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rate characteristics of this class of disturbances agrees qualitatively with
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The stability of highly cooled, wind tunnel type boundary layers was also
investigated. Results indicate that moderate amounts of surface cooling
significantly enhance the stability of the boundary layer to both two and
‘ three dimensional subsonic disturbances, This implies that it is feasible to
- delay the transition from laminar to turbulent flow on an aerodynamic surface
| by cooling for the purpose of decreased friction drag and hence a general
! increase in the fuel economy of subsonic free flight vehicles.

! It is thus recommended that an experimental test program be developed to
study the effects of surface cooling on transition in steady flow, subsonic
wind tunnel type boundary layers. A positive correlation with the linear

3 stability theory as applied to free flight application should be sought.
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SECTION I

INTRODUCTION AND BACKGROUND

This report addresses the problem of determining the conditions
under which the flow in a cooled laminar boundary layer becomes unstable
when excited by low amplitude disturbances. The flow is considered to be
unstable when a low amplitude disturbance imbedded in a cooled laminar
boundary layer flow grows in time and/or space. The physical significance
of this problem is that such processes initiate the transition from laminar
to turbulent flow conditions in the boundary layer. The skin friction and
rate of heat transfer are typically an order-of-magnitude greater in turbulent
boundary layers than in laminar boundary layers when compared at the same

Reynolds number. Therefore, the ability to understand, predict, and

possibly suppress, boundary layer transition is of great engineering importance

in the design of flight vehicles.

The problem of predicting the conditions under which a laminar
boundary layer will begin to undergo the transition process represents
one of the great, and as yet unsolved, problems of fluid dynamics. The
mathematical description of fluid dynamic phenomena is a system of non-
linear partial differential equations. To the present time, this system has
resisted all attempts to obtain solutions which are valid for boundary
layer flows undergoing transition. Therefore, simplified versions of the
general equations are used to study the transition process. The simplified
equations used in the present study are called the small disturbance stability
equations. They are a linearized version of the general (Navier-Stokes)
equations. The linearized small disturbance equations are themselves
not very amenable to direct solution because of the partial differential
nature of the equations. Therefore, a further simplification is introduced.
The boundary layer is considered to be locally parallel. That is, the growth

of the boundary layer thickness over a wavelength of a disturbance is




neglected. This simplification allows one to reduce the partial differential

equations to ordinary differential equations. Thus, the parallel flow boundary
layer stability equations have been used in the work described in this report.
This model was employed to study the conditions under which small
disturbances will grow in space and/or time in a cooled laminar boundary

layer flow.

The reasons why cooled laminar boundary layers are specifically
addressed in this report are:
' 1. Previous experimental investigations of boundary layer
i transition have shown that cooling a boundary layer generally (but not
always) increases the stability of the boundary layer. Thus, the
potential exists for using boundary layer cooling as a means for

delaying the onset of transition. -

2. Recent advances in the field of parallel flow boundary layer
stability theory have made it possible to further advance the use of

this theory as a method for predicting the onset of transition.

S ——

3. Recently published measurements of transition in shock induced

flows have shown an intricate variation of transition with wall cooling.

These observations and other experimental results cannot be
reasonably explained with existing theoretical results. New theoretical

results using the most powerful methods currently available for

NN Ny

solving the stability equations are necessary to understand these

\

observations.

fiil
PSS § S

4. The present energy crisis has provided a new impetus for

{ investigating both new and old techniques which could be used to
reduce the aerodynamic drag of flight vehicles. Boundary layer
control through wall cooling thus might be a useful means for reducing

drag, conserving fuel resources, and extending the range and payload

of aircraft.
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1.1 BOUNDARY LAYER STABILITY TERMINOLOGY

In this paragraph a number of the more important terms which are used
to classify the different types of disturbances which occur in compressible

boundary layer flows are defined.

ol Sonic, Subsonic, and Supersonic Disturbances

A small disturbance having a velocity relative to the free-stream
which is equal in magnitude to the speed of sound in the free-stream is

called a sonic (acoustic) disturbance. The following definitions are introduced;

c;:; = velocity of a disturbance (phase velocity),
ai = speed of sound in the free-stream,

Uoo = velocity of the free-stream,

Mm = Mach number of the free-stream.

The velocity of the free-stream, relative to an observer

-3

moving with the disturbance velocity, is U& - Crl . The relative Mach

a

number (M) is;
N“I ‘ (U 3 e 3 )/ a::: i (1)
® ® .- r ©

which after multiplying and dividing by Ui , becomes
M =(l-¢c IM_, (2)
® r ©

where e is the nondimensional phase velocity cr /U; . From the definitions

of a sonic disturbance given at the beginning of Section 1.1.1, it follows

that M =+ 1 for a sonic disturbance. Thus, if Equation (2) is solved for
@

crcorresponding to a sonic disturbance, the following two expressions for

the phase velocity of sonic disturbances are obtained;

1+1/M ,M=-1, (3)
@

l-l/M@,M=+l. (4)

0
1

0
"
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For a subsonic disturbance |U - c_ | is lessthan a_ and -1< M _< I.
© r (-] ®

Thus, for subsonic disturbances;

(1- I/Mw)< R (1+ 1/Mw) (5)

For supersonic disturbances | MQ | > 1 and the phase velocity is;

c >1+1/M , Mc-1 (6)
r ©

c < 1-1/M , M> +1 (7) |
r ® |

1.1.2 Disturbances Having a Supersonic Relative Flow Region

Disturbances were classified in Section 1.1.1 as subsonic,
sonic or supersonic based on the speed of sound in the free-stream.
Because of the temperature gradient which exists in compressible boundary
layers, it is possible to classify disturbances as subsonic, sonic, or super-
sonic with respect to the speed of sound at any point in the boundary layer.

Thus, M (n) at any point m in the boundary layer can be defined as the

velocity of the flow at m relative to the velocity of the disturbance divided

by the local speed of sound, or;
o £ * £
M(n) =@U (n)-cr)/a (n). (8)
For a perfect gas,
i sk 3 * 1 2
a (n)=a_ (T (n)/T) : 9)

after multiplying and dividing Equation (8) by Uep and substituting Equation (9),

the following expression for M (n) is obtained; .

M () = (U () = e )M /@) 2 (10)

A disturbance is considered to have a supersonic relative flow region in the

boundary layer if | M |> lover any region in the boundary layer.




1.1.3  Incoming and Outgoing Waves !

A supersonic low amplitude disturbance produced in the
free-stream will have an associated set of Mach waves as shown in Figure 1.
If a boundary layer is present in the flow, Mach waves will impinge on it. '
Such a Mach wave impinging on a boundary layer is called an incoming wave. i
The wave produced by reflection of an incoming wave on the boundary is

called an outgoing wave as illustrated in Figure 1. The reflected wave can

be considered to have the properties of a Mach wave of opposite sense to the

incoming Mach wave.

U,
Cr e
I' OUTGOING
MACH
s INCOMING WAVE
! MACH BOUNDARY LAYERq
i WAVE
C < l- —l— c |+ ' . }
r M” r> M'
| P
A
Bl (a) (b)
54 -.
k|
[ | 3
B F.i
Figure 1. Sketch Showing Definition of Incoming and 4
. Outgoing Waves. (a) c . <I1- I/Mu° , (b) {‘
c. >1+1/ M.
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In the parallel flow linear stability theory, the fluctuation

of any disturbance parameter E is defined by a traveling wave of the form;

B b poareh=e ity o l8gx 40 2 8 (11)

If o, is zero, Equation (11) describes a plane wave which propagates in the
direction of the free-stream flow. These waves are called two-dimensional
waves (2-D). If ¢, is not zero, Equation (11) describes a wave which i
propagates obliquely to the free-stream flow. Such a wave is called a three- F
dimensional wave (3-D). The angle between the direction of propagation

and the free-stream flow is called the wave angle (¢ ).

1.1.5 Critical Reynolds Number

Generally there exists a streamwise location in a boundary
layer such that between the leading edge of an aerodynamic body and this
location all disturbances are damped. The Reynolds number based on the
distance to this location from the leading edge is called the critical Reynolds :

number.

1.2 REVIEW OF COOLED LAMINAR BOUNDARY LAY h.! STABILITY

During the past decade, great strides have been made toward developing

A o

¢
a better understanding of the causes and nature of transition in wind tunnel

and free-flight boundary layers. The greatest analytical progress towards

a better understanding of transition has been through the application of the

linear stability theory of parallel flows.

Mack (1)

made a major contribution in the application of the

linear stability theory as a tool for understanding boundary layer transition

by discovering multiple mode, multiple families of solutions to the compressible
flow, small disturbance equations. He demonstrated the physical importance

of these new types of solutions and formulated a quasi-theoretical model

of transition for supersonic flows based on the linear stability theory of
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parallel flows. Mack's quasi-theoretical model of transition includes two

mechanisms for relating the influence of environmental disturbances to the
response of the boundary layer. One mechanism is that of the forced
oscillation of the boundary layer caused by a specific type of free stream
pressure disturbance. The other mechanism is the response of the boundary
layer to a spectrum of pressure disturbances. Within the context of these
two mechanisms he was able to study the effect of Mach number, unit
Reynolds number (Reynolds No. per foot of the free-stream), and wall
cooling on transition in wind tunnel and free-flight boundary layers. He

was basically successful in explaining how environmental disturbances can
affect transition as Mach number, unit Reynolds number, and wall cooling
change. The accuracy of Mack's transition model appears to be limited ,
for the most part, by the accuracy with which the nature of the environmental
disturbances themselves are known. In order to apply Mack's model to the
problem of predicting the location of the onset of transition in a flow
situation, one must have available the basic results of a parallel flow,

small disturbance stability analysis; namely, neutral stability curves and

amplification rate versus frequency for a range of Reynolds numbers.

The considerable progress that has been made toward understanding
transition in wind-tunnel and free-flight boundary layers has not been
matched by progress in understanding transition in laminar boundary
layers induced by a moving shock wave. This situation persists in spite of
the fact that a considerable amount of experimental data on transition in
shock-tube boundary layers has been generated during the past two decades.

(2)

Morkovin' ' has summarized the nuances and contradictory observations
that have been made concerning transition in shock tube facilities and
has also conducted an assessment of the level of understanding of wind-

(3)

tunnel and free-flight boundary layer transition ’.

Recently, Boison(4) conducted a series of careful experiments which

considered shock tube boundary layer transition. He examined the influence
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on transition of environmental factors, such as wall vibration and free

stream acoustic disturbances, in addition to the influence of wall cooling ,
unit Reynolds number, and Mach number. In these experiments, extraordinary
precautions were taken to eliminate wall roughness as a possible cause of
early transition. The transition is usually expressed in terms of the
""transition'" Reynolds number (Rx )T based on the length of the boundary
layer at transition. Boison's data at a free stream Reynolds number per
foot of 5 x 105 showed that, as wall cooling is increased, the transition
Reynolds number first increased, then decreased (reversal), then increased
again (re-reversal), then decreased, increased again, and so on; showing a
number of transition reversals and re-reversals. The transition Reynolds
number was found to be extremely sensitive to small changes in cooling
especially at the larger cooling rates. Figure 2 shows Boison's transition
results for Re/ft =5x 105 along with results of several other investigators.
The wall cooling rate is expressed in terms of the wall temperature TW

and the boundary layer edge temperature Te in this figure. The ratio

T /Te is inversely related to the magnitude of wall cooling (decreasing

Tw/Te corresponds to increasing wall cooling).

The first transition reversal loop (0.17 < Tw/Te 0.36) seems to be
fairly well established although more results would be desirable to
definitely show that only one loop, rather than perhaps two loops, exists
in this wall cooling range. Also shown in Figure 2 is the calculation
of Reshotko( for the wall cooling . required for complete stabilization of 2-D
disturbances. It should be noted that this result is not based on a
completely valid solution of the stability equations as determined by Mack
(see page 14.1 of Reference 6). In particular, mean velocity and

temperature profiles characteristic of shock tube boundary layers were

not used.

RTE
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The description of only one stability analysis, using velocity and
temperature profiles characteristic of compressible boundary layers
behind a moving shock appears in the literature. That analysis, performed

by Ostrach and Thornton (7)

in 1962, produced minimum critical Reynolds
numbers that greatly exceeded the measured transition Reynolds numbers -
the deviation increasing by orders of magnitude with increasing cooling, i.e.,
higher shock Mach numbers. Their analysis was based on the Dunn-Lin

h (8) and did not take into account 3-D disturbances.

asymptotic approac
Ostrach and Thornton concluded that shock tube transition did not occur
through amplification of low amplitude waves but rather was caused by large

environmental disturbances which are present in shock tubes.

The existence of multiple mode, multiple family solutions to the

(2)

parallel flow linear stability equations led to the suggestion by Morkovin

that the Ostrach-Thornton analysis be redone using the full set of parallel
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(9, 10)

flow, linear stability equations. Mack had shown that, depending on

the amount of wall cooling (Tw/Te), 2-D first mode unstable disturbances
could be stabilized and second mode 2-D disturbances destabilized.

2 !
Morkovin (2) thought that perhaps the intricate cooling effects on transition ;

in shock tube boundary layers could be explained as the stabiliziation of

first mode disturbances over certain ranges of Tw/Te and destabilization of
higher modes over other ranges of Tw/Te' This suggestion was put forth
prior to Boison's work. When Boison discovered the existence of the
multiple transition reversal loops in his shock tube transition data he saw

the possibility that these loops might be explained through a stability

analysis of the shock tube laminar boundary layer which recognized the

existence of multiple mode solutions.

In early 1972, an effort was begun by one of the authors (Boehman) to

reconduct the Ostrach-Thornton analysis using the authors' computer

programs which had been successfully applied to the steady flow supersonic

1,12
boundary layer stability problem (Lt ). This initial effort was disappointing

insofar as higher mode solutions for the shock tube laminar boundary layer
could not be found. The first mode 2-D solutions only confirmed the results
of Ostrach and Thornton. In this initial effort, it was found that the higher
modes are associated with large values of the product of wave number
(reciprocal of the spatial wavelength) and Reynolds number. This is
characteristic of higher modes in low free-stream Mach number flows with
high cooling rates. It was also found that larger numbers of very small
integration steps were required to integrate the stability equations for shock-
tube boundary layers. This report describes subsequent efforts to locate
higher mode solutions to the parallel flow stability equations for highly cooled

compressible boundary layers.

1.3 REPORT OUTLINE

Section II of this report describes the analysis of stability in shock

induced boundary layer flows. The section begins with a description of the

10
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calculation of the boundary layer mean flow profiles. This description
is followed by a treatment of the formulation of the stability equations,

Finally, some of the limits of applicability of the formulation are reviewed.

Section IIl presents the results of the analysis of boundary layer
stability in shock induced flows. The results are preceeded by a general
description of the families of solutions identified by Mack. The specific

results of this investigation are then presented and discussed.

Section IV describes the application of parallel boundary layer
stability theory to another class of cooled boundary layer flows - steady
flow boundary layers. A short description of the problem formulation
is followed by a presentation and discussion of the results. The important
similarities and differences with the results from shock induced flows are

then discussed.

In Section V, the important conclusions of the study are presented for
both shock induced and steady flow boundary layers and recommendations

for further work are presented.




SECTION II

PARALLEL STEADY FLOW ANALYSIS
OF SHOCK INDUCED FLOWS

The methods used to investigate the stability of the shock tube laminar

boundary layers are presented in this section. In Section 2.1 the methods

used to generate the mean flow velocity and temperature profiles are presented.
In Section 2.2 it is shown that, when quasi-parallel , quasi -steady approxi- 1
mations are made for shock induced boundary layers, a set of stability

equations are obtained which are identical to the stability equations for ,:

SR, S

steady boundary layer flows.

A computer program, previously developed for steady flow boundary
layer stability analysis, can then be applied to shock induced boundary
layers. The equations and solution techniques of this program are described

in detail elsewhere K= 1) , but a brief description is included in Appendix

Jalalio o dilaio sl e oo am e Ly

B. Section 2.3 discusses the range of flow parameters that were considered

in this investigation.

2.1 MEAN FLOW PROFILES

Mean flow velocity and temperature profiles are obtained by numerically
integrating the laminar, compressible flow, boundary layer equations

written in a shock fixed coordinate system. In this coordinate system '
4

J
_.; ! - described in Figure 3 the flow is steady and the boundary layer equations
'f' are formulated and solved according to the procedures developed by Mack(l3) 4
: ; which served as the basis of the authors' computer program. Specifically, j
the program is set up to solve the steady laminar, compressible flow,
! boundary layer equations for flat plates with and without heat transfer at ﬂ

the wall. For the shock tube boundary layer calculation, the input

quantities are as follows:

{ ® Shock Mach number (Ms),

b '3
° Undisturbed flow temperature (T ) ) and pressure (p>‘1 ),

RS SR T ST vy 530w .




conditions of the flow downstream from the shock wave: M s U

boundary layer equatxons is that the initial temperature of the wall (T

SHOCK Ue

BOUNDARY
LAYER

777777777777777777 GwsUs 7

(a) STEADY COORDINATE SYSTEM (SHOCK FIXED)

y Up = Us-Ue

-—2 | «—=—
U|=°

7777777777777/ 777777777 777777777 ™
(b) UNSTEADY COORDINATE SYSTEM (LAB FIXED)

Figure 3. Boundary Layer Mean Flow Velocity Profile.

° Initial guesses for the slope of the velocity profile at the

wall and the heat transfer rate at the wall.

The normal shock equations are solved to determine the free stream

%

,T,p h

(enthalpy) and h (stagnation enthalpy of the free stream in the shock fixed
coordinate system). These quantities are used to nondimensionalize

the boundary layer equations. A basic assumption made in solving the

)

is the same as T and that T remains constant. This assumption is
reasonable because the time for heat transfer is very small (milliseconds
or less) even though the heat transfer rate is high. The program is

presently set up for air which is considered to be a gas that obeys the

perfect gas law and has variable specific heats and transport properties.

13




Because dissociation and real gas effects are not considered, the program

is only valid for Ms < 6.5,

Once the free stream conditions of the flow downstream from the

normal shock have been determined, the boundary layer equations are

integrated and the mean flow profiles are determined. Some representative
nondimensionalized velocity profiles (in the shock-fixed coordinate system)

are presented in Figure 4, Temperature profiles are presented in Figure 5.

The profiles are presented in terms of the Blasius similarity variable

B x 1/2
- XY (Ue
L S ( ) which is the '"nondimensionalized' boundary layer

sk
(S

thickness.

SR— .

i, The basic unknowns to be determined when solving the boundary layer
equations, in addition to the profiles themselves, are the slope of the

velocity profile at the wall and the heat transfer rate at the wall, The

Newton-Raphson technique is used to search for values of these two

unknowns which will satisfy the proper boundary conditions at the edge of |

i —

the boundary layer. After the solution converges, the velocity profile
|
}, is transformed to the laboratory-fixed coordinate system and the velocity

profiles in this coordinate system and the temperature profiles are then

;
? punched onto cards for use as a data deck for the Boundary Layer Stability
computer program (BLSTAB).

T
N X

ot Tl £ e

2.2 FORMULATION OF THE STABILITY EQUATIONS FOR
A SHOCK INDUCED BOUNDARY LAYER

The flow in a shock induced boundary layer is extremely difficult to
analyze. Simplifying assumptions concerning the flow must be made in
b ' order to formulate the problem in a practically solvable form, There are a
variety of methods of formulating the problem, but care must be taken to

1 insure that a consistent set of simplifying assumptions and nondimensionali-

| zations are made.
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The stability equations for shock induced boundary layer flow were

formulated by Ostrach and Thornton(7). They employed mean flow |
X

(14)

boundary layer profiles as calculated by Mirels in a shock fixed

coordinate system. Ostrach and Thornton then wrote the Dunn-Lin stability

normalized all velocities (mean flow profile, disturbance velocity components,
and phase velocity) by the velocity U’: . This procedure produced a set
i of stability equations that were identical to the Dunn-Lin equations:t for
steady flow except that Ostrach and Thornton ''redefined' Mach and Reynolds
numbers. The redefined free stream Mach number was considered to be the

Mach number of the shocked gas in the laboratory fixed coordinate system

e e —.

1
!
!
equations for a coordinate system fixed on the moving shock wave and 1
1
i
;
(Mz) rather than the corresponding Mach number in the shock-fixed coordinate %
system (Me). The redefined Reynolds number was based upon: (1) the f1:ee 4’
stream velocity of the gas in the laboratory-fixed coordinate system (UZ)
instead of the velocity in the shock fixed coordinate system (Ue ), and (2)
a characteristic length equal to the distance traveled by a free stream fluid
element in the laboratory fixed coordinate system (x*) during the total time
- that the fluid element is in motion (t*), instead of distance that the fluid
element is behind the shock wave (X*). Since these choices are not consistent,

the subsequent formulation was examined in some detail.

The formulation of the stability equations by Ostrach and Thornton

is not straightforward. A critique of their formulation is presented in

% Appendix A. The essence of their approach, however, is contained in the

following statements,

1. The nondimensional Dunn-Lin version of the small disturbance

{ equations were written for a shock fixed coordinate system.

2. The velocities in these equations were normalized with respect

to the free stream velocity in a laboratory fixed coordinate system

s
The Dunn-Lin equations are not a complete set of the small disturbance

stability equations, Certain terms are omitted to permit 3-D solutions to be
obtained from 2-D solutions.




s 2

S

* % %* *
(UZ » where U2 = Us - Ue ) rather than by the free stream velocity in

the shock fixed coordinate system (U:< ).
%k
3. The characteristic length (1 ) was taken to be proportional to
the local boundary layer thickness in the shock fixed coordinate system,
1/2

g i 5 “
given by: ¢ =(2X Vw/Ue) .

* * ¥ % ¢
4, The characteristic time (tc) was given by, tc = 3 /Us - Ue ).

5. Fluid, thermodynamic, and transport properties were non-

dimensionalized with their corresponding free stream values.

When the dimensional Dunn-Lin small disturbance equations are non-
dimensionalized using the characteristic quantities defined above, the final
form of the Ostrach and Thornton stability equations is obtained (Equations

9a through 13a and Equation 14 in Reference 7).

The nondimensionalizations and normalizations described above
effectively transformed the stability equation formulation out of the shock
fixed coordinate system into the laboratory fixed coordinate system.
However, the mean flow profiles as derived from Mirels' analysis Rk
remained in the shock fixed coordinate system. The stability formulation
was now inconsistent with the mean flow formulation. This inconsistency
was resolved by ''redefining' certain nondimensionalizations (such as
Reynolds number). This "'redefinition' effectively transformed the stability
analysis back into shock fixed coordinates. The final formulation was

therefore, entirely in shock fixed coordinates. A more detailed critique

of this formulation is contained in Appendix A.

The final formulation of the stability equations by Ostrach and
Thornton was unsuitable for use with existing computational programs at
the University of Dayton which were constructed in a laboratory fixed
coordinate system. Therefore, a different approach to formulating the

stability equations was developed. This approach starts with the

17
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linearized complete small disturbance equations in dimensional form (rather
than the Dunn-Lin equations) written in a laboratory fixed coordinate system.
Then both the parallel flow and quasi-steady approximations were invoked.
Finally, all dependent variables were nondimensionalized with respect to
free stream quantities and all spatial variables were nondimensionalized
with respect to a scale length proportional to the boundary layer thickness.
This procedure yields a system of stability equations which are identical

to the Ostrach and Thornton stability equations except that all parallel flow

terms are included and the Reynolds number (Rel) is given by (Rx) 1/2

instead of (2 Rx) 1/2 (T::,/T: ). (The Ostrach-Thornton formulation includes

only those terms contained in the Dunn-Lin stability equations.)

In summary, the stability equations used in the present analysis are
the same as the stability equations for steady flow over a flat plate.
The stability analysis is thus a stability analysis of a given mean flow profile
and is valid over changes in distances and times that are small enough
so that the change of profiles in both time and space can be ignored.
The computer program which implements this formulation is described in

Appendix B.

2.3 RANGE OF FLOWS ANALYZED

Eigensolutions to the linear stability equations, with the parallel
flow assumption, were computed for both a quasi-steady flow shock tube
system, and a steady flow wind tunnel system. The effects of wall cooling
on boundary layer stability in shock tube type flows were examined for both
s 0.6027 and supersonic (Ms £5.0, MZ <1.841) flows.
The effects of wall cooling on boundary layer stability for Mach numbers

subsonic (Ms =1.5, M

less than 0.9 in steady wind tunnel type flows were also investigated.

&s 31 Shock Tube Flows

The shock Mach numbers considered in this analysis extended

from Ms =2.50 to Ms = 5,00 in increments of 0.25. In addition, treatment

18
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was given to Ms = 1.5, as previously noted. These calculations were
performed for the '"standard'' wall cooling ratios (Tw/Te), as given in

Table 1. The ''standard' wall cooling is that which occurs when the shock
tube walls remain at ambient temperature regardless of the temperature

of the shocked gas. In addition, calculations were performed at shock Mach
numbers of Ms = 2.5 and Ms = 2.75 with specified '"nonstandard'' amounts
of wall cooling. Numerical solutions to all the above situations were
generated for the case of two-dimensional disturbances. Three dimensional,
oblique solutions were obtained for only the cases of Ms = 1,5 (subsonic)
and Ms = 3,0 (supersonic) flows, The results of these calculations are

presented in Section III.

It should be noted that the technique employed is valid only for
shock tube flows where, in general, M < 6.5, as ''real gas'' effects have been

ignored,

2.5.2 Subsonic Wind Tunnel Flows

Two and three dimensional disturbances in steady flow, wind
tunnel type boundary layers were investigated for free stream Mach numbers
of 0.603, 0,80, and 0.90. Surface cooling at each Mach number was varied
from the insulated value of Tw/Te (specified by the flow conditions), to
Tw/Te = 0,620, The streamwise wave angle of three dimensional disturbances

was varied from 00 to 87. 5o for each case. Results of these calculations

are presented in Section IV,
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SECTION III

RESULTS OF ANALYSIS OF SHOCK INDUCED FLOWS

As noted in Section 1.2, Boehman made his first attempt to deter-
mine higher mode solutions to the parallel flow stability equations for shock
induced flows in 1972. These initial attempts were unsuccessful but higher
mode solutions were obtained during the course of the present investigation,
The results of the search for higher mode solutions are presented in this
section. However, these higher mode solutions\do not correlate with
observed transition phenomena. It was also pointed out in Section 1.2
that the Ostrach-Thornton investigation of the stabilit;y of shock induced

flow did not include an investigation of 3-D (oblique) disturbances. The

search for 3-D unstable disturbances was included in the present effort

but it was found that three dimensional disturbances were always more
stable than two dimensional disturbances over the range of flow parameters
considered.

The principal objective of the present effort was to determine higher
mode and three dimensional solutions to the stability equations for shock
induced flows in the expectation that these solutions would correlate with
experimental observations of transition in shock induced flow. When it
was found that this expectation was not to be realized, a search for other
types of solutions to the stability equations was undertaken. A new type of
solution was found for a supersonic incoming wave disturbance and quali-
tative correlation with Boison's measurements of transition; Reynolds
number has been demonstrated. Before proceeding with the presentation
and discussion of these new results, the flow conditions under which

different types of disturbances can be expected are described.

3.1 SUBSONIC, SONIC, AND SUPERSONIC DISTURBANCES IN
SHOCK INDUCED FLOWS

Three curves of phase velocity versus shock Mach number (Ms)

are shown in Figure 6. The curve labeled.cr(Mw=- 1),shows the minimum
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phase velocity that a disturbance must have in order to move supersonically
relative to the flow at the wall, The second curve, labeled Cr =1+ I/MZ,
shows the phase velocity that a disturbance must have to move sonically

with respect to the disturbance (i.e., the free stream is moving in the
upstream direction at M = 1 relative to an observer moving at the velocity
1+ 1/M2). The third curve, labeled = 1- 1/M2, shows the phase
velocity that a disturbance must have to allow the free stream to move
sonically with respect to disturbance but with the relative velocity between
the disturbance and the free stream being in the direction of flow. These
three curves together form a region in which subsonic disturbances exist
and the local Mach number of the flow at the wall is supersonic relative to the
phase velocity. This region of phase velocities is the region in which
subsonic higher mode disturbances can exist. Above Ms = 3.5, both subsonic

and supersonic multiple mode solutions can exist.

3.2 INCOMING AND OUTGOING DISTURBANCES

It was noted in Section 1. 1.3 and illustrated in Figure 1 that a pair
of Mach waves are produced whenever a low amplitude supersonic disturbance
exists in the free stream. Mack has noted that the two solutions to the
inviscid stability equations for the flow in the free stream represent a pair
of Mach waves (6). Thus, the stability equations produce solutions for
supersonic disturbances which have a well-defined physical interpretation.
One of these solutions represents a reflected or outgoing Mach wave and the
other represents an incident or incoming Mach wave. In Reference 6 Mack
shows that for neutral outgoing Mach waves, energy is transported in the
direction of increasing y (i.e., into the free stream) whereas for neutral

incoming waves, energy is transported in the direction of decreasing y,

(i. e., into the boundary layer).

For subsonic disturbances, the inviscid free stream solutions no
longer represent Mach waves, but instead represent two exponentially
varying pressure fields caused by inviscid flow over a moving wavy wall.

Thus for subsonic phase velocities, as well as for supersonic phase velocities,
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the solutions to the inviscid stability equations have simple physical
interpretations. A basic understanding of the mathematical nature of the
solutions to the inviscid stability equations is helpful for understanding

the discussion of results presented in this section. The solution to the
inviscid stability equations for the free stream region of flow has the general

(6),

form

A A

m(y) = Ae*1 M+ Be2 ", (12)

where 11 represents the amplitude of the pressure oscillation, ) 1 and ) 2
are the two characteristic values of the second order ordinary differential
equation which describes the behavior of 1 in the free stream when no
viscous terms are included in the stability equations, 7 is the distance

from the surface (Blasius similarity variable) and A and B are constants

of integration. 1 and ) , are represented by (6):

1/2

(2
Aps omal- My VS, (13)

and

T T (14)

The fundamental difference in nature between subsonic and supersonic

disturbances is described in the following sections in which the properties

o

of the characteristic values of neutral disturbances (ci = 0) for these two

cases are examined,

3.2.1 Supersonic Disturbances (| M2 | F)

For ,sz >1,1- M; is a negative number and (l-M;)UZ
is a pure imaginary number. Thus Y 1 is given by:
31 2
A = * oM - i (15)

In the coordinate system moving with the phase velocity,

the pressure fluctuation p' is given by (6):

2 ) 7. .2 :
p' = iay Mz(l - Cr) exp{ iofx ¥ (M2 -1 (n- TL)]] (16) ‘
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Thus, in the x-r plane, the above equation will have a lix;le of constant
amplitude (constant phase) which is a Mach line of the flow relative to the
phase velocity. The amplitude of the pressure fluctuation is independent of n.

If c.> 1+ I/MZ, then the incoming wave will correspond to:

2 2
A 1 = - g (Mi - 1)1/ (incoming wave, . >1+ l/MZ).

If e = 1- l/Mz, the incoming wave will correspond to:

SN2 2
by 1 = +iqg (M2 - 1) 1/ (incoming wave, €. < 1- 1/M2).

322 Subsonic Disturbances (-1 < M, < 1)

i ~ 2 4}
In the case of subsonic disturbances, (1 - MZ) is a real
number; ) 1 is negative and ) 2 is positive. The pressure fluctuation p' is
given by:
p' = iavMi(l -c_) exp (iox) exp [Fq(1- RAZ)I/Z(T]- Tle)] (17)

The solution whose characteristic value has a negative real
part represents the pressure field over the moving wavy wall (outgoing
solution). The solution whose characteristic value has a positive real
part represents the pressure field under the moving wavy wall (incoming

solution),

In the viscous theory, two of the independent solutions are
almost identical to the inviscid solutions except for a small viscous decay
term, Ordinarily in stability theory, the inviscid solution (or the viscous
counterpart) whose characteristic value has a positive real part (incoming
solution) is not used since this solution increases exponentially upwards
from the boundary layer and thus does not satisfy the boundary conditions at
infinity. In the following paragraphs it will be convenient to classify the
results of the stability investigations in terms of incoming or outgoing
subsonic or supersonic disturbances. Sonic disturbances have a singular

character as explained in the next section.
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3.3 FAMILIES OF SOLUTION

Perhaps one of the most important discoveries made by Mack was
that two farnilies of solutions can be obtained from the stability equations
for compressible laminar boundary layer flows(é). Mack characterized
the two families on the basis of the behavior of the solutions ata =0,

He called a set of solutions members of the e, family of solutions if the
phase velocity approached a value of R 1 - 1/Mmas o approached zero.

He called a set of solutions members of the ''regular'' family of solution when

the phase velocity approached a value of B 1 +1/M°°as o approached zero.

Most of the stability results which are available in the literature for
supersonic flows are subsonic solutions belonging to the e family of
solutions. If the free stream Mach number is less than one (subsonic boundary
layer flows), the < family of solutions has its origin at S0 0. Relatively :
few ''regular'' family solutions are available in the literature --those which

do exist were determined by Mack or Boehman.

From the preceeding discussion it is evident that the two sonic phase
velocities G 1- I/Mmand C 1 +1/M_ define two separate families of

solutions.

3.4 RESULTS FOR SHOCK INDUCED FLOWS

This section begins with a presentation of the results which were
obtained from the first effort to reconduct the Ostrach-Thornton analysis.
As was mentioned in Section 1.1, the effort was carried out before the

present effort was undertaken but is included here for the sake of completeness.

o D | Subsonic Outgoing Disturbances

As was mentioned in the Introduction, the first effort showed

that very small integration step sizes are required to numerically integrate

the stability equations for the shock-tube boundary layer when compared
to step-size requirements for treating wind tunnel boundary layers, Figure 7
shows the neutral stability curve for 2-D disturbances which was obtained

for the M = 1,5 boundary layer., One hundred and thirty-six integration
5
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steps were required to obtain these results. The minimum critical Reynolds
(Rcrit) is seen to be 13, 180 and compares to the Ostrach-Thornton value of
14, 000 for the same value of Ms. These calculations as well as those of
those of Ostrach and Thornton were for 2-D waves. A value of Rcrit of

13, 180 corresponds to a value of Rx of 1,737 x 108 which is about two orders
of magnitude higher than measured transition Reynolds numbers for Ms = 1,5,

The remainder of the results presented in this report were obtained as part

of the current effort,

Since Rcrit for 2-D disturbances at MS = 1.5 obviously
did not correlate with measured transition Reynolds numbers, 3-D
disturbances were investigated at Ms = 1,5, The results are shown in
Figures 8 and 9 for several Reynolds numbers. These results show that
at Ms = 1,5, oblique disturbances are always more highly damped than

2-D disturbances. Similar calculations performed for Ms = 3, 0 also show
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that 3-D disturbances are more highly damped than 2-D disturbances.
Typical results at Ms = 3,0 are shown in Figures 10 and 11. The results
shown in Figures 8 - 11 are for disturbances belonging to the e family.

No higher mode amplified solutions for this family of solutions are possible
for shock tube boundary layers since the wall cooling is sufficient to remove

(6)

the generalized inflection point from these boundary layers' .

First and higher-mode outgoing subsonic solutions belonging
to the "regular'' family of solutions, which are always amplified when c s 1
have been investigated, The regular family of solutions persist to low sub-
sonic Mach numbers, sinceit is always possible to find a e large enough
so that a supersonic relative flow region exists somewhere in the boundary
la;yer, except at M = 0, In Figure 6, the curve labeled s 1+ l/M2
(M2 = - 1) shows the phase velocity which this family of solutions begins at
(o = 0) as a function of shock Mach number. For this family of solutions

_, 6

to have amplified solutions, cr < 1 and for neutral solutions, e.=

From Figure 6 can be seen that a supersonic relative flow
region for subsonic disturbances with c.s 1 can only exist when Ms <1.8
in shock tube boundary layers. Thus, regular amplified subsonic solutions
are not possible below this Mach number. Some typical regular family
solutions are shown in Figures 12 and 13 for M ! =1.5, 2, and 4, In
Figure 12, the phase velocity (cr) versus wave number (y ) is shown for both
viscous and inviscid solutions. As shown in Figure 13, the viscous solutions
are all damped whereas the inviscid solutions are all neutral. The only
exception is at Ms = 4 where the inviscid solutions show a very small amount
of amplification for ¢ > 3.5. For g > 3.5, the phase velocity (Cr) is less
than one. According to Mack, a necessary condition for an amplified inviscid
regular solution to exist is that oo be less than 1, Calculations performed
to date indicate that an amplified regular viscous solution can likewise only
exist if P s 1. In Mack's terminology, the solution for Ao 1 is called the

regular neutral solution and the corresponding value of o is given the symbol

el |
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The viscous counterpart to g 11 denoted by (g 11)v is so large
that extremely small computational step sizes would be needed to treat a
condition of c. < 1 for the regular viscous solution. Additionally, the
frequency associated with this solution would be in the megahertz range
which is outside the range of frequencies that are usually considered to be

of importance in transition.

