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high-level language permits a orogrammer to communicate easily w ith a
computer. The machine program that results from the use of a high-level
language generally executes slower and requires more of the computer resources
than the same program written efficiently in machine language. An optimization ~
pass for the language processor can reduce the execution time and the resource
requirements of the resulting program. A machine independent optimization
pass that accomplishes such Improvements is described in this report. The— p~
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language processor for which optimization is performed is a cross-compiler.
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OPTIMIZATION TECHNIQUES

for the

NUSC FORTRAN CROSS-COMPILER

INTR ODUCTION

A compiler is a computer program that translates statements written in
a high-level programming language into a sequence of instructions for sub-
sequent machine execution. A high-level programming language consists of
a set of key words and/or symbols combined into a sequence of statements in
a manner specified by the rules of syntax for the language. The key words and
symbols are generally derived from a notation orient ed towards solving a
specific class of problems. A programmer defines the procedure that provides
a solution to his problem by writing a sequence of statement s in the high-level
language. An example of a high-level compiler language is FORTRAN. The
acronym stands for FORmula TRANslator and the language is best used for
scientific applications. A business programmer is more likely to use the
R eport Program Generator (RPG) language or COBOL, the COmmon Business
Oriented Language.

The compiler translates the sequence of high-level language statements
into a sequence of machine Instructions that actually accomplish what the
programmer intends. Ideally, these machine instructions perform the task
in the moat efficient manner. The determination of which machine Instructions
are used is made entirely by the compiler. In fact, the programmer does not

• have to concern himself with the particulars of the machine on which his
program executes. 

.

COMPILER COMPONENTS

Compilers are composed of at least three unique parts: the lexical scan,
the syntactic analysis, and the code generator. The lexical scan is by f ar
the simplest part of the compiler. It scans the chara cters of the actual source

1
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TR 5214

statement from left to right and extracts the individual key words and symbols
(tokens). These tokens are passed to the syntactic analyzer in some internal
form. The only tokens passed are those requiring translation , i. e., comments
and blanks are eliminated.

The syntactic analyzer disassembles the source program into its basic
parts. It completely checks the correctness of the synt ax of the source program
and produces an internal form of the program that represents the program
logic. A principal aspect of this transformation is the construction of tables ,
such as the symbol table.

The syntactic analyzer must produce an internal form that is a correct
representation of a program and that can be efficiently manipulated by sub-
sequent parts of the compiler. There are many possible structures for the
internal form. Whatever structure is selected , it must present the program
to the next part of the compiler In a correct and usual manner.

The symbol table is an important component of any internal form. It is
a collection of all program variables and constants along with their assigued
attributes. A reference to a specific variable or constant appearing In the
internal form is represented as an index into the symbol table. Thus, all
symbol references are represented in a uniform manner to the compiler.

The generation of the internal form of the program is a machine in-
dependent operation; however, the lexical scan and the syntax analysis are
language dependent, i.e., they are governed by rules of syntax for the specific
language. The code generator is just the opposite; it is language independent
but machine dependent. The code generation pass requires only the internal
form. It processes the internal form and produces a “final” , machine de-
pendent, program representation for execution by the target computer. This
final representation is called the “object program”.

COMPILER STRUCTURES

• All compilers perform lexical analysis, syntactic analysis, and code
generation. They differ in the manner in which they perform these functions.
In some compilers, each individual source statement is processed corn—
pletely, from lexical scan through code generation, before the next statement
is processed. Such compilers are called one-pass compilers. In other
compilers, called multi—pass compilers , there are at least two distinct
passes: first , the syntactic analyzer builds the internal form for the entire
source program, and, second, the internal form of the entire program is
passed on to the code generator. In fact , once the code generator Is proces-
sing the program, the syntactic analyzer can be completely discarded.

