addresses among the cylinders of disk volumes.

In order to clarify the above observation , we shall give estimates of how

each of the factors can influence the number of order queues to be maintained .

First , supposing the TIPs can process, on the average , an order four times as

fast as a MAU access, then it follows that it is profitable to maintain at

least four queues for five different MAUs each of which is in the process of

being accessed by the disk drive controllers . Second , supposing the distribution

of MAU addresses is localized to a particular disk drive . Then , it is not •-

• possible to overlap the data transfer and processing by the TIPs with the

—

— ~~~~~~~~~~~~~~~~~ 
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I

Queue Headers Table (QHT) Order Table (OT)

MAU Pointer into
Address Order Table

1 Byte 2 Bytes 2 Bytes 6 Bytes per Order
~~

- — .
~~~

— - - —
~~~~

- — - - -
~~~~~~~

- --~~~~- - - .— - —  —~~~ ,--— - . - — —~~ 

- - - - - -  

‘
- --- ~~ - - - — - - - - - -

:~~~~~ ~~~~~~~~~~~~~~~~~~
// ~~~~ # of orders awaiting execution for this MAU

/ 1 = 0 Entry not in use1¼1 
/ / = 1 Entry is in use

I = 0 This queue not processed yet

IL = 1 This queue is being processed

= 0 MAU not accessed yet 
- 

-

1 MAU accessed & ready for processing

= 0 MAlI access order not issued yet
= 1 MAU access order issued

Figure 48a . Order Queues

I
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MAU I Database Order Order Database Obj ect
Address l Object I/ Code Number

• 0 15 16 31 32 39 40 55~~ • - • - —

Variable Length

MAlI Address ranges from 0 through 216 — 1
Database Object Number ranges from 0 through 216 — 1
Order code can be: 0018 Retrieve—by—query , 002 8 Retrieve—by—pointer ,
003 8 Retrieve—by—query—wi th—pointer , OO4~ Retrieve—within—bounds ,
0058 Delete—by—query (type A protect ion), 0068 Delete—by—query (type
B protection), 007 8 Delete—by—pointer (type A protection), O10~
Delete—by—pointer (type B protection), 0118 Insert—record , 000 8
Reclaim—space (compaction mode).

Figure 48b. Format of MM order sent by DBCCP

Database Object 11 Order 11 t
~~d~~ I

0 15 16 23 24 39 40 55

Figure 48c. Forma t of MM order s tored in OT
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access of the MAUs. In this case , it does not pay to maintain separate qu.~’aes

for different MAUs. Over a period of t ime , however , we may expect  a more

favorable distribution of MAIJs addresses .  Thus it is use fu l  to m a i n t a i n

separate queues; but the extent of overlap and , therefore , the number of

queues that should be maintained can be determined only by a simulation study .

Each entry in the QHT occup ies 5 bytes as shown in F i g I r e  4Sa. Thus icr a t :ibl ~
of n entries , we need Sn bytes. Typical values of n are in the ra 1g~ 5—10.

• Earlier , we estimated that the  number of orders that might be p e n d i n g

execution would rarely exceed 100. This c~ t imation will enable us to compu te

the size of the order table . Each entry in tne 01 (see Figur ’ 48c) -cup ic— ~
- • 7 bytes. Thus, the table size need not exceed 700 bytes.

C. The IP Logic — Algorithm A below is the main algori thm executed by t }.& 11’

on receipt of an order. Storage management a! gor i t  hms B and ( are invoked

by the algorithm A to maintain the fOOT. \lgorithm A al so d e t ect s  the  comp action

order of the DBCCP and takes appropriate n.c.:surcs (in step 9) to initi a t i- I
compacti~n of MAUs in which records with deletion tags may be p r i  s e n t .

ALGORITHM A: To process an MM order from the DBCCP I
Input Arguments: Input MN or ler from DBCCP in the for::iat shown in

Figure 48b and the database object used as a r g u m e n t
of the order

Step 0: If order code is ‘000 ’ (see Figure 48h) then go to step 9.
Step 1: Use the database object identifier to search the fOOT (see

Figure 46a). if the ob j e c t  is  a l r ea d y  in DODT , then i nc remen t
usage count and go to step 4.

Step 2: Invoke Algorithm B to allocate space for the database o b j e c t .  tIf Algorithm B is not successful , then ri- k-ct t h e order and
terminate.

Step 3: Place the (sorted) object in the DODT in the block allocated

H to it in step 2. Set usage count to 1.
Step 4: Check if there is a queue for the MAU referred to in the

argument order. TI there is a queue , check if  the ~~~ is -_
being processed currently (see Fi gure 48a). I f  so , go to

4 step 7. If there is no queue for  the MAU then go to step 7.

• Step 5: [Order may be added to queue l Check if the re  is a f r e e  e n t r y
in the OT. If not , go to step 6. Enter the order into 01
and link it to the queue for the MAlT . Terminate.

Step 6: [No space in OT1 Reject the the order; reduce the usage
count in database object in DODT . If t-he usage count is zero ,
then release space occupied by the object by invoking algorithm
C. Terminate.

Step 7: [New queue to be created ] Scan QHT for a vacant entry. If
no vacant entry is found , go to step 6. Call the entry number 

*

‘p ’. - .
Step 8: Place MAlI address in QHT ~pj8 ~~~~~~ 

Clear (?1IT (p]
0 7~ 

(~o to
step 5. 

— — 
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1
Step 9: [Compaction Mode] Stop accepting any more orders until

compaction is completed. Extract MAU addresses from the
mass memory deletion table (see Section 3.4.2) and place
them in the QHT. For each such MAU place tI1e orde r ‘compact ’
with order code ‘000’ in the order table. If QRT is full ,
then wait until new entries become available and then store
the MAU addresses from the deletion table.

• ALGORITHM B: To allocate space for a database object in DODT

Input Arguments: Size of object , say, m.
Address of AVAIL list header (see Figure 46c)

Comments: The links FORWARDLINK and BACKLINK referred to below are
as shown in Figure 46c.

Step 1: Set Q ÷ FORWARDLINK (AVAIL).
Step 2: If Q = P~ (null), then go to step 10.

• Step 3: Compare (m+3) with size of block pointed to by Q. If (m+3)
is greater .then go to step 4, else .go to stcp 5.

Step 4: (Try next block) Q -
~
- FORWARDLINK (Q) . Go to step 2.

• Step 5: [Cot it] If size (Q) > (m+13) then do: P ~— Q+m+3; else .
go to step 7 .

Step 6: FORWARDLINK (BACKLINK (Q)) - P;
BACKLINK (FORWARDLINK (Q)) ‘-
SIZE (P) ÷ SIZE (Q) — (m + 3);
TAG (P) ~ 0; TAG (P + SIZE (P)) ~ 0;
FORWARDLINK (P) ~~- FORWARDLINK (Q);
BACKLINK (P) ÷ BACKLINK (Q);
TAG (Q) ~ 1; TAG (Q + m + 2 ) ~ - 1;

• Go to step 9.
Step 7: FORWARDLINK (BACKLINK (Q)) FORWARDLINK (Q);

BACKLINK (FORWARDLINK (Q)) BACKLINK (Q) ;
TAG (Q) ÷ 1; TAG (Q + SIZE 

~~~ 1;
Step 9: Return with Q as the address of the allocated block.
Step 10: (Unsuccessful] Return with Q set to zero.

ALGORITHM C: To return a block of memory to the AVAIL list.

Input Arugments: Q, the address of the re turned block
-

• Step 1: Extract size of the block and call it m
Set Ql 4- Q.

Step 2: If TAG (Q — 1) is I then go to step 4.
Step 3: [Collapse lower bound I P Q — SIZE (Q — 1);

P1 ~ FORWARDLINK (P);
- • P2 ~ BACKLINK (P);

BACKLINK (P1) ~
- P2;

FORWARDLINK (P2) P1;
SIZE (P) ‘ SIZE (P) + SIZE (Q) ;

- ! Q ÷ P ;

Step 4: P *- Q + SIZE (Q). If TAG (P) = 1 then go to step 6.
• Step 5: [Collapse higher bound ] P1 FORWARDLINK (P);

P2 4 BACKLINK (P);
BACKLINK (P1) ‘ P2;
FORWARDLINK (P2) P1;
SIZE (Q) ~ - SIZE (Q) + SIZE ( P ) ;

r P ~~ P ÷ SIZE ( P ) :

4 4 
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Step 6: [Add to AVAIL]
SIZE (P—i) 4- SIZE (Q);
FORWARDLINK (Q) FORWARDLINK (AVAIL) ;
BACKLINK (FORWARDLINK (AVAIL)) ~ —

BACKLINK (Q) ÷ AVAIL;
FORWARDLINK (AVAIL) Q;
TAG (2) ~- 0; TAG (P) ~- 0;

Step 7: Terminate

3.3.2 The Mass Memory Montior (MMN)
A. Mass Memory Deletion Table (MMDT) — The ~‘1NM maintains a deletion table to
keep track of the MAUs in which there are records tagged for deletion. This

table is created during the normal mode of operation and is used during the

compaction mode to access the MAUs in which compaction must be performed .

There is one entry in the MMDT for each of such MAUs. The irst entry in

the MMDT records the number of entries ii that are in use Lutrentlv . This is

followed by the addresses of n MAUs. Each MAlI address occup ies two bytes , and

if we do not anticipate more than N different MAUs in which deletions have

been made in the time period between two compaction or~lejs from the DBCCP , then

the size of the MMDT need only be 2N bytes. Typical values of N are in the

range 500—1000.

B. The MMII Logic — The MMI4 controls the DDCs (disk drive controllers) via

the control bus (CBUS) (see Figure 44). The CBUS has an appropriate number of

address lines by which each of the DDCs can be addressed to the exclusion of

others. The CBIJS also carries status and con trol li nes by which t he  MNM can

control and communicate with DDCs. The MMII also controls the TIPs via the IOBUS.

The IOBUS is operated in a master—slave mode with the MMM assuming the master

* role and the TIPs assuming the slave roles. The IOBU~~consists of

bidirectional data lines over which data transfer’” between the TIPs and the

MMII can take place , status and control lines wh1$-i enables the MMl~I to select ivelv

activate arid interrogate the TIPs.

The MMII executes the following algorithms in the course of carrying out

its functions outlined earlier. In these algorithms , all dialogues with the

DDCs are carried over the CBUS and all dialogues with the TIPs are carried over

the IOBUS. Algorithm A continuously monitors the QHT with a view to keeping

the TIPs and the disk drives busy. Algorithm B is responsible for the detailed

• I 
dialogue with the TIPs after the algorithm A has found a MAU that has been

accessed and is ready to be processed . Among other things , algorithm B

answers interrupts from the TIPs when they have’ output to be sent out of the

I’~1 or when they have finished e x i n -u t  ion of an order. Once art iv a t ed  by

1
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algor ithm A , algorithm B executes concurrently with algorithm A , unt i l

the list of orders for the MAU have been executed by the TIPs .

ALGOR ITHM A: To scan the MMOQ continuously (on a round—robin basis) .

Input Arguments: QHT (see Fi gure 48a)

Step 1: [ In i t i a l i ze ]  p 0 ;
Step 2: p 

~~
- p + 1; if p > N , then p 1. [N is the number of en t r i e s

in QHT ] .
Step 3 : If QHT [ p ] 3 = ‘0’ , then go to step 2 ; else , go to s tep 4.

• Step 4: If QHT [p 1 0 = ‘0’ , then go to step 5; else , go to s tep 7.
• 

- 
Step 5: [ In i t i a t e  access to MAU I MAUADDR ~- QH T[p ] 8 2 ~~.

Decode MAUADDR into disk drive con t ro l l e r  num~er d , drive

number k and cy linder number c.
Step 6: Interrogate disk drive controller d , to determine if drive

is free. If it is free , then issue a cylinder seek on drive k for
cy linder c and set QHT[p]

0 
to ‘1’ . Go to step 2.

Step 7: If QHT[p]
1 

= ‘0’ , then go to step 8; else , go to step 10.
Step 8: [Check if seek is comp lete] MAUADDR QHT[p]

8~~ 3
.

Decode ?-tAUADDR into drive controller number d ,
drive number k and cy linder number c.

Step 9: Interrogate drive controller d to determine if seek on drive
k has been completed . If so , then set QHT[p]

1 
‘ 1 ’  and go to

step 10 else go to step 2.
Step 10: [Initiate processing if nrccssarv) If QFIT [p]

2 
= ‘0 ’ then go to

step 11; else, go to step 2.
Step 11: Interrogate if IDLE flag is on to determine if the TIPs are idle.

If so, then go to step 12; else go to step 2.
• Step 12: [TIPs are idle] Invoke algorithm B with the following arguments:

• 
number of MAU orders given by QHT [ p ] 4 ~

, add ress of f i r s t  order
sto red in the OT for  the MAU and given by QHT [ p ] 24 39 . Go to
step 2.

Note:  In steps 4 throug h 6 , we t ry  to in i t i a t e  cy l inde r seeks for
MAUs which have not been accessed ye t .  In steps 7 throug h 9
we check on seeks alread y issued dur ing  a previous scan . in
steps 10 through 12 , we t ry to i n i t i a t e  the TIPs b y invoking

-• 
— al gor i thm B.

ALGORITHM B: To in i t i a te  the execution of orders b y the TIPs or accept
data  ret rieved by the TIPs.

Input Arguments :  1. The number II of orders pending execut ion
2. The address of the first order in the or

Step 1: [ In i t i a l i ze ]  p ~~
- 1. Send ‘reset ’ signal to a l l  TIPs.

[See Section 3.4 for  e f f e c t  of ‘ r eset ’ si gnal on the TIPs ]
Step 2: Pick up the p — tb  order f rom the  OT. If  order code indicates

a inser t—record  order , go to step 6. if  the order code ind ica tes
a delete order , the n go to step 5 , if the order code indicates a
compact order , go to step 15.

‘- Step 3: [Retrieve type] Broadcast the order (either a retrieve—by—
query , re t r ieve—b y—poin te r , re t r ieve—b y—query—wi th  po in ter or
r e t r i e v e — w i t h i n — h o u n d s )  to all  the TIPs over the IOBU S.

Step 4: Wait  fo r  i n t e r r u p t .  ¶Yhen interrupt occurs , go to s tep  7.
Step 5: [Delete type ) Broadcast the order ( e i t h e r  a delete—b y—query or

• d e le te—b y — p o i n t e r )  to a l l  the  TIPs over the IOBEIS .  Tu rn on
OELETE f l a g .  Co to step 4.
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- 
• Step 6: [Insert order ] Broadcast the order , find—available—space—in—

track, to all the TIPs over the IOBUS. Turn on INSERTION flag.
Go to step 4.

INTERRUPT ENTRY
• Step 7: If INSERTION flag is on go to step 8. If DELETE flag is on - -

go to step 9; else, go to 14.
Step 8: [Select track to place record] Turn off INSERTION flag. Read

from each TIP, the amount of space available. Choose ehe track
which has the maximum available space. Call this track i
Compute the total amount of space available on the MAli af!~~
the current record is inserted. Call this m. Also compute

— the maximum available space on any one track (in terms of sectors
where one sector = 128 bytes). Call this n. Send the order , insert—
record to TIP

1 
. Send the pa ir (m , n)  to the DBCCP via the

max
communication bus. (See Section 2) Go to step 4.

Step 9: [Check if there was any delet ion]  Turn o f f  DELETION f l a g .  If

$ TIPs indicate tha t  some records were tagged for deletion then
go to step 10; else go to step 13.

Step 10: Store MAU address in MMDT . If order code indica tes  that  type
B protection was involved , then go to step 11; else , go to
step 13.

Step 11: [Clearance by SFP required ] Send the records and record IDs
output  by TIPs to SFP . Wait for SFP response.

Step 12: Send SFP response back to TIPs.
Step 13: Delete  the  order f rom 01. p 

~
- p + 1. If p > M , then request

• TIPs to wr i te  back a l l  delet ion tags (see exp lanation in
Section 3 . 4 ) ,  set IDLE f l ag  on and h a l t ;  else , go to step 2.

Step 14; [Receive retrieved records] If TIPs have records to be o u t p u t ,
then receive them and send them to SFP . If TIPs i n d i c a t e  e n d — o f —
data  then go to s tep  13; e lse , go to step 4.

Step 15: [Compact ion]  Request  the TIPs to read the  tagged records .  [This
read opera t ion  is generall y done in one disk r e v o l u t i o n .  I

Step 16: As TIPs transmit tagged records over the  IOBUS i d e n t i f y  and s tore
in an area In the DODT , the clus ter numbers and secu r i ty  atom
names in the tagged records.  Also create a l ist of t r ans fo rmed
keyword values for each pair of c lus ter  number—security atom pair

• occuring in the  tagged records.  Discard the rest  of the records.

* 
- Step 17: Request the TIPs to read untagged records. [Since the  memory

• 
•

- 
— available to the MMII is smaller than the MAli capaci tY , the  MMII

will divide the TIPs into segments which are processed sequen tially.
Thus , if , say , 80K bytes are available to the MMII and the  MAli
capacity is 320 K bytes , then the TIPs are divided in to  4
segments. TIPs in the same segment are requested to read their 

- •  

-

tracks concurrently, and are written into concu rrently. Steps
17 through 21 are repeated for each segment.]

Step 18: As the records from the TIPs come in , store them in the record L
storage (one revolution).

Step 19: For each record in the record storage determine if any of the
cluster—security atom pairs in the list header matches the
cluster—security atom pair of the record . If so, go to step 20,
else go to s tep  2 1 .