With one exception (to be discussed in the following paragraphs),
all amplified solutions available in the literature for laminar boundary layer
flows are encompassed within the types of solutions discussed in the previous

paragraphs.

3.4.2 Supersonic Outgoing Solutions

Mack has shown in Reference 6 that with sufficient wall cooling,
amplified, supersonic, outgoing solutions belonging to the e family of
solutions can exist. However, these solutions have wave numbers which

are greater than o, so that again, high frequency solutions are the only

11
possible amplified solutions. Thus, no attempt was made to determine the
stability characteristics of these types of solutions since they appear to be

important only for hypersonic Mach numbers (see Figure 11.25 of Ref. 6).

3.4.3 Summary of Results for Outgoing Solutions

The results of stability computations for outgoing disturbances
in shock tube boundary layers encompassing; two dimensional and three
dimensional disturbances, subsonic and supersonic disturbances, and multiple
mode solutions of both subsonic and regular families, have not yielded
solutions which can explain or correlate with boundary layer transition
measurements. The outgoing solutions represent disturbances which originate
within the boundary layer. Therefore, it is concluded that, within the context
of a small disturbance linear boundary stability theory, outgoing disturbances
in shock tube boundary layers are completely damped out for the range of
Mach numbers considered in this study (Ms = 1.5to 5.0), It is further con-

cluded, subject to the limitations on the validity of the linear theory, that
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extremely high transition Reynolds numbers would be attainable if it were
possible to eliminate all environmental disturbances in a shock tube. Even
at a shock Mach number as low as 1.5, linear stability theory predicts a

critical Reynolds number as high as approximately 1.7 x 108.

3.4. 4 Incoming Disturbances

A new type of solution to the stability equations was discovered
during the course of the outgoing wave study. These solutions show some
promise of providing a mechanism for explaining transition. These
new solutions are incoming wave eigensolutions and were originally dis-
covered when it was noted that certain damped supersonic incoming wave
eigensolutions end abruptly in a c.versus q plot unless one allows the sign
of the real part of the characteristic value of the viscous solution(which is a

counterpart to the inviscid free stream)to switch from negative to positive.

Before discussing amplified incoming supersonic disturbances,
a number of related points should be made. First, Mack had never found
any incoming neutral supersonic solutions. Second, he indicated that if
they did exist, they would not have the importance of the outgoing neutral
supersonic solutions (page 11-45 of Reference 6). Third, the amplitude
of an incoming amplified supersonic disturbance would have to increase
with increasing distance from the wall (page 10-34 of Reference 6). The
third point posed some conceptual difficulties at first since only those
solutions to the linear stability equations which are at least bounded at
infinity are considered to be valid. This conceptual difficulty was resolved
by recognizing that the boundary layer in a shock tube does not extend to
infinity, In particular, surface roughness or turbulence on one sidewall
in a shock tube, can influence the boundary layer on the opposite sidewall,
Thus solutions which have amplitudes increasing with distance from the
wall are permissible so long as the rate of growth it not excessive. This
condition is generally satisfied by the viscous counterpart to the inviscid

)
solution of the stability equations., The initial search for incoming amplified
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disturbances was prompted by an unexpected finding made during investigation

of the two dimension subsonic disturbance calculations for low Reynolds numbers
and low wave numbers at Ms = 3.0. It was observed that as o was decreased
from about 0.3 to 0.1 for a 2-D wave, the damping rate started to sharply
decrease. However, 3-D waves () > 300) show a gradual decrease in damping
and then a sharp increase as 5 approaches zero as illustrated in Figure 10,

The phase velocity of the 2-D subsonic disturbances shows a steady decrease
first approaching and then dropping below eLF 1- I/Mz. In contrast the 3-D,
30° wave showed a strong increase in cr as o approaches zero (as shown in
Figure 11). It was observed that the character of the 2-D disturbances changed ﬁ
from out-going to incoming as e dropped below 1 - 1/M2 . Decreasing the
Reynolds number from R = 2500 to 1500 showed that, as o dropped below 0,075,
the damping at R = 1500 became less than the damping for R = 2500, These
results provided the first clues that amplified incoming disturbances might
exist. As o was decreased to about 0.05 and the Reynolds number decreased
to 1000 it was observed that the real part of the eigenvalue corresponding

to the inviscid solution had to be allowed to change sign from negative to

positive as it passed through zero in order to maintain an incoming distur-

bance. A further decrease in ¢ at R = 1000 yielded the first amplified
incoming supersonic disturbances as shown in Figure 14 and 15. The
results presented in Figure 14 clearly show that viscosity is destabilizing;
that is the amplification factor decreases as the Reynolds number is
increased. Thus these incoming solutions cannot be found from an inviscid
stability analysis, Similar calculations were performed for Ms = 3,25

and 3,5, These results are shown in Figures 16, 17, 18, and 19.

As ¢ is decreased at constant R, in Figure 16, the real part
of the characteristic value of the viscous counterpart to the inviscid solution
changes sign from negative to positive at the points labeled as a ''transitional"
region, For values of 5 greater than g at this 'transitional region'', the
amplitude of the waves decreases as y increses; whereas, for o values less
than ¢ at this ''transitional region', the amplitude of the waves increases

as y increases. These new incoming wave eigensolutions must be interpreted
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differently fromoutgoing wave eigensolutions. For the incoming wave
eigensolutions, positive c, means that the strength of the free-stream
disturbance is growing in time, while negative c, implies that the strength of
the free-stream disturbance is decreasing in time. Thus, < is an attribute
of the free-stream disturbance and is not related by itself to the instability

of the boundary layer,

The physical significance of amplified, supersonic, incoming wave
eigensolutions is associated with the special characteristic which these waves

possess, namely, these waves do not produce a reflected wave in the boundary

IR -

layer. That is, while an ordinary (noneigensolution) incoming wave requires
the presence of a reflected wave at the wall, the incoming wave eigensolutions

do not.

The important physical significance of these incoming wave eigen-

solutions is related to the energy transfer associated with the incoming wave.

s —

All of the energy transported into the boundary layer through the incoming

wave remains in the boundary layer; there is no reflected wave to carry energy

out of the boundary layer.

There are finite Reynolds stresses associated with these incoming
wave eigensolutions. Thus, these incoming wave eigensolutions provide a
mechanism for energy redistribution in the boundary layer. Since there is
a net energy transport from the disturbance to the mean flow, these incoming

"

wave eigensolutions offer a potentially important mechanism for changing the

& character of the mean flow profile.
i

These incoming wave eigensolutions have been found to exist for
{ both types of supersonic disturbances, i.e., for c & l-l/M2 and cr_>_l+l/M2.
For incoming wave eigensolutions with crg l-l/MZ, an especially interesting
phenomena has been found. Two separate families of solut’ us have been
found to exist. One family has its origin at e l-l/M2 and o= 0 while the

other family originates from subsonic solutions. Above a certain Reynolds
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number labeled '"changeover Reynolds number" (Rch), the two families

switch their relative positions. This phenomena is shown in Figures 20 and

21 for Ms=3. 25. In Figure 22, the variation of Rch is shown as a function

of shock Mach number. The physical importance of this changeover Reynolds
number appears to be that for Reynolds numbers less than the changeover
Reynolds number the forced response analysis shows that a relatively strong
reflected wave is present, i.e., significant energy is carried out of the
boundary layer. For Reynolds numbers greater than Rch' the strength of the
reflected wave is relatively weak., Thus, when the Reynolds number is greater
than Rch’ the boundary layer is more susceptible to mean flow profile mod-
ification than when R < Reh-'- S R o

The variation of R _, versus M_ shown in Figur-eméuzudb-e.; follow

the general trend of the first transition reversal observed by Boison. Thus,
it would appear that this '"changeover Reynolds number'" might have the same
physical significance for incoming waves as the critical Reynolds number
has for outgoing waves. That is, the '"changeover Reynolds number' seems
to represent a Reynolds number which must be reached before significant

transition mechanisms can take effect.

The transition measurements shown in Figure 1 suggest that the
changeover Reynolds number associated with supersonic and sonic waves

having e <1-1/M, may be responsible for the transition reversal which

2
occurs in the vicinity of Tw/Te ~.35. Some other mechanism must be
responsible for transition for Tw/ Te >.35. One possibility is that there
may be a similar changeover Reynolds number phenomena associated with

waves having e >1+1/M This possibility was not investigated.

2
3 b FORCED RESPONSE ANALYSIS

Neutral incoming wave solutions (noneigensolutions) have been used
in conjunction with neutral outgoing wave solutions by Mack GE to determine
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| the forced response of the laminar boundary layer to free stream super-
sonic waves. A similar approach was applied to shock tube boundary layers in

: the present work. This effort was very limited in scope and cannot be

considered complete at this point. To date no evidence has been found that
the forced response analysis by itself can explain transitio:: .. shock tube
; 2 boundary layer flows. Wall cooling has the same effect for shock tube

B | boundary layer flows as it has for supersonic wind tunnel flows; that is,

T n " Shite _aatl Sl alsile i o

| wall cooling tends to weaken the response of the boundary layer to forced
oscillations. The forced response analysis however,yields a particularly
interesting result which may have an important bearing on transition in

shock tube flows., 3

Mack has shown that the peak response of the boundary layer to
supersonic incoming waves of the noneigensolution type occurs very near

the leading edge of the boundary layer., The limited results obtained in
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the present effort also show this type of behavior. The response of the
boundary layer is expressed in terms of the strength of the reflected wave
produced by the incoming wave. Thus, the forced response of the boundary
layer produces a reflected wave which grows in strength over the initial

part of the boundary layer. In a shock tube, this reflected wave will

impinge on the opposite wall and can possibly excite an incoming wave
eigensolution at the opposite wall. If this situation does occur, then
significant energy can be deposited in the opposite wall boundary layer. The
intriguing possibility thus exists for explaining how boundary layer transition
can be influenced by the diameter of the shock tube. The larger the shock tube,
the longer the time required for the growing reflected wave to impinge

on the opposite side wall boundary layer.

The preceeding comments are purely speculative and obviously further
investigation is needed to support this conjecture. A very recent set of

(15} definitely shows that the diameter of

experiments conducted by Golobic
the shock tube does play an important role on boundary layer transition.
Figure 23 shows the boundary layer transition measurements reported in
Reference 15. The work reported in Reference 15 was performed in order
to obtain transition data for the wall cooling range of 0,255 < Tw/Te < 0. 39.
The purpose of these experiments was to verify the existence of Boison's
transition reversal loop. (see Section 1.2). As can be seen in Figure 23,
the results of Golobic show a marked deviation from Boison's; that is

from the expected results. The primary difference between Golobic's |
shock tube and Boison's was the diameter of the tube. Golobic's was |
17 inches in diameter and Boison's was 4 inches in diameter. In general, 4
Boison's experiments were conducted with a shock tube which should have
provided a less hostile environment to the boundary layer than Globic's

since more precuations were taken to minimize wall roughness, alignment
of the shock tube sections, etc. But since Golobic's transition measurements
were higher than Boison's over the same wall cooling range it must be

concluded that the difference in diameter of the shock tubes had an important

effect on the differences in transition in these two shock tubes.
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3.6 EFFECT OF VARYING WALL COOLING ON NEUTRAL

STABILITY OF SUPERSONIC INCOMING WAVES

A brief investigation was undertaken to determine the sensitivity of
the stability of supersonic incoming waves to a change in wall temperature.
These calculations were performed for two shock Mach numbers, Ms =2.5
and Ms = 2.75. The effect of changing the wall temperature on neutral
stability (ci = 0,0) is shown in Figure 24 for Ms = 2.5, The effects of small
changes in wall temperatures,such as occur for instance as the wall becomes
heated by the flow behind the shock, is seen to be very small, The resulis
for Ms = 2,75 (not shown) similarily show a relatively small sensitivity

to changes in TW/Te when the Mach number is held constant,
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SECTION IV

APPLICATION OF ANALYSIS TO SUBSONIC
WIND TUNNEL BOUNDARY LAYERS

Skin friction drag, caused by turbulence in compressible boundary
layers,comprises a significant portion of the total aerodynamic drag ex-
perienced by subsonic aircraft. This drag component can be reduced con-
siderably if the boundary layers can be maintained laminar. Hence, phen-
omena affecting boundary layer transition in subsonic flows are of major

importance, especially if they point the way toward developing technology

SERS—— S—

for controlling transition and delaying its onset. The stability analysis for

shock -induced boundary layers described in Section III have been extended
to treat boundary layers in steady, subsonic flows such as are produced in
conventional wind tunnels and in subsonic flight. A description of this analysis

and its results follows.

