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EVALUATION OF PROCEDURES IN AUTOMATED RESIDUAL STRESS MEASUREMENTS

M. R. James and J. B. Cohen
Northwestern University

Evanston, Illinois 60201

ABSTRACT

The measurement of residual stress by the X-ray diffraction technique
involves determining the lattice spacing of a crystallographic plane at
different inclinations of the sample and relating the change in the spacing
to a stress on the surface of the specimen. The sources of error in
determining the residual stress are investigated in this report. A short
review of the fundamental principles of the measurement is given. The
important instrumental and geometric factors contributing to errors in
the measured stress are presented. To account for random errors in the
data accumulation on the‘meaaured otrels,'n complete statistical analysis
based on a least-squares parabola is given.

Employing an automated diffractometer (see T.R. No. 16), an extensive
investigation of the precision of the residual stress measurement was
made to evaluate the various procedures offered in the literature to
optimize the automation. The results indicate that a multiple least-
squares parabola is the most reproducible method of defining the peak of
the profile, in contrast to the common three point parabola used in the
United States, the center of gravity used in Germany or the middle of the
half-meximum intensity used in Japan. Also, for a standard diffractometer,

the -1n2' technique is more precise than the usual two tilt method even
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when the total time of analysis for each is identical. In studying
various beam optic arrangements, it was found that the stationary slit
(non-focusing method) offers the best system in that the measured stress
is only mildly sensitive to sample displacement (~ 7 MPa for .25 mm dis-
placement) and introduces very little instrumental broadening. The
operational principles and use of a position sensitive detector (PSD)
for the measurement of residual stress has been described previously (see
T.R. No. 11). The PSD simultaneously collects data over the entire
diffraction profile enabling the use of a multiple point parabola to
define the peak without having to step scan the profile. Extensive
testing is described which showed that this detector could achieve a
speed of analysis heretofore never obtainable in the measurement of

resifual stress,
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CHAPTER 1
The X-ray diffraction procedure for determining the surface residual
stresses is well establiished. 7 mach family of identical planes of
atoms in a polycrystalline material has a constant interplanar spacing,

d which, when acted upon by an elastic stress, changes to a new value

hks
dependent on the direction and magnitude of that stress. A change,

Adhk:’ in the interplanar spacing will cause a corresponding change,

49, in the Bragg angle of diffraction by the family of planes. The strain,
Ad/d, can be measured by the change in the diffraction angle and the

stress can be obtained from the strain with formulae derived from linear
isotropic elasticity theory.

The principal stresses e, and Gy the surface stress, qv, and the
ce-vasponding strain are shown in Fig. 1.1, The term y is the angle
between the surface nofmmi >~4 the direction of strain being measured.
Application of isotropic elasticity theory yields i:> following relation-
ship between the ptiaciélo stresses, surface stress and measured strain,

h .(‘0).

e
- 2o siaty - ¥ @, +0, =-Rui_2 (1.3)
€23 E ¢ toge e d ! .

Th thas oquft.i.o‘ta. d'. " ‘10 the lattice spacing in the direction defined by
9 and § (see Fig. 1.1) and do is the interplanar spacing of the stress
free state.

Equation 1.3 forms the basis of X-ray stress analysis and is utilized

primarily in two msthods; the 'lilz" and the 'two tilt' technique.
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FIGURE 1.1 Illustration of the symbols used in X-ray stress
: J ‘b.u mto d &




(A) 'Sinzy' Technique

In this method several values of lattice strain are measured, each
at a different y tilt of the specimen. It is possible to determine any
surface component of stress from a least-squares straight line for the
lattice strain as a function of sinzt.

From Eq. 1.3:

; * d¢ -
7y " .y 2 - (1.4)
T o 8in ¥

In terms of the.interplanar spacing it follows that:

' ad
o™ "w -'--—!a-g- (1.5)
d G d sin'y

Because several values of d, sre determined, errors resulting from
random fluctuations of d¢ are minimized. Four or six § tilts, taken
]

in equal increments of sin ¥, are normally utilized.

(B) 'Iwo Tilt' Technique

Isotropic elasticity theory predicts the strain 'q:. ' to be linearly
dependent on unzf, a8 in Eq. 1.3. When this holds true only two incli-
nations of the sample are necessary to determine the surface stress. The
tatctpuin: spacings are dcco;ﬁnﬁd at y=0 and at an inclination of y=y.

The forsula relating the stress to the strain is then given by: )

SR g or e ori3n
s I e e sne i




The term (E/1+v)'1/linzt is often combined into a calibration constant,
K, wvhich can be experimentally determined for a particular combination
of y and reflecting planes in a given material. Experimental determination

of K is desirable because bulk values of E and v are not necessarily

. applicable. ()

It is unfortunately common practice to replace (dO fdo)/do in Eq. 1.6
?

by the approximation -co:e-s(zeo‘ze' ) on the basis of Bragg's law to

v
obtain & formula in terms of the peak position 29:

s r E 1
= L] o | omm—] e o -] 8 . 29 .ze 1.7
ot 1 GR) a5 500 )+ (26,-20.) .

where 20 and 20' are in degrees. For small peak shifts this does not
o

induce much error. The stress constant then becomes:

1, Ty e i
k=3 15 - (MD s L §(0,40,) (1.8)
¥
and
OQ - ‘ A2° . ”
: CHAPTER 2

The methods of residual stress measurement by X-ray diffraction
- Just described are based on the fundamental equation (Eq. 1.3) derived
by isotropic elasticity :hioty and assume homogeneous deformation. These
methods have been shown to sometimes yield snomalous results when applied

to oi-lu vhich have been plastically deformed uﬁiuuuy in r.cnuon(“’w)
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or by rollins.(lg’zo) The snomalous results are not true mechanical
mAcrostresses and may be attributed to & number of ctul.l.(ll)

Recent work by Marion and Cohen(19) has led to the quantification
of a deformation model to account for one of the anomalies in the X-ray
technique of residual stress measurement which occurs after plastic
deformation. The classical formulae around which all X-ray technique of
residual stress analys;s (Eq. 1.3) predicts a ;}g’ar dependence of d@:t
on linzy. A non-linear dependence of the X-ray measured strain on
stnzy has been reported for a number of materials which have undergone

(21-22)

plastic deformation due to elongation or rolling.(lo) Such

deviations from the theory has prompted questions concerning the
validity of the X-ray measurement in such cases. Marion and Cohen(lg)
attributed the non-linear dependence of d on sinzv to the relief of
microstreins in subgrain interiors which are oriented to be relieved by
s dynamic recovery process proposed by Weidemann et .1.(23,24) This
produces & non-random distribution irn the interplanar spacing which is
related to the texture developed during the plastic deformation process.
The authors developed & distribution function, £(y), describing the
variation in interplanar spacing at each § inclination, and incorporated
the non-linear behavior of d vs, oinzy into the general formulae for the
X-ray method of residual stress analysis. By measuring both the inter-

planar spacing, and the distribution function, f(y), as a function

" ‘.o"
of sin" ¢, the non-linear dependence of d may be separated from the linear

component through the following formula:

2
dgy * Guudp V) + 4, &Y ogtin'y + dy . @.1)
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The term d Eas corresponds to the lattice spacing in a region that is

fully relieved and d. the lattice spacing in a region that has not relieved.
The distribution function describes the variation of relief with orientation
and is calculated by determining the texture in the region of the pole
figure for which the residual lattice strain is measured. This is most
easily accomplished by measuring the integrated intensity of the diffraction
peak of interest at each ¢ inclination and normalizing the distribution
function by setting £(§) = 1 at the maximum value of the curve of
integrated intensity. The correlation between the change in the distri-
bution function and the oscillations in d vs. u.nz' is shown vividly in
Fig. 1.3.
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FIGURE 1.3

(309)

- from Marion
a) d vs. sin®y for Armco iron specimen;
reduced 69 pet by rolling; 211 peak

-« with CrK..

b) Texture for taﬁplc described in (a).
£(y) represents the normalized texture
distribution function.
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CHAPTER 3

AN EXAMINATION OF THE ACCURACY OF X-RAY RESIDUAL STRESS ANALYSIS

3.1 INTRODUCTION

The confidence in any measurement depends on a critical consideration
of the sources of error contributing to the overall accuracy. The
accuracy may be separated into two components;

1) the precision or closeness of agreement among repeated

measurements, and

2) the bias or difference between the mean of the repeated

measurements and the true value.

Many factors are known to contribute to the bias of the residual
stress measurement by X-ray diffraction techniques. The factors are
broadly classified by Jatezak and Boehn(zg) into three categories,
equipment and instrumental factors, technique or geometrical factors and
specimen factors. The most important individual errors are well treated
in the literature and a summary is presented to outline the source and
magnitude of each contributing factor. Experimental tests are described
to check the theoretical treatments of the nol:\iuporilnt error, that of

sample displacement. These treatments account for correctable errors in

‘the messurement but do not delineate the potential accuracy of the technique

or apperstus.

The precision of the X-ray residual stress measurement relies on
reproducible dttot-mnition of the peak shift. Numerical methods of peak
location are mandatory f@t fully computerized control of the measurement.

The pesk may be found by fitting a smooth curve to the experimental data.
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Such a curve cannot give an absolute measure of the peak location as the
data is subject to random errors. These random errors occur because the
diffracted intensity is measured at a finite number of 20 positions and
every me&surement is subject to a statistical counting error. Statistical
treatments for different numerical methode for measuring line-profiles

can be found in the literature, These include the centroid,(6o’61)

mediln(60’62)

and geometrical peak.(63)* The peak position, located by

a least squares parabola is shown here to be the most precise method. A
statistical analysis based on the least-squares parabola is extended here
to the determination of residual stress. The region of fit of a parabola
to the diffraction profile is discussed. The commonly used three point
parabolic fit is examined theoretically and experimentally. A test on the
effect of the number of data points is made to determine if the three
point fit is actually the optimum procedure for recording data. It is
shown that for fixed total time of data accumulation, the observed pre-
cision from replicate tests is improved by using many data points,
especially for broad profiles. The three point parabolic fit is adequate
only for samples exhibiting a sharp profile.

