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SECTION I

INTRODUCTION AND BACKGROUND

This report addresses the problem of determining the conditions
under which the flow in a cooled laminar boundary layer becomes unstable
when excited by low amplitude disturbances.  The flow is considered to be
unstable when a low amplitude disturbance imbedded in a cooled lam ina r
boundary layer flow grow s in time and/or space. The physical significance
of this problem is that such processes initiate the transition from lamina r
to turbulent flow conditions in the boundary layer. The skin fr ict ion and
rate of heat transfer are typically an order-of-magnitude greater in turbulent
boundary layers than in laminar boundary layers when compa red at th e sa me

Reynolds number. Therefore , the ability to understand , predict , and
possibly suppress , boundary layer transition is of great engineering importance
in the desi gn of fli ght vehicles.

The problem of predicting the conditions under which a laminar
boundary layer will begin to undergo the transition process represents

one of the great , and as yet unsolved , problems of fluid dynamics.  The
mathematical descri ption of fluid dynamic phenomena is a system of non-
linear partial differential equations . To the present time , this system has
resisted all attempts to obtain solutions which are valid for boundary

layer flow s undergoing transition . Therefore , simplified versions of the

general equations are used to stud y the transi t ion process.  The simplified
equations used in the present stud y are called the small disturbance stabili ty

equations . They are a l inearized version of the general (Navier-Stokes)
equations . The linearized small disturbance equations are themselves

— 

not very  amenable to direct solution because of the partial differential

nature of the equations.  Therefore,  a fu r ther  simplification is introduced.
The boundary layer is considered to be locally parallel. That is , the grow th
of the boundary layer thickness over a wavelength of a dis turbance is

— •17 — _ _ ~•_•~ ____g_____ ~~~~~~~ —
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neg lected. This simplification allow s one to reduce the partial differential

equations to ordinary differential equations . Thus , the parallel flow boundary

layer stability equations have been used in the work described in this report.

This model was employed to stud y the conditions unde r which small

disturbances will grow in space and/or  time in a cooled laminar boundary F
layer flow .

The reasons why cooled laminar boundary layers are specifically

addressed in this report are:

1 • Prev ious experimental invest igations of boundary layer

transit ion have shown that cooling a boundary layer generally (but not

always) increases the stability of the boundary layer. Thus , the

potential exists for using boundary layer cooling as a means for

delay ing the onset of t rans i t ion .  -

2. Recent advances in the field of parallel flow boundary layer

• stability theory have made it possible to fur the r advance the use of

this theory as a method for predicting the onset of transition .

3. Recently published measurements of transition in shock induced

• flows have shown an intricate variat ion of transit ion with wall cooling .

These observations and other experimental results cannot be

- • reasonably explained with existing theoretical results . New theoretical

r esults us ing the most  powerful methods currently available for

solving the stability equations are necessary to understand these

:-~ observations. *

4. The present energy cr is is  has provided a new impetus for

investigating both new and old techni ques which could be used to

reduce the aerodynamic drag of flig ht vehicles.  Boundary layer

control through wall cooling thus might be a useful  means for reducing

drag , conserving fuel resources , and extending the range and payload

of a i r c r a f t .

2
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1.1 BOUNDARY LAYER STABILITY TERMINOLOGY

In this paragraph a number of the more important term s which are used

to classify the different types of disturbances which occur in compressible

boundary layer flows are defined .

1.1.1 Sonic, Subsonic, and Supersonic Disturbances

A small disturbance having a veloci ty relative to the free-stream
• which is equal in magnitude to the speed of sound in the f ree-s t ream is

called a sonic (acoustic) disturbance. The following de f ini t ions are intr od uced;

C = velocity of a disturbance (phase velocity),

a = speed of sound in the free-stream ,

U = velocity of the free-stream ,

I M = Mach number of the free-stream .

The velocity of the f ree-s t ream , re lative to an observer
• moving with the disturbance veloci ty,  is U - c . The relative Mach
• number (M) is;

rvl = (U — c )/ a , (1)
- 

- r

- which after multiplyin g and dividing by U , becomes

‘
1 M (1 — c  )M , (2)

• r ~- -

- 
• wher e c is the nondi mensional phase velocity c /U . From the definitions

r r
of a sonic disturbance given at the beginning of Section 1 • 1 • 1 , it follows

that M =  ± 1 for a sonic disturbance. Thus , if Eq uat ion ( 2 ) is solved for

• c c o rresponding to a sonic d is turbance , the following two expressions for

the phase velocity of sonic dis turbances are obtained;

I c 1 + 1/M , M = — 1 , (3)
r

I 
c = 1 — l/M , M = + 1. (4)

I • r

3
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,~c * *
For a subsonic disturbance U - c is less than a and -l  < M < 1.

~ r
Thus, for subsonic disturbances;

• • (1 - l/M ) < c < ( 1 + l/M ) (5)
r

For supersonic disturbances M 1 and the phase velocity is;

c > 1 + l/M , M<4 (
~

)

l-l/M , M> +1 (7)

1.1.2 Disturbances Having a Supersonic Relative Flow Reg ion

Disturbances were classified in Section 1.1.1 as subsonic ,

sonic or supersonic based on the speed of sound in the free-stream .

Because of the temperature gradient which exists in compressible boundary

layers, it is possible to classif y distur bances as subsonic , sonic , or super-

sonic with respect to the speed of sound at any point in the boundary layer.

Thus , M (~~
) at any point i~ in the boundary layer can be defined as the

• velocity of the flow at ~ relative to the velocity of the disturbance divided

by the local speed of sound , or;

Mfr~) = (U (ri ) — c~ )/ a~~( r i ) .  (8)

For a perfect gas ,

a
” (

~
) = a (T~~(T~)/ T ) ’

~~ 
(9)

• after multiplying and dividing Equation (8) by U and substituting Equation (9) ,

the following expression for M (
~~

) is obtained;

M (~~
) = (U (i~~) 

- c ) M / ( T (~~)) 
1/2 ( 10)

A disturbance is considered to have a supersonic relative flow reg ion in the

boundary layer if I M ~> l over any region in the boundary layer.

f r -  4
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1. 1.3 Incoming and Outgoing Wave s

A supersonic low amplitude disturbance produced in the

free-s t ream will have an asso ciated set of Mach waves as shown in Figure 1.

If a boundary laye r is present in the flow , Mach wave s will impinge on it.

Such a Mach wave impinging on a boundary layer is called an incoming wave .

The wave produced by reflection of an incoming wave on the boundary is

called an outgoing wave as illustrated in Figure 1. The reflected wave can

be conside red to have the properties of a Mach wave of oppo site sense to the

incoming Mach wave.

N~~~~ GJ
~~~~~~~~~~~~~~~~~~

C
1 

IC
r

C,< I - C~ >1 +

(a) (b)

‘

.
~~~~

Figure 1. Sketch Showing Definition of Incoming and
Outgoing Waves. (a )  C

r 
< 1- 1 / M~0 , (b)

c > 1 + 1/ M  .
r

S
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1 . 1 • 4 Two-Dimensional and Three-Dirn eris inn~ l DiRturb ancei~

In the parallel flow linear stability theory , the fluctuation

• of any dis turbance pa ramete r E is defined by a traveling wave of the form;

E ( x , y , z , t ) = € ( y ) e ( 11)

If 
~~ 

is ze r o , Equation ( 11) describes a plane wave which propagates in the

direction of the free-stream flow . These waves are called two-dimensional

waves (2-D) . If 
~~ 

is not zero , Equation (11) describes a wave which

propagates obli quely to the f ree-s t ream flow . Such a wave is called a three-

dimensional wave (3-D) . The ang l.e between the direction of propagation

and the free-stream flow is called the wave ang le ( 4 )  ) .

1. 1 .5 Critical Reynolds Number

Gene rally there exists a streamwise location in a boundary

layer such that between the leading edge of an aerodynamic body and this

location all disturbances are damped. The Reynolds number based on the

distance to this location from the leading edge is called the critical Reynolds

number.

1.2 REVIEW OF COOLED LAMINAR BOUNDARY LAY~~ STABILITY 
- 

-

— 

. During the past decade , great strides have been made toward developing

a better understanding of the causes and nature of t ransit ion in wind tunnel
— and free-flight boundary layers.  The greatest analytical progress towards

a better understanding of transition has been throug h the application of the

• : linear stability theory of parallel flows.

Mack (1) 
made a major contribution in the application of the

linear stability theory as a tool for understanding boundary layer transition

[ by discovering multiple mode , multiple families of solutions to the compressible

flow , small disturbance equations . He demonstrated the physical importance • :-

of these new types of solutions and formulated a quasi-theoretical model

of transition for supersonic flow s based on the linear stability theory of

6
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parallel flows. Mack’ s quasi- theoretical  model of t ransit ion includes two

mechanisms for relating the influence of environmental disturbances to the

response of the boundary layer. One mechanism is that of the forced

oscillation of the bounda ry layer caused by a specific type of free stream

pressure disturbance. The other mechanism is the response of the boundary

layer to a spectrum of pressure disturbances. Within the context of these

two mechanisms he was able to study the effect of Mach number , unit

Reynolds number (Reynolds No. per foot of the free-stream), and wall

cooling on transition in wind tunnel and free-f l ight boundary layers .  He

was basically successful in explaining how environmental disturbances can

affect transition as Mach number , unit Reynolds number , and wall cooling

change. The accuracy of Mack’s t ransi t ion model appears to be limited

for the most pa rt , by the accuracy with which the nature of the environmental

disturbances themselves are known. In order to apply Mack’s model to the

problem of predicting the location of the onset of transit ion in a flow

situation , one mus t  hav e available the basic results of a parallel flow ,

small disturbance stability analysis; namely ,  neutral stability curves and

amplification rate versus frequency for a range of Reynolds numbers .

The considerable progress that has been made toward understanding

t ransi t ion in wind-tunnel and f ree-f l ight boundary layers  has not been

matched by progress in understanding transition in laminar boundary

• layers induced by a moving shock wave . This situation pers is ts  in spite of

the fact that a considerable amount of experimental data on t ransi t ion in

shock- tube boundary layers has been generated during the past two decades.

Morkovin has summarized  the nuances and contradictory observations

that have been made concerning transi t ion in shock tube facili t ie s and

has also conducted an assessment  of the level of understanding of wind-

tunnel and f ree - f l ight boundary layer t rans it ion~
3
~ .

Recently,  Boison~
4

~ conducted a series of careful experiments  which

considered shock tube boundary layer t r ans i t ion .  He examined the influence

7
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on transition of environmental factors , such as wall vibration and free

stream acoustic disturbances , in addition to the influence of wall cooling

unit Reynolds number , and Mach number.  In these experiments , extraordinary

precautions were taken to eliminate wall roughness as a possible cause of

early transition. The transition is usually expressed in term s of the

“transition” Reynolds number (R x T based on the length of the boundary

layer at transition . Boison ’s data at a free stream Reynolds number per

foot of 5 x 10~ showed that , as wall cooling is increased , the transition

Reynolds number f i rs t  increased , then decreased (rev~-rsa l) ,  then increased

again ( re-reversal) ,  then decreased , increased again , and so on; showing a

number of transition reversals and re- reversals . The transit ion Reynolds

number was found to be extremely sensitive to small changes in cooling

especially at the larger cooling rates. Figure 2 show s Boison ’s tr ansit ion

results for R e/ f t  = 5 x l0~ along with results of several other investigators.

The wall cooling rate is expressed in term s of the wall temperature T

and the boundary layer edge temperature Te in this fi gure.  The ratio

Tw /T e 
is inversely related to the magnitude of wall cooling (decreasing

Tw /T e 
corresponds to increasing wall cooling).

The f i r s t  transition reversal loop ( 0 . 1 7 <  T /T  0 .36)  seem s to be
w e

• fairly well established although m or e res ult s would be desirable to

definitely show that only one loop , rather than perhaps two loops , exists

in this wall cooling range. Also shown in Figure 2 is the calculation
• •- (5)

of Reshotko for the wall cooling , required for complete stabilization of 2-D

disturbances.  It should be noted that this result is not based on a

com pletely valid solution of the stability equations as determined by Mack

(see page 14.1 of Reference 6) . In particular , mean velocity and

temperature profiles characteristic of shock tube boundary layer s were

not used.

1 •~ 1~
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The description of only one stability analysis, using velocity and

temperature profiles characteristic of compressible boundary layers

behind a moving shock appears in the literature. That analysis , pe rformed

by Ostrach and Thornton 
(7) 

in 1962 , produced minimum critical Reynolds

numbers that greatly exceeded the measured transit ion Reynolds numbers -

• the deviation increasing by orders of magnitude with i:ic reasing cooling, i. e.,

higher shock Mach numbers. Their analysis was based on the Dunn— Lin

.~ :~ asymptotic approach 
(8) 

and did not take into account 3-.D disturbances.

Ostrach and Thornton concluded that shock tube transition did not occur

th rough ampl ification of low amplitude waves but rathe r was caused by large

environmental disturbances which are present in shock tubes.

• The existence of multiple mode , multiple family solutions to the
I parallel flow linear stability equations led to the suggestion by Morkovin~

1
~

that the Ostrach-Thornton analysis be redone using the full set of parallel t
9
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f low, linear stability equations. Mack ~~ 10) 
had shown tha t , depending on

the amount of wail cooling (T /T ), 2-D f i rs t  mode unstable disturbances

• could be stabilized and second mode 2-D disturbances destabilized.

