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METHOD OF CALCULATING THE FREEZING RATE OF SINGLE-COLUMN
WATER-PERMEABLE SOILS

[Metod Rascheta Skorosti Zamorazhivaniya Fil'truyushchikh Gruntov
0dinochnoy Kolonkoy]

A. 1. Pekhovich, Candidate in Technical Sciences

The B. Ye. Vedeneyev All-Union Scientific Research Institute
of Hydraulic Engineering

I. Introduction

As is well known, the artificial freezing of soils is accomplished
by means of implanting freezing columns in which brine is circulated
in the ground at certain intervals. The brine is cooled by cooling
devices. Initially individual frozen-soil cylinders are formed
around each column, and these columns then fuse, thus forming a
solid body. Depending on the nature of the construction operations,
the columns are placed in very different ways: in a straight
line or in a circle, in a single row or in several rows, etc.

Predicting soil freezing consists primarily of selecting the
type and power of the cooling devices and the dimensions, number
and dtiangement of the freezing columns. In design it is also necessary
to develop a producticn eraph of the soil freezing operations which
must indicate the operating mdde sf the freezing devices. It is
quite obvious that to solve all of these prtiicmc and to select
the most economical version the designer must be able to deccimine
the soil freezing rate.

However, the existing methods of calculating the freezing rate.
of water-permeable soils are insufficiently precise for practice,
which is primarily due to the excessively rough allowz2ance for the influx
«f heat from the unfrozen ground. Usually the thermal influx value
a’opted in the calculations is far below the =2ctual value. This is
co. firmed by experimental materials on the treezing of water-permeable
soi.s obtained in recent years by theg ice-Heat Laboratory of the
B. Y.. Vedeneyev All-Union Scient{ific Research Institute of Hydraulic
Enginwering and data from ficld observations of a frozen-soil cofferdam
in the gonstruction of » ydroelectric power plant, as well as the
works 0. B. V. Proskuryakov [1].

The prccicion with which freezing rate is calculated is also reduced
because of shortcomings in the methods used to determine the heat
absorption factor of the columns.!

lSee the author's next article in this collection.
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; : This article analyzes the method for calculating the freezing rate
E of homogeneous water-permeable soils by a single column; the method

: has been developed in works of B. V. Proskuryakov [1] and I. A.

Charnyy [2].

Our task can be formulated as follows.

A single freezing column of radius Ty is implanted perpendicularly

in a homogeneous, infinite water-permeable layer of ground (Figure 1).
The base and top of the layer are two parallel planes which are permeable
to water and heat. The length of the column L is equal to the thickness
of the layer h.

At a considerable distance from the column, the filtration flow
has velocity v and temperature ¥. The ground freezes at temperature

00. The physical constants of frozen and unfrozen ground are given.

The column's heat absorption is a known function of the frozen ground's
thermal resistance. It is necessary to determine how the dimensions
of the frozen ground depend on time.

Frozen ground cylinder

Unfrozen ground  / Freezing column
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Figure 1. Freezing of Water-Permeable Soil by a Single Column.

In solving this problem, we will introduce the following basic
assumptions, the influence of which will be examined later:

1) the thermal flux which changes the temperature of the frozen
ground may be taken into account by increasing the computed value of
* the latent ice formation heat;

¥

2) the temperature distribution in frozen ground at any moment of i

time corresponds to the established thermal state; !
{

3) the frozen ground has the shape of a cylinder;

E 4) the axis of the frozen ground cylinder coincides with the axis
; of the freezing column.




Of the other less significant assumptions which we will introduce
but whose influence we will not examine, let us note the following:

1) the thermal-physical constants of the frozen and unfrozen
ground are not a function of temperature;

2) all of the ground water freezes at the same temperature;

3) the coefficient of heat transfer from the surface of frozen
ground to the freezing water layer is infinitely great; i.e., we will
ignore the transfer heat resistance from the water to the frozen
ground cylinder.