2 
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OPTIMIZATION

With a multi-pass compiler , passes can be added to the compiler to
perform specific functions on the program before any object code is generated.
A function that can be performed in this manner is program optimization. The
internal form is modified to cause better object code generation than is general-
in the simple two—pass compiler. In general, it is impossible to generate truly
optimal code; therefore , a more accurate name for optimization might be code
improver with an objective of “code modification in the hope of improvement.”1

Although optimal code cannot be produced in the “general” case, program
performance can be significantly improved by certain modifications to the
code generated for specific algorithms. For example, consider the FORTR AN
statements

A = C + D

B = C + D

There is no need to compute the value of the expression C + D twice. However ,
a non-optimizing compiler would generate code to do just that. Another candi-
date for code optimization is shown by the FORTRAN statements

IF (A+B) 30, 20, 10

10 CONTINU E

A non-optimizing compiler would generate the following

“EVALUATE (A+B), CALL iT X”

“JUMP TO STATEMENT 30 IF X NEGATIVE”

“JUMP TO STATEMENT 20 IF X ZERO”

“JUMP TO STATEMENT 10 IF X POSITIVE”

10 CONTINU E

Obviously, the “JUMP TO STATEMENT 10” instruction could be completely
removed without affecting the program logic.

OPTIMIZATION COSTS

There are trade-offs in terms of time and computer resources associated
with each optimization. Generally, the choice is between a costly program
compilation that decreases program execution time or a rapid compilation
with Its less efficient program execution.

3
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A second factor that must be considered is program debugging. If the
machine code is modified to produce more efficient code, then the instruc-
tion execution sequence may not correspond exactly to the sequence of high-
level statements written by the programmer. This can cause considerable
confusion when a programmer attempts to isolate and correct errors. An
example of this is given by the FORTRAN statement

C = A * 2.

An equivalent form for this expression is

C = A +  A.

If the computer can execute an add instruction faster than it can execute a
multiply instruction, then a legitimate code optimization is to generate the add
A to A sequence in place of the multiply A by 2 sequence. If an error occurs as
a result of the add (e.g., “register overflow on ADD”), the programmer could
become confused since no add operations appear in his program.

CODE IMPROVEMENT

The objective of the code optimization process is to improve the efficien-
cy of program execution. There are two areas in which code improvement
techniques can be applied. One area for improvement is at an intermediate
language level , where the syntactic analysis portion of the compilation is
complete and no machine code has yet been generated. At that point , optimi-
zations such as those presented in the previous examples can be accomplished.
These are called machine independent optimizations.

The second area for code improvement is at the code generation level.
The code generator may be able to take advantage of certain machine instruc-
tions to accomplish specific tasks. For example, the expression

• A = A + C ,

generates a LOAD, ADD, STORE sequence for the general case. If C is the
constant “1” and the computer has an “Increment Memory” instruction, the
code generator could generate one instruction to increment the variable A.
Optimizations of this type are machine dependent optimizations and are unique
to a language implementation on a specific computer.

Machine independent optimizatlons can be performed at two levels:
local optimization and global optimization. Local optimization is that which
can be made at specific points in a program using only information about the
immediate program area. Global optimization requires Imowledge of an
entire program or at least a very large portion of a program.

4
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OBJECTIVE

This research was directed at demonstrating the applicability of some
generalized optimization techniques to an existing language. The generality
of the technique was maintained by delaying selection of a target computer
until the optimization transformations were performed. In addition, some
machine dependent optimizatlons are generalized for application to two quite
different computers.

THE LANGUAGE AND THE MACHINES

The FORTRAN language was developed in the early 1960’s for algebrai c
and computational applications. Definition of a national standard in 1966
contributed to widespread acceptance of the FORTRAN language throughout the
computer world. NUSC developed the FORTRAN cross-compiler that was used
in this study. Hosted by the UNIVAC AN/1JYK-7 computer , this compiler Is ca-
pable of generating object code for either the AN/UYK-7 computer or for the
UNIVAC AN/UYK-20 mini-computer. The compiler is a multi-pass compiler.
The first pass consists of the lexical scan and the syntax analysts. The final
pass generates relocatable object code for subsequent loading and execution.
Intermediate passes, when selected at compile time, perform optimization.