Morkovin 
(2)  thoug ht that pe rhaps the intricate cooling effects  on transition

in shock tube boundary layers could be explained as the stabiliziation of

f i rs t  mode disturbances over certain ranges of T IT and de stabilization of

higher modes over other ranges of T / T . This suggestion was put forth
• prior to Boison ’ s work. When Boison discovered the existence of the

multiple transition reversal loops in his shock tube transition data he saw

the possibil i ty that these loops might be explained throug h a stability

ana lysis of the shock tube lamina r boundary layer which recognized the

• existence of multiple mode solutions.

In early 1972 , an eff or t was be g un by one of the auth ors ( Boehman) to

reco nduct the Ostrach- Thornton analysis using the au thors ’ computer

programs which had been successfully applied to the steady flow supersonic

boundary layer stability problem 
(11, 12) This initial effort was disappointing

insofar as hig her mode solut ion s f or the shock tube lamina r boundary layer

could not be found. The f irst  mode 2-D solutions only confirmed the result s

of Ostrach and Thornton. In this initial effort , it was found that the higher - ‘

n-r)des are associated with large value s of the product of wave numbe r

- :  
- (rec iprocal of the spatial wavelength) and Reynolds numbe r . This is

characteristic of higher modes in low free-stream Mach number flows with

high cooling rates. It was also found that larger numbers of very small

integration steps were required to integrate the stability equations for shock-

tube boundary layers. This report describes subsequent efforts to locate

higher mode solutions to the parallel flow stability equations for hig hly cooled

compressible boundary layers.

1.3 REPORT OUTLINE

Section II of this report describes the analysis of stability in shock

• induced boundary layer flows. The section beg ins with a description of the

10
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- - calculation of the boundary layer mean flow profiles. This descri ption

is followed by a treatment of the formulation of the stability equations.
Finally, some of the limits of applicability of the formulation are reviewed.

• Section III presents the results of the analysis of boundary layer
• stability in shock induced flows. The results are preceeded by a general

description of the families of solutions identified by Mack. The specific
results of this investigation are then presented and d iscussed .

Section IV describes the application of parallel boundary layer
stability theory to another class of cooled boundary layer flow s - steady
flow boundary layers. A short  description of the problem formulation
is followed by a presentation and d iscuss ion  of the results . The important
similarities and differences with the results from shock induced flows are
then discussed.

• In Section V , the important conclusions of Lhe study are  presented for
I 

both shock induced and steady flow boundary layers and recommendations

for fur ther  work are  presented.

d

~
1•. 
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SECTION II

PARALLEL STEADY FLOW ANALYSIS
OF SHOCK INDUCED FLOWS

The -methods used to investigate the stability of the shock tube laminar

boundary layers are presented in this section . In Section 2 .1  the methods

used to generate the mean flow velocity and temperature profiles are presented.

In Section 2 .2  it is shown that , when quasi-parallel , quasi-steady approxi-

mations are made for shock induced boundary layers , a set of stability

equations are obtained which are identical to the stability equations for

steady boundary layer flows.

A computer program , previously developed for steady flow boundary

layer stability analysis , can then be applied to shock induced boundary

layers. The equations and solution techniques of this program are described

in detail elsewhere 
(11 , 12) 

, but a brief description is included in Appendix

B. Section 2.3 discusses the range of f low parameters that were considered

in this investigation.

2.1 MEAN FLOW PROFILES

Mean flow velocity and temperature profiles are obtained by numerically

integrating the laminar , compressible flow , boundary layer equations

written in a shock fixed coordinate system . In this coordinate system

described in Figure 3 the flow is steady and the boundary laye r equations

are formulated and solved according to the procedures developed by Mack U3)

which served as the basis of the authors ’ computer program . Specifically ,

the program is set up to solv e the steady laminar , compressible flow ,

boundary layer equations for flat plates with and without heat transfe r at

the wall . For the shock tube boundary layer calculation , the input

quantities are as follows:

• Shock Mach number (M ),

• • Undisturbed flow temperature (T 1 ) and pressure (p 1 ),

12
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(a) STEADY COORDINATE SYSTEM (SHOCK FIXED)

-

~~ 
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(b) UNSTEADY COORDINATE SYSTEM (LAB FIXED)

Figure 3. Boundary Layer Mean Flow Velocity Profile .

I 
• Initial guesses for the slope of the velocity profile at the

• wall and the heat t ransfer  rate at the wall .

The normal shock equations are solved to determine the free stream

conditions of the flow downstream from the shock wave: M , U , T ,p ,h ’
e e e e e

• (enthal py) and h t (stagnation enthalpy of the free stream in the shock fixed

coordinate system).  These quantities are used to nondirnensionalize

the boundary layer equations. A basic assumption made in solving the

boundary layer equations is that the initial temperature of the wall (T
* *is the same as T and that T remains constant . This assumption is1 w

reasonable because the time for heat t ransfer  is very small (milliseconds

• or less) el’en though the heat t ransfer  rate is high .  The program is
• presently set up for air which is considered to be a gas that obeys the

perfect gas law and has variable specific heats and transport  properties.

13
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Because dissociation and real gas effects are  not considered , the program

is only valid for M < 6. 5.

• Once the f ree  stream conditions of the flow downstream from the

normal shock have been determined, the boundary layer equations are

• integrated and the mean flow profile s are determined. Some representative

nondimensionalized velocity profiles (in the shock-fixed coordinate system)

are presented in Figure 4. Temperature profiles are presented in Figure 5.
• 

• 

The profiles are presented in terms of the Bias ius s imilar i ty  variable
/ ~ u~~x l /2 \

= 

~ 
( 

~ * 
) )which is the “ nondimensionalized” boundary layer

thickness. e

The basic unknown s to be determined when solving the boundary layer

equation s, in addition to the profiles themselves, are the slope of the

velocity profile at the wall and the heat transfer  rate at the wall . The

Newton-Raphson technique is used to search for values of these two

unknowns which will satisf y the proper boundary conditions at the edge of

the boundary layer . After the solution converges , the velocity profile

is transformed to the laboratory-fixed coordinate system and the velocity

profiles in this coordinate system and the temperature profiles are then

• punched onto cards for use as a data deck for  the Boundary Layer Stability

computer program (BLSTAB).

2. 2 FORMULATION OF THE STABILIT Y EQUATIONS FOR
A SHOCK INDUCED BOUNDARY LAYER

I,.

The flow in a shock induced boundary layer is extremely difficult to

analyze. Simplif ying assumptions concerning the flow must be made in

order to formulate the problem in a practically solvable form. There are a

variety of methods of formulating the problem, but care must be taken to

insure that a consistent set of simplif ying assumptions and nondimensionali- -~

zations are made. . • • -

14
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The stability equations for shock induced boundary layer flow were

formulated by Ostrach and Thornton~
7
~. They employed mean flow

boundary layer profiles as calculated by Mirels U4) in a shock fixed

coordinate system. Ostrach and Tho rnton then wrote the Dunn-Un stability

equations for a coordinate system fixed on the moving shock wave and

normalized all velocities (mean flow profile , disturbance velocity components,

and phase velocity ) by the velocity U . Thi s procedure produced a set

of stability equation s that were identical to the Dunn -Lin equations*~’ for

steady flow except that Ostrach and Thornton “redefined” Mach and Reynolds

numbers. The redefined free stream Mach number was considered to be the

• Mach number of the shocked gas in the laboratory fixed coordinate system

• (M 2
) rather than the corresponding Mach number in the shock-fixed coordinate

system (M ). The redefined Reynolds number was based upon: (1) the free

stream velocity of the gas in the laboratory-fixed coordinate system (Ui)

instead of the velocity in the shock fixed coordinate system (U ), and (2)

a characteristic length equal to the distance traveled by a free stream fluid

element in the laboratory fixed coordinate system (x ’ ) during the tota l time

• that the fluid element is in motion (t *), instead of distance that the fluid

element is behind the shock wave (X~ ). Since these choices are not consistent ,

the subsequent formulation was examined in some detail.

The formulation of the stability equations by Ostrach and Thornton
- 

• 

is not straightforward. A critique of their formulation is presented in

— Appendix A. The essence of their approach , however , is contained in the

following statements.

1. The nondimensional Dunn -Lin version of the small disturbance

equation s were written for a shock fixed coordinate system.

2. The velocities in these equations were normalized with respect

to the free stream velocity in a laboratory fixed coordinate system •

** The Dunn-Lin equations are not a complete set of the small disturbance
stability equations. Certain terms are omitted to permit 3-D solutions to be
obtained from 2-D solutions.

16
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(U 2 where U 2 
= U - U ) rather than by the free stream velocity in

the shock fixed coordinate system (j J * )~

3. The characteristic length (I, *) was taken to be proport ional to

the local boundary layer thickness in the shock fixed coordinate system,

* * •~ 1/2given by: £ = ( 2 X v’~ / U~)

4. The characteristic time (t *) was given by, t~~ = £ 
*/U * 

- U *).

- I 5. Fluid, thermodynamic, and transport properties were non-

dimensionalized with their corresponding free stream values.

When the dimensional Dunn-Lin small disturbance equations are non-

dirnensionalized using the characteristic quantities defined above , the final

form of the Ostrach and Thornton stability equations is obtained (Equations

9a through l3a and Equation 14 in Reference 7).

The nondimens ionalizations and normal.izations described above

effectively transformed the stability equation formulation out of the shock

fixed coordinate system into the laboratory fixed coordinate system .

However , the mean flow profiles as derived from Mirels’ analysis

remained in the shock fixed coordinate system . The stability formulation

was now inconsistent with the mean flow formulation . Thi s inconsistency

was resolved by “ redefining ’ certain nondimensionalizations (such as

Reynolds number). Thi s “redefinition” effectively t ransformed the stability

• analysis back into shock fixed coordinates. The final formulation was

therefore , entirely in shock fixed coordinates.  A more detailed critique

of this formulation is contained in Appendix A.

The final formulation of the stability equations by Ostrach and

Thornton was unsuitable for use with existing computational programs at

• the University of Dayton which were constructed in a laboratory fixed

coordinate system. Therefore, a different approach to formulating the .1.
stability equations was developed. This approach starts with the

- ‘-Il
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linearized complete small disturbance equations in dimensional form (rather

than the Dunn- Lin equations) written in a labo ratory fixed coordinate system.

Then both the pa rallel flow and quasi-steady approximations were invoked.

Finally , all dependent variables were nondimensionalized with respect to

free stream quantities and all spatial variables were nondimensionalized

with respect to a scale length propo rtional to the boundary laye r thickness.

Thi s procedure yields a system of stability equations which are identical

to the Ostrach and Tho rnton stability equations except that all parallel  flow

terms are included and the Reynolds number (R e 1
) is given by (R

~
) 1/2

• 
• instead of (2 R ) (T /T ). (The Ostrach-Thornton formulation includes

X w e
onl y those te rms contained in the Dunn - Lin stability equat ions.)

• In summary, the stability equations used in the present analysis are

the same as the stability equations for steady flow ove r a flat  plate.

The stability anal ysis is thus a stability anal ysis of a given mean flow pro file

and is valid over changes in distances and times that are small enoug h

so that the change of profiles in both time and space can be ignored.

The computer program which implements thi s formulation is described in

Appendix B.

2 .3  RANGE OF FLOWS ANALYZED
- • Eigensolutions to the linear stability equations , with the parallel

flow assumption, were computed for both a quasi- steady flow shock tube

system, and a steady flow wind tunnel system. The e ffects of wall cooling

on boundary layer stability in shock tube type flows were examined for both
- .  subsonic (M = 1. 5, M2 = 0. 6027 and supersonic (M ~ 5. 0, M2 S 1. 841) flows.

The effects of wall cooling on boundary layer stability for Mac h numbers

less than 0.9 in steady wind tunnel type flow s were also investigated.

2. 3. 1 Shock Tube Flows

The shock Mach numbers considered in this analysis extended •

from M = 2. 50 to M = 5. 00 in increments of 0. 25. In addition, treatment

18
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was given to M = 1. 5 , as previously noted. These calculations were

performed for the “standard” wall cooling ratios (T /T ), as given in

Table 1. The “standard” wall cooling is that which occurs when the shock

tube walls remain at ambient temperature regardless of the temperature

of the shocked gas. In addition , calculations were performed at shock Mach

numbers of M = 2. 5 and M = 2. 75 with specified “nonstandard” amounts

of wall cooling. Numerical solutions to all the above situations were

generated for the case of two-dimensional disturbances. Three dimensional,

oblique solutions were obtained for only the cases of M = 1. 5 (subsonic)

and M = 3. 0 (supersonic) flows. The results of these calculations are

presented in Section III.

It should be noted that the technique employed is valid only for

shock tube flows where, in general, M < 6. 5, as “real gas ” effects have been

ignored.

2. 3. 2 Subsonic Wind Tunnel Flows

Two and three dimensional disturbances in steady flow , wind

tunnel type boundary layers were investigated for free stream Mach numbers

of 0. 603, 0. 80, and 0. 90 . Surface cooling at each Mach number was varied

from the insulated value of Tw/T e (specified by the flow conditions), to

T /T 0. 620 . The streamwise wave angle of three dimensional disturbances
-
. 

