— P —

AD=A036 064 SYSTEM DEVELOPMENT CORP F/8 9/2
SOFTWARE DATA COLLECTION STUDY. VOLUME I11. DATA REQUIREMENTS Fe=ETC(U)
DEC 76 M C FINFER F30602=75=C=0248
UNCLASSIFIED SOC=TH=5542/003/01 RADC=TR=76=329=VOL~3

= g2 |

5=
D

b
[5S
=

= m
(28 e pee

I

o

|||| ‘
N
N

I

2.

(@)

I3

[oo}

I

MICROCOPY RESOLUTION TEST CHARI

NATIONAL HUREAU OF STANDARDS 1961 %
v

ADA036064

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
BEFORE COMPLETING FORM

ACCESSION NO)ﬂ7|:u?'s CATALOG NUMBER

v

8. TITLE rand Subtitie) aad {+]

{ [[Final Technical Kepert e
_SOFTWARE DATA COLLECTION STUDY» Wolume IIT ‘ June W75 - June W76,

“Data Requirenents for Productivity and - PSR noRREn

Beliability}tudies. 2 PTM-554

NUMBER(a)

/5 F39682-75-C-F248 | st Ll

3. PERFORMING ORGANIZATION NAME AND ADDRESS 0. PROGRAM ELEMENT, PROJECT, TASK
System Development Corporation .~ bt ey
2500 Colorado Avenue F
Santa Monica CA 90406 55549810
e
11. CONTROLLING OFFICE NAME AND ADDRESS / s 313
Rome Air Development Center (ISIS) T3 NUMBER OF PAGES
Griffiss AFB NY 13441 126

73 MONITORING AGENCY NAME & ADDR it different from Controlling Office) 15. SECURITY CLASS. (of this report)

UNCLASSIFIED
152 DECL ASSIFICATION/ DOWNGRADING
N/A SCHEOULE

6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

".s DISTRIBUTION STATEMENT (of the abetract entered in Block 20, il dilterent trom Report)
ame

Lﬁ. SUPPLEMENTARY NOTES

RADC Project Engineer:
Richard T. Slavinski (ISIS)

19. KEY WORDS 6Cammn on reverse aide il necessary and identity by block number)
Software Development

Data Collection
Productivity Studies
Reliability Data

. ABSTRACT (Conti alde I fy dy block number)
Ever mctenmg costs of :oftvne development without a parallel increase

in software quality has generated much attention on software reliability,
project productivity and the overall problems inherent in the software
development process. One of the objectives of the Data Collection Study is

to recommend a set of parameters to be collected for the RADC Software

Data Repository that will form an historical data base to support research

and analyses requirements within RADC. Using past and present data collection
systems and the results of a survey of the literature as guides, data parameter

SF,

DD, “,, ,, 1473 eoiTion oF 1 NOV 68 13 OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS P

359 900,

UNCLASSIFIED

\ SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

P

»”

from contract award to software system installation are discussed.

A classification of data parameters results from the examination of significant
software development factors. The first class consists of project environment
factors including contract and customer relations data, organizational and
personnel characteristics, hardware and support facilities parameters, and
overall attributes of the software product itself, such as size, complexity,
etc. The second class of data is project performance information reflecting
the amount and quality of work performed for the duration of the project
period. Class three data consists of automatically generated product measure-
ments, which demonstrate the structure and behavior of the product through

the application of analysis tools and testing procedures.

UNCLASSIFTED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

TABLE OF CONTENTS

Section
INTRODUCTION

SURVEY OF LITERATURE
PRODUCTIVITY ANALYSES
RELIABILITY ANALYSES
ADVANCED IN PROJECT PERFORMANCE MONITORING
PROGRAMMING TECHNOLOGY ADVANCES '
SUMMARY

ANALYSIS OF PROJECT ENVIRONMENT ATTRIBUTES
CUSTOMER/CONTRACT CONSIDERATIONS
TYPES OF CONTRACTS
QUESTIONS OF RISK
SUBCONTRACTING IN SOFTWARE DEVELOPMENT
CUSTOMER DATA PROCESSING EXPERIENCE
PHASES OF SOFTWARE DEVELOPMENT
MANAGEMENT ORGANIZATION STRUCTURE
PROJECT ORGANIZATIONS
LINE ORGANIZATIONS
MATRIX ORGANIZATIONS
PROJECT PERSONNEL
SIZE OF PROJECT STAFF
PROJECT STAFF EXPERIENCE
PROJECT PERSONNEL TURNOVER RATE
HARDWARE EQUIPMENT/COMPUTER SUPPORT FACILITIES
COMPUTER HARDWARE DEFINITION
A SYSTEM THROUGHPUT
2 MODES OF COMPUTER OPERATION
COMPUTER SUPPORT FACILITY
SYSTEM INSTALLATION
SOFTWARE ATTRIBUTES
TYPE OF PROGRAMMING APPLICATION
PROGRAM COMPLEXITY :
PROGRAM COMPLEXITY & RESOURCE ESTIMATION
PROGRAM COMPLEXITY & PROGRAM RELIABILITY
SOFTWARE SYSTEM SIZE
SOFTWARE DEVELOPMENT METHODOLOGY
PROGRAMMING LANGUAGES
SOFTWARE DOCUMENTATION
1 REQUIREMENTS SPECIFICATION
2 DESIGN SPECIFICATION
.3 PROGRAM DOCUMENTATION
4 USER DOCUMENTATION
DATA BASE REQUIREMENTS
PROGRAM PRODUCTION LIBRARY

P WN —

WA — S wWwn —

WA =t ot =t W N —

ey e i sl Rt
N =t

e e

PN NNDN W NN RN —

NN NNNNNNNNNNNNNNNI DD DD W W W W N b it s s

e
WWWWLWWWWWLWWLWWWWWWWWWWWWWWWWWWWWWWWWWWwWww MNP NN -~
. . . . e - - o

114

e ——— N

Section

gomgtorortgrorororonOn LA LLