
AD—A036 112 ROYAL AIRCRAFT ESTABLISHMENT FARNBOROUGH (ENGLAND)
- -

FIG 9/2
AN ESSAY ON COMPUTING. (U)

UNCLASSIFIED RAE—TM—MATH—i bM DRIC—BR—5’4529

• flu I

II

I ~
2.8 I1,~

2.5
I(j • L
‘Il

L ~I3.2
______ ~~~

~ 3~6 IIIII~~~~L •~~L

I

L 140
._ Iliii I I LI. II

II II ____________

11111’ .25 Ulll=!~i lIIII!~
MICROCOPY RESOLUTION TEST CHART

NAI IONAL BUREAU 01 SIAN DAROS q53 A

Fr- —
-

-

~ UNLIMITED (i~ ~
6R54529

R O Y A L A I R C R A F T E S T A B L I S H M E N T

AN ESSAY ON COMPUTING

by

D. M. CILBEY

July 1976

© Crown copyright 1976

ccwn~o UEDOH
1976

-~~~~
• •ct4 ~~~~~~~~~~~

- . ~~ - -~~~~~~~ w.’~-~~~~~~

4)

R O Y A L A I R C R A F T E S T A B L I S H M E N T

(~2ie
nicalfie

~~~~~~~ 
Math 7604

Received for printing 30 July 1976

AY ON COMP~~~~~ , ~~~2I~~~~~~~
J

~~~~~~
J

~~~~~~~~~~~C

-
~~~~~~~~~~~~~ 

D M) G1 lbey~~~ ,

SUMMARY

An essay is presented on the nature arid difficulties of working on or

with computing systems. It is hoped that the intelligent layman can read past

any unfamiliar jargon and still be convinced, along with the ‘occasional
programmer’, that modern computing is mainly about the creation and management

of the complex.

~~ V’ ~~~~~~

H
H 11

______________________ _________________ _____________________ ______

~~~

-

~~~~~~~~~~~~~~~~


2 Math
7604

CONTENTS

INTRODUCTION 3
2 USING A COMPUTING SY STEM

- 4
3 COMPUTIN G SYSTEM LEVELS

-
8

4 CHAOS AND COMPLEXITY 12
5 ST ANDARDS 17
6 GENERALITY 18
7 AMBITION 19
8 CONCLUSION

- 20
Acknowledgmen ts 20
Il lustrat ions Fi gures 1—3

¶

f

I

Ma th 3
7604

INTRODUCTION

Vast changes have been made in di gital computing practice over the last
few years, and the pace of change is still rapid. The aim of this essay is to

present a somewhat academic view of the processes involved in the exploitation

of general purpose digital computers and of the attendant difficulties. It is

assumed that the reader has had some contact with digital computing but is left

unsatisfied by more popular accounts either because these stop short at binary

arithmetic and elementary programming,or because they are accounts of the

wonders of particular systems with no recognisable generality or sense of

direction.

The rate of change is in itself a cause of difficulty , requiring rap id
re—education to changing roles even at high management levels. Traditional

mechanisms of adjustment are overstrained, and knowledge and skills can rapidly

become irrelevant to real needs. The difficulty is compounded where it is not

recognised as such. A rapid identification and recognition of new problem

areas is required.

However , wider issues such as computer—induced unemployment , pr iv acy of

computerised information, status and career structures for computer staff etc.

are not the ;“lcern of this paper. Such problems occur in any radical change

of practice , and wh i l s t ~ ~ocx,~ ’ ~noreciation of technical poss ibI l i ty , likeli-

hood and reliability is needed , the real kt~~~’-~nt is political , legal and
managerial machinery capable of coping reliably and expeditiou~

(1 with the

pressures generated. The concern here will be wi th recog~ition of problems

faced by those who actually design and use computer .,ystems.

Comput i ng as an ac t iv i ty has progress~~i rap idly from a demonstration in a

research laboratory to a major indust ~ y whose products a f fec t our daily lives in
a great and increasing variety ~ ways. This phenomenon needs to be appreciated

V in some way or another L~’ all concerned. It cannot be dismissed as change for
-he sake of the ~~c-~ nologist at taxpayers ’ expense , nor can it be understood in

t rats of ,~~‘.~rfas t idiots ’ or bi l ls for LO.OO , nor yet by an appreciation of
V

bin r y drithmetic or of the physics of computing machinery . It is suggested

here that the truly inescapable and perhaps characteristic feature of modern
V

computing is comp lexity . All intelligent people are called on to think about,

and to manage , complex situations but in computing activities this is the central
and crucial problem.