Step 20: Call the matching cluster—security atom pair (c ,s). Compare the
transformed keyword value In the (c ,s) l i s t  w i t h -  the  t r an s f o r m e d
keyword values in t he  record tinder cons ider;it ion. Ii a m a t c h
occurs , de le te  the t r a n s f o r m e d  keyword va lue  f r om  t h at  l i s t .
[Steps 19 and 20 t ake  one revolu t ion  a p p r o x i ma t e l y )

~ 
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? $
- - Step 21: Write the records in the record storage back into the tracks

via the TIPs. (One revolution)
Step 22: Examine the lists in the list storage.  For each non—empty l i s t

do step 23.
Step 23: Transmit the transformed keyword value in the list and the

• corresponding triple (MAU address , c luster number , sec ur i ty
• atom name) to the DBCCP via the communication bus. Go to step

13.
Note: Since the time for executing a compaction is important , let

us calculate the time on the basis of the above algorithm. The
t ime required for read ing a l l  tagged records is one revolution
[step 15]. The time required to read a segment of the TIPs is

• one revolution . Each segment also requires  n revolut ions  L ’
be processed and one to write back. Thus each segment requires
n+2 revolutions to be compacted . Assuming there are m segments.
Then the time for compaction of a MAU is 1 + m x(n + 2).
Typical value of n is between 1 and 2, and typical values  of m
is between 3 and 6. Thus, the number of revolutions to compact
a MAlI ranges from 10 to 25 revolutions. Assuming a 20 msecs disk
revolution t ime , we obta in a figu re in the range of 200 to T00
msecs for MAU compaction.

3.3.3 The Hardware Organization of the MNC

The organization of the NMC is shown in Figure 49. The internal data bus

(1DB) is the main data path inside the MMC. It connects all the table memories

(DODTM and OQTN) with the mass memory order ~~~~ ment buffer (MMOAB) and the

mass memory data buffer (MIIDB). The MIIOAB is used to receive a rgument  da t a  of

the MM order from the communication bus before they are transferred into the

DODTM. The MMDB is used primaril y as a buffer between the IOBUS on which

TIPs place their retrieved data and the SFPBUS which transmits data to the SFP .

The MMDB is also used during compaction as a stager between the IOBUS and the

internal data bus. The interface processor (IF) is microcoded and executes

* 
the algorithms given in Section 3.3.1C. It responds to request signals from

the DBCCP and controls the transfer of data from and into the NMOAB. The MN

monitor is implemented with two microsequencers . Microsequencer MC—2 is

responsible for executing the algorithm B given in Section 3.3.2B. It is

responsible for controlling the activities of the TIPs , controlling the data

transfers on the  IOBiJS, and data transfers to and from the MIIDB. MC—2 also

receives interrupt signals from the SFP and TIPs. The microsequence MC—3

• is responsible primarily for scanning the order queues on a round—robin basis ,

initiating the MC—2, if idle and con trolling the DDCs . Finally, t he  bus

• arbiter is responsible for processing requests fo r  con t ro l  of and access to

the  1DB and r e s o l v i n g  con ten t ions  for  the  con t ro l  of the  1DB. 

-“-~~~~- - ~~~~--~~—-•—- — - -:-
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- 3.4 The Track Information Processors (TIPs)

A track informat ion processor (TIP) is responsible for  mani p u l a t i n g  t h e

contents of a track belong ing to a MAU . The number of TIPs is equal to the

number of tracks in a MAU and is usually in the range 20—40. The TIPs are

capable of searching the tracks for records satisfy ing a user query in one

revolution of the rotating device. If the amount of information to be

retrieved from a track does not exceed the size of the buffer attached to the

TIP, then the retrieval operation can be performed in the same revolution as the

search operation. If the buffer size is not large enough , then additiona l

revolutions will be necessary for completing the retrieval operation. Assuming

that the size of the buffer is designed to accommodate the information retrieved

for most of the queries , we may conclude that , on the average , a retrieve—b~’-

• query order will require about one disk revolution for completion. A delet e-b y—

query order always takes exactly one disk revolution for comp letion when the user

• has type A p ro tec t ion .  As explained before , rec lamat ion  of space occupied by

tagged records (compact ion)  does not take p lace  d u r i n g  the norma l mode of

operation of the  TIPs. When a user has the type  B p ro t ec t ion , then t h e  records

defined by the query must be cleared for  secur i ty  by the SFP . The SFP is

designed to respond immediately to a clearance request  f rom the  MN . N eve the le s s ,

the TIPs must wait  f o r  an unknown period of t ime before  proceeding w i t h  the

next order. Thus , a delete—by—query order usually takes longer to complete

when the user has the  type B protect ion. Ret r ieva l—b y — q u e r y — w i t h — p o i n t e r  and

re t r i eva l—with in—bounds , each take on the average , close to one r e v o l u t i o n  to

complete. Retrieval—by—pointer takes exactly one revolution to comp lete where

..‘ the user has the type A protection. As before , only tagging of the  record

pointed to by the order is accomp lished dur ing  the norma l mode of o p e r a t i o n .

When the user has the  type B p ro tec t ion , a delete—b y—pointer order will take
• longer than one revo lu t ion  to comp lete , for reasons mentioned above . An i n s e r t —

record order takes one revolu t ion  to comp l e t e .  Final 1 y ,  the  execu t ion  of a set

- 
of orders on a MAU is followed by one disk revoluation time during which t he

TIPs wri te  back de le t ion  i n f o r m a t i o n  on the r e spec t ive  t r acks  (t h e  need fo r  t h i s
• wi l l  become apparent when we discuss the TIP logic). This represen ts a constant

overhead (of one disk revoluation) associated with each set of MAlI orders. In

Table IV , we summarize the times (in units of disk revolutions) for various

MN orders.
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• Table IV. TIP Execution Times for Various MM Orders 
•

Order Type Time in Disk Revolutions

Retrieve—by—query one for most queries;greater than one
if retrieved information is large

Retrieve—by—pointer one

• Retrieve—by—query—with— one for most queries; greater than one if
pointer retrieved information is large

Retrieve—within—bounds one for most queries;greater than one if
retrieved information is large

Delete—by—query
• (Type A protection) 

one

Delef —pointer one
(Type A protection)

Delete—by—query
* - at least one

(Type B protection)

Delete—by—pointer at least one
(Type B protection)

_ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _  _________-
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3.4.1 The Three Components of a TIP

Each TIP has three subcomponen:s — the disk drive interface processor (DIP),

the controller interface processor (CIP), and the b u f f e r s  for the

query , retrieved information (records), track header information and

communications. The DIP is responsible for receiving/transmitting data as

demanded by the mul t ip lexer/demul t ip lexer (TMD) and carrying out  the MM orders

listed in Table IV. The CIP is responsible pr imar i ly for  communicating wi th

the mass memory control ler  over the IOBUS. Such communicat ion involves
acceptance of orders and database objec t s  f rom the  MNC and t r a n s f e r  of da t a

retrieved by the DIP to the MMC .

The communication buffer and the buffer for the track header information are

small random access memories. The query memory is a sequen tial access memory

with  a capacity to store the largest sing le query that may be encountered by

the MN . Ear l ie r , we had est imated th i s  size to be in the  nei ghborhood of 1K

bytes.  The record b u f f e r  is also a sequent Ial access memory.  This memory is

divided into i n d i v i d u a l ly access ible segments .  Each segment should be capab le

of storing the largest record that may be anticipated (in practice , re co rds will
rarely exceed 4K bytes in size). The motivation for dividing the record

buffer into segments is to enable the DIP and CIP to operate concurrently, i.e.,

the DIP can be dumping information into one segment , which th e CIP might be

transmitting information from another segment to the ~-lHC via the IOBUS. The

readout rate of the query memory and the transfer rate of the  record buffer

3hould be high enough to keep in synchronization with the data transfer rate

of the disk.  Organizat ion of a TIP is shown in Figure 50. The format of t he

communication area between CIP and DIP is shown in Figure 51. The f o r m a t  of a

track as perceived by a TIP is shown in Fi gures 52a , 52b , and 52c .  Each of t h e

TIPs utilizes a bi t  map to remember the  posit ions of the  records w h i c h  were

found to sat isf y the search cr i ter ion ( i . e .,  a query  or a p o i n t e r )  d u r i n g  t h e

execution of a delete  order .  Each record on the t rack  is represented  by a
• uni que bit  in the bi t  map. When a record is to be deleted , the  corresponding

bit is turned on. This bi t  map is stored in the f i r s t  sector of the  t r a c k .

Before processing of a track is to begin , this bit map is read into the TIP buffer.

After the last order for a MAlI has been executed , the bit map is written

back on the track. In processing a retrieve order , t h i s  h i t  map is cons ulte d

— to ensure that no deleted records are retrieved . During the compaction mode of

operation, the bit map is used to distinguish between tagged and untagged rec—

- • • ords. Since we don ’t expec t more than 1000 records in a track , we need a bit

map of size 128 bytes (—1024 bits).
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Figure 50. Organization of Track Information Processor (TIP) L
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ORDER CODE — 0001 Retrieve—by—query
0010 Retrieve—by—pointer
0011 Retrieve—by—query—with—pointer
0100 Retrieve—within—bounds
0101 Delete—by—query (Type A protection)
0110 Delete—by—query (Type B protection)
0111 Delete—by—pointer (Type B protection)
1000 Insert record

• 1001 Read Tagged Records
1010 Read Untagged records
1011 Reset
1100 Write track header
1101 Find space available on track

0 1 2 3 4  5 6 7

RESERVED MAlI Address 
~~~~~~~~~~ I

* - •  .• 15 16 31 32 47

/ 
\_- Order Code

/ I I ~—. Successful completion

/ / Read/Write Errors

Buffer Overflow

L MAU Mismatch

~~~

l

Figure 51. Format of Communication Ar~’a
between CIP and DIP in TIP buffer .
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Index Gap — Denotes beginning of track

/ Deletion -~~

/ Bit Map
f~

r II Sectorl  ~Sector 2 Sector 3 . - Sec tor n J
Track Header

Figure 52a. Track Format

MAU I Track # of # of sec—1 # of I~
bor0~ sec—I ~~ ~ecord ID

ADDR ADDR clusters urity ato~n records available a~ai1abl~ 
Counter Reserved

0 1.5 16 23 24 39 40 55 56 71 72 79 80 95 96 ill 112

* 
Figure 52b. Format of the first sectOr

on a track.