2. Thermal Balance Equation and |ts Components

The thermal balance equation of frozen ground has the following
. form:

Qf 2 QC 5 Qfl = Qg, (1)

where

Qi is the thermal flux from the latent ice formation heat which is

1 given off at the freezing boundary;

Qc is the tﬂééﬁal flux which passes from the frozen ground to the

; freezing column (the thermal absorption of the column);

Qf is the thermal flux which passes from the filtration flow to the

frozen ground cylinder;

Qg is the tg;fﬁal flux due to the reduced heat content in the

frozen ground.

E Because of the above-mentioned assumption that the thermal flux
. Qg can be taken into account by simply increasing the calculated value

of the latent ice formation heat, thermal balance equation (1) is
written in the following form:

Qe = Q, - Q- 2)

The thermal flux from the latent ice formation heat is equal to

Qg = 2zLar = (3)

dz '

where

-

RN el Dl

i
’

o is the amount of heat given off when a unit of ground volume
freezes;

e i




L is the length of the freezing column;

r is the radius of the frozen ground cylinder;
T is time.

B. V. Proskuryakov [1] has demonstrated that the thermal flux which
passes from the unfrozen water-permeable ground can be represented by
an equation with the following form:

Qa8 ]/Tfr_\;‘—’ L("—9,); 4)

here

Al is the thermal conductivity factor of unfrozen ground;

c, is the thermal capacity of water; .
1. is the specific weight of water;

v is the velocity of the filtration flow;

¥ is the temperature of the filtration flow;
¢ is the freezing temperature of the ground.

0

The last term in equation (2), the column's heat absorption, is
in each particular case a completely determined function of the radius :
of the frozen ground cylinder:

Q, = £(r). (5)
3. Solving the Thermal Balance Equation

By substituting expressions (3), (4) and (5) into heat balance
equation (2) we will have

(6)

dr -
Onler - -=f(r)—A | r,
d=
where

______ (7)

By separating variables r and t and by integrating within the

limits of t = T to T = T, and r = r, tor = r,, we find

=1 ='2,'.'L: ..- -n--r,!—r—-f. .
S ‘ f(ry—-Aypr (8)
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The integral of the right-hand portion of equation (8) can be most
simply determined by graphic or tabular integration.

The maximum size of the frozen ground cylinder r = E is determined

from the condition that the thermal absorption of the column is equal to
the thermal influx from the filtration flow:

fin=4VTF. (9)

Computation equation (8) which is used to determine the velocity
of freezing is correct with any form of the dependency Qc = f(r)!.

The uncertain form of the latter [dependency] made it possible to
present computation equation (8) in integral form, which is very
inconvenient for practical use. This fact causes us to search for
short-cuts.

The course of freezing consists of two periods. During the first
period the temperature of the brine in the column drops; during the
second period the temperature of the brine is constant.

The first period changes to the second when a frozen ground cylinder
cylinder is formed which has a radius determined from the equation:

flir) = ":ii,(_"r: o (10)
In —
To

where

T, is the radius of the freezing column;

AZ is the thermal conductivity factor of the frozen ground;

em is the maximum low temperature of the brine.

Equation (10) is obtained by jointly solving equation (5) with the
expression for the heat flow in a cylinder which, as is known from heat
transfer courses, has the following form:

Q= O
c

(11)

r
In -
Iy

We will determine the freezing time separately for the first and
second periods of freezing.

During the first freezing period we will assume that the heat
absorption of the column is constant (averaged); if desired, it is

IThe method for determining this dependency is given in another article
by the author later in this collection.




possible to refine the calculation, for which we should determine
the freezing time in sections while assuming that each section has its
own constant column heat absorption value.

During the second freezing period the brine temperature is
constant, and therefore the heat absorption of the column will be
expressed by equation (11) during this time.

It must be noted that in a number of cases the entire process
of freezing takes place during the first period, and in some other
cases the first period comprises an insignificant portion of the
total freezing time. In these cases it is obvious that the freezing
time is determined by calculating one period.

Thus, let us determine the calculated dependency for establishing
freezing time when the column's heat absorption is constant.

Heat balance equation (6) acquires the following form:

; { e (12)
.ltl.srf!—:—.—.:Qc -4V,
from which we have
el __dr
QC K A e
2=l 2=Le
In order to integrate the latter differential equation, we will 1
introduce a new variable
z==Vr,
and stipulating that
B ity (13)
A
and
g
Rk (14)
3 we find
d==B, __z:_ z, §
from which we have ]
ZAJ - X i _ 5
d- —_~3|(——L =927’ -2Nz---~_>.\';)d~. X
Ny—=2 : vt
By integrating this differential equation within the limits of '4:;
TET, 50T T, and z = 2y t0z =z, and by returning to the initial ol
variable r, we finally find the calculated dependency which is used to ,3
determine the freezing and thawing rates of the frozen ground cylinder ;

when the heat absorption of the column is constant:

g e 1
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. (15)
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+2N{In=—-= |,

(R ST
|
=

~
L) IJ'-
I
<
-

where r, is. the initial radius of the frozen ground cylinder at time Tt
From formula (15) it is evident that the freezing rate noted
when the column's heat absorption is constant is a function of only

two parameters: B1 and Nl' This makes it possible to plot graphs

which are convenient for making the calculations (Figures 2 and 3).
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Figure 2. Graph for Determining the Rate with Which a
Frozen Ground Cylinder is Formed when the Heat Absorption
of the Column is Constant.

Assuming that the left-hand portion of equation (12) is equal to
zero, we find the maximum radius of the frozen ground cylinder:

2
T = Nl : (1e)

Let us now attempt to determine the calculated dependency of the
speed with which the frozen ground cylinder is formed when the brine
temperature is constant, which is what occurs during the second freezing
period. In this case the heat absorption of the column is expressed
by formula (11) and heat balance equation (2) acquires the following
form:




O d ks (g — Y f i
3..L=r-dL_'=—_ ~._.._;,{1i_ LS A a7

(5]

Designating
(Z:'_‘:/.z(?‘._,—"‘,‘m)/_, (18)
we find o dr @ ey
Qulor— = ——— . i
] = a ,L) A
e y . (19)
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Figure 3. Graph for Determining the Thawing Rate of the
Frozen Ground Cylinder When the Column's Heat Absorption
is Constant. 1

In order to make it easier to integrate equation (19) we replace

the function v/t In %— with the simpler dependency: i
0 &

Lige Ny f ks ome. wimn
Vil =cortf, (20) g

where ¢ and f are constant coefficients.




By substituting (20) into (19), we find:

S Znie o - /‘r:‘ .
as —= —a" e f-—"-"-"'jl. (21)

1.- a (cr - [}

By integrating this latter equation, we find:

g L
2zl3 Gr= ~— ir= bz . ~ (22)
e - e e e
a A . a * )
1 — ——<(er —f)
o/

We find:
b (23)
) o E—lgrt
where
: (24)
/i == —
k=i 2l (25)
g, (26)
from which we find
G i 10
J= .f.. )'-'-r d-_. t; _.C.:.\_ - e _,_.‘_._
£ \ S k-“grd" e k-+grdh
(¥ v,
With an increase in the frozen ground cylinder of § > 0, then
5 7 3 - ot et
o lps PR 2 &,
After very elementary transformations of (27) and allowing for
(24), (25) and (26), we will have:
A b ( R ( s N o (28)
‘ : ;:'{-I *l"—k— [ ‘\—T-" ",..\, __‘/': rin ‘ .\.-;i Tr. -
',

ST Y
gy

s Bk ondist ad vun oy

r b T

§

. L
i




By substituting (28) into (22), we find

5 I\ 1
F ‘.—'.82 —__:_ri ,-,'_“"_-_r.'_f_

D ¢

k] :
.l PN i , \ e & -—-r—-——-
) mos - (
' Mre L S G,
here

3 Do
; B.w==, (29)

B

a

E: ‘\r..‘ == 'i- e (30)

By determining the integration constant from the initial condition
that when 1 = T, we have r = T, we obtain the final computation equation

for calculating the growth of the cylinder when the brine temperature
is constant:

(31)

—}&J%?Q “#%{A”hl!NuLTﬁ“A”HV/;:_Jﬁ]

3=

If the influence of the changing freezing conditions, for instance
an increase in the temperature of the brine or the filtration flow,
E reduces (melts) the frozen ground cylinder, then inequality