-- ~~
~~~ VV ~~ V~~~~~~~~~~~~~~



4 Math
7604

Change often exhibits the limited foresight of those responsible.

Planning action may precede decision but experts often disagree. In a youthful

science the experts may feel their responsibility for the rapid development of

their profession and its possibilities more keenly than their responsibility to

the wider community for a wise decision on a specific issue. This danger will

not abate until people acquire a good idea of the kind of thing that is liable

to go wrong, and until codes of practice evolve and the profession generates a

body of  reliab le knowledge and of attested and relevant expertise.

This all takes time , so it is not surprising that at first the computer

man may b~ dangerously deluded about the wider business his system is supposed

to serve, while the man responsible for implementation of the system is unaware

of the planning checks he should be calling for and at the mercy of the designer

on matters of reliability and cost estimation. The researcher who built , single

handed and quickly, a pilot model to demonstrate the principle a ‘long’ time ago

often fails to appreciate the rise in complexity and liaison activity required

in going from demonstration mode l to operationally reliable version and he

probably feels that the sys tem designer trying to follow his footsteps is

professionally incompetent. There are also more technical reasons for increas-

ing complexity and some of these will be explored later. First it is necessary

to expose some of the more important and general features of digital  computing

machinery , and of its exploitation , and the nature of some of the problems

raised.

2 USING A COMPUTING SYS TEM

Assuming that  there is a good case emerging for  doing a given job at all ,

i t may be done by computer because it is not feasible to do it in any other way
or because doing it by hand involves tedious book—keeping or repetitious cal— V

culation or because a computer process is perhaps cheaper or more reliab le or

V more responsive and adaptable than alternative means. Any such claims need to

be re—examined periodically as the task and/or its associated programs become

better defined , deve loped and tested . However the need for this continual

review of hopes, assumptions , deductions etc. is all—pervasive in what follows

and need not be over—stressed here .

• A computing system is usually a completely general purpose facility , cap—

V 
able of performing, within its considerable resources , any prescribable opera—

tion on some body of data to be supplied and possibly some data already s tored ,

perhaps to modify the stored data and to present any desired result as output .

The user on the other hand has a specific task in mind and therefore he is



Ma th 5
7604

required to specify just what it is that he wants the system to do. At some

stage a computer program has to be prepared which, together with some instruc-

tions for the preparation or acquisition of input data and for the control of

the job in the system and for the handling of output, enable the desired result

to be obtained.

Two immediate topics are raised by this — first the nature of the language

most suitable in which to convey the various instructions and secondly the pro-

cesses by which the user with a need to be met reaches the stage of having a

suitable program or ‘job’ available . We will here concentrate on the second

question .

It is possible to identify a number of stages, between having a need and

having a computer job designed to contribute to the satisfaction of that need.

Not all stages are importan t in all jobs and even fewer are explicitly separated

in the activities of many programmers , but all are potentially important,

particularly to the general scientist or engineer served by a centralised com-

puting service .

(I) Selective attention: An employee is usually paid to set aside as far as

possible his more personal and extramural interests during work time and to

devote himself to some area of need in the organisation he serves . This often

allows still a considerable further choice of strategy and approach and selec-

tion of areas of prime interest.

(ii) Problem identification: The next stage in the process of successive

abstraction from ‘real life ’ complexity , i.e. of mapping from a richer thought—

space to a more manageable one, is to define a problem. At first one merely

• experiences a recurrent difficu lty — recognition of the ‘fact ’ that history is

in some sense painfully repeating itself is a vital step which already does some

necessary violence to the ‘whole truth ’. Continued experience or thought will

V indicate that a few factors or features are more or less invariant as other

things change (in passing from one manifestation of the problem to another) and

these can be used prediccively . Others are recognised as major determinants of

the compromises to be made or the measures and designs to be adopted. Attention

is concentrated on these important features and a prob lem is obtained which can

be described in terms of a limited number of factors and constraints , the manner

in which these factors interact , and the way in which they influence the outcome.

One could be said to have solved the problem when one has available an easy means

to produce a generally satisfying outcome from a knowledge of these factors and

relationships.



V — V  
~~~_V-V V V • V~~~~V

6 Ma th •

7604

(iii) Idealisation: In most scientific work a means will be sought to represent

the factors and relationships within some coherent branch of mathematics, i.e.

as numbers, functions, sets, networks, grammars, etc. Even in administrative

work it is often necessary to define carefully what is to be taken to be a

person’s age or pay so that it can be represented unambiguously as a number

which can enter some formula or decision logic. Hopefully the result is a model

situation in mathematical terms which more or less adequately formalises the

essential problem. It should perhaps be emphasised that such entities as names,

book references , propositions , etc. etc. are perfectly acceptable to mathematics

provided that rules are established which define the result of any required corn—

parisons between or operations upon the entities.

(iv) Symbolic representation: This stage is not an abstraction from the mathe-

matical model but a simple one—to—one mapping of it into a concise and compre-

hensible notation to facilitate grasp of the mathematical nature or ‘form’ of

the prob lem. Single characters from various alphabets are often used to denote

factors , system state vectors, operators, etc. etc.

(v) Analysis: If the problem is sufficiently simple, it may be amenable to

analytical solution, with the hope that production of specific solutions may be

reduced to simple evaluation of mathematical expressions involving the available

input factors . There is usually also an enormous benefit because the functional

dependence of the solution upon the input factors can be appreciated mentally in
a very general way. More often, however, the most that comes from the attempt

is a suggested procedural or algorithmic approach to the desired solution, wi th

an attendant need for further analysis of parts of the algorithm perhaps using
specific input values because one cannot find a reliable general analysis and

one is forced into exploratory survey . Even if the prob lem is, for examp le,
stock control there is analysis required. This may be overtly and numerically

mathematical , e.g. probability of ‘stock—out ’ wi th given control parameters or
likely performance of a sorting algorithm with the kind of data anticipated.

It is more likely, however , to be the programmer convincing himself that his

r algorithm is proof against various ‘odd’ exceptions to his general logical
analysis , which exceptions might, for example, arise from Easter or a strike or
an error recovery procedure , or some combination of such things.

(v i) Symbolic process: The analysis phase may give rise to a definite symbolic

process , perhaps represented as a high—level flow chart, decision tabl es or
mas ter rou tine coding , which it is desired to use with various sets of input
data.

~

Math 7
7604

(vii) Source program: The symbolic process must be embodied in a program which

complies with the rules of some computer language. This may require considerable

elaboration of the symbolic process , for instance to explain to the computer how
to invert a partitioned matrix or to sort variable—length records until their

key fields are in lexicographic order. One will have to specify in detail the

layout required of the printed results . Also a mapping is made from the symbols ,

factors etc. of the problem on to a set of ‘identifiers ’ with which are associated

‘types’ such as ‘integer ’ or ‘real number’. The language used may perhaps not
• recognise a type such as ‘string’ (a row of characters of arbitrary length) so that

the programmer is forced to represent and handle such an entity in some artificial

way. Equally, he may have to choose an identifier ‘alpha’ or even A
1

to stand

for n in the symbolic representation. This shift of representation to an

artificial, possibly long—winded and certainly less—comprehensible one gave rise

to the term ‘coding’ as an alternative to ‘computer programming’. Modern high—

level computer languages have done much to minimise this undesirable feature ,

but ‘code’ remains the American term for a computer program.