INTERNAL FORM

The first pass generates a machine independent internal form of the
program. The internal form is made up of a set of 3-tuples (triples). Each
triple consists of an operator and two operands, I. e.,

OPERATOR OPERAND 1 OPERAND 2

The OPERATOR is an index into a table of actual operators. OPERAND 1
and OPERAND 2 are pointers to the operands at which OPERATOR is applied.
For example the expression,

A + B,

Is represented by the triple

(POINTER TO THE PLUS OPERATOR)

(SYMBOL TABLE INDEX FOR VARIABLE A)

(SYMBOL TABLE INDEX FOR VARIABLE 
B ) 5
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A triple always contains an operator. However , it contains only as many
operands as are required for the operator. Thus, the statement

GO TO 1O -

• produces the triple

(POINTER TO GO TO OPERATOR)

(SYMBOL TABLE INDEX FOR STATEMENT NUMBER 10)

(NOT USED)
• The triples produced by the first pass are machine independent. They

• are the result of an analysis of the syntactic and semantic content of each
statement. The rules of syntax for the language strictly define the grammatical
structure for a statement in the language. Associated with the rules of
syntax are transformation rules for determining the meaning of the statement
(semantic rules). The triples represent the sequence of operations required
to accomplish the programmer’s objectives as determined by the syntactic
and semantic analysis.

The final pass processes the set of triples sequentially to produce re-
locatable machine code. As stated in the preceding paragraph , the set of
triples Is machine independent. The actual computer for which code is to be
generated is immaterial until the code generator is invoked. To generate
object code for any computer , the implementor of the translator only has to
produce the code generation pass. The Internal form, the machine independent
set of triples, is its standard Input.

THE HOST MACHINES

The AN/UYK-7 FORTRAN cross-compiler can generate machine code
for two computers: the AN/UYK-7 computer and the AN/ UYK-20 mini-
computer. The AN/UYK-7 computer Is a two-state general purpose digital

• computer. It is modular in design. Tn its minimum configuration it contains
a Central Processing Unit (CPU) , 3 memory banks, and an Input/Output
Controller (IOC); in its maximum configuration it contains 3 CPU’s, 16 memory
banks, and 4 b C ’ s. Each CPU has a unique set of operational registers for
each state (executive state or task state). Each set of registers consists of
eight arithmetic accumulators, seven index regi sters , and eight base regi sters.
In addition , the executive state has a set of memory protection registers for
memory access control. The CPU Instruction set includes several privileged
instructions that can be executed only from the executive state. The IOC is

• started and stopped by privileged CPU instructions. Once started , the b C
has direct access to memory for its input/output operations. Each memory
bank contains 16,384 words, and each word contains 32 bits.

• 6
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The AN/ UYK-20 mini-computer is also modular in design. Its minimum
configuration consists of a CPU , a memory, and an IOC. The CPU is micro-

- progr~niniable, with the micro-program specified at time of manufacture. It
is a task state computer with 16 general purpose registers. The IOC is
started and stopped by the CPU and has direct access to memory. Memory
is available in blocks of 8,192 16-bit words to a maximum of 65,536 words.

• These two computers have several differences of interest to the compiler
• writer, as outlined in table 1.

• Table 1. Differences Between the AN/UYK-7 and the AN/UYK-20 Computers

AN/ UYK-7 COMPUTER AN/tJYK-20 MINI-COMPUTER

32-bit word size 16-bit word size

Performs arithmetic using Performs arithmetic using
• - a l’s complement a 2’s complement

• convention convention

Has separate general Has general purpose
registers (accumulators) , registers
index registers, and base
registers

Address computation Has a hardware paging
• involves a base register capability

• Has floating point Must perform floating
• instructions in Its point arithmetic

instruction repertoire Interpretively

Has a fixed instruction Can have user specified
repertoire micro-programs included as

a part of its instruction
• repertoire

7
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MACHINE INDEPENDENT OPTIMIZATIONS

Machine independent optimizations are those optimizations that can be
performed without considering the specific capabilities of the computer hard-
ware. Machine independent optimization is carried out by modifying the
internal form to eliminate redundant computations, eliminate unnecessary
statements, and evaluate constant expressions. An essential element in the
optimization process is control flow analysis.

CONTROL FLOW ANALYSIS

Control flow analysis is a codification of the logical relationship between
statements in a program. There are many methods available to conduct this
codification, but the underlying motivation of each is the description of the
program execution sequence (its logical flow) . The purpose of control flow
analysis is to answer questions such as: Is this a loop? Has this expression
already been evaluated? Is this expression ever executed? A control flow
analysis describes relationships between statements and ensures that the result
of optimization is semantically correct, I. e., the program does what the
programmer wanted it to do.

The minimum flow analysis required defines the areas in the program
to which local machine independent optimization algorithms can be applied.
Bagwell2 shows a machine independent optimization procedure that optimizes
a program on a statement by statement basis. For this optimization procedure ,
the f low analysis is trivial.

BASIC BLOCKS

The Initial goal of flow analysis is to partition the program into a set of
program units called basic blocks. A basic block is a sequence of statements
for which there is one entrance statement, from which there is one exit state-
ment and within which each statement is executed. The examples that follow
in table 2 illustrate this concept as applied to FORTR AN statements.

The codification problem is simplifi ed by defining basic blocks. Further
flow analysis is accomplished by describing the relationships between basic
blocks. For each basic block there is a physical predecessor block and a
physical successor block. In table 2, for example, block 2 is the physical
predecessor of block 3 and the physical successor of block 

1.8
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Table 2. Basic Blocks

A = B
CALL SUBRI Block 1
GO TO 20

C = D  Block 2

20 E=SIN (F)
G E+H Block 3
IF (H. EQ. 0) GO TO 30

T = Q  Block 4

30 CONTINUE
• RETURN Block 5 -

END

Each basic block also has one or more logical predecessors and one or
more logical successors associated with it. The logical predecessors of a
basic block are the basic blocks from which control is obtained. The logical
successors of a basic block are the basic blocks to which control can be trans-
ferred. For example, block 1 in table 2 is the logical predecessor to block 3;• conversely, block 3 is the logical successor to block 1.

Note that a subroutine call in block 1 does not constitute a basic block.
Similarly, function references , as in block 3, are permissible within basic
blocks. These statements are permitted because the flow of control is se-
quential: the logical and physical predecessor and successor for the sub-
program reference within the basic block are the same statements. However,

• there are special problems with subprogram references in a basic block. These
are discussed In more detail In subsequent paragraphs.

• The NUSC FORTRAN cross-compiler accomplishes the codification of
control flow analysis by assigning a unique index to each basic block. This
index is computed by counting the basic blocks as they physically appear in
a subprogram and assigning this count as the index. For each basic block ,
the indices of the logical predecessor and logical successor blocks are saved
in a predecessor list and a successor list, respectively. Pointers into these
lists are found in a master list that is indexed by the basic block index for
which the logical predecessor or logical successor is required.

9
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LOCAL MACHINE INDEPENDENT OPTIMIZATIONS

The NUSC FORTRAN cross-compiler performs local optimizatlons with-
• in a basic block. If it is certain that each statement is executed, it is often

possible to eliminate redundant computations. This procedure is known as
common subexpression elimination. Each expression is compared to all
other expressions in the basic block. If two or more expressions are found
to be identical, only the first occurrence of the expression is evaluated.

• The result is saved , and for subsequent occurrences of the expression, the
result is referenced, eliminating the need to reevaluate the expression.

Isolating candidate expressions for elimination poses some interesting
problems. The basic problem is recognition of common subexpressions.
For example, the FORTRAN expressions A + B and B + A are common sub-

• 
• expressions and are legitimate candidates for optimization. However , be-

cause of the different order In which th&operands are written, a straightfor-
ward lexical comparison will not find the match. To resolve this problem ,
the properties of the operators must be known. For associative operators,
I. e., those operators for which the order of the operands is unimportant, the

• operands are rearranged into a canonical form such as alphabetical order.
In this example, such a rearrangement would allow the common subexpression
to be identified. (The canonical form actually used in this optimizer is the
ascending order of symboltable index. It is only necessary that a definite
ordering of the operands be accomplished. ~

Operators that do not have the associative property are candidates for
optimization if some transformation can be found to make the operation
associative. For example , the expression A-B is transformed into the ex-
pression A + (-B) . The complement is associated 1th the operand , (-B),
and the actual operator is now associative. Frailey presents a set of
algorithms for finding common aubexpressions among exprespions having
unary operators, inverse operators, and complements. Lee’~ presents a

• recognition process for triples that Is faster than the direct comparison
approach. This process, first suggested by Gries,5 uses a “dependency

• number” system. In this process, only triples with the same dependency
number have to be checked for commonality.