Inter—Record Gap

I Record Cluster Atom No. of Keywords Record 1
I ID ID Name - 

keywords Body I 
j

• 15 47 4fi -- - - - - 35 - •

Record Header

Figure 52c. Format of a record in track
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Each track is divided into a fixed number of sectors for purposes of

allocation (see Fi gure 52a ) .  The f i r s t  two sectors are used by the TIPs to

store the bit map mentioned above and other housekeeping information .

We are now in a position to describe the various algorithms executed by

the DIP and CIP. In these algorithms the query buffer is referred to as ç~BUFFLR ,

and the record buffer is referred to as RBUFFER. When one segment of the record

buffer is full (empty).the next buffer is automatically selected for data

transfer, provided it is empty (full).

- - 3 .4 . 2  The DIP Log ic

There are thirteen algorithms executed by the  disk drive inter face
- - - process (DIP) .

ALGORITHM A: To process the retrieve—b y—query order.

Time : One disk revolut ion fo r  most quer ies;  more than  one r e v oj u t i o n
if a) a la rge  amount of i n f o r m a t i o n  is r e t r i e v e d  and b) the
buffer segmen ts are f illed up f a s ter than  they can he e mp l i e d
by CIP.

Code: 0001

Input Arguments: 1. A query in the format shown in Figure 45h . [Predicates
are assumed to be in sorted order according to
attribute identifier .

2. A MAU address.

Step 1: Compare argument MAU address with MAU address stored in the track
header in fo rma t ion  b u f f e r  (see Fi gure 51). If the two addresses
don ’t match , then re ject  order , Set N to 0. [N is a c o u n t e r  g i v i n g

;• the number of records retrieved], and terminate; else , extract
number of predicates in the query. Call it n.

• Step 2: Let number of records in the track be p. [This informa t ion is
available in the track header information buffer]. Set j--0.

-
~~~ 

— POINTERl~-O; POINTER2~ O. Send read signal to DDC.
Step 3: j j+l; if  j ’p ,  then  t e r m i n a t e .
Step 4: If the j — t h  h i t  in the  de let  ion b i t  map is on ( i  . 0 .  , if the  record

is deleted ) then skip — t h  record and go to s tep 3.
Step 5: Read the number of keywords in the  j — t h  record .  C a l l  i t  q ;

set k 1..
V Step 6: Set i~ l.

-
~~ Step 7: Extract t he  attribut e identifier A . from the i--th predicate of th e

query. Also extract predicate typ~ T. ( ‘ ‘ , ‘# ‘ , ‘ - ‘ , ‘ < ‘ , ‘ ‘ ,

* ‘ ‘‘) and value type V .. If i<n , then ~xtract A .+ 
and see if

- 

- A . =A~+i .  If so, extra~ t T~41 and Vj4.1 and set
Step 8: Read the attribute identifier B of the k—th keyword in the j — t h

record .
Step 9: Compare A~ and B. If A .>B then go to step 14. If A .<B then  go

to step 15. 1

Step 10: [ V a l ue s  to be compared.] Read value from track , cowpare with value(s)
* extracted in step 7. [In the  comparison , predicate types 1. and

T
1÷i 

and value type V . determines the type  of c o m p a r i s o n  maàe. 1 

~~. ~~~~~ ~~~~~

- 
___________
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Step 11: If the comparison is successful , then RBUFFER[POINTER1] keyword ;
update POINTER1, 14-1+1. If i>n , then go to step 13. If comparison
is unsuccessful , then go to step 15.

Step 12: k~k+1; if k<q then go to step 7; else, go to step 15.
Step 13: [Record satisfies query ]

RBUFFER[POINTER1] ÷ rest of record. POINTER2-~-POINTERl ; n’-n+l;
go to step 3.

Step 14: [Wrong attribute] RBUFFER[POINTER1] keyword .
k~~k+l; if k<q then go to step 8; else , go to step 15.

Step 15: [Record does not s a t i s fy  que ry ]  POINTER I÷POINTER2 ; skip j — t h
record ; go to step 3.

Response: RBUFFER contains retrieved records; POINTER1 points to the last
byte in the buffer that is occup ied .

Note: 1. In step 11 or in step 13, if PO1NTERI indicates overflow of
RBUFFER, then processing is discontinued , and is resumed after
one revolution.
2. In step 2, a read signal is given to the DDC to start reading
the track. DDC waits until the track index gap is detected before
starting data transmission .

ALGORITHM B: To process the retrieve—by—pointer order.

Time: one revolution

Code: 0010

Input Argument : 1. A pointer to a record in the format given in Figure
45d.

2. A MAlI address.

Step 1: Extract record identifier , cluster number and security atom number
from argument pointer.

Step 2: Send ‘read track’ signal to DDC [see note 2 under algorithm A].
Step 3: Compare argument MAlI address with MAU address stored in track

header information buffer. If the two addresses don ’t match ,
then reject order and terminate.

• Step 4 :  Read the number of records in track. Call it p. j~ 1 -

Step 5: From the j—th record in track , read off the record ID, its
cluster number and security atom number. Compare with argument
record ID, cluster number and security atom name .

Step 6: If comparison is successful (i.e., an exact match occurs), then
read the rest of the record into RBUFFER , set N-~-1. Terminate.

Step 7: If comparison is unsuccessful skip j—th record . j*j+l. If
j<p, ~hen go to step 5.

Step 8: Set N~-O; terminate.

ALGORITHM C: To process the retrieve—by—query—with—pointer order.

Time : same as for algorithm A

Code: DOll

Input Arguments: 1. A query in the forma t shown in F i g u r e  45h .  I Pr ed i c a t e s  -
~~~~

are assumed to he in sorted order according to aitr i—
h,ite ident ifier.

2. A MAlI address.

Step 1: Execute steps 1 through 15 except step 5 is modified as follows :
“RBUFFER [POINTERI I MAlI address , cluster identifier , securit y

_____ •
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atom name , record i d e n t i f i e r;  update POINTER1; read the number
of keywords in the j — t h  record . Cal l  it q; set k~-- l. ”

ALGORITHM D: To process the retrieve—within—bounds order.

Time: Same as for algorithm A

Code: 0100

Input Arguments :  1. Two pointers  in the  format  shown in Figure 45e.
2. A MAU address.

Step 1—2 : Execute steps 1 and 2 of al gor i thm A
Step 3: j~-j+1 ; if j-~p then terminate.
Step 4: If the j — t h  bi t  in the dele t ion bit map is on (i.e., if t he

record is deleted). Then skip the j—th record and go to step
3.

Step 5: Compare the record identifier of the j—th record with the lower
bound and upper bound record i d e n t i f i e r s  in the a rgumen t  p o i n t e r .
If the record i d e n t i f i e r  f a l l s  in between the two bounds then  go
to step 6; else , skip j — t h  record and go t~ step 3.

Step 6: RBUFFER[POINTER1J ‘- j — t h  record;  update  POINTER 1 and PO IINTER2 .
n~ n+1; go to s tep 2.

ALGORITHM E: To process the de le te—b y—query order wi th  type A p r o t e c t i o n .

Time: Same as for algorithm A

Code: 0100

Input Argumen t s :  Same as for al g o r i t h m  A

Step 1—10: Execute steps 1 through 10 of algorithm A.
Step 11: [ M o d i f i e d  version of s t ep  11 of  al g o r i t h m  A] if compar ison  is

success fu l , then  i~~i+1; if  i~~ i then go to s tep  13. I f  c o m par i s o n
f a i l s  go to step 15.

Step 12: Execute step 12 of algorithm A.
Step 13: [Record satisfies query] Set j—th bit of de le t ion  b i t  map to 1.

Co to step 3.
• • 

. 
Step 14: k~ k+1; if k < q ,  then go to step 8 , else go to s tep  15.

* 
- Step 15: Skip j — t h  record , go to step 3.

ALGORITHM F: To process the delete—b y—pointer when user has type A protection.
- • Time : Same as for algorithm B

Code: 0101

Input Arugments: Same as for algorithm B

Step 1—5: Execute steps 1 though 5 of algorithm B
Step 6: If comparison is successful , (i.e., an exact match 0 -curs), then

set j—th bit of deletion bit map to ‘I’. Terminate.
Step 7: Fxecute step 7 and 8.