- w e
was varied from 0

0 to 87. 5
0 for each case. Results of these calculations

are presented in Section IV.

j
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SECTION III

RESULTS OF ANALYSIS OF SHOCK INDUCED FLOW S

As noted in Section 1.2 , Boehrnan made his f i rs t  attempt to deter-

mine higher mode solutions to the parallel flow stability equations for shock

• induced flows in 1972 . These initial attempts were unsuccessful but higher

mode solutions were obtained during the course of the present inve stigation.

The results of the search for higher mode solutions are presented in this

section. However , these higher mode solutions~do not correlate with

observed transition phenomena. It was also pointed out in Section 1. 2

that the Ostrach-Thornton investigation of the stability of shock induced

flow did not include an investigation of 3-D (oblique) disturbances. The

search for 3-D unstable disturbances was included in the present effort

but it was found that three dimensional disturbances were always more

stable than two dimensional disturbances over the range of flow parameters

considered.

The principal objective of the present effort was to determine higher

mode and three dimensional solutions to the stability equations for shock

induced flow s in the expectation that these solutions would correlate with

• 
experimental observations of transition in shock induced flow . When it

was found that this expectation was not to be realized , a search for othe r

types of solutions to the stability equations was undertaken. A new type of

solution was found for a supersonic incoming wave disturbance and quali-

- I tative correlation with Boison ’s measurements  of transition; Reynolds

number has been demonstrated. Before proceeding with the presentation

and discussion of these new results , the flow conditions under which

different types of disturbances can be expected are described.

3.1 SUBSONIC , SONIC , AND SUPERSONIC DISTURBANCES IN
SHOCK INDUCED FLOWS

0
Three curves of phase velocity versus  shock Mach numbe r ( M )

are shown in Figure 6. The curve labeled,c (M - 1),show s the minimumr w
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phase velocity that a disturbance must have in order to move supersonically

relative to the flow at the wall. The second curve , labeled c = 1 + l/Mr 2
shows the phase velocity that a disturbance must have to move sonically

with respect to the disturbance (1. e .,  the free stream is moving in the

upstream direction at M = 1 relative to an observer moving at the velocity

1 + 1/M 2
). The third curve , labeled c = 1 - 1/M 2, shows the phase

velocity that a disturbance must have to allow the f ree  stream to move

sonically with respect to disturbance but with the relative velocity between

the disturbance and the free stream being in the direction of flow. These

three curves together form a region in which subsonic disturbances exist

• and the local Mach number of the flow at the wall is supersonic relative to the

phase velocity. This region of phase velocities is the region in which

subsonic higher mode disturbances can exist. Above M = 3. 5, both subsonic

and supersonic multiple mode solutions can exist.

3. 2 INCOMING AND OUTGOING DISTURBANCES

It was noted in Section 1. 1. 3 and illustrated in Figure 1 that a pair
• of Mach waves are produced whenever a low amplitude supersonic disturbance

exists in the free stream. Mack has noted that the two solutions to the

inviscid stability equation s for the flow in the free stream represent a pair

of Mach wave s (6) 
Thus , the stability equations produce solutions for

supersonic disturbances which have a well-defined physical interpretation.
— One of these solutions represents a reflected or outgoing Mach wave and the

other represents an incident or incoming Mach wave . In Reference 6 Mack

shows that for neutral outgoing Mach waves , energy is transported in the

direction of increasing y (1. e., into the f ree  stream) whereas for neutral

• incoming wave s, energy is transported in the direction of decreasing y,

(i . e., into the boundary layer).

For subsonic disturbances, the inviscid f ree  stream solutions no

longer represent Mach waves , but instead represent  two exponentially

varying pressure fields caused by inviscid flow over a moving wavy wall. •

Thus for  subsonic phase velocities , as well as for supersonic phase velocities ,
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• the solutions to the inviscid stability equations have simple physical

• interpretations. A basic understanding of the mathematical nature of the
solutions to the inviscid stability equations is helpful for understanding

• • the discussion of results presented in this section. The solution to the
inviscid stability equations for the free stream region of flow has the general
form (6)

:

• 
~~(y) = AeX I ~~+ Be A 2 ~ , (12)

• where ,
~ represents the amplitude of the pressure oscillation, x and 

~ 2
are the two characteristic values of the second order ordinary differential
equation which describes the behavior of ~ in the free stream when no
viscous terms are included in the stability equations, i~ is the distance

• from the surface (Blasius similarity variable) and A and B are constant s
• . (6)of integration. X 1 and ~ 2 

are represented by

X = - a (l- M2
2
) ~~~ (13)

and

x z = - x ~~ (14)

The fundamental difference in nature between subsonic and supersonic
disturbances is described in the following sections in which the properties
of the characteristic values of neutral disturbances (c . = 0) for these two

- 
, cases are examined.

.4

..

~~~~ ~
, 3.2.1 Supersonic Disturbances (I M2 > 1)

For 1M 2 1> 1, 1 - is a negative number and ( 1 M ~ ) ”2
is a pure imaginary number . Thus X 1 is given by:

= ± i~(M~ - l)~~
2 ( 15)

In the coordinate system moving with the phase velocity,- 
the pressure fluctuation p ’ is given by (6)

:

p’ i~~~ M~ (1 - C )  exp [ i~~x ~ (M~ - 1) 1
~~~(~~ ~~~)1 ~ (16)

I -  • 
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• Thus, in the x-~ plane, the above equation will have a line of constant

amplitude (constant phase) which is a Mach line of the flow relative to the

phase velocity. The amplitude of the pressure fluctuation is independent of ~~~~ .

• If c >  1 + l /M 2, then the incoming wave will correspond to:

X 1 
= - ‘a (M

2 
- 1) 1 (incoming wave, C >1+ 1/M

2
).

If C
r 

< 1 - l / M 2 , the incoming wave will correspond to:
• 1/2 .X = + i~~ (M

2 
- 1) (incoming wave, c < 1 - 1/M 2 ).

3. 2 .2  Subsonic Disturbances ( - 1<  M2 < 1)

/2In the case of subsonic disturbances, (1 - M
2) 

1 
is a real

number; X 1 
is negative and X 2 is positive. The pressure fluctuation p ’ is

given by:

p’ = i~~M~ (l - C ) exp (i~yx) exp [~~~( 1_ M
Z )U 2 ( ll_ 

~~~~ 
(17)

The solution whose characteristic va lue has a negative real

part represents the pressure field over the moving wavy wall (outgoing

solution). The solution whose characteristic value has a positive real

part represents the pressure field under the moving wavy wall (incoming

solution).

• 
. 

- In the viscous theory, two of the independent solutions are

almost identical to the inviscid solutions except for a small viscous decay
f -.

term. Ordinarily in stability theory, the inviscid solution (or the viscous

counterpart) whose characteristic value has a positive real part (incoming

solution) is not used since this solution increases exponentially upwards

from the boundary layer and thus does not satisf y the boundary conditions at

infinity. In the following paragraphs it will be convenient to classify the

results of the stability investigations in terms of incoming or outgoing

subsonic or supersonic disturbances. Sonic disturbances have a singular

• character as explained in the next section.
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3.3 FAMILIES OF SOLUTION

Perhaps one of the most important discoveries made by Mack was

that two families of solutions can be obtained from the stability equations

for compre3sible laminar boundary layer f1ow s~
6
~. Mack characterized

• the two families on the basis of the behavior of the solutions at a = 0.

He called a set of solutions members of the c family of solutions if the

phase velocity approached a value of c
r 

= 1 - l/M ,,, as a approached zero.

He called a set of solutions members of the “regular ” famil y of solution when

the phase velocity approache d a value of C 1 + 1 / M  as a approache d zero.

I Most of the stability results which are available in the literature for

supersonic flows are subsonic solutions belonging to the c family of

solutions. If the free stream Mac h number is less than one (subsonic boundary

laye r flows), the c family of solutions has its origin at c = 0. Relatively

few “regular ” family solutions are available in the literature - -those which

• do exi st were determined by Mack or Boehman.

From the preceeding discussion it is evident that the two sonic phase

• velocities c = 1 - 1/M and c = 1 + l / M  define two separate families of
r r

solutions.

• 

• 
3.4 RESULT S FOR SHOCK INDUCED FLOWS

• Thi s section beg ins with a presentation of the result s which were

• 
~ . obtained from the first  effort to reconduct the Ostrach-Thornton analysis.

As was mentioned in Section 1. 1, the effort was carried out before the
- I present effort was undertaken but is included here for the sake of completeness.

3. 4. 1 Subsonic Outgoing Disturbances

As was mentioned in the Introduction , the first  effort showed

that very small integration step sizes are required to numerically integrate

the stability equations for the shock -tube boundary layer when compared

to step-size requirements for treating wind tunnel boundary layers. Figure 7

shows the neutral stability curve for Z-D disturbances which was obtained

f  r the M 1. 5 b~ unda i y layer . One hund -~ d and thir ty-six integration

26
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Figure 7. Two Dimensional Disturbance Neutral Stability Curve
at M = 1. 5 for Shock Tube Boundary Layer .

steps were required to obtain these results. The minimum critical Reynolds

(R . 
) is seen to be 13, 180 and compares to the Ostrach-Thornton value ofcrit

14 , 000 for the same value of M . These calculations as well as those of
5

those of Ostrach and Thornton were for 2-D waves. A value of R . of
• 8 crit

13, 180 corresponds to a value of R of 1. 737 x 10 which is about two orders

of magnitude higher than measured transition Reynolds numbers for M5 
= 1. 5.

The remainder of the results presented in this report were obtained as part

of the current effort .

Since R . for 2..D disturbances at M = 1. 5 obviously
crit s

did not correlate with measured transit ion R eynolds numbers , 3-D

• disturbances were investigated at M = 1. 5. The results are shown in

Figures 8 and 9 for several Reynold s numbers. These results show that

at M = 1. 5, oblique disturbances are always more highly damped than

2-D dis turbances.  Similar calculations performed for M = 3 .  0 also show -•
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that 3-D disturbances are more highly damped than 2-D disturbances.

Typical results at M = 3.0 are shown in Figures 10 and 11. The results

shown in Figures 8 - 11 are for disturbances belonging to the c family.

No higher mode amplified solutions for thi s family of solutions are possible

for shock tube boundary layers since the wall cooling is sufficient to remove
• the generalized inflection point from these boundary layers~

6
~.

First and higher-mode outgoing subsonic solution s belong ing

• , to the “regula r ” family of solutions , which are always amplified when C �  1,

have been investigated. The regular family of solutions persist to low sub-

sonic Mach numbers , since it is always possible to find a Cr 
large enough

so that a supersonic relative flow region exists somewhere in the boundary

• layer , except at M = 0. In Figure 6 , the curve labeled c = 1 + l/M 2
(M 2 

= - 1) shows the phase velocity which thi s family of solutions beg ins at

(a = 0) as a function of shock Mach number. For this family of solutions

to have amplified solutions, C
r < 1 and for neutral solutions, C r = ~ 

(6)

From Figure 6 can be seen that a supersonic relative flow

region for subsonic disturbances with Cr 
� 1 can only exist when M � 1. 8

in shock tube boundary layers. Thus , regular amplified subsonic solutions

are not possible below thi s Mach number. Some typical regular family

solutions are shown in Figures 12 and 13 for M = 1. 5, 2 , and 4. In

Figure 12, the phase velocity (c ) versus wave number (a ) is shown for both
r

viscous and inviscid solutions . As shown in Figure 13, the viscous solutions

are all damped whereas the inviscid solutions are all neutral. The only

exception is at M = 4 where the inviscid solutions show a very small amount

of amplification for a > 3. 5. For a > 3. 5, the phase velocity (C r ) Is less

than one. According to Mack , a necessary  condition for an amplified inviscid

regula r solution to exist is that C
r 

be less than 1. Calculations performed

to date indicate that an amplified regula r viscous solution can likewise only

exist if cr < 1. In Mack ’s terminology, the solution for c = 1 is called the

regular neutral solution and the corresponding value of a is given the symbol

a 11
.
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The viscous counterpart to a 11 
denoted by (a l1~v 

is so large

that extremely small computational step sizes would be needed to treat a

condition of C � 1 for the regular viscous solution. Additionally, the

frequency associated with this solution would be in the megahertz range

which is outside the range of frequencies that are usually considered to be

of importance in transition.

With one exception (to be discussed in the following paragraphs),

all amplified solutions available in the literature for laminar boundary layer

flows are encompassed within the types of solutions discussed in the previous

paragraphs.

3. 4. 2 Supersonic Outgoing Solutions

Mack has shown in Reference 6 that with sufficient wall cooling,

amplified , supersonic , outgoing solutions belonging to the c family of

solutions can exist. However , these solutions have wave numbers which

are greater than 
~ l 1 so that again , high frequency solutions are the only

• possible amplified solutions. Thus , no a~tempt was made to determine the

stability characteristics of these types of solutions since they appear to be

important only for hypersonic Mach numbers (see Figure 11.25 of Ref. 6).

• 3. 4. 3 Summary of Results for Outgoing Solutions

The results of stabi1~ty computations for outgoing disturbances

• in shock tube boundary layers encompassing; two dimensional and three

dimensional disturbances, subsonic and supersonic disturbances, and multiple

mode solutions of both subsonic and regula r families , have not yielded

solutions which can explain or correlate with boundary layer transition

measurements. The outgoing solutions represent disturbances which originate

within the boundary laye r . Therefore, it is concluded that , within the context

of a small disturbance linear boundary stability theory, outgoing disturbances

• in shock tube boundary layers are completely damped out for the range of

Mach numbers considered in this study (M = 1. 5 to 5. 0) . It is further con-

cluded, subject to the limitations on the validity of the linear theory, that
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extremely high transition Reynolds numbers would be attainable if it were

possible to eliminate all environmental disturbances in a shock tube. Even

at a shock Mach number as low as 1. 5, linear stability theory predicts a

critical Reynolds number as high as approximatel y 1. 7 x ~o 8.

r 3. 4. 4 Incoming Disturbances

A new type of solution to the stability equations was discovered

during the course of the outgoing wave study. These solutions show some

• promise of providing a mechanism for explaining transition. These

new solutions are incoming wave eigensolution s and were originally dis-

covered when it was noted that certain damped supersonic incoming wave

eigensolutions end abruptly in a c versus a plot unless one allows the sign

of the real part of the characteristic value of the viscous solution(which is a

counterpart to the inviscid free strearn)to switch from negative to positive.

Before discussing amplified incoming supersonic disturbances,

a number of related points should be made. First , Mack had neve r fo und

any incoming neutral supe rsonic solutions. Second , he indica ted that if

they did ex ist , they would not have the importance of the outgoing neutral

supersonic solutions (page 11-45 of Reference  6).  Third , the amplitude

of an incoming amplified supersonic d is turbance would have to increase

• with increasing distance from the wall (page 10-34 of Reference 6) . The

third point posed some conceptual difficult ies at f i r s t  since only those

solutions to the linear stability equations which are at least bounded at

infinity are considered to be valid. This conceptual difficult y was r esolved

• by recognizing that the boundary layer in a shock tube does not extend to

infinity. In particular , surface roughness or turbulence on one sidewall

in a shock tube , can influence the boundary layer on the opposite sidewall.

Thus solutions which have amplitudes increasing with distance from the

wall are permissible so long as the rate of growth it not excessive. This

condition is generally satisfied by the viscous counterpart to the inviscid
$
solution of the stability equations. The initial search for incoming amplified
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disturbances was prompted by an unexpected finding made durin g investigation

of the two dimension subsonic disturbance calculations for low Reynolds numbers

and low wave numbers at M = 3. 0. It was observed that as a was decrea sed

from about 0. 3 to 0. 1 for a 2-D wave , the damping rate started to sharply

decrease. However , 3-D waves (th > 30
0

) show a gradual decrease in damping

and then a sharp increase as a approaches zero as illustrated in Figure 10.

The phase velocity of the 2-D subsonic disturbances shows a steady decrease

first approaching and then dropping below C
r

= 1 - 1/M 2 . In contrast the 3-D,

30
0 

wave showed a strong increase in C
r 

as a approaches zero (as shown in

Figure 11). It was observed that the character of the 2-D disturbances changed

from out-going to incoming as c dropped below 1 - 1/M 2 
Decreasing the

Reynolds number from R = 2500 to 1500 showed that , as a dropped be low 0. 075 ,

the damping at R = 1 500 became less than the damping for R = 2500 . These

results provided the first clue s that amp lified incoming disturbances might

exist. As ~ was decreased to about 0.05 and the Reynolds number decreased

to 1000 it was observed that the real part  of the eigenvalue corresponding

to the inviscid solution had to be allowed to change sign from negative to

positive as it passed through zero in or der to mainta in an incoming distur-

bance. A furthe r decrease in ~y at R 1000 y ielded the fi r st amplified

incoming supersonic disturbances as shown in Figure 14 and 15. The

results presented in Figure 14 clearly show that viscosity is destabilizing;

that is the amplification factor decreases as the Reynolds number is

increased. Thus these incoming solutions cannot be found from an inviscid

stability analysis. Similar calculations were performed for M5 = 3. 25

and 3, 5. These results are shown in Figures 16, 17, 18, and 19.

As a is decreased at constant R, in Figure 16, the real part

of the characteristic value of the viscous counterpart to the inviscid solution

changes sign from negative to positive at the point s labeled as a “transitional”

region. For values of a greater than a at this “transitional reg ion ”, the

amplitude of the waves decreases as y increses; whereas , for a values less
than ~y at thi s “ t ra n sitiona l r eg ion ” , the amplitude of the waves increases  •

as y inc reases .  These new incoming wave ei gensolut ions  must  be interpreted 
•
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di f fe ren tly from outgoing wave eigensolutions. For  the incoming wave

eigensolutions , positive c . means that the strength of the f ree-s t ream

dis tu rbance is growing in time, while negative c~ implies that the strength of

the f ree-s tream disturbance is decreasing in time. Thus , c~ is an attribute

• of the f ree-s t ream disturbance and is not related by it self to the ins tability

of the boundary layer .

The physical significance of amplified , supersonic , inco ming wave

eigensolutions is associated with the special characteristic which these waves

possess, namely, these waves do not produce a reflected wave in the boundary

layer. That is , while an ordinary (nonei gensolution) incoming wave requires

the presence of a reflected wave at the wall , the incoming wave eigensolutions

do not.

The important physical signif icance of these incoming wave eigen-

solutions is rela ted to the energy t ransfer  associated with the incoming wave.
• 1 All of the energy transported into the boundary layer th rough the incoming

wave remains in the boundary layer; there is no reflected wave to ca r ry  energy

out of the boundary layer.

There are finite Reynolds s tresses associated with these incoming

wave eigensolutions. Thus , these incoming wave eigensolutions provide a

mechanism for  energy redistribution in the boundary  layer. Since there  is

a net ener gy transport from the disturbanc e to the mean flow , these incoming

wave eigensolutions offer a potentially important mechanism for changing the

- . • character of the mean flow profile.

These incoming wave eigensolutions have been found to exist for

both types of supersonic disturbances , i. e. , for c �  l- 1/M 2 and c~~~1+1/M 2.

For incoming wave eigensolutions with c �  1-1/M 2, an especiall y interesting

phenomena has been found. Two separate families of solut! is have been

found to exist. One family has its or igin at c =  1-1/M 2 and cy = 0 while the

other family originates from subsonic solutions. Above a certain Reynolds
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number labeled “ chan geover Reynolds number ” (R h), the two families

switch their relative positions. Thi s phenomena is shown in Figures  20 and

21 for M =3. 25. In Figure 22 , the variation of R is shown as a functions ch
of shock Mach number. The physical importance of this changeover Reynolds

number appears to be that for Reynolds numbers less than the changeover

Reynolds number the forced response analysis shows that a relatively strong

reflected wave is present , i. e., significant energy is carried ou t of the

boundar y layer. For Reynolds numbers greater than R h, the strength of the

re flected wave is relatively weak. Thus , when the Reynolds number is greater

than R h. the boundary layer is more susceptible to mean flow profile mod-

ification than when R < R ch- . • . . . .. 

The variation of R versus M shown in Figure 22 does followch s
the general t rend of the f i rs t  transition reversal observed by Boison. Thus ,

it would appear that this “ chan geover Reynolds number ” might have the same

physical significance for incoming waves as the critical Reynolds  number

has for outgoing waves. That is , the “ changeover Reynolds number ” seems

• to represent a Reynolds  number which must be reached before significant

transi tion mechanisms can take effect.

The transition measurements shown in Figure 1 suggest that the
I 

• 
changeover Reynolds number associated with supersonic and sonic waves

having C �  l - l / M 2 may be res ponsible for the transit ion reversal  which

occurs in the vicinity of T IT ~~~~~. 35. Some other mechanism must be
I’ respons ible for  t ransitio n for  TwIT e >~ 35. One possibility is that there

• - may be a similar changeover Reynolds number phenomena associated with

waves having C ~ 1 +l/ M 2. This possibility was not investigated.

3. 5 FORCED R ESPONSE ANALYSIS

Neutral incoming wave solutions (noneigensolutions) have been used

in conjunction with neutral outgoing wave solutions by Mack 
( 10) to deter mine

39
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I the forced response of the laminar boundary layer to free stream super-

sonic waves. A similar approach was applied to shock tube boundary layers in
• the present work . This effort was very limited in scope and cannot be

- considered complete at this point. To date no evidence has been found that

• the forced response analysis by itself can explain transitio:’ ~~ shock tube

boundary layer flows. Wall cooling has the same effect for shock tube

boundary layer flows as it has for supersonic wind tunnel flows; that is ,

wall cooling tends to weaken the response of the boundary layer to forced

oscillations. The forced response analysis however ,y ields a particularly

J interesting result which may have an important bearing on transition in

shock tube flows.

Mack has shown that the peak response of the boundary layer to

supersonic incoming waves of the noneigensolution type occurs very near 
•

I I the leading edge of the boundary layer. The limited results obtained in -‘. -~
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the present effort also show this type of behavior.  The response of the

boundary layer is expressed in terms of the strength of the reflected wave

produced by the incoming wave. Thus , the forced response of the boundary

layer produces a reflected wave which grow s in s trength over the initial

part of the boundary layer. In a shock tube , this reflected wave will

impinge on the opposite wall and can possibly excite an incoming wave

eigensolution at the opposite wall . If this situation doe s occur , then

significant energy can be deposited in the opposite wall boundary laye r. The

intri guing possibility thus exists for explainin g how boundary layer transition

can be influenced by the diameter of the shock tube. The larger the shock tube ,

the longer the time require d for the growing reflected wave to impin ge

on the opposite side wall boundary layer.

The preceeding comments are purely speculative and obviously further

investigation is needed to support this conjecture. A very recent set of

experiments conducted by Golobic 
(15) definitely shows that the diameter of

the shock tube does play an important role on boundary layer transition.

Figure 23 shows the boundary layer transition measurements reported in

Reference 15. The work reported in Reference 15 was performed in order

to obtain transition data for the wall cooling range of 0. 255 < T IT < 0. 39.w e
• The purpose of these experiments was to verif y the existence of Boison ’s

- • transition reversal loop. (see Section 1. 2). As can be seen in Figure 23 ,

the results of Golobic show a marked deviation from Boison ’s; that is

•
~
.I. from the expected results. The primary di f ference  between Golobic s

shock tube and Boison ’ s was the diameter (if the tube . Golobi c ’ s was

17 inches in diameter and Boison ’ s was 4 inches in diameter . In general ,

Boison ’s expe riments were conducted with a shock tube which should have

provided a less hostile environment to the boundary layer than Globic ’s

• since more precuation s were taken to minimize wall roughness, ali gnment
- I of the shock tube section s, etc . But since Golobic ’ s transition measurements

- I were higher than Boison ’s over the same wall cooling range it must be 1’

• concluded that the difference in diameter of the shock tubes had an important

• effect on the differences in transition in these two shock tubes. —
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Figure 23. Transition Reynolds Number Correlation ~~owing
Resu lts from Golobic ’ s Measurements

3.6 EFFECT OF VARYING WALL COOLING ON NEUT RAL
STABILIT Y OF SUPERSONIC INCOMIN G WAVES

A brief investigation was undertaken to determine the sensitivity of

• the stability of supersonic incoming waves to a change in wall temperature.

These calculations were performed for two shock Mach numbers , M = 2 . 5

and M = 2 . 75 . The effect of changing the wall temperature on neutral

stability (c . = 0. 0) is shown in Figure 24 for M 2 . 5. The effects of small

changes in wall temperatures ,such as occur for instance as the wall become s

heated by the flow behind the shock , is seen to be very small. The results

for M5 = 2 . 75 (not shown ) sirnilaril y show a relatively small sensitivity

to changes in T IT when the Mach number is held constant .w e
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. SECTION IV

APPLICATION OF ANALYSIS TO SUBSONIC
WIND TUNNEL BOUNDAR Y LAYERS

Skin friction drag, caused by tu rbulence in compressible bound ar y

layers,comprises a significant portion of the total aerodynamic drag ex-
• perienced by subsonic aircraft. This drag component can be reduced con-

siderably if the boundary layers can be maintained laminar. Hence , phen-

• 
• omena affecting boundary layer transition in subsonic flows are of major

importance, especiall y if they point the way toward developing technology

for controlling transition and delaying its onset. The stability analysis for

shock-induced boundary layers described in Section III have been extended

to treat boundary layers in steady, subsonic fl ow s such as ar e p rod uced in

conventional wind tunnels and in subsonic flight. A description of this analysis

and its results follows.

4.1 FORMULATION OF THE PROBLEM

Solution of the linear stability equations for steady flow subsonic

wind tunnel boundary layers is similar to that discussed in Section II for

• shock tube boundary layers. The major difference is in the shape of the

• mean flow profiles. The shock tube profiles are of the Ray leig h type and

the wind tunnel profiles are of the Blasius typ e (see Figures 4 and 5).

• - Computer generation of these cooled steady flow mean flow profile s

presents no significant difficult ies.  All that is required is specification

of the dimensionless enthalpy at the wall ( 0 )  given by;

0 = (h~
C 

— h ) /  (h~ - h*)
• w w e o e - •e

where ,
- I 

h enthalpy at the wall ,

I I
- 45
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= enthal py in the f ree-s t ream ,

h* = stagnation enthalpy of the f ree-s tream.

Once these mean flow profiles have been determined , they are used as input

to the linear stability computer program .

4.2  RESULTS

Neutral stability solutions were obtained for two dimensional and

three dimensional disturbances in M 0.603 , and M = 0.80 , and M = 0.90

steady flow laminar boundary layers .  Calculations were  performed for the

following thermal conditions:

• 1. insulated surface ,

2. T IT = 0.824 ,w e

3. T IT = 0.759 ,w e

4~ T / T  = 0 620.

In t iie present stud y ,  second mode eigensolutions to the viscous

linear stability equations were not considered since the i . imensional

frequencies  associated with these solutions are in the megaher tz  range.

Suc h hig h frequencies are not physically significant for subsonic flows.

• 

• Only neutral stability calculations were performed since these provide a

• good indication of the gene ral stability of the viscous boundary layer.

Both 2 -D and 3-D disturbances were considered.

4 . 2 . 1  Two Dimensional Dis turbances

Resul ts  indicate that for neutrally stable two-dimensional subsonic

disturbances , surface cooling increases the critical Reynolds number 1

(R
cri t

)
~ 

Typ ical results are shown in Figures  25 and 26 . Figures  25 (a)

and 26 (a) show the var ia t ion of the neutral  stability wave number  (a’) with

46
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Reynolds number for Mach numbers of M 0.603 and 0.90 respectively.

Figu res 25 (b) and 26 (b) denote tl~ varia tion of phase ve locity, c , with
Reynolds  number  at the same Mach n u m b e r s .  For e ithe r  case , as the

ratio of T IT is decreased , the critical Reynolds number increasesw e

• monotonicall y from approximately R = 300 ( insula ted s u r f a c e )  to approxi-

mately R = 20 , 000 (T IT = 0 . 6 2 0 ) .  This behavior  was found to befl w e
• charac ter i s t ic  of this Mach number range .

Dimensional f requencies  typical of the f i r s t  mode neutral d is turbances  -

found in the Mach number range from 0.6 to 0.9 are presented in Figure 27

for M = 0. 0 . In general , the boundary condition that resul ts  in the hi ghest

degree of neutral instability , is an insu lated sur face .  This also resul ts  in
the hig hes t neutral dis turbance f requency (on the order of Z OO kHz) .
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Fi gure 27. Effect  of Wall Cooling on the Neutral Stability
Frequency for  2 -D  Distrubances at M = O . 9
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• An increase in surface cooling (or a decrease in the temperature ratio

(Tw /T e
) decreases the maximum neutral disturbance frequency . Physically,

-~~ this suggests that it is possible to limit the frequency spectrum of poten-

tially unstable disturbances by increasing surface cooling . Insulated

surface boundary layers are relatively unstable , since the spectrum of

disturbance frequencies that are potentially unstable is large. Highly

cooled boundary layers are more stable , since the spectrum of potentially

unstable disturbances is reduced. Therefore , if the frequency spectrum of

disturbances is large and random (“white noise ”) ,  a cooled boundary layer

will be more stable since only a small frequency band is potential ly unstable.

4 .2 .2  Three Dimensional Disturbances

The behavior of three dimensional subsonic disturbances w ith

surface cooling was also investigated. These results are presented in

Figures 28 to 30 for the typical case of M = 0.9. Neutral stability calcu-

lations were performed for each thermal condition previously described

for the two dimensional case. The strearnwise wave angle of the disturbance

was varied from 00 to 87.5
0 . A s subsonic neut ra l dis tu rba n ces becom e

increasingly oblique (increasing wave ang le),  the stability of the boundary

layer increases (see Figures 28-30).

- 

It is apparent from Figures 28-30 that stability produced by

- surface cooling is a minimum for two dimensional disturbances (wave ang le

of 0°). Thus , 2~ D disturbances should be the most important in transition
.~
- ., from lamina r to turbulent fl ow .

An exception to the abov e findings occurs for a hig hly cooled

• boundary layer at M = 0.9 and T I T e 
= 0 .620.  Figure 31 disp lays the

results for this case. The most unstable disturbance is no longer two

dimensional , but three dimensional , and occurs at a streamwise wave ang le

in the vicinity of 30° to 45
0

• This result is significant in that it differs

from Mack’ s ftndings~
6
~ . Mack proposed that three dimensional disturbances

L 
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becom e the predominantly unstable disturbances for cooled boundary layers

for Mach numbers of about 0 .7  or 0.8. This appears , however , not to be

the case. At M = 0.80 (not shown) two dimensional disturbances were found

to be the most unstable for all value s of T /T analyzed. At M = 0 .9 ,• w e
• three dimensional disturbances , which were only slightly oblique (i .e.  wave

angle of about 300), were  found to be the most unstable (and only at

T /T = 0.620) .
.

4 
w e

Figure 32 is a typical neutral stability frequency versus  Reynolds

number distribution for oblique disturbances at M .90 and for an

- j  insulated surface.  Here the limiting condition on the maximum neutral

stability frequency is the two dimensional distur bance. For disturbances

which are increasingly oblique , the frequency spectrum available to a

potentially unstable disturbance becomes narrower .  This behavior is

Ió’ I I I T I ‘ I ’ I  I I I I -

2-0 INSLLATED WALL

- 20°

1
0

‘O
s

85° —,.-

o 312 rn/s
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REYNOLDS Na/Fl : 6* 10’

Id’ I I I I I 1 . 1  I I I I I . 1 . 1
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REYNOLDS NO. R (R:I~~ )

Figure 32. Effect of Wave Angle on the Neutral Stability Frequency for
• Three Dimensional Neutral Disturbances.
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similar to the effect  of wall cooling on two dimensional d is turbances .

Three dimensional d i s turbances  of constant f requency react to changes in

wave ang le in a manner  analogous to the reaction of two dimensional dis-

turbances to changes in surface  cooling . The results tend to conf i rm the

hypotheses of othe r invest igators  such as Dunn and Lin~
8
~ and Mack~

6
~ .

Most of the work reported by Mack conerning the effects  of surface cooling

on stability was conducted with an inviscid linear stability theory and

supersonic flow . He concluded that increas ing the surface cooling in the

boundary layer serve s to stabilize 2-D and 3-D f i r s t  mod e d is turbances .

Hig her mode dis turbances are increasingly unstable with inc reas ing

surface cooling .

In summary , the l inear  stability analysis  of cooled subsonic wi~’d

• tunnel boundary layers indicates that :

4 1. Wall cooling has a pronounced stabilizing effect  on two and

three dimensional f i r s t  mode d i s t u r b an c e s .

2. Two dimensional  d i s tu rbances  are  more  unstable than

three dimensional  d i s turbances  for Mach numbers  of M 0.90

or less , and sur face  cooling ratios grea ter  than approximately

T / T  = 0 . 6 2 .w e
3. The effect  of Mach number on two and three dimensional

• d i s tu rbances  is neg li g ible for 0.60 < M < 0. 90.

-- 4. 3 COMPARISON TO SHOCK INDUCED FLOW RESULTS

For purposes of genera l  compariso n between the stability of cooled

subsonic wind tunnel boundary layers , and shock induced subsonic

bounda ry layers , two particular cases were considered:

1) M = 0.603 , wind tunnel flow and , 2) M = 1.5 , M = 0.603, shock tube
• s 2

tube flow . The behavior of both cases was invest i gated over a range of

wa l l  cooling c o n d i t i o n s .  Resu l t s  of these calcula t ions  for points of neu t ra l

I__ _____________ ________________________
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stability are presented in Figure 33. The subsonic shock induc ed boundary
la y er i s more stable, possessing a hi gher  critical Reynolds number  for a
given wall cooling ratio than its wind tunnel counterpart .  This di f ference
is attributable to the differences in mean flow profiles. The shock tube
profile has hig her  gradients , and h ence t rans f er s more ener gy out of t h e
boundary layer than the stead y-flow Blasius type profile. (This  phenomena
wa s also observed by Ostrach and Thornton~

7
~.)  Stability is influenced not

onl y by boundary layer cooling, hut to an even grea t er extent , by the
gradients of the mean flow profile. Thus , direct correlation between
experimental transition data obtained in wind tunnels and that obtained in
shock tubes is not expected.

1.20 I T VTT~~~~~~~ J f  I~~1I[TTT i I rn rrr J~~~~~fj—J-1-p

.00 - WIND TUNNEL BOUNDARY LAYER (M~~.603)
\\