For this application, the technique suggested by Lee has been rejected
in favor of Frailey’s approach to expression optimization. Frailey’s approach
provides a ready mechanism for identifying and eliminating factors within
an expression. This is extremely difficult using Lee’s approach. The factor
problem is demonstrated in the expressions A + B + C and A + C + D. The
common factor between the two expressions is A + C. In using Frailey’s
algorithms, the common subexpression A + C would be found and its occur-
rence In the second expression eliminated. If Lee’s approach is used, the
common factor would not be found because the compar ison is made against
triples and the triple for the factor A + C does not appear in both expression
representations.

• 10
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There are some areas of concern in optimization within basic blocks
that are not important for single statement optimization. Chief among them
is the integrity of the variables included in the common subexpression. Even
though two expressions may be identical , if the value of one of the variables
has changed since the first occurrence of the expression, then the two ex-
pressions are in fact diffe rent and the second expression must not be eliminat-
ed. A further complicating factor is the integrity of COMMON elements, or
actual arguments passed to a subroutine or function. To ensure the general
validity of COMMON elements and arguments, candidates for elimination
preceded by a subprogram reference are not eliminated if an operand is an
element In COMMON or Is an actual argument for that subprogram reference.
For similar reasons, a variable that has been Included in an EQUIVALENCE
statement is not a candidate for optimization across statement boundaries.

The machine independent optimizations suggested by Bagwell2 have
been applied to basic blocks as well. In particular, constant expressions are
evaluated. Thus , the expression A 3.14159*2.0 becomes A = 6.28318 afte r
constant expression evaluation. Note that this requires the definition of a
new constant . Similarly , the computational complexity of an expression is
reduced . For example, the expression A**2 is changed to A*A. For most
computers, this transformation produces machine code that executes faster.

Optimizations within a basic block are performed in a specific order.
The NIJSC FORTRAN cross—compiler performs them in the following order:

1. Evaluate constant expressions

2. Reduce expression complexity

3. Perform common subexpression elimination

4. DefIne new operators.

Optimizations 1 and 2 are performed using the internal form produced
in the first pass. The result of these optimizations is the deletion of some
triples and the modification of others. In particular , the triples that define
the constant expression are deleted and the resulting constant is used. Triples
that represent multiplication or exponentiation operators are examined and
changed, if possible , to addition or multiplication, respectively, with a
corresponding change to the operands.

The third optimization, common subexpression elimination, is the
implementation of Frailey’s algorithms. This process consists of the
following steps.

1. Examine each operator. If necessary, transform the operator so
that it is associative or associative and commutative. The transformation

11
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process produces an addition operator from a subtraction operator and a
multiplication operator from a division operator . The negative or inverse
property is associated with the appropriate operand.

2. Define N-tuples. Modify the internal form so that for each operator
there are N operands, (N> 1). For example, the triples produced by the

• first pass for the expression A + B + C are:

(PLUS)

(POINTER TO SYMBOL A)

(POINTER TO SYMBOL B)

• • (PLUS)

(POINTER TO PREVIOUS TRIPLE)

(POINTER TO SYMBOL C)

the transformation to N—tuple notation produces:
(PLUS)

(POINTER TO SYMBOL A)

(POINTER TO SYMBOL B)

(POINTER TO SYMBOL C)

3. Arrange the operands In canonical form. Because the operator
is associative and commutative, the order In which the operator is applied
to the operands is not significant.

• • 
• 4. Search for common subexpressions. The arrangement of operands

in canonical form simplifies the search procedure and allows identification
of factors without checking all possible combinations of operands.

5. Replace subsequent occurrences of a common subexpression with
a pointer to its first appearance.

6. Transform the N—tuples back to triples for processing by subsequent
paesee.

The fourth optimization scheme examines the internal form for specific
code sequences that are candidates for machine dependent optimizations. - -

These sequences are discussed in greater detail in the section entitled
“Machine Dependent Optimlzations”.

