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20 Abstract

Three principal areas of investigation have been followed .

1. ICernal functions and related areas.

Results have been obtained on polynomial density in Ber ’s
Spaces , Berman Spaces over multiply-connected domains ,
Total Pos itivity and reproducing kerne ls , Szego kernels
and the Riesz projection theorem and Metric on Annuli.

2. BVP and IVP.

Study has been undertaken of transform ing BVP into IVP.
In particular , a method whereby a well-posed elliptic
boundary-value prob lem of the Dirichiet type is transformed
into a first-order non-linear equation governing the
Green ’s function of an embedded prob lem is studied .

3. Singularities.

The study of smoothing s of analytic singularities is
discussed. In particular , generalized complete inter-
sections and their spaces of deformations are analyzed .  
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ARSTRACT

$Three pri nci pai areas of investigation ~~~~~~~~~ fo11ow~~~

Fernel functions and related area~~
Results have been obtained on polynomial density in Ber ’s Spaces ,
Berma n Spaces over multiply-connected domains , Total Positivity and
reproducing kernels, Szeg8 kernels and the Riesz projection theorem
and Metric on Annuli’

Study has been undertaken of transforming RVP into TVP . In particular,
a method whereby a well-posed elliptic boundary-va lue problem of the
Dirichlet type is transformed into a first—order non—linear equation
governing the Green ’s function of an embedded problem is studied ~~#vZ)

Singu1arities~~~~~~~ 

—~

The study of smoothings of analytic singularities is discusøed. In
particular, generalized complete intersections and their spaces of
deformation, are analyzed.
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The objectives of research undertak en under Ro’.earch Contract

No. DA—ERO—124—74-G0064 were the followinq :

(1) Determinat ion  of n, ’.Iuli of multiply connected plane domains.

(2) Computation of conformal mappings onto canonical domains.

(3) Variations of kernel functions with respect to its domain.

(4) Transformation of boundary value problems into initial value

problems.

(5) Analogues of Schwarz-Pick lemma , distortion theorems .

(6) Numerical ipplication s to the theory of elasticity and fluid
dynamics.

I. Work on Kernel Functions and Related Areas.

Work has been done in the area of kernel functions in r~lane domains

and metrics in piano k,matnn. Th’~ 101 IcIwi l Ie ;  rf~ ;’i It ~. )..iw~ ti(,s.vI

obtained,

‘

I 

I ~~~~

. _ _
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1. Po1ynor~a1 Densi ty  in Bcrs spaces I.

Let D be a hounded sis~~ty c.onnected domain such that If X ‘d4 dy ~ — for

q > 1. Here \~(:) is the Poincare’ metric for D. Define A~ (D), the Bers
space, to be the Freche’t space of holomorph ic func tions f on D, such that
,IIIIP ff ) .  

~~~If (~ d’cdy is finite, 0 < p c , qp> 1. i~ is well knownq,p 
D

that ~he polynomials are dense in A~ (D) f c — op ? 2. W~ show tha’- they are

dense in A~(D) for qp ~ 1 irrespective vhelther the boundary of D is

rectifiaUe or not. Accepted for publication in the”~ roceeding of the Ani~ r .

Math. Soe iety”(Feb. 23, 1976) .

2. Polynomial Doni tty in Rers spaces ~~
This paper is a continuation and a generalization of the previous work (item 1).

Here we assume tha t

tD 
— sup (q E R: i~q

(D) • .}
~ ~Lq

(D) - 
~~~
‘

and so l _ t
D
52. V. let

(ItD
, ) ,  

~~ 
(D) c —

I D

~ ~~~~~~ (D) —

D
and note that (q E R: i

q(D) 
.c —} — Q(t

D
). Of course Q(l) • (1,”) arJ

Q(2
~ • [2,). With the notation as abova we shc~: thai.

Tbeo.sm 1. The polynomial are dent~~ in A~(D) , 0 < p < , qp E

- 

a -
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Theorem 2. Tha following hold

(i) ~~~~~~~~~

(ii) If D is a lordan domain with a rectifiable boundary ~D then t
D 

— 1.

(iii) There is a Jotd~, domain with a non recti iable boundary with — 1.

(iv) There is a domain D with 1.17 c tD C 2.

(v) There is a dos..~in D with t
D 

— 2.

submitted to the “J. of Lonci. Math. Soc.”

3. Proffection on Rergnan Spae~s over Multiply Connected Domain.~~

Let D Le a bounded domain of finite ct,nnectivtt~’ (with some ss~oothness require—

men ts on its boundary). The Bergman space o~ B, B~(D) is the set of nh functions

f (z) , analytic in D, for wh ich llfH — (If  jf (z) j~ d~ (z)}~~ ’ < —. 1 
~~ 

p < — •
D

Here dc~(z) — dxdy. The “natural projection of L~(D) to B (D) is given by

(Pf) (~) — ff f(z)KD(~.
)d(o(z), where K.~(z ,~~) is the Bergman kernel for D.

D
If p — 1, this projection is not bounded. The Ahltors—Bers theory does not

seem to help in case 1 < p Ic . Here we show that P is a bounded projection

of L~ (D) onto B~ (D)~ 1 c p < .. Moreover , the dual of 3~(D) is isomorphic

to $~~(D). l/p + l/p’ — 1, 1 c p .c —. For the special case when D is the

imit disc these results were obtained by various authors; e.g., Zahar juta and

. udovi~; Shields and Williams, and Forehli and Rudin. Submitted to the “J. f u r
die esine und angewandte Mathematic”

4. ~~tal Positivity and Reproducing Kernels.

Hera we investigate the rela’-ionship bet.~een total positivitv and rcpri’~ducing

ksrn ls. We extend the notion of totssl posttLv L~ y Li) dom~t1n In th~ timp lex

plan.. In doing so, we also give a geomotri~a1 interpretation to certain
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Wronskians of reproduc ing kernels. Appeared in the “Pacif ic  J. of Math. Vol.

55 (1974), 343—3~~.

5. Total Pos it ivi ty  c~ Ce r t a i n  Reproducing Kernels .

Here we study the total positivity of various k~.rn els, especially reproducing

kernels o~ Hu bert spac~es of analytic functions. We do so by employing a

famili0c device known as thc “Composition formula of Polya and Szego”. Using

this formula we are able to give a short proof 
fr 

the variational diminishing

property of a generalized analogue of the ha Vallee Poussin menas. This

generalizes earlier work of Polyi and ~~hoenherg and recent work of Horton. Our

met hod is ba sed on the isometrical image of the reproducing kernel called the

generating function. The reproducing kernel is then expressed is a composition

of two generating functions so that the problem is reduced to investigating the

total positivity of the generating function. This method extends earlier work

and yields many new reproducing kernels which are total positive. Submitted

to the “Pacific J. of Math.”

6. Additton~~1 Current Work.
a.

~~• .. . .. .  Jacob ;~urbea , The Pennsylvaqin State University, University Park, Pa. 16802. The

: ~ ,.
‘
~
‘ Szego kernel, and the Ricsz’s projection theorem.

i D b e a plane domain whose boundary consists of a finite number of disjoint analytic curves.

his restriction could be weakened considerably). The Hardy—Szeg~ spac.~ 11 (D) is regarded as a

losed subspace of L (aD), 1 5 p 5 —. in the usual way. Let K..,~(z , )  be the S~e~~ kernel for D a

‘t (Pfj(P~) ~~ 
KD(~

,z)
~~5)Id*I 

be the “natural projection” of L (3D) to 8 (D). Theorem. P
- 

continuous projection from L (aD) onto H~(D). 1 5 p 5 ., and A~
2
~ S HPll~~sA~

’
~ where —

rn /p_i + ~~~~~~~~ Here ~~~~~ ~~~ (j.l,2) depend only on D. When D is the unit disc this

the classical *Lesz ’s projection theorem. Corollary. For L~(aD) — H~(&) ~ H~(D) , lip + 1/q — 1

have H (D) — z’H~ (D) . Here z’ — g’(s) where z • i(s) is the parametrization of ~D with

‘cpece to the length parameter a.

- ____ - - -  : - -•—-~~~ -
~
- ---—i;J--

-a
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b. Ja~ot~ Burbea , ih~ T~c~’ ~y 1v~ r .ia St ate  Uni v~ r s i t :  Ur .iv~ r s . t~’ ?ark , Pa. 16802
M~ t r i c c  on ~n anr ’du s .

Let Ic be the annulus tz:r ~ ~~ .c 1), 0 c r c 1. The Carathdodory metric’

for R is given by

(C)  d4(z) • IzI~~ (~‘(2 log IzI :c~1,w 2)—e3)IdzI
2

where 1~ is the Weierstra~si’— i~unction with the half periods w1 
— iTt and

— log r. }Iere e
3 —~~

(cU
1
4w2:c.1,ce32). Formula (*)‘settles a question raised in

Kobayashi(”Hyperbohic Manifolds and Holomorphic Mappings”, Marcel Dekker, New

York, 1970], p. 52. It is well known that dcf~(z) S dP~(z), where dP~(z) is

the Poincar~ metric for R. In this case dP~(z) is also the Kobayashi metric

for R. We show that dC~(z) < dP~(z). This could be regarded as an example

in which for non symmetric domain the Wobavashi metric could be strictly bigger

than the Carath~odory metric for each point of the domain.

c. The Carath~odory metric in plane domains.

