AD=A036 084 TEL=AVIV UNIV (ISRAEL) F/6 1271
gg#Fg:HAb HAPPI:OS‘AND DOUNOAR; VALUE PROBLEMS, (U)
BURBEA, GHANDOUR » MANDELBAUM DA=ERO=124=T4=6006
UNCLASSIFIED -

NL
END

DATE
FILMED

3=77




o 5

—_— i i
. ) m
TR M

MICROCOPY RESOLUTION TES! CHART
NATIONAL BUREAL OF STANDAR it
v




-

CONFORMAL MAPPINGS AND BOUNDARY VALUE PROBLEMS

Final Technical Report

by

ADA036084

J. Burbea
A. Ghandour

R. Mandelbaum

OCTOBER, 1976

EUROPEAN RESEARCH OFFICE
United States Army
London W. 1, England

Contract Number: DA-ERO-124-74-G0069

Approved for Public Kelease Distribution Unlimited




UNCLASSIFIED .

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) %
| ) Al RUC
REPORT DOCUMENTATION PAGE PR S b
‘. REPORT NIIMBER ]1. 30OVT ACCESSION N« | 3. R!CII:I!NT'S CATALOG NUMBER
.

S e et g et <5

(jINAL TECHNICAL RFP!!T

4. TITLE (and Subtitle) C
ONFORMAL MAPPINGS AND BOUNDARQ R e
VALUE PROBEEMS, R L= Uit ¢

-
(457} DAERE-124-74-Gpg69
. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
Tel Aviv University
Tel Aviv
Israel b

1. CONTROLLING OFFICE NAME AND ADDRESS
’__._/

U.S. Army R§S Gp (EUR)

Box 65
FPO NEW YORK 09510

MONITORING AGENCY NAME & ADDRESS(If different I ontrolling Oftice) 18. SECURITY CLASS. (of thie report)

UNCLASSIFIED

[ 18a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

J 6. DISTRIBUTION STATEMENT (of thie Report)

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, I ditferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and Identily by block number)

Kernal Functions
Boundary Value Problems
Initial Value Problems
Conformal Mappings

20. ABSTRACT (Continue on reverse side {{ necessary and ldentify by block number)

SEE OVER

DD , o5 1473  «oimion oF 1 nov 68 18 oesoLETE UNCLASSIFIED 3% Z: g
SECURITY CLASSIFICATION OF THIS PAGE a Entered)

0

B TR



\|
——UL-CLAS-SIELEH.—___
SECURITY CLASSIFICATION OF THIS PAGE('hon Data Entered)

20

In particular, a method whereby a well-posed elliptic

Abstract :

O
Three principal areas of investigation have been followed.

Kernal functions and related areas.

Results have been obtained on polynomial density in Ber's
Spaces, Berman Spaces over multiply-connected domains,
Total Positivity and reproducing kernels, Szego kernels
and the Riesz projection theorem and Metric on Annuli.

BVP and IVP, 3

Study has been undertaken of transforming BVP into IVP,
boundary-value problem of the Dirichlet type is transformed
into a first-order non-linear equation governing the
Green's function of an embedded problem is studied.

Singularities.

The study of smoothings of analytic singularities is
discussed, In particular, generalized complete inter-
sections and their spaces of deformations are analyzed.

“ . A

RITY CLASSIFICATION OF THIS PAGE(When Data Entered) (: .. &




R

5
¢

ADSETBCT s iv iivansniveioiine

Objective of Research.......

I.

II.

II1. Work on Distortion TheoremsS..cseesseesscesessaccassns

1v.

CONCLUBION . s ¢ svs s sabanvronvedibessevesessoseesasessones

Erief Table of Contents

Work on Kernel Functions and Related Areas

1.

Work on Soundary Value Problems...e.eseesseeisersosssses

Polynomial Density in Bers Spaces I

Polynomial Density in Bers Spaces I1I

teee e

ves e e

se s e e

Projection on Bergman Spaces Over Multiply Connected Domains

Total Positivity and Reproducing Kernels

Total Positivity of Certain Reproducing ¥ernels

Additional Current Work..eeeeesooovesseness

se s s

secv e

Publications Supported by the Crant...ceeeeeceeesrsccessssssncasans

Serrer st

ee s s 00

2-8

9-13

14-20

21-22

23



%
2
v
s
&
£

ARSTRACT '
@ $
Three principal areas of investigation have—Been followotf \\

- ————— —————————— /

Kernel functions and related arcas,

Results have been obtained on polynomial density in Ber's Spaces,

Berman Spaces over multiply-connected domains, Total Positivity and

reproducing kernels, Szeg8 kernels and the Riesz projection theorem
and Metric on Annuli’

Study has been undertaken of transforming BVP into TVP. 1In particular,
a method whereby a well-posed elliptic boundary-value problem of the
Dirichlet type is transformed into a first-order non-linear equation

qovetning the Green's function of an embedded problem is studied /ﬁb'ﬁﬁ):)

/

Sinqularities & —

The study of smoothings of analytic singularities is discussed. 1In

particular, generalized complete intersections and their spaces of
deformations are analyzed.
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The objectives of research undertaken under Research Contract
No. DA-ERO-124-74-G0064 were the following:

(1) Determination of moduli of multiply connected planc domains.

