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EVALUATION OF PROCEDURES IN AUTOMATED RESIDUAL STRESS P~ ASURE)ENTS

It M. R. James and J .  B. Cohen

Northwestern University

Evanston, Illinois 60201

ABSTRACT

The measurement of residual stress by the X-ray diffraction technique

involves determining the lattice spacing of a crystallographic plane at

different inclinations of the sample and relating the change in the spacing

to a stress on the surface of the specimen. The sources of error in

determining the residual stress are investigated in this report. A short

review of the fundamental principles of the measurement is given. The

important instrumental and geometric factors contributing to errors in

the measured stress are presented. To account for random errors in the

data accumulation on the measured stress, a complete statistical analysis

based on a least-squares parabola is given.

Employing an automated diffractometer (see T.R. No. 16), an extensive

investigation of the precision of the residual stress measurement was

made to evaluate the various procedures offered in the literature to

optimize the automation. The results indicate that a multiple least-

squares parabola is the most reproducible method of defining the peak of

the profile , in contrast to the co on three point parabola used in the

United States , the center of gravity used in Germany or the middle of the

balf-msximum intens ity used in Japan. Also , for a s tanda rd dtf fra ctomet er,

the sin2
$ technique is more precise than the usual two tilt method even

I



2

when the total time of analysis for each is identical. In studying

P various beam optic arrangements, it was found that the stationary slit

(non-focusing method) offers the best system in that the measured stress

is only mildly sensitive to sample displacement (.... 7 MPa for .25 me dis-

placement) and introduces very little instrumental broadening . The

operational principles and use of a position sensitive detector (PSD)

for the measurement of residual stress has been described previously (see

T.R. No. 11). The PSD s imultaneou sly collects data over the entire

diffraction profile enabling the use of a multiple point parabola to

define the peak without having to step scan the profile . Extensive

testing is described which showed that this detector could achieve a

speed of analysis heretofore never obtainable in the measurement of

residual stress.
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CHAPTER 1

The X-ray diffraction procedure for determining the surface residual

stresses is well established. Each family of identical planes of

atome in a polycrystalline material has a constant interplanar spacing,

dh~~ 
which, when acted upon by an elastic stress , changes to a new value

dependent on the direction and magnitude of that stress. A change,

in the interplanar spacing will cause a corresponding change,

~O, in the Bragg angle of diffraction by the family of planes . The strain,

Mid , can be measured by the change in the diffraction angle and the

L stress can be obtained fro. the strain with formulae derived from linear

t isotropic elasticity theory.

The principal stresses and a2~ 
the surface stress , a~ , and the

c.’*aponding strain are shown in Pig. 1.1. The term 
* 

is the angle

between the surface iij raml ~~i4 the direction of strain being measured.

Application of isotropic elasticity theory yie1~i i-~
-
~~ following relation-

ship between the principle stresses, surface stress and measured strain,
(4)

-~

~~~ .j~
1t a,

sim2s - I ~~ 
+ 02) — ~~i.t~~° . (1 3)

‘~~ t~~s equation, d is the lattice spacing in the direction defined by
-

~ and $ (see Pig. 1.1) end d~ is the intarplanar spacing of the stress

free state.

EquatiOn 1.3 forms the basis of X-ray stress analysis and is utilized

primarily in tvo thods; the ‘sia2$’ mad the ‘two tilt ’ technique.

____— 
_ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _
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FIGURE 1.1 IllustratIon of the sy~~o1s used in X-ray stress
measurement .
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(A) ‘Sin2
~ ’ Technique

In this method several values of lattice strain are measured, each

at a different $ tilt of th. specimen. It is possible to determine any

surface component of stress from a least-squares straight ha, for the

lattice strain as a function of sia2$.

Prom Eq. 1.3:

a, — 

(~4.%~) 

- 

~ — : ~ 
(1.4)

In terms of the interplanar spacing it follows that: -

— 

dJ~—~~~ 
m’ — 

~~~n $  
(1.5)

Because several values of d~ are determined, errors resulting from

random fluctuations of d
, 

are minimized. Four or six $ tilts , taken
in equal increments of sin $, are normally utilized.

(B) ‘Two Tilt’ Technique

Isotropic elasticity theory predicts the strain to be linearly

dependent on stn2$, as in Eq. 1.3. When this holds true only two incli-

nations of the sample are necessary to determine the surface stress . The

interplanar spacings are determined at ~—O and at an inclination of 4r—$ .
Th. formula relating the stress to the strain is then given by:

(1.6)

I 
-
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Th. term (E/l+v).l/sin2$ is often combined into a calibration constant ,

L, which can be experimentally date rminod for a particular combination

of 
* 
and reflecting planes in a given material. Experimental determination

of K is desirable because bulk vmlues of E and v are not necessarily 
-

It is unfo rtunately common practice to replace (d,~~_d
0)/d0 in Eq. 1.6

by the approx imation -cote ½(280-29~) on the basis of Bragg ’ s law to

obtain a formula in terms of the peak position 29:

½ • cot ½(9~+e,).(2 e~-2e~) (1.7)

where 29~ and 29~ are in degrees . For small peak shifts this does not

induce much error. The stress constant then becomes:

K — 
sin2

~r 
. cot (1.8)

and

0 — Z ~ 2 9 .
- - 

CHAPTER 2

The methods of residua l stress measurement by X-ray diffraction

• just dsscrtbsd are based on the fundamental equation (Eq. 1.3) derived

by isotropi c elasticity theory and assume homogeneous deformation. These

methods have been shown to sometimes yield anomalous results when app lied

to s~~~les which have been plasttøally deformed untaxtally in tenston~~~
,1

~~

I , -



• or by rolling.~
19 ’20~ The anomalous results are not true mechanical

macrostressea and may be attributed to a number of causes.~~~

Recent work by Marion and Cohen~~
9
~ has led to the quantification

of a deformation model to account for one of the anomalies in the X-ray

technique of residua l stress measurement which occurs after plastic

deformation. The classica l formulae around which all X-ray technique of

residual stress analysis (Eq. 1.3) predicts a linear dependence of

on sLn2$. A non-linear dependence of the X-ray measured strain on

sth2p has been reported for a number of mstsrtals which have undergo ne

plastic deformation due to elongetton~~~
22
~ or rolling.~

10
~ Such

dev iations from the theory has prompted questions concerning the

validity of the X-ray measurement in such cases . Marion and Cohen~
19
~

attributed the non-linear dependence of d on sin2
~ to the relief of

microstra ins in subgrain interiors which are oriented to be relieved by

a dynamic recove ry process prop osed by Weidemaim at al.~
23 ’ 24

~ This

produces a non-random distribution in the tuterp lanar spacing which is

related to the texture developed during the plastic deformation process.

The authors developed a distribution function, f($) , describing the

variation in inte rplanar s pacing at each $ inclination , and incorp orated

th . non-linear b•havior of d vs . stn 2
~ into the genera l formulae for the

• X-ray method of residua l stress analysts. By measur ing both the inter-

planar spacing, ~~~~ and th. distribution function, f(s) , as a function

of a1n2p, the non-linear dependence of d y be separated from the linear

component through th. following formula:

~~~~~~~~~ 

(d~~~ d~)f($) + d.~~~~).,
stn2t + d~ . (2.1)

________ - - 

