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Calculating ground freezing is of considerable theoretical and
practical interest; thus, knowledge of the depth of freezing is
necessary in solving numerous problems in construction and agriculture,
for instance: determining the depth at which water-supply and sewage
pipes are laid, determining depths for laying the foundations of
buildings, the initial depths for digging drains when carrying out
reclamation projects, etc. Therefore, during the last 20 years a
number of studies have appeared devoted to this problem.

This article gives an analysis of some of the existing methods
of calculation; in this process we have selected only those which
at the present time should be recommended for engineering and whose
area of application of each method is indicated. In addition, new
computation functions have been derived which should be used in a
number of cases associated with a considerable thermal influx from
thawed ground.

I. Some Observations on Existing Computation Methods

We will examine theoretical solutions to the problem of ground
freezing as given in the works of G. Gerber, N. N. Petrunichev and
G. S. Shadrin, I. A. Charnyy and B. V. Proskuryakov.

Greber [1] formulates the problem which was previously solved
Stefan, as follows:! "at the initial moment in time all points of a
humid soil have temperature T. Beginning at a certain moment in time,
on the soil surface constant temperature 6 is always maintained. Freezing
of the soil takes place at temperature to. In order to freeze one

volumetric unit of soil, a quantity of heat equal to w is required.
We will find an equation for the temperature field and the speed
with which the freezing boundary moves' (see Figure 1).

The solution has the following form:

x=qV'7, (1)
where x is the depth of freezing,
t is time,
q is a coefficient.

In order to find the coefficient q which determines the freezing
speed, it is necessary to solve the following equation:

IThe designations are shown in accordance with those adopted in this
article.
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g=k, a‘ T —ky — s 2 0)
vw)  -ovE)
where
k=225 o), s
., -2V )“"h -
ks wV= (T—t) (4)

In equations (1), (2), (3) and (4) the letters A, c, y and a designate
the thermal conductivity, heat capacity, specific weight and temperature
conductivity of the ground; index "1" refers to frozen ground, and
index "2'" refers to thawed ground.

\!’me:n groul

Freezing boundary !

The following should be noted
about the above-cited solution to
the problem of ground freezing:

-— ‘l -

1. The solution is given for
conditions which considerably
restrict its practical application;
in particular, the solution is not
applicable in the presence of one
of the following conditions:

Thawed ground

a) in the presence of a
snow covering,

b) if during the freezing
process the temperature of the soil
surface changes,

SRS O - A TR L O] (B E e

3

Figure 1. c) in the presence of a

filtration flow.

2. For practical purposes it is necessary to introduce the assumption
that the temperature of the soil surface is equal to the air temperature.

3. The performance of the calculations is associated with cumbersome
mathematical computations which are required to determine coefficient q.

4. Within the boundaries of the stated conditions the problem
solution is analytical. Therefore this method should be used wherever
there is no snow covering or filtration flow and where the change in air
temperature can be averaged in time and the initial temperature of the
ground can be averaged in depth, and these factors can be assumed to
be constant in the calculation.

2In his derivation Greber made an error which leads to a plus sign
in front of the last term in the equation. !'e draw the reader's
attention to this fact especially because this error has been
consistently repeated up to the present time by other authors.




In order to overcome the difficulty associated with determining
coefficient q, we propose to make use of nomograms which we have
devised (see Figures 2, 3 and 4).

The unknown proportionality coefficient q is presented in the form
of two terms:

=3~ (5)
From equation (2) it follows that:
—mt (6)
=k oy
9:=ks =5y - 7N
where
1.
A"z-vr.‘.: ’ (8)
. e
M’-Yi-.: . (9)
From these two equations, we find
R VR - a0
g =V, M, (11)

The nomogram in Figure 2 relates to the case of ground freezing
in the absence of heat flow from the thawed ground, i.e., when T = t,

and consequently q, * 0. The nomogram in Figure 3 relates to the case

where the ground thaws under the action of the heat influx from the
thawed ground in the absence of a thermal flow in the frozen ground,
i.e., when 6 = to and q * 0. The nomogram in Figure 4 relates to

the general case, i.e., when there are thermal flows in both the
frozen and thawed ground, when 6 # to # T. The method of utilizing

the nomograms in Figures 2 and 3 and the principles of their
construction do not require explanation. They should be used when qQ,

is considerably greater (or less) than Q- With regard to the nomogram
in Figure 4, some remarks are in order.