(2) Computation of conformal mappings onto canonical domains.

(3) variations of kernel functions with respect to its domain.

(4) Transformation of boundary value problems into initial value

problems.

(5) Analogues of Schwarz-Pick lemma, distortion theorems.

(6) Numerical applications to the theory of elasticity and fluid

dynamics,

I.  Work on Kernel Functions_and Related Areas.
Work has been done in the area of kernel functions in plane domains
and metrics in plane domains.

Thee follawing results have heen
obtained:
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1. Polynor‘al Density in Bers spaces I.

Let D be a bhounded simyly connected domain such that Lf Xg-qudy < » for
qQ > 1. Here XD(:)- is the Poincare® metric for D. Define A:(D), the Bers
space, to be the Frechet space of holomorphic functions £ on D, such that
"f”:,p = ﬂ{ A g-qlflpdxdy is finite, O < p< =, qp.> 1. It is well known

that che polynomials are dense in Az(D) fc ap 2 2. We show tha* they are

dense in Az(D) for qp > 1 irrespective wheLher the boundary of D 1is

rectifialle or not. Accepted for publication in the'"Proceeding of the Amer.

Math. Socicty"(Feb. 23, 1976).

2. Polynomial Density in Bers spaces IT.

This paper is a continuation and a generalization of the previous work (item 1).

Here we assume that

- . - - - z-q
ty = sup {q € R: "h(b) ¥s uq(D) ﬁ{ \p ‘dxdy

and s0 1 = tn 2. Ve let

(tn."). utD(D) <=
Q(tD) -

(:D'.)' Vutn(n) -

and note that {q € R: Lq(n) < =} = Q(tp). Of course Q(1) = (1,%) ard

Q(2) = [2,#). With the notation as abova we shc's thac

Theo.em i. The polynomial are denra in A:(D). O<p<w= qp € Q(tn)-

S i i o 1 S
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Theorem 2. The following hold

(1) 1= :p € 2. *

(i11) If D is a lordan domain with a rectifiable boundary 8D then t_. = 1.

D
(1i1) There is a Jo¢dsa domain with a non rectisiable boundary with tD = 1.
(iv) There is a domain D with 1.17 < tD < 2.
(v) There is a dounain D with tD = 2,

subnitted to the "J. of Lond. Math. Soc."

3. Profjectior on Bergman Spaces over Multiply Connected Démaina.

Let D te a bounded domain of finite counnectivity (with some smoothness cequire-~
ments on its boundary). The Bergman space of D, B?(D) is the set of all functions

l<pce,

.

f(z), analytic in D, for which "f”p - {ﬂ{ If(z)lpdm(z)}llp e
Here dw(z) = dxdy. The "natural projection of LP(D) to ﬁp(D) is given by
(PEY(X) = /T f(:)KD(Z-;)dw(z). where KD(z,Z) is the Bergman kernel for D.
If p=1, Dthis projection is not bounded. ' The Ahlf{ors-Bers theory does not
seem to help in case 1 < p < =, Here we show that P is a bounded projection
of FP(D) onto Bp(b). l<pce, Morcover, the dual of BP(D) is isomorphic
to lp.(D). 1/p + 1/p” = 1, 1< p < =. For the special case when D is the
uni: disc these results were obtained by various authors; e.g., Zaharjuta and
<udovi¥; Shields and Williams, and Forelli and Rudin. Submitted to the "J. fir

die reine und angewandte Mathematic"

4. Total Positivity and Reproducing Kernels.

Hera we investigate the relarionship between total positivity and reproducing
kern~ls. We extend the notion of total positivicy to domafn in the complex

plane. In doing so, we also give a geometrical interpretation to certain
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§Xhis restriction could be weakened considerably). The Hardy-Szego space HP(D) is regarded as a

\

»

a.

Wronskians of reproducing kernels. Appeared in the "Pacific J. of Math. Vol.

55 (1974), 1343-3593.