Let D be a domain in C U {~~} whose boundary consists of more

than two points and let dP~~(z) be its Poincar4 metric. Theorem 1.

Let D as before and let dS~ (z) = g(z,~~)fdz~
2 be a conformally

invariant Kaehler metric on D. (i) If D is simply connected
the curvature of dS2 is constant and if also dS~ is complete

thi s constant is negative. (ii) If dS~ is complete and
g(z,~ ) is a single-valued analytic function in (z,~~) then if
the curvature is contant ( must be negative) D is simply connected .

The Caz’ath4odory metric dC~(z) is given by

dC~(z) a (
~

w KD(z,~))
2
IdzI ’ where XDCZ ,Z) is the Szegö kernel

for L. ‘iheorem 2. dC~(z) has a negative curvature i~aose value
on ai~ is —se . According to Theorem .~. the curvatur’e is not

~ coa.tay~t unless D ii eirp].” connected . It is well kr.~wn that
dC~ (z) ~ dP~ (z) , in fact we show ‘that dC~ (z )  < dP~ (z) when D

is doubly connsct.d,
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d. The dual of the Ber~~an space i~ plane domains.

Let D be a bcunded plane domain. The Bergman space of

D A~(D) is the set of all functions f(z), analytic in

D for which IIf I I~ (f ~II f (Z)Ir ’dXdY })1P <~~~~ , 1 < p <

The “natural projection ” of Lp(D) to Ap(t) is defined by

mcans of the Bergman kernel  for D. If p 1, this proj ect ion

is not Continuous . The theory o Bers dc-’s not seem to help in

case 1 < p < . Theo~.’ern . P is continuous from L~ (D) onto

2. < p ( 
~ and C~

2
~ < ~~ < C~

1
~ , where

~~~ k~~~/p-1 + ~~~~~~ ~~~~~ ~~~~~ are constants depending

only on D. When D is the unit disc 1this thenrem was first

proved by Zaharj u ta  and Judovic [Uspehi Mat. Nauk., i9( l96~4),

No. 2( 116) , 139-192]. Theorem 2. The dual of A~~(D ) is iso-

morphic to A~(D)~ 2. c p < , 1/p + 1./c = 2.. Unless p = 2 ,

A;(D) is not isometric to Aq
(D) and the “isometry distortion”

I satisfies C~
2
~ < I <q q — q — q

e. The annihilator of the Bergman space in plane domain.

Let A~(D)~ 2. < p < ~ be the Bergman space in a bounded plane.

domain D. The natural projection involving the Bergman kernel)

P is continuous and so L~(D) = A~(D)~ A~(D) where A~(D)

is the ~nnihi1ator of Aq ( D ) I  i/p + l/q = 1. Theorem j.~
A~(!~) (ia: h, c L~(D) and h “vanishes or. aD”}. This
get.irali:se ~ result of S~ hi:fer [Rend. Mat. a Appi . 22(1963).
£1117_&e68J when p ~ 2. Assume I~ hcis ~ Green function C (z ,c)D
and define (Lf)(c) z -

~~~~ 
‘D’ ~~~~ 

!tzIdxdy. This operator is in
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.1
fact e !~i1hert trern~ fr~’rn. Thoorem 2 .  Let f c L (D),
1 < p < . The L 2

~ = (I-p)f. This generalizes a result
of Block [ Proc . ’ Amer. M ath .  Soc. 4(1953), 110-117]. The above
theurem~ enable us to deduce various projection theorems on

operitor s defined by means of domain funct ions .

a
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II. Work on Boun4~~y Value Problems.
With r’-’f~’rence to the problem of trannforming boundary value problems 

9.

to T n i t ~. a1 Value  Prob h’m~ , the fol lowing rc~;ults h.’,ve been obtai ned :

1. :~ tr-:.:~ ior.:

In th is  note we pr ’esent formally a method whereby a well

• pose~ e 1ipr ~.c boundary value problem of the Dirichiet type is

t r ar . .~for~~ d into seekir ’~ a solution for a first order nor.—linear ’

u At Cn Covcrflifl2 th~.. Green ’s function of an embedded problem. We

exanine ~n operator defined on a 
domain bounded by an analytic

closcd c~ rve , and exploiting properties of the mapping function

def~.ne~ in terms of the kernel function , 
we map the domain into a

disk On this new domain we examine the variations of the ~reen ’s

function ~ ith changes in the domain. The method can be extended to

r~ultiply connected domains and to Neumann 
type problems.