The precision of the 'two tilt' and 'ainzv' stress techniques are
tested under identical conditions so that comparisons on the relative
accuracy of each method can be made. The 'sinzf' method is shown to
have a greater precision that the 'two tilt' procedure when a fixed

total time of data accumulation i{s used. In addition, the precision of

*Any consistent feature of the line profile may be utilized to define
the reference point from which the position of the profile is based.
Three common features in residual stress analysis are the centroid,
midpoint of the half-intensity breadth value and the peak. The posi-
tions located by each method are not identical but must be reproducible.
Comparisons of the reproducibility of each method are given in Sec. 3.3.2
and show that a least squares parabola exhibits the best reproducibility.

s S s s il ...
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the residual stress measurement using a position sensitive detector is
tested. Because many data points are obtained in the region of curve
fitting, the PSD is shown to be a both rapid and precise means of
accumulating the data. A least-squares parabola fit to the region of the
peak of the diffraction profile obtained with the PSD is shown to be the

most reproducible means of locating a reference position on the profile.

3.2 FACTORS INFLUENCING BIAS IN THE MEASUREMENT
There are three broad categories into which all factors influencing
the bias can be classified: instrumental, geometrical, and specimen

factors. A detailed list compiled by Jatezak and Bochn(zg)

is reproduced
in Table 3.1.

Many of the sources of error are dependent on either the capability
of the experimenter (alignment, sample position) or operating conditions
(electronic stability) of the equipment and, as such are unpredictable.

An explanation of the predictable factors, their effects and correction

terms are given below.
3.2.1 Angular Dependent Intensity Factors

(A) Lorentz-Polarization Factor
This term combines two 20 dependent intensity corrections, the
lorentz factor and the polarization factor, which arise from the geometry

of the diffraction proccon.(ss)

The Lorcgt: factor for a powder can be
considered as two independent factors, oni arising from the number of
particles in the sample which are in orientation to contribute to a
particular reflection and the second arising from the fraction of the

reflection ring which is detected. The first factor is independent

g S XU AREEE
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of the detection geometry whereas the second factor is dependent on the

(64)

acceptance function of the detector and the velocity of the reflection

(33)

through the Ewald sphere. The polarization term arises because X-rays
are polarized after being scattered or diffracted, the amount of polari-
zation depending upon the angle through which it is scattered or diffracted.

The conventional correction factor (combining the Lorentz and polarization

factors) for filtered radiation and point counting, designated LP, is: M
1 + cos20
LP = DRs 3.1
sin 0

The measured intensity need only be divided by Eq. 3.1 prior to processing.
Cooper and Glaupool(“) have shown that in some cases, notably
vhen the axial (perpendicular to the plane of the diffractometer) half-
height of the detector aperature is large and the scattering angle
becomes small (9B - 0°) or large (0B = 90°), the curvature of the dif-
fraction cone becomes important. In the traditional derivation of the
Lorentz factor, the curvature of the cone is ignored. For 20 values
greater than about 9° and less than 171° the conventional Lorentz factor
is in error by less than 1%, as calculated by Cooper and Glasspool.
This small error combined with the fact that in peak location measurements
only the angular dependent changes in the correction factor are important

make the conventional Lorentz factor quite satisfactory.

(B) Absorption Factor
The path length of the primery and diffracted X-rays within the
specimen differ when the specimen is tilt by y. For a flat specimen the

measured intensity is corrected for absorption by dividing by: g
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ABS = 1 - tan § cot 0 (3.2)

The angle § is defined as positive when the normal to the sample moves
towards the X-ray source. Although y is a polar angle, its sign must

be known in order to calculate the correct absorption coefficient.

(C) Atomic Scattering Factor

The intensity of the diffracted beam depends in part on the square
of the structure factor. The angular dependent part of this term, denoted
the scattering factor f, should be accounted for by dividing the intensity
by fz. The atomic scattering factor is a function of the atoms comprising
the crystal, the diffraction angle 0 and the wavelength of the radiation
and values are published in the International Tables for X-Ray Crystallo-

grlphy.(Gs)

(D) Temperature Factor

The Debye temperature factor is the reduction in intensity due to
thermal motion of the lattice. Atoms in a crystal vibrate due to temperature
so that at any instant corresponding atoms are not separated by exact
multiples of cell dimensions. Scattering from two such atoms will not be
exactly in phase resulting in & reduction in the structure factor. The
correction for this reduction, called the temperature factor, is slightly

dependent on sin O and strictly speaking should be accounted for.

‘Over the renge of 154°20 to 158°20 where the most commonly used
peak for stress analysis of steel occurs with c:,‘ radiation, Short and

Bvian
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calculated the change in the intensity factors. Their values
are reproduced in Table 3.2 and indicate that the Debye temperature factor
is very small in relation to the others. For generality, the Lorentz-
polarization, absorption and scattering factors have been included in

the sutomated residual stress analysis program developed in this study.

3.2.2 Factors for "Beam Optics"
Beam focusing depends on the geometric arrangement of the X-ray
path and on the horizontal and vertical divergence of the beam. The

important methods of 'beam optics' are discussed below.

(A) Variation of the Focal Point with 0 and v
There are two methods of beam focusing used in X-ray stress measurement,
the parafocusing method and the stationary method. An excellent study
on the errors associated with each method is given by Zantopulos and
Jatczak. ©n
In the parafocus technique the receiving slit and/or detector are
moved along a radius of the goniometer toward the specimen to fulfill
the changing beam focusing condition when the inclination, §, of the
specimen is vcri.d.(26)
The distance from the sample to the focus position is

given by: M

+ _(90-0
R = Ry 33’-“-—-}%—31“'“ et =0 (3.3)

vhere loc is the goniometer radius,

~In the stationary method the receiving slit and detector remain on

‘the goniometer circle at sll times thereby deliberately not fulfilling
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TABLE 3.2

Factor

154°260

158°20 Change
Lorentz (1/8in0) 1.0533 1.0378 - 1.47%
Polarization (1+cos>20) 1.8078 1.8596 + 2.87%
Absorption (y = 0°) 1. 1. 0
Absorption (y = 45°) 0.7691 0.8056 + 4.76%
Atomic Scattering (f2) 1.3503 1.3322 - 1.34%
Temperature 0.8653 0.863% - 0.22%

* From Short and Kelly.

e lin .

(28)
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focusing conditions. A sacrifice in intensity is made but the complication

of moving the receiving slit and/or detector is avoided. The Japanese
use a version of this technique described as the parallel beam method.
Using long Soller baffles or plates perpendicular to the diffractometer
plane rather than in the usual horizontal position, the X-rays are made
to be highly collimated parallel beams which do not have a focal point.
The angle of diffraction is uniquely defined by the angle between the

primary and diffracted beam (see Fig. 3.1) and as such a receiving slit

is not necessary.

(B) Horizontal Beam Divergence
In the parafocusing method, true focus demands that the sample

surface lie on the focusing circle which is given by:(7)

Rpc = Rge/2 sin (0 + ¢) (3.4)

True focusing demands a continuous change in the curvature of the specimen

during 0 and y angular movements. Since this is generally not practical
an error will arise which is dependent on the curvature of the sample
and the horizontal beam divergence. Mhrton(so) has derived l.iilple
formula to estimate the error in the peak shift due to beam divergence.
Defining o as half the angular beam divergence the peak shift in degrees
20, 5(420)'D, between the §y = 0° and y = ¢° inclination is:

8(a20,,) = AZO)'_O - Aza)._. (3.5)

(29)
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DETECTOR
X-RAY
TUBE
SOLLER SLIT\\\
‘\“\ SOLLER SLIT
\\

FIGURE 3.1 1llustration of parallel beam geometry. The
angle 20 is uniquely defined by the angular
relationship between the two sets of soller
slits and is independent of the sample position.
The dashed lines represent other sample
positions that would not affect the angle of

diffraction .
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R

-&Q-.ic.m. rso—.iml cos = - f
where 520' - Rp' 2 LCOI(-0+'-¢) 'col0w+t-v)] and @ = 90 -~ 0.

The term Rp' is given in Eq. 3.3.
Because there is a distribution of intensity between the central
beam and the left and right portions, the actual peak shift will be less

than 6(529)BD. It has been nhown(31)

that the centroid of the diffracted
beam approached a limit of 1/3 of the Q(AZO)BD value for the §, o and 20
values used in Ref. 31. (The centroid was determined by a computer
iteration method in which the divergence angle, o, was divided into 1000
parts). Therefore, as & conservative estimate one can use 1/2 of the

value calculated in Eq. 3.5. An estimate of the magnitude of this

quantity is given in Table 3.2.

(C) Vertical Beam Divergence

Grains that have planes slightly tilted from that of the diffracting
position for a parallel incident beam may contribute weakly to a pesk
giving rise to an apparent peak shift. This has been thoroughly treated

by Cohcn.(66)

The peak shift depends on the amount of texturing and the
slit system and is difficult to determine exactly but is quite small.

An estimate is given in Table 3.2.