5. Total Positivity of rfertain Reproducing Kernels.

Here we study the total positivity of various kurnels, especially reproducing
kernels o Hilbert spaces of analytic functions. We do so by employing a
famillac device known as the "Composition formula of P;lya and Szego'. Using
this formula we are able to give a short proof 1or the variational diminishing
property of a generalized analogue of the la Vallee ?oussin menas. This
generalizes earlier work of Polya and Sf:choenberg and recent work of Horton. Our
method is based on the isometrical image of the reproducing kernel called the
generating function. The reproducing kernel is then expressed 1s a compositioq
of two generating functions so that the problem is reduced to investigating the
total positivity of the generating function. This method extends earlier work

and yields many new reproducing kernels which are total positive. Submitted

to the fPacific J. of Math."

6. Additional Current Work.
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D be a plane domain whose boundary consists of a finite number of disjoint analytic curves.

continuous projection from L (3D) onto “P(D)' l1<p<e, and Ap

Jacob iwrbea, The Pennsylvania State University, University Park, Pa. ~16802. The ~
Szego kernel and the Riesz's projection theorem,

(2

& 1
. the classical Riesz's projection theorem. Corollary. For Lp(ab) - Hp(b) o llq(D). 1/p+l/q=1

> have H:(D) - z'Hp(D). Here 2’ = 2°(s) where 2z = 2(s) is the parametrization of 3D with

'spect to the length parameter 6.

”)/pol + cU)p. Here k(”, c('” (J=1,2) depend only on D. When D is the unit disc this theore

losed subspace of Lp(ab). 1 sp <se, in the usual way. Let Kn(z.ib be the S:c;0o kernel for D a

't (PE)(Q) = lan KD(K.:)f(:)Idzl ‘bc the "natural projection" of Lp(aD) to HP(D)' Theorem. P '

)S IIP[IPSA;I) wvhere A:,”

|
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b. Jacobt Burbea, The Pen~sylvania State University, University Park, Pa. 16802
Metrics on an anr:lus.

Let Kk be the annulus {z:r < [zl < 1), 0<r < l. The Carathéodory metric

for R 1s given by

2 -2 2
(*) dCp(2) = |z|™° {£(2 log Izlzml.mz)-es}ldzl
where ¥ 1is the Weierstracs P -function with the half periods w = mi and
w, = log r. Here e3 -5’(m1+m2:w1,m2). Formula (*) settles a question raised in

Kobayashi ["Hyperbolic Manifolds and Holomorphic Mapﬁlngs",'ﬂarcel Dekker, New
York, 1970}, p. 52. 1t is well known that d':(z) < dP;(z), where dPi(z) is
the Poincaré metric for R. In this case dPR(z) is aiso the Kobayashi metric
for R. We show that dcz(z) < dP;(z). This could be regarded as an example
in which for non symmetric domain the Kobavashi metric could be strictly bigger

than the Carathéodory metric for each point of the domain.

c. The Carathéodory metric in plane domains.

Let D be a domain in C U {=} whose boundary consists of more
than two points and let dPg(z) be its Poincaré metric. Theorem 1.
Let D as before and let dSé(z) = g(z,i)ldzl2 be a conformally
invariant Xaehler metric on D. (i) If D is simply connected

the curvature of dsé is constant and if also ds; is complete
this constant is negative. (ii) 1If dsz is complete and

g(z,2) is a single-valued analytic function in (z,z) then if

the curvature is contant (must be negative) D is simply connected.
The Carathéodory metric dcg(z) is given by

2 * - y -
dCD(z) = [leD(z,z)]zldzI‘ where KD(z,z) is the Szegd kernel

for L. 42heorem 2. dcg(z) has a negative curvature wiiose value
on 3D is -4. According to Theorem 1 the curvature is not
1 coan®tant unless D is sirply connected. It is well krown that

2 2
dCp(z) < dPp(z), in fact we show that dCZ(z) < dPi(z) when D
is doudbly connected.

— i —
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The dual of the Berg.an space in plane domains.

Let D be a bcunded plane domain. The Bergman space of

D Ap(D) is the set of all functions f(z), analytic in

D for which ||f||p z {IDIIf(z)Ipdxdy}l/P <o 1<p<m,

The "natural projection" of LP(D) to AP(D) is defined by

mcans of the Bergman kernel for D. If p =1, this projection

is not continuous. The theory ol Bers dc~s not seem to help in

case 1 < p <« ., Thecrem. P is continuous from L_(D) onto

ApD), 1 <p<w and ¢ < |IP]], < c{t) | uhere

Céj) = k(j)/p-l + c(j)p, k(j), c(j) are constants depending

orly on D. When D is the unit disc fthis theorem was first

proved by Zaharijuta and Judovic [Uépehi Mat. Nauk., 19(1964),

No. 2(116), 139-192]. Theorem 2. The dual of Ap(b) is iso-

morphic to Aq(D), 2 < piw - X/p* 1/q v ). Unless p = 2,

A;(D) is not isometric to Aq(D) and the "isometry distortion"
c(2)

I satisfies

q e =1

(1)
s 20 -

The annihilator of the Bergman space in plane domain.