12
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GLOBA L MACHINE INDEPENDENT OPTIMIZATIONS

The NU SC FORTRAN cross-compiler performs flow analysis while the
local machine independent optimizations are being performed . Analysis of the
logical flow isolates those basic blocks for which no logical predecessor exists.
Such a block is a candiadate for elimination. If the block is a data block or an
entry block for a subprogram, it is retained. Otherwise, it is eliminated since
there is no way that control can pass to that block. Redundant jumps are elim-
inated as a result of examining the logical flow relationship and the physical
relationship between blocks. Note that the elimination of a basic block can
affect this relationship. For example, processing the FORTRAN sequence;

GO TO 10

A = B

10 C = D

eventually results in the elimination of the statement GO TO 10. First, the
basic block A = B is eliminated and that, in turn, permits the elimination of
the GO TO 10.

MACHINE DEPENDENT OPTIMIZATIONS

Machine dependent optimization involves the selection of features that
are unique to a specific computer. An example of such a feature is the MOVE
CHARACTER Instruction that is a part of the IBM 360 and 370 family of
computers. The selection of machine instructions is accomplished by the code
generation pass of the complier. The optimizing pass can assist the code
generator by indicating some code sequences that are candidates for machine
dependent optimization.

• There are several statement forms that occur with sufficient frequency
to merit special consideration. These include statements such as:

1) A= -B

2) A = A + 1

3) A = A + B

0
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Some computers can accomplish these operations in fewer machine in-
structions than are required in the general case. Statement 1 causes a

• general machine sequence to be generated that includes:
• LOAD B

COMPLEMENT

STOR E RESULT IN A.

Some computers can perform a sequence such as:

LOAD AND COMPLEMENT B

• STORE RESULT IN A.

This results in a shorter program by one instruction and a faster program by
one instruction for each occurrence of a statement of the form A = —B.
Similarly, typical code for example 2 is:

LOAD A

ADD 1

STORE RESULT IN A.

In some machines, this can be replaced with:

INCREMENT A IN MEMORY.

The optimizer baa defined pseudo operators (macros) that isolate these
common code sequences for the code generator. As stated previously,

• • these new operators are defined during the first pass of the optimization
process. The new operator s that have been defin ed include the following.

1. REPLACE ADD (RADD)

Process expressions of the form A = A + expr .

2. REPLACE SUBTRACT (BSUB)

Process expressions of the form A = A -expr .

3. REPLACE INCREMENT (RINC) 
• -

Process expressions of the form A = A + 1.

• 14
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4. REPLACE DECREMENT (BDEC)

Process expressions of the form A = A - 1.

5. MULTIPLY BY 2 RAISED TO AN INTEGER POWER

(Shift left (LSH) or shift right (RSH) as appropriate) . For multiplica-
tion of an operand by an operand that is an exact power of two, allow
the code generation pass to use a shift instruction sequence.

The criterion for defining a pseudo operator is that a straightforward
instruction sequence must exist for those computers that do not have a
machine instruction to accomplish the pseudo operator directly.

The code generation pass for each target computer must be modified
to accept these pseudo operators. For the target computers involved In
this project , the change Involved writing a new handler for the operator
and providing the linkage to that handler. Table 3 shows the results.

Table 3. Sample Machine Sequences

STATEMENT AN/UYK—7 CODE AN/UYK—20 CODE

A = A + B LOAD REGO, B LOAD B EGO, B
RADD REGO, A ADD REGO, A

STOR REGO, A

A = A + 1 RINC REGO, A LOAD REGO, 1
ADD REGO, A
STOR REGO, A

A = A -B LOAD B EGO, B LOAD REGO, A
R SUB REGO, A SUB REGO, B

STOR REGO, A

A = A -l RDEC REGO, A LOAD BEGO, A
SUB BEGO, 1
STOR REGO, A

A = A * 4 LOAD REGO, A LOAD REGO, A
LSH REGO, 2 LSH REGO, 2
STOR REGO, A STOR REGO, A

A = B / 8 LOAD REGO, B LOAD BEGO, B
BSH REGO, 3 RSH REGO, 3
STOR REGO, A STOR REGO, A

15
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In table 3, A and B are variables and REGO indicates any arithmetic
register. Note that for the first four statements, machine dependent Instruc-
tions were used on the AN/UYK-7 computer whereas a straightforward
implementation of the instruction sequence was possible with the AN/UYK-2 0
mini-computer.