4,1 FORMULATION OF THE PROBLEM

{ Solution of the linear stability equations for steady flow subsonic
wind tunnel boundary layers is similar to that discussed in Section II for
shock tube boundary layers. The major difference is in the shape of the

mean flow profiles. The shock tube profiles are of the Rayleigh type and

the wind tunnel profiles are of the Blasius type (see Figures 4 and 5).
9 Computer generation of these cooled steady flow mean flow profiles

presents no significant difficulties. All that is required is specification

of the dimensionless enthalpy at the wall (ew) given by;

b3 sk K E 3
{ By = B = he)/ (ho - he) ’
e
where, o
* “ 8
h = enthalpy at the wall,
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h = enthalpy in the free-stream,
e
h: = stagnation enthalpy of the free-stream.
e
Once these mean flow profiles have been determined, they are used as input

to the linear stability computer program.

4.2 RESULTS

Neutral stability solutions were obtained for two dimensional and
three dimensional disturbances in M = 0.603, and M = 0.80, and M = 0.90
steady flow laminar boundary layers. Calculations were performed for the

following thermal conditions:

1. insulated surface,

2: T IT =0.824,
e

3. T X = 0:.759,
w e

4, T IE = 0.620.
w e

In the present study, second mode eigensolutions to the viscous
linear stability equations were not considered since the dimensional
frequencies associated with these solutions are in the megahertz range.
Such high frequencies are not physically significant for subsonic flows.
Only neutral stability calculations were performed since these provide a
good indication of the general stability of the viscous boundary layer.

Both 2-D and 3-D disturbances were considered. ;

4.,2.1 Two Dimensional Disturbances

Results indicate that for neutrally stable two-dimensional subsonic

disturbances, surface cooling increases the ''critical Reynolds number"

(Rcrit)' Typical results are shown in Figures 25 and 26. Figures 25 (a)

and 26 (a) show the variation of the neutral stability wave number () with
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Reynolds number for Mach numbers of M = 0.603 and 0.90 respectively.
Figures 25 (b) and 26 (b) denote the variation of phase velocity, cr’ with
Reynolds number at the same Mach numbers. For either case, as the
ratio of Tw/Te is decreased, the critical Reynolds number increases
monotonically from approximately R = 300 (insulated surface) to approxi-
mately R = 20,000 (TW/Te = 0.620). This behavior was found to be
characteristic of this Mach number range.

Dimensional frequencies typical of the first mode neutral disturbances
found in the Mach number range from 0.6 to 0.9 are presented in Figure 27
for M = 0.9, In general, the boundary condition that results in the highest
degree of neutral instability, is an insulated surface. This also results in

the highest neutral disturbance frequency (on the order of 200 kHz).
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Frequency for 2-D Distrubances at M_=0.9
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An increase in surface cooling (or a decrease in the temperature ratio
(Tw/Te) decreases the maximum neutral disturbance frequency. Physically,
this suggests that it is possible to limit the frequency spectrum of poten-
tially unstable disturbances by increasing surface cooling. Insulated
surface boundary layers are relatively unstable, since the spectrum of
disturbance frequencies that are potentially unstable is large. Highly

cooled boundary layers are more stable, since the spectrum of potentially
unstable disturbances is reduced‘. Therefore, if the frequency spectrum of
disturbances is large and random (''white noise'), a cooled boundary layer

will be more stable since only a small frequency band is potentially unstable.

4.2.2 Three Dimensional Disturbances

The behavior of three dimensional subsonic disturbances with
surface cooling was also investigated. These results are presented in
Figures 28 to 30 for the typical case of M = 0.9. Neutral stability calcu-
lations were performed for each thermal condition previously described
for the two dimensional case. The streamwise wave angle of the disturbance
was varied from 0° to 87.5°. As subsonic neutral disturbances become
increasingly oblique (increasing wave angle), the stability of the boundary
layer increases (see Figures 28-30).

It is apparent from Figures 28-30 that stability produced by
surface cooling is a minimum for two dimensional disturbances (wave angle
of OO). Thus, 2«D disturbances should be the most important in transition
from laminar to turbulent flow.

An exception to the above findings occurs for a highly cooled
boundary layer at M°° = 0.9 and Tw/Te = 0.620. Figure 31 displays the
results for this case. The most unstable disturbance is no longer two
dimensional, but three dimensional, and occurs at a streamwise wave angle
in the vicinity of 30° to 45°. This result is significant in that it differs

(6)

from Mack's findings . Mack proposed that three dimensional disturbances




S T I IR AL I e | e AR

' i |6 = Oo Mw:.g v
E | £ 300 INSULATED WALL -
E | - [ a5° :
E | 12 =

o
®
|
y
|

WAVE NO.~ a
1 ! o §
N
(6}
]
I

(@]
D
)
7
(@]
°
L)

; o_ =/ ———— =
(a) R BT o S e 87'51 P e

: 102 2 3456 8103 2 3456 810%
REYNOLDS NO.~ (R= /Rx )

T R M g e s Ty

T T T 3 3 T T T T T M'°='o'9 T %
| as | INSULATED WALL _
f
; [ \ S 75°  80° 85° 87.5°
| % \ \ |
3 40 | .
| 3 | 45° \\ \ ]
% ! & !
. - |
E 5 N
] 3 32} J
. 1 ;‘ 1
‘ E w
- 2
e g sl J
o ! ]
v . !
. 4 2°D
k|
.‘l i 16 F 4
E ' (b) 10? z zls 2 56 810 e 3 4 ; 6 8 10
: REYNOLDS NO.~R (R=VRy)
g : .‘Figure 28. Effect of Streamwise Wave Angle on Neutral Stability Conditions
; for 3-D Disturbances for Insulated Wall at Mm= 0.90;
a) Wave Number, b) Phase Velocity.




i2 T | SRR P e (R A T | Vs D
Mw=9 r
Tw/Te =.824
30° W
3
? .08} 2
s 4
w i
> |
< [ \
= 04} -
#
] ?
= 87.5° |
. o=—"— ; ;
.  SPRORS] (SO O T, A 5 o 1 s s X O
o 103 2 3 456 8104 2 3 456 810°
: a)
REYNOLDS NO.~ R(R=/Rx )
T LT R F‘] T T T | L B
l L Mm"g 7l
| 40} Tw/Te=.824 "
= = 4
i S i ]
‘ ! L_ ‘
,2'__.32— 4
| y
: J F 2-D 60° 75° 80° 85°  B75°
_ S 2sf NG e |
B 2 e s T : Q
R S g : * |
E;: : -
“:z 1 6F 5
.‘: ? 1 S (I ) (2 ) (OO | L RIS (¢ W0 L1 A 1900 el
P 103 2 3456 810 2 3 286 810°
i (b) REYNOLDS NO.~ R (R=./Rx )

Figure 29. Effect of Streamwise Wave Angle on Neutral Stability Conditions
for 3-D Disturbances at M, =0, 90 and Tw/Te = 0, 824;
r a) Wave Number, b)Phase Velocity.

S 7 A BRIV R




e

B
Yy

~

.

ER—T SO

i A -

PO | LRSS

N

N

.06 —
3]
2 = -
o
Z 04| ~
w
>
I | ISEEe
= Q
02} —
(a) ik 1 g | e e | el
3000 5000 7000 10000 20,000
REYNOLD NO.~R(R=_/Rx)
i N T t
o 2-0 Tw/Te =0.759 | :
vl 60°
300 3 750 :
¢ :
fl S | |
3
g |
g N
§ g I N 1 :
a
%
o} ] g
P b
E L L I i e i
(b) 3x10® 4 5 6 g 10 > .

REYNOLDS NO.~R (R=J/Ry)

Figure 30. Effect of Streamwise Wave Angle on Neutral Stability Conditions
for 3-D Disturbances at M_ = 0.90 and T /'1‘C = 0.759;
a) Wave Number, b) Phase Velocity. by

59




mem—— SUES——.. —— - —

1
v T T T T ¥ T ¥
My =0.9
.06 } To/ Te 0620
2-D ]
35° 'j
.05 } d
9
( -4
o' ;
2
i w
| 3
. z .04} .
2-D
! .03 T 1
<
(a) r I e i A A 5
10 2 3 4 5 6 8 10

REYNOLDS NO.~R (R=/Ry)

| T | T 1
| _
| 30°
S
$ 2F i b
t ‘<
e :
o 4
2 pur 3
£ w
| e
| : :‘nJ A e o 3
k- | I = 4
s o 3
B | :
E 1
|
" .10 5 |
- (b) j o — | l ] 3
1 30,000 40,000 50,000 60,000
E 1 REYNOLDS NO.~R(R=/Rx ) -
Figure 31. Effect of Streamwise Angle on Neutral Stability Conditions for
3-D Disturbances at M_= 0.90 and Tw/Te = 0.620;
a) Wave Number, b) Phase Velocity.
k| 54

T BRN T T P Y AT oSN PO oo TP




T

e

e b e

R —————

become the predominantly unstable disturbances for cooled boundary layers

for Mach numbers of about 0.7 or 0.8. This appears, however, not to be
the case. At M = 0.80 (not shown) two dimensional disturbances were found
to be the most unstable for all values of Tw/Te analyzed. AtM = 0.9,
three dimensional disturbances, which were only slightly oblique (i.e. wave
angle of about 300), were found to be the most unstable (and only at

Tw/Te = 0.620).

Figure 32 is a typical neutral stability frequency versus Reynolds
number distribution for oblique disturbances at Mw = .90 and for an
insulated surface. Here the limiting condition on the maximum neutral
stability frequency is the two dimensional distur bance. For disturbances
which are increasingly oblique, the frequency spectrum available to a

potentially unstable disturbance becomes narrower. This behavior is
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Figure 32. Effect of Wave Angle on the Neutral Stability Frequency for
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similar to the effect of wall cooling on two dimensional disturbances.

Three dimensional disturbances of constant frequency react to changes in
wave angle in a manner analogous to the reaction of two dimensional dis-
turbances to changes in surface cooling. The results tend to confirm the

(8) (6)

hypotheses of other investigators such as Dunn and Lin and Mack .

Most of the work reported by Mack conerning the effects of surface cooling
on stability was conducted with an inviscid linear stability theory and
supersonic flow. He concluded that increasing the surface cooling in the
boundary layer serves to stabilize 2-D and 3-D first mode disturbances.
Higher mode disturbances are increasingly unstable with increasing
surface cooling.

In summary, the linear stability analysis of cooled subsonic wind
tunnel boundary layers indicates that:

1. Wall cooling has a pronounced stabilizing effect on two and

three dimensional first mode disturbances.

2. Two dimensional disturbances are more unstable than

three dimensional disturbances for Mach numbers of M = 0.90

or less, and surface cooling ratios greater than approximately

oo aday

TR =062
w e
3. The effect of Mach number on two and three dimensional ;

disturbances is negligible for 0.60 < M < 0. 90.

4.3 COMPARISON TO SHOCK INDUCED FLOW RESULTS

For purposes of general comparison between the stability of cooled
subsonic wind tunnel boundary layers, and shock induced subsonic

boundary layers, two particular cases were considered:

1) Mm = 0.603, wind tunnel flow and, 2) MS =1.5, M_ = 0.603, shock tube

2
tube flow. The behavior of both cases was investigated over a range of

Results of these calculations for points of neutral

wall cooling conditions.
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stability are presented in Figure 33. The subsonic shock induced boundary
layer is more stable, possessing a higher critical Reynolds number for a
given wall cooling ratio than its wind tunnel counterpart. This difference
is attributable to the differences in mean flow profiles. The shock tube
profile has higher gradients, and hence transfers more energy out of the
boundary layer than the steady-flow Blasius type profile. (This phenomena
was also observed by Ostrach and Thornton(7).) Stability is influenced not
only by boundary layer cooling, but to an even greater extent, by the
gradients of the mean flow profile. Thus, direct correlation between
experimental transition data obtained in wind tunnels and that obtained in

shock tubes is not expected.
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Figure 33, Comparison of the Relative Stability of Shock Tube and Wind

Tunnel Boundary Layers, as a Function of Critical Reynolds
Number and Wall Cooling Ratio.
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4.4 EFFECT OF WALL COOLING ON LOCAL SKIN
FRICTION COEFFICIENT

A comparison between laminar and turbulent skin friction values for

the specific flow parameters under consideration, is presented in Table I.