Let Ap(D), l < p <® be the Bergman space in a bounded plane
domain D. The natural projection involving the Bergman kernel)
P is continuous and so LP(D) = AP(D)Q Aé(D) where Aé(D)

is che annihilator of Aq(D). 1/p + 1/q = 1. Theorem 1.

vy = (s3B, p 2R, L,(D) and h "vanishes or @D"}. This
gel.¢ralizes u result of Schilfer (Rend. Mat. e Appl. 22(1963).
b47-468] when p = }. Assume, D has a Green function GD(z.C)

26
and define (Lf)(g) = -% Ipt 533% ITzYdxdy. This operator is in
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fact 2 Hilbert transform. iheovem 2. Let f e L (D),

2iE P ow gt e L2f = (I-P)f. This generalizes a result

of Block [Proc.- Amer. Math. Soc. 4(1953), 110-117]. The above
theorems enable us to deduce various pProjection theorems on

operators defined by means of domain functions.
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II. Work on Boundary Value Problems.

With reforence to the problem of transforming boundary value problems

to Tratial Yalue Problems, the following results have been obtained:

in this note we present formally a method whereby a well

s

posed ellipric bouncdary value problem of the Dirichlet type is

transforded into seekins a solution for a first order non-linear

cruaticn governine the Green's function of an embedded problem. We
examine an operator defined on a domain bounded by an analytic
closeld curve, and exploiting properties of the mapping function

cecine: in terms of the kernel function, we map the domain into a

X}

disk On this new domain we examine the variations of the Sreen's

function vith changes in the domain. The method can be extendec to

rultiply connected domains and to Neumann type problems.

2. The Formulation:
Suppose D is a bounded simply connected domain in € with
a boundary curve C of class c¢® (n>2). Let t, € D . Let f(:,to) be

tne unique analytic mapping which maps D onto 4 = (w| [wl < R} !
- °

and such that 2

£Ct 0t =0 5 3= (ro,t) =1

(1)
Suppose Cp is the curve f’*aAR) s R < R, » bounding the simply
connected domain Dnc: D . Then, the family of curves and domains

(< R’DR) have ithe following properties: .

a) caosc $ DROtD and c°-D°-t°

.b) CRnCR.lO if R#R'

\ 33 vR'| eDR 1: R. < R '

To *he domain D is associated the kernel function [H]

A R I DA S o U 1 o
TV
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1 . -
K(z,t ) = = f' (z,t.) with 2zeD (2)
l‘ o g o
r&o

and to the cdonrains DR we associate the kernel function

-

K (2,4 ) = —L_ £1¢z.t ) (3)
R o nR2 "o

In (3), f 4is understood to be the restric+ion of the mapp.ng

furction associated witl, the domain D to the domain DQ .

»

Consider the elliptic nperator

2 52 2 3 ‘
L = ):a.. +2 b, =— - ¢ (4)
iy 23 3xiaxj je1 3 3xi

cdefined on D and which is assumed to be uniformly strongly elliptic
and self-adjoint with the coefficients aij’bi ““and d functions
of ,¥ defined on D and sufficiently smooth such +hat a ﬁnique

solution ‘exists to the Dirichlet problem [F).

é : Lu =0, u=3 on C : r ¢ (8)

We denote.the restriction of the operator L to DR by LR « There

ST e o,

then exists for each domain DR a Green's function (the fundamertal

solution) Gn(pl.pz) associated with L,u, = ¢ , up = C on C

R™R X

whese solution is samply given by

up(py) = [ Fpp) Gpy .m0 aa ¢6)

.»

P
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'ﬁ Denote Dy 4. the disk of radius R . By utilizing the
N . L

sagszing function £ in LR we can get a new operator LR defi—ed

on &Q sy nanmely,

2 2
. 3
)

ss FT——m— ¢
al] oyiay. i

i » 3 .
) -d (7)
J =

where now (yl,yﬁ) = (r,8) and the coefficients are functions of the

)
ncw variables. Ve now normalize our coordinates by means of the

- -

ccoriirate transformation 6 = 8 and »r = pR

~ < v oy
tQ instead of (7) with 4.,. *a..., b. »Db. and d + d now
functiors of (p,0) and the parameter R .