ALGORITHM C: To process the delete—by—quer y when user has type l~ protect ion.

Time : One disk revolution plus a variable length o f t ime .

Code: 0110

Input Arguments: Same as for a!gorithm A
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Step 1—2~ Execute steps 1 and 2 of algorithm A
Step 3: i÷j+1; if j>p, then go to step 16

- Step 4—12~ Execute steps 4—12 of algorithm A
Step 13: [Record satisfies query]

RBUFFER[POINTER1] 4- rest of record , j.
POINTER2 ~ - POINTER 1; n-’-n+l ; go to step 3.

• Step 14—15: Execute steps 14—15 of algorithm A
Step 16: Wait for response from SFP.
Step 17: For each record position returned by SFP, turn on the corresponding

bit in the deletion bit map.

ALGORITHM H: To process the delete—b y—pointer order when the user has type B
protection .

Time: One revolution plus a variable length of time .
Code: 0111

Input Arguments: Same as for algorithm B.

Step 1—5 : Execute steps 1 through 5 of algorithm B
Step 6: If comparison is successful (i.e., an exact match occurs), then

read the rest of the record into RBUFFER , and store the record
position j into RBUFFER. Go to step 8.

Step 7: Execute step 7 of algorithm B.
Step 8: Wait for response from SFP.
Step 9: If SFP response indicates deletion is allowed , then turn on

j—th bit in the deletion bit map .

ALGORITHM I: To insert a record in the track.

Time: One revolution

Code: 1000

• Input Arguments: A record in the format sho~~~~~ Figure 45c .

Step 1: Send “write” signal to DDC. [This signal prepares the DDC for
• 

~~~ data transfer from the TIP to the track. As in the case of the
“read” signal, the DDC waits until the beginning of the track
is under the read/write mechanism before accepting data for writing].
Increment record ID counter, read the counter valve and store it

• in the record.
Step 2: Write the record after the last record in track.
Step 3: Update number of bytes still available in track and number of

complete sectors available in track. [Note that this upda te
takes place in the TIP’s local buffer area which stores the track
header information . (see Figure 50 and Figure 52b)1 Terminate.

ALGORITHM J: To read the tagged records on a track.

* Time : If the record buffer is filled faster than it can be emptied , -
~~

L

and if the amount of information retrieved is large , then more
than one revolution will be necessary. .. .~~~~

Code : 1001

Input Argument: A MAU address 1J

Step 1: Verif y that the argument MAlI address is the same as the MAU
address in the track header.

T : ~~~~~~uMr- Jn r~~~~~~. ~ - ,~~~~~ 
~~ -~~~~~---~~ - - -- _ - --~- -  

-
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Step 2:  Send “read ” si gnal to DDC . [See note 2 under  al g o r i t h m  A . ]
-

• Step 3: Let number of records in track be p; N’-0;
Step 4:  For j = 1 through p do step 5
Step 5: If the j—th bit is turned on in the  de le t ion  b i t  map,  then  read

the j — t h  record into RBUFFER . n~- i*l. If RBUFFER becomes full ,
then d i scon t inue  processing for  the  rest of the r e v o l u t i o n .  I f
the j — t h  b i t  is not turned o f f , then skip j — t h  record .

• Step 6: Terminate .

-~ - ALGORITHM K: To read the untagged records on a track.

Time : Same as fo r  algor ithm J

• Code : 1010

Input Argument : A MAli address

Step 1—4: Execute steps I through 4 of algorithm J
Step 5: If the  j — t h  b i t  is turned  off in the deletion bit map, then read

the j — t h  record into RBUFFER , n~n+l . If RBUFFER becomes full ,
then discontinue processing fo r  the rest of the revolution.
If the  j — t h  bit is turned on , then skip the j—th record.

Step 6: T e r m i n a t e .

ALGORITHM L: To process the reset order

Time : Time to read the f i r s t  2 sectors f rom the t r ack .

Code: 1011

Input Argument :  None

Step 1: Send “ read ” si gnal to the DOC . [See note 2 under al g o r i t h m  A ]
Step 2: Read sector 1 and 2 f rom the t r a ck  in to  the track header

information buffer. Terminate.

ALGORITHM N : To w r i t e  back a t rack  header .
• Time : Time to wr i t e  the f i r s t  2 sectors of t he  t r a ck .
- 

•- - Code: 1100
• Input Argument: None

Step 1: Send ‘write ’ signal to the DDC [see step 1 of algorithm II .
Step 2: Write track header information buffer into first two sectors

of track. Termina te.

3.4.3 The CIP Logic

ALGORITHM A: To load the communica t ion buffer wi th an MN order , and the query
or record memory with an argument of the MN orde r .

- - Input Arguments: Data from IOBUS.

Step 1: Read order from IOBUS.
Step 2: If t h e  order is find—space—available—on—track , then go to step

6.
Step 3: If t he  order is Insert—record go to step 5.

- -

- 
Step 4 :  Read t he  ar g u m e n t  of or ~h e r  and s t o r e  i n  query m em or y .  Pl o- i

order  In & - o m m u n l c i t  ion b u f f e r .  T e r m in a t . .

~~~~~~~~ :~~ . 
_ _  _ _ _ _ _ _ _ _ _ _- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ -
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Step 5: Read the argument of order and store in record buffer . Place
order in communication buffer . Terminate.

Step 6: Read , from track header information buffer , the number bytes
available on track and the number of sectors available on the
track and send them to MMM via IOBUS. Terminate.

ALGORITHM B: To transfer information from the buffer to the IOBUS.

Input Arguments: None

Step 1: For each segment of the record buffer do step 2.
• Step 2: If the segment if full , then t r ansmi t  the in format ion  f rom

buff  er segment to IOBUS.
Step 3: Terminate

3.5 The Track Multiplexer/Demultiplexer (TMD)

This piece of hardware is responsible for routing da ta be tween the d r iv e

selector and the TIPs. During a read operation , data from the drive selector

is distributed (demultiplexed) to the set of TIPs in a round—robin fashion .

During a write operation data from the TIPs is multiplexed to the drive selector

also in a round—robin fashion.  The time taken by the DDC to t ransf er a data

unit  to ( f rom)  a t rack  is called the cycle t ime. A da ta  u n i t  is usua l l y  in

the range 16—64 bits and is resident comp letely on a single tr ack. Since all

of the N tracks constituting a cylinder can be read from or written into

concurrently,  and since there is a one—to—one correspondence between the

tracks of a MAli (cylinder) and the  TIPs , it follows that the TMD must handle

N data units within a cycle time . The above statement also implies that data

units are always transfered to (from) a given track from (to) a corresponding

TIP. The cycle time may thus be divided into N time slices; each time slice

is assigned to transfering a data uni t  between a t rack  and its corresponding TIP.

In order to gain an insight into the timing considerations Involved , let

us illustrate the above discussion with a typical example. Let us assume the

following parameters : device rotating speed is 2400 rpm, t rack size is 16K

bytes , data unit size is 32 bits and number of t r ack s  per MAO is 20. Then t i m e

to read or write one data unit is about 6.25 psec . This means tha t the t ime

slice is about 312 ~sec. If we assume no buffering in the m u lt i p ley er / d e m u lt i —

plexer or in the drive selector , then the propaga t ion delay for a data unit to

trave l between a DDC and a TIP must be less than 306 nsec . With gate d e l a y s

of 10—20 nsecs with current TTL technology , the maximum number of gates in the path

of propagation of data is in the range 30—15. From Figures 53, 54 , and 55,

we learn tha t tlt~ number of gates in the path of propaga tion f rom the DDC to

the TIP is 7. Amp lificat ion and inversion o f signals wil l  introduce an

• . • - - _•~~~~~~~~~ • •—-—---- —~~~~~~~ - -i— —~~~~~~~
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Figure 53. Logic required for demultiplexing a bit from the drive selector
to 10 TIPS. If a data unit has n bits, then n such segments
are required .
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Figure 54. PropagatIon of one bit through the device selector.
For a data unit width of n bits , n such segments will
be required . . - -~~

______________________________ -



r ~~~~~~~~~~~~~ 

— 
~~— - - .- - -- --~~--- --~. - —L~~-L-

— --. —— --- — - 
______ •———-~ -

—119—

• 

::: ::

I I i I 
~ ..To/From

I I 
The Drive

I I .e. Selector

Track (N-l) fl~~~~~~~
: 1~~~~~~~

H 
- 

I n h Injx
To/From 

~~Track N

_ J  L _ J ~
Assembly/Disassembly Input/Output

Registers Registers

Figure 55. Flow of Information through Disk Drive Controller

______ ~~~~~~~~~~~~~~~ ~~— - - -- *-*---- ~.- .—--—- ---- 
— —



r _ _ _ _ _ _ _ _ _ _ _ _ _ _

—120—

additional 2—3 gate delays. Allowing 75 nsecs for data skewing at the

receiving end and delays due to cable length, we are still well under the limit

of 306 nsecs. For a recording density of 16K bytes per track , we have tabluated ,

in Table V the t ime slices ava i l ab l e  for  various disk r o t a t in g  speeds , dat ;i

unit sizes and tracks per MAU (cylinder). From the table , it is clear that

when the rotating speed is increased and/or when the number of tracks that

arc read or written into is increased , the data unit size must progressively

increase in order to provide for an adequate time slice. If the time slice is

smaller than a threshold value , propagation delays can cause unreliable data

transmission.