~~~~‘IND TUNNEL (M~~ .9)

.~o - 

‘
N
~~~~~~~~~~~

”
/~ SHOCK TU8E BOUNDARY LAYER

.60 - 

~~~ND TUNNEL (M ~~~.8) 

—

I i l i j i  I 1 1 1 1 1  I 1 1 1 1 1 1 1  j I l l
02 2 3 4 5 6  8I0~ 2 3 4 5 6  8I0~ 2 3 4 56 8 IO~ 2 3 4 5 68 1 06

CRITICAL RENOLDS NO. — RCRIT

Fi gure 33. Comparison of the Relative Stability of Shock Tube and Wind
Tunnel  Boundary Layers , as a Function of Critical Reynolds
Number and Wall Cooling Ratio. :~
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4.4 EFFECT OF WALL COOLING ON LOCAL SKIN
FRICTION COEFFICIENT

A comparison between laminar and turbulent skin friction values for

the specific flow parameters under consideration, is presented in Table I.
I The following definitions apply:

- Dimensionless viscosity at the surface

• dU . .
— - Dimensionless velocity gradient at the surface

- j
Cf YWx - Laminar skin friction parameter

• 
• L

Cf \I~~c - Approximate turbulent skin friction parameter

It is apparent that , although laminar skin friction increases with wall cool-

ing, it is still an order of magnitud e less than the turbulent skin friction at

the same Reynolds number. A potential thus exists to significantly reduce

aerod ynamic drag on aircraft surfaces by providing sufficient cooling to

delay the onset of transition.

-S i

:: i
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SECTION V

SUMMAR Y , CONCLUSIONS, AND R ECOMMENDATIONS

5.1 SUMMAR Y -Th
The work described in this r eport ha~~ sh~.wic-that wall cooling can be

an effective means of i nc reas ing  the s tabi l i t y of laminar boundary  layer  flows.

The stability of two genera l  c lasses  of cooled bounda ry  l a y e r  flows was in-

ves t iga ted ;  shock  tube induced boundary  l a y e r s , and cooled subsonic  stead y

flow boundary  l a y e r s  (such as that  on a cooled aerod ynamic s u r f a c e  in f r ee

fli ght or in a wind tu n n e l ) .~~~~
A d i s t i ngu i sh ing  f ea tu re  of wall  b o u n d a r y  l a y e r s  in shock tubes  is

that the wall  t c l np e r a t l zr e  is less than  the t e mp er a t u r e  at the ed ge of the

bounda ry  l a y e r  for  a l l  shock Mach n u m b e r s .  In this repor t , shock Mach

number s  r a n g i n g  f r o m  1. 5 to 5. 0 were  inves t i gated.  The result s showed

that the cooling of the boundary  layer  in this type of flow is suf f ic ient  to
• sup re ss  the o r d i n a r y  types of d i s t u r b a n c e s  • (2- D and 3-D subsonic d is turbances)

cons idered  in  boundary  layer  s tabi l i ty  theory .  Hi gher  mode solutions to the

stabi l i ty  equat ions  of the  type f i r s t  d i scovered  by Mack w e r e  found to exist in

shock tube b o u n d a r y  l a y e r  flows. The f r e q u e n c i e s  associated with these hig her

mode solut ions  were  found to be so high (in the megaher tz  range)  that they

were  considered to be un impor tan t  in es tabl ishing the st~ hil ity  of shock tube

bounda ry  layers .

The p r i m a r y  object ive of the reported e f f o r t  was to de termine  whether

or m t  th ree -d imens iona l  a n d/ o r  hi ghe r  mode solutions co r re la t e  with trans-
• ( 4)

ition m e a s u r e m e n t s  in shock tubes , pa r t i cu la r ly those  of Boison . When

it was de te rmined  that thesc  types of solutions would not cor re la te  with

t rans i t ion  m e a su r c me n t s , a search fI  r other types of solut ions which mi g ht show

cor re la t ion  was u n d e r t a k en .  Two new c lasses  of d i s t u r b a n c e  so lu t i ons  were

d i s c o v er e d  which a r e  u n s t a b l e  in hi g hl y cooled b o u n d a r y  l a y e r s .  Both c lasses

hO
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originate in the f r ee  s t ream in the fo rm of supersonic  d is turbances .  One

class cor respond s to supersonic  d i s tu rbances  which t ravel  slower than the

f ree  s tream (c � l - l / M  ) and the other class cor respond s to d i s tu rbancesr-: which t ravel  f a s t e r  than the f r ee  s t ream ( c  �l + l/ M  ). Since both c lassesr
of d i s tu rbances  or ig ina te  in the f r e e  stream, these unstable d i s tu rbances

a re  not important  fo r  d e t e r m i n i n g  the stability of cooled boundary  l aye r s  in

a d i s t u r b a n c e - f r e e  e n v i r o n m e n t  such as f r e e  flight. Converse ly, these  types

of d i s t u r b a n c e s  are of fundamental  importance to the stability of shock tub e

boundary  l aye r s , since f r e e  s t ream dis turbances  always exist in shock tube

flows.  Free stream dis turbances  also exist in all wind tunnel flows so that

supersonic  incoming d i s tu rbances  a r e  also of impo rtance in de t e rmin ing  the

stabiLity of boundary  l ayers  on models in wind tunnels .  Thi s fac tor  is especially

impo rtant for cooled models  when the cooling is suff ic ient  to suppress  the

subsonic d i s tu rbances  which would otherwise  control  boundary  layer  stability.