2. The Formulation:

Suppose D is a bounded cizn~ly connected domain in 
g with

a boundary curve C of class C’~ (n>2). Let t0 £ D . Let f(z,t0
) be

tne unique analytic mapping which maps D onto £R
X (W I Iw l < R0

}

and such that

fCt 0 ,t0) a 0 ; ~~ (t0,t0
) 1 (1)

Su pose CR is the curve , R ~ , bounding the simply
• connected domain DR

C D . Then, the family of curves and domains

(CR,DR) have the following properties:

• a) CR ~~C ~ t~ a~~ and C ~~D a t
0 0 

0

b) CR f l C R, a
~~ 

if R � R ’

~ 
if R ’ (R ’

To s. domain D is associstecj the kernel function CM]
- -- 

_ _  -
~~



‘ S

20.

~(z,t0) f’ (z ,t0
) with zeD (2)

and to the domains DR we associate the kernel function

XR (z , ’O
) —s. f’(z,t~,) (3)

In (3), f is understood to be the restric~ ion of the mapp ..ng
f~ r .ction assocj .~ted wit~. t~~ domain D to the domain DR

Consider the elliptic operator

2 
• 2

L ~ Ia 1~ ~~~~~~ i~l 
b~ ~~~~~— — d (~)

defined on D and which is assumed to be uniformly strongly elliptic
and seif-adjoint with the coefficients a1~~b~ and d functions

• of x defined on D and sufficiently smooth such ‘that a unique
solution sexists to the Dirichiet problem [F].

• 
L u a O , u s 3  on C a (5)

We denote the restriction of the operator L~ to DR by LR . There
then exists for ~ach~ domain D

~ 
a Green’s function (the fundamertal

solution) G&(pl,p2) associated with LRuR = £~ ~ 
a c on CR ‘

whcss solution is simply gi~en by

UR (pl
) = I “;~~ GR~~i,P2) dA (6)