% < 0 occurs, and then instead of (27) we obtain:

% T, ¢ ck iy Y S

j__:.,?;';, _1_(\/,(;" _.:_z_ _____.‘\_.\r(_m ' / .I; - !;/-l (32)
a1 &
)

Therefore when the cylinder melts, it is necessary to substitute
expression (32) into equation (22) instead of equation (27); then
after making the appropriate transformations and determining the
integration constant, we find the following computation equation for
the speed with which the cylinder melts when the brine temperature
is constant:

(33)

v - ' )
- } = 7'—'--—\/\r cth ———ry - cth ——‘-—rl)
/ : Ngeef = Na ]

-10-
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From formulas (31) and (33) it follows that the freezing rate

is the function of two parameters: B2 and N2' The coefficients

f and ¢ are constant and are determined from expression (20); thus,
for instance, if the radius of the column is r, = 0.05 meters, then

we can assume (up to the radius of the frozen ground cylinder r < 0.5 m)

that ¢ = 3.8 m'l/2

= 0.19 ml/z. Dependencies (31) and (33) are used to make computations

for the case where ro = 0.05 m. The results of these calculations

and the coefficient is f = cr0 = -3.8:0.05 =

are shown in Figures 4 and 5, and they make it possible to find a
solution for them fairly quickly instead of finding them from the

formulas.
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Figure 4. Graph to Determine the Speed with which a Frozen Ground
Cylinder is Formed at Constant Brine Temperature.

The maximum value of the frozen ground cylinder radius can be
determined if the left-hand portion of equation (17) is made equal to

Zero: r
max

r _ln /== = N,. (34)

max T
0
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Figure 5. Graph for Determining the Speed with Which the
Frozen Ground Cylinder Melts When the Brine Temperature is |
Constant.

The results of calcuiating r = f(N,) for r, = 0.05-0.075-0.1 m
max 2 0

are shown in Figure 6.

Figure 6. Graph for Determining the Maximum Radius of the
Frozen Ground Cylinder.

Thus it is found that the maximum radius of the frozen ground ,5-3

cylinder depends only on parameter N, when the radius of the column is i
-

|

given. In order to analyze the influence of the individual factors
on the maximum cylinder radius, we will determine the value of N,.

-]12-




For this purpose we insert expressions (7) and (18) into (30),
and then we find

1a Ve — i)
N1 39—t Tam i
2 1/“‘:“}_,‘}. (} — Ui (35)

An examination of this equation and Figure 6 makes it possible to
draw the following conclusions:

1) changes in the brine temperature and the filtration flow
temperature influence the course of freezing more significantly than
changes in the flow rate of the filtration flow;

2) when water-permeable ground freezes, the maximum cylinder radius
can only be increased by reducing the brine temperature or by increasing
the column radius. The other values are usually given and cannot be
changed;

3) the maximum radius of the frozen ground cylinder is not a
function of the amount of latent ice formation heat.

L4, Evaluation of Previous Assumptions

The assumptions adopted in this article have been previously
introduced by many authors to one extent or another [1, 2, 3, 4, 5],
but the influence of these assumptions, as far as we know, have not
been evaluated in detail. Therefore the evaluation made below of
these assumptions is one of the first attempts undertaken in this
direction.

First assumption: the thermal flux which changes the temperature
of the frozen ground can be taken into account by increasing the
calculated value of the latent ice formation heat.

The thermal flux Qg is equal to:

Q=22 (36)

where w is the heat content of the frozen ground.

The heat content of the elementary ring of the frozen ground
cylinder is equal to

137)
dw==2=c,q,l. (Y, -t,)pdo,
where

<, is the thermal capacity of the frozen ground;

tp is the temperature of the elementary ring of the frozen ground;
Yo is the percentage of frozen ground;
p is the radius of the elementary ring.

B

v

e e aduo ity i B

}
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i As is known from heat transfer courses, the temperature distribution
E established in the cylinder is determined by the following equation [6]:
3
3
f.—§ 9
t =H— - 3 P A
; 2 In s (38)
In -~
To

The temperature of the brine is equal to:

G T (39)

2=tal, o
By substituting (39) into (38) we find:

t?-_; “C_- _Q'f.__ n _?_ (40)

2=n,0

then for the heat content of the elementary ring of the cylinder we
find

rnaQ
dw--—=Cin _'r_ do.