The wall cooling r equ i red  to suppress  subsonic d i s tu rbances  was

determined for stead y subsonic flow over flat  plates with no pre ‘I su re  g rad i en t .

The Mach number  range  inves t iga ted  was 0. 603 ~ M~~~ O. 9 and the wall tern-

pe ra tu res  r ange  e x t e n de d - f r o m  insulated wall condi t ions  to ‘F = 0 . 6 2  T . The
W e

inc rease  in critical Reyno lds  number  with decreas ing T / T  is d ramatic,w e
as is shown in Figure  33. Thus , even a mode ra t e  amount  of wall cooling

should lead to a s igni f icant  inc rease  in t r ansi t i on  R e y n o l d s  number .  It was

also found that two-dimensional  d i stu rbances  are  more  u n s t a b l e  (h a v e  a lower

cr itical Reynolds  number )  than three-dimensional  d i s tu rbances  over this

range of M and T I T  , except at M =0 .9 and T /T  = 0 . 62  where  an obliquew e w e
wave having a wave angle of about 300 was found to have the lowest  cri t ical

R e y n o l d s  number.  In addit ion , it was shown in Section 4 .4 , that wall cooling

does not s ign i f i can t ly i n c r e a s e  the local skin f r i c t ion  coef f i c i en t  for  laminar

r flow,

i
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5. 2 CONCLUSION S

The conclusions cover a wider range of information than that contained

• in this report in order to obtain the widest possible perspective on the effect

of wall cooling on boundary layer stability. The conclusions do not; however ,

extend beyond the range of flow parameters considered in this report.

The f irs t  five conclusions are concerned with the effect of wall

cooling on subsonic disturbances:

1. With little or no wall cooling, subsonic disturbances are
the principal cause of transition.

2. Surface cooling stabilizes subsonic disturbances and delays
• transition over all Mach numbers investigated (M <2) .

3. Subsonic disturbances cause transition on aerod ynamic surfaces
in wind tunnel flows and f ree  flig ht unless sufficient surface
cooling is imposed.

4. Shock tub e flows always have significant wall cooling.

5. Amplification of subsonic disturbances in shock tube wall
boundary layer flows is delayed well beyond the location of
measured transition.

The wall cooling associated with shock tub e flows was found to be so

effective in suppressing both two -dimensional and three-dimensional di s-

turbances that these type s of disturbances did not provide any correlation

between boundary layer instability and measured transit ion Reynolds numbers.

.4 Therefore, a search for other types of unstable waves , which could account

0 for earlier transition, was undertaken. The investigation identified a class

of supersonic disturbances.

From a study of the behavio r of these disturbances it was concluded

that;

6. Unstable outgoing supersonic disturbances exist , but their
characteristic frequenàies are too high to affect boundary
layer stability.

62
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7. Incoming supersonic disturbances always exist and have

unstable regions over all flow conditions investigated.

8. Unstable incoming supersonic disturbances control trans-
ition in shock tube flows.

5.3 RECOMMENDATIONS

The results in this report show that wall cooling in subsonic and

low supersonic Mach number (M<2) has a significant potential for reducing

skin friction drag on fli ght vehicles by delaying transition from laminar to

turbulent flow. The results of this investigation were obtained for flows

with no pressure  gradient. Obviously, it will be necessary to determine if

wall cooling can prevent laminar flow separation and transition in reg ions

of adverse pressure gradient before an estimate can be made of the total

aerod ynamic drag reduction which can be achieved through wall cooling

on flight vehicles (skin friction drag + pressure  drag) .

The following program for fur ther  research will be necessary to

determine the overall feasibility of boundary layer control through wall

cooling.

1. A Wind Tunnel Investigation of Boundary Layer Transition
on Cooled Flat Plates with no p ressure  Gradient for sub-
sonic Mach numbers.

- 
I 2. A Linear Stability Theory Investigation of Subsonic Laminar

Boundary Layers on Cooled Surfaces with Adverse Pressure
Gradient.

3. An Experimental Investigation of The Effect of Wall Cooling
on Lift and Drag on Airfoils at Subsonic Conditions. This
program should include both wind tunnel and fli ght testing.

4. A Systems Analysis to Determine the Overall Payoff Which Can
be Achieved by Integrating Cooled Aerodynamic Surfaces,

• Suppo rting Hardware , and the Use of Cryogenic Fuels Such as
Hydrogen into a Flight Vehicle.

-~ I - •
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¶ APPENDIX A

CRITIQUE OF OSTRACH-THORNTON ANALYSIS

The mean flow field in a shock tube is basically an unsteady flow .

In an experiment, the instrumentation is fixed in the laboratory coordinate

system and so one wants to un-derstand the flow from the point of view of

• an observe r fixed in space. However , from the point of view of an observe r

• riding on the shock wave, the flow is steady (neg lecting small changes in the

free stream conditions of the shocked gas due to the presence of a growing

• boundary layer and attenuation of the shock speed itself). Thus , the analytical

formulation of both the boundary layer equations for the mean flow and the

small disturbance equations is simpler when done in the moving coordinate

system where the mean flow is constant in time and all of the unsteadiness

of the flow is due to disturbances. The correlation of boundary layer

stability and transition data with analytical predictions however is easier

done in the fixed coordinate system since all available data are obtained

with sensors fixed in the laboratory coordinate system. In the present

analysis the mean flow is solved in the shock-fixed coordinate system

and then transformed back into the laboratory-fixed coordinate system.

The entire stability analysis is formulated in the laboratory-fixed

coordinate system.

In the Ostrach-Thornton investigation 
(7)  the entire analyis was carried

out in the shocked-fixed coordinate system. The small disturbance equations

were  first  nondimensionalized jwith..iree stream. quantiti-e s of the shocked gas

(U ’, T , etc .) .  Then, basically in the interests of expediency, they

normalized the mean flow velocity profile and phase velocity in a manner so

as to reduce the problem to one in which the normalized velocity profile had

a value of zero at the wall and 1 in the f ree  stream cor responding  to the

classical stability analyses. They defined new quantities, Q~ n ’ , and c

as follows

• 65
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c - u  C~ - tJ~
- w w

1 - u  
= U~ -

w w

where capital letters refer to dimensional quantities and lower case letters

-
• 

refe r to quantities nondimensionalized by U* and ( ) ‘  signifies different ia t ion

with respect to ll , the Biasius similarity variable. Note that the operation

of dividing velocities by (1 - u
~~

) when these velocities were  originally non-

dimertsionalized by U’~ is equivalent to nondimensionaIizing the velocities

by U’1’ - U’1’ in the first  place.
e w

The disturbance velocities in the Ostrach-Thornton analysis were

originally nondirnensiort alized by U ’1’ and then subsequently divided by 1 - ~~~
As an example , the normalized value of the amplitude of the velocity

fluctuation in the strearnwise direction (their notation) becam e

* 
f/ U  f
( 1-u ) ’ (U~ - 

(A-2)
w e w

where here  I represents a dimensional quantity.

R eferring to Equation (A- I )  above , it should be noted that the

- • 
• 

operations performed by Ostrach and Thornton as indicated in Equation (A- i )

are really equivalent to transfo rming the mean flow velocity and phase

velocity back into a lab -fixed coordinate system . This t ransformat ion  is

perfo rmed when is subtracted from the mean flow velocity. Then they

simply nondimen sionalized all velocities by the velocit y of the fluid

66
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relative to the wall (U: - U*). These operations clearly lead to changes
in the sign of the quantities () - ~ and ç~’ compared to u - c and u ’
respectively. If ori ginally u - c was positive , then , after the operations
of subtracting u individually from u and c and dividing by 1 - u , - C

becomes negative and vice versa if u - c was or ig inally negative. The si gn
of Cl’  is also changed from that of ii ’ when u ’ is divided by 1 - u .  There-
fore , while the operations indicated by Equation (A-I )  appear to be simp ly
a no rmalization procedure used to obtain a normalized velocity profile that
corresponds to the classical one rang ing from 0 at the wall to 1 in the f ree -
stream , it must  be recognized that these operations imply more  than just
a simp le normalisat ion.  The operations indicated in Equations (A- I )  and

(A-2)  (corresponding to Equations 7a  and lb in Refe re nc e 7) reall y corres-

pond to f i rs t  t ransfo rming the small dis turbance equations back into the

laboratory coordinate system and then nondimensionalizing all velocities

by the velocity of the fluid relative to the wall . Therefore , in evaluating - •

the Os t rach  and Thornton analysis , it m u s t  be kept clearly in mind

which coordinate system each of the quant i t i es  related td velocities is

defined in . Cl and c are properly defined in a laboratory fixed coordinate - •

system and thus ~ is the nondirnensional  phase velocity relative to a

stationary observer . That c is thus def ined is not stated or immediately
evident in Reference 7.

It is very easy to become thoroughl y confused when reading

Reference 7 since all quant i t i es  related to veloci t ies  seem to have the wrong

sign. Ostrach and Thornton apparently recognized that these quant i t ies

did not have the correct  si gn for they invented new si gn conventions in

order to “make things come out ri ght” . They defined a new wave number
= - ~ and the Reynolds number Re1 ,was defined as 1 - u j  Re instead

of (I - u )  Re. They do not state it but in their analysis  the wave number

In  the  t r a n s v e r s e  d i rec t ion  ~ would also have to be def ined with a negative
.
~ ~~~. T fad  they considered 3-D waves instead of only 2-0  waves , it is quite

I- 
~~~~ r h i t  noticeabl y incorrec t  resu l t s  would have resulted and step s

• c - r r  • t the  anal ysis .  
67 -:
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ft is now clear to us that the Ostrach-Thornton analysis is basically

properly posed (within the accuracy of the Dunn-Lin approach) if one

untangles all of the sign inconsistencies.  One then finds that they have

really stated the problem (equations la through 5a in Refe rence  7) for the

situation pictured in the following sketch

Y

U u s

~~~~~~~~ 
-I 

~ w 
= 

-

and that all d is turbances  a r e  left  running  waves .  In the above sketch then ,

e .,  ~~~~, ~~~, ~: u ,  and U would all be negat ive  quant i t ies  as they, of course ,

should be for th is  physical  s i tuat ion.  The input mean flow prof i le  would then

be input as negat ive  numbers  for  u and positive numbers  for  u~. Then upon

nondirnen sior ial iz ing with respect  to U ’
~ - U~ (a posi t ive  number)  Cl and c

— 
e w

would be pos i t ive  and Cl - c would have the co r rec t  s ign . c would indeed

ft apoears  that 0-S used a pos i t ive  veloci ty  p rof i l e  f o r  U’~ ~vith U’~’
negative ( co rr e spo

4
nding to t he i r  Figure  7 for stead y flow system ) but con-

• s i de red  U ,, and ti e also to be posi t ive  quant i t i es . They c o n s i d e r e d  c to be
pos!tivè , but again UT~ and TJ~~ were  cons idered  to be po si t ive.  Thus , t he i r

Cl - c and ç ’ had the i n c or r e c t  si gn for  our sketch . But then they r ede f ine  t he i r
d i s t u r b a n c e  veloci ty  amp li tudes to have negat ive  value s w h i c h  tended to undo
the i nco r r ec t  si gns  on Cl - c and Cl’ . Finally, a f te r  they invented a ne gative ; ;
sign for  ~~. (and . by imp l ica t ion  negat ive  s igns for  ~ and c ) ,  t he i r  equat ions Ia 

- 
*

th ro&~gh 5a becam e appl icable  to the ph ysical s i t ua t i on  shown above . When they
wro te  th e ’r  f ina l equa t ions  (E qns.  9a throug h L4 in  R e f e r e n c e  7) ,  they had

• in essence  re t r an s fo rmed the i r  d i sturbance  v e l o c i t i e s  and rede f ined  ~ and
to cor respond  to the flow s i tuat ion which is ju s t  the opposi te  of our sketch ,

• 
- but c o r r e s p o n d s  to the i r  Fi gure  7. -

•
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be the phase velocity relative to an observer in the laboratory-fixed

— 
coo rdinate system corresponding to the sketch which is really what the

Ostrach-Tho rnt on phase velocities c are.

• -~ In Figure 34 , the movement of a given particle is tra cked in the

two different coordinate system s corresponding to the shock-fixed coordinate

system for which the Ostrach -Thorritort analysis is really app li cable. This

fi gure is particularly useful for vi sualizing the ba si s for the development

of the Reynolds number based on velocity of a part icle relative to the wall

and length equal to the to tal distance that a particle is in motion relative to

• the wall at a given tim e t. Note that for  a tim e interval  At= t
2

-t
1 

af ter  the

shock has oassed a given Sos it ion  (x ) the part icle that is at the oosi t ion
g

x has been in motion for  the :~ r~e t and has covered the d i s t ance  ecual  to
g 2

U 2 
t
2
. Also , note that  (all quarit~.t ie s  a r e  cons ide red  to be dimens iona l  in

what  follows )

x 52 
- x~~•1 x37 - x

At = 
g

=~~

_ _ _ _ _ _ _  

X
g ~ x~ 1

and that At = = = -

2 2

where is the time after the shock moves past a given poiat on the shock

tube wall. Equating these two expressions for  ~t yields

• •

~I 

U 5 
- 

x~~ - 

- 

t 2 (U 5 
- U2 )

U 
- 

x - x  - ti A t2 g P 1 2

U U
or t

2 (U - 
At = At

s 2 e

which state s that in the tim e At af ter  the  shock passes  a g i v e n  p o i n t  on the

shock tube wall , the particle at p o s i t i o n  x at t ime t ~as been  in m ot i o n forg 2
the tim e ‘iven by

• 69 H
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• Figure 34 , Motion of a Test Particle in Stationary and Moving

Coordinate System.
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U
- I t 2 = ~J!~ At
. 1 e

and the distance covered by the particle is

-~~~~~ U U
- Xp2 = U2 . 