~~~~~~~~~~~~~~~~~ ~~~~~~~~ - ‘ r ~ ~~~ * L - ~. - ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ - - .  ~~ ..  

~~~~- - - -  - -
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The term d~~~ corresponds to the lattice spacing in a region that is

fully relieved and d
1 
th. lattice spacing in a region that has not relieved .

The distribution function describes th. variation of relief with orientation

and is calculated by determining the tex ture in the region of the pole

figure for which th. residual lattice strain is measured . This is most

easily accomplished by measuring the integrated intensity of the diffraction

peak of interest at each $ inclination and normalizing the distribution

function by setting f(s) — 1 at the maxim value of the curve of

integrated intensity. The correlation between the change in the distri-

bution function and the oscillations in d vs. sin2
~ i~ shown vividly in

Fig. 1.3.
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f (~~ represents the normalized texture
distribution function.

4 . 
- - 

- 

- -

. . - -- _ _ _ _ _ _ _ _

4,,



10

CHAPTER 3

AN EXAMINATION OF THE ACCURACY OF X-RAY RESIDUAL STRESS ANALYSIS

3.1 INTRODUCTION

The confidence in any measurement depends on a critical consideration

of the sources of error contributing to the overall accuracy. The

accuracy may be separated into two componanta;

1) the precision or closeness of agreement among repeated

measurements, and

2) the bias or difference between the mean of the repeated

measurements and the true value.

Many factors are known to contribute to the bias of the residual

stress measurement by X-ray diffraction techniques. The factors are

broadly classified by Jatezak and Boehm~
29
~ into three categories ,

equipment and instrumental factors, technique or geometrical factors and

specimen factors. The most important individual errors are well treated

in the literature and a su~~~ry is presented to outline the source and

magnitude of each contributing factor. Experimental tests ire described

to check the theoretical treatments of the most important error, that of

sample displacement. These treatments account for correctable errors in

the measurement but do not delineate the potential accuracy of the technique

or apparatus.

The precision of the X-ray residual stress measurement relies on

reproducible determination of the peak shift. Numerical methods of peak

location are mandat ory for fully computerized control of the measurement .

The peak may be found by fitting a smooth curve to the experimental data.

I



11

Such a curve cannot give an absolute measure of the peak location as the

data is sub j ect to random errors . These random errors occur becaus e the

diffracted intensity is measured at a finite number of 20 positions and

every measurement is subject to a statistical counting error. Statistical

treatments for different numerical methods for measuring line-profiles

can be found in the literature. These include the centroid,~
60’6~

(60 62’) (63) *
median ‘ and geometrical peak. The peak position, located by

a least squares parabola is shown here to be the most precise method. A

statistical analysis based on the least-squares parabola is extended here

to the determination of residual stress. The region of fit of a parabola

to the diffraction profile is discussed. The cotmeonly used three point

parabolic fit is examined theoretically and experimentally. A test on the

effect of the number of data points is made to determine if the three

point fit is actually the optimum procedure for recording data. It is

shown that for fixed total time of data accumulation, the observed pre-

cision from replicate tests is improved by using many data points,

especially for broad profiles. The three point parabolic fit is adequate

only for samples exhibiting a sharp profile.

The precision of the ‘two ti lt ’ and ‘sin2$’ stress techniques are

tested under identical conditions so that comparisons on the relative

accuracy of each method can be aide. The ‘sin2$’ method is shown to

h*ve a greater precision that the ‘two tilt’ procedure when a fixed

total time of data accumulation is used. In addition, the precision of

*
Any consistent feature of the line profile may be utilized to define
th. reference point from which th. position of the profile is based.
Three co on features in residual stress analysis are the centroid ,
midpoint of the half-intensity breadth value and the peak. The posi-
tines located by each method are not identical but must be reproducible.

• Comparisons of th. reproducibility of each method are given in Sec. 3.3.2
and show that a least squares parabola exhibits the best reproducibility.
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the residual stress measurement using a position sensitive detector is

- • tested. Because many data points are obtained in the region of curve

fitting, the PSD is shown to be a both rapid and precise means of

accumulating the data. A least-squares parabola fit to the region of the

peak of the diffraction profile obtained with the PSD is shown to be the

• most reproducible means of locating a reference position on the profile.

3.2 FACTORS INFLUENCING BIAS IN THE MEASUREMENT

There are three broad categories into which all factors influencing

the bias can be classified~ instrumental, geometrical, and specimen

factors . A detailed list compiled by Jatezak and Boeha~
29

~ is reproduced

in Table 3.1.

Many of the sources of error are dependent on either the capability

of the experimenter (alignment , sample position) or operating conditions

(electronic stability) of the equipment and, as such~, are unpredictable.

An explanation of the predictable factors , their effects and correction

terms are given below.

• 3.2.1 Angular Dependent Intensity Factors

(A) Lorentz-Polarizatjon Factor

This term combines two 20 dependent intensity corrections, the

lorentz factor and the polarization factor, which arise from the geometry

of the diffraction proc.ss.~
33
~ The Lorentz factor for a powder can be

considered as two independent factors , one arising from the number of

particles in the sample which are in orientation to contribute to a

particular reflection and the second arising from the fraction of the

reflection ring which, is detected. The first factor is indep endent

4~
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of the detection geometry whereas the second factor is dependent on the

acceptance function of the detector~
64
~ and the velocity of the reflection

through the Ewald sphere.~
33

~ The polarization term arises because X-rays

are polarized after being scattered or diffrac ted, the amount of polari-

zation depending upon the angle through which it is scattered or diffracted.

The conventional correction factor (combining the Lorentz and polarization

factors) for filtered radiation and point counting, designated LP, is:~
7
~

2
(3.1)

sin O

The measured intensity need only be divided by Eq. 3.1 prior to processing.

Cooper and Glasspool~
64
~ have shown that in some cases, notably

when the axial (perpendicular to the plane of the diffractoaeter) half-

height of the detector aperature is large and the scattering angle

become s small (0~ -, 0°) or large (O~ 90°), the curvature of the dif-

fraction cone becomes important . In the traditional derivation of the

Lor.ntz factor , the curvature of the cone is ignored. For 20 values

greater than about 9° and less than 1710 the conventional Lorentz factor

is in error by less than lL , as calculated by Cooper and Glasspool.

This small error combined with the fact that in peak location measurements

only the angular dependent changes in the correction factor are important

make the conventional Lorents factor quits satisfactory.

(B) Absorption Factor

• The path length of the primary and diffracted X-rays within the

specimen differ when the specimen is tilt by $. For a flat specimen the

measured intensity is eorr cted for absorption by dividing by: (26)

I —
,

, 
I
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AB S — l — t a n ~~~cot 0 (3.2)

The angle • is defined as positive when the normal to the sample moves

towards the X-ray source. Although $ is a polar angle , its sign must

be known in order to calculate the correct absorption coefficient.

(C) Atomic Scattering Factor

The intensity of the diffracted beam depends in part on the square

of the structure factor. The angular dependent part of this term, denoted

the scattering factor f, should be accounted for by dividing the intensity

by f2. The atomic scattering factor is a function of the atoms comprising

the crystal, the diffraction angle 0 and the wavelength of the radiation

and values are published in the International Tables for X-Ray Crystallo-

graphy. (65)

(D) Temperature Factor

The Debye temperature factor is the reduction in intensity due to

• thermal motion of the lattice. Atoms in a crystal vibrate due to temperature

so that at any instant corresponding atoms are not separated by exact

multiples of cell dimensions. Scattering from two such atoms will not be

exactly in phase resulting in a reduction in the structure factor. The

correction for this r duction, called the temperature factor, is slightly

dependent on sin 0 and st rictly speaking should be accounted for .

Over the zenge of 154°20 to 138°20 where the mos t e .....c ~ly used

peak for stress analysis of steel ocoure with r diatton, Short and

•• ~~~~~ •. • • •
~
,• •

_
i•
~
• •

~•it~• •.

• • •~-• 
- •
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Kel1y~
28
~ calculated the chang. in the intensity factors. Their values

0 are reprod uc ed in Table 3.2 and indicate that the Debye t emperature fac tor

is very small in relation to the others. For generality, the Lorentz-

polarization, absorption and scattering factor, have been included in

* 
• the auto ted residual stress analysis program developed in this study.

• 3.2.2 Factors for “Beam Optics”

Beam focusing depends on the geometric arrangement of the X-ray

path and on the horizontal and vertical divergence of the beam . The

important methods of ‘beam optics’ are discussed below.

(A) Variation of the Focal Point with 0 and $

There are two methods of beam focusing used in X-ray stress measurem~~t ,

the parafocusing method and th. stationery method. An excellent study

on th. errors associated with each method is given by Zantopulos and

Jatczak.~
3
~

• 

~• 
In the parafocus techniqu. the receiving slit and/or detector are

moved along a radius of the goniomster toward the specimen to fulfill

the changing bean focusing condition when the inclination, $, of the

specimen is vari ed.

The distanc e from the sample to the focus position is

given by (7)

RQ~ ~~ ($ ~~~~~ 
(.3.3)

where is the goniometer radius .

In the *stt .r, method the receiving slit and d cector re in on

the goniome ter circle at all t imes thereby deliberately not fulfilling

t • : ‘  •
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TABLE 3.2

CHANGE IN CORRECTION FACTORS FROM 154° TO 158° 20
FOR Fe AND CrK RADIATION*

Factor 154020 l58°20 Change

Lorentz (I/sin2 0) 1.0533 1.0378 - 1.477.

Polarization (l+cos22O) 1.8078 1.8596 + 2.877.

Absorption (5 — 00) 1. 1. 0

Absorption ( — 45’ ) 0.7691 0.8056 + 4.74%

Atomic Scattering (f2) 1.3503 1.3322 - 1.34~
Temparstore 0.8653 0.8634 - 0.227

*
pre. Short and

¶ ...
~~~.
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focusing conditions. A sacrifice in intensity is made but the complication

of moving the receiving slit and/or detector is avoided . The Japanese

use a version of this technique described as the parallel beam method . 
(29)

Using long Soller baffles or plates perpendicular to the diffractomster

plane rather than in the usual horizontal position, the X-ray. are made

to be highly collimated parallel beams which do not have a focal point.

The angle of diffraction is uniquely defined by the angle between the

primary and diffracted beam (see Fig. 3.1) and as such a receiving slit

is not necessary.

(B) Horizontal Beam Divergence

In the parafocusing method , true focus demands that the sample

surface lie on the focusing circle which is given by :~
7
~

— R~~/2 sin (0 + •) (3.4)

True focusing demands a continuous change in the curvature of th. specimen

during 0 and $ angular movements. Since this is generally not practical

an error will arise which is dependent on the curvature of th, sample

and the horizontal bean divergenc e. has derived a si mple

formula to estimate the error in the peak shift due to beam divergence.

Defining 
~~‘ 

as half the angular beam divergence the peak shift in degrees

20, 6
~~

23
~BD’ between the $ — 00 and $ — $° inclinstion is:

8(L~2 Og~) — A2O)
~ _o - a2e)

5115 
(3.5)

I

- . 
• ~~~~~~~~~~~• ,w

~—• •~ ‘.-~
---

~ 

• V
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DETECTOR

/~~~X-RAY
TUBE

- 

SOLLER SLIT

• SOLLER SLIT
III

~

ON
-

FIGURE 3.1 Illustration of parallel beam geometry. The

• 
angle 20 ii uniquely defined by the angular
relation ship between th. two sets of soller
slits and is independent of the sample position.
The dashed lines represent other sample

- positions that would not affect the angle of
diffraction .
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where ~2 0~ - • 
~~~~~~~ 

• ::: ~ 1] 
and , — 90 - 0.

The term R~’ is given in Eq. 3.3.

Because there is a distribution of intensity between the central

beam and the left and right portions, the actual peak shift will be less

than 8(â20)BD. It has been shown~
31
~ that the centroid of the diffracted

bean approached a limit of 1/3 of the 6(à20)80 value for the 5, at and 20

values used in Ref. 31. (The centroid was determined by a computer

iteration method in which th. divergenc, angle, ~, was divided into 1000

parts). Therefore, as a conservative estimate one can use 1/2 of the

value calculstnd in Eq. 3.5. An estimate of the magnitude of this

quantity is given in Table 3.2.

(C) Vertical Beam Divergence

Grains that have planes slightly tilted from that of th. diffracting

pcsition for a parall.l incident bean y contribute weakly to a peak

giving rise to an apparent peak shift . This has been thoroughly treated

by Cohen. (66) The peak shift depends on the amount of texturing and the

slit system and is difficult to determi ne exactly but is quite small.

An estimate is given in Table 3.2.

In the parafocusing and stationery slit techniques sys tematic errors

are produced by focusing aberrations during diffraction due to imperfect

specimen contours and beam divergence as shown in Fig. 3.2. The photon

rays are in a divergent bean and diffract from a sample which is not

curved to th~ focusing circle so that the point of focus in Fig. 3.2,

• 
~~~~~~~~~~~~~~~~~~~~ ~~

- - •. -,
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(b) (0)

FIGURE 3.2 Departure from ideal focusing condition.
The intersection of the left, L, right, R,
and center, C, ray, are shown in b. The

• focus is not a point for a sample with non-
ideal curvature .