-

By integrating the latter expression within the limits of o = T,

to p = r, we find the heat content of the frozen ground cylinder:

Cortalla 222 2 2 \
3 s el B A L ro (41) i
T e Y i
from which we find
o die -’-"-':Qc [ o\
L iy k% (42)
Ifr=2 4r0, then it is obvious that
g i
e §OO T YOO =B
. 4ra

and therefore by making a minor error on the side of increasing the thermal

flux Qg’ we assume i _ and therefore we will have ,
=-=0, :
H

-14-




This expression makes it possible to represent the sum of the thermal

fluxes Qi [expression (3)] and Qg [equation (43)] in the following

form:
dr
- Qo= (5---35.) 2=Lr —
Qf‘{ Qg ( ) Lr e
where
¢>75Q
- (44)
Designating
]
g (45)
we finally obtain:
; ok e B
Qf-—- ’2g =5 el r - (46)

Expression (46) makes it possible to allow for the thermal flux
which reduces the temperature of the frozen ground by increasing
the calculated value of the latent ice formation heat. We should
emphasize the fact that the freezing time of the ground is directly
proportional to the value of the latent ice formation heat, but the
latter exerts no influence on the maximum size of the frozen ground
cylinder.

An examination of expressions (44) and (45) makes it clear that
for practical purposes the increase in the calculated value of the
latent ice formation heat does not exceed 10-20%. Consequently,
the value o_ in (44) can be determined approximately, and this has

little effect on the final results of calculating freezing time.

Second assumption: at every moment in time the temperature
distribution in the frozen ground corresponds to the established
thermal state.

This assumption is reflected in the calculated values of the
column's heat absorption. The heat absorption of the column QC is

equal to the product of three values, i.e.: the coefficient of the
frozen ground's thermal conductivity, the area of the column's lateral
surface and the temperature gradient in the frozen ground near the
column surface.
1

The temperature gradient in the ground near the column wall is
always less than when the thermal state is established than when it is
not (Figure 7). Therefore the above-mentioned assumption about the
established temperature distribution in the frozen ground should
mean that the calculated heat absorption values of the column will be
below the actual values. Consequently, the heat balance equation
ti) Qf = Qc - Qf - Qg provides understated values of the thermal flux

e

e 4

?
i




from the latent ice formation heat Qf, and therefore understated
calculated values for the freezing rate.

IQ

Figure 7. Temperature Distribution in the Cylinder.
1, Established temperature distribution; 2, unestablished
temperature distribution.

However, it is obvious that the difference between the actual value
of the column’s heat absorption and the calculated value is less than the
value of the thermal flux Qg which changes the temperature of the frozen

ground. This allows us to state that if we use heat balance equation
(2) Qf = Qe - in, then, quite the contrary, understated calculated values

will be obtained for the thermal flux from the latent ice formation heat,
and consequently understated calculated values for the freezing rate.
The true value lies between the two calculated values.

The relative difference between the two solutions is equal to:

v

=;T-:_g~ 1009, 47)

g

and because of what is stated above concerning the first assumption,
this difference is found to be within 20% for practical
purposes.

Third assumption: frozen ground has the shape of a cylinder.

The reason for the circular shape to be violated may be non-uniform
distribution of the thermal influx from the unfrozen ground over the
cylinder surface.

The non-uniform distribution of the thermal influx is characterized
by the relationship:

Rt - R (48)
Ui ay

-16-
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where

Qe is the intensity of the thermal influx from the unfrozen ground

at a given point on the cylinder surface;

l 95 av is the average intensity of the thermal influx from the unfrozen
| ground.
L - We will determine the intensity of the thermal influx in (the position

of the coordinate axes relative to the direction of the filtration flow
E is shown in Figure 8).

Figure 8. Frozen Ground Cylinder in the Filtration
Flow.