L At = (U 3 
- tie) €1~ 

At

If ~ t is the time to transition after the shock passes a given point , then Xp2

- represent s the total distance that a particle travles relative to the wall to

• reach transition.

In the shock-fixed coordinate system X~,2 = U~ t 2 which represents

the total distance covered by a particle in tim e t
2
. But in this sam e tim e ,

- the wail has traveled a distance U t = Ti t . The distance that the particle

has traveled relative to the wall is then (U s - hJe
)t a~~~ z t z . But again

A t  x / Ug S

• U
or t 2 = - jy~- A t

e

Note that in the Ostrach-Thornt on analysis the Reynolds number Re
~~

was

based on

-
~~~~~~ (U - U ) 2 X

- 
S e P2

11

e e

• but X = U t Ti . 
U At = U At —

P2 e Z  e jy- s
e
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or Re = (U - U ) 2 
U At /U

X s e s e

which is the same as the Reynolds number based on the total distance that a

particle travels and its velocity in the laboratory-fixed coordinate system.

Therefore , it appears that the end result of the Ostrach-Thornto n

formulation of the stability equations is correct  within the accuracy of

j the Dunn-Lin approach if one interprets their phase velocity ~ as the

ph a s e  ve loc ity in a shock-fixed coordinate system. It is very  clear that

their  formulation of the stability equation does lead to the correct  form

of the parameters , Mach number and Reynolds number , for a stability

anal ysis of the boundary layer formed behing a mov ing  shock wave.

I
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APPENDIX B

DESCRIPTION OF THE BOUNDAR Y LAYER STABILITY
• COMPUTER PROGRAM

• B. I STABILITY EQUATiONS FOR THE VISCOUS STABILITY COM-

PUTER PROGRAM

The complete parallel flow linear stability equations used to genera t e

the resul ts  presented in this report can be lound in R e f e r e n c e  16. The b tah i l i ty

equations presented  in R ef e r e n c e  16 contain t e rms  which a r i se  because  of non-

parallel ism of a boundary  layer .  These t e rms  were  not included in the v e r s i on

of the stability computer  p rogram used to g e n e r a t e  the r e su l t s  pre sen ted  i u

this report .  The t e rms  included in R e fe rence  16 which a re  not included for

parallel flow investigation are  as follows:

(a)  All t e rms  involving V (mean flow component  of ve loci ty
in the y-d i rec t ion )  and all der iva t ives  of v.

(b) All s t reamwise der iva t ives  of mean flow quant i t ies .

The stability equations in R e f e r e n c e  16 also inc lude  the e f fec t  of

the bulk coeff icient  of viscosity,  denoted by ~~~ . In the p r e s e n t  inves t i gation

ç was taken to be zero.

• 
The complex amplitude funct ions of the flow variables are  def ined

‘~ by

(u ’, V ’ ,W ’ , p’) = (f , ~ 0,  h , n )  exp [i( ~ 1 X +~ Z _ 1, t ) ]  (B. 1)

When equations of the type expressed b y Equation B. 1 are  subst i tu ted  into the

linear ized small d is turbance  equations for parallel  flow ,an eig hth o rder  system

of l inear d i ff e ren t i a l  equations is obtained. The eighth o r d e r  s ys t e m  is setup

as follows:
8 8
‘V”a..Z’ = S

hI%
b . Z . (i= l , Z , 8) (B . Z~J

ii 3 L1_i ~• j — J j = l

• 73
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~1I where

- 
Z
1 
= f , Z 2 

= f’ = Z~~, Z 3 = 0 Z4 = r~ /M
2 

, z5 = e

z6 = e - z 5 , Z 7 = h , Z8 = h ’ = Z ’7

- and where the row index, i, in Equation (B. 2) is set up in the following

order

Pow Index Equation

1 zl
1 = z z

2 First momentum (x-direction)

• 3 Conti nuity
I 

4 Second momentum (y-direction)

5 Z’5 = Z 6

6 Energy

7 Z~~ = Z 8

• 8 Third momentum (z-direction)

The above formulation of the stability equations given above is identical

to Mack’s except that he defines Z4 ,i/ ’~# M~
2 

. His system of stability

equations also has one further minor difference and that difference involves
- the definition of the bulk viscosity coefficient. Mack uses the Lees-Lin

I definition which is 3/2 times the usually defined value, ~~~~.

The system of equations (Equation (1))  is written in the form

Z1 ~~~~ D .. Z . ( i=l , .. ., 8) (B .3)

j = l

L where 
8

D.. = 
~~~ 

d j kbki
k = 1 (B. 4)

d ik = [a .k ]
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For the parallel flow version of the stability equations , the D.. can

be obtained analytically whereas for the non-parallel flow version the D..

must be obtained numerically. The values for the parallel flow stability

equations are given below.

• The Z. equation has one non-zero coefficient

D(1 .2)  =1 (B.5)

The Z
2 

equation has six non-zero coefficients

D(2 , l)

~~

(

~

z

~~

+a

~~

) + ~~~~R (U ••C)

D(2, 2) - ~~ (B. 7)

cx U R
D(2 ,3) = 

T ~~~ ft + ( 4- + K )4} i oc 1
2

T ’ (B.8)

D(2 , 4) = - ( + K ) ~~~M
2 (U-c) + 

i 
(B. 9)

- 

- 

- 

D(2 ,5 )  = ~~~~ (U-c) ( + K ) - U”1 
~~ 

- ft (B. 10)

L i  ~ D(2 ,6 ) = - -~- 
~

—
~j  

(B. l1)

The Z3 equation has 5 non-zero coefficients

D(3 , 1) = - i (B. 12)

D(3 , 3) = T ’/T (B. 13)

• D(3 , 4) = - i (U-c)  M
2 (B. 14)

D(3,5) ~~ (U-c)  (B. 15)

D(3 , 7) = - I _—i (B. 16)
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• The Z4 
equation has no non-zero coefficients. The coefficients are

written in terms of the factor L, defined as

- L = 
R 

+ ~ + ~ ) M
2 (U-c)  (B. 17)

• The coefficients are

• D(4 , 1) ~~ 
+ ( + ) ~~

] (B~ 18)

• D(4 , 2) = - -4~
-- (B . 19)

D(4 , 3) = +[-(a i
2

+
~~~ 

)+(~~~~~ + K )  
(T ’)

2
~~&~~~~~~

- i ( U - c ) ]  (B. 20)

D(4, 4) = 

~~ 
(~~~ + ~

) [D(3 , 4) ( L 
~~~~~+*)~~

i
~~~

M
~~

] (B. 2 1)

D(4 , 5) 4~- [(4- + ‘ ) ~~ ftD(3 , 5)+ I U’ ( ...L ~ u..

(-~~-- +K  ) (B. Z2)

- -H + 
T

D(4,6) = -f- (4. + ‘C ) (U-c )  (B. 23)

F
- t  - a

3
- , D(4 , 7) = D(4, 1) (B. 24)

1

D(4 , 8) = D (4 , 2) ~ 
- (B. 25)

1
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The Z 
~ 

equation has a sing le non-zero  coefficient.

D (5 ,6) = 1 (B. 26 )

The Z 6 equation ha s five non-zero  coefficients.

D (6 , 2) = - 2 a (  v - ’  ) M~~~ U

’ 

(B. 27)

-j 
D(6 , 3)

1~~~~~~~~~~- 2 i ~~~(y -1  ) a ~~ M
2

U ’

D (6 , 4) = - i a ~~~~ (y - 1)  (U- c )M 2 
(B. 29)

V

D (6 ,5) = ( a
2 +a 2

3 ) -

~~~~~~~~~~ d T  
(~~‘~~ d

2

2 (B. 30)

- a ( V - l )  ~~~~~( U ’ ) 2
+ i a 1

-~~~ 
(U-c)

D (6,6) - 2 ~~~~~~
— -

~~~~~~~~~~
- ( B .3 1)

• 
• 

- The Z
7 

equation has a single non-zero coefficient.

D (7 , 8 ) = 1 (B. 32)

The Z8 equation has 5 non-ze ro  coefficients.

D ( 8 ,3 ) = - i a 1 a 3 T ’ (~~~~~~~~+(~~~~+ K ) / T )  (B. 33)

77

- ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ - — — 
-  

-



D (8,4) - ( f+ K  ) ~~1
a

3
(U-c)M

2 + I (B. 34)

D (8,5) + ~
) cx 1 a 3 

(U-c) (B. 35)

D (8 , 7) = ( a~~ + ) + i ~~~~ (U-c) (B. 36)

D (8 , 8) = (B. 37)

In these equations

~ 
(B.38)

and is a constant.

The boundary conditions are

Z 1 
(0) = 0, Z 3

(0)= 0, Z5(0)=0 , Z7
(0)=0 (B. 39)

and as Ti -4 ~ , the amplitude functions must be bounded, or for the case

incoming supersonic waves , the amplitude functions must be bounded for

The problem as formulated above is such that the boundary conditions

themselves are  not sufficient to establish any solution of the eight differential

equations other than the trivial solution of zero. Therefore , the problem is

- • - an eigenvalue problem, that is , nonzero solutions which satisf y the boundary

conditions exist onl y for certain combinations of the parameters ~~~ R , c.

The general method used to determine the elgenvalues and eigensolutions to
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the above system of equations is given in the next section. The computer

program used to implement the solution is given in Section B. 3.

B .2  METHOD OF SOLUTION

The difficulties of solving the boundary layer stability equations are

well known. Chapter III of Reference  17 can provide the reader with an

elementary understanding of the main difficulty involved in numerically

integrating the system of equations represented by Equation B. 3. The main

• difficulty is associated with the problem of controlling parasitic e r ro r  growth

in the solution of two -point boundary value problems. In the BLSTAB program,

- I the Gram-Schmidt orthogonalizatiori procedure is used to overcome this

• problem. The reader is re fe r red  to Refe rence  18 (pp. 98- 103) for a concise

demonstration of the problem of parasitic error  growth and how it can be

overcome by the use of the Gram-Schmidt orthogonalization procedure.

Chapter IV of R eference 19 also demonstrates the use of the Gram-Schmidt

orthogonalization procedure for solving two -point boundary value problems.

The details of the use of the Gram-Schmidt orthogortalization procedure to

determine the eigenvalues and eigensolutions of Equations B. 3 have been

presented in Reference 11.

The method used to determine the eigenvalues of Equations B. 3 - •

• ~~• is outlined as follows. Four linearly independent solutions to Equations

B. 3 are  generated. These four independent solutions are chosen to satisf y

the boundary conditions at T i>>  ‘fl . A linear combination of the four in-

dependent solutions is then determined such that the velocity amplitudes

• are zero at fl =0 and the pressure  amplitude at fl =0 is 1. 0. Using thi s same

linear combination , the value of 0 ( 0 )  is evaluated. If 9 ( 0 )  is sufficiently

close to zero , the values of ~~‘ 

~~
. 013. R , and c which were  used to generate

the four independent solutions consti tute ~ .~ eigenvalue set. The details of

the methods outlined above are discussed in the following paragraphs.

• 
I

1
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B. 2. 1 Free Stream Solution

• In the f r e e  s t ream U = T =~~=I  and U ’ =U ” =T ’ = T ’ =O . All of the

coef f ic ien ts  in Equations B. 3 are  constant  and onl y the following coeff ic ients

are  n o n - z e r o :  D (2 , 1), D (2, 4) ,  D (2 , 5) ,  D (3 , 1), D (3 , 4),  D (3 , 5), D (3 , 7),

D (4 , 2), D (4 , ~
), D (4 , 6) , D (4 , 8), D (5 , 6) ,  D (6 , 4),  D (6 , 5), D (8 , 4),  D (8 , 5) ,

• and D (8 , 7). An anal ytic solution to Equation B. 3 can be obtained by ele-

mentary  methods.  The easiest way to obtain the anal ytic solution is to re-

wri te  Equations B. 3 as a system of four  second order equations in te rms of

Z 1, Z
4 , Z 5, and Z

7
. This system of four second o rder  equations has the

form
• 

W~
’ 

= 

~~ 

b 
~ 

W .  ( in , . .  , 4) (B .40 )

where  W~ =Z~~, W
2=Z 4

, W
3=Z 5

, and W
4=Z 7 

and the non-ze ro  b~ 1 a re  given

-
• ( in terms of the D 

~ 
by:

b 11 = b44 
= D (2 , 1) (B . 4 1)

b 12 = D (2 , 4) (B. 42 )

b 13 = D (2 , 5) (B. 43)

b ,2 = D (Z , 4 ) x D  (4 , 2)+D (3 , 4 ) x D  (4 , 3) +D (6 , 4 ) x D  (4 , 6)
• +D (8 , 4 ) x D  (4 , 8) (B. 44)

b 23 D (2 , 5 ) x D  (4 , 2)+D (3 , 5 ) x D  (4 , 3) +D (6 , 5 )x D  (4 , 6)
+D (8 , 5)~~D (4 , 8) (B . 45)

b 32 = D (6 , 4) (B. 46)

b 33 
= D (6 , 5) (B .47 )

b42 D (8 , 4) (B. 48)

h43 = D (8 , 5) (B. 49)

b
14 

= D (8 , 7) (B. 50)
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The characteristic values of the system of Equations B. 40, which

are the same as the characteristic values of Equations B. 3, are given by

— (b
11

) ”2= —[(c4 + o’~~)+icy 1R ( l — c ) ] ’~
’2 

(B.~5 1)

X z=X 1 (B. 52)

1/2

3= - ~ 1/2(b 22+b 33)+[ 1/4(b 22 -b 33
) 2 

+ b32 b 23] ’12 ( (B. 53)

- ~ 1/2(b 22+b33)-[1/4 (b 22 -b 33
) 2

+b 32 b23) ”2 ~ 
(B. 54)

X 5 
•••)
~4 (B. 55)

X 6~ X 3 (B. 56)

~‘ 7~~~’8 ~~~ 
(B. 57~

In order to study incoming supersonic waves it is necessary to determine

which of the above characteristic values represent the viscous counterparts

to the inviscid solution as given by Equations 13, 14, and 15 on page 24. To

thi s end , it is instructive to evaluate b
22 and b 23 for the special case of

K = 0 and ry=3/4 .  From Equation B. 45 it can be shown that

b 23 = 
~~ 

R( 1-c ) 2 
(1-4 /3  g~~- (B. 58)

and from Equation B. 44 it can be shown that

H 2 2 
2 

M 2 ( 1-c)
2

[ y- (4 / 3 + K )a (y - l ) I
b ,2 =(o. 1 + (B. 59)

2[ 1+ i o,~ ~ M ( 1 — c )  (4/ 3+ K )1

For the case of K =0 and n=3/4, Equation B. 58 reduces to

b23=0 (B.60)

and from Equation B. 53

1/2
= -(b22) (B.61)
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and from Equation B. 54

1/2

Combining equations B. 61 and B. 59 yields the following expression for

X when i~ =0 and ~y =3/4
2 2 2 1/2a. M (1 — c)

F 2 2  1
- 