(viii) Job control instructions: The computing system or its operators will

need to be told what language has been used , how to identify the various input

or output ‘documents ’ (card decks, paper tape rolls , magnetic tapes , print , etc.)

and which source program ‘channel’ is for which document. Alternative ly these

matters may be Installation Standards or given by the system as default options .

There may also be instructions concerning alternative actions to be performed if

certain events occur in the course of running the job . Modern computing systems

are run by an ‘operating system ’ program which takes over from the operators the

task of accepting and acting upon most of these job control instructions . This

means that a ‘job description ’ written in a ‘job control language ’ (JCL) has to

• be provided in computer—readable form. Alternatively the user can type the

necessary instructions or commands at an on—line teletype or display keyboard

• etc. as the job proceeds . It is not unknown for the programmer to experience

more trouble in writing in the JCL than in preparing the source program.

(ix) Consideration of results: The computing system will produce some result

from the job. This may be trivial , diagnostic of command errors in the JCL, or

compiler diagnostics indicating transgression of the rules of the source lang-

uage. Alternative ly the program may comp ile and run but commi t a run— time or

‘execution ’ error such as trying to divide by zero. Each of these possibilities

will frequently return even a good programmer to an earlier phase of the work ,

~

•~~~~~~~~~~~~ V~~~~~~~~~~~~~~~~

—

- - • • .

8 Math
7604

and the earlier the phase the more work is occasioned in rectification of the

error. Thus even when the desired process with correct data has been success-

fully modelled it will often transpire that an earlier stage of the work

requires revision before anything of wider import can usefully be gained from
the study or before the process can be regularly used to good effect. A com-

puter user typically has a wide range of choice over how much e f fo r t he devo tes
at each level of the work and when , and his usefulness is strong ly conditioned
by the aptness of these choices.

Computers are of ten used or worked upon by teams . One might find a
manager dealing wi th stages (i) and (i i) , an analyst dealing wi th (iii) to (iv)

and a programmer or coder coping wi th the rest. Or , indeed , there may be
several or many people working together at various levels and on various facets

of the work . The e f fo r t needed to produce some program systems is measured in
thousands of man—years .

We have jus t s tructured the activities of a computer user into a number
of levels. The next section considers desi gn levels within the computing system
i t s e l f . Part of the object in doing this is to expose some more of the rich
tapestry of computing and part is to remind the reader also that one of the
simplest tools in dealing with a complex si tuation is to try to s t r a t i fy i t
into recognisable layers . In passing, let us note that one of the resul ts of

this very necessary s t rategy is that i t is possible to be a computer professional

of high calibre nowadays wi thout understanding hysteresis or knowing what an
e lectron does.

3 COMPUTING SYSTEM LEVELS

A report on the work of the National Research and Deve lopment Corporation
defined the following levels of comp lexi ty , at any one of which innovations
could be made : service/sys tem/ sub—system/ component/material. A l ibrarian
mi ght comment that there are several c lass if icat ion schemes other than by level
of aggregation , and indeed we may be more concerne d to identify functional
respons ib i l i t i es at the hi gher levels . At the lower levels there is no need to
say much here or to worry over such distinctions and for an in i t ia l look we may
propose the levels :