% By using the solution to the task of the cooling of the laminar
; i flow when the flow around the cylinder is transverse [7], with regard
| to our case, we can write

9ﬁ===1/ ;1;‘ =

/i

where Y is the current function of the filtration flow.

The current function n is expressed by the equation

T~

. ) )

oy "
Xo- ve )

On the cylinder surface where ]/-xfﬁ:};==r, we have:

or, noting that x/r = cos a where a is the radius-vector argument of the
point on the cylinder surface (Figure 8), we find




7, =20r (1 -cosa). (56)

By substituting expression (50) into equation (49) and integrating
in terms of n, we obtain:

- ——— e

Q= qgdn=>2 l/ EL_‘:’_w_ (-0} 1=cosz - Ca,

where C0 is the integration constant.

By differentiating the latter expression in terms of o and by
substituting the result into equation

:

N —
a — LR

‘A Lrda’
we will have: = :

1 2% (g L
U l/ S (0--%y) l’i:ZOT; 0

or, after certain trigonometric transformations, we will finally obtain

(51)

The average intensity of the thermal influx from the unfrozen ground

is equal to:
Q

qﬁ av Yl
Substituting expression (4) into this expression, we obtain:

4 A Ot
%iav=" !/ A2 (). (52)

By substituting (51) and (52) into (48), we find:

N

Cos

I\)ln

(53)

The dependency € = f(a) is plotted in Figure 9. An examination of

it shows that the thermal influx from the unfrozen ground is distributed
along the surface of the cylinder in an extremely uneven fashion. This

fact, however, does not violate the circular form of the cylinder since

the half-sum of the thermal influx intensities at diametrically opposed

points on the cylinder surface is equal to the average intensity of

the thermal influx.
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This condition is written in the following fashion:

e = s + (g
2 328 oy (54)

By substituting expressions (51) and (52) into (54), it is easy to
see that: j

= a a
c,=:(sln§-+cos-2-). (55)

The dependency €, = f(a) is shown in Figure 9. An examination of

it shows that the values of €, deviate from unity by no more than 22%.

From this it follows that, despite the extremely uneven distribution
of the thermal influx from the water-permeable ground, the frozen
ground has a shape which is similar to that of a cylinder, but its
axis is shifted in the direction of the flow: an eccentricity arises
between the cylinder axis and the axis of the freezing column.

g
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Figure 9. Distribution of Heat Influx from Unfrozen Ground £
Over Circumference of Cylinder.

The correctness of this conclusion has also been confirmed by the
carried out by the Ice Heat Laboratory of the B. Ye. Vedeneyev All-Union
Scientific Research Institute of Hydraulic Engineering.

Figure 10 shows a photograph of an frozen ground cyvlinder formed
in sandy ground at a flow speed of v = 0.06 m/hr and a water temperature
of ¥ = 10.6°C.
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Figure 10. Frozen Ground Cylinder (the Filtration Flow
was Directed From Right to Left).

The fourth assumption: the axis of the frozen ground cylinder
coincides with the axis of the freezing column.

The essence of this assumption consists of the fact that in
calculating the heat absorption of the column it is possible to
ignore the eccentricity between the axes of the cylinder and the
freezing column. In order to determine the error which is committed
in this process, let us investigate the relationship

a0y e
(QC)e =) :
where e is the eccentricity between the cylinder and the freezing
column.
As is well known, when there is an eccentricity [8],
o om0 e
c)cr'u '_“ 1’ (57)
- from this we find y
77
| == . i
L1~ %)
"l!o( /‘} (58)
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From Figure 11, which is plotted with the aid of dependency (S8),

it follows that since e < 0.5 r, then the error which is committed
in calculating the thermal absorption of the column without allowance
for the eccentricity is small (less than 10%).

Thus, we may consider that it has been proven that the introduction

of these four assumptions introduces no large errors into the
calculations of the freezing of water-permeable ground.

5.
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Figure 11. Function ﬂ==f(

Sample Calculation

obtained here.

=
r—ry

Let us show by way of an example how we use the calculated dependencies

The task may be formulated as the following: it is necessary to form

a frozen ground cylinder of radius r = 0.7 meters in a filtering layer

of ground 10 m thick.

of the flow.