*0 zet the new operator

ij ij i i

For simplification of the analysis, now specialize to

. ~ %
the case where the coefficient 3 in L is such that

3(;,6) = de(pR,e) > 0 and gij and gi are independent of K.

2 » which is independent

Define the following operator: HR = ﬁR + R
of R . By the fundamental properties of the Green's function,
aR associated with tR and the use of Green's theorem and by
examining the dependence of &R on the parameter R we can

derive the following initial value problem for the Green's function:

A
! 26LR.0) -1 [n"’, g . 233] Ca(Pt) & (t,Q) aa(t) (8)
where t = (p,0) and with (8) is associated the iritial condition

a (P, ), . 8 (®,Q) (9)
R Q R=0 g5, Q

where a;(P.Q; is the unique function such that &R&O = =§(P=Q)

with &b vanishing for P ¢ %W, .
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fquation (6) constitutes the basic new problen 'Rich
reed be solved. In general, for this spécialized case, for
sufficiently complicated 3 one has to tackle the problem

by numerical technicues and-iterative procedures. The fofmu-
lation adove has &csumed the existence of a kernel function which
rapped the domain D; onto the disk 8z + Tollowing the methods

outlineld in [C] , one can find the kernel function utilizing

appropriate numerical schemes.

.r
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III. Work on Distortion Theorems.

As an offshoot of the work on distortion theorems and moduli of
domains, further investigations into the general theory of

deformations were bequn (see Status Report #3).

AR T oy

The following preliminary results have been obtained in this area:

SMOOTIIING PERFECT VARIETIES

R. MANDELBAUM® AND M. SCHAPS

0. Introduction. In this research repoit we discuss the deformation theory of
interscctions of germs of perfect analytic varictics. It is well known that hypersur-
face singularities are always smoothable and that the parameter space § of the
versal deformation space of a hypersurface singularity is isomorphic to the para-
meter space of the space of infinitesimal first-order deformations of the given
hypersuface. As noted in [§) the same results are true for complete intersections of
hypersurfaces. If we move on from hypersurfaces to pure codimension two analytic
objects and in addition add the hypoathesis of perfectness we find similar phenomena
occurring. In particular in {9], [11] it is shown that a germ X of a pertect analytic
variety of codimensioa two in € (n £ 5) will always be smoothable and if n > §
then even though X is not generically smoothable it nevertheless has a well-under-
stood generic forn: X’ whose singular iocus #(X’) has codimension 4 in X', In The-
orem | we show that a proper intersection X = [) X,, of perfect germs of analytic
varieties has smoothness propertics at least as good as those of the individual germs
X ,. Thus if the X, all have codimension at most two then X will always be deform-
able to a germ X’ with codim(#(X’), X’) 2 4. In particular if dim X < 3 it will
always be smoothable.

In [9), [11] it is ilso shown that all first-order deformations of germs of perfect
analytic varicties of codimension two in C* can be lifted unobstructedly to flat
analytic ¢cformations of the germs. In Theorem 2 we show that the same is true for
proper intersections of such germs.

We deal throughout with germs of analytic subvarieties at the origin in some
C* a5 defined, for example, in [3), [4]. Ox will denote the structure sheafl of the
subvariety X, J(X) its defining ideal and its singular locus. All other definitions
and notation will be as in (3], [4].

AMS (MOS) subject classifications (1970). Primary
*The first author was supported in par* by the European Rosearch Office under contract
DAERO-12474-G0069 during the period when this research was conducted.

© 1976, Americsa Mathematical ° ciety

B e ——
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SMOOTHING PIRFECT VARIETIES

one isolated singular point, but not smoc*hable.

2. Smoothing intersections. To determine to what extent smoothability is pre-
served under intersection we first need some preliminary lemmas.

Limya 2.1 (CF. [T). Let P he a Noctherian local ring and suppose J is an ideal in P
such that B = P | J has projective dimension m as a P-module. Let N be a finite
P-module.

Then for alli > m — depth ;N, Tor(B, N) = 0.

Proor. Induction on gepin ,N.

LruMa 2.2. Suppose X;, X are perfect germs of analytic sutvarieties at the o 'gin
in C~. Lc .,l = .’(."1). ,2 = .I(X—_), ("l = .0QI1| and 02 = ,.00//1. Th(’l, lf'
b!(‘f] + 13) = hljl + htjz.

(1) TorM(Cy, ) = Ofori > 0, y

Q 1S= 1N S

(3) X. N Xzis aperfect germ.