The sequence for the left shift (multiply by a power of two) requires
the same number of instructions as for a multiply instruction. The im-
provement In this case is In the instruction execution speed. Generally ,
a shift instruction executes faster than a multiply instruction. In the target
computers used in this project, the shift instruction executes more than
four thnes faster than the multiply instruction. The code generation handler
for the left shift macro operator could be the same handler as the multiply
handler for a target computer whose execution speed is the same for both
operations.

A divide sequence that uses the right shift operator requires fewer in-
structions than the standard divide operator because a standard divide
instruction requires that the dividend be right justified in a double register.
Thus, in order to use a divide instruction , the registers must be initialized.
(One initialization procedure is to multiply the dividend by the constant 1.)
Use of the right shift instruction eliminates the necessity of preparing for
division. Also, for the computers in use for this project , the shift Instruction
is faster by a factor of more than eight.

RECOMMENDATIONS FOB FURTHER DEVELOPMENT

The optimizer described in this paper generates an internal form of
a program that produces more effi cient object code than that produced by the
non-optimized Internal form. There are still other areas In which improve-
ment can be made. The algorithms described operate on arithmetic operators.
Similar algorithms can be defined for logical or relational operators. Add-
itional effort can be spent in the analysis of loops and the possibilities for

• removing loop invariant operations from a loop.

For this project, the target computer was not an important consider-
ation. The input to the optimization pass is an internal form of a program
and a symbol table containing its symbolic names and constants. Any language
processor capable of producing a compatible internal form and symbol table
could be linked to this optimizer and to the set of code generators that are
defined . Thus, the optimizer is, or with little effort can be made to be,
language independent as well as machine independent.

16
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APPENDIX A

EXAMPLES -
•

For each example that follows, two tables are provided. The first table
is the set of triples output by the first pass of the compiler (the syntactic
analysis) . The second table is the set of triples produced as a result of the
optimizations performed on the output of that pass.

For each table, there are at least four fields: an index into the table,
a symbol or mnemonic that represents the operator , and two operands. The
index progresses in increments of two because each table entry requires two
words. The operands are indicated by their symbolic name, the constant
value, a pointer to another triple (indicated by the prefix TRI) , or blank
(indicating that the operand is not used). The meanings of the operators are
outlined in table Al.

A-i

- —- - - . - - — - - — ---—--~~- ——-— --—---- -----
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Table Al. Operator Meanings

OPERATOR MEANING

+ Add operand 1 to operand 2
- Subtract operand 2 from operand 1
* Multiply operand 1 by operand 2
/ • Divide operand 1 by operand 2
= Assign operand 2 to operand 1
** Raise operand 1 to the operand 2 power
GO Unconditional branch to operand 1
CGO Computed branch , operand 1 is the switch

index, operand 2 is the maximum number of
switch points

GOAR Argument of switch, operand 1 is the
statement label , operand 2 is the index
for this label

BRN Branch to operand 2 if the expression
pointed at by operand 1 is negative

BRZ Branch to operand 2 if the expression
pointed at by operand 1 is zero

BRP Branch to operand 2 if the expression
pointed at by operand 1 is positive

RADD Add operand I and operand 2; store the
result in operand 1

R SUB Subtract operand 2 from operand 1; store
the result in operand 1

RINC Add 1 to operand 1; store the result in
- 

• operand 1
RDEC Subtract 1 from operand 1; store the

result in operand 1
LSH Shift operand 1 left by operand 2

(multiply operand 1 by 2 to the operand 2 power)
RSH Shift operand 1 right by operand 2

(divide operand 1 by 2 to the operand 2 power)
END No operands, end of the subprogram • - 

- 
-

LINE Operand 1 is the source statement line Lnumber

A-2
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Example A-i: Constant Expression Evaluation

SOURCE STATEMENTS

= 1 = 1 + 2 + 3 * 4

J 4** 2

B = 8. / 2.