3.6 The Drive Selector (DS) and the Disk Drive Controllers (DDCs)

3.6.1 The Drive Selector (DS)

This subcomponent is controlled by the MMM and is responsible

for gating the proper device drive controller ’s output to the input of the

multiplexer/demultiplexer and gating the output of the TMD to the proper
DDC’s input. The DS achieves this function by using a group of flip flops

to control gates which route data (see Figure 54). The flip flops are set

by signals from the MMII.

3.6.2 The Disk Drive Controllers (DDSs)

The DDCs are responsible for the following control functions over

the disk drives: selecting a disk drive for read/write operations ,

initiating disk arm movements , providing buf fe r ing  of data between
* - the drives and the drive selector , and initiating error recovery pr IR-edures

during data transfers. The DDCs are controlled by the  MNC until a data transfer

is initiated . During data transfer , signals from the TIPs are used to determine

the amount and direction of data transfer. The CBUS is used by the MMII to

conm~unicate orders to the DDCs. The CBUS has an adequate number of address

lines ( log
2m where m is the number of DDCs) to address any of the DDCs to

the exclusion of other DDCs and status control lines which enable the MMC to
monitor the activities of each of the DDCs.

Usually, a DDC controls between 4 and 16 disk drives. The DDC can initiate

data transfer operation on any one of the drives and initiate arm movements

on any of the drives. Since data transfer takes place on all the tracks of a - I
cylinder , concurrently, the DDC provides for a set of assembly/disassembly of
registers. There is also a set of input/output registers which can he read or

written into by the drive selector. Thus, there is one pair of assemb l y/dis—

assembly and Input/output registers for each track o f a cy l i n d e r  ( see F i g u r e  j
55). The input/output registers serve two purposes. They serve as the interfac e 

‘I
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- Table V. Time Slice in Nanoseconds as a Function of Rotating
Speed, Number of Tracks and Data Unit Size

RPM 20 Tracks 30 Tracks 40 Tracks

2400 76.3 152.6 305.2 610.4 50.8 101.6 203.2 406.4 38.1 76 .3  152.6 305 .2

3000 61.0 122.0 244.1 488.2 40.6 81.4 162.8 325.6 30.5 61.0 122.1 244.1

3600 50.8 101.7 293.5 496.9 33.9 67.8 135.6 271.26 25.4 50.8 101.7 203.5

8 16 32 64 8 16 32 64 8 16 32 64

• . 
Number of Bits in a Data Unit

I
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between the driver and the drive selector , and they allow data units to be

assembled/disassembledwhile data is being read from or written into the input!

output registers. The size of these registers is the size of the data unit that

is chosen for safe multiplexing/demultiplexing.

j
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4. THE SECURITY FILTER PROCESSOR (SFP )

The security filter processor (SFP) is responsible for providing security

clearance for users who have the type B protection and for sorting the response

data from the MM if the user has requested sorted output. As was mentioned —

in Section 2, the enforcement of a security policy for a user , who has the type

B protection , cannot be carried out until after the information has been

accessed by the MM. The information accessed by the MM is in the form of records.

The security policy for a user is encoded in file sanctions con tained in the

user’s database capability. Thus, the SFP must determine , for each of the

records accessed by the MM, the file sanctions that are applicable to the

record and whether the access requested by the user is graated by all of the

applicable file sanctions. A file sanction is applicable to a record if the

record satisfies the query contained in the ‘rile sanction. A record is said

to have been cleared for security if all the  file sanctions that are applicable to

it grant the access requested by the user. Records , which are cleared for

security, can be sorted on the basis of the values of an attribute chosen by

the user, before transmission to the user. In t h i s  sect ion , we pr*~ *ose an

organization of the SFP which can perform the above functions in an efficient

manner by employing circulating memories 112 ,131.

• 4.1 Design Considerations

4.1.1 Security

Although we mentioned above that the security policy for a user
having the type B protection cannot be enforced until after the access to the-

MM, there is one exception. Insertion of a record can (and should) be cleared

for security before the record is inserted . This implies that the DBCCP will

request the SFP for a security check on all insert—record commands issued by

users with the type B protection. Thus, there are two sources, namely,

the MM and the DBCCP, from which requests for security enforcement may be

encountered by the SFP. Requests from the MM pertain to the retrieve—and—

delete commands.

Enforcement of security policies for a user with the type B protection

involves comparisons of the keywords of records with the keyword predicates of

the file sanctions. In order to handle the high retrieval rate of the MM in a

manner that does not —reate a bottleneck, the SF? must be capable of performing

fast comparisons. Although, conventional comparator circuits employ ing

bipolar logic is a possible (and expensive) solution , the emergence of cheap
• sequent ial access memories with on—chip log ic (CCDs ) p rovides us wi th  an

interesting a l t e rna t ive .

________________ 
_________ • - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ____________



In Figure 56, we have shown how such memories might be used to carry out

several comparison operations in parallel. The operation of the scheme may be

briefly described as follows: records from the MM or the DBCCP which are to

be checked for security clearance are placed in a randomly accessed record

memory (RM). We require a RAM to store these records , because, in general ,

only some of the records will be cleared for security and we need to retrieve

only these records and discard the rest.It is possible that clearance of records

will not be sequential but at random. A query associated with a file sanction

in the database capability of the user is loaded into a sequentially accessed

query memory (QM). The comparison memory (CM), which consists of a set of

circulating memory—processing element pairs, is then loaded with the keywords

of each of the records in the random access memory. The processing elements

have two functions: searching for a particular keyword satisfying a particular

keyword predicate or acting as a connector between two adjacent data paths . The

first function is useful in determining if a record satisfies a query, and the

second function is designed to handle the variable length of the keywords and

the variable number of the keywords in a record . The keywords in the record

and the keyword predicates in the query are assumed to be in sorted (ascending

or descending) order of attribute identifiers. The memorl controller (MC)

reads a keyword predicate from the query memory, and broadcasts this information

to all the processing elements which are not acting as connectors. The fact . . —

that keywords are ordered enables the processing elements to search only up to - 
- -

a point (in the circulating memory) where the attribute identifier is greater

than the search attribute identifier supplied by the memory controller. At the

end of one complete circulation t iiae , the comparison memory would have determined

which of the keyword sets satisfy the query and which of them do not. On the

basis of this knowledge, the memory controller can proceed to determine if the

access requested by a user is permitted by a file sanction on the records

satisfying the file sanction query. Those records on which the access is denied

are deleted from the random access memory. By repeating the above procedure

with each of the file sanctions in the database capability of the user , the memory - - 
-
. 

-

controller can determine the set of records on which the desired access is
- ~ • •

permitted by the database capability.

Since security enforcement is often regarded as an overhead , it is impor—

tant for us to have an idea of the t ime taken by the SFP to pe r fo rm the opera—

tions discussed above. Using CCD technology , it is possible to obtain up to

10 )thS shift rate. Assuming that in the worst case , file sanction queries arc V
unlikely to have sizes more than 1K byte , the time required to determine whether

• .. _.._ _ —---—- - _•__~~~~ 3~ — - -
~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - • - ~~~~~~~~~~~~~~~~~~
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records sat isfy a query or not , is of the order of 1 msec. Thus, if the data-

base capability contains n file sanctions, the time taken to complete the

secu r i ty  clearance is n milliseconds. Typ ical values of n lie in the range

10 to 100.

4.1.2 S o r t In g
— 

The technology considerations which were discussed above In the de-
sign of a security enforcement schern also apply to sorting . Intelligent
storage systems which combine cheap sequential access memories with simple

logic capabilities can be used to sort records that are to be sent to the user.

As mentioned earlier , the sor t ing  of the records is done on the bas is of the

values of a single attribute which occurs in the records tc be outputted to

the PES. Thus , it is only necessary to load the intelligent memory with the

appropriate values and pointers to the records conta in ing  them. After the

sor t ing of t he values is completed , the records can be output ted  in the sorted

order of the a t t r ibute—value pairs .

In discussing t he operation of the in te lligent memory used in sor t ing ,

we once again refer to Figure 56. The RAN is used for  storing records which

are to be sorted . The circulating shift registers in the comparison memory

will each contain an attribute value and a pointer to the RAN where a record

containing the attribute—value pair is stored . The memory controller can

issue commands to the processing elements to compare the contents of adjacent

• circulating registers. Depending on the sort criterion and the attribute

values, the processing elements will either interchange the contents of the

two adjacent circulating registers or allow the circulating registers to

retain their original contents. Such an operation may be performed repeatedly

until the contents of the circulating registers are in sorted order according

to the attribute—value pairs. The query memory is not used in this sequence

of operation. The maximum time taken to sort n circulating registers have been

( shown to be where r is the circulation time [11]. 
*

From the above discussion , one might gain the impression that the same

piece of hardware may be used for  both secur i ty  checks and so r t ing  of records .