••
~~~• • 1 . ½ : ; ~i
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is not really a point but simply a converging area for the beam which

‘31’causes a focusing aberration. Zantopulos and Jatczak’ / studied these

• systematic errors by analytically describing the beam path for any

particular ray within the divergent beam from the source to the detector.

• By dividing the divergent bean into 1000 such rays they calculated the

centroid of the rays at the detector for both ‘beam optic ’ techniques

using specimen a of varyi ng curvature. They concluded the focusing error

• due to imperfect specimen contour and horizontal bean divergence for the

stationary slit msthod yields about one third the error of the para-

focusing method at 20 — 156°; the discrepancy increasing for smaller

20. In addition, the error whe n using a beam divergence of 1° on flat

samples or samples having reasonable curvature, will be less than 16 MPa

(2.3 ksi).

One factor not included in the analysis by Zantopulos and Jatczak

is the ability to accurately position the receiving slit when the pars-

focusing technique is used. The exact position along the radius is not

critical because, as shown above, the focus is not actually a point but

an area of convergence of the rays. The critical positioning comes

• 
about in moving the receiving slit exactly along the radius. Any

deviation will cause an apparent peak shift because the angular relationship

between the direct beam (0°20) and th. receiving slit changes.

Using an automated receiving slit bracket and an automated residual

stress prograln*r.plicate measurements were carried with and without

receiving slit mevement on a 1045-1 ameple which had a reasonably sharp

211 diffraction profti.. Using Cr~~ radiat ion , 15 repeated measurements were made

wsing a three point parabolic fit to 4.f~.e the diffraction peak and a

• *The autoneted residua l stress program is described in Chapter 4.

— 
• 

• • • 
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statistical counting accuracy of ± 1.72 lQa (
~~ 
250 psi) an average

value for the stress of -164.1 MPa (-23790 psi) for the parafocusing

geometry and -169.8 MPa (-24636 psi) for the stationa ry slit method was

obtained . While the results are remarkably similar, the observed error

of one standard devi ation from the mean value was ± 3.6 MPa (± 520 psi)

and ± 7.4 MPa (± 1080 psi) for the stationary slit and parafocusing

geometries respectively. The repositioning of the receiving slit was

very accurate and introduced only a small random error of about ± 4 MPa

(± 600 psi). The bracket uses a worm gear and dovetail slide to move

the receiving slit and is considered very sturdy. Other , less perfec t

systems such as manually repositioning the slit, are likely to cause

larger random errors in the measurement.

The effect of systematic errors for the parallel beam method has

been studied by Fukura and Fujir ra~
67

~ and Aoy.a.~
68

~ The advantage

of this method is that errors due to sample displacement are minimized

enabling simple sample alignment. However, there are several points that

are not yet clear. The intensity provided by the parallel beam method is

less than with the focusing methods and instrumental broadening is greater

• which could costhine to decrease the precision of the method. These

• points are examined experimentally in Sec . 3.8.

• 3.2.3 Instrumental Errors

• (A) Sample Displac ement

me largest single source of error is displacement of the sample.

If the effectiva diffracting volume is not located at the center of the

dif f raction circil, there is a relative shift between $—O° and 
~“$

° as

• 
-
• 

- • - - • •

~~~
•• - •

~~~~
• •- •- • •-.

,
~~

• • - • •
~~
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seen in Fig. 3.3. This has been treated by Cohen~
66
~ and Frertch~

69
~

who derive a formula to calculate the peak shift. Denoting ~~ as

the displacement, the equation for the error in peak shift at two tilts

in degrees 20 is~

8
~~

20
~sD — •

~~~~~~~ ~X cosO - 

R~’ ~~~+$) 1 (3.6)

where R ’  is given in Eq. 3.3 and RCC is the goniometer radius. The

peak shift due to sample displacement has been experimentally measured

in this study (see Sec. 3.7) verifying Eq. 3.6 for the parafocusing and

stationary techniques.

Cohen~
66

~ suggests a s imple and precise method to check for sample

displacement on a diffractometer. For cubic structures Cohen showed:

a -a - 2
hk2 o 

- ~~~~ COS 0 (3 7)a R sinO
0 CC

where a0 is the extrapolated lattice parameter , a..~ the lattice parameter

at a peak hkL, ~X the displacement of the sample off the true center of
the diffractometer RCC the radius of the goniometer circle. From a

plot of ab~~ 
vs. the slope equal to _a AX/RCC 

can be obtained and

the displacement calculated. A positive slope means the sample is

displaced too far back (i.e., towards the back surface of the sample) .

One most only determiue the angle of three or more Bragg peaks and form

a plot -of a~~1.vereus the function cos2O/sinO. This method of alignment

Is incorporated in the automated residual stress program used in this

study; a sub progran of the package automatically determines the peak

positions and calculates the displacement, AX , and repositions the sample.

• 
- 

• 

~~~~
‘ ~~~~~~~ ,, -
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(B) Effect of $ Axis Missetting

The axis of irelination of the sample, $, must be coincident with the

20 axis or a peak shift will result as shown in Pig. 3.4. Mirion~
30
~

has derived this error and calculates the peak shift in degrees 20

to be~

6(20) sinO cos O (1-cost) (3 8)R ’  sin (0+*)

where ~X’ is the effective displacement. This source of error can be

important on diffractometers employing an attachment to give the $

rotation. On the Picker diffractometer the 20 and s~ axis rotate about

the same shaft so no i4asetting is possible. However, the ~ axis of

a G.E. ¼-circle was also utilized occasionally. The missetting of the

~ axis with respect to the 20 axis was aeasured
* to be .05 me giving an

effective peak shift of .005°20 for a 450 tilt (approximately 3 MPa

(435 psi) for Fe).

An estimation of the systematic error is calculated in the automated

residual stress program. This includes the error due to horizontal

beam d-tvorg.nce, sample displacement and 
* 
axis missettiug, which are

the three major errors (see Table 3. 2).

3.3 METhOD OF PROFILE LOCATION

3.3.1 Introduction

Any consistent feature of the line profile may be utilized to

• define a reference point from which the position of the profile is based.

*5y mounting a sample on the ¾-circle, both the ~ axis of the ¼ circle or
the ~*, axis of the Picker diffreceoueter could be used to accomplish the
$ tilt. The •issetting of the ¾ circle yea obtained by comparing
the peak position after rotati ng the sample using each axis ~or the tilt.

I,
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The position located by any such method need not correspond with

that defined by any other as long as the reproducibility is sufficient

for the measurement. In residual stress measurements using X-ray diffraction ,

the profile has been traditionally defined in the U.S. by the apex

of a parabola fit to the top region of the curve. Qualitatively, this

gives equal weight to all observed data points to define the peak

location. It has been suggested~
70

~ that the center of gravity or

centroid gives a more reproducible location of the peak, however, data

was given only for the 422 peak of an annealed gold powder which is a

well defined peak having a good peak to background ratio. In Japan,
(71)the half-value breadth and quarter-value breadth method are the

adopted feature to represent the profile position. These involve using

the midpoint of a chord drawn through the profile at a particular

height. These three methods, the peak, centroid and half-va lue breadth

are compared for reproducibility in S.c. 3.3.2. The peak is shown to

be the most reproducible because the background does not need to be

determined since only data near the peak and not across the whole profile

is used . This implies that some method most be used to define the

region of parabolic fitting and two such methods are compared in Sec. 3.3.3.

The formolae for a least-squares parabola ii derived in Sec. 3.3.4.

3.3.2 Comparison of the Precision of Various Measure. of Profile Location

For the X-ray stress measurement, th. determination of the diffraction

angle by any reference point on the profile is sufficient because the

calculation of stress is based only on the relative change of the dif-

fraction angle. The precision ef th.centretd, kslf valu . breadth and
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peak* positions are compared using a position sensitive detector (PSD)

to collect the data (see S.c. 2.5). The PSD syst collects data

across th. entire diffraction profile simultaneously so that the data

for any reference position can be obtained in the same time as for

any othe r method.

In the half-value breadth usthod shown in Pig. 3.5, the diffraction

angle of the relevant point is determined by the mean of two angles

• given by~

S — ?I(X .¾ + X~~) (3.9)

where X~~ is the intersection of th. profile curve and the straight

line parallel to the background at half of th, peak intensity (.xc luding

th. background).

The centroid or center of gravity of a diffraction profile is

defined as:~
74

~

(20) _
r2~~~ 2g~d2! (3.10)

Baucum and A oma~
70

~ suggest the cestroid can be located with better

precision then the peak position of the profi le, although they did no~
make a direc t comparison. Th. method of centroid calculation given by

Baucus and ~~~ ns is based on liupeon’s rule for a parabolic apprenimetion

to the area under a curve. leferriog to Pig. 3.6, the cent roid , denoted

p.1k map’ be defiaed usiag a ~~~Øy pr file,~
72
~ ~yseiae distribution, 

(73)
• 2nd, 3rd or 4th order p.ly...mi.l s(”) or a parebela. (~~

) The perabolj
was chosen to defi ne the peek because it be. such general .cc.p cance ~7)
for stress m.asui- ats. 
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FIGURE 3.5 Calculation of half-value breadth.
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X is:
k

— 
i_I (3.11)

i—l

X + h
where A~ — 

~X~-h 
I(X)dX ~ [I(x~

_h)+41(x1)+I(xi+h)]

X+h
hand Mi ‘xi

_h 
XI(X) dX 

~ [(x~
_h)I(xi_k)÷r.x

~
I(x1)+(x

~
+hn(xj+h]

h represents the increment between data points and

k — (no. data 
points)-3 + 1 (3.12)

since three data points are required for the first increment and two

• for the rest.