—1 . ~~~

r
- V -

~~~~~~~ ~iIT
Math 9
7604

LE ~ 
ORGANISATION OF USERS )

PEOP (ORGAN ISATION OF SERVICE STAFF )
ARCHITECTURE (S OFT WARE )
ARCHITECTURE (HARDWARE )

TE CHNOLOGY

PHYSICS

MATERIALS V

This classification has the merit , at lower levels , of dividing responsi-

bil i t ies between recognisable discip lines. Thus the physicist is expected to

identif y the physical phenomena to be exp loited in devices , and the phenomena

which limi t performance . He gives guidance to the (computer hardware) technol-

og ist on what is possible and to the chemist on the cniefly desirable properties

of materials to be prepared. Devices are fabricated and brought  into mass

production which o f fe r  ever increasing speed and re l iabi l i ty  to the dig ital

log ic designer , who can then do his work in term s of gates , bi ts , highway s ,

registers , storage media , et c. — hopefully with minima l need to understand the

physics and chemistry on which his work depends. The subject  of hardware archi—

tecture will , unfor tunate ly  for our attempted s t ra t i f i ca t ion, involve phys ics

in mat ters  such as design of back wiring,  thermal desi gn , ‘ f ly ing ’ magnet ic

read/wri te heads close to moving surfaces e t c . ,  but  the hope is to present to

the software designer , by means of microprogram units , add ress t ranslators , sto re

access mechanisms , ari thmetic uni ts  and the like , a s imp le specif icat ion of a

set of machine instructions wi th defined interpretat ion in terms of the change

of content of a few store locations . Some b i t s  of an ins t ruct ion word wi l l

select which operation is to be performed and others will help to select which

reg ister(s)  and/or which word of immediate access store is/are to he involved .

Popula r accounts of computers are of ten pi tched at around this  leve l ,
explaining how ar i thmet ic  can be mapped on to logical operations wi th  binary

representations of integers. They will often go on to explain how simp le

instructions can be put in sequence to achieve more comp lex results , for example ,

the computation of the square root of an arbitrary number. However, i t  is above

this leve l that complexity really explodes. The user of a computing system ,
• which may have billions of words of data in its store and millions of words of

instructions , needs an interface which will insulate him from all but that part

of all this complexity that really concerns him . Furthermore the users may be

many , with diverse and conflicting interests and requirements , and the manage—

V 
ment and operat~” of the facility requires another interface which must be

p.

~



10 Math
7604

def ined at a suitable leve l for  human beings to operate . Between these inter-

f aces and the one represe n ted by the specifications of the set of machine

instructions lies the realm of sof tware architecture , and here the lines of

functional  responsibi l i ty  wi th in  the system begin to diverge even more radically

f rom the c lass i f icat ion by aggregat ion level p roposed above .

The user will norm ally express his requirements , as we have seen , in a
‘hi gh leve l language ’ (HLL) such as FORT RAN , COBOL , ALGOL , supplemen ted

by a JCL su ch as the GEORGE 3 comma.-id language , system control language , 
V

V 0S360 JCL It is the task of the comp il ing sys tem to convert the former
into an equivalent program of machine instructions , whi ls t  the operating system

• softwa re deals wi th the JCL. There is l i t t l e  real agreement over a proper
division in detai l  of responsibi l i t ies  between comp iling systems and operating
systems . A consequence is that it is common to find certain functions dup li-
cated or even triplicated in the actual operation of a user’s job . Indeed

there are those who doub t that these sub—systems should be distinct, and in

par t icu la r  feel that the FILL and JCL should be merged into a single language.

It is not proposed to say much here about the organisation of peop le

around the computing system as this is dictated largely by the wider enterprise

which the system serves , and by the requirements fLr computer service which its

work generates. However, it will be proposed that in their general nature the

most pressing difficulties facing the designer and user of computing systems

are just the same as those facing a general manager or those which arise in the

design and assessment of any complex system or those which arise in R & D. The

task is to generate a partiall y controlled complexity, through progressive

unders tanding and organisation , out of potential chaos . The task is that of

any thinking person , and is never completed , because circumstances and possibil-
i t ies are always subjec t  to uncontrol led changes and the time allowed is never
enough to produce a unique  demonstrab ly appropriate response at all levels . The

next sect ion exp lo res in more de t a i l  the na ture  of chaos and comp lex i t y ,  and the
weapons of organisation which are used in the computing context and in other

contexts mentioned above .

Before leaving the matter of levels , it is worth remarking that present

day operating systems are so comp lex that a number of levels can be discerned

within the separate functions of the software alone . An example is the

scheduling function (see Fig.1). Typ i cally , the various resources of the system

such as the machine—code processor (CPU), peripheral control devices , store

• space , etc. , will be subject to a predefined or single—program sequence control

only for a very limited ‘time span of discretion ’ before a lowest leve l of



V ~~_ VV 
~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — —. V

V

.

Math 11
7604

software controller is called in to time—share the resource amongs t the com-

peting processes which want to use the resource . This controller ’s simple

prior i ty—ord ered list of processes to be served may be governed by a hi gher

order control task of greater comprehension which interferes correspondingly

less frequently to try to meet objectives in ternis of the less—discriminating

‘overall computing power ’ to be assigned to a wider l ist of jobs given to it

by the highest order controller. The highest order controller may perhaps be

invoked only once every few seconds (or every million or so machine—level

instructions) and have overall charge of the acceptance by the system of job s

and of scheduling instructions from human operators and users . These instruc-

tions would pass through, and be routed to the scheduler by, the JCL interpreter.
Responses meant for human consumption may well be generated for the scheduler

V by a central message organiser and so on.

In complex control systems, as in human organisations , there can be

ambiguities between ‘brotherly co operation’ and hierarchical control. It must

(often) also be possible for a low level controller to refuse or delay a

request from above , pe rhap s because a device has become inoperable . This makes

for a considerab le variety of possible response to a command , and an equal or

‘requisite variety ’ of behaviour on the par t of the higher level controller.

The number of possible s tates and behaviours of the overall sys tem is
subject to the usual combinatorial exp losion and so design, even if clear in

princi p le , needs the backi ng of s imulat ion and/or empirical study . Similar

observat ions can be made about large applications programs or suites of programs

as well as of operating systems . In comp lex systems i t is importan t to be able

to describe and investigat e the behaviour at all appropriate levels — a s tud y of

pulse shapes wi l l give l i t t l e or no information about mal func t ion in a software

contro l module . Similar l y a stud y of overal l workload behaviour is a poor (but

sometimes the only i n i t i a l l y available) diagnost ic of a time sharing disorder.

Each of the boxes in Fig. I represents a bod y of program code which pr oces ses

data , some of wh ich i t shares wi th connected operat ing system ‘modules ’ . Wh i ls t

s cheduling is perhap s the most clearly hierarchical funct ion in the operat ing

system , i ts comp lexi ty is quite typical of the code to be found in large

in tegrated systems . Perhap s i t should be emp hasised that scheduling is only