Triples after syntactic analysis

INDEX OPERATOR OPERAND 1 OPERAND 2

0 LINE 1
2 + 1 2
4 * 3 4
6 + TRI 2 TRI 4
8 = I TRI 6
10 LINE 2
12 ** 4 2
14 = J TBI 12
16 LINE 3
18 / 8. 2.
20 = B TRI18

Triples after optimization

INDEX OP ERATOR OPER AND 1 OPERAND 2

- 

- 

0 LINE 1
• 2 = I 15

4 LINE 2
6 = J 16
8 LINE 3
10 = B 4.

A-3

~~~~~~~~~~~~~



TR 5214

Example A-2 Common Subexpression Elimination

SOURCE STATEMENTS

A = B + C

D=B +C

B = A * D

C = D *A

A = B + C + D

E = D + B

F =B+C +D

G = B + C

Triples after syntactic analysis

INDEX OPERATOR OPERAND 1 OPERAND 2

0 LINE 1
2 + B C
4 = A TRI 2
6 LINE 2
8 + B C
10 = D TRI8

- • 
- 

12 LINE 3
14 * A D
16 = B TRI14

• 
- 18 LINE 4

20 * D A
22 = C TRI 2O
24 LINE 5
26 + B C -•
28 + TR1 26 D
30 = A TRI 28
32 LINE 6
34 + D B • .
36 = E TR1 34 ‘

~~~~

38 LINE 7

A-4
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40 + B C
• 42 + TBI 4O D

44 F TR142
46 LINE 8
48 + B C

• 50 = G TB148

• Triples after optimization

INDEX OPERATOR OPERAND 1 OPERAND 2

0 LINE 1
2 + B C

• 4 = A TRI 2
6 LINE 2
8 = D TRI 2
10 LINE 3
12 * A D
14 = B TBI 12
16 LINE 4
18 = C TRI 12
20 LINE 5
22 + B D
24 + TR1 22 C
26 = A TR124
28 LINE 6
30 = E TB1 22
32 LINE 7
34 = F TRI24
36 LINE 8
38 B C
40 = G TRI 38

r

A-S
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Example A-3 : New operations

SOURCE STATEMENT S

1= 1+ 1

J = J - 1

A - A + B

C = C - D

L~~ M * 1 6

M~~ N / 8

Triples after syntactic analysis

INDEX OP ER ATOR OPE RAND 1 OPERAND 2

0 LINE 1
2 + I 1
4 = I • TRI 2
6 LINE 2
8 - J 1
10 = J TRI 8
12 LINE 3
14 + A B
16 = A TRI 14
18 LINE 4

:, 20 — C D
22 = C TRI 2O
24 LINE 5
26 • * M 16
28 = L TRI 26
30 LINE 6
32 / N 8
34 = M TR1 32

-1A-6
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Triples after optimization

INDEX OPERATOR OPERAND 1 OPERAND 2

0 LINE 1
2 RINC I

• 4 LINE 2
6 RDEC J
8 LINE 3
10 RADD A B
12 LINE 4
14 RSUB C D
16 LINE 5
18 LSH M 4
20 = L TRI 18
22 LINE 6
24 R SH N 3
26 = M TR1 24

Example A-4: Unused code removal

SOURCE STATEMENTS

GO TO (10, 20 , 30), I

GO TO 50

A = B

10 IF (A — B) 20 , 30 , 40

C = D

~~~ 

A~7

- .J.jL
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Triples after syntactic analysis

INDEX OPER ATOR OPER A ND 1 OPER AND 2 BLOCK #

0 LINE 1 1
2 CGO I 3 1
4 GOAB 10 0 1
6 GOAB 20 1 1

• - 
• 8 GOAR 30 2 . 1

o LINE 2 2
2 GO 50 2
0 LINE 3 3• 2 = A B 3
0 LINE 4 4
2 - A B 4
4 BEN TRI 2 20 4
6 BRZ TRI 2 30 4
8 BRP TBI 2 40 4

. 0 LIN E 5
2 = C D 5

Triples after optimi zation

INDEX OPERATOR OPERAND 1 OPERA ND 2 BLOCK #

o • 
UNE 1 1

2 CGO I 3 1
4 GOAR 10 0 1
6 GOAB 20 1 1
8 GOAR 30 2 1

• 0 LINE 2 2
2 GO 50 2
0 LINE 3 3
0 LINE 4 4
2 - A B 4
4 BRN TEI 2 20 4
6 BBZ TBI 2 30 4
8 BRP TRI 2 40 4
0 LINE 5 5

A—8
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