Comparisons of the reproducibility of the least-squares parabola

(see Sec. 3.3.4 for the formula), half-value breadth and centroid were

made on the 1090-1 and 1045-2 samples using the CrXo’ 211 peak. The

automated residual stress program described later for the PSD was

modified to include the calculations required in Eq. 3.9 for the half-

valu. brsadth and Eq. 3.11 for the centroid. A linear background was

determined by fitting a straight line through 50 data points, 25 on

each .id. of the t ils of the diffraction profile. The intensity

corrections (Loz.n a-polarization and. absorption ) were made after the

b*ckgrovnd had bess subtracted and prior to determining the centroid
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and position of the half-value breadth. The least-squares parabola was

fit to the top 15 pct of the profile without first subtracting the

background.

The results of the ten replicate measurements are given in Table

3.3. The two-theta position represents the average calculated value

over the ten measurements with one standard deviation from the mean

being given in parenthesis. For the 1090-1 sample, having a sharp

diffraction profile and low background, the centroid actually has a

smeller variance than either of the other two methods. For the 1045-2

sample which has a poor peak to background ratio, the parabola has the

lowest variance. For both samples, the half-value breadth gave the

poorest reproducibility.

In X-ray residual stress measurements the peak to background ratio

is usually poor , especially for hardened materials. In the centroid and

half-value breadth reference points, the value is obtained from a

truncated portion of the profile determined by the background subtraction.

Thus, the background subtraction introduces an error (often referred

to as the truncation error~
625. For the least-squares parabola, even

if background is subtracted in determining the region of curve fitting

(necessary only when a few data points are obtained, see Sec . 3.6.3)

it do•s not affect the precision because the entire profile is not used

minimizing thi truncation error.

3.3 3 Region of Parabolic vit

The region in the vicinity of the peak that can be used for the

parabolic fit is not well defined. !f it is assused the true profile

can b• fit by a qussi-I~rentstian fuection (which is now becoming quit.
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TABLE 3.3

PRECISION OF VARIOUS ?~ASURES OF PROFILE POSITION(10 measurements)

Time Half-Value Breadth Centroid Parabola
(see) (°20) (°20) (°20) (°20)

50 .45 156.149 (± .021)~~ 156.096 (* .011) 156.186 (* .016)

11045 2 100 3.45 155.336 (* .064) 155.396 (i .085) 155.413 (k .020)

*FWHM is the full  width at half of the maximum intensity.

~
°The term in ( ) represents one standard deviation from the average
position over the 10 measurements.
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popular in profile fitting powder patterns for structure analysis~
75

~),

Thomsen and Yap~
62
~ have shown that a parabola is valid for V less than

.32 where:

2(20 - 20~~ ~V — —  . (3.12)

Here W is the full width at half m ximum height of the diffraction pro-

file, the peak position is 20~ and the minimum value of 20 lying on

the parabolic curve is 20min• While being theoretically justified

Eq. 3.12 still depends on the profile being symestric about the peak.

Koistinen and arburger~
26
~ sugges t tha t data points for the

parabolic fitting should be chosen which have intensities at least 85)~
of the maximum intensity. This rule has gained wide acceptance in X-ray

residual stress analysis although it is purely empirical.

The’top 15 pct ’ rule is co~~~ n1y used in X-ray residual stress

analysts because it is simple to apply. Only data near the top region

of the peak need be record ed and processed . The for mula given by

Thomsen and Yap requires knowledge of the breadth of the peak at half

maximum intensity which demands accumulating data across the entire

profile and determining the background.

The two rules for judging the region of the parabolic fit have

been applied to experimental data. Table 3.4 tabulates the p.ak

determined from a three point parabolic fit in column 4 and the minimum

20 setting to be on a parabola, as calculated by each method in the

next two columns. Col~~~ 2 is the full width at half the maximum

intensity while column 3 records the ratio of th. peak intensity to

the background intensity.

• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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For the first two samples listed, both having reasonably sharp

diffraction profiles , the ‘top 15 pct ’ rule of Koistinen and Marburger

correspond. veil with that of Eq. 3.12. This simularity breaks down

as the profile becomes broader, as depicted by the remaining four samples.

For these samples exhibiting increasingly broader diffraction profiles,

the decreasing similarity between the ‘top 15 pct ’ rule and Eq. 3.12

corresponds to a decreasing peak to background ratio (column 3). The

background was not subtracted in determining the top 15 pct region

resulting in the region being substantially larger. If a linear back-

ground is subtracted before applying the ‘15 pct ’ rul e, the regions

correspond quite closely, as seen in column 7. This background correction

need not be exact. A quick estimate of the background obtained at one

20 ~‘osition away from the peak is sufficient since this is only concerned

with determining the region of curve fitting. This procedure is incorporated

in the computer program STRESS described in Chapter 4.
3.3.4 Derivation of Peak Location using Parabolic Fit

It is assumed that the data is obtained at an odd number of

observation points and is also taken in equal increments of 20.* The

data can th’~~ be said to be measured at 2n+1 points, the center point

being taken as a working origin. The data accumulated at each jth point

is I~, the power in counts per second. If the 20 increment between

data points is designated as 6, the parabola is defined by:

a + b6j + c6
2
j2 

— I~ (3.13)

*DlIta taken ~si ng the PSD is in equal increments of distance which does
not translate exactly into equal 20 increments. The error in using a
linear calibration constant to transfer distance along the PSD into 020
is mini mal for residual stress measure ments ~see Sec. 2.5.5).



39

and the least-squares solution ii found by minimizing:

S — (a + b~j + c5
2
j
2 

- I~)
2 

(3.14)
j-n

with respect to the unknown parameters a, b, and c. To solve Eq. 3.14,

the partial derivatives of S with respect to each parameter are set

equal to zero. This gives three equations for estimating the values of

a , b, and c to minimize S.

• For example:

• — 0 — 2 (a + b6 j + c62j2 - I~) (3.15)
j—-n

o n n
• o 2 c  2_ a 2

~~
j + b 5

~~~~j + c 6 L j  
~~~~~~~~j - n  j—- n j - n  j—- n

2 — 1— n a + O + n 2~~c - 8  M

where n~ - ~ j~ and Mi - ~~ j~1 . The term M~ will be
j—-n j - n

roferr ed to as the ~th moment of the observed line profile.

Continuing in this manner the set of equationá are:

O + n ~~b + O - ~~~
2M1 — O

- - n2a + 0 +  n~~~c - 8
~~

M2 • 0

- 
I 

_ _ _ _ _ _ _ _ _ _ _ _ _  - —• • - •

~~

. • • ____________________ •.
~~~~~~~

-

~~~~~~

- 
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Direct successive substitution for the three unknown parameters

yields :

2 2 3a — (M0n46 -M2n2)/ (n n4-n2)6

b — M1/83n2

2 5 2c — (026 M0-M2n )/ 6 (n2-nn4)

The apex of the parabola is given by ‘Li- — 0, therefore

20 — 20 - b/2c (3.16)

where 20~ is the working origin, that is, the 20 position corresponding

to the n—O data point. From Eq. 3.16:

20 — 20 - (n~— n n4)6 2M1/2n2(n26
2
M — n M

2) (3.17)

(Angular dependent intensity corrections must be performed on the raw

data before determining this peak position.)

3.4 STATISTICAL COUNTING ERROR IN PEAK LOCATION

3.4.1 Introduction

A s imple mathematical expression (Eq. 3.17) has been derived to

relate the measured intensities to the diffraction angle as given by

the peak of the diffraction profile. There will be a statistical error

in the calculated diffraction angle due to the finite number of X-ray

quanta counted.

_ 1
• •~~~~~

• •
• - •

I
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Vi lson~
63
~ has derived the statistical variance for a least-squares

parabola fitted to data on X-ray peaks collected for fixed time at

each observation point. Wilson’s work is extended here to include

both fixed time and fixed count methods of data collection to obtain

the counting statistical error in a peak location. Propagation of this

error to the error in the calculated stress is presented for both the

‘sin2$’ and ‘two tilt ’ methods of X-ray residual stress measurement in

Sec. 3.5.

• 3.4.2 Derivation of Statistical Variance in the Peak Location

The variance of a general function, X, of several variables,
(76)X—f(x1,x2,...,x) is:

‘dX 2 dx dXV(X) - (~-) V(x 1) + ç~-)  V(z2)+.. .+(~
_ j—~~OV(x1x2)+...

(3.18)

+ higher order diffecential terms. Here V (X) is the variance of X and

COV(xi xj) is the covariance between variables x~ and x1
. Neglecting

the higher differentials this can be rewritten as:

V(X) — 

~? COV(xixj) (3.19)

If the function is linear, X — ~~~~ the standard error is given by:

V(X) — 
~ 

a
~
V(xi) (3.20)

• ~~• -~•,~ •• -• • • - •

• 
• ••

~• - - -- •- • • • -• • - - • • •

I 
_ _ _ _
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Sinc, the count rat ., I~ a x1 
is a random variable havi ng a finit e

variance, all quantities obtained by manipulating it also have a finite

variance. Since the measured intensities are statistically independent:

• COV(xi~
xj) — 0 for i #

(3.21)
COV (xi,xj) — V(xi) for i — j

Eq. 3.19 then becomes:

V(X) —
~~(*~

)V(x
1
) . (3.22)

This equation is reasonably accurate for any nonlinear function providing

the standard deviation of each variate is small, say 201 of the

Applying Eq. 3.22 to Eq. 3.17 and substituting for x~ the counting

rate,

V(20 ) _~~(~~
_t)v(I~). (3.23)

The variance of the peak is dependent on the variance of the count rate,
which depends on how the data is accumulated . The two co on

methods of determining the counting rat, at the diffractoaeter setting

2O~ are the fixed time and fixed count techniques. Def ining t
1 

as the

time of data acc~mei1atjon and C1 as the accumulated counts:

I
I 
— C~/t for fixed time

(3.24)
— Cft~ for fixed counts

t I  

• 

J •  -
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The variance (denoted hereafter as 0
2( ), the standard deviation squared)

of the count rate is derived by ~~~~~~~~~ for both cases:

o~~ (I~) — 1
1
/t for fixed time

• (3.2))

— 1
1
2/C for fixed counts

The differential in Eq. 3.23 is now derived. Rewriting Eq. 3.17:

- 2 26 (n2-nn4) 220 — 20 - 2n2 
{l ’~

I(n26 M0-n0M2)} . (3.26)

Now:

— ..._._E where — 6i+l1
i (3.27)

~~~ —6
2(n~—n0n4) 1(n26

2M—n M2)6
2j - M(n ô3j°- n6 3j 2)

— . . .  
1 (n26

2
M0-n0M~)

2 ~ 
(3.28)

2 2
— 

2fl~ (fl~6~ M0-:ØM~) 2 {u06
3
~~i

2+ 6 2M0-n0s~~6
2
J-n26

3
1’~j (3.29)

Combining Eq. 323, 3.23 end 3.29 will give the error in peak

location due to coumting statistics alone.

For accumulation of data by fixed time (at each obs.tvation point

j) the fotmula is:
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4 2  2 n
2 6 (n2-n n4) 3 2 2 2 3 2

~ (20 ) — 4fl~(fl~6
2M-n M~)

4 

~~~ 
M~j +(n~6 M0-n0M2)6 J-n26 N1) 11

1t

(3.30)

• where G(2O~) represents the standard deviation in the peak position
.