one of the many funct ions of an operat ing system. Large par t s of the operat ing

system may well be t reated at the lower levels of contro l si mply as othe r
programs competing for the use of the processor. Thus we have a program con—

V

t ro l l ing its own access to the processor , to store space , etc. The system is
(in par t) i t s own metasyst em , to use Sta f f ord Bee r ’s terminology .

ii V~~ V~~~ - - ~~~V V ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ —. ~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~V V -- ~~~~~~~~~~~~~ V~~~~~~~V -

____ -- V V~~~~ _~~~~~~~V — ____

12 Ma th
7604

In thinking of system software , it is therefore often necessary carefully

to distinguish between the ‘objective ’ and ‘subjective ’ roles of the same

p iece of code . When the code is being obeyed , and not being accessed merely as

an object or body of data by another module , i t is a special purpose machine
and moreover it is the agent , within the computing system , of its designer. It

become s quite false and a r t i f ic ia l to avoid anthropomorphisms such as “ ... at

th is stage the compiler knows . . . and is trying to . . . “ . Of course , the

perceptual and cognitive mechanisms provided by biological evolution can far

outstrip the performance of any existing computer code at making sense out of

chaotic incoming data of enormous potential variety . Nevertheless this is the

essential nature of the source language analysis function of a compiler: the

stream of characters it examines could turn out to be gibberish , but is more

like ly to be an approximation to one of an infini te variety of valid programs .

Fig.2 indicates that despite great e f fo r t s to present the user with a

simp le interface , his interactions wi th the service are often conducted at a

variety of levels of detail. It could be argued that there is no jus t i f ica t ion
for put t ing app lications programs lower in level th an comp iling sys tems , since

one man ’ s comp iler or operating system is another man ’s program . But no system

of classification ever is sat isfactory and Fig .2 wil l do for simp le , investiga-

tory, ephemeral application programs such as are common in scientific and

engineering use.

4 CHAOS AND COMPLEXITY

So far, we have taken a glimpse at the activities of a computer user and

a gl impse into the world of hardware and software design . The message to be

conveyed is that third generation computing systems are complex inside , though

• they try as fa r as possible to present a simple and manageable interface to the V

user. Furthermore , the d i f f i cu l t i e s faced by progr ammers and designers and
V V users are less to do with learning a hi gh level language or binary arithmetic

th an to do with the management of complexity or jus t p lain thinking.
V

It is a theme of this paper that the task of wr i t ing a computer program is

tackled in the same way that one would design an organisation or a weapon system

or prepare a case or wri te a report or construct a mathematical proof , etc. It
is almost wholly an in te l lec tua l exercise in which a s tructure mus t be conceived
which can e f f ec t ive ly link the need to the resources available . A schematic
view of the problem is given in Fi g.3.

rV

V V V

W~~~~~~~~~

Ma th 13
7604

Generally there are two approaches — the ‘top down’ and the ‘bottom up’.
The top down approach starts with the need and tries to find a number of simpler

tasks which if accomplished together will ensure satisfaction of the need. Each

of the simpler tasks is further refined in a similar way until one arrives at a

multitude of tasks each of which can be accomplished easily. In the bottom up
V procedure one experiments to see what can be done easily and what is the effect

of combining the easily done things in various ways. The result is a rich

armoury of f a i r l y s imple components, results or subroutines which can be com—
bined into more complex results or subassemblies having properties that should

be useful in tackling the overall task. The building proceeds until hopefully V

one finds a structure designed to meet the need.

V There are those who preach the top down procedure as the only proper one

worthy of the name ‘design ’ and those whose practice appears to be mainly
bottom up or even serendip itous . The conflict also appears as ‘need—pull

versus technology—push’ in talk of R & D mat ters . Those engaged in actually

designing things will recognise that bridges are often best built from both ends
V

hoping to meet in the middle, as in the numerical solution of ‘jury’ problems.

Also the f i r s t bridge that actually works tends to be ramshackle through poo r

foresigh t or navigation during its building , and it often pay s to rebuild it
more elegantly and strongly if it is to carry much t r a f f i c .

The initial leap from ends to means must be intuitive or inductive . It

may be as inconsequential as the ramblings of a drunken poet, though experience

will help to discourage the choice of some of the seductive blind alleys. The

leap leaves a tangle of gossamer — frail links which must be refined and

strengthened unti l even a sceptic can be made to admit that a credible connec-

tion exists. Corners must be cut and irrelevant links discarded. All of this
V

V is the automatic or unconscious result of a lifetime of purposive thinking, but

there is never any assurance of success. The whole enterprise can be impossible .

In programming, the real feature of the ‘traffic’ which the program has to

sustain is the essential variety in the data which may be encountered in use.

In some sense this defines an ‘operational envelope’ for the program, and a com—

plex program will often succeed for most of the data cases which are presented

to it but fail on a few special ones — perhaps because an iteration diverges.
V The failure may be catastrophic if the programmer was unaware of the possibility ,

or did nothing about it. The more obvious element of ‘traffic’ is the frequency

of use of the program and the sheer amount of the data it is called on to digest.

If this is great ~i t may be worthwhile to redesign the program, although it is

14 Ma th
7604

already ef fec tive and reliab le, to make it more efficient. Unfortunately

efficiency or minimum consumption of resources often conflicts as an objective

with simplicity and reliability and sometimes its pursuit in the name of crafts-

manship wastes more in terms of programmer’s time and in development and re—run

time than is saved in terms of machine resources . It must be allowed, however ,
that a bad programmer can write astounding ly inef f i c i ent pr ograms which are also
far more complex than they need to be.

The programmer’s task, then, is to discern or to create and impose a

structure on the job to be done, on the code to be written, and on the internal

and external data with which the code deals. The distinction between ‘discern ’

and ‘create’ is probab ly unreal — even perception is creative, the structures

we build can be well or ill fitted for their purpose. In programming we would
V

ideally like to arrive at a series of code ‘modules’ inte~related hierarchically
at a number of levels, each having a simple specification guaranteeing that it

will not tread on its neighbour ’s toes and that the overall job will be done.

Then one can concentrate on producing code to satisfy the simp ler module speci-

fications. Even if all of this is not done explicitly, at least the programmer

will have some glimpse or intuition of such a structure in his mind when he

begins coding.

Despite the aspirations of the top—down school, it will generally be

found that the structure initially conceived will change as one tries to encode

the modules. A module will prove impossible to make, or it becomes evident when

dealing with the detail that there are system prob lems which are not catered for

in the specifications . A different structure begins to look more attractive and

perhaps more efficient too, and we may even begin to look at the overall problem

• in a new light. Nevertheless , however limited one’s foresight in planning may

be , some planning is desirable . It is advisable, for instance , to consider

which data components need to be used by which code components and what lockout

or sequencing restrictions may need to be imposed on such accesses.