The following data are known:

speed of filtration flow...........
temperature of filtration flow.....
freezing temperature of ground.....

thermal conductivity factor of

unfrozen ground...........co0uvuun.

thermal conductivity factor of

£102en ZEOUN. v o vvivcevnvsisavveass

latent heat of ice formation per

unit of ground volume.............
thermal capacity of water..........

specific weight of water...........
radius of freezing column..........

length of freezing column..........

The cylinder is set perpendicular to the direction

v = 0.1 m/hr

¥ = 3°C

00 = -1°C

Al = 1 kcal/m-deg-hr

X, = 2 kcal/m-deg-hr

o = 24,000 kcal/m>

o 1 kcal/kg-deg
v, = 1,000 kg/m’
ro = 0.10 m

L= 10 m.




The cooling device and its operating mode are selected in such
a way that the heat absorption of the column changes as the size of the
frozen ground cylinder increases, as shown in Figure 12; in this process
the temperature of the brine does not reach a constant maximum low
temperature.

The following have to be determined:

1) the time required for the formation of a frozen ground cylinder
of the given dimensions;

2) the column's heat absorption value required to maintain the
frozen ground cylinder in the frozen condition (passive freezing);

3) the brine temperature in the column during passive freezing.

e T T

A

"~
.
&t
<,

<

G @ o 0w
Figure 12. Change in Heat Absorption of Freezing Column.

Solution. We will determine the freezing time. First according to
expression (7) we find the value of parameter A:

7 o S
R n 4/ 1-1-1060.01
P s]/ '-qf—”f L®»—=% =8 l/——,_—f'-——m(;.y 1) =

.
1810 keal/hr.mY/2.

By substituting the initial data into formula (8), we find that the
freezing time is determined by the following expression:

r, =03
e B i 026000 | e
[(r)—=AVr J () —1810yr

r 7, =1,1)

4]

-.a-.g—':l-—-sﬁ:'-Las dr =

ry0
= 1,51-10° J —_—
L0 =1810Y7
v

ry=0,

We will carry out the calculation by the tabular integration method,
for which purpose we divide the integration limits into n sections: each
section will be designated by a serial number i. Then we will have
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imn

5y =1,51.100 Is (ri=ri_1).

L [(r) =180V

(=]

The value of the column'’s heat absorption will be selected according
to Figure 12, allowing for the fact that

il o DT L) f (iz1) |

&

The rest of the calculations require no explanation and are summarized
in the following table:

& (< S g
> - R <
- " -G | o ©
8 ‘ - = - Q :-"
-8 2 =2 = X o= s
i e~ T lla = SlES "
_;_.! N CIE S - = =
e - 1 o= l: = = <o =
= = = i ~ 81 - 3 -~ =
. ~ el i D L T~ N - ~
ol B g%*‘, &2 | = = 4 ‘

7200 | 700 | 6300 | 23,08-107° | 0,05 | 1,15.10°6 | 2
5900 | 905 ! 4995 50-107¢ | 0,10 3.10-8 1 3 10
1
1

-

Db =

4950 | 1070 | 3881 | 90,3-107°1 0,10 | 9,03.107% | 1 21
1400 | 1210 | 3190 | 141.107° j 0,10 | 14,1.10°0 | 2 15
00 | 1340 ‘ 2760 | 198-107% | 0,10 [ 19,8:10°% | 30 | 75

37:,-0]1.-310 2210 | 3121075 { 0,15 | 46,8-10°% | 71 | 146

=1 £t de

S WS —
(=== W= i =5 (=)
oSt iovo

o v

Commas indicate decimal points.

The calculation results show that the formation of an frozen ground
cylinder wiil take 146 hours, i.e., approximately six days (Figure 13).

Let us compare this result with that which is obtained if we carry
out the calculation according to formula (15).

The column's heat absorption drops from an additional value of
8,000 kcal/hr to 3,600 kcal/hr at the beginning of the freezing process
(see Figure 12). We will assume that the column's heat absorption is
a constant value, equal to

SO0 - 36800

-‘)-—’—_

Qe =

= 5800 kcal/hr.