The assumption of a parabolic profile implies sy .try about the peak

position. The term Mi represents an i
th moment of intensity about

the peak. ~~~~~~~~ suggests that because the profile has been con-

4 sidered syiimietric (at least in the region fit by a parabola) the odd

moments of intensity will be of less importanc e (for a perfect para-

cola the odd moments are zero) reducing Eq. 3.30 to:

4 2  2
2 6 ~~2 Tb

O
04

) 2 2 4 2q (20 ) 2 2 4 (n26 M n N 2) ô j  I
p 4.t.~~ (n8 M0-n0M2) 

~~~~~ ° °

4 2  2 n6 (n2-nn4) 4 2
— • 

2 2 2~~~
6 L 1 ’4~t.n2(n26 M0-n0M2)

68(n~-n0n4)2 .fl~
— 

2 2 2 (3.31)
• 4’t.n2(n26 M0-n0M2)

In th same manner, for data accumulated by fixed counts at each

2 n -

2 (20 ) — 
4n~ (n2~

2
N0
-n
0X2
)4 

~~ 

(n
06
3
N1j

2+(u
~~
2
M
0 0 6

2
j-n

~6
3
~~

)I
~

/C

(3.23)

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Neg lecting the odd moments of intensity, Eq. 3.32 reduces to:

8 2  2 n
2 6 (n2-nn4) 

~~
-
‘ 2 2

• ~ (20 ) s 2 2 2.. i I (3.33)
‘ 4Cn2(n26 M0-n0M2) j--n

3.4.3 Experimental Confirmation of the Statistical Formulae for Peak
Location

The counting statistical errors for the peak location were examined

with the 211 peak using three samples to cover a range of breadths ; tiw

1090-1, 1045-1, and TEA G-5 specimens.

Three observation points were chosen from a chart scan of the profile

and were within the top 15 pct of the peak intensity. Data was repeatedly

accumulated using fixed counts at these same observation points 15 times

for each sample and the peak position and statistical error (using Eq. 3.32)

were calculated employing a computerized syste m .* The results are

given in Table 3.5. The peak position is the average value of the 15

measurements. The standard deviation from the mean peak location,

• S(20 ) is given in column 3. When compared with the average counting

statistical error (one standard deviation) given in column 4, it is

seen that the correspondence ii remarkable thereby showing that Eq. 3.32
for fixed count analysis predicts the proper counting error. The slight

difference is probably due to .issetting of 20 because the limit of

gearing accuracy on the Picker diffracto.eter is .002°20.

program as describ sd i-u Chapter 4 was modified slightly to use
the same angular position for the data points during the replicate• tests. As viii be seen in Chapter 4, the progra. normally selects these
positions and in each measurement the different position. would affect
these tests.

I
••1 t 

______________  ______________________________ ____________
_ _  

_ _ _ _ _ _

• • 

~~~~~~~~~~~~~~~~~~~~~~~~~~ / _ _ _ _ _ _ _ _ _ _ _ _
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0 .

TABLE 3.5

ERROR ANALYSIS FOR RE PEATED PEAK DETERIIINATIOWS Cr - 211 PEAK
(15 p4easur.ments)

Sample (
~~~~~) ~~~ p) C?(~~~p

)

1090—i 156.184 .0022 .0021

1045—1 155.916 .0023 .0021

TEA G-5 155.282 .0112 .010

*(20 ) represents the mean value of the peak position.

• 8(29 ) represen ts the observed standard deviation from the
mean va lue .

c (2O~) is the counting 
statistica l error.

//‘i- -

— ‘
F, V
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3.4.4 Experimental Confirmation of the Approximate Formulae for the
Variance in Peak Location

By assuming the actual data to be symeetric about the working origin,
/

i.e., the center of the curve fitting region, Eq. 3.31 (for fixed time)

and Eq. 3.33 (for fixed counts) were derived. A test of these appro-

ximations were made by ana lyzing data obtained from the Cr~~, 211

diffraction peak on steel samples. The tests were carried out for ,both

$-0° and $—45° (after tilting the peak may be more asyuinetric),,ttsing

stationary slit geometry. The 1090-1 and TEA G-5 samples ~ere used,

• the first exhibiting excellent c~1-’c 2 separation With/á~e second having
no separation. Table 3.6 reproduces the results fØ the fixed count

method. The number of data points is given in óolumn 3 and the step

increment between points, 6 is given in column 4. The breadth at half
/

the maximum intensity is given in colu,á% 5.

Three data points from a peak/i(f any shap e can form a perfect

parabola. Therefore, one vould’not expect any difference in the results

between the exact formula the approximation (based on perfec t

ay etry of the actual ’data) using three data points. This is seen to

be so in Table 3.6,/Eor both samples. With a multi-point fit, any

asy etry vi1~ - 6. more evident. From Table 3.6, the difference between

the results’ calculated by both formulae is negligible for the mnltlpoint

fit ,,i~~1ying that the actua l profile is sy stric about the peak
/
/

L0áiton af tsr the data has been corrected for the 2 0-dependent intensity

- 
/  factors. The exact formula is used in the computer program, STRESS described

/
/ in Chapter 4.

3.5 STATISTICAL VARIANCE IN STRESS

/L The variance in the measured peak position results in an error in

•-.--— - ——— — — •-• —- -•-• - —

- • ,• 

~
••• T ~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -

/
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the calculated residual stress. This error will be derived for both

the ‘sin2$’ method and the ‘two tilt’ method.

3.5.1 Sin2$’ Technique

In the ‘sin2$’ technique the residual stress, ~~~~, 
is determined

from the slope of the interplanaz spacing d versus sin2$. The

variance in d due to random errors in the measured intensities will

introduce an :;:~ in the surface stress. The variance in d~~$ 
mus t be

determined from the variance in 2~~.

Writing Bragg ’s law:

d X/Zsin0 (3.34)

Applying Eq. 3.20 to the relation in Eq. 3.34:

— EaLA/21i1
~�]

2 2 (0)

— c::~
2 2(20) . 
(
~~~ 2 

(3.35)

where 20 is in degrees and is given by any one of Eqs. 3.30 - 3 . 3 3 .

The surface stress is given by a’, the regression coefficient of

d
~~* 

vs. sin2$. The regression coefficient of a linear least squares

line is given by :~
75
~

E(z
i-
i) (y~-~)

0 - 2  (3.36)
E(xi.x)

U

- ~~~~-~~~~~~~~~~~~ • . • •~~-- - ~~~~-— •-•~~-~~ • - - -~~~-~~~ -
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where x~ is the independent variable and is the dependent variable.

The bar denotes averages. In terms of d
,~~ 

and sin24~, the regression

coefficient is expressed as:

E (sin2$_ sin2$) (d,,~
_)

* 
_____ (3.37)

E(sin24_ sin2$)
2

$

2where sin $ — E sin $/N
$

T - id  IN
*

and N is the total number of observations.

The value of $ also has finite error due to alignment and mechanical

motion. The function sin2$ varies slowly so small errors in $ have

negligible effect on sin2~. Thc ~~pression for the regression co-

efficient, Eq. 3.37 is then a l i n c H . function with the dependent van -

able having a predictable error. By application of Eq. 3.20, the variance

of a’ is:

• E(sifl2$_Sinh$)2 . )
- • 2 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _a (a’) — * (3.38)

where 0
2(d ) is given by Eq. 3.35. Through relation 3.20, the variance
‘l’s

in the stress, 
~~~~ (given by Eq. 1.5) , is:

— ~
2 c$’),rd0. ~ ±~~i

2 

(3.39)

where O~
2(&) is given by Eq. 3.38.

• 

. 

- 
~~~~~~~~~~~
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3.5.2 ‘Two Tilt ’ Technique

Application of Eq. 3.19 to the ‘two tilt ’ method (given by Eq. 1.6) yields:

— 
~~~~2 

02 (d
5
) + 

~~~~~ 
02 ( d )

— 5in~$] 
(~ - a~ (d

5
) + (

4 
.~

2 (d ))

/1.
K)

2 
[a
2(d

5
)4a2(d0)] (3.40)

where the stress constant K is given by:

E . 1IC — j—  
~~~~~~~~~~~ 

(3.41)

if the peak shift is small, the two tilt equation can be expressed

directly in terms of 20 by Eq. 1.7. The variance in the surface residual

stress is given by:

K ’2r02 (200)4u 2 (2e
5)J (3.42)

where the variance in peak position is given by Eq. 3.30 or Eq. 3.32 .
Small errors in 20 do not introduce significant error in the stress

constant K’ give, by Eq. 1.8. -

3.5.3 Comparison of Statist ical Formulae for ‘Two Tilt’ Method

Kelly and ShO~~
(7m derived an equ~ ion for the error in the

& b~...
resid ual st ress as determined using the ‘ two tilt ’ method due to

— - - -  — • • - — - . —

II, 
—•
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counting statistics. Using Eq. 1.8 and writing the peak location

directly in terms of the counts at each of three data points (therefore

using a three point fit) Kelly and Short obtained an equation relating

th. stress, o~, directly to the intensity obtained at the three obser-

vation points. They applied Eq. 3.22 to this formulae to calculate

the counting error. Defining (l-P) as the relative difference in
intensity between the peak position and the outer observation points,

and N as the total counts at each point, they obtained, for fixed

count data accumulation:

a(a~
) IC ~20.Ji’/ (2(t..P)/N) (3.43)

where K is the stress Constant in Eq. 1.8. This equation is valid only

for a three point parabola and the ‘ two tilt ’ method of residual stress

analysis. Their derivation assumes the angular increment between data

points to be identical for both $ inclinations and also the same total

counts are achieved at both $ tilts.