DR

• . 
•

a
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Denote by ~~~~. the  d isk  cf  r ’adius R . By utilizing the

~~~p .rg function f in L~ we can get a flew operator LR defi”ed

or. , namely,

• ~~~~ + 

~~ 

b. — d (7)

where now (y 1,y ~~) = (r,8) and the coefficients are functions of the

n~~.’ variables. We now nor~ ilize our coordinates by means of the

ccor~ i~;ate transformation a 0 and r = pR ~o ~et the new operator

instead o~ (7) with 
~i.j ~~~ 

.
~ and ’ d • now

fur.ctior,s of (p, 0) and the paraneter R

For simplification of the analysis , now specialize to
• the case where the coefficient in is such that

~(c.,0) = R2d (pR,8) > 0 and and are independent ~f

Define the following operator: = LB + R2d , which is independent
• of B . By the fund&neneal properties of the Green ’s func tion,

associated with L
B and the use of Green ’s theorem and by

• exa— .~ning the dependence ~~ ~R 
on the parameter R we can

derive the following initial value problem for the Green’s function:

— J [~2~ ~~~~~ 
+ 2Rfl ~R

(P,t)  
~R
(t,Q) dA(t) (8)

where ~ a (p,8) and with (8) is associated the ir~itial condition

a ~ (D ,Q) (9)
RaO

where ~0(P ,Q, is the uniqu. function ss.ch that a

with ~~ vanishing for p £

- 

a -
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Eçuat ion  (t) constitutes the  hasi~ new problem I!ich

r.ee~ be solved. In general , for this specialized case , for

sufficiently complicated d one has to tacklé the problem

by r.umerical techni~ues and .iterative procedures. The formu—

lation above has ~:sumed the existence of a kernel function which
mapped th e domain DR onto the disk A R . Following the methods

outlines in CE] , one can find the kernel function utilizing

appropriate numerical schemes.

. •

a
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III. Work on Distortion Theorems.

As an offshoot of the work on distortion theorems and moduli of

domains, further investigations into the general theory of

deformations were begun (see Status Report #3).

The following preliminary results have been obtained in this area:

SMOOTHING PERFECT VARIETIES

R. MANOELBAUM’ ‘~Nt) M. SCHAPS

0. Intro luction. In this researc h repoi t we discuss the deformation theory of
intersections of germs of perfect atrilytic var ictic~. It is well known that hypc r~ur.
facv singularities are always smoothahk and that the parameter space .S of the
versa l deforma tion space of a h)pcrsurfacc singularity is isomorphic to the para-
meter space of the space of infi ni tesimal ti rst-ordcr deformations of the given
hypersuface. As noted in (51 the same results are true for complete intersections of
hypersurfaces. If we move on from hypcrsurfaccs to pure codimension two analytic
objects and in addition add the hypothc~is of perfectness we find sàmilar ~henomcna

• oocurring. In particular in ~9). (11) it is shown that a germ A’ of a perfect analytic
• variety of codimensic’ t two in C~ (n ~ 5) will always be smoothable and if n > 5

then e~en though X is not generically smuothable it nescrthelcss has a well.under-
stood generic forni A” wh~

..e singular jocus :f(X’) has codimension 4 in A”. In The-
orem I we show that a proper intersection X — fl A’,, of perfect germs of analytic
varieties has smoothness properties at least as good as those of the individual germs
X~: Thus if the A’, all have codimension at most two then X will always he deform-
able to a germ A” with codim(.~7(X’). A”) ~ 4. In particular if dim A’ ~ 3 it will
always be smoothahie.

In (9), (II) it is Jso shown that all first-order dcform ttions of germs of perfect
anitlytic varieties of codimen~ion two in C can be lifted unoh..tructcdly to flat
analytic ‘ formations of the germs. In Theorem 2 we show that the same is true for
proper intersections of such germs.

We deal throughout with germs of analytic subvarieties M the origin in some
C a; defined, for esample, in (31. (4). r~ will denote the s:ucture sheaf of the
subvariety X, 1(X) i’s defining ideal and itS singular locus. All other definitions
and notation will be as in (3]. (4).

APIS (MOS) ait*es elaui$eask’q, (l97O~. Primary 4

• The 0i~t author was supported in par ~y the European Rosearch OfIke under conir ct
DAEftO.*2474-00069 duflng the period when this research was conducted.

C $~ 75. A m.. Msths,s.tic.I ‘.mis.p

a
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SMOOTIIIN ~3 Pt RIICT VARIFTJF S

one isolated singular point, hut not smoo’hahlc.
2. Smoothing intersections. To determine to what extent smoothahility is pie-

served un~cr intersection we first need some preliminary lemmas.
Li N%tA 2.1 (ci. (7)). let  P he a Noetherian la~al rinc! and suppose J is an ideal in P

said, that R p / j  ~~ proj ecti ’e dimension m as a P-n:odule. Let N be a finite
P-module.

Then for all I > m — depth 1N. Tor,(Jl. N) — 0.

PROOF. Induction nfl ø~pin 1N.

L.rMs:* 2.2. ~uppow X~, X2 are perfect germs of analytic si~ var1eties at the or~ in
it, C~. Le /~ 

5(X5), /2 1(X ), (“i ,~~~~//j  and 
~ 

— .4’oI/z .  Then, if
bt ( .f~ + /2) hi/1 + ht /2.
(I) Tor ’((’1,(’— )  • Ofori > 0, . -
(2) // 2  ~~ t fl /2.
(3) A . fl A’2 is a p.rfre~ germ.
Ps,t.ir. (I) hi (J~ • /~

) hi /~ + hi /~ 
implies depth 

~~ , ..9’~ — depth /~3.
Then, by lemma I, Fo r , ((1. 

~
‘2) — 0 for I < ptoc dim /‘~ 

— depth ~~t~
2

— depth ,.rn — depth 
~~~~~~ 