Proor. (M (F, + S2) = ht g, + ht g, implies depth 4, . = depth .0,
Then, by lemma 1, Tor €y, @) = 0 for { < pros dim 0 — depth , 02
= depth 4,00 = depth 4 0, = 0 since is perfect.

(2)Since ¢, 02 < 51 N Saitsuflices toshow #y N f2 € J f2 Let

oL or 00,0

be a segment of a iree resolution of ¢, obtained by setting d,(a) = a-f where
L= f)and {fy. -, f,) generate #,. Then tensoring by @, and using
Tor,(C,, ;) gives the desired result.

(3) is a straightforward calculation skowing codim (X, N X3, C7)
< proj dim X,

Lemma 2.3. Suppose X,, X, are germs of analytic subvarieties at 0 € C* with
S = J(X)) and g, =S5(X;) and suppose gy N J2 = Ji N fa. Suppose ¥
=(V,, 71, T), ¥2 = (Va, 72, T) are flat deformations of Xy, XzinC». Let V = V,
N V3, cansidered a subvariety in C» x T with projection x : V ~ T,andset ¥ = (V,
%, T). Then ¥ is a flat dcformation of X, N X3 in C».

Proof. To show x : ¥ — T is flat we must show that all the relationscn ¢, + f
liit. We can demonstrate that since #, N J; = 152 all such relations are gener-
ated by relations on #, and #; and by trivial relations. But all such relations lift,
so x is flat.

Turorem | (cr. (8]). Let Xy, X3 be germs of perfect analytic subvarieties
of C* smoothable to order k. Suppose codim(X, N Xz C*) = codim (X, C*)
4 codim (X5, C*). Then X = X, ) Xy is a germ of a perfect analytic subveriety of
C* smoothable to oraer k.

Proor. Let ¥, = (V,, x,, T,) be the hypothesized smoothing of X, Let G
= GA(~, C) be the affine transforr:ations of C* and let T = G x T; x 7,. Let
7, be the deformation of X, over T given by 7, ., ,...» = 8(V, ) and 73 the defor-
mation of X; given by Py s00 = Vi, Let # =P (1 Pyin © x T and ¥~ e the
corresponding deforinativ. of X. Thez v is a flat defrrmati~n Lemmas 2, *and it

PN

7

——
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52 R. MANDELBAUM AND M. SCHAPS

1. Definitions. We rccall that ¥ = (V, =, T) is a flat deformation of X in Y
if z:V = Tis a flat map of germs of analytic varieties, X, Y are germs of analytic
varietics, X a subvariety of Y, V a subvariety of Y x T, and X = V,. We can
a-~umc without loss of generality that V; = ¥ is defin~d in <ome apen neighbor-
hoad of the origin in ¥ = C* by holomorphic equations f,(x) = 0,i = 1, ---, m,
and that ¥V has equations fi(x, ¢) =0, i = I, -, m, in C* x T with f(x, 0)
= f{x). As a working definition of flatness we take #:¥V — T is flat if cvery rela-
tion r(x) = (ry(x), -+, Fm(X)) between che fina), ..., La(x) (€., T r,(x) f(x),= 0)
can be lifted tc a relation r(x, 1) = (7. (X, 1), *++, (X, 1)) between the £ (x, 1).

If ¥" is a flat deformation of X in C» we shal! say ¥~ is a smoothing of X to order
k if the generic fiber ¥, of ¥~ has singular locus J. with codim (3, V) 2 k. If V,
is nonsingular then ¥~ is a smoothing of X. We say X" is smoothable to order k if
it has a smoothing of this order (k = oo if and only if X is smoothable).

We call X rigid if all flat deformations of X are locally trivial. In particular a
germ of a rigid singular varicty X is not smoothable. Even nonrigid X may not be
smoothable as shown by examples of Mumford and Schlessinger [10], [12]. In
particular there exist curves in /» which are not smoothabie. On the other hand ali
analytic curves in C3 are smoothable. [The question for reduced irreducible curves
in P3is still open.)

We recall that given any germ of a k-dimensional variety (at the there exists a
finite-analytic mapping /: ¥V -+ C* cxhibiting ,C as a finitely generated ,f-module.
We say ¥ is perfect if -C is free as a ,( -module.

This is of course cquivalent to the Cohen-Macaulay condition that depth ,C(:-€)
= dim @ = dim V where V is a subvariety of C». Now by {9]. [11]if ¥ C\C~isa
perfect germ of codimension 2 and n £ § then V is smoothable. Since all pure
I-dimensional varietics are purfect we iind that all curves in C? are smoothable.
The above results are in a sense best possible. If n = 6 the familiar example of the
cone of the Scgre embedding X of P! x P2 in PS is perfect of codimension 2 but of
course not smoothable.