In the parafocusing and stationary slit techniques systematic errors
are produced by focusing aberrations during diffraction due to imperfect
specimen contours and beam divergence as shown in Fig. 3.2. The photon
rays are in a divergent beam and diffract from a sample which is not

curved to the focusing circle so that the point of focus in Fig. 3.2,




FIGURE 3.2

(b) (a)

Departure from ideal focusing condition.
The intersection of the left, L, right, R,
and center, C, rays are shown in b. The
focus 18 not a point for a sample with non-
ideal curvature.
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is not really a point but simply a converging area for the beam which

k(31) studied these

causes a focusing aberration. Zantopulos and Jatcza
systematic errors by analytically describing the beam path for any
particular ray within the divergent beam from the source to the detector.
By dividing the divergent beam into 1000 such rays they calculated the
centroid of the rays at the detector for both 'beam optic' techniques
using specimens of varying curvature. They concluded the focusing error
due to imperfect specimen contour and horizontal beam divergence for the
stationary slit method yields about one third the error of the para-
focusing method &t 20 = 156°; the discrepancy increasing for smaller
29, 1In addition, the error when using a beam divergence of 1° on flat
samples or samples having reasonable curvature, will be less than 16 MPa
(2.3 ksi).

One factor not included in the analysis by Zantopulos and Jatczak
is the ability to accurately position the receiving slit when the para-
focusing technique is used. The exact position along the radius is not
critical because, as shown above, the focus is not actually a point but
an area of convergence of the rays. The critical positioning comes
about in moving the receiving slit exactly along the radius. Any
deviation will cause an apparent peak shift because the angular relationship
between the direct beam (0°20) and the receiving slit changes.

Using an automated receiving slit bracket and an asutomated réoidunl
stress progrud‘raplicatc measurements were carried with and without

receiving slit movement on & 1045-1 sample which had a reasonably sharp.

211 diffraction profile. Using Cr‘w<rndtuuion. 15 repeated measurements Vere made

using & three point parabolic fit io-lctf-o the diffraction peak and a

*
The sutomated residusl stress program is described in Chapter 4.

N T Bidngy
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statistical counting accuracy of + 1.72 MPa (+ 250 psi) an average
value for the stress of -164.1 MPa (~23790 psi) for the parafocusing
geometry and -169.8 MPa (-24636 psi) for the stationary slit method was
obtained, While the results are remarkably similar, the observed error
of one standard deviation from the mean value was + 3.6 MPa (+ 520 psi)
and + 7.4 MPa (+ 1080 psi) for the stationary slit and parafocusing
geometries respectively. The repositioning of the receiving slit was
very accurate and introduced only & small random error of about + 4 MPa
(£ 600 psi). The bracket uses a worm gear and dovetail slide to move
the receiving slit and is considered very sturdy. Other, less perfect
systems such as manually repositioning the slit, are likely to cause
larger random errors in the measurement.

The effect of systematic errors for the parallel beam method has

(67) and Aoynl.(68) The advantage

been studied by Fukura &and Fujirwara
of this method is that errors due to sample displacement are minimized
enabling simple sample alignment. However, there are several points that
are not yet clear. The intensity provided by the parallel beam method is
less than with the focusing methods and instrumental broadening is zreater

which could combine to decrease the precision of the method. These

points are examined experimentally in Sec. 3.8.
3.2.3 Instrumental Errors

(A) Sample Displacement
The largest otpglo‘caurec of error is displacement of the sample.
1f the effective diffracting volume is not located at the center of the

diffraction circle, there is & relative shift between y=0° and y=¢° as

¥, RS s
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(66) 69)

seen in Fig. 3.3. This has been treated by Cohen and French(

who derive a formula to calculate the peak shift. Denoting AX as
the displacement, the equation for the error in peak shift at two tilts

in degrees 260 is:

8inf 1

360 1
6(A20)SD = o AX cosB [i—cz - m., (3.6)

where RP‘ is given in Eq. 3.3 and R, is the goniometer radius. The

GC
peak shift due to sample displacement has been experimentally measured

in this study (see Sec. 3.7) verifying Eq. 3.6 for the parafocusing and
stationary techniques,

(66)

Cohen suggests a simple and precise method to check for sample

displacement on a diffractometer. For cubic structures Cohen showed:

Snke% _ | A% cos’® o
a R 8ind :
o GC

where e is the extrapolated lattice parameter, a the lattice parameter

hks
at a peak hki, AX the displacement of the sample off the true center of
the diffractometer and RGC the radius of the goniometer circle. From a
plot of LRWRLE 22377 the slope equal to -noAx/RGc can be obtained and
the displacement calculated., A positive slope means the sample is
diapincod too far back (i.e., towards the back surface of the sample).
One must only determine the angle of three or more Bragg peaks and form
a plot-?f ahﬁ‘wverluo'tho function colZO/lino. This method of alignment
is incofp&ratcd in the automated residual stress program used in this
study; a oﬁbbprogrc- of the package automatically determines the peak

(n

positicns and calculates the displscement, AX, and repositions the sample.

= SAEU SRS N
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(B) Effect of y Axis Missetting

The axis of inclination of the sample, §, must be coincident with the
29 axis or a peak shift will result as shown in Fig. 3.4. Hnrion(ao)
has derived this error and calculates the peak shift in degrees 29

to be:

~ =360 .., 8in® cosd (l~cosy)

where AX' is the effective displacement. This source of error can be
important on diffractometers employing an attachment to give the y
rotation. On the Picker_diffractomecer the 26 and w axis rotate about
the same shaft so no missetting is possible. However, the ¢ axis of
a G.E. %-circle was also utilized occasionally. The missetting of the
¢ axis with respeci to the 20 axis was uuured* to be .05 mm giving an
effective peak shift of .005°20 for a 45° tilt (approximately 3 MPa
(435 psi) for Fe).

An estimation of the systenntic error is calculated in the automated
residual ag;gnl proérgn. This includes the error due to horizontal
beam d(virjbﬁcc.-laﬁplc displacement and y axis missetting, which are

the three major errors (see Table 3.2).
3.3 METHOD OF PROFILE LOCATION

3.3.1 1Introduction
Any consistent feature of the line profile may be utilized to

define a reference point from which the position of the profile is based.

*By mounting a sample on the X-circle, both the ¢ axis of the X circle or
the w axis of the Picker diffractometer could be used to accomplish the
¢ tilt, The missetting of the k circle yas obtained by comparing
the peak position after rotating the sample using each axis 1or the tilt.

,";.L'.M_\v., Ui
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The position located by any such method need not correspond with

that defined by any other as long as the reproducibility is sufficient

for the measurement. In residual stress measurements using X-ray diffraction,

the profile has been traditionally defined in the U.S. by the apex

of a parabola fit to the top region of the curve. Qualitatively, this
gives equal weight to all observed data points to define the peak
location. It has been nuggcltod(70) that the center of gravity or
centroid gives a more reproducible location of the peak, however, data
was given only for the 422 peak of an annealed gold powder which is a
well defined peak having a good peak to background ratio. In Japan,

R ETH ot e the

the half-value breadth and quarter-value breadt
adopted feature to represent the profile position. These involve using
the midpoint of a chord drawn through the profile at a particular
height. Theeé three methods, the peak, centroid and half-value breadth
are compared for reproducibility in Sec. 3.3.2. The peak is shown to
be the most reproducible because the background does not need to be

determined since only data near the peak and not across the whole profile

is used. This implies that some method must be used to define the

region of parabolic fitting and two such methods are compared in Sec. 3.3.3.

The formilae for a least-squares parabols is derived in Sec. 3.3.4.

3.3.2 Comparison of the Precision of Various Measures of Profile Location

For the X-ray stress measurement, the determination of the diffraction

anjle by any reference point on the profile is sufficient because the
calculation of stress is bloid only on the relative change of the dif-

fraction angle. The ptdctotou‘of_ghpﬁcoatrotd. half-value breadth and

VISR L5 T y o
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pcak* positions are compared using & position sensitive detector (PSD)
to collect the data (see Sec. 2.5). The PSD system collects data
across the entire diffraction profile simultaneously so that the data
for any reference position can be obtained in the same time as for
any other method.

In the half-value breadth method shown in Fig. 3.5, the diffraction

angle of the relevant point is determined by the mean of two angles

given by:

So = ¥y + X ) (3.9

where xﬁ is the intersection of the profile curve and the straight
line parallel to the background at half of the pesak intensity (excluding
the background).

The centroid or center of gravity of a diffraction profile is

defined as: (74)

(20) = 2P LA0420 (3.10)

Baucum and A-ou"o) suggest the centroid can be located with better
precision than the peak position of the profile, although they did not
meke & direct comparison. The method of centroid calculation given by
Bluéun and Ammons is based on Simpson's rule for a parabolic approximation
to the area under a curve. Referring to Fig. 3.6, the centroid, denoted

*The peak may be dsfined using & protile, {72 Gayssten distrivution,
2nd, 3rd or 4th order polynomials(??) or a parebola.(26) e p‘ubol’
vas chosen to define the pesk because it has such general acceptance ()
for stress measurements.

e R SR, W e BT R -
4 » 4y

(73)
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FIGURE 3.5 Calculation of half-value breadth.
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INTENSITY

FIGURE 3.6 Centroid calculation
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X is:
k
(i‘
LM
A
k-5 (3.11)
Iz
1=1
X, +h
b sl ke [1x-masrx+1cx +h) |
b | gt 3 1 i g+ |
i
X +h
and M = F xropex = B [(x <h) I (X, -K)44X, I (X, )+(X,+h) T (X +h)} :
B 3 L& 1 {1 X +Xy i
i

h represents the increment between data points and

. (no. dlt; points)-3 + 1 (3.12)

since three data points are required for the first increment and two
for the rest.

Comparisons of the reproducibility of the least-squares parabola
(see Sec. 3.3.4 for the formula), half-value breadth and centroid were
made on the 1090-1 and 1045-2 sampies using the Crko 211 peak. The

automated residual stress program described later for the PSD was

modified to include the calculations required in Eq. 3.9 for the half-
value breadth and Eq. 3.11 for the centroid. A linear background was 1
determined by fitting a straight line through 50 data points, 25 on
each side of the tails of the diffraction profile. The intensity

corrections (Lorentz-polarization and absorption) were made after the

~ background had been subtracted and prior to determining the centroid

e et it
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and position of the half-value breadth. The least-squares parabola was
fit to the top 15 pct of the profile without first subtracting the
background.