The following definitions apply:

Fw

au
dn 5k
cfvm:
L
ch'R_x
T

- Dimensionless viscosity at the surface

- Dimensionless velocity gradient at the surface

Laminar skin friction parameter

- Approximate turbulent skin friction parameter

It is apparent that, although laminar skin friction increases with wall cool-

ing, it is still an order of magnitude less than the turbulent skin friction at

the same Reynolds number.

A potential thus exists to significantly reduce

aerodynamic drag on aircraft surfaces by providing sufficient cooling to

delay the onset of transition.
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SECTION V (3
SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

&, 1 SUMMARY

T Shows

The work described in E;his report hat showf-that wall cooling can be
an effective means of increasing'the stability of laminar boundary layer flows.
The stability of two general classes of cooled boundary layer flows was in-
vestigated; shock tube induced boundary layers, and cooled subsonic steady
flow boundary layers (such as that on a cooled aerodynamic surface in free
flight or in a wind tunnel). <

A distinguishing feature of wall boundary layers in shock tubes is
that the wall temperature is less than the temperature at the edge of the
boundary layer for all shock Mach numbers. In this report, shock Mach
numbers ranging from 1.5 to 5.0 were investigated. The results showed
that the cooling of the boundary layer in this type of flow is sufficient to
supress the ordinary types of disturbances (2-D and 3-D subsonic disturbances)
considered in boundary layer stability theory. Higher mode solutions to the
stability equations of the type first discovered by Mack were found to exist in
shock tube boundary layer flows. The frequencies associated with these higher
mode solutions were found to be so high (in the megahertz range) that they
were considered to be unimportant in establishing the stability of shock tube
boundary layers.

The primary objective of the reported effort was to determine whether
or not three-dimensional and/or higher mode solutions correlate with trans-
ition measurements in shock tubes, particularly those of Bnison(4). When
it was determined that these types of solutions would not correlate with
transition measurements, a search for other types of solutions which might show

correlation was undertaken. Two new classes of disturbance solutions were

discovered which are unstable in highly cooled boundary layers. Both classes !
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originate in the free stream in the form of supersonic disturbances. One

‘ class corresponds to supersonic disturbances which travel slower than the
free stream (CrSl-l/Mm) and the other class corresponds to disturbances
which travel faster than the free stream (c-rZI-I-I/Mm). Since both classes
of disturbances originate in the free stream, these unstable disturbances
are not important for determining the stability of cooled boundary layers in
a disturbance-free environment such as free flight. Conversely, these types

{ of disturbances are of fundamental importance to the stability of shock tube

' boundary layers, since free stream disturbances always exist in shock tube
flows. Free stream disturbances also exist in all wind tunnel flows so that
supersonic incoming disturbances are also of importance in determining the
stability of boundary layers on models in wind tunnels. This factor is especially
important for cooled models when the cooling is sufficient to suppress the

v subsonic disturbances which would otherwise control boundary layer stability.

{ The wall cooling required to suppress subsonic disturbances was

i determined for steady subsonic flow over flat plates with no pressure gradient. j‘

‘ The Mach number range investigated was 0,603 < MQSO. 9 and the wall tem-

peratures range extended from insulated wall conditions to TW=0. 62 Te. The

increase in critical Reynolds number with decreasing Tw/Te is dramatic,

as is shown in Figure 33, Thus, even a moderate amount of wall cooling

. should lead to a significant increase in transition Reynolds number. It was

p

; ; S also found that two-dimensional disturbances are more unstable (have a lower
o
7 |
= critical Reynolds number) than three-dimensional disturbances over this
= 1

i rangeof M and T /T , exceptat M =0,9 and T /T =0.62 where an oblique
o © w e © w e

‘ wave having a wave angle of about 30° was found to have the lowest critical

! Reynolds number. In addition, it was shown in Section 4.4, that wall cooling

does not significantly increase the local skin friction coefficient for laminar

flow,
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5.2 CONCLUSIONS

The conclusions cover a wider range of information than that contained
in this report in order to obtain the widest possible perspective on the effect
of wall cooling on boundary layer stability. The conclusions do not; however,
extend beyond the range of flow parameters considered in this report.

The first five conclusions are concerned with the effect of wall
cooling on subsonic disturbances:

1. With little or no wall cooling, subsonic disturbances are
the principal cause of transition.

2. Surface cooling stabilizes subsonic disturbances and delays
transition over all Mach numbers investigated (Mm< 2).

3. Subsonic disturbances cause transition on aerodynamic surfaces
in wind tunnel flows and free flight unless sufficient surface
cooling is imposed.

4, Shock tube flows always have significant wall cooling.

5. Amplification of subsonic disturbances in shock tube wall
boundary layer flows is delayed well beyond the location of
measured transition.

The wall cooling associated with shock tube flows was found to be so
effective in suppressing both two-dimensional and three-dimensional dis-
turbances that these types of disturbances did not provide any correlation
between boundary layer instability and measured transition Reynolds numbers.
Therefore, a search for other types of unstable waves, which could account
for earlier transition, was undertaken. The investigation identified a class
of supersonic disturbances.

From a study of the behavior of these disturbances it was concluded

that;

6. Unstable outgoing supersonic disturbances exist, but their
characteristic frequencies are too high to affect boundary
layer stability.

SR




7. Incoming supersonic disturbances always exist and have
unstable regions over all flow conditions investigated.

8. Unstable incoming supersonic disturbances control trans-
ition in shock tube flows.

5.3 RECOMMENDATIONS

The results in this report show that wall cooling in subsonic and
low supersonic Mach number (M<2) has a significant potential for reducing
skin friction drag on flight vehicles by delaying transition from laminar to
turbulent flow. The results of this investigation were obtained for flows
with no pressure gradient. Obviously, it will be necessary to determine if
wall cooling can prevent laminar flow separation and transition in regions
of adverse pressure gradient before an estimate can be made of the total
aerodynamic drag reduction which can be achieved through wall cooling
on flight vehicles (skin friction drag + pressure drag).

The following program for further research will be necessary to
determine the overall feasibility of boundary layer control through wall
cooling.

1. A Wind Tunnel Investigation of Boundary Layer Transition

on Cooled Flat Plates with no pressure Gradient for sub-
sonic Mach numbers.

2. A Linear Stability Theory Investigation of Subsonic Laminar
Boundary Layers on Cooled Surfaces with Adverse Pressure
Gradient.

3. An Experimental Investigation of The Effect of Wall Cooling
on Lift and Drag on Airfoils at Subsonic Conditions. This
program should include both wind tunnel and flight testing.

4, A Systems Analysis to Determine the Overall Payoff Which Can
be Achieved by Integrating Cooled Aerodynamic Surfaces,
Supporting Hardware, and the Use of Cryogenic Fuels Such as
Hydrogen into a Flight Vehicle.
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APPENDIX A
CRITIQUE OF OSTRACH-THORNTON ANALYSIS

The mean flow \field in a shock tube is basically an unsteady flow.
In an experiment, the iﬁl'st-rumentation is fixed in the laboratory coordinate
system and so one wants to '{mderstand the flow from the point of view of
an observer fixed in space. However, from the point of view of an observer
riding on the shock wave, the flow is steady (neglecting small changes in the
free stream conditions of the shocked gas due to the presence of a growing

boundary layer and attenuation of the shock speed itself). Thus, the analytical

formulation of both the boundary layer equations for the mean flow and the

small disturbance equations is simpler when done in the moving coordinate

system where the mean flow is constant in time and all of the unsteadiness

of the flow is due to disturbances. The correlation of boundary layer

stability and transition data with analytical predictions however is easier

‘ done in the fixed coordinate system since all available data are obtained
with sensors fixed in the laboratory coordinate system. In the present

’ analysis the mean flow is solved in the shock-fixed coordinate system

and then transformed back into the laboratory-fixed coordinate system,

The entire stability analysis is formulated in the laboratory-fixed
coordinate system,

(7)

In the Ostrach-Thornton investigation the entire analyis was carried
out in the shocked-fixed coordinate system. The small disturbance equations

were first nondimensionalized with free stream quantities of the shocked gas

¥
.
SN & LGRS

(U:. T:, etc.). Then, basically in the interests of expediency, they
normalized the mean flow velocity profile and phase velocity in a manner so
; as to reduce the problem to one in which the normalized velocity profile had
a value of zero at the wall and 1 in the free stream corresponding to the

classical stability analyses. They defined new quantities, Q, 0', and <

as follows
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where capital letters refer to dimensional quantities and lower case letters
refer to quantities nondimensionalized by U’"‘e and ( )' signifies differentiation
with respect to n, the Blasius similarity variable. Note that the operation

of dividing velocities by (1 - uw) when these velocities were originally non-
dimensionalized by U’: is equivalent to nondimensionalizing the velocities

vy U% - U:"v in the first place.

The disturbance velocities in the Ostrach-Thornton analysis were
originally nondimensionalized by U: and then subsequently divided by 1 - a .
As an example, the normalized value of the amplitude of the velocity

fluctuation in the streamwise direction f (their notation) became

%
f* - i/_U_e— = __.,..i_..,_._ (A-2)
o REeagy R e A

where here f represents a dimensional quantity.

Referring to Equation (A-1) above, it should be noted that the
operations performed by Ostrach and Thornton as indicated in Equation (A-1)
are really equivalent to transforming the mean flow velocity and phase
velocity back into a lab-fixed coordinate system. This transformation is
performed when U:, is subtracted from the mean flow velocity., Then they

simply nondimensionalized all velocities by the velocity of the fluid

——




relative to the wall (U: - U:,). These operations clearly lead to changes
in the sign of the quantities 0 - ¢ and ' compared to u - ¢ and u'
respectively. If originally u - ¢ was positive, then, after the operations
of subtracting u_ individually from u and c and dividing by 1 - u, s Q-c
becomes negative and vice versa if u - ¢ was originally negative. The sign
of Q' is also changed from that of u' when u' is divided by 1 - He There-
fore, while the operations indicated by Equation (A-1) appear to be simply
a2 normalization procedure used to obtain a normalized velocity profile that
corresponds to the classical one ranging from 0 at the wall to 1 in the free-
stream, it must be recognized that these operations imply more than just

a simple normalization. The operations indicated in Equations (A-1) and
(A-2) (corresponding to Equations 7a and 7b in Reference 7) really corres-
pond to first transforming fhe small disturbance equations back into the
laboratory coordinate system and then nondimensionalizing all velocities

by the velocity of the fluid relative to the wall, Therefore, in evaluating
the Ostrach and Thornton analysis, it must be kept clearly in mind

which coordinate system each of the quantities related td velocities is
defined in. Q and ¢ are properly defined in a laboratory fixed coordinate
system and thus ¢ is the nondimensional phase velocity relative to a
stationary observer. That ¢ is thus defined is not stated or immediately

evident in Reference 7.

It is very easy to become thoroughly confused when reading
Reference 7 since all quantities related to velocities seem to have the wrong
sign. Ostrach and Thornton apparently recognized that these quantities
did not have the correct sign for they invented new sign conventions in
order to "make things come out right"., They defined a new wave number
a = -a and the Reynolds number Rel,was defined as | 1 - uw] Re instead
of (1 - uw) Re. They do not state it but in their analysis the wave number
‘n the transverse direction 8 would also have to be defined with a negative
“ign. Had they considered 3-D waves instead of only 2-D waves, it is quite

robakle that noticeably incorrect results would have resulted and steps

v ta correct the analysis, 67
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It is now clear to us that the Ostrach-Thornton analysis is basically |
properly posed (within the accuracy of the Dunn-Lin approach) if one
untangles all of the sign inconsistencies. One then finds that they have
really stated the problem (equations la through 5a in Reference 7) for the

situation pictured in the following sketch i

and that all disturbances are left running waves. In the above sketch then,
a. gh S, U:,' U; , and U;; would all be negative quantities as they, of course,
should be for this physical situation. The input mean flow profile would then

: : T /
be input as negative numbers for u and posxtwe numbers for u. Then upon

nondimensionalizing with respect to U"e' - (a positive number) (G and c
dk

would be positive and - ¢ would have the correct sign. ¢ would indeed

Ly [t appears that O-S used a positive velocity profile for U* with U™
negative (corresponding to their Figure 7 for steady flow system) but con-
sidered UW and UZ also to be positive quantities. They considered c to be
positive, but again U and U were considered to be positive. Thus, their
0-¢ and Q' had the 1ncorrect sign for our sketch., But then they redefine their
disturbance velocity amplitudes to have negative values which tended to undo
the incorrect signs on - ¢ and Q'. Finally, after they invented a negative
sign for a (and by implication negative signs for and c), their equations la
throligh 5a became applicable to the physical situation shown above. When they
wrote their final equations (Eqns. %a through 14 in Reference 7), they had

in essence retransformed their disturbance velocities and redefined g and Re
to correspond to the flow situation which is just the opposite of our sketch,
but corresponds to their Figure 7.
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be the phase velocity relative to an observer in the laboratory-fized
coordinate system corresponding to the sketch which is really what the

Ostrach-Thornton phase velocities < are.