While such an approach is entirely feasible, it is not des i rab le .  We advance

several reasons for  t h i s .  First , from the point of achieving  maximum concurrency

wi th i n the SFP it is desirable to have separate un i t s  for  secur i ty  check ing  and

sort ing.  Under th is  scheme, records which have been cleared for security may

be sent to the sor t ing hardware for sort ing,  thus f r eein g the  securit y ha r 1wa re

to handle the next batch of records for securi ty clearance. Second , although ,
f t

11 ~
—
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in principle , the ha rdware for comparison operation and sort ing are similar , they

are by no means identical. If we use the same hardware for both operations , we
would need to design features which may be required for one or the other
opera tions but not both. An example is the query memory which is used in

security checks but not in sorting. Several other features will be discussed

in the next section. Third , deletion in the MM cannot be completed (for users

with type B protection) until security clearance is obtained from the SFP.

This reinforces the need for concurrency discussed above. Thus, we concl ude ,
that we should have sepa rate units for security checks and for sorting.

4.2 Implementation Considerations

In accordance with the discussions in the last section , the SFP is imp lemented

using two modules which can function concurrently. These are the security

enforcement module (SEM) and the sort module (STM). In this section , we present

details of the components of the two modules and how they interact to produce

the desired result , namely security enforcement and sorting.

4.2.1 The Security Enforcement Module (SEM)

A. Processing Element — By far the most important component of the SEM is the

processing element (PE) in the comparison memory (CM). In Fi gure 57 , we have

shown the five components that comprise a PE. These are comparators , the path*

control , the data routing logic, the timing control and the argument registers.

The comparator makes serial comparisons between the contents of a path and those

of the P and Q registers. The type of comparison is specified by the four

.- - 
search specifier lines S1—S4 . The lines S5 and S6 specify the value type of t he

• comparison arguments. The p~~Ji control is responsible for proper connections

* between adjacent paths. When the PE is in the search mode (control line c= o),

then the path control’s function is to maintain the connection between L~ and

and Li 1  and ~4l~ 
When the PE is in the connect mode (control line C = 1),

then the path control’s function is to maintain the connection between L~ and

and Li_i and L’. The data routing logic directs data from the input data

line Dl to either of the two registers in the PE or the path L1. When the

control line C~ of PE
i 

is low ( 0), then loading of P, Q or path L . can be

achieved by maintaining one of LI , L3, L3 high. If C1 is high ( 1) no loading

can take place. The timing con t ro l un i t is responsible for generating all the - - -

.‘
~~

-
-

si gnals  at the app rop r i a t e  t imes for  the  correct  fu n c t  i on i n g  of the three uluts

described above . The timing control unit takes as input the signals ~~ L
1
, L

2 
-
~~~~~

and L
3 

generated by the memory controller. The fifth component of the PE

consists of four sequential access memory elements — A , B , P and Q registers. 4

L .  *A circulating register is called a path in this discussion.

_______________ _______ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~— - • -
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Figure 57. Block Diagram of a PE (see Table IV for explanation of control lines)
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H
TABLE VI. Explanation of Control lines in Figure 57

Broadcast Control Lines (common to all PEs)

Li: Load path; L2: Load P—register ; L3: Load Q-register
Dl: Serial data for P and Q registers and path L.
Sl—S4 : Search Specifiers = 0001 — Attribute Search

= 0010 — Search for value equal to P
= 0011 — Search for value # P
= 0100 — Search for  value < P

• = 0101 — Search for  value < P
= 0110 — Search for  value > P
= 0111 — Search for  value ~ P
= 1000 — Search for Q < value < P
= 1001 — Search for  Q < value < P
= 1010 — Search for Q < value < P
= lOll — Search for Q < value < P
= 0000 — Comparator inactive

S5 ,S6: Value type specifier 00 fixed point
= 01 floating point short
= 10 floating point long

11 Alphanumeric
Dl: serial data input

Indiv idual Data and Control Lines (one of each l ine for  each PE)

L . — Input f rom data path i

— Output to data path i

L
j+i 

— Input from data path 1+1

Li+i 
— Output to data path i+l

C — Connect control line 0 L connected to L!, L. connected to I
— I i 1 i+l I+]•~

= 1 L . connected to L ! , L . con nected to L
1 i+l i+l

S~ 
— Search successful indicator

Fi 
— Search failure indicator

~~~ •.• 1..
_ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~
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A and B registers are called difference registers, and P and Q registers are
known as value registers. The value registers can be loaded from the data

line Dl. The d i f fe rence  registers are used by the comparator in floating
point comparisons .

-
. • We are now in a position to describe how the PE is used to carry out a

search operation for a set of keywords belonging to a record satisfying a

query conjunct of keyword predicates. Assume that a set of keywords has been

loaded into the i— th  data pa th .  (We shall describe the loading opera t ion la ter
in this section.)  The memory controller orders PE

~ 
to get into the search

mode (C
1 

0). The P register is then loaded (L2 = 1) with the attribute identifier.

$ The search specifiers are then set to “a t t r ibute- -search”  (Sl—S6 = 0001) by the
memory control ler .  The comparator compares the  next 16 bits with the 16 b i t s

in the data path L1. If the bits match then the signal S . is raised and pa th

movement is halted to await the next instruction from the controller. If the

data path contents are greater than those of the P—reg ister , then  the

signal is raised . [f the data path contents are less than those of the P—reg ister ,

then the data path  L . is shi f ted  beyond the value bits following the attri—

bute  i den t i f i e r .  The sh i f t  count is maintained b y the A r eg i s te r  which  is load ed

with the length of the value field in the data path. [Recall from Figure 4 -
~~~~

that  the length of a keyword is recorded between the attribute and the

corresponding value] A comparison is again attempted with the next attribute

identifier in the data path. If the end—of—path is reached , without an

a t t r i b u t e  match , then the line F . is raised . When an a t t r i b u t e  match  is
• - 1

obtained by PE ., then the memory con t ro l le r  i n i t i a t e s  a value comparison be tween
1

the value in the keyword predicate and the value in the dat path. The lines Sl—

S6 are set accordingly, and the registers P and Q are loaded before the compari-
son begins. Fixed point comparison is s t ra igh t f o r w a r d .  In the case of

floating point comparison , the comparator has to remember the exponent

d i f fe rence  between the comparands , since the values need not be normalized .

The A register is used to store the d i f f e r e n c e  between the exponents of the

P—regis ter  value and the data path  value , while  the B—reg is ter  is used to store

the d i f f e r e n c e  between the exponents of the Q—regis ter  value and the da t a  pa th

value. The mantissas are then compared . During the comparison , addi t ional

* 
ze ros are inserted in f ront  of e i t h e r  the P — r e g i s t e r  b i t  s t ream or in front

of the data path bi t  stream depending on the sign of the difference stored in

A— register .

• Sometime , the query  conjunc t  has two keyword predicates belon ging to the

same attribute. This implies a b e t w e e n — t h e — l i m i t  type  of search. In such cases,

&..~ ~~~~e ~~~~~~~~~~~~ ~i;; — •~_~ 
_-‘

~~ iTi
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the memory controller loads both the P and Q registers with the upper and lower

bounds of the search. The PE then carries out simultaneous comparisons between

the contents of the P and Q reg isters on one hand and the data path on the
other. The signal S~ is raised by t he comparator if the comparison of values is
successful ; the signal Fi is raised if the comparison is not successful.

Once the F signal is raised by a PE , it canno t par ticipa te In f ur ther
search operations unt i l  the data path contents are replaced (L

1 
= 1). When the

memory controller has processed all the keyword predicates in the query or

when all the PEs have shifted their respective data paths through a full cycle ,
t he controller reads the S—signals of all the PE elements which were in the

- - search mode. The records whose sets of keywords were processed by PEs wi th

the S—signal true . sat isfy the query conjunct in the query memory.

A memory chi p usually contains several PEs of the type described above .
The chip also contains the data paths processed by the PEs. There are as many

data paths as there are PEs . A FE may, however , process several pa ths conne cted

in tandem as shown in Figure 58.

B. Memory Controller (NC) and Query Memory (QM) — The memory controller (MC )

has a number of important functions which may be enumera ted as follows :

Interfacing with the DBCCP via the communication bus.

Responding to requests for security checks from the MM and DBCCP.

Controlling the comparison memory , the que ry memory and the record
memory (see Figure 56).

The MC needs file sanctions belonging to a user database capability in order

to enforce security. These f i le  sanctions are stored in the securi ty  infor—
- 

- mation table memory (SITM ) in the DBCCP . The MC is able to access the SITM b y
• competing fo r cont rol of the commun ication bus with the processing components

of the DBCCP. The MC will  accept requests for securi ty checks from the MM
and the DBCCP , wi th  the MN enjoying a higher p r io r i t y  than the DBCCP. The MC

controls the comparison memory by issuing the correct sequence of broadcast

signals (see Table VI) and by monitoring the response si gnals of the compa r ison

memory . The MC controls the query memory by overseeing the loading of f i l e

sanction queries into the query memory and by reading out keyword predicates

from it as ar gumen ts to t he comparison memory. The record memory is used by the

• MC to store records for which security clearance is to be determined . The

record memory is also used to maintain (separate) queues of requests from the MM
-• and DBCCP.

We now describe the logic of the MC as it processes a secur i t y  c learance

~~1~-~~r ~~~~~~ ~~~~~ ~~~~~~~~~~ i j  

~~
-
~~~~~~~~~~~~~