The results of the ten replicate measurements are given in Table
3.3. The two-theta position represents the average calculated value
over the ten measurements with one standard deviation from the mean
being given in parenthesis. For the 1090-1 sample, having a sharp
diffraction profile and low background, the centroid actually has a
smaller variance than either of the other two methods. For the 1045-2
sample which has a poor peak to background ratio, the parabola has the
lowest variance. For both samples, the half-value breadth gave the
poorest reproducibility.

In X-ray residual stress measurements the peak to background ratio
is usually poor, especially for hardened materials, In the centroid and
half-value breadth reference points, the value is obtained from a
truncated portion of the profile determined by the background subtraction.
Thus, the background subtraction introduces an error (often referred
to as the truncation crror(62)). For the least-squares parabola, even
if background is subtracted in determining the region of curve fitting
(necessary only when a few data points are obtained, see Sec. 3.6.3)
it does not affect the precision because the entire profile is not used

minimizing the truncation error.

3.3.3 Region of Parabolic Pit

The region in the vicinity of the peak that can be used for the
perabolic fit is not well defined. If {t {s assumed the true profile
can be fit by & quasi-Lorentztien function (which {s now becoming quite

ATt R T,
bl

P A —— iy
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TABLE 3.

3

PRECISION OF VARIOUS MEASURES OF PROFILE POSITION
(10 measurements)

Time
(sec)

%
FWHM

(°20)

Half-Value Breadth
(°20)

Centroid
°20)

Parabola

20)

1090-1
1045-2

50

100

.45
3.45

156.149 (+ .021)™"

155.336 (+ .064)

156.096 (+ .011)
155.396 (+ .085)

156.186 (+ .016)
155.413 (z .020)

*
FWHM is the full width at half of the maximum intensity.

**‘rhe term in ( ) represents one standard deviation from the average
position over the 10 measurements.
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popular in profile fitting powder patterns for structure annlysin"s)),
Thomsen and Ylp(62) have shown that a parabola is valid for V less than

.32 where:

2(29p - 20m1n)

w .

V= (3.12)
Here W is the full width at half maximum height of the diffraction pro-
file, the peak position is 20p and the minimum value of 26 lying on
the parabolic curve is zomin' While being theoretically justified

Eq. 3.12 still depends on the profile being symmetric about the peak.

Koistinen and leburger(26) suggest that data points for the
parabolic fitting should be chosen which have intensities at least 85%
of the maximum intensity. This rule has gained wide acceptance in X-ray
residual stress analysis although it is purely empirical.

The'top 15 pct' rule is commonly used in X-ray residual stress
analysis because it is simple to apply. Only data near the top region
of the peak need be recorded and processed. The formula given by
Thomsen and Yap requires knowledge of the breadth of the peak at half
maximum intensity which demands accumulating data across the entire
profile and determining the background.

The two rules for judging the region of the parabolic fit have
been applied to experimental data, Table 3.4 tabulates the peak
determined from a three point parabolic fit in column 4 and the minimum
26 setting to be on a parabola, as calculated by each method in the
next two columns., Column 2 is the full width at half the maximum
intensity while column 3 records the ratio of the peak intensity to

the background intensity.
{
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For the first two samples listed, both having reasonably sharp
diffraction profiles, the 'top 15 pct' rule of Koistinen and Marburger
corresponds weli with that of Eq. 3.12. This simularity breaks down
as the profile becomes broader, as depicted by the remaining four samples.
For these samples exhibiting increasingly broader diffraction profiles,
the decreasing similarity between the 'top 15 pct' rule and Eq. 3.12
corresponds to a decreasing peak to background ratio (column 3), The
background was not subtracted in determining the top 15 pct region
resulting in the region being substantially larger. If a linear back-
ground is subtracted before applying the '1l5 pct' rule, the regions
correspond quite closely, as seen in column 7. This background correction
need not be exact. A quick estimate of the background obtained at one
20 position away from the peak is sufficient since this is only concerned

with determining the region of curve fitting. This procedure is incorporated
in the computer program STRESS descrkbed in Chapter 4.
3.3.4 Derivation of Peak Location using Parabolic Fit

It is assumed that the data is obtained at an odd number of
observation points and is also flken in equal increments of 20.* The
data can then be said to be measured at 2n+l1 points, the center point
being taken as a working origin. The data sccumulated at each jth point
is Ij’ the power in counts per second. If the 20 increment between
data peoints is designated as §, the parabola is defined by:

a + bsj + c6232 = I (3.13)

3

*Dntl taken using the PSD is in equal increments of distance which does
not translate exactly into equal 20 increments. The error in using a
linear calibration constant to transfer distance along the PSD into °20
is minimal for residual stress measurements ‘see Sec. 2.5.5).
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and the least-squares solution is found by minimizing:

n
S = z‘(a+b6j+c6212-1

j=-n

2
j) (3.14)

with respect to the unknown parameters a, b, and c. To solve Eq. 3.14,
the partial derivatives of S with respect to each parameter are set
equal to zero. This gives three equations for estimating the values of
a, b, and ¢ to minimize S.

For example:

n
ds ; 2.2
E-O-ZZ(a+b6j+c6j - I (3.15)
j=-n
b | ¢ ] n n
z R \ 2\—: 2_ \
az.j+b52‘j+csbj L L
j=-n j=-n j=-n j=-n
2 -1
= non + 0+ nzé c -8 Ho
n n
% i PR 25 N |
where n1 & 3 and M1 8 2‘ b Ij . The term Mi will be
j=-n Juen

referred to as the ith moment of the observed line profile.

Continuing in this manner the set of equations are:

2 -1
n°n+0+n26c-6 uo-o

o+n26b+o-a'2n1-o

{ 2 -3
{ 1 nzl + 0+ n“G-c -8 "2 =0

LR
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Direct successive substitution for the three unknown parameters

yields:

a= (Monaaz-Mznz)/(nona-n§)63
3
b= nllo n,

2
¢ = (ny8°M -M,n )/8° (ag=n n,)

d1
The apex of the parabola is given by 1 __ =0

FYCEY , therefore

20P = 200 - b/2c (3.16)

where 290 is the working origin, that is, the 20 position corresponding

to the n=0 data point. From Eq. 3.16:
20 =206 - ( 2-n n )62M /2n,(n 62M -n M) (3.17)
] o b B 1/ 40y (R M, =n M, 2

(Angular dependent intensity corrections must be performed on the raw

data before determining this peak position.)
3.4 STATISTICAL COUNTING ERROR IN PEAK LOCATION

3.4.1 Introduction

A simple mathematical expression (Eq. 3.17) has been derived to
relate the measured intensities to the diffraction angle as given by
the peak of the diffrlction profile. There will be a statistical error
in the calculated diffraction angle due to the finite number of X-ray

quanta counted.
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Hillon(Ga) has derived the statistical variance for a least-squares
parabola fitted to data on X-ray peaks collected for fixed time at
each observation point. Wilson's work is extended here to include
both fixed time and fixed count methods of data collection to obtain
the counting statistical error in a peak location. Propagation of this
error to the error in the calculated stress is presented for both the
'sinzy' and 'two tilt' methods of X-ray residual stress measurement in

Sec. 3.5.

3.4.2 Derivation of Statistical Variance in the Peak Location
The variance of a general function, X, of several variables,

x-f(xl,xz,....xn) ls:(76)

V(R = ——) ey + (22 )v<:2)+...+ ‘L" B Noov (x,x,)+. ..

(3.18)

+ higher order diffecential terms, Here V(X) is the variance of X and

COV(xi.xj) is the covariance between variables xi and xj. Neglecting
the higher differentials this can be rewritten as:
's ; —!l g—
v(X) zjc"": a:) cov(x,x,) (3.19)
’

1f the function is linear, X = X ax., the standard error is given by:

v(X) -Z o) (3.20)
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Since the count rate, Ij = xj is a random variable having a finite
variance, all quantities obtained by menipulating it also have a finite

variance. Since the measured intensities are statistically independent:

COV(xi.xj) =0 for 1 ¢ j
(3.21)
COV(xi,xj) = V(xi) for 1 = j
Eq. 3.19 then becomes:
\ dx‘2
V(X) -Z(\;,;;) vexy) (3.22)
b

This equation is reasonably accurate for any nonlinear functionm providing

76)
the standard deviation of each variate is small, say 20% of the n.ln.(

Applying Eq. 3.22 to Eq. 3.17 and substituting for x, the counting

rate, Ij:
: 43 ZO\f
V2o ) -2‘ —-—Bdlj/ va,). (3.23)

J

The variance of the peak is dependent on the variance of the count rate,
Ij’ which depends on how the data is accumilated. The two common
methods of determining the counting rate at the diffractometer setting

20J are the fixed time and fixed count techniques. Defining t

j as the
time of dats accumulation and cj as the accumulated counts:
I' =- let for fixed time
: (3.26)
Ij - c/tJ for fixed counts




NS W SRR I ek

43

The variance (denoted hereafter as oz( ), the standard deviation squared)

of the count rate is derived by mlaon(n) for both cases:

2
cn.(Ij) = IJ/t for fixed time

°§C(Ij) = Ijzlc for fixed counts

(3.25)

The differential in Eq. 3.23 is now derived. Rewriting Eq. 3.17:

8 (nz-n
20 = 20, - ——-— {ul/(nza -0 )} . (3.26)
Now:
320 329 aM aM
et S S | i R T
31 M 31 where 3 53 (3.27)
. 5 i 3 J
3209-501 nna){(nzan an)éj H(nzsjnbj)} &3
al 7% 2 (3.28)
] (n26 M -noH2)
-6 (“2 "% B I il
né Mmi+(n,6' M - )8 j-n,b (3.29)
an(n26ll-nll2?{° L | 20 Yo 0"2 2 Hl}
Combining Eq. 3.23, 3.25 and 3.29 will give the error in peak
location due to counting statistics alone.
For accumulation of data by fixed time (at each observation point

J) the formula {is:

—~y T TRap— g oy o g i e
M AT SR

—ee
e
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< 3. .2 2 2 . T
5 5 ¥ (noa H[j +(n26 Ho-n°H2)6 J-n,8 "1) Ij/t
lm2 ('L26 Mo.no“2) j==n

4,2
8§ (n,-n n,)
02(20)_ 2 o4

(3.30)
where o(26p) represents the standard deviation in the peak position.
The assumption of a parabolic profile implies symmetry about the peak
position. The term Hi represents an ith moment of intensity about
(63)

the peak. Wilson suggests that because the profile has been con-

sidered symmetric (at least in the region fit by a parabola) the odd
moments of intensity will be of less importance (for a perfect para-

cola the odd moments are zero) reducing Eq. 3.30 to:

s ( 62H i )264 2 1
sy 2 2™ % oHZ ] j
4eteny (a8 M =n M) j=-n

4, 2 2
8 (“z"‘o“a’

02(20p> -

4, 2 2 n
8 (ny-nomy) Sk A
oy E
68(n§-n°n4)2-}12
= . R ) —3 (3.31)
4:temy (nys M -n M,)

In the same manner, for data accumulated by fixed counts at each

il 2 2 n
8§ (n,-n n,) ;
ok 2 o4 3. .3 2 2 3 2
3(20)'—5 b (&M +(n, ™M - )8 J=n,8 M1 /C
P bny (ny8°M - o)lz)a }_‘_n of M1 (g Wy My “ ‘{ ]

(3.23)

i
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Neglecting the odd moments of intensity, Eq. 3.32 reduces to:

8,62 2
6 (n2-non4)

-
z jzljz (3.33)

0?20 ) = . .
kan(n26 Ho-nou2) j=-n

3.4.3 Experimental Confirmation of the Statistical Formulae for Peak
Location

The counting statistical errors for the peak location were examined
with the 211 peak using three samples to cover a range of breadths; the
1090-1, 1045-1, and TBA G-5 specimens,

Three observation points were chosen from a chart scan of the profile
and vere within the top 15 pct of the peak intensity. Data was repeatedly
accumulated using fixed counts at these same observation points 15 times
for each sample and the peak position and statistical error (using Eq. 3.32)
were calculated employing a computerized ly't-u.* The results are
given in Table 3.5, The peak position is the average value of the 15
measurements. The standard deviation from the mean peak location,

S(ZOP) is given in column 3, When compared with the average counting
statistical error (one standard deviation) given in column 4, it is

seen that the correspondence is remarkable thereby showing that Eq. 3.32
for fixed count analysis predicts the proper counting error. The slight
difference is probably due to missetting of 20 because the limit of

gearing accuracy on the Picker diffractometer i .002°20,

*he program as described in Chapter 4 was modified slightly to use
the same angular position for the data points during the replicate
tests, As will be seen in Chapter 4, the program normally selects these
positions and in each measurement the different positions would affect
these tests. ]
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TABLE 3.5
ERROR ANALYSIS FOR REPEATED PEAK DETERMINATIONS Cr - 211 PEAK
(15 Measurements) Ko

( 20.) 8(29 0(20
Sesple B 026P o20P
1090-1 156.184 .0022 .0021
1045-1 155.916 .0023 .0021
TBA G-5 155.282 0112 .010

(20 ) represents the mean value of the peak position.

8(“ ) represents the observed standard deviation from the

P mean value.
g(zop) is the counting statistical error.
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3.4.4 Experimental Confirmation of the Approximate Formulae for the
Variance in Peak Location

By assuming the actual data to be symmetric about the working origin,
i.e., the center of the curve fitting region, Eq. 3.31 (for fixed time)
and Eq. 3.33 (for fixed counts) were derived. A test of these appro-
ximations were made by analyzing data obtained from the cha 211 //'
diffraction peak on steel samples. The tests were carried out for/)/é;:h
y=0° and y=45° (after tilting the peak may be more laymnetric)/nfing
stationary slit geometry. The 1090-1 and TBA G-5 samples yei'/e used,
the first exhibiting excellent &,14Ka2 separation with,éﬂ; second having
no separation. Table 3.6 reproduces the results fpf'/the fixed count
method. The number of data points is given in column 3 and the step
increment between points, §, is given in gpigin 4, The breadth at half
the maximum intensity is given in coll/xn’x/s.

Three data points from a p“k/ft)/f any shape can form a perfect
parabola. Therefore, one wouldt:ot expect any difference in the results
between the exact formh/(i;l the approximation (based on perfect
symmetry of the actua}/’é:tn) using three data points. This is seen to
be 80 in Table 3.9/f;r both samples. With a multi-point fit, any
asymmetry will b/e/ more evident., From Table 3.6, the difference between
the tuul/t,(/c‘nlculaud by both formulae is negligible for the multipoint
fit : /t{plying that the actual profile is symmetric about the peak

lgcition after the data has been corrected for the 20-dependent intemsity

A “factors. The exact formula is used in the computer program, STRESS described

in Chapter 4.
3.5 'STATISTICAL VARIANCE IN STRESS

The variance in the measured peak position results in an error in

Bt Y R

I g e e ..




48

-{®2 s® 10113 [®O1ISTIIRIS Y3 UIIMIAQ aow uy 25uUa33333p 32d Iyl 3

unmyxsw 3y3

‘¢e'¢ 'ba pue z°¢ °b3 woxy pajernd

uaseadaz aBusyo % Iyl

*K3ysudzuy

JI®Y I® YIpya [INJ 3yl s M ‘sjujod sIep UIIAIIQ Judwaadul dals gz Iyl s3jvessadax oa

£°1 ™10° 9v10° 9 8e” st 1]

0 Lo’ Lo’ 9 {4 4 € 1]

8’ €E10° %€10° 9 8e” st 0

0 €2z010° €2010° 9 €8°2 € 0 $-9 vil

€ 08100° 18100° 0s* so° L sy

0 6€100° 6€100° 0s* s1° € 1

0 $0100° S0100° sy €0° L 0

0 $8000° $8000° s e € 0 1-0601
)0 uy (620 gc-e°ba (62 zecba | 62, 020 sjujod wieq 0Bt | o guns
a8uwyd % (d2) 0 (dp2) 0 [ 4 9 30 Iaquny '\ 1

(Z°€ °99s ur pIssndIsIp sv $10338J UOTIIdIOSqE PUR UOTILZTIV[OJ-ZIUIIOT 10] Pa3IDAIX09 ST ®IWP YL)

*

LId JI'T09ViVd V ONISN NOILVOO1 JVdad NI

YOWYI ONLINNOD FHL ¥0d IVIAWIOL ALVWIXO0UddV OL IVINWNOA TVOLLSILVLS 1OVX3 40 NOSI¥NVAWOD

9°¢ ITEVL

s k)

3
¥

oy




e

49

the calculated residual stress. This error will be derived for both

the '-mzw method and the 'two tilt' method.

3.5.1 '51n2¢' Technique
In the 'sinzy' technique the residual stress, q¢, is determined

from the slope of the interplanar spacing d¢ v versus sinzt. The

variance in d@ 'due to random errors in the measured intensities will

introduce an error in the surface stress. The variance in d must be

-]
determined from the variance in ZOP.

Writing Bragg's law:
d = 1/28in0 (3.34)
Applying Eq. 3.20 to the relation in Eq. 3.34:
oo - [20/20100T 2,
(zléoc? LL_).. (180) (3.35)

ltn

where 290 is in degrees and oz(ZO) is given by any one of Eqs. 3,30 - 3,33,

The surface stress is given by m', the regression coefficient of

d vs, linzt. The regression coefficient of a linear least squares

¥
line is given by:us)

E(x,=X) (7,-¥)
n' =2 - (3.36)
I(x,-x)

et
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where x, is the independent variable and Yy is the dependent variable.

The bar denotes averages. In terms of d and oinzy, the regression

PV

coefficient i8 expressed as:

e 1 o " s
fffin y-sin *)(dq.q-d¢.t)

z(linzj-linzt)z
J

where siny =% linZ'/N

m' = (3.37)

v
d =7d N
(%] f @v'/
and N is the total number of observatioms.