In Figure 34, the movement of a given particle is tracked in the

two different coordinate systems corresponding to the shock-fixed coordinate

system for which the Ostrach-Thornton analysis is really applicable. This
figure is particularly useful for visualizing the basis for the development

of the Reynolds number based on velocity of a particle relative toc the wall
and length equal to the total distance that a particle is in motion relative to

the wall at a given time t. Note that for a time interval At:tz-tl after the

shock has passed a given position (xg) the particle that is at the position

x _has been in motion for the iime tz and has covered the distance egual to
g .

it Also, note that (all quantities are considered to be dimensional in

2 2
what follows)

xs ‘xs xs - X -
At = 2 1 = _Z_g_= T
u u
S S
x - X X - X
P2 1 1 s
and that At = el o N S T I . .®
UZ UZ

.

ER
where v is the time after the shock moves past a given point on the shock

tube wall. Egquating these two expressions for At yields

UZ xg -xp1 UZAt
Us Us

or . = i —— AL S e—— AL
2 (Us UZ) Ue

which states that in the time At after the shock passes a given point on the

2

shock tube wall, the particle at position xg at time t_ has been in motion for

the time given oy
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US
at= (U -U) == at .
e e

If At is the time to transition after the shock passes a given point, then Xpy

represents the total distance that a particle travles relative to the wall to

reach transition.

which represents

In the shock-fixed coordinate system X = Ue t

p2 2
the total distance covered by a particle in time tZ. But in this same time,

the wall has traveled a distance thz = Ustz. The distance that the particle

has traveled relative to the wall is then (Us - Ue)t2= U’Z tZ . But again

t x /U i
o S 00
At x /U A
BEES .
Us 3
or tZ = T At
‘ e
:, J‘ ]
Bl - Note that in the Ostrach-Thornton analysis the Reynolds number Rexwas
|
k| based on
R 4 ,
s |




2
| or Rex = (Us - Ue) Us At/Ue

- which is the same as the Reynolds number based on the total distance that a

particle travels and its velocity in the laboratory-fixed coordinate system.

Therefore, it appears that the end result of the Ostrach-Thornton
formulation of the stability equations is correct within the accuracy of
the Dunn-Lin approach if one interprets their phase velocity c as the
phase velocity in a shock-fixed coordinate system. It is very clear that
their formulation of the stability equation does lead to the correct form
of the parameters, Mach number and Reynolds number, for a stability

analysis of the boundary layer formed behing a moving shock wave.
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APPENDIX B

DESCRIPTION OF THE BOUNDARY LAYER STABILITY
COMPUTER PROGRAM

B.1 STABILITY EQUATIONS FOR THE VISCOUS STABILITY COM-
PUTER PROGRAM

The complete parallel flow linear stability equations used to generate
the results presented in this report can be tound in Reference 16. The stability
equations presented in Reference 16 contain terms which arise because of non-
parallelism of a boundary layer. These terms were not included in the version :
of the stability computer program used to generate the results presented in :
this report. The terms included in Reference 16 which are not included for
parallel flow investigation are as follows:

(a) All terms involving V (mean flow component of velocity

in the y-direction) and all derivatives of Vv,

(b) All streamwise derivatives of mean flow quantities.

The stability equations in Reference 16 also include the effect of
the bulk coefficient of viscosity, denoted by §. In the present investigation

¢ was taken to be zero.

The complex amplitude functions of the flow variables are defined
by
(u" V"W,s P') = (f, « o ’ h, m) exp [1(0’ ]X+O/3 z "(,l‘t)] (B. 1)

When equations of the type expressed by Equation B. 1 are substituted into the

linearized small disturbance equations for parallel flow,an eighth order system
of linear differential equations is obtained. The eighth order system is setup

as follows: i

8 8
a, zZ' = b,.Z, (i=1,2,..004,8) (B. 2) oy
ij7j ij ] i
=1 j=1 X




2

U= ] = = ' = 1
6 Z5 . zZ h, ZS h Z7

and where the row index, i, in Equation (B. 2) is set up in the following

order
Row Index Equation

' =

1 Zl Z2

2 First momentum (x-direction)

3 Continuity

4 Second momentum (y-direction)
5 =

5 Z,5 26

6 Energy
' =

7 Z7 28

8 Third momentum (z-direction)

The above formulation of the stability equations given above is identical

to Mack's except that he defines Z4 =aly MQZ . His system of stability
equations also has one further minor difference and that difference involves
the definition of the bulk viscosity coefficient. Mack uses the Lees-Lin
definition which is 3/2 times the usually defined value, §.

The system of equations (Equation (1)) is written in the form

8
,
4, Z D..2, {328,042 8) (B. 3)
& ij j
J.= 0

8
e z : it Os
kel

-1 (B. 4)

dy = [ag]




equations are given below.
!
The Zi equation has one non-zero coefficient

D(1.2) =1

!
The Z_ equation has six non-zero coefficients

2
iz, Ll d paly = 21 BT
kT

D22)=- L Sk

g 4T
!
a,UR
e oo ol odg L li.,2
D(2,3) = 5 T -[“ dT+(3+x)T]1a1T
{ ialR

" D(2,4) = - ( %+x )a‘:‘Mz(U—c) +

. Ul d
$ D(2,6) =-— —&
| - (2,6) y 4T
i
- '
- :4' The Z, equation has 5 non-zero coefficients
v |
D(3,1) = - i

; 1 D(3,3) = T'/T
D(3,4) = - i(U~c) M2
| D(3,5) = == (U-c)

D(3,7) = -1.%3
@)

For the parallel flow version of the stability equations, the Dij can
be obtained analytically whereas for the non-parallel flow version the Di'

must be obtained numerically. The values for the parallel flow stability

2
o 2
D(2,5) = —T—l-(U-c)( ;—+ K )-U"% d—“-i—%l‘f— (B. 10) .

)

(B.5)

(B.6)

(B.7)

(B. 8)

(B. 9) :

(B.11)

(B.12)

(B. 13)

(B. 14)




The Z4 equation has no non-zero coeificients. The coefficients are

written in terms of the factor L, defined as

B R L 2 (y-
L= T +i( 3+« )M (U-c)

The coefficients are

D(4,1) = -__

D(4,2) = -

2
4 1 1"
D4,3) = Ll-(ay + af G+ LEh e
Ra

. 1
=1 HT(U_C)]

1 4 ld il 2
D(4,4) = 1—(—3'+x) [D(3,4)(;— ﬁi-?)—lde]

D4, 8) = o= [l 4 x § =2 ps, syt 10
L 3 n dT

4
‘e " )

)

D(4,6) =—Ii? (—‘;— +x) i_lU_‘rc

%3
D(4,7) = D(4,1) N

1

s
D(4,8) = D (4,2) —5—
1
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The Z

5

D (5,6) =1

equation has a single non-zero coefficient.

1
The Z 6 equation has five non-zero coefficients.

The Z

The Z

D(6,3) ~«

s

8

D(6,2)=-20(y-1)M> U

R
1y

D(6,4) = -i «

2

Gt ()

D(<’>,5)=(c1tl + o

1
T . ]
—T-Zlc(y-l)aleU

&OLLI) (U-C) MZ
1y y &

2 . milag qmF a'y

3 ) 7

2
d

d T

m d T2

M
Gl thon g b R =
_0(7_1)TEAT(U)+ILX _OM

D{6,6)y= - 2

i

m

dT

1 [ T

equation has a single non-zero coefficient.

D (7,8)=1

equation has 5 non-zero coefficients.

D (8,3)=-ia

1

o

3

fi o]
T —
( H

du

+ ( —15-+x )/ T)

(B. 26)

(B. 27)

(B. 28)

(B. 29)

(B. 30)

(B. 31)

(B. 32)

(B. 33)
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2
D (8,4) = - ( ;—+x ) a1a3(U-c)M°°+ i

D (8,5) = (5

D 8,7 =(a

T
D (8,8) = -—
[’

In these equations

he =SEy/ m
and is a constant,

The boundary conditions are

Zy (0) = 0, Z,(0)=0, Z4(0)=0, Z,(0)=0 (B. 39)

and as n = = , the amplitude functions must be bounded, or for the case

incoming supersonic waves, the amplitude functions must be bounded for

M>> M,

The problem as formulated above is such that the boundary conditions
themselves are not sufficient to establish any solution of the eight differential

equations other than the trivial solution of zero. Therefore, the problem is
an eigenvalue problem, that is, nonzero solutions which satisfy the boundary

conditions exist only for certain combinations of the parameters o , o_, R, c.

3 ’
The general method used to determine the eigenvalues and eigensolutions to
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the above system of equations is given in the next section. The computer

program used to implement the solution is given in Section B, 3.
B.2 METHOD OF SOLUTION

The difficulties of solving the boundary layer stability equations are
well known. Chapter III of Reference 17 can provide the reader with an
elementary understanding of the main difficulty involved in numerically
integrating the system of equations represented by Equation B.3. The main
difficulty is associated with the problem of controlling parasitic error growth
in the solution of two-point boundary value problems. In the BLSTAB program,
the Gram-Schmidt orthogonalization procedure is used to overcome this
problem. The reader is referred to Reference 18 (pp. 98-103) for a concise
demonstration of the problem of parasitic error growth and how it can be
overcome by the use of the Gram-Schmidt orthogonalization procedure,
Chapter IV of Reference 19 also demonstrates the use of the Gram-Schmidt
orthogonalization procedure for solving two-point boundary value problems.
The details of the use of the Gram-Schmidt orthogonalization procedure to
determine the eigenvalues and eigensolutions of Equations B. 3 have been
presented in Reference 11,

The method used to determine the eigenvalues of Equations B. 3
is outlined as follows. Four linearly independent solutions to Equations
B.3 are generated. These four independent solutions are chosen to satisfy
the boundary conditions at 1)) 1 8 A linear combination of the four in-
dependent solutions is then determined such that the velocity amplitudes
are zero at 7=0 and the pressure amplitude at 1=0 is 1.0. Using this same
linear combination, the value of 6(0) is evaluated. If §(0) is sufficiently
close to zero, the values of o 1’ 73 R, and ¢ which were used to generate
the four independent solutions constitute 7.1 eigenvalue set. The details of

the methods outlined above are discussed in the following paragraphs.