Table 3.6 compares results obtsinsd from analyzing the ezpec ted

counting error with Eq. 3.42 and Eq. 3.43 from data taken on three steel

specimens. The data was taken in the top l57.~ region using fixed counts.

The samples were chosen to cover a range of peak breadths and residua l

stress levels .

The counting errors calculated by each equation are given in Table

3.7 and are similar, although exact agreement is not expected because

of the assumptions med. by Kelly a-nd Short. The results do indicate

the statisti cal error from both methods are comparable, however, the

P ~~~~ ~~~~

_____________________ -
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TABLE 3.7

COMPARISON OF THE STATISTICAL ERROR IN RESIDUAL STRESS
AS CALCULATED IN THIS STUD? M~D BY KELLY AND SHORT(78)
Cr~~ radiation - 211 peak - three point parabolic fit

*

S I 6 1 ~,(a ),MPa a(ci,)~MPaamp e EqY3.43 Eq. 3.42

1090— 1 +12.8 (+1860 psi) .11 .155 ±1.97(140 psi) ±.875 (127 psi)

1045-1 -176 (-25,600 p u ) .295 .159 ±3.49 (506 psi) ±3.14 (456 psi)

1045—2 —400 (—57,950 psi) 2.11 .172 ±8.17 (1185 psi) ±8.96 (1300 psi)

* 6 is the step increment between the angular positions of the data points.



54

lack of generality of the Kelly and Short analysis limits its application.

Their derivation is based on the two tilt method for the residual

stress determination and assumes the peak shift (°20) and stress are

proportional. This is valid only for a small peak shift. The statistical

analysis as developed in Sec. 3.4.2 enables the statistical error to be

calculated for either the exac t or approximate ‘two tilt ’ formulae

(Eq. 3.40 and Eq. 3.42 , respectively) and for the ‘sin
2

$ ’ method (Eq.

3.39) .

3.5.4 Automated Residual Stress Program

A complete computer controlled residual stress analysis program

was developed during this study. An in depth discussion of the program

is given in Chapter 4, but because the program is used in the remaining

sections. of Chapter 3 the program is described brief 1.y here to facilitate

the reader’s understanding.

The residual stress program incorporates the following features

which a€e chosen by the user by means of an initial dialog:

I) The experimental parameters are input (approximate peak

location, divergent slit, sample displacement and $-axis missetting)

to calculate geometric aberrations.

2) Either the ‘two tilt’ or ‘sin2$’ methods of residual stress

analysis may be applied, wi th a normal detector or the PSD.

3) The Minion-Cohen technique is implemented automatically if

a least-squares fit to d vs . sin25 indicates oscillations.

4) The operator sp ecifies the desired accuracy in terms of

degrees 20 for each peak or in stress and the counting strategy is

de .ervin.d taking into account both statistical and geometric errors.

— 

_ _ ±
~~~~

-
_ _ _



5) The peak is fit to a parabola by a least-squares procedure.

The operator specifies the number of data points to be fit.

6) If desired, background is measured and subtracted.

7) Either parafocusing or stationary-slit geometry can be chosen.

8) An estimate of the overall time of analysis is given after

a preliminary scan of the peak. The operator can then change the error

if the time is too long.

Five successive step scans are involved in the procedure for

determining a peak position, as described below. The data is collected

in fixed count mode and corrected for deadtime and angular dependent

intensity factors.

1) A step scan is made in large increments (—.. .2°20) set by the

operator , accumulating 1000 counts at each position from the initial

20 , until a count rate of less than 90 pct of the maximum is obtained.

2) Two step scans follow in smaller increments (set initially by

the user and typically 0.05°) down each side of the peak to locate two

angles, 2O~ and 203 at 85 pct of the maximum intensity. (The background

measured at an angular position specified by the user, may be subtracted

from the data in determining the two end points. This procedure serves

to define the region of parabolic fit more accurately.)

3) A third step scan at the two angles from Step 2 and the

central angle between them is made with a preset count of 5000. A

three point parabola is fit to the data. Then angles are calculated

for the desired number of data points such that the central data point

will be very clos, to the center of the parabolic fit. This mm m ii..

odd order terms in the error equations. These preliminary scans typically

take 60 seconds .
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4) A step-scan at the final angular positions for a preset 1000

counts is used to back calculate the necessary counts from Equation 3.32

to obtain the desired precision. Steps 3 and 4 constitute a multiple

pass procedure which serves to improve the reliability of peak location

and mintmize the time required for a given precision.

5) The final data is acquired for the calculated preset counts

at each angular position.

3.6 EXPERIMENTAL DETERNINATION OF THE PRECISION OP RESIDUAL STRESS ANALYSIS

3.6.1 Introduction

A complete statistical analysis of the peak location using a least-

squares parabolic fit to the top of a diffraction profile has been

presented. While useful in determining random errors due to counting

statistics, other factore also contribute to the precision of the

measurement. The experimental technique (i.e., ‘two tilt ’ vs. ‘sin2$’

methods) and accuracy of the equipment influence the overall precision.

The actual precision has been examined in this Study under varying

conditions. The reproducibility of residual stress determination using

a lust squares parabolic curve for peak location is compared to that

using a three point parabola. The precision of the ‘two tilt ’ method

and ‘ si n2
$ ’ method are ex*ained and compared to each other. These

treatments on precision have apparently never before been carried out.

The reproducibility of residual stress determination using a

position sensitiv, detector (PSD) for data accumulation is also examined.

The precision is dependent on the resolution and stability of the PSD

and these are shown to be quite adequate for residual stress analysis

by X-ray diffraction.
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The precision of the residual stress meaauremsnt is dependent of

the method of peak location. Traditionally in X-ray stress measurements

using a diffractometer, the apex of a three point parabola fit to

the top region of the diffraction profile is used to define the Bragg

angle as has been mentioned severa l times. It was shown in Sec. 3.4.3

that the region near the maximum of the profile is syuumetric about the

peak position after Lorents-polarization and absorption factors are made,

verifying the practicality of the three point parabola compared to a

least-squares approach. Jatczak and Boeh.~
29

~ conc lode that a more

elaborate fitting of 2nd, 3rd and 4th order curves to five data points

produces good agre~~~nt with the three point parabola method and hence

was not worth th. extra time needed in accumulating the data. However,

Marion~
30
~ found a least-squares parabolic fit to 10 to 20 data points

gave bett er reproducibility than Just the three point fit. This

apparent contradiction is important to resolve because the curve fitting

procedure viii affect the precision, it is obvious that many data points

are preferable to only a few given unlimi ted time. For a fixed total

time, however, this is not necessari ly true . Yap~
67
~ conc luded that if

the profile is a ~~rfec t parabola the optimum procedure for collecting

data is to spend most of the time at the two end points of the parabola

and only a short time at the peak in a three-point fit. Since random

errors dictate that the observed data is not a perfect parabola the effect

of the number of observation points on the precision was experimenta l ly

tested in this study. The total tims for data accumulation was fixed

and tests were run using the ‘two tilt ’ method in the fo llowing manner:

H 
_ _ _ _ _ _
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1) Fix the total time spent accumulating the data.

2) Determine the time at each point. Counting can be accomplished

in either fixed time or fixed count mode.

3) Repeat the measurement until enough results have been

accumulated to check the reproducibility.

4) Duplicate steps 2 and 3 for a different number of data points,

keeping the total time of measurement constant.

By varying the number of data points, the effect of this number on

the precision can be assessed.

3.6.2 Experimental Procedure

An automated diffractometer system was used to accomplish the

repeated measurements. The system is comprised of a Picker diffractometer

and scintillation detector interfaced to a PDP-8E computer. A position

sensitive detector was also used in conjunction with the diffractometer.

The featuresof the software programeing are described in Sec. 3.5.4.

The only modification of the program for these tests concerned the pro-

cedure for determining the fixed counts accumulated at each observation

point. In its usua l form, the computer program allows the operator to

chose the desired number of data points and determines the necessary

counting time to achieve a designated statistical precision. Since the

total time of data accumulation must be fixed for each peak determination

in this analysis , the following procedure was substituted. Defining

the total time as T, the fixed counts at each observation point, J,

as CT, and the power in counts/second at each j as IN(j), the average

power times total time will yield the tota l counts . Dividing this by

the number of data points . N, yields an average fixed counts. Therefore:
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T’INU) (3.44)

where IN (J) represents an average intensity in CPS. The individual IN(j)

are determined initiaLly from a rapid step scan used to determine the

position of the observation points through the use of the ‘top 15 pct ’

rule. The total time, T, was input and the program determined CT.

For the position sensitive detector, the total time is fixed by

the tuultichannel analyzer which acts as a peripheral storage device for

the data so it was not necessary to alter the usual computer program.

The samples were chosen to cover a broad spectrum of residual

stresses and breadths of diffraction profiles.

3.6.3 The Effec t of the Number of Data Points

Ten repeated stress measureme nts were made on each of the steel

samples for each number of observation points . Three,

f ive, seven, eleven and fifteen observations in the region of curve

fitting were used. The diffracto.eter aligmeent was checked and the

sample positioned for minimum sample disp1ac~~~nt pt~ior to beginning the

measurements on each sampl e. No instrumental changes were made during

the replicat, testing.

Tb. ‘ two tilt ’ method using $ angles of 00 and 450 was employed

with a stress constant of 593 )I*/°20 (86000 pei~~~2O) ,
1(l 

The stationary

slit or moe-focusing technique was used so as not to inc lude random

errørs due to rspo•ttisetng øf th, receiving slit (see Sec . 3.2.2 for

sore details on the affect of slit positioning). 
- 

~~~~~~~~~~~~~~~~~~ - - ~~~
I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

I 
- _ _ _ _ _ _ _ _ _ _
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Table 3.8 su rizes the effect of the number of data points employed

to determine the peak maximum on the precision with a normal detector

and the two tilt procedure. The number of data points, column 2 and

the total time of data accumulation for the two tilts,* column 3, were

set in the initial dialog with the computer program. The residual stress

given in column 4 is the average value over 10 measurements. The observed

error , one standard deviation from the mean stress for the 10 replicate

measurements is given in column 5 and the statistical counting error

for one standard deviat ion (Eq. 3.42) is given in the last column.