The value of y also has finite error due to alignment and mechanical
motion. The function linzt varies slowly so small errors in ¢ have
negligible effect on linzg. The expression for the regression co-
efficient, Eq. 3.37 is then a !inea: function with the dependent vari-
able having a predictable error. By application of Eq. 3.20, the variance
of m' is:

Z(etn’y-ain'p)’ - 6?4y )
’
o’y = & (3.38)
[t(linzyolll ')2]2

'
) is given by Eq. 3.35, Through relation 3.20, the variance

where oz(qv"

in the stress, av, (given by Eq. 1.5), is:
2 2 1av.2
o (a’) =0 (a)/[4 ) (3.39)

vhere ¢2(-‘) is given by Eq. 3.38.
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3.5.2 'Two Tilt' Technique

Application of Eq. 3.19 to the 'two tilt' method (given by Eq. 1.6) yields:

2 2
0
o’ @y = [3—55:] o’ @) + [;-13] o?()
[ ] Gl et G <)
2
~@) [Papr’ay] (3.40)
where the stress constant K is given by:
(3.41)

1f the peak shift is small, the two tilt equation can be expressed
directly in terms of 20 by Eq. 1.7. The variance in the surface residual

stress is given by:
2 2 2 2
0 (o )= k"o (20 )47 (20)] (3.42)

wvhere the variance in peak position ie given by Eq. 3.30 or Eq. 3.32.
Small errors in 20 do not introduce significant error in the stress

constant K', given by Eq. 1.8,

3.5.3 Coqoﬂm of Statistical rormlu for 'Two Tilt' Method
Kclly and mn‘"’ dcrlvod an cquc ion for the error in the

e 2 AR J

ruunl acron as donmud uung the 'two tilt' method due to

A 01 A W
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counting statistics. Using Eq. 1.8 and writing the peak location
directly in terms of the counts at each of three data points (therefore
using & three point fit) Kelly and Short obtained an equation relating
the stress, GO' directly to the intensity obtained at the three obser-
vation points. They applied Eq. 3.22 to this formulae to calculate

the counting error. Defining (1-P) as the relative difference in
intensity between the peak position and the outer observation points,
and N as the total counts at each point, they obtained, for fixed

count data accumulation:
ola,) ~ K-420./P/ (2(1-PWW/'N) (3.43)

where K is the stress constant in Eq. 1.8, This equation is valid only
for a three point parabola and the 'two tilt' method of residual stress
analysis. Their derivation assumes the angular increment between data

points to be identical for both § inclinations and also the same total

counts are achieved at both y tilts,

Table 3.6 compares results obtained from analyzing the expected
counting error with Eq. 3.42 and Eq, 3.43 from data taken on three steel
specimens. The data was taken in the top 157 region using fixed counts.
The samples were chosen to cover & range of peak breadths and residual
stress levels,

The counting errors calculated by each equation are given in Table
3.7 and are similar, although exact agreement is not expected because
of the assumptions made by Kelly and Short. The results do indicate

the statistical error from both methods are comparable, however, the



53

TABLE 3.7

COMPARISON OF THE STATISTICAL ERROR IN RESIDUAL STRESS
AS CALCULATED IN THIS STUDY AND BY KELLY AND SHORT(78)

Crk@ radiation - 211 peak - three point parabolic fit

Sample

o 3 o (o) sMPa o (o) »MPa
MPS 099 | 1P Eq.73.43 Eq. 3.42

1090-1
1045-1

1045-~2

+12.8 (+1860 psi) »111.155 +1.97(140 psi) |+.875 (127 psi)
=176 (~25,600 psi)|.295|.159 {+3.49 (506 psi) |43.14 (456 psi)
=400 (~57,950 psi)(2.11(.172 48,17 (1185 psi)(+8.96 (1300 psi)

§ is

\

the step increment between the angular positions of the data points.

ISR SIS U PSS —
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lack of generality of the Kelly and Short analysis limits its application.
Their derivation is based on the two tilt method for the residual

stress determination and assumes the peak shift (°20) and stress are
proportional. This is valid only for a small peak shift. ‘The statistical
analysis as developed in Sec, 3.4,2 enables the statistical error to be
calculated for either the exact or approximate 'two tilt' formulae

(Eq. 3.40 and Eq. 3.42, respectively) and for the 'sinzt' method (Eq.

3.39).

3.5.4 Automated Residual Stress Program

A complete computer controlled residual stress analysis program
was developed during this study. An in depth discussion of the program
is given in Chapter 4, but because the program is used in the remaining
sections of Chapter 3 the program is described briefly here to facilitate
the reader's understanding.

The residual stress program incorporates the following features
vwhich acre chosen by the user by means of an initial dialog:

1) The experimental parameters are input (approximate peak
location, divergent slit, sample displacement and y-axis missetting)
to calculate geometric aberrations.

2) Either the 'two tilt' or 'linz" methods of residual stress
analysis may be applied, with a normal detector or the PSD.

3) The Marion-Cohen technique is implemented automatically if
a least-squares fit to d vs, cinzy indicates oscillations.

4) The operator specifies the desired accuracy in terms of
degrees 20 for each peak or in stress and the counting strategy is

de’ermined taking into account both statistical and geometric errors.

{0 TR R
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5) The peak is fit to a parabola by a least-squares procedure.
The operator specifies the number of data points to be fit,

6) If desired, background is measured and subtracted.

7) Either parafocusing or stationary-slit geometry can be chosen.

8) An estimate of the overall time of analysis is given after
a preliminary scan of the peak. The operator can then change the error
if the time is too long.

Five successive step scans are involved in the procedure for
determining a peak position, as described below. The data is collected
in fixed count mode and corrected for deadtime and angular dependent
intensity factors.

1) A step scan is made in large increments (~ .2°20) set by the
operator, accumulating 1000 counts at each position from the initial
20, until a count rate of less than 90 pct of the maximum is obtained.

2) Two step scans follow in smaller increments (set initially by
the user and typically 0.05°) down each side of the peak to locate two
angles, 201 and 293 at 85 pct of the maximum intensity. (The background
measured at an angular position specified by the user, may be subtracted
from the data in determining the two end points. This procedure serves
to define the region of parabolic fit more accurately.)

3) A third step scan at the two angles from Step 2 and the
central angle between them is made with a preset count of 5000, A
three point parabola is fit to the data. Then angles are calculated
for ic desired number of data points such that the central data point
will be very close to the center of the parabolic fit. This minimizes
odd order terms in the error equations. These preliminary scans typically

take 60 seconds.

g ey e
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4) A atep-scan at the final angular positions for a preset 1000
counts is used to back calculate the necessary counts from Equation 3.32
to obtain the desired precision. Steps 3 and 4 constitute a multiple
pass procedure which serves to improve the reliability of peak location
and minimize the time required for a given precision.

5) The final data is acquired for the calculated preset counts

at each angular position.

3.6 EXPERIMENTAL DETERMINATION OF THE PRECISION OF RESIDUAL STRESS ANALYSIS

3.6.1 Introduction

A complete statistical analysis of the peak location using a least-
squares parabolic fit to the top of a diffraction profile has been
presented. While useful in determining random errors due to counting
statistics, other factors also contribute to the precision of the
measurement. The experimental technique (i.e., 'two tilt' vs. 'sinzt'
methods) and accuracy of the equipment influence the overall precision.

The actual precision has been examined in this study under varying
conditions. The reproducibility of residual stress determination using
a least squares parabolic curve for peak location is compared to that
using a three point parabola. The precision of the 'two tilt' method
and 'linzy' method are examined and compared to each other. These
treatments on precision have apparently never before been carried out.

The reproducibility of residual stress determination using a
position sensitive detector (PSD) for data sccumulation is also examined.
The precision is dependent on the resolution and stability of the PSD
and these are shown to be quite adequate for residual stress analysis

by X-ray diffraction.

MR C 0y




R AT,

57

The precision of the residual stress measurement is dependent of
the method of peak location. Traditionally in X-ray stress measurements
using a diffractometer, the apex of a three point parabola fit to
the top region of the diffraction profile is used to define the Bragg
angle as has been mentioned several times. It was shown in Sec. 3.4.3
that the region near the maximum of the profile is symmetric about the
peak position after Lorentz-polarization and absorption factors are made,
verifying the practicality of the three point parabola compared to a

(29) conclude that a more

least-squares approach. Jatczak and Boehm
elaborate fitting of 2nd, 3rd and 4th order curves to five data points
produces good agreement with the three point parabola method and hence
was not worth the extra time needed in accumulating the data. However,
Hnrion(ao) found a least-squares parabolic fit to 10 to 20 data points
gave better reproducibility than just the three point fit. This
apparent contradiction is important to resolve because the curve fitting
procedure will affect the precision. It is obvious that many data points
are preferable to only a few given unlimited time. For a fixed total

(67) concluded that if

time, however, this is not necessarily true. Yap
the profile is a perfect parabola the optimum procedure for collecting
data 18 to spend most of the time at the two end points of the parabola
and only a short time at the peak in a three-point fit. Since random
errors dictate that the observed data is not a perfect parabola the effect
of the number of observation points on the precision was experimentally

tested in this ltuay. The total time for data accumulation was fixed

and tiot- were run using the 'two tilt' method in the following manner:

S E SN
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1) Fix the total time spent accumulating the data.

2) Determine the time at each point. Counting can be accomplished
in either fixed time or fixed count mode.

3) Repeat the measurement until enough results have been
accumulated to check the reproducibility.

4) Duplicate steps 2 and 3 for a different number of data points,
keeping the total time of measurement constant.

By varying the number of data points, the effect of this number on

the precision can be assessed.

3.6.2 Experimental Procedure

An automated diffractometer system was used to accomplish the
repeated measurements. The system is comprised of a Picker diffractometer
and scintillation detector interfaced to a PDP-8E computer. A position
sensitive detector was also used in conjunction with the diffractometer.
The featuresof the software programming are described in Sec. 3.5.4.
The only modification of the program for these tests concerned the pro-
cedure for determining the fixed counts accumulated at each observation
point. In its usual form, the computer program allows the operator to
chose the desired number of data points and determines the necessary
counting time to achieve a designated statistical precision. Since the
total time of data accumulation must be fixed for each peak determination
in this analysis, the following procedure was substituted. Defining
the total time as T, the fixed counts at each observation point, §,
as CT, and the power in coungl/occond at each j as IN(j), the average
power times total time will yield the total counts. Dividing this by

the number of data points, N, yields an average fixed counts. Therefore:
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cr = LD (3.44)

where Ti??; represents an average intensity in CPS. The individual IN(j)
are determined initially from a rapid step scan used to determine the
position of the observation points through the use of the 'top 15 pct'
rule. The total time, T, was input and the program determined CT.

For the position sensitive detector, the total time is fixed by
the multichannel analyzer which acts as a peripheral storage device for
the data so it was not necessary to alter the usual computer program.