The key aspect of the proof of the above reats of Schaps, Loday is showing that

a germ of a perfect subvariety of codimension 2 is necessarily determinantal. (We
shall that a germ of a varicty }” is determinantal of type (m, n, 1) if £(V) € xCois
gencrated by the / x / minors of some m x n matrix R with coefficients in ¢ and
ht f =codim V= (m =14 1}n =1+ 1). In particular if " is perfect of
codimension 2 then .# (V) is generated by the maximal minors ot an n x (n = 1)
matrix. Now it can be shown that if }* is determinantal of type (m. », /) then generi-
cally its singular locus will have coJimension (m — [ + 2)n = { + 2) and thus
codim(Z(V), V) =m + n - 2! + 3.

Peifect subvaricties of ccdim 2 are determinantal of type (n, » — 1, 5 = 1),
codimension (/(V), V') = «, thus giving us the Schaps, Loday result. This #':0
furnishes us with examples of perfect codim 2 varicties which are smoothable (0
order k, butnotk + 1. The varicty given by the 2 x 2 minors of

TN Xy
V..\‘z XX

Na X

will have singular locus of codimension one, will be smoothable to a varicty with
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-« Hom,e(#(X,), €x) be ti.x map a (T ® f)(g) = fT(g) for fey, o€ F(X,),
Te Ny, Wedefine Ny v, = 1m a; Ny x, = Im a,.
The foliowing can then be proven:

LrmMa 3.1, Let X\, X5 be perfect germs of analytic survarienties at the origin in
C* which we assume to he dfined by ideals J,, Jy respectively. Let X = X, ) X,
and suppose co'ium (X, C* = codim(X, C) + codim ‘X,, C»). Then if X,, i
= 1,2, is cithcr 2 complete intersection or =f codimensica 2, then (1) a; is onto,
{= l. 2, and (2) Nx = ‘VX.XI ® NX.XZ'

Using induction we then obtain

COROLLARY 3.2. Let X, ---, X, be a very proper sequence of perfect germs of
analyiic subv rieties at the crigin in C* and supposz each X, is cither a coinplete
intersection or of codimensivn 2. Let Y; = X, N - A X5y N Xin N - N X,.
Then if X = (\7.,X; we have Ny = @7, Vyy,

We now state:

TUTOREM 2. Let Xy, -++, X, be a very proper sequence of perfect germs of analvtic
subvaricties at the origin in C* with X = ()7, X,. Suppos¢ each X is either a com-
plete intersection or of codimension 2. Then every element of T, lifts to a flat analytic
deformation of X.

PpaoF. Let g € Ny represent [g] € T). Then by Corollary 3.2 we have g = @g,,
8i € Nxy. and by definition g, = a; (A ® 1) for some infinitesimal deformation
k; of X,. By [6], (9], &, lifts to a flat analytic deformation M, of X, and, by Lemma
2.3, (\H, is then a flat analytic deformation of X incucing .

We now clearly have

CoroLLary 3.3. Let X, X, -+, X, be as in Theorem 2. Suppose dime T} = N < o
so that, by (2] X has an analytic versal deformation space V — S. Then S ~ CV.

REMARK. Ny, in the above theorem and corollary consists of the spade of all
infinitesimal first-order deformations of X obtained by holding Y, fixed and moving
only X,. Thus by Corollary 3.2 and Theorem 2 every deformation of X can be
written as a combination (intersection) of mpvements of X in ¥, obtained by hold-
ing Y, fixed and moving only X,. Note that even movements of X', which are trivial
deformations may induce nontrivial deformations of X. For example let X, be the
perfect analytic subvaricty of codimension two in C* given by the vanishing of the
maximal minors of tne relations matrix.

5
R = [21 23 i‘
d oz

Let X; be the nonsingular hypcrsur.:'acc with defining equation & = 23 — 2} + z;
+ 2,. The deformation space X of X is thea given by intersecticg the variety ¥,
in CYzy, -+, 23) % Cl9,, ., 150) defir=d by the reiation matrix

[l| 25+ 132 + l‘]
23 23

Bz by 2,
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thus remains to show that the generic fiber ¥, of V has singular locu. 5, with
codim (X, V) 2 k. Let ¢; = codim(X,, C7), c; = codim (X, C?), 5,., = LV, )
and 5 = &(Vo. 1), Let P:C» x T — T x T, be the canonical projection, VA%
=" s 1) for (s,00eTy x T, V,,=V N7, and n:V,, - G the obvious
proectiva. Define FiZ,,—= T x O by F(z, g) = (g7)z) 2) so that P,,
= F WV, x V) Let X, =7, )and §,, = FY 3, x V) U FY(V,,
x ).