The data for the 1090-1 sample which exhibits a sharp 211 diffraction

prcfile with excellent iç~,1-v~~ separation illustrates tha t for such a

profile , the number of data points has little effect on the precision.

The counting error is slightly less than the observed precision, as

expected , For this sample the precision is approximately 11. 4 (Pa

(±200 psi), better than that usually reported in the literature (± 10 MPa)~
7
~

becaus, the peak was very sharp.

As the breadth of the diffraction profile increases th. peak

position becomes more sensitive to small fluctuations in the data and

the counting statistics for the three point fit do not predict the true

error. But as the number of data points in the least-squares fit

increase , the observed precision once again approaches the counting

error. These results show that counting statistics are not a good

measure of the precision when using only three points for a parabolic

fit on samples having broad profi~es. Only where tim number of data

points is increased is the obssrv d precision represented by this

*The total time is for the final step scan only and does not include
th. time spent in the preliminary scans as thi s is independent of the
number of data points.
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3.8

RESULTS OF FIXE D TI I€ TESTS
(1110 TILT P~ THDD)

Statistical Erroi
Number of Total Time Stress Observed Error 10 Tests

Data Points (sec) MPa (psi) ~~a
T
~

5
~~) Eq. 3.42

(Pa (psi)

1090-1 
* 

3 360 32.3 (+4690) ±1.40 (*203) ±0.97 (±141)
(W— .45) 5 360 31.6 (+4580) ± .82 (±119) ±1.18 (±171)

7 360 31.0 (+4500) +1.21 (±173) *1.22 (*177)
________ 

11 360 31.4 (+4550) ±1.54 (±223) ±1.34 (±195)
1045-1 3 360 -179.8 (-26080) ±10.04 (±1457) ±3.45 (±500)
(W— l.50) 5 360 -176.6 (—25620) ±10.98 (±1574) ±3.96 (*574)

7 360 -167.3 (-24266) ± 6.89 (*1000) j4.02 (±583)
11 360 -165.4 (—23997) ± 6.38 (* 926) *4.31 (*625)

_______ 
15 360 -165.2 (—23967) ± 6.12 (± 888) ±4.33 (*628)

1045-3 3 1000 -699.5 (-101470 ±13.70 (±1987) +4.57 (±663)
(W—3.40) 5 1000 -700.3 (—101508 ±11.44 (±1660) ±6.20 (*899)

7 1000 —700.1 (— 101556 * 9.29 (*1347) ±6.71 (±973)
11 1000 -697.0 (-101100 ± 6.28 (± 911) ±7.35 (±1066)

________ 

15 1000 —699.3 (—101432 * 6.57 (± 953) ±7.43 (*1077)
1045-2 3 1000 -395.7 (-57396) *28.68 (±4160) *9.34 (*1325)
(W—5 .l) 5 1000 -400.4 (-58082 *14.41 (±2090) ±11.79 (±1710)

7 1000 —3 99. 6 (-57938) ±13.27 (±1925) *13.06 (*18%)
11 1000 -395.9 (-57408) ±11.20 (*1624) ±13.51 (+1959)
15 1000 -394.0 (—57107 ±12.80 (±1857) *14.13 (±2049)

TEA G-5 3 1000 +15.9 (+2300) *33.77 (±4898) ±9.21 (*1336)
(W— 5.8) 5 1000 +15.2 (+2200) *21.37 (*3099) *11.27 (*1635)

7 1000 +13.1 (+1898) *15.69 (±2276) *11.90 (±1726)
11 1000 +11.2 (+1621) ±12.80 (*1856) *12.40 (*1799)
15 1000 +12.6 (+1829) ±12.34 (±1791) ±12.53 (*1818)

1090-2 
- 3 1000 —354.2 (-51375) ±38.00 (*5513) *12.20 (*1770)

01—6.0) 3 1000 -351.9 (-50140) ±36.97 (*5362) ±14.82 (±2150)
7 1000 —343.0 (—49760) *23.10 (*3351) ±15.68 (*2275)

11 1000 -342.4 (-49660) *17.56 (±2347) *16.41 (*2380)
15 1000 —343.1 (-50060) *17.48 (±2536) *16.30 (*2365)

_ _  - - _ _ __ _ _ _ _  -

~Ii, r.preeents the bre dth at half the maximum intensity in 020.
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counting error. This phenomena becomes especially pronounced for broad

profiles; e.g., compare the 1045-2 TEA G-5 and 1090-2 samples in

Table 3.7.

The reason for this result becomes apparent when one examines the

entire procedure for locating the peak position. Say the positions

of the observation points were found only once and for each repeated

measurement the data was taken for the specified time at these same

observation points. One would expect the observed error for the three

point fit to be identical with the counting error for the 10 measurements .

Indeed, this was shown to be the case in Sec. 3.4.3.

If, however, during each measurement the position of the data

points are rechosen, as is the case here because of the automation

employed for collecting the data in Table 3.8, the position of th~ data

points change due to random fluctuations in the observed intensities.

Only if the actual data were a 
~~~~~~ 

p rabola would one expect the

observed and counting errors to be identical. This might lead one to

think the profile must not be a perfec t parabola in the region used

for the curve fit. It was seen in Sec. 3.3.3 that not subtracting the

background can lead to errors in the determination of the region of

fit of th, parabola. As the brsndth increases , the ratio of peak

intensity to background intensity decreases for these samples (see

Table 2.2) causing the region of fit as determined by the ‘top 15 pct’

rule to be too targe. Th. data does not, then, necessarily lie on a

parabola.

When a least-squares multipl. point fit is used , the relative

effec t of those points Lying outatd the true region of - the parabola
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is decreased causing the observed error to decrease, although the same

total time of data accumulation is used. Surprisingly the statistical

counting error increases probably because the degree of perfection of

the parabolic fit decreases with increasing number of data points.

This is due to random fluc tuations in the data which dictate that the

observed data cannot exactly lie on a parabolic curve.

To determine if the region of curve fitting actually effec ts the

reproducibility, replicate measurements were made on the 1045-1, 1045-2

and TEA G-5 samples using the same total time as in Table 3.8 but including

a background correction (see Sec. 4 3.4 for detai ls on automated back-

ground subtraction) prior to determining the region of fit. The two

tilt method using a three point parabolic curve to define the peak

location was used. The results given in Table 3.9 indicate an improvement

by a fac tor of almost two in the observed error as compared to Table 3.8

for the samples exhibiting broad prof iles when using a three point

parabolic fit. However, the precision for the 1045-2 and TEA G-5

samples was still almost twice that predicted by counting statistics alone,

again indicating that the three point fit is not adequate for fitting

broad profiles.

3.6.4 Comparison of ‘Sin2$’ Method to ‘Two Tilt ’ Method

The sin2$ method involves measurement of the peak position at

more than two inclinations which could minimsie the random errors

associated with individual measurements of the peak. For a fixed total

time, the time spent at each $ tilt will be less than in the two-tilt

method, thereby increasing th. statistical error of the peak location so

4

~~~~~ --, ~~~~- - ---- — —~~-— -. - --  ~ --~~----~~~----  
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TABLE 3.9

RESULTS OF REPLICATE FIXED TI)~ TESTS USING BACKGROUND SUBTRACTI(I~(two-tilt , three point parabolic fit to peak)

S. Ic Total Time Stress- Observed Error Statistical Error
(icc) 10 Test Eq. 3.42

________ - 
MPa (psi~ - 

tWa (psi’ MPa (ps i~ 
—

1045-1 360 -169.0 (-24520) * 4.58 (* 605) *3.86 (* 560)

1045-2 1000 -408.5 (-59260) *14.44 (*2095) ±9.41 (*1365)

TEA 0-5 1000 - +11.17 (+1620) *17.48 (*2535) *9.79 (*1420)

- ~r- -~ -~~- -.q ~I$~ c~ 
- - - - -

1 
- ——
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that one cannot say a priori whether or not the sin2$ method is more

*precise.

The precision of the sin2
$ method was determined in the sane manner

as described for the two tilt method, the total time of data accumulation

t being identical. Only a three point parabolic fit (no background sub-

traction) was employed, the ten replicate measurements being made on

the 1045-1, 1045-2 and TEA 0-5 samples with $ tilts of 0°, 26.57° , 39.23° and 50.77° .

If the results given in Table 3.10 are compared to those in Table

3.8, it is seen that the sin2$ technique has better precision (observed

error) over the ten measurements than the two tilt technique even when

the total time of data accumulation is identical. The effect of errors

in peak location are minimized with multipl. tilts. Increasing the

number of 
~ 
inclinations to more then four was tested but improvement

in the precision was only nominal. The standard error in the mean

stress (column 4, Table 3.10) is still 30 pct greater than that pre-

dicted by counting statis tics (column 5) for the three point fit on the

broader profiled samples.

The best results when using a three point parabolic fit could be

expected to be found by combining both the ‘sin2$’ method and using a

background correction in determining the region of peak fit. Ten

replicate measurements were taken in this manner on the same samples

and using th. same fixed time as in Table 3.10. The results from such

measurements are given in Table 3.11. The precision is indeed improved

and compares quite well with that xpected from counting statistics alone.

* 

- 

2This entire discussion assumes that the 4 vs. 5th $ data falls on a
straight line so that the two tilt uethod’is valid and accurate . If
d5 vs. sin’$ were not linear, the Nsrion-Coh n method vould have to be
u~~d to account for th. oscillations due to deformation texturing.