This then is the weapon of organisation by which chaos is reduced to a

partially—ordered complexity . The weapon of standardisation will be mentioned

later. One might draw an organisation chart or tree showing which subroutines

are parts of which segments in which programs and which programs make up the

entire suite . The tree is one commonly used structure . As with human organisa—

tions , at whatever level is of interest it is often necessary to draw lines of

one kind and another between the modules to indicate the essential nature of the

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V_ V~~’ V~V___ _V V ~~~~~~~~~~~~~~ •~ V- V~~V - -

Math 15.
7604

transactions required in addition to the hierarchical ones. This structure 
V

would form a network or graph. Mathematics provides many other useful

structures such as vector and function. Commercial work contributes the file! V

record/field structure . Library practice suggests structures for marking,

parking, and picking items in large collections . All of these, and many more,

structures are commonly given to computer data through the use of suitab le

conventions.

Shannon’s theory of the selective power of messages indicates how the

potential information—bearing capacity of a stream of characters may be dimin—

ished by noise and redundancy . The structure of the data, which is known before—

hand to sender and receiver, or may be sent with the data, is redundancy in so

far as it limits the potential variety of what can be transmitted. In computing V

V 

it is used at low level to protect against corruption by noise and at higher

levels to facilitate recognition and analysis of the message.

Both sender and receiver may be in the computing system, for example when

one procedure gives data to another or when a data base is updated by a program.

However, we are here more interested in a man’s problems when he tries to make

sense of programs and data. A programmer is continually doing this in the

course of his work and anything that can be done to make programs and data more

lucid is usually well worth the effort.

In reading any kind of analysis or case one is assailed by doub ts that

disrup t the desired smooth progress to conviction — does this function necessar-

ily possess a Fourier transform — will McDuff come before Macdonald , what about

Angstrom, Tschebyscheff and Chebyshev? Progress is rapid when these doubts can

be put on one side or disposed of rapid ly — “we agreed to use the telephone

V 
directory order” — it ’s all right, that is discussed in Appendix B” — but as

soon as a sizeable diversion is created a lot of mental work is occasioned to

re—establish the context of thought where one left off. This disruption by

interpolated activity is well—known to programmers , managers and mathematicians

alike.

In programming one may be coding a particular module and part of the con— 
V

text of thought is in a sense the specification of that module . This specifica—

tion may or may not exist on paper , it may be clear or cloudy in the programmer’s

mind . At all events, it is most unlikely that it will be so mani fest that the

programmer is not occasionally diverted into clarifying the detai led relation-

shi ps between this module and others , or linking this module ’s detai l with the

_ _  V _ _  ~~~~~V-~~~~~V V V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~VV-~~~~~~~~~~~~~~~~V-

16 Math
7604

higher level abstractions that the program is meant to embody. If he is not a

very experienced programmer he will also from time to time have to pause to con-

sider the precise effect of such and such a command or statement. All of these

uncertainties absorb even more time and effort if they persist, as they usually

do, into the program testing phase.

Cl early , these problems are unavoidable. Equally clearly they can to

some extent be minimised by explicit, clear and easily referenced documentation.

Nevertheless much of the context material will not be explicitly defined or V

referenced in any real—life project, and on some facets the source program

itself would be the easiest document to use. In considering the nature of

programming it is crucially important to remember the implicit , unstated struc-

tures which help to relate the program to its problem context. These may very
V properly be unstated because the programmer knows what he is doing and does not

expect anyone else to have to understand it , or because they form part of the

general usage , custom and technique of people doing that kind of work so that

it would be i r r i ta t ing, gratui tous and pedantic to expect anyone to read it.

Matters of custom and established technique can and do get enshrined in

explicit standards , or more accurately a proliferation of standards appropriate

to the different circumstances of diverse groups . On the other hand , the

programmer who uses the identifier ‘M’ in his source program to stand for Mach

number and never actually records this correspondence may be on more doubtful

ground. If he is a scientist or engineer engaged in an ephemeral calculation

he may never have to read his source program again (when the correspondence

has been forgotten). Also , it may be that a restricted context has been estab-

lished for the program such that only a few factors are involved , so that the

one likely to correspond to ‘M’ is easy to spot. On such grounds he may justi-

fiably use a cryptic identifier in place of the more explicit ones availab le in

modern high level languages, such as ‘MACH ’ or even ‘MACHNUNBER ’. He will bene—

fit from brevity just as the mathematician benefits from working with single—

character symbols. On the other hand, it is surprising how valuab le it often

is to be ab le later to read an old source program quick ly and easily . This

demands the use of more exp l icit or mnemonic ident i f iers , or ‘comment ’ annota-

tions or supporting documents describing the program.

Groups of people differ in their famili irity with aspects of any given

context, so it is unsurprising that a report which is a model of clarity and

exposition to one reader is tediously verbose to another and yet impenetrably

Math 17
7604

or aggressivel y terse or jargon—ridden to a third. The same applies to style in

mathematics and programming . The essential task is to communicate something

which is known only to the author or source , within a context of what is under-
stood by and agreed upon by both the originator and the intended recipient(s).

The message is not that men and machines are just the same, only that the V

morphology of some of their respective problems of communication is recognisably

similar. Of course, human communication is complex and its explicit objective

content may have little relevance to the needs of either party . The important V

message is often latent in the style or the very fact of the communication.

V 5 STANDARDS

To adopt a standard of any kind is essentially to limit the designer ’s

freedom of response to his problem and to make it, in all probability , impossible

to produce a solution as well adapted to the need as could be produced without

the constraint .

Nevertheless in all design fields, including programming , designers do use V

standard components, carefully disciplined terminology , and standard forms of

description and specification. The advantage in general is that a cheaper and

more reliable answer can be got in limited time . The designer does not

necessarily have to understand exactly why the standard component is made the

way it is, only how it behaves as an entity . He is more likely to understand it

as a complete entity because he will have used it , or have seen it used , in
other contexts.

A further and very important advantage comes with the standardisation of

interfaces rather than components : a range of different components built to the

- V standard are interchangeable . Thus one may standardise at machine—code level
• for a range of machines of widely differing technologies; then programs and

machine—code programmers can be moved from one machine to another, or an old

machine can be replaced by a fas ter one without requiring that al l the programs

be rewrit ten and the programmers retrained.

This aspect of the ‘portability ’ of programs and programmers and the inter-