The samples were chosen to cover a broad spectrum of residual

stresses and breadths of diffraction profiles.

3.6.3 The Effect of the Number of Data Points

Ten repeated stress measurements were made on each of the steel
samples for each number of observation points. Three,
five, seven, eleven and fifteen observations in the region of curve
fitting were used. The diffractometer aligmment was checked and the
sample positioned for minimum sample displacement piior to beginning the
measurements on each sample. No instrumental changes were made during
the replicate testing.

The ‘two tilt' method using y angles of 0° and 45° was employed
with a stress constant of 593 MPa/®20 (86000 plil°20).(7) The stationary
slit or non-focusing technique was used 80 as not to include random
errors due to repositioning of the receiving slit (see Sec. 3.2.2 for

more details on the effect of slit positioning).
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Table 3.8 summarizes the effect of the number of data points employed
to determine the peak maximum on the precision with a normal detector
and the two tilt procedure. The number of data points, column 2 and
the total time of data accumulation for the two tllta.* column 3, were
set in the initial dialog with the computer program. The residual stress
given in column 4 is the average value over 10 measurements. The observed
error, one standard deviation from the mean stress for the 10 replicate
measurements is given in column 5 and the statistical counting error
for one standard deviation (Eq. 3.42) is given in the last column.

The data for the 1090-1 sample which exhibits a sharp 211 diffraction
prcfile with excellent &71"&2 separation illustrates that for such a
profile, the number of data points has little effect on the precision.

The counting error is slightly less than the observed precision, as

expected. For this semple the precision is approximately +l.4 MPa

(£200 psi), better than that usually reported in the literature (+ 10 HP:)(7)
because the peak was very sharp.

As the breadth of the diffraction profile increases the peak
position becomes more sensitive to small fluctuations in the data and
the counting statistics for the three point fit do mot predict the true
error. But as the number of data points in the least-squares fit
increase, the observed precision once again approaches the counting
error. These results show that counting statistics are not a good
measure of the precision when using only three points for a parabolic
fit on samples having broad profiles. Only where the number of data

points is increased is the observed precision represented by this

*
The total time is for the final step scan only and does not include
the time spent in the preliminary scans as this is independent of the
number of data points.
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TABLE 3.8

RESULTS OF FIXED TIME TESTS
(TWO TILT METHOD)

Observed Error

Statistical Error]

Number of |Total Time Stress 10 Tests 10 Tests
Data Points (sec) MPa (psi) MPa (psi) Eq. 3.42
P MPa (psi)
1090-1 3 360 32.3 (+4690) +1.40 (:203) 40,97 (2141)
(W=.,45) 5 360 31.6 (+4580) + .82 (+119) +1.18 (£171)
7 360 31.0 (+4500) +1.21 (£173) +1.22 (2177)
11 360 31.4 (4+4550) +1.54 (2223) +1.34 (1195)
1045-1 3 360 =179.8 (-26080) |+10.04 (+1457)|+3.45 (+500)
(W=1.50) 5 360 =176.6 (-25620) |+10.98 (£1574)|+3.96 (£574)
7 360 -167.3 (-24266) |+ 6.89 (+£1000)|44.02 (+583)
11 360 -165.4 (-23997) |+ 6.38 (+ 926) |+4.31 (+625)
15 360 -165.2 (-23967) |+ 6.12 (+ 888)|+4.33 (1628)
1045-3 3 1000 =699.5 (-101470)+13.70 (+1987)}+4.57 (1663)
(W=3,40) 5 1000 =700.3 (-101508)+11.44 (+1660)|+6.20 (+899)
7 1000 =700,1 (-101556)+ 9.29 (£1347)|46.71 (+973)
11 1000 =697.0 (-101100)+ 6.28 (+ 911)|+7.35 (+£1066)
15 1000 =699.3 (-101432)+ 6.57 (+ 953)|+7.43 (21077)
1045-2 3 1000 =395.7 (-57396) |+28.68 (+4160)|49.34 (+1325)
(W=5.1) 5 1000 =400.4 (-58082 |+14.41 (+£2090)]411.79 (21710)
7 1000 =399.6 (-57958) |+13.27 (+£1925)|+13.06 (+1894)
11 1000 =395.9 (=57408) |+11,20 (£1624)|+13.51 (+1959)
15 1000 =394.0 (-57107 412,80 (+1857)|+14.13 (42049)
TBA G-5 3 1000 +15.9 (+2300) +33.77 (+4898)|+49.21 (£1336)
(W=5.8) 5 1000 +15.2 (42200) {+21.37 (+3099)|+11.27 (+1635)
7 1000 +13.1 (+1898) +15.69 (£2276)|+11.90 (+1726)
11 1000 +11.2 (+1621) +12,.80 (+1856)|+12.40 (£1799)
15 1000 +12.6 (+1829) +12,.34 (£1791)[+12,53 (+1818)
1090-2 3 1000 =354.2 (-51375) |+38.00 (4+5513)|+12.20 (+1770)
(W=6.0) 5 1000 =351.9 (-50140) |+36.97 (£5362)|+14.82 (+2150)
7 1000 =343,.0 (-49760) |4+23.10 (+3351)|+15.68 (4£2275)
11 1000 =3462.4 (-49660) |+17,.56 (+2547)|+16.41 (+£2380)
15 1000 =345,1 (-50060) |+17.48 (4+2536)|+16.30 (+2365)

'U represents the breadth at half the maximum intensity in °20,
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counting error. This phenomena becomes especially pronounced for broad
profiles; e.g., compare the 1045-2, TBA G-5 and 1090-2 samples in
Table 3.7.

The reason for this result becomes apparent when one examines the
entire procedure for locating the peak position. Say the positions
of the observation points were found only once and for each repeated
measurement the data was taken for the specified time at these same
observation points. One would expect the observed error for the three
point fit to be identical with the counting error for the 10 measurements.
Indeed, this was shown to be the case in Sec. 3.4.3.

1f, however, during each measurement the position of the data
points are rechosen, as is the case here because of the automation
employed for collecting the data in Table 3.8, the position of the data
points change due to random fluctuations in the observed intensities.
Only if the actual data were a perfect parabola would one expect the
observed and counting errors to be identical. This might lead one to
think the profile must not be a perfect parabola in the region used
for the curve fit., 1t was seen in Sec. 3,3.3 that not subtracting the
background can lead to errors in the determination of the region of
fit of the parabola. As the breadth increases, the ratio of peak
intensity to background intensity decreases for these samples (see
Table 2.2) causing the region of fit as determined by the ‘top 15 pct'
rule to be too large. The data does not, then, necessarily lie on a
parabola.

When & least-squares multiple point fit is used, the relative

effect of those points lying outside the true region of the parabola
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is decreased causing the observed error to decrease, although the same
total time of data accumulation is used. Surprisingly the statistical
counting error increases probably because the degree of perfection of
the parabolic fit decreases with increasing number of data points.
This is due to random fluctuations in the data which dictate that the
observed data cannot exactly lie on a parabolic curve.

To determine if the region of curve fitting actually effects the
reproducibility, replicate measurements were made on the 1045-1, 1045-2
and TBA G-5 samples using the same total time as in Table 3.8 but including
a background correction (see Sec. 4,3.4 for details on automated back-
ground subtraction) prior to determining the region of fit. The two
tilt method using a three point parabolic curve to define the peak
location was used. The results given in Table 3.9 indicate an improvement
by a factor of almost two in the observed error as compared to Table 3.8
for the samples exhibiting broad profiles when using a threé point
parabolic fit. However, the precision for the 1045-2 and TBA G-5
samples wvas still almost twice that predicted by counting statistics alone,
sgain indicating that the three point fit is not adequate for fitting

broad profiles.

3.6.4 Comparison of 'Sin’y' Method to 'Two Tilt' Method

The linzj method involves measurement of the peak position at
more than two inclinations which could minimzie the random errors
associated with 1ndividunl measurements of the peak. For a fixed total
time, the time spent at each y tilt will be less than in the two-tilt

method, thereby increasing the statistical error of the peak location so

A
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TABLE 3.9

RESULTS OF REPLICATE FIXED TIME TESTS USING BACKGROUND SUBTRACTION
(two-tilt, three point parabolic fit to peak)

Sample Total Time Stress. Qbserved Error | Statisticel Error|
(sec) 10 Test Eq. 3.42
MPa (psi) MPa (psi) MPa (psi)
1045-1 360 =169.0 (-24520)| + 4.58 (& 605) +3.86 (x 560)
1045-2 1000 =408.5 (=59260) | +14.44 (£2095) 49.41 (21365)
TBA G-5 1000 +11.17 (+1620) +17.48 (+2535) $9.79 (21420)

AT Yo g =t
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that one cannot say a priori whether or not the .mZ' method is more
precile.*

The precision of the .1n2' method was determined in the same manner
as described for the two tilt method, the total time of data accumulation
being identical. Only a three point parabolic fit (no background sub-
traction) was employed, the ten replicate measurements being made on
the 1045-1, 1045-2 and TBA G-5 samples with § tilts of 0°, 26.57°, 39.23° and 50.77°,

If the results given in Table 3.10 are compared to those in Table
3.8, it is seen that the linzt technique has better precision (observed
error) over the ten measurements than the two tilt technique even when
the total time of data accumulation {s identical. The effect of errors
in peak location are minimized with multiple tilts., Increasing the
number of § inclinations to more than four was tested but improvement
in the precision was only nominal. The standard error in the mean
stress (column 4, Table 3,10) is still 30 pct greater than that pre-
dicted by counting statistics (column 5) for the three point fit om the
broader profiled samples.