- - -: .  ~ - • —
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- - 
request. First , the command identifier is extracted from the request. This

ident i f ie r  is used to access the command status table (CST) and re t r ieve the

user ID of the user who Issued the command . This ID is then used to access

the user informa t ion table (UI T) to obtain the address of the f i l e  sanct ions in

th e security informa t ion table. The query associated wi th  a f i l e  sanction is

then loaded into the query memory. The keywords of the records in the record

memory associated with the request under processing, are loaded into the comparison

memory as follows : the “connect ” si gnal C.  o f al l  the PEs (see Fi gure 57)

except the f i rs t  PE (see Fi gure 58) are raised high . This forces a l l  the  PEs

except the first to allow data to be exchanged between adjacent paths. As

the bit st ream of a keyword set reaches i ts  assi gn ed pat h , the connec t s ignal

of the corresponding PE is lower ed , thus  “t rappi n g” the keyword set in the

dat a path. If there are n paths in a chi p, and if we assume that  a l l  ch ips in

the compa rison memory are loaded simultaneously,  the time taken to load the

compa rison memory is n path c i rcula t ion periods. A f t e r  the loading of the

comparison is completed , the MC proceeds to systema t ically search fo r keywords

in the data path which satisfy the keyword predicates of the query conjunct in

the que ry memory . The MC also main ta ins  the correspondence between the  sets of

keywords in the data  paths and the records in the record memory in w h i c h  the

keyword sets occur. At the end of one search operat ion , the records w h i c h  have

keywords sa t i s fy ing  the f i le  sanct ion query in the query memory are i d e n t i f i e d .

The access descriptor associated wi th  the f i l e  sanction is looked up to check

i f the access r cquested on the records is granted . If it is not , then the

records which satisfied the query are deleted from the record memory.

The above process is repeated for each of the f i l e  sanc tions in the user ’s
- - database capability . The records, which survive the deletions at the end of

each of the sea rch oper at ion , are then sent to the DBCCP or the MM. These are

the records for which the requested access is granted by the database capability

of the user.

4 . 2 . 2  Sort Module (STM )

Reco rds which  are cleared for  secur i ty  b y the  SEM , and are  to he sent  to the

PES (via the DBCCP) are sorted by the sort module (Sm) If the sort op t ion  has

been speci f ied by the use r.  The STM uses hardw ar L very s imi la r  to the hardware

used by the SEM. The 5Th c o n sI s t s  of three  components  — a sort memory. a so r t

memory c o n t r o l l e r  and a record memory.  The son mem ory  is imp lemented  by :1

set of sequential access memories called data paths and by a correspond ing set
of processors . Each processor can receive inputs from two adjacent data paths.
The sort method used is the odd—even transposition sort described in [14]. Each dat a
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path is loaded by the sort memory controller with a value of the attribute specified

in the sort option and which occurs in a record to be sent to the PES. The

data paths are designed to be lon g enoug h to hold values up to 31 bytes long

(recall from section 2 that alphanumeric values can be no longer than 31 bytes).

The sort memory controller also loads into each data path a po inter to the

record in which the keyword , with the value in the path,occurs. The maximum time

to sort is given by n/2 path circulat ion periods , where n is the number of paths

in the sort memory . The record memory contains the records while the sort ing is

in progress.

As in the case of the SEN. the processing element (PE) in the sort memory

is an important component. We have shown a block diagram of a FE in the sort

memory in Figu re 59a . The log ic of a PE is as follows . A PE can fu nct ion in three

modes — the load mode, the sort mode, and the read mode. During the load mode

all PEs except the PE (see Figure 59b) connect L . to L~ and L . to L’ .
0 1 i—l i—l I

PE connects da ta in pu t l ine D . to L . All the data paths in the sort memory
0 in o -

can be loaded in n circulation periods. After loading is comp leted . t h e  sort

memory controller raises the sort signal 5E for  half  a ci rcu la t ion  period . This

begins the sort mode. During the next ha l f  a c i r c u l a t i o n  period , the  sort  s igna l

S0 is raised. The sort signal S
E 

ini t ia tes  all even numbered processors to

compare adjacent path contents , wh ile the sor t signal S~ initiates all odd

numbered processors to compare adjacent path contents.  When the con ten ts of

adjacen t paths are different and they meet the sort criterion (ascending or

descending order),  the n the contents  are interchanged between paths  by the
- 

- processor. For examp le , if the sort order specif ies ascending order , and if

L ~ L , L . is connected to L’ and L is connected to L !.  The comparison1— 1 i 1 i—l i—i 1

• is always bit serial , and , th erefore f loa t ing  point numbers should be normalized

for correct sorting . The s h i f t i n g  of data paths  1j ~~sL  the processing element is
synchronous . If during a circulation period , no exchanges take place , the sort

- - memory controller recognizes this fact  by sensing the signal marked x . Th i s

• signal is propagated from one PE to the next ; at each PE the incoming si gnal is

ORed wi th  an exchange signal locally generated .

Af te r  the sorting is completed , t he sort memory enters the read mode if
-

‘ 
t he signal R is raised by the memory con t ro l le r .  During the read mode , a l l  PEs

except PE connects L . to L’ an d L to L~ . P E connects L ’ to D . The
0 3. 1—1 1—1 1 0 o out

sort memory con t ro l le r  re t r ieve s the  records f rom the records memory in the
-
~~~order in which pointers are retrieved from the sort memory . The retr ieved records

are sent to the DBCCP and palced in the data response memory (see Figur L - 41 ) .

_______ ~~~~~~~~~~~~~~~~~~~~~ _~~~ . • ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~-~ -~ ______
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Figure 59a. Block Diagram of a FE in the Sort Memory
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I

4.3 Some Comments on the SFP Implementation

The capacities of the record memory in the SEN and in the STM are
designed to accon~ odate the records associated with most of the security
and sort requests. However , a single MM order c.-in retrieve all the records in

a MAU, In such a case, the SFP cannot accept all the records at one time We

could have designed an SEN and an STM whose memory capacities equal that of a

MAU, Such a decision , however , would entail changing these capacities as and

when the MAlI capacity changes due to technolog ical reasons. We would like to

avoid such changes in the interest of a stable design. Therefore , the

SFP will accept only as many records as can be loaded into the record memory at

a time . The remaining records of a request , will be accepted after the current

batch has been cleared for security. The size of the comparison memory is

- - related to the size of the record memory . The comparison memory should be

able to accept all th e keyword sets of the records loaded into the record

memory. The sizes of the STM record memory and the sTM sort memory are the same

as their counterparts in the SEM. This is because it is possible that all the

records in the SEN are cleared for security. In this case, they will be sent

to the STh which should be in a posi t ion to accept them so as to force the  SEM

to process the next request,

In our design of the SFP, we have assumed fairly high data shift rate (1OMBS)

and the ability of the technology to integrate logic with memory . These two

rule out bubble memory technology for the present and in the near future. CCDs

• are better suited to our requirements. The refresh problem in CCDs can be

handled elegantly by merging the regenerating logic with the PEs. In addition ,
—

the data paths in the comparison memory must have individual  clocks to enable

them to be shifted asynchronously. In case of the sort memory, the data paths

are shifted synchronously and therefore a single common clock will suffice.

3
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-; 5. CONCLUDING REMARKS

In the preceding sections, we have endeavored to present the design details

of three components of the DBC: the DBCCP , the MM and the SFP. The MM and the

SF’P formed the data loop as shown in Figure 1. The DBCCP played essentiall y

the role of an interface between the environment represented by the PES on the

one hand and the structure and data ioops on the other . As in an earlier
report [7] , one of the main objectives in wri t ing this report was to demonstrate
the feasibility of the DBC as envisioned in [2).

An important aspect of the design is the level of modularity achieved within —

each of the components. The DBCCP had three processors , and a number of table

memories; the MM had a set of track processing elements conununicating with a

controller whose logic was shared by two subprocessors , while each of the track

processors was an assemblage of two micro—sequencers and small sequential mem-

ories; and the SFP had two intelligent memories in tandem. The identification

of these subcomponents enabled us to adopt a step—at—a—time approach to the

DBC design. Of course, such a design has the usual salutory effects on reliabil—

Dy and fault isolation.

As a result of the current effort, two avenues of further work are suggested

herein. First, a cost—performance evaluation and functional verification of

the proposed design must be undertaken before a prototype can be built. Such

a study is now in progress. Second , from a user point of view, the capabilities

of the machine to support existing data models must be demonstrated . Since the

DBC directly supports (i.e., with hardware data structures) an enhanced version

of the attribute based model [2], software interfaces to map other data models

-~~ - into the DBC—supported model must be constructed . This area is also being

investigated. We believe that such interfaces are easier to build and more

efficient than contemporary databases built on the conventional hardware.

-
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