Figure 4-a (the attachment) shows two families of curves: one
curve is plotted according to equation (6), and the second is plotted
according to equation (7). In Figure 4-b (attachment at the end of
the book) there are also two families of curves: one is plotted
according to equation (10), and the second according to equation (11).
;pc value of the unknown coefficient q is determined in the following

ashion.
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Figure 3. Thawing =- Thermal Influx Only From Thawed Ground:

l&
e 503

§:=ky : /_!L.\ Caf kz < 0.001, then qz - kz.
o "‘aa)

We use the initial data to find the values kl' kz, a, and ‘1/‘2'
We will set an arbitrary va{uo of Ml, and then in Figure 4-b we will
determine the values q and Mz; then, in Figure 4-a we find the values:
Q» corresponding to "1 and q, corresponding to "2’ [Translator's Note:

one word obscured] difference should be equal to q; when these values
do not coincide, it is necessary to select another value for Ml'

N. N. Petrunichev and G. S. Shadrin solved the freezing problem
by utilizing the method of finite differences [2]. Let us note the
following about this solution:

1. this method can be applied not only for the conditions of the
problem formulated by Greber, but also

a) in the presence of a snow-covering,

b) if during freezing the air temperature changes,

¢) in the presence of a filtration flow,




d) with any initial ground temperature distribution with regard
to depth.

Even the presence of all of these factors together does very little
to complicate the problem solving technique.

2. This method makes it possible to allow for the difference between
the air temperature and the ground (or snow) surface temperature.

3. This method makes it necessary to determine a large number
of intermediate freezing depth values, and the performance of the
calculation frequently becomes extremely cumbersome.3

4. This method should be used when, due to partial and considerable
changes in air temperature the course of the temperature can be reflected
only by a multi-step (approximately more than five steps) line or when
the initial temperature distribution throughout the depth of the ground
becomes non-uniform, and cannot be averaged.

I. A. Charnyy [3] and B. V. Proskuryakov [4] have developed
simplified analytical methods for solving the freezing problem; in this
process the two authors have made the following uniform assumptions:

1. averaging of the temperature gradient in the frozen ground;

2. when calculating the advance of the freezing boundary the
depth of freezing X, is determined which occurs in the absence of a
thermal influx from the thawed ground; then layer Xp» which thaws under

the action of the thermal influx from the thawed ground, is subtracted,
b A0 A

x-xl-—-xz. (12)

The basic difference in performing the calculation according to the
method of I. A. Charnyy and D. V. Proskuryakov arises in connection
with determining X- The heat balance equation which is related to a

vertical section of ground with a cross-section area equal to unity,
according to Charnyy has the following form:

Q=Q—Qg—Qy’ (13)

and according to Proskuryakov it has the form

Q=R —Q,, s

3This drawback is alleviated by utilizing Petrunichev's proposed method

of performing tabular integration of the Fourier equation instead of the
graphic method which is used; this makes the performance of the computation
somewhat faster and more convenient.

-
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where Qf is the quantity of heat liberated when the ground within the
limit of the section freezes,

I“ Qo is the quantity of heat which escapes to the atmosphere,
5 Qg is the change in the heat content of the frozen ground,
Qh is the thermal influx from the thawed ground.

In solving the equation, Charnyy obtained:

—1(0 —1tq
xn"’}/."""‘ ’w'(a:,).; T=T)+ x; . (15)

w"?l‘l_'.i-

Proskuryakov found:

xla}/'z’"“"';‘”""")+(5;!-;§)—"-i" (16)
where
e

where h is the thickness of the snow covering,
i 5‘ Ag is the thermal conductivity of the snow,
. a is the coefficient of snow-air thermal emission,

| f x is the initial depth of freezing.

£ It must be emphasized that the expressions for Q0 are not identical
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in equations (13) and (14). This is due to the fact that according to
Charnyy and Greber, 8 is the temperature of the ground surface"; according
to Proskuryakov 8 is the temperature of the air and the thermal resistance
of the snow and the inequality between the temperature of the snow surface
and that of the air are taken into account.

In the absence of a filtration flow Charnyy and Proskuryakov
determined [Translator's Note: word obscured] by the same means, using
the solution from the theory of heat transmission to the problem of a
loss of heat by a rod which is limited on one side and which at the
initial moment of time has a uniform temperature at all its points and
when there is no heat emission from its lateral surface; on this
assumption the authors obtain:

“In his work Charnyy made no special examination of ground freezing,

but rather "the advance of a flat division boundary between two phases';
e therefore it is natural that the problem of what influence the snow

covering had was not stated there.




xs= ko (VT =V'7). (18)
For the case of a filtration flow Proskuryakov found:

te= i kY L (=, (19)

where y is the length of the filtration flow path under the frozen
ground to the point where the depth of freezing is determined;

v is the speed of the filtration flow's motion.
With regard to these two assumptions, we should point out:

1. First assumption, averaging of the temperature gradient in the
frozen ground, causes an increased temperature gradient at the freezing
boundary and a reduction of this gradient at the ground surface; the
value Qf which is calculated according to heat balance equation (13)

is reduced, but according to equation (14) this value is increased.

As a result computation formula (15) gives understated values of

X, and formula (16) gives exaggerated results; it is known only that the
true values are found within these limits which also limit the possible
error. As calculations show, this error does not exceed 30% for
practical purposes. Taking into account the usual imprecision of
initial computation data, we must acknowledge that the introduction

of this assumption is completely justified.

2. With regard to the second assumption which is expressed by
equation (12), it is obvious that it causes some increase in the influence
of the thermal flow from the thawed ground; a qualitative evaluation of
this factor is difficult, and therefore we will return to this problem
later after we obtain new computation equations which are derived
without the aid of this assumption.

With regard to determininé the freezing of ground by means of simplified
analytical methods, the following should be said:

1. The methods can be applied if the initial ground temperature
distribution can be averaged in depth and if the course of the air
temperature is replaced by a staggered line within the limits of
three-five steps.

2. Formulas (16) and (18) make it possible to perform calculations
in the presence of a snow layer and with allowance for the presence
of a difference between the temperature of the ground surface and the
temperature of the air. In case there is a filtration flow, formula
(18) should be replaced by formula (19).

3. In case there is no snow covering and the temperature of the soil
surface is equal to the air temperature, it is possible to replace
formula (16) with formula (15). As has already been indicated, computation
according to formula (16) gives somewhat exaggerated results, and
computation according to formula (15) provides correspondingly reduced
values of the freezing depth.

Iy e
'f a:"l"»g




R

In solving the problem of freezing in the presence of a snow covering
and with allowance for a difference between the air temperature and the
temperature on the ground surface, as is done by Proskuryakov, but in
contrast to him, by utilizing equation (13) we obtain:

1—70-.4\(x:—1é:)+ N(x;=x) +R ln;—‘:——'i,_;—_g- : (20
where
. gy (21)
bl 2,0 —1ty) '
N = -2—%‘—-{- 2.48; (22)
c,;,h;:,‘»'-'.- %'—)

I (23)

We neglected to derive formula (20) since in principle it is similar
to the course of the derivations carried out by Proskuryakov and
Charnyy when they obtain formulas (15) and (16); let us simply point
out that for us
ergh@=1to) [+ -';'-) &

X (24)

X
3 [(x-;-p)z x"‘m]dx—' TP

an _ a7i(0—1t,)

Like equation (15) equation (20) provides smaller values of X

but in contrast to equation (15) the problem is solved with allowance
for the difference between the air temperature and the temperature
on the ground surface, as well as in the presence of a snow covering.

Il. Deriving Refined Computation Formulas

The simplified analytical method cannot be used in some cases
since sometimes it is not adequately precise. If we proceed on the
basis of heat balance equation (14) and do not introduce assumption
(12), then the formulas obtained should precisely allow for the action
of the heat flow from the thawed ground. Otherwise all of the advantages
and disadvantages of the above-described simplified analytical method
will also be noted here.

Let us examine two possible cases. First case. The problem can be
formulated as follows.

At the initial moment of time the moist ground has temperature T
at all points. The surface of the ground is covered with a layer of
snow of thickness h. Beginning at a certain moment in time, the air
temperature is kept equal to 6. The ground freezes at temperature ty

A quantity of heat equal to w is required to freeze a volumetric unit
of ground. The physical constants of the ground and the snow and the
snow-air thermal emission factor are given. It is necessary to determine
the speed with which the freezing boundary moves. Under these conditiocns




the intensity of the thermal influx from the thawed ground ar is
inversely proportional to time.

The heat influx term from the frozen ground will be:

¥ =¢,dr, (25)
where
ey (T =
1,=Y ot (26)

The other terms of heat balance have the following form:

Qf = wdx, (27)
0 —’.
Qo= —4, YFF dr. (28)

The latter equation allows only for convection heat exchange
on the snow surface; however, it is not particularly difficult also
to make allowance for the terms of solar radiation R and the radiation
of the snow surface S. For this purpose it is necessary in all
subsequent computations to replace the true temperature of the air
8 by a fictitious one which is calculated according to the equation:

o,’-o-;-”—:s.

By substituting expressions (25), (26), (27) and (28) into
equation (14), after transformation we obtain:

- TN B S | B ' 29
2% 3 et bt W, 1
for kz, see expression (4).
b Zh0—1) (30)
w

We will introduce a new variable

o 31
'-—X.-f-—ﬁ- ’ ( )

then :
T=ri(x+f), (32)

dt = 2r (X 4 )2 dr 4 2r* (x 4-B) dx. (33)

T —




By substituting (32) and (33) into (29), after simple transformations
we will have

dx stk
X+ I+A.r+k.r’d’

By integrating this equation with allowance for the fact that

2 .
4k3 - kz <0:
kg
( \ [V mrrey
|ﬂ(x+m-lnc_i_.l?:?i
Rl
from this we find:
= 1 r+p\" _
S C e i) — . (34)
where
ks AR
%I("V‘ ki)' (35)
pmgi(14V1-32): : (36)
’"-.‘-‘ﬂé=====_
2/ 1- % (37)

The integration constant is determined from the following initial
condition; when t = Tgs Ve have

. XXy
Vt
To= x'-‘-ﬁ ’
from this we find
Cm(re OV Tt PITF M - (235)" . (38)

By substituting the expression for the integration constant into
equation ([Translator's Note: number obscnrod]) we finally find:

r+’

Second case. The problem conditions are the same as in the first
case, but the intensity of the heat influx frow the thawed ground has
a constant value like, for instance [word obscured] by means of the
filtration flow from the lower surface of the frozem ground, as

=11~

Wl L



Vs s7s o
- V (T 1. (40)

o

Then heat balance equation (14) will have the form

-x:%df-i-wdx+qtdr-0.
or ; :
R 1
dt = — W _z-hq = d\, (41)
where
A=2(0--1)+q,8. (42)

We integrate equation (41):

ﬂ'g vl

t-——!— X—W -~

2o (AT¢x)+C. (43)