— 0 since is perfect.
(2) Since /,/z ~ / fl /2 it sutlices to show /, fl /z c 

~~~~ 
Let

a segment of a ree resolu t ion of 
~ 

obtained by setting d1(a) of  where
f (fe, ...,f,) and (f t,  •.., f,) generate /~. Then tensoring by e2 

and using
Tor,(C1. r2) gives the desired result.

(3) is a straightforward calculation showing codim (A’1 fl A’2, C)
< proj dim .K5.

LEMMA 2.3. S.ippose A ’,. K2 are germs of analytic suhvarieties at 0 c C’ with
— 1(X 1) and /~ 

— 1(X2) and suppose /, fl /~ /~ fl /~
. Suppose ~~~~~

— (V 1, jr,, T), r2 — (V2. ii ,, fl are flat dcformation.s of A ’1, A’2 in C’. Let V V1
fl V2. coissidereii’a suhvariely In CU x T with projection * -

~~ T, and set i (V.
z, T). Then i• Is aflat deformation of K1 fl A’2 isv C.

Pnoor. To show ~~ P - Tis flat we must show that all the relations n/1 + /z
ha. We can demonstrate that since/i (1 /~ 

— / /2  all such relations are gener-
ated by relations on /~ 

and /2 and by trivial relations. But all such relations lift,
so is fiat.

THTURrM I (ci’. (0]). Let K1, A ’2 be germs of perfrri analytic subvarietles
of C’ smoothable to order It. Suppose codsm(X, f1 K2. C’) cod~m(X 1, C’)
+ codim (X 5.C’). Then A’ — X 1 fl K5 is a germ of a perfect anal i’tlc ii,bw”leIv of
C~ smaoshaftle to artier It.

Paooc. Let r~, — (I ’s, z,, 1’s) be The hypothesized smoothing of X~. 2~Ct G
— GA(’, C) be the afflne transforn iuons of C” and let T — G x T1 x 7~. Let
#~ be the deformation of K 1 o”er Tgiven by ~~~~~ — g(Y1,,) and f3 the defer-
mation of X,givenby 

~2’tsi~,,M — V,,,. Let / s.P~ fl P2in CU x Tand f !ie the

~ousspoodutg dsfornsat~.~ oC X. Thea % is a flat deft rmaI~ n Le’nmas 2, ‘and it

- 

. 
-
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1. Definition s. We recall that ,“ = (V1 ,r , T) is a flat deformation of A’ in I
if ~ : V —, Tic a flat map of germs of analytic varieties, X, Y are germs of analytic
vprieties. X a suhvariety of Y, V a suhvariety of Y x T, and A’ ~~

. V0. We can
a~ umc without loss of generality that V0 — V is defin d in ‘ome open neighbor-
hood of the origin in V = C’ by holomorphic equationsf,(x) = 0, I = 1, ..., in.
and that V has equations f,(x, :) = 0, I I, ~~ m, in CU x T with fl:x, 0)
fAx). As a working definition of flatness we take x: V —. T is flat if every rela-

t’on r(x) = (r ,(x), •“, r ,,(x)) between ~hcf,~~), ..., f,,(x) (i.e., E r,(x)J,(x) — 0)
can he lifted t: a relation r(x, 1) (r, (x, ,), ... , r ,,(x, :)) between thef,(x, t).

If I is a flat deformation of X in C’ we chaR say ~ is a smoothine of X to order
k if the generic fiber V, of I has singular locus 2’: with codim (2’,, V1) ~ k. If V,
is nonsingular then i is a smoothing of A’. We cay X is smoothable to order k if
it has a smoothing of this order (k = ~ if and on ly if’ Xis smoothable).

We call K rigid if all flat deformations of X arc locally trivial. In particular a
germ of a rigid singular variety A’ is not smoothahle. Even nonrigid A’ may not be
smoothahie as shown by examples of Mumford and Schlc~singcr (101, [12). In
particular there exist curves in P’ which are not smoothahie. On the other hand all
analytic curves in C3 are smoothable. [The question for reduced irreducible curves
in P3 is still open.)

We recall that given any germ of a k-dimensional variety (at the there exists a
finite-analytic mappingf: V -. C* cxhihitin~ ~~ as a finitely eenerated ~ -moduIe.
We say V is perfect if rC is free as a j .module.

This is of course equivalent to the Cohcn.Macaulay condition that depth ,C(~t~)
= dim ~~~ dim V where I’ is a subvariety of C”. Now by 19]. (11] if V C\CU is a
perfect germ of codimension 2 and ii � 5 then V is smoothable. Since all r’ure
I-dimensional v ..rietics are perfect we iind that all ,~urves in C3 are smoothable.
The above results are in a sense best possible. If n — 6 the familiar example of the
cone of the Segre embedd ing Xof F’ x P2 in ~~is pcrfect ofcodimension 2 but of
course not smoothahie.

The key aspect of the proof of the above re s of Schaps. Loday is showirsg that
a germ of a perfect su hvar iety of codimension 2 is necessarily determinantal. (We
shall that a germ of a variety I’ is detcrminantal of type (m. n, I) if fl I’) c ,~

C’o is
generated by the I x I minors of some ni x n matrix R with coefficients in ~~~ and
hi I codim I’ = (m — I + IXn — I + I). In p,irticular if ~ is perfect oi
codimens~ n 2 then .1(1”) is g~’neratcd by the maximal minors 01 an n x (a — I)
main s. N~w it can be shown that if I’ is dcicrminantal of type (1~’. “ . I) then generi-
cahlv its singular locus will have co~’imencion (ni — I + 2Xn — .‘ + 2) and thus
codim(S’(V), I ’) m + n — 21 + 3.

Pci fect subvarictics of cc.Jim 2 arc determinantal of type (a,,’ — I, :~ — I),
codimcnsion (tf(i’), I’) 4, thus gibing us the Schaps, Loday result. This p’:o
furnishes Ut with examples of perfect codim 2 varieties which are smonthabk ~o
order k, but not k ÷ I. The variety given by the 2 x 2 minors of

v 1

‘~1 X~ X~X~- x~ X~
will have sisllttIla, kwiis of eodilnc,I%Ion onc. will be ~~~~~~~~ to a satIety witit

- - -- 
• 

______ ____

~~~~~~~~~~~~~~~ 
T~~~~- -

- -
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flomre.(J(.%’,), r~) he t . ’ map a, (T®f)( g) =fT(g) for fo t ~~, ,~e J(X~),
To N5. Wedetine N 5.~.1 im a~ ;N~ 52 — Im a2.