(A




E |
|
’ B.2.1 Free Stream Solution
In the free stream U=T=p=1 and U'=U"=T'=T"=0, All of the
- coefficients in Equations B. 3 are constant and only the following coefficients
are non-zero: D (2,1), D (2,4), D (2,5), D (3,1), D (3,4), D (3,5), D (3,7),
1 D (4,2), D (4,3), D (4,6), D (4,8), D (5,6), D (6,4), D (6,5), D (8,4), D (8,5),
and D (8, 7). An analytic solution to Equation B.3 can be obtained by ele-
mentary methods, The easiest way to obtain the analytic solution is to re-
write Equations B. 3 as a system of four second order equations in terms of
Zl' 24, ZS’ and Z7. This system of four second order equations has the
form
1" %
W, = 3, Ba W, {104 (B. 40)
1 j=l 1-] J
; where W1=ZI' W2=Z4, W3=Z5, and W4=Z7 and the non-zero bij are given
‘ in terms of the Dij by:
‘ ! b11=b44=D(2,1) (B.41)
= 3 I4
b13 D (2,5) (B.43)
b"Z =D (2,4)xD (4, 2)+D (3,4)xD (4, 3) +D (6,4)xD (4, 6)
; " +D (8,4)xD (4, 8) (B. 44)
‘ ', b23=D(2, 5)xD (4,2)+D (3,5)xD (4,3) +D (6,5)xD (4, 6)
B | +D (8,5) xD (4, 8) (B. 45)
= &
} b3‘2 =D (6,4) (B. 46)
] b33 = D (6,5) (B.47)
‘ , b,, =D (8,4) (B. 48) 4
b43 = D (8, 5) (B.49)
; b44=D(8,7) (B. 50)
|
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The characteristic values of the system of Equations B. 40, which

are the same as the characteristic values of Equations B. 3, are given by

1/2 A e 1/2
A= -(bll) = -[(al+:v3)+1cle(l-c)] / (B.51)
Xa=hiy (B. 52)
A= = {1/2(b,,+b, )4{1/4(b MBI S ]”2‘ 0 (B.53)
3 22t 227033 32 023 :
1/2
2 1/2 E
Ay {1/.2(19?_2 3301 1/4(0,,-b,)%4b,, b, (B. 54)
Ag= A, (B. 55)
Ag= -\ s (B. 56)
o= dg= -k, (B.57)

In order to study incoming supersonic waves it is necessary to determine
which of the above characteristic values represent the viscous counterparts
to the inviscid solution as given by Equations 13, 14,and 15 on page 24. To

this end, it is instructive to evaluate b22 and b‘23 for the special case of

x =0 and ¢=3/4. From Equation B.45 it can be shown that

byy= oy R(1-c)” (1-4/3 - xo) (B. 58)

and from Equation B, 44 it can be shown that

o’y M2 (1-0) [y-(4/3+ K )g (y -1)]

2
b22=(cv1 + 03)--—— ; (B.59)
[1+ i o yM7(1-c) (4/3+« )]
G

For the case of x =0 and ¢=3/4, Equation B, 58 reduces to

and from Equation B. 53

1/2
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| and from Equation B, 54

| ' 1/2

Combining equations B. 61 and B. 59 yields the following expression for

Chrad —csian

A . when « =0 and o=3/4

3
1/2
i 2 2 0121 sz (l-c)2 /
= A= iRl Fa )= 7 (B. 63)
1 [14+ ia, 4/3 yM® (1-¢)]
- 1 -]
4' which for large R reduces to
1/2
2 2 22
A = - [l-M (1-C)]+¢y | o } (B. 64)
3 1 ® 3 1
R
Thus, ) ., and )\ , are the viscous counterparts to the inviscid

3 6

characteristic solutions (Note that Equations 13-15 on page 24 are valid only

i
S for 2-D waves whereas Equation B. 64 is a 3-D wave result), From Equations

| B.62, B.47, and B. 30 it is easy to show that Ay is given by

z. Ay -[(0121 + 023) +3/41i o R(l-c)]l/2 (B. 65)

when « =0 and g= 3/4.

The characteristic vectors corresponding to each of the eight

(R B8 S

characteristic values can most easily be obtained by first determining the

i
l
‘% characteristic vector components corresponding to Zl’ Z4, ZS' and Z,7

from Equations B,40-B, 50, and then using the relations ZZ=Z'1, Z6=Z'5,

' { 7 =Z'_ and the continuity equation to define the other components. Let
(‘ sl represent the characteristic vector corresponding to the characteristic

value ) .. Then from Equations B.40-B. 50 the following system of equations

)G)
for the B”' are obtained:

Din.8,P4p .8

2 (3)
(by=2 ) By 12 "2 13 °3

=0 (B. 66)
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“ .! b,, -xzj) Bz(j) +b,, 133‘5’ -0 (B. 67)
| BB W -xzj) 133(5’ -0 (B. 68)
b, B, +v,, 8"+, -xzj) B, -0 (B. 69)

For the first characteristic value, )\ ™ --(b“)l/Z = -(b44)l/2, Bl(l) is

arbitrary as is B4(l). Therefore, BZ(” and B3(1) must both be zero.

Observe that )\ 1 is a double root to the characteristic determinant. How-
ever, since only one (and not two) of the Equations B. 66-B. 69 is a linear

combination of the other equations for )‘j=)‘ 1’ it follows that even though

N - gl
SURBR————

there is a double root, there are still two linearly independent characteristic

(8)

| vectors corresponding to the double root. Thus, B(l) and B are defined

(2) (7)

as (1,0, 0,0) while B and B are defined as (0,0,0,1). The remaining

characteristic vectors are given by the following relations:

| "
' 53‘J)= -D(6, 4) (B. 70)
! 8.9 pe, 5)-1%. (B. 71)
, { 2 J
;) D24 x Bz(j)-D(Z, 5) x D(6,4)
B, 3 . (B. 72)
E x . - D(2,1)
A‘ J . .
2 ¢y D4 x BZ(J) + D(8,5) X 33“)
E | A .-D(8,7
B | :
B | .
: »' 4} The characteristic vectors for the eighth order system A(J) are then defined
;- as follows:
! Al(j) 3 B(j)/)\j (B. 74)
AZ(j) - g (B. 75)
| A3(j) - (D@3, 1) x Bl(j) + D(3,4) x Bz(j) + D(3,5) x 133(5) "
g | D(3,7) x 134‘5)]“2]. (B. 76)
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A (j)=B (j)/)\j (B.77)

4 2
AS(J) = B3(])/)\ (B. 78)
a .0 (B. 79)
A7(j) - B4(j)“5 (B. 80)
TOMLE (B. 81)

The analytic free stream solutions provide the initial conditions
for four linearly-independent solutions. The characteristic vectors corres=-
ponding to the characteristic values having negative real parts () 1’ b\ 2 | 3
and )\4) are then integrated, each separately, across the boundary layer
to produce four linearly-independent solutions, Each of these four solutions
approach zero as 7]--», When amplified incoming supersonic waves are
being considered, ) 6 and it's characteristic vector must be used instead of
% , and it's characteristic vector in order that the pressure amplitude have

4
the characteristics of an incoming Mach wave,

B.2.2 Solution Inside the Boundary Layer

With initial conditions at =1 8 specified by the analytic solutions,
the Equations B. 3 are then numerically integrated across the boundary layer
from 7 =1 5 to =0, A standard fourth order Runge-Kutta technique is used
to carry out the numerical integration. The four separate integrations are
carried out in parallel across a specified number of integration steps. Then
the Gram-Schmidt orthogonalization procedure is performed; both on the
initial conditions as well as on the current solutions, When the wall (7=0)
is reached, a final Gram-Schmidt orthogonalization is performed and then
2 linear combination of the solutions is obtained satisfying the boundary con-
ditions at the wall (ZI(O)=Z3(0)=Z7=0 and Z4(0)= 1.0). @(0) is then obtained

where gis given by
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’ (2)
O—Cl Z5 +C2 Z5 +C3 Z5

where the Cj are the combining coefficients obtained by satisfying the wall
boundary conditions. If @(0) is zero within a specified tolerance, an eigen- {
value has been found. If @(0) # 0, the Newton~Raphson search produce is

used to find a combination of ¢ _, o 30 R, and ¢ which will yield an eigenvalue.

1
B.3 LISTING OF THE BLSTAB COMPUTER PROGRAM

The computer program which implements the methods discusscd

in Section B. 2 is called the Boundary Layer STABility Computer P.ogram.

The input data for the program are as follows. The data on the first card

are:

FIRST CARD (all quantities in 110 format)

Columns 1-10, NSTEPS--the aumber of integration steps.

Columns 11-20.ITSTEP--the number of integration steps between
Gram-Schmidt orthogonalizations;

Columns 21-30. ORDER --the order of the differential equation
system which is eight (8) for the version
of the program described in this report.

Columns 31-40.NPNTDA ~-if not equal to zero, the input mean
flow profiles will be printed out,

MEAN FLOW PROFILE INPUT CARDS

The program requires that the mean flow quantities U, U', Uo”’ T,

T', and T'" be specified at the wall and at equal intervals of one-half of the

o

integration step size (H/2)., Thus, the mean flow profile data must be

available at 2xNSTEPS+1 locations equally spaced across the boundary
layer at intervals of H/2. Two input cards are used to prescribe the mean
flow profile data at each point. The first card contains U, U', and U" in

a 3E14, 7 format in the order given. The second card in each set contains
T, T', and T" and Y, the location within the boundary layer at which the

data are given., T,T', and T'" are in a 3EJ]4, 7 format. Y i1s in columns
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71-80 in a F10.3 format. The order in which the mean flow profile data

must appear is in ascending order of Y, that is, the first two cards give the
data at Y=0 (1=0), the next two cards give the data at H/2, and so on, with
the last two cards giving data at =" 8 The last data set is used in sub-
routine EIGEN to determine the analytic solution for the free stream. There-
fore, the last two cards must show U(‘an=l. 0, U'(n 6)=U"('n 8 )=0 on the second
last card and T(7 8 )=1.0, T'(7 8 )=0. T'"(7 5 )=0, and Y=1 3o the last card.

H, the integration step size is calculated within the program by dividing

' 1 8 by NSTEPS. The user must insure that the number of integration steps
divided by ITSTEP is an integer.

DATA AND PARAMETERS REQUIRED FOR EACH PROBLEM SET

A set of four cards is required for each problem.

First Card of a Problem Set

! Columns 1-20. EPS, the tolerance of g(0). If |9(0)l< EPS, an
| eigenvalue has been found. EZ20.1 format,

i Columns 21-30, NOIT2, the number of iterations of the Newton-
i Raphson search procedure which are permitted
to find an eigenvalue; 110 format,

Columns 31-40. NPRINT, a diagnostic output parameter. If NPRINT
# 0, the results of intermediate computations
associated with obtaining the free stream solution
are printed out each time a trial solutinn is carried
out; I10 format.

Columns 41-50., NPRINT1, another diagnostic output parameter
to be used in conjunction with NPRINT,. If only
the characteristic values of the free stream solution
are desired for each individual solution, then
NPRINTI1 # 0 and NPRINT=0. I10 format, =

oy
L B

e 16 L 0 e

.

Second Card of a Problem Set (all quantities in an F11,5 format)

Columns 1-11, M, Mach number of the free stream. For shock " ?
| induced flows, enter the Mach number of the flow Ll
| behind the moving shock wave in a laboratory-fixed e

E coordinate system,
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Columns 12-22,

Columns 23-33,

Columns 34 -44,

Columns 45-55,

GAMMA, specific heat ratio c /cv at free stream
temperature (assumed to be constant throughout
the flow).

SIGMA, Prandtl number of the free stream (assumed
to be constant throughout the flow).

TINF, temperature of the free stream in degrees
Rankine.

MU2, bulk viscosity (denoted by x in Sections
B.1 and B. 2).

Third Card of a Problem Set (all quantities in an F11, 5 format)

Columns 1-11.

Columns 12-22,
Columns 23-33,
Columns 34-44,
Columns 45-55,
Columns 56 -66.
Columns 67-77.

(ALPHAl)r; real part of o,
(ALPHAl)i; imaginary part of o,
(ALPHA3)r; real part of o,
(ALPHA3)i; imaginary part of Y4
R, Reynolds number (R='\/Ex)

(PHV)r; real part of phase velocity, o

(PHV)i; imaginary part of phase velocity, ci

Fourth Card of a Problem Set (all quantities in an 110 format)

Columns 1-10,

Columns 11-20,

Columns 21-30,

Columns 31-40,

IX1 The seven numbers on the third card are
stored in an array called X, IXI1 denotes
one of the two parameters which will be
varied in carrying out the Newton-Raphson
search procedure.

IX2 Denotes the second of the two parameters
which will be varied in carrying out the
Newton-Raphson search procedure.

ITEST. o4 can be input in two ways. If ITEST
equals 1, the input number for ¢ _,is con-
sideredtobe o . /o ,. If ITEST #1, then
the numbers read in for o, are considered
to be o ,. The option of I'13EST=1 is used
to study waves which have a constant
oblique angle.

INT. If INT# 0, the eigensolution for the region
inside the boundary layer will be computed
and printed out after an eigenvalue has been
found. "
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Columns 41-50, INTOBL. If INTOBL# 0, the eigensolution for
the region outside of the boundary
layer will be computed and printed out.

Multiple problem sets can be included in the input data. This i
concludes the description of the input data for the program. The listing

B of the program is given in the next section.
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