Then £, , c 5, , and it can be shown that. for generic g, 5, , N pNg) = £,
N 2 Y(g). Now since Fis flat [1], we obtain

codiin (5, 5 V,.,) 2 min (codim(5,,,; ¥,.,), codim (5., ; V. 2k,
For generic st.

However codim (5, , N p~'(g): ¥ ,., ) = codim(S, ,, V,.,) for generic g, s, . Thus
for generic z € 7 we find codim(7(V,), V) = k, as desired.

Clearly our theorem czn be inductively extended to any sequence Xy, -+-, X, of
germs of perfect analytic subvarietics of C~ satisfying -

[ f
codim ( ﬂ X, €C*) = ¥ codim(X,,C*), foralle S r.
=1 1
We call such a sequence a proper sequence.
If the sequence satisfics the stonger condition

4 {
codim ( n i c-) & ;:',codim (X, C") of (1, -, n}

for all subsequences i} < iz -+ < i, then we shall call it a very proper subsequence.
In the case of germs of determinantal varieties we can obtain

CORCLLARY 1. Let Xy, -+, X, be a proper sequence of germs of determinantal suby-
varietics of C" of 1ype (m,, n,, 1) respectively. For each i j Such that X, is not a
complete intersection, set ky = m,, +n, — 20, + 3. Let X = [\;.,X,. Then if
dim X' < min, k;, X is smoothable.

COROLLARY 2. Let X, -+, X, be a proper sequence of germs of analytic subvarieties
of C». Suppose each X, is either a complete intersection or a perfect subvariety of
codimension 2. Let X = ().X,. Then dim X < 3 implies X is smoothable.

ProoF. By [9), (11} if X, is perfect of codimension 2 it is determinantal of type
(mn = 1,n~ 1) Thus k; = 4. Now apply the previous corollary.
We now turn 10 the versal defornution spaces of intersections of the above type.

Y. Versal deformation sapees. For a exrm of an analytic subvaricty x of C»
let €) denote the sheaf of tangent vectors of X, Then the ¢ x module of isomornh-
ism classes of first otder infinitesimal deformations of X, Tk is defined by the exact
sequence

o-—‘ex'—-‘.ecg‘x ""“Nx va—_—— T:—’—‘o

where N, = Holiye.(.7(X). € ) and p is th» mapping taking 2,0,(v)-0/0 x to the
homomorphism £, = £,0..9,/0x,. Sce 112) for further details.

Now let X,, X, be germs of analyti~ subvarictics at the origin and sct
X = X, N Xz Consider Ov 10 be a module over Cx, and let a,: Ny, ® €Oy,
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with the variety X', defined by

"

H(zt) = 2% — 23 4+ 2y + 20 + 152% + 152y
+ 17325 + 1355 + 192229 + fo-

Note that the first four parameters 1, -, ¢ correspond to moving X in ¥, while
holding X', fixed while the last six parameters ccrrespond to moving X in X holding
X, fixed. Note also that T\ is no* the direct tum of Tk, and T}, since X_ being
rigid has T, = {0} and dim T\ = 4. Also as deformation, of Xo, all tle X,,
are isomorphic to X', and X, X, x C'. However these trivial deformations of
Yairduce nontrivial deformations of XinNnXx,=x.
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On_the Hessian of the Carathebdory Metric

Jacob Burbea*

Abstract. The generalized lower lessian of an upper semi-continuous function
f near a point z in @" is introduced (for n =1 sece Heins, Nagoya Math.
J. 21 (1962), 1-60). With this we introduce a "sectional curvature" and we
prove that the sectional curvature of the Caratheodory-Reiffen metric is
always < -4. This generalizes a result of Suita (Kodai Math. Sem. Rep. 25
(1973), 215-218) in the one dimensional case. The sectional curvatures of

the ball and polydisk are always =-4. Few other properties of the Hessian

of the above metric are shown.
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Conclusion

Unfortunately, shortly after this grant was awarded, circumstances
led to the separation of the principal investigators. During most of the
grant period, they were located on three separate continents and this led
to certain difficulties of interaction not foreseen when the grant was

undertaken.

In addition, the scope of the proposal was extremely wide and thus,
in certain areas, only preliminary results were obtainable. The investi-
gators are thus continuing much of the work begun during the grant period

in their own individual research.
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