~~~~ changeabil i ty  of computer systems is so important that there is much international

act iv i ty  aime d at defining and maintaining standards for high level languages,

etc.  A standard at this  level can of course hope for a much wider coverage with
V correspondingly greater benef i ts . As well  as such formal standards there tend

to be de f acto standard practices at all levels on what is agreed among some

1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
•- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —



18 Math
7604

group of practitioners to be good practice or what has been laid down by rele-

vant authority as a standard in some particular project or activity .

However , although most standards in computing are designed to facilitate
transf e r  or exchange of equipment, da ta , programs or people, the theme of  this
essay is complexity. The adoption of standard notations, language, method,

sub routines , etc. enables the programmer to shrug off (and to leave undocumen-
ted)  uninteres ting decisi ons which, it is to be hoped, have only a very minor
influence on the optiniality of his solution. He is then free to use his mental

capacities to deal with more important issues more thoroughly.

The success or otherwise of this manoeuvre depends heavily on the amount V

of detail which needs to be mastered in the specification of the standard. V

Often the programmer will complain , and sometimes rightly, that it is more

trouble to read the specification or manual describing the standard article ,

than to make his own version. Similarly many a scientist wil l  undertake a

small investigation himself rather than spend days in a libr ary looking f or
relevant l i terature.  In both cases there is the danger that what is eventually

found will  turn out not to be quite suitable af ter  the effort has been expended,

and there is the loss of that personal understanding and assurance that comes of

doing it oneself. On the other hand , progress will always depend in part upon
finding people and sources that can be relied upon .

In turn , the complexity of the specification depends on the generality of V

the proferred article in two ways. It can be too complex either because the

article is too generally—applicable for the context or because its generality

is insufficiently wide. Thus it would be unfortunate to have to use a sub-

routine capable of computing the hypergeometric function F in order to get

ar c sin (Z) ,  i.e. Z
2
F

1 (~ , ~ ; ; z2). It would be unfortunate in the other

sense if the subroutine was subject to failure or catastrophic loss of accuracy

In several small regions of the complex argument plane. In the first case one

has to specify too much uninteresting data and in the second the analysis is

unduly complicated and/or one must provide ‘alarms ’ in the program to guard the

f o rbidden domai ns , and specify what should be done if the program attempts to
compute with a forbidden value .

6 GENE RALITY

Of course, the search for generality is basic to mathematics, to science

and to thought itself. We seek the uncluttered and simple statements that

_ _ _ _ _  V-V



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Math 19
7604

remain invariantly true over as wide as possible a universe of discourse and

which can yet correlate and account for as much as possible of the variety of

our experience.

In this way we simp l if y experience and link it to the body of publi c
knowledge. If the structure so built is good our powers of perception and

thought are enhanced and our powers of communication also, provided the other

person (or machine) is possessed of similar structures and relevant public

knowledge. If the structure has little enduring utility , it will distort

perception and reactions will be inappropriate.

The concept of orthogonality is vital in the reduction of complexity.

If a machine instruction can be separated into parts which independently specify
V the operation and the operand it means that the space of possible instructions

is a Cartesian product of two much simpler spaces. The ‘dimensions ’ of operation

and operand are ‘orthogonal’. It need not have been so: a perverse designer

could have specified that the first machine instruction meant operation 23 with

the number 12 , the second meant operation 2 with the contents of store 6 and

so on.

In work on programming languages there is a similar drive to combine a

f ew simple primitives with a few straightforward and logical rules of elabora-
tion into a language of the expressive power necessary to be able to define any

desired computation economically and with clarity. The aim might be said to be

that of changing programming language from a collection of unrelated tools into

a coherent system which can be studied as a branch of applied mathematics ,

enabling more rigorous comprehensive and general deduction of the validity and

effect of the statements and programs which may be uttered.

V
V 7 AMBITION

Ambition is the downfall of many a programmer. As we have seen ,
programming is largely about the management of complexity , and the amount of

complexity to be coped with is often very much under the individual influence of

V the programmer. It can escalate wildly as one seeks to include more factors in

the problem, or as one tries to make the program more general or more ‘in telli—

gent’. It is thus very easy to bite off more than one can satisfactorily chew.

• The general tendency is to choose a problem of one’s own size to tackle,

and the allowance made for errors of judgment is not always sufficient. There

is , however , an optimum to be sought, since if one only tries the trivial then

___ -V- V- w —•~~~~~
•-

20 Ma th
7604

much of the potential benefit from using a computer will be lost. Whether the

programmer or designer tries too hard or attempts too little, computation tends

to get a bad name. The call is then for tighter management control.

This evolution in af f a i r s sometimes gives rise to the peculiarly unsafis—
factory position that one group of computer people is disciplined but unimagina-

tive while another is creative but unreliable and the two groups never really

communicate. The difficulty is not special to computing. It is the same prob-

lem which tended to divide research from industrial production to the detriment

of both. Once again compromise is inevitable and a willingness to learn of the

sensitivities and difficulties of other people in other contexts is far more

valuable than a partisan crusade.