We determine the integration constant from the initial condition:
when 1 = Tor We have x = Xos consequently
5 = A
L-q+%L%+wﬂLr-mu+%%L
t LF]
Finally we find:

(Mt A+ g%

Taw i L o T3 ——(x-xo)-* (44)

By utilizing equations (39) and (44) and equations (16), (18) and
(19) of the simplified analytical method, we perform numerous calculations
which showed that the introduction of computations carried out
according to equations (39) and (44) refined the solution by no more
than

N = 2= 100%. (45)

In actuality the refinement is less significant, but the latter
can only be shown by pairing the results of calculations carried out
according to both methods. Consequently, if for example n > 20%, then
the calculations have to be carried out according to equations (39)
or (44), although the refinement may also prove to be small.

I1l. Areas of Application for the Computation Methods
' The selection of the computation method which should be used
depends on the specific given conditions under which freezing takes
place and on the required precision of the problem solution.

We can recommend:

a) the analytic method -- formulas (1) and (2) (for simplified
boundary conditions): in case there is no snow covering, there is no

-12-




filtration flow, when the air temperature can be averaged in time and
assumed to be constant in the calculation and when the initial ground
temperature can also be averaged in depth.

b) Analytical method -- formulas (39) and (44) (for refined
boundary conditions): in case the initial ground temperature can be
averaged in depth but the temperature current of the air is replaced
by a line which has no more than 3-5 plateaus, and if the
value of factor n calculated according to equation (45) exceeds 20%.

c) Simplify analytical method -- formulas (16), (18), (19) and
(20) (for refined boundary conditions): if n € 20%. The rest is the
same as in item b.

d. Method of finite differences: in cases of special and
significant changes in air temperature, where the temperature curve
can be replaced only by a multi-stage curve (more than five plateaus)
or when the initial ground temperature cannot be averaged in depth.
IV. Example of Calculating Ground Freezing

The following are given:

2,-1.—1_%-(23 c’-lWJ ¥ = 1000 ﬁ, B =0.54 .
B’-24000-— 2y 0m =22°C;. T=3°C; 1,=0°C; y=100 x;
v=0,_85 -ﬁ;—; Tm2]10 b ; 7, =0; x,=0.

According to equation (4) we find [the thermal capacity and specific
weight of water should be substituted into expressions (4) and (40)]:

. 2V 111000
k= =gimoias 3 = 0,004

[Translator's Note: due to the fact that the equation numbers are
obscured in the foreign text on this page, they will not be given].

If we carry out calculation according to the simplified analytical
method, i.e., according to formulas (12), (16), and (19), we obtain

v= 0544 2B _05420,28 u;

0,046 3 / )
X, = i VWJIO-O,M M,

X == 0028 TS 0,04 = 0'24 M.

By utilizing expression (45), we find

—-J-—T— 100 = lf) l“,{,

A A, A N B




Consequently, there is no need to refine the result obtained
(we simply point out that the refinement would prove to be equal to
13%).

If, however, we adopt in the same example: v = 1.7 m/hr and y = 20 m,
we obtain

0,004} 1.7
Xy =028 u; x, = -—"_?“—'V:: 210 =0,14 «;
X =025 -0 l4=014 1
then:

0,14
KRy

<100 = 1L0%,.
In this case it is necessary to utilize a more precise solution.

First, according to equations (40) and (42) we determine:

C VT 9 /TT
e™ " ¥ u

A=—1.224159.0,54 = — 12,4 kcal/m-hr,

3= 15,9 kcal/mz-lu':

According to computation equation (44) we find:

: 0.54-15,9 + 124 —134 29000 "
bl 1508 n =T e — "isg O 14=170 bs.

The refinement proved to be equal to:

200 =170

In conclusion it seems appropriate to us to note that in his
work the author was provided by many valuable comments by B. V.
Proskuryakov and N. N. Petrunichev.
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