~~~~ ~~~ 3
)- (B. 63)

[1+ ia.
1 

4/3  y M (l-c) 1

which for large R reduces to

= 

~~ 1 {[
1_M~~~1

_c)2] + a.
2

3/a .~l
~ (B. 64)

R-’~

Thus, c. and x are the viscous counterparts to the inviscid

characteristic solutions (Note that Equations 13-15 on page 24 are valid only

for 2-D waves whereas Equation B.64 is a 3-D wave result). From Equations

B.62, B.47 , and B. 30 it is easy to show that is given by

X [(
2 

+ a.
2

3
) + 3/4 i a.

~ 
R (l-c)]~~

2 
(B.65)

when K =0 and a= 3/4.

4 The characteristic vectors corresponding to each of the eight

cha racte ristic values can most easily be obtained by first deter mining the

characteristic vector components corresponding to Z 1, Z4, Z 5, and Z
7

from Equations B. 40-B. 50 , and then using the relations Z 2=Z ’
1
, Z

6=Z’ 5,

7
8
=Z’

7 
and the continuity equation to define the other components. Let

~~~ represent the characteristic vecto r corresponding to the characterist ic

value ~~~.. Then from Equations B .40-B. 50 the following system of equations
3 ( )for the B are  obtained:

(b 11 -X
2 .) ~~~~ + b 12 ~~~~ + b 13 ~~~~ =0 (B. 66)
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(b
22 X

2 .) ~~~~~ + b 23 ~~~~~ =0 (B.67)

b 32 ~~~~~ + (b 33 -x2 .) ~~~~~ =0 (B.68)

b42 ~~~~ + b43 ~~~~ + (b44 -X
2 .) B4~~ =0 (B. 69)

I’ For the f i rs t  characteristic value, ~ ~
= — (b 11)~~

1 
= -(b44

)~~~
2
, B1~

’
~ is

arbitrary as is B4~’~. Therefore, B2~’~ and B 3~’~ must both be zero.

Observe that x 1 
is a double root to the characteristic determinant. How-

ever , since only one (and not two) of the Equations B. 66-B. 69 is a linear

combination of the other equations for ). =)~ 1’ it follows that even though

there is a double root , there are  still two linearly independent characteristic
(1) (8)

vectors corresponding to the double root. Thus, B and B are defined

as (1,0,0,0) while B~
2
~ and B~

7’ are defined as (0,0,0, 1). The remaining

characteristic vectors are given by the following relations:

B
3~~

= -D(6,4) (B. 70)

B
2~~

= D(6, S ) — x2
~ (B. 71)

D(2,4) x B
2~~

-D(2, 5) x D(6, 4)
B ~~~= (B. 72)
1

D(8 , 4) x ~~~~ + D(8, 5) X ~~~~~~
B
4 
~ 

X
2
. - D(8 , 7) 

(B. 73)

~ I 
The characteristic vectors for the eighth order system ~~~~ are then defined

as follows:

= ~~~~~~~~~ 
(B. 74)

~~~~~ = ~~~~~ 
(B. 75)

= [D ( 3 , 1) x ~~~~~ + D(3 , 4) x ~~~~~ + D(3 , 5) x ~~~~~ +

D(3 , 7) x B4~~ ]/ x
2

. (B. 76)
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~~~~~ = B
2~~~ / X  (B.  77)

~~~~~ = B (B. 78)
3 3

= ~~~~~~ (B. 79)

A = B
4~~~~/x  (B. 80)

~~~~~ 
= ~~~~~~ (B. 81)

The analytic free stream solutions provide the initial conditions

for four l inearly-independent solutions. The characteristic vectors corres-

ponding to the character is t ic  values having negative real parts (x 1’ x 2’ 3’
• and X 4 ) a re  then integrated , each separately, across the boundary layer

to produce  fou r  l inearly-independent solutions. Each of these four solutions

approach zero  as T~--~~ . When amplified incoming super sonic waves are

being considered , X 6 and it’ s characteristic vector must be used instead of

and it 1 s charac te r i s t i c  vector in order  that the p ressure  amplitude have

the character is t ics  of an incoming Mach wave.

B. 2. 2 Solution Inside the Boundary Layer

With initial conditions at ~ = specified by the anal ytic solutions,

the Equations B. 3 a re  then numerically integrated across the boundary layer

f rom =~ to n =0. A standard fourth order  Runge-Kutta  technique is used

to c ar r y  out the numerical integration.  The four separate integrations are

carr ied out in parallel across a specified number of integration steps. Then

the Gram-Schmidt orthogonalization procedure is performed; both on the

initial condit ions as well as on the current solutions. When the wall (Ti =0)

is reached , a f inal  Gram-Schmidt orthogonalization is performed and then

a l inear combination of the solutions is obtained satisf ying the boundary con-

dit ions at the wail (Z
1
(0)=Z

3
(0)=Z

7
=0 and Z

4
(0)= 1.0). 9 ( 0 )  is then obtained

where  Øis  g iven  b y
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where the C. are  the combining coefficients obtained by satisf yiwi t h e  ~~~~

• boundary conditions. If Q ( 0 )  is zero within a specified t o l er a o . e, a i .  t i ~~en-

• value has been found. If 9(0 )  ~ 0, the Newton-Raphson search produce is

used to find a combination of ~ 1’ ~~~ R . and c which will y ie ld an ei genvalue .

B. 3 LISTING OF THE BLSTAB COMPUTER PROGRAM

The computer program which implements the method s d i s : i t s s c d

in Section B. 2 is called the Boundary Layer STABility Computer  P~ ugram.

• The input data for the program are as follows. The data o,t the fi r s~ ..a rd

are:

FIRST CAR D (all quantities in 110 format)

Columns 1-10. NST EPS--the number of in tegrat ion ~~~~I~~~~~S •

Columns 11-20.ITST EP --the number of integrat ion steps bet~~c~~n
Gram—Schmidt orthogonali~ atic n s;

Columns 21-30. ORDER--the order of the different ia l  equation
system which is eight (8) for the vi~r~~io~
of the program described i’~ thi~ report.

• Columns 31-40.NPNTDA--if not equal to zero, the input mean
flow profiles will be p r i n l vd n~~ .

MEAN FLOW PROFILE INPUT CARDS
d

The program requires  that the mean flow qu a n t i t i e s  4.J , U ’ , I~ ’ , T ,

T’, and T” be specified at the wall and at equal in tervals  of ‘~n e - L a l f  ol  t l i .

integration step size (H/2) .  Thus , the mean flow profi le da ta iuu -’t be

available at ZxNST EPS+ l locations equall y spaced aeros~ the b o u n d a r y

layer  at in tervals  of H/2 .  Two input card s are used to p r e s c  1) h e  the r1tc~t n

flow profile data at each point. The f i r s t  card contains ¶ ‘ , L ’ , and U” in

a 3E14. 7 format in the order  given. The second card in each set Co t z i l ; s

T , Tt , and T” and Y , the location within the boundary l a y e r  at which the

data are  given. T , T’ , and T” a re  in a 3E 14 . 7 fo rma t .  Y is in co~ um ,u i

85

_______ _____ . .



r :~~~ _ ~~~~ ii ii Ii 11TT~

7 1-80 in a FlO. 3 fo rmat. The order in which the mean flow profile data

must appear is in ascending order of Y , that is, the first two cards give the

data at Y=O (Ti =0), the next two cards give the data at HI 2, and so on, with

the last two cards giving data at Ti =
~~ 

The last data set is used in sub-

routine EIGEN to determine the analytic solution for the free stream. There-

fore , the last two cards must show U ( Ti .~ =l . O, U ’(Ti 6
)= U”( ,~~ )= O on the second

last card and T(ii 
6 

)= l .  0, T’(ii 
8 

)=0. T”(Tl )=0 , and Y = fl 8
on the last card.

• H, the integration step size is calculated within the program by dividing

Ti 6 
by NSTEPS. The user must insure that the number of integration steps

divided by ITSTEP is an integer.

DATA AND PARAMETERS R EQUIR ED FOR EACH PROBLEM SET

A set of four cards is required for each problem.

• First Card of a Problem Set

Columns 1-20. EPS, the tolerance of 9(0). If 9(0)1 < EPS, an
elgenvalue has been found. E20. I format.

Columns 21-30. NOIT2, the number of iterations of the Newton-
• Ra ph son search procedure which are permitted

to find an eigenvalue; 110 format.

Columns 31-40. NPRINT , a diagnostic output parameter. If NPRINT,~ 0, the results of intermediate computations
associated with obtaining th e free stream solution
are printed out each time a trial soluti”~n is carried
out ; 110 format.

Columns 41-50. NPRINT 1, another diagnostic output parameter
to be used in conjunction with NPRINT. If only
the characteristic values of the free stream solution
are desired for each individual solution , then
NPRINT 1 ~ 0 and NPRINT =0. 110 format.

Second Card of a Problem Set (all quantities in an Fl 1. 5 format)

• Columns 1-11. M, Mach number of the free stream. For shock
induced flows , enter the Mach number of the flow •

• behi nd the moving shock wave in a laboratory-fixed
• coordinate system.
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Columns 12-22 . GAMMA , specific heat ratio c~ /c~ at free st ream
temperature (assumed to be constant throughout
the flow).

Columns 23-33. SIGMA, Prandtl number of the free stream (assumed
• to be constant throughout the flow).

Columns 34 -44. TINF , temperature of the free stream in degrees
Rankine.

Columns 45-55. MUZ , bulk viscosity (denoted by ~ in Sections
B. l and B. 2).

Third Card of a Problem Set (all quantities in an Fl i .  S fo rmat)

Columns 1-11. (ALPHA1) ; real part  of ~
y

Columns 12-22. (ALPHA1)
~

; imaginary part of a. 1
Columns 23-33. (ALPHA3) ; real part of Q’ 3
Columns 34 -44. (ALPHA3).; imaginary part of -

~~~~

Columns 45-55. R , Reynolds number (R=\’~~~)

Columns 56-66. (PHV) ; real part of phase velocity, c r
Columns 67-77. (PHVL; imaginary part of phase velocity, c .

Fourth Card of a Problem Set (all quantities in an 110 format)

Columns 1-10. IX 1 The seven numbers on the third card are
stored in an array called X. IX 1 denote s
one of th e two parameters which will be
varied in carrying out the Newton-Raphson
search procedure.

-‘ Columns 11-20. 1X2 Denotes the second of the two parameters
which will be varied in carrying out the
Newton-Raphson search procedure.

Columns 21-30. ITEST. can be input in two ways. If ITEST
equal s 1, the input number for a. is con-
aidered to be a. 3/a.~ . If ITEST ii3l , then
the numbers read in for ~ are considered
to be 0

3
s The option of I1~EST= 1 is used

to stud y waves which have a cons tan t
• oblique angle.

Columns 3 1-40. INT. If INT~ 0, the eigensolution for the region
inside the boundary layer will be comput ed
and printed out aft er an eigenvalue has been
found.
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Columns 41-50. INTOBL. If INTOBL,~ 0, the eigensolution for
the region outside of the boundary

• layer will be computed and printed out.

• Multiple problem sets can be included in the input data. This

concludes the description of the input data for the program. The listing

of the program is given in the next section.
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