8 CONCLUSION

It is hoped that the foregoing will have convinced the intelligent layman

or the occasional programmer that the problems of working with computer systems

are the same in essence as those facing other peop le . The thesis is that the
real nature of computing work is the creation and management of comp lex systems V

in circums tances of rapidly changing needs and possibilities. Computing is no

longer a branch of mathematics , physics , management or engineering . It can

respond rapidly as an art or as an industry to changing needs , but key questions

are often of the form “if it takes one man one day to solve a prob lem, how long

will it take a hundred—man team to solve a problem which is ten thousand times

as complex?”.

Acknowledg~~nts

• Messrs. J.H.B. Smith, D.E. Williams and L.J. Richards have made many

suggestions for improvement of the text of this essay.

~~~T . ~~ _ _ _ _  _ _____ _ ___
__ _ ____

__



— ~VV~V-V _V V•V — ~•-V V~~~V--V ~~~~~ 
_V~•V- •-V•V-VV V_ VVV-_ •V ~~~~~~~~~~~ — ~V~~VV -_~~~~~ -VV--VV~V V-V-V -V-V

- - -V

Math 
Fig.176D4

T IME SPRNOF
I~1 S CR .ETION

1 iss~~]
_ _ _ _ _ _ _ _ _  ~C1 6WE~RToRJ

I I ~~~~~~~ ~ I ~ — i r~-I ~~~~~~S /
_____________ 

EVICC$

H I 11 1 ~~~~ seconds f~
L E V E L  L ALLOC’~ 

P f lI f lU k S-r
w H1~DUL~~ J’~COy&i~t St~tLt4,

~~~~~~~~~ ~~~~A 
I’tSOU(CeS

use 4.
LOW .,“ 8ACKi~~j

- S1o~e m~I(ugeconct~
~~~~~~~~~~~~~~~~~~~~~~~~~ ‘

~
-
~~~~~~

‘ i1
—

LJ t
~~~~

_ _ _ _ _ _ _ _ _ _ _  

a.630d,t~• 
~ I~~~

T
~ LJ 

~n i (t~~econds
V 

~~~~~~~~~~~~~~~~~ m~CioS’ec~ nc(S
\

_ _ _ _
~~~~~

I
~~ ~EN~~~A L / micros~co~d~

I 

P~ oC~ Sso~

Fig.1 Levels of control over processor use

_ _ _  _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  V _ _ _



Fig.2 7ri1 -~

U E 
T ’ Y P I C A L  COMPUTIt44

¶ 1~ A NS~~CTI O N S ER..V% ( V -~

d t t (
~

p
~ flt~ OtieMoi4 ~~ R V L C C

MAft4A4~M(I41

- ~~~~~~~~~~~~ c~As~~cL~
S I A  f ~~

- 
IC L  Co ii~~~~~~(S

C~~~ct. .(e.Hses
SoE1~. dAP..C

- 
I-ILL ~~~~~~~~~~~~~ Cc’ f~1( ’l (.J r.Jq

~~~~~~~ Y S T C f r I

-

c1o.t~ c~~~c(re~~t.J t~s A PPL’C.A~T,ø?4S

P~.o6 RAM

_ E~(EC.U1 R1(
l~% Iøb&(~J ~~~~~~~ ~~~~

—

~I~~R.) WA R(

Flg.2 Possible user/service interaction levils

_____ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~

V -V _ V~•VVJ
_ - V V V•• -VV _-V V

_ . _.__ -V~ VV-fl_V..V-~~ V V V ?yV •~.._VV._ V VVVV • VV__V _~
__•VVV__;VV. - V . -V_~

V ~~_V~~~~ V_~~_~~~~~T _ _ _ _ _ _ V -

Math Fig.3
7604

R E G u I R ~~~~NT
-

(i v ~~~~~s..c(i~.t3 ~o.Jo~ ~~~~~~~~~~~~~~~~

- ro 8 (

_ _ _ _ c o ~si~ uc~c~ _ _ _ _ _
&v~~LLk.

V R C S o u ~~~c~~~S

Flg.3 The prograniner’ s problem

- -~~~—— ~~~~~-~~~V — ~~~~~~~~ V - V - - V~~• V .V V V
~~

-VVV 1
~~~
_ _•  —.-- -- - -V~~~~~

-.V- 
-V V V V - V



REPO RT DOCUMENTATION PAGE - 
V

Overall security classification of this page

I UNLIMITE D 1
As far as possible this page should contain only unclassified information. If it is necessary to enter classified information , the box
above must be marked to indicate the classification , e.g. Restricted , Confidential or Secret.

1. DRIC Reference 2. Originator ’s Reference 3. Agency 4. Report Security Classification/Marking
(to be added by DRI C) - Reference

RAE TM Math 7604 N/A IJNL1MITED

S. DRIC Code for Originator 6. Originator (Corporate Author) Name and Location -

850100 Royal Aircraft Establishment, Farnborough , Rants, UK

5a. Sponsoring Agency’s Code 6a. Sponsoring Agency (Contract Authority) Name and Location

N/A . N/A

7. Title
An essay on computing

7a. (For Translations) Title in Foreign Language

a

7b. (For Conference Papers) Title , Place and Date of Conference

8. Author I . Surname , Initials 9a. Author 2 9b. Authors 3, 4 .... 10. Date Pages Refs.
Gilbey D.M. ~~~~ .~~ 23 —

11. Contract Number 12. Period 13. Project 14. Other Reference Nos.
N/ A N/A

15. Distribution statement
(a) Controlled by —

(b) Special limitations (if any) —

16. Descriptors (Keyword s) (Descriptors marked * are selected from TEST)

17. stract
An essay is presented on the nature and difficulties of working on or with

computing systems . It is hoped that the intelligent layman can read pas t any
unfamiliar j argon and still be convinced , along with -the ‘occasi onal progra mmer ’,
that modern computing is mainly about the creation and management of the complex.

, 1

h. —

• . - ____  --~~~~ . • • ~~~~~~~~~~~~~~~ VV V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