The best results when using & tbroe point parabolic fit could be
expected to be found by combining both the 'sin’y’' method and using a
background correction in determining the region of peak fit. Ten
replicate measurements were taken in this manner on the same samples
and using the same fixed time as in Table 3.10. The results from such
measurements are given in Table 3.11., The precision is indeed improved

and compares quite well with that expected from counting statistics alone.

*'ﬂ‘ltl entire discussion assumes that the d. vs. -mz' data falls on a

uuuht 1{ne so that the two tilt method is valid and sccurate . If
ve, sin“y were not linear, the Marion-Cohen method would have to be

uxod to ucmt for the oscillations due to deformation texturing.
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TABLE 3.10

PRECISION USING sm2¢ METHOD
(three point parabolic fit to peak)

Observed Error | Statistical Error

Total Time Stress
Sample 10 Tests Eq. 3.39
el e (pei) MPa (psi) MPa (psi)
1045-1 360 =193.0 (-27990) | + 5.65 (+ 820) | % 5.97 (+ 866)
1045-2 1000 -402.8 (-58430) | +15.93 (+2310) | +10,90 (+1581)

TBA G-5 1000 4+ 22,8 (+ 3300) | +18.13 (+2630) | +14.48 (+2100)

R
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TABLE 3.11

PRECISION USING SINZQ METHOD AND BACKGROUND CORRECTION

(three point parabolic fit to peak)

Observed Error

Statistical Error

Total Time Stress
Sample 10 Tests Eq. 3.39
(sac) Men (pat) MPa (psi) MPa (psi)
1045-1 360 -199.60 (-28952)|+ 6.19 (+ 898) + 4.78 (+ 694)
1045-2 1000 424,20 (-61529)|+11.17 (+1620) +10.61 (£1539)
TBA G-5 1000 + 14.71 (+ 2134)|416.13 (+2340) +16.65 (+2415)
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3.6.5 Precision Obtained Using a Position Sensitive Detector

In Sec. 3.6.3 it was shown that many data points within the region

of curve fitting improved the observed precision of the stress measurement

for a parabolic curve. The position sensitive detector (PSD) collects
data simultaneously across the diffraction profile and therefore does
not take any longer period of time in collecting many points compared
to just three. The number of data points collected in a fixed period
of time depends solely on the breadth of the diffraction peak and a
least-squares parabolic fit may be made to all those points falling
within the appropriate region.

Replicate measurements were made with the PSD to test the actual
precision. The automated residual stress program was used without
any modifications. The fixed time of analysis was pre-determined by
the time selected on the multichannel analyzer (MCA) which acted as an
intermediate storage device for the data from the PSD. The MCA was
interfaced with the PDP-8E computer for direct data tramsfer.

The computer program determined the region of curve fitting by
the 'top 15 pct' of the intemsity profile without subtracting back-
ground and fit a least-squares parabola to all data within the region.
Column 2, Table 3.12 gives the number of data points within the region
of curve fitting., The two tilt method was utilized, the total time of
both tilts being recorded in column 3 of Table 3.12,

The results tabulated in Table 3.12 indicate that the accuracy
of the PSD system is excellent. The observed error (column 5) in the
mean stress is very close to that predicted by the counting statistics

(column 6) alone. Thus the ltnzy method is not needed if the 'two tilt'
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TABLE '3.12

PRECISION OBTAINED WITH A POSITION SENSITIVE DETECTOR
(Two-Tilt Method)

Observed Error

SApr m“:l:b;:1::a (Tst:) u::r:;:n : ;2.1:;::) s“t;;:“(:;:il)g“or
1090-1 15 100 [23.89 (+ 3465) | 6.34 (+ 920) 4,48 (+ 650)
1045-1 31 100 |198.6 (-28800) | 5.72 (+ 830) 4.34 (4 630)
1045-3 87 200 | 718.4 (-1046200) 7.38 (+1070) 6.87 (+ 995)
1045-2 141 200 |412.3 (-59800) | 9.20 (+1335) 9.69 (+1405)
TBA G-5 196 200 |[22.75 (+ 3300) [ 13.03 (+1890) 13.86 (42010)
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method is accurate (see Sec. 1.2). Obtaining many data points (column 2)
within the region of parabolic fit eliminates the necessity for sub-
tracting background. The best precision obtained with the normal
detector comes from using the unzt method and subtracting background.
The time for the final data collection for this procedure (not including
the 60 seconds or so taken during the preliminary scans) is given in
Table 3.11 and can be compared with the total time of analysis using

the PSD in Table 3.12. This demonstrates the remarkable speed of the

PSD, even when only a normal X-ray tube is used.

3.7 STUDIES OF SAMPLE DISPLACEMENT

Perhaps the largest single source of instrumental error associated
with the X-ray measurement of residual stresses is sample displacement.
In focusing geometry, if the effective diffracting volume is not located
at the center of the diffraction circle, there is a relative shift
between y=0° and y=¢° given by Eq. 3.6. The error due to a given
displacement is dependent on llp'. the position of the receiving slit.
The equation is valid for both the parafocusing and stationary-slit
techniques and is experimentally tested below. The parallel beam
technique discuseed in Sec. 3.2.2 does not employ a receiving slit to
define the angular relationship between the primary and diffracted
beam. The angular relationship depends solely on the angle between the
parallel Soller slits mounted 90° to the diffractometer plane and does
not depend on the position of the sample, thereby eliminating the error
csused by sample displacement.

The effect of sample displacement was tested for each of the

"beam optics" techniques. The positioning of the sample was accurate
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to within + .0025 mm. Three replicate measurements were made at each
sample position up to a total displacement of + 2 * in increments of
.5 mm using the automated residual stress program. The 1045-1 sample
was utilized because it gave a reasonably sharp profile. The residual
stress was measured using the two tilt procedure and a three point
parabolic fit without background correctionm.

The parallel beam method was obtained by placing two setsof high reslution
Picker Soller slits together in.both the incident and diffracted beams and
rotated 90° to the usual position. This yielded a divergence of .5°
similar to the values used in leln.(27) Such slit systems were placed
in the primary and diffracted besms.

The error for both the parafocusing and stationary slit methods
predicted by Eq. 3.6 are drawn as solid lines in Fig. 3.7. The experi-
mental data given in Fig. 3.7 for each technique closely follows the
predicted error. The stationary slit technique 1s seen to be less
susceptible to sample displacement by almost a factor of five over the
parafocusing technique.

The parallel beam geometry is seen to be insensitive to reasonable
sample displacements in agreement with Aoyama, et al.(“) [Of course,
if the sample is displaced far enough, the diffracted beam will not fall
completely in the receiving Soller slits introducing a large error.)

The parallel beam technique decreases the intensities by about ¥ and

broadens the cll;.ffgctiga‘grg{u_g‘. _This instrumental broadening is most
important on u'-plu oxhibid;hg sharp pro!_glu when focflpun; geometry is used.
The reproducibility or precision of the :pirnllo'i beam technique was tested.

*A negative displacement is defined as being towards the back surface of
the sample.
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The data for Table 3.13 was acquired for a fixed time to give a statis-
tical error close to that in Table 3.8 using the two tilt procedure and
a three point fit (no subtraction of background). The precision for
the 1045-1 is twice as poor but approaches that of the focusing techniques
for samples having broad profiles. The time of analysis is 1/3 longer for

approximately the same statistical error for all specimens.

3.8 SUMMARY

A review of the important biasing factors in the residual stress
measurement by X-ray diffraction techniques has been presented. The
effect of sample displacement has been treated experimentally verifying
the formulae used to predict this error. It was seen that stationary
slit 'beam optics' is less susceptible to sample displacement than
parafocusing geometry and has less instrumental broadening than the
parallel beam method. This indicates the stationary slit method is the
best 'beam optics' arrangement when applied to X-ray residual stress
measurements,

A complete statistical analysis for the error in stress due to
counting statistics was presented. The analysis was made as general as
possible and includes unlimited data points in the peak region and use
of either two tilt or 'linzt' procedures.

It has been shown experimentally that the three point parabola
(which is traditionally used becsuse of its simplicity) is justified
only when the region of curve fit is determined accurately. If the
background level is high compared with the peak intemsity, it must be
subtracted prior to determining the region of fit using the 'top 15 pct'
rule. Even if this is accomplished, a three point fit i{s not very
precise when broad profiles are involved. By using multiple data points

e P ————
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TABLE 3.13

PRECISION USING PARALLEL BEAM GEOMETRY
(Two Tilt Procedure - Three Point Parabolic Fit to Peak)

(10 Measurements)

Sample Breadth| Time Stress served Error |Statistical Error

S (°20) |(sec) MPa (psi) MPa (psi) MPa (psi)
1045-1 2.1 500 | -161.0 (- 23360)+15.50 (4£2245) | + 4.03 (+ 585)
1045-3 3.8 |1300 |-702.6 (~101920)}+16.55 (+2400) | + 5.03 (+ 730)
1045-2 | 5.3 |1300 |-417.3 (- 60525)+39.68 (44450) | + 7.07 (£1025)
i’lA G-5| 6.0 1300 |+ 11.6 (+ 168? 24,92 (£3615) | £16.82 (22440)
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and a least-squares parabola on broad profiles the reproducibility of
peak location can be improved by a factor of three without increasing

the total time of data accumulation. The practical necessity of using

a computer to perform the least-squares analysis detracts from using
multiple data points, however, when complete automation is available

this type of analysis is worthwhile. In addition, the practical advan-
tage of multiple data points increases the appeal of a position sensitive
detector where such data is accumulated simultaneously.

Surprisingly, when only a three point fit is used, the unzt
method is shown to be more reproducible than the two tilt method even
if the total time is fixed in both procedures. Clearly, if true
automation is to be achieved with optimum procedures, & least-squares
parabola to define the peak or the linzy method of analysis must be
used.

' ————
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