The fol nwing can then he proven:
IFSIMA 3.1. Let A ’,. A’. he perfect germs of analytic s ’,p’ rorienties at the nri~’In in

C’ whirl, si -c accurn.’ to he dime I by i.Ieatc .1,, J~ rc.c ’eth~r/y. Let K — A’, fl X2
and suppose co”um (A ’ , C” — codim(X 1, C’) + codim ~.k’2, Cl. Then if A ’,. I
= I, 2. Es ‘iglac ’ ~ complete in:erscc:üin or 

~f 
codimensi:., 2. then (I)  a, is onto,

I = I. 2. and (2) N5 = Vx .?, 0 1’I
~ x~

.
Using induction we then obtain

COROLl A RY 3.2. s_ct A ’,, ..‘. A’, be a very proper sequence of perfect germs of
ana l~.iic suhv iriet ies at the c:igi n n C’ and suppo se each X~ is cither a co.nplcte
intersection or of codsmcnsL.n 2. Let Y~ = X., (1 “ c

.
~ X 1_ 11 fl X 1.~ fl 

ç
~ X,.Then if A ’ fl ’ .,X . we has’.’ N 5 — (~~-, “1x .v.

We now state :
TIIFORFM 2. Let A’,. ..., A’. be a sery proper .vcquence of perfect germs of anali ’tic

,uI’i~arIctks at the origin in C” s. lth X (
“
~~~~ 

X .  Supposc ear/i A’1 is either a corn-
pkie inwrst’c :ion or of codinsension 2. Then every element of T~. ljfts to a fiat analytic
deformation of A ’.

Prior. Let g o N 5 represen t fgJ o T]~. Then by Corollary 3.2 we have g =
g, E N,,.,., and by definition g• = a (le, ® I) for some infinitesimal deformation
h. of A’,. By (6~, (9), I,, lifts to a flat analytsc deformation Ii, of A’, and, by Lemma
2.3. flit , is then a flat analytic deformation of K inducing g.

We now clearly have
CoRou.ARY 3.3. 1_ce K. K1, •“, K, he as in Theorem 2. Suppose dim,.. T3~ = N <

so that, by [2] .Y has an analytic versal deformation space V — S. Then 5 ~~ ‘N. *

RIMARK. N5,., in the above theorem and corollary consists of the sp4e of all
infinitesimal first-order deformations of X obtained by holding Y, fixed and moving
only A’,. Thus by Corollary 3.2 and Theorem 2 every deformation of X can be
written as a combin ation (intersection ) of mpvcments of K in 1, obtained by hold.
ing 1, fixed and moving only X,. Note that even mosements of A’, which ~‘re trivial
deformations may induce nontrivial deformations of A’. For example let A’, be the

• perfect analytic subvaniciy of codimension two in C’ given by the vanishing of the
maximal minors of inc relations matrix.

I~t ~3i
R — I z t z3~

1:3 :4 j
Let K3 be the nonsingular hypersurface with defining equation h — — z~ + :~
+ s, The deformation space I of K ~s then given by intcrsectirg the variety I,
* ~~~ .. ‘, g,) x C10(i,. ..., *10~ defir:d by The relation matrix

1’ :3+13:2+14 1

J 1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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thus remains to show that the generic fiber V, of V has singular loc~ 1’, with
codim (s,. I’) � k. Let r~ = codim(X ,, C’) , Ct = codim (X2, C’), ,~‘, ,  =

arid ~.,, .Sf( It. 1). Let F: C’ x T —, T, x 
~
‘
2 be the canonical projection, Z,,,

“ 1(s :) for (s,:)c T, x T~, i~,, = P fl ‘7,, and ,‘: P,, —. G the obvious
pr*. cctiun. Define F:Z,, —. 