- 
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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~

- TABLE 3.10

PRECISION USING 81112$ )€THOD
(three point parabolic fit to peak)

1 i Observed Error Statistical Error
Sample To1se~)

me 10 Tests Eq. 3.39
p Wa (psi) MPa (psi)

1045-I 360 -193.0 (-27990) * 5.65 (* 820) ± 5.97 (± 866)

1045—2 1000 -402.8 (—58430~ ±15.93 (*2310) +10.90 (*1581)

TEA 0-5 1000 + 22.8 (s 3300) ±18.13 (±2630) ±14.48 (±2100)
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TABLE 3.1.1

PRECISION USING 51112$ METhOD AND BACKGROUND CORRECTION
(three point parabolic fit to peak)

Observed Error Statistical Error
Sample Total Time Stress 10 Tests Eq. 3.39(icc) MPa (psi) Wa (psi) MPa (psi)

1045-1 360 -199.60 (-28952) ± 6.19 (± 898) ± 4.78 (± 694)

1043-2 1000 -424.20 (-61529) ±11.17 (±1620) ±10.61 (*1539)

TEA C-S 1000 + 14.71 (+ 2134) ±16.13 (±2340) ±16.65 (±2415)

II 
________ -
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3.6.5 Precision Obtained Using a Position Sensitive Detector

In Sec. 3.6.3 it was shown that many data points within the region

of curve fitting improved the observed precision of the stress measurement

for a parabolic curve. The position sensitive detector (PSD) collects

data simultaneously across the diffrac tion prof ile and theref ore does

not take any longer period of time in collecting many points compared

to Just three. The number of data points collected in a fixed period

of time depends solely on the breadth of the diffraction peak and a

least-squares parabolic f i t  may be made to all those points falling

within the appropriate region.

Replicate measurements were made with the PSD to test the actual

precision. The automated residual stress program was used without

any modifications. The fixed time of analysis was pie-determined by

the time selected on the multichannel analyzer (NCA ) which acted as an

intermediate storage device for the data from the PSD. The MCA was

interfaced with the PDP-8E computer for direct data transfer.

The computer program determined the region of curve fitting by

the ‘top 15 pct ’ of the intensity profile without subtracting back-

ground and fit a least-squares parabola to all data within the region.

Column 2 , Table 3.12 gives the number of data points within the region

of curve fitting. The two tilt method was utilized, the total time of

both tilts being recorded in column 3 of Table 3.12.

The results tabulated in Table 3.12 indicate that the accuracy

of the PSD system is excellent. The observed error (column 5) in the

mean stress is very close to that predicted by the counting statistics

(colt 6) alone. Thus the sin2$ method is not needed if the ‘two tilt ’ 

- 

~~~~~~~~~~~~~~~~~~~~~~
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j

TABLE 3.l2

PRECISION OBTAINED WITh A POSITION SENSITIVE DETECTOR
(Two-Tilt Method)

Number of Time Stress Observed Error Statistical ErrorSample Data Points (5cc) MPa (psi) ~~a
T
~~~ ) MPa (psi)

1090-1 15 100 23.89 (+ 3465) 6.34 (* 920) 4.48 (± 650)

1045-1 31 100 198.6 (—28800) 5.72 (± 830) 4.34 (± 630)

1045-3 87 200 718.4 (—104200) 7.38 (*1070) 6.87 (~ 995)

1045-2 141 200 412.3 (-59800) 9.20 (±1335) 9.69 (±1405)

TEA 0-3 196 200 22.75 (4. 3300) 13.03 (±1890) 13.86 (*2010)

- - 
-~~~~~ f- -,



70

method is accurate (see Sec. 1.2). Obtaining many data points (column 2)

within the region of parabolic fit eliminates the necessity for sub-

tracting background. The best precision obtained with the normal

detector comes from using the sin2
$ method and subtracting background.

The time for the final data collection for this procedure (not including

the 60 seconds or so taken during the preliminary scans ) is given in

Table 3.11 and can be compared with the total t ime of analys is using

the PSD in Tab le 3.12. This demonstrates the remarkable speed of the

PSD, even when only a normal X-ray tub e is used .

3. 7 STUDIES OF SAIIPLE DISPLACEMENT

Perhaps the largest single source of instrumental error associated

with the X-ray measurement of residual stresses is sample displacement.

In focusing geometry, if the effective diffracting volume is not located

at the center of the diffraction circle, there is a relative shift

between ~‘0° and $u’$° given by Eq. 3.6. The error due to a given

displacement is dependent on R~’, th. position of the receiving slit.

The equation is valid for both the psrafocusing and stationary-slit

techniques and is experimentally tested below. The parallel beam

technique diseuued in Sec. 3.2.2 does not employ a receiving slit to

defin, the angular relationship between the primary and diffracted

beam. Th. angular relationshi p depend. solely on the angle between the

parallel Soller slits mounted 900 to the diffractomster plane and does

not depend on the position of th. aemple, thereb y elimi nating the error

caused by sample displacement.

The effec t of sampl. displacement was tested for each of the

“beam Optics ” techniques . The positioning of the sampl. was accurate

— -—---—

~
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t
L to within * .0025 me. Three replicate measuremm~ts were made at each

sample position up to a total displacement of ± 2 in increments of

.5 me using the automated residual stress program. The 1045-1 sample

was utilized because it gave a reasonably sharp profile. The residual

stress was measured using the two tilt procedure and a three point

parabolic fit without background correction.

The parallel beam method was obtained by placing two setsof high reslution

Picker Soller slits together in-both the incident and diffracted beams and

rotated 900 to the usual position. This yielded a divergence of .5°

similar to the values used in .Japan.~
27
~ Such slit systems were placed

in the primary and diffrac ted beams.

The error for both the parafocusi ng and stationary slit methods

predicted by Eq. 3.6 are drawn as solid lines in Fig. 3.7. The experi-

mental data given in Pig. 3.7 for each technique closely follows the

predicted error. The stationary slit technique is seen to be less

susceptible to sample displacement by almost a factor of five over the

parafocus ing technique.

The parallel beam geometry is seen to be insensitive to reasonable

sample displacements in agreement with Aoya , et al.~
68

~ lOf course,

if the s pls is displaced far enough , the diffracted beam vill not fall

completely in the receiving Soller slits introducing a large error.)

The parallel bean technique decreases the intensities by about ¾ and

broadens the dt ff ~~ction pr-of ii.. This instrums atal broadening is most

important on samples exhibit ing sharp profiles when focusing geometry is used .

Thi reproducibility or precision øf the parallel beam technique was tested .

H *A negative displacement is defined as being towards the back surface of
the sample.

—- - s  —--——-------—---- --—- 
-
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The data for Table 3.13 was acquired for a fixed time to give a statis-

tical error c lose to that in Table 3.8 using the two tilt procedure and

a three point fit (no subtraction of background). The precision for

the 1045-I is twice as poor but approaches that of the focusing techniques

for samples having broad profiles. Th. time of analysis is 1/3 longer for

approximately the same statistical error for all specimens.

3.8

A review of the important biasing factors in the residual stress

measurement by X-ray diffraction techniques has been presented. The

effect of sample displacement has been treated experimentally verifying

the formulae used to predict this error. It was seen that stationary

slit ‘beam optics’ is less suacsptible to sample displacement than

parafocusing geometry and has less instrumental broadening than the

parallel beam method. This indicates the stationary slit method is the

best ‘beam optics ’ arrangement when applied to X-ray residual stress

measurements.

A complete statistical analysis for the error in stress due to

counéing statistics was presented. The analysis was made as general as

possible and includes unlimited data points in the peak region and use

of either two tilt or ‘5th $ ‘ procedures.

It has been shown experimentally that the three point parabola

(which is traditionally used because of its simplicity) is justified

only when th. region of curve fit t~ determined accurately. If the

background lsve l is high compared with th. peak intensity, it must be

subtracted prior to determining the r.$ion of fit using the ‘top 15 pct’

rule. Even if this is accomplished, a three point fit is not very

precis, when broad profilee at. involved. By using multiple dat, points

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _  
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TAILE 3.13

PRECISION 1$ INC PARALLEL BEAM GEOMETRY
(Two Tilt Procedure - Three Point Parabolic Fit to Peak)

(10 Measurements)

Sa ~ 
Breadth Time StreSs )bserved Error Statistical Errormp • (°20) (see) MP. (psi) )~s (psi) MPI (psi)

1045—1 2.1 500 -161.0 (- 23360 ~l5.50 (±2243) * 4.03 (* 585)

1045—3 3.8 1300 — 702.6 (-101920 ~16.55 (±2400) ± 5.03 (* 730)

1045—2 5.3 1300 -411.3 (— 60525 39.68 (±4450) ± 7.07 (±1025)

ThA 0—5 6.0 1300 + 11.6 (-p 1682; 24.92 (±3615) ±16.82 (±2440)

_ _

- _
~~

-_
-
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and a least-squares parabola on broad profi les the reproducibility of

peak location can be improved by a factor of three without increasing

the total time of data accumu lation . The practical necessity of using

a computer to perform the least-squares analysis detracts from using

multiple data points , homev.r, when complete automation is available

this type of analysis is worthwhile. In addition, the practical advan-

tags of multiple data points increases the appea l of a position sensitive

detector where such data is accumulated simultaneously.

Surprisingly, when only a three point fit is uSed, the sin2$

method is shown to be more r,produc ib la than the two tilt method even

if the total time is fixed in both procedures. C1.arly, if true

automation is to b~ acb i•v.d with optimum procedures, a least-squares

parabola to define the peak or the sin2$ method of analysis must be

used.
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defining the peak of the profile, in contrast to the c~~mon three point parabola
used in the United States , the center of gravity used in Germany or the middle of the
half-maxiu intensity used in Japan. Also, for a standard diffractometer , the .in2$

- technique is more precise than the usual two tilt method even when the total time of
analysis for each is identical. In studying various beam optic arrangements , it was
found that the stationary slit (non- focusing method) offers the best system in tha t

- th. asured stress is only mildly sensitive to sample displacement (— 7 MPa for .25
me displace.ant) and introduces very little instrumental broadening. The operational
principles and use of a position sOnsitiv. detector (PSD) for the measurement of rest
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