From expressions (13) and (14) we find:

2=l  22.10-21 000

By = = - &3t BE w®,
A 1810
1
\'l = 9_9 =2 ‘-l.b._o() ‘,‘2 'u?
A 1810

Then, according to formula (15), we obtain
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diindoo il

3

t t
=01 "’) +32(r2—01) + 2-3.2‘-'(@-‘ -0l ‘2).;
1

.
+92.3231n .E.'_”_l. :

32-017

MY

92 =
-.=-834[——(f-
3

for rz = 0.7 m we find t = 84 hours.

The results obtained previously (by the tabular integration method)
T = 146 hours is more precise. Thus, we see that averaging the column's
heat flow within such large limits and for the entire freezing period
provides only a very approximate result (t = 84 hours). It is much
more precise to determine the freezing time in sections, assuming that
each section has its own averaged, constant value for the column's
heat absorption. We will demonstrate this by means of the same example.

In carrying out the calculations

br |7 | | we will utilize the graph shown in Figure
2
47
L We will divide the desired freezing
7 [ / time into four parts:

|/ i B BPE - T R

p |
f' As before, A = 1810 kcal/hr-m”2 and
i /i B, = 834 hr/m>/ 2.
6. '/ — We will first determine the formation
: ]] ; time (rl) for a frozen ground cylinder
4!L_; 7 i ; % 0.3 m in radius.
27 i Z The average heat absorption value
PEERE is equal to (Figure 12):
VA R -
¢ 77 4F a5 i Q- io.”lj:_“_"l — (400 kcal/hr.
Figure 13. Graph of Freezing and consequently
Speed. %
Q (100 o
Ny =S —o_ .35 u~
A (810
According to Figure 2 we find that when r = 0.3 m and N1 = 3.5 ml/z, we
have
_2
=001 m-,
By
from which we obtain
T = O00Ey = 520001 =~ hrs

ol 7»";-' By
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Now we will determine the freezing time from r, = 0.3 m to

r, = 0.5 m.

2
The average heat absorption of the column is equal to:
1800 4 4000
Q.= :-—0—2-— = 440 kcal/hr.
and then

410 =

v HO s T
1810

From Figure 2 we find that when r = 0.5 m and N1 = 2.43 ml/z, we have

oo

— =007 &".
1

From the same Figure 2, we find that when r = 0.3 m and N1 = 2.43 ml/2 we have

10l

— = (02 u
B;

Then we find
7= 83007 = 0,07) = 42 hrs.

For the third freezing section from r = 0.5 m to r, = 0.6 m,
we find:

2748) = 55)

g = TUET 2T L5500 keal/hr.

and

From Figure 2 we determine:

for r,

-

= =012 m",
3,

and for r1

——




Consequently,
7y = 834 (0,12 - 0,08) = 33 hrs. ;

Let us determine the freezing time from ke 0.6 m to r, = 0.7 m.

We find:
g, = 200 _ 200 kealfh
cv 2
and = Al
Ny LA,
1810
According to Figure 2 we have:
for T,
£
— =019 w 2 »
D
&1
for T
2
= = 013a".
: L]
Consequently

= = %34 (0,19 — 0,13) = 30 hrs,

Finally we find that the freezing time is equal to

T -42—33 ~30 = 133 hrs.

. | This result is considerably more precise than the previous one

o (r = 84 hours) since it makes sufficient allowance for the change in the
column's thermal absorption during freezing.

1

Let us solve the second portion of the task: determining the value
of the column's heat absorption during passive freezing.

The following equality should be valid
Qc - in’

According to expressions (4) and (7),
C‘ﬁ =] r.

find that in order

In our case A = 1810 kcal/hr-ml/2 and r = 0.7 m. We
to keep the frozen ground cylinder in a frozen state, the heat absorption of

the column must be:
w26




Qe A 17 o= 1510} 0.7 = 1519 keal/hr.

In order to answer the third question of what the temperature of
the brine during passive freezing should be equal to, we will utilize
formula (11), according to which

9 -'?o——~—c In -

m 290.L e
By substituting our known data into this expression, we find

1510 0,
L -1 = l =
- 322,10 0

& S
- = —=211"C
1
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