~“ x C’ by I’ ~:, g) = (g ’(:;, :) so that P.,,
— F ‘(V,,, x 

~~~~~ 
Let .~,., .‘f(i’~,,) and 2,,, = ~~~~~~ x VL,) ~

t • Then 2,, c .~~,, and it can he shown that, for generic g, 2’,,, (1 p 1(g) — I,,,
fl p ‘kg). Now since Fis flat [1]. we ol”ain

codi~.i(,!’ ,,; I’,,) > miii (codim(.~’, ,; V 1, ,), codim (Z2., ; V2 ,)) ~ k,
For generic si. -

However codim (S ., fl p ’(g) : ~~~~~~~~~~ 
= codim(Z,,,, 1~,,) for generic g, s, S. Thus

for generic to T we find codim(.9’( I ‘,), I’,) > k. as desired.
• Clearly our theorem can he .,duct iseiy extended to any sequence A’,, ... , A’, of

germs of perfect analytic subvarieties of (“ satisfyingj codim ( K,, C’) 
~~~ 

codim (X i, (~~~), for a’l i ~

We call such a sequence a proper sequence.
If the sequence satisfies the stonger condition

= ~~codim (A .,,C’) of ~l,
...,n}

for alt subsequences ~ < < 1, then we shall call it a very proper subsequence.
In the case of germs of determinantal varieties we can obtain
COROt.LARY 1. Let X ,, ~~, X, ne a proper sequence of germ s of dewrn,inantal sub,.

varieties of C” of Hpi’ (mr ,. n,, I,) respectively. For each i, sue/i that K,-, is not a• complete intersection, set = rn,1 + si,1 — 2!,, + 3. Let A’ — fl;,,x,-. Then If
dim X < mm , k1, X i s  smootha hi.’.

cOROLLARY 2. Let A’1, ..., X, be a proper sequence of germs of analytic .ruln’arieiies
of C’. Suppose each A’, is either a complete intersection or a perfect suhs’ariet;’ of
codInwnsion 2. Let A ’ fl A’,. Then dim K c 3 implies K is smoothable.

PROOF. By [9], (II) if X , is perfect of ccxlimcnsion 2 it is iktermunantal of type
(si, n — I, si — l~. Tlttis I., = 4. Now ;.pplv the previous corollary.

We now turn to the ~ersal detur,uatiui, 
~~.ts e’. of ~fltrp.es tusis’, .sf the above type.

3. Versal ds’formatj,,,, sispecs. I or a “:rni of an ;un:ilylic suhvariciy x of C”lct~E~ denote the sheaf of t~InVc’n* vectors of V ‘Then the (-
~~ module of isomorrh-

km clas~es of first otder infinitcs,mal deformations of X, T~. is defined by the exact
• sequence

where N, Hoi.,,,..(.~ ( %’), t k’~ 
and p is the mapping taking ~~~~~ •aj a x to the

homomor pb ismf, E,f’. ~~~~ Scc ‘12) for further details.
Now let A’,, A’~ 

he germs of analyt i” siihv arici ics at the origIn and set
A’ — A’, IlK3. Consider C’.. to be a mo~iuk over (‘,~, and let a, :N~, ®

~~~~~~~~~~~~~~~~~~~~~ +~~~~., ‘!,4~
• - 

- - - - - - _________
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with the variety .~~ detincd by
l!(:,t) = :2 — z~ + :~ + z5 + t~z~ + t~:3

- + t7:~ + t~:2 + 19 , 2 r 3 + t ifl’
Note that the l’rst four parameters t ,, ‘.., e~ cor respond to moving K in 

~~ 
while

holding X~ fixed while the last six parameters cc~rccpond to movino Xjn X, holdii,g
K1 fixed. Note also that T~- is no’ the direct ~ m of Ti., and T%., since K being
rigid has Ti., {O} and dim T~,. 4. Also as deformation , of A’2, all t .c K2 ,
are isomorphic to X~ and •~~~ X~ x ~~~ However thcs~ trivial deformations of
•~‘~ ir’Ju.c nontrivial deformations of K, fl A’~ = A’.
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(~ it the Ilos~ ian of t:he ;irathc~ c torv  ~t t t r  i~
Jrlc,)h Ittirhoa *

Ah st r a c t .  The generalized lower llessi,in of an tipper semi—continuous function

f near a point 7 In is introduced (for n — 1 ~~oc He m s , Nagoya Math.

.i~~ 21 (1962), 1—60). With this we introduce a “sectional curvature” and we

prove that the sectional curvature of the Carathc”odory—Roiffen metric is

always ~ —4. This generalizes a result of Suita (Kodal. Math. Scm . Rep. 25

(1973), 2l5—2 1~) in the one dimensional case . The sectional. curvatures of

the ball and polydisk are always —4. Few othe r properties of the Hessian

of the above metric are shown .
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Conclusion

Unfortunately, shortly after this grant was awarded, circumstances

led to the separation of the principal investigators. During most of the
grant period , they were located on three separate continents and this led

to certain difficulties of interaction not foreseen when the grant was
undertaken.

In addition, the scope of the proposal was extremely wide and thus,

in certain areas, only preliminary results were obtainable. The investi-
gators are thus continuing much of the work begun during the grant period

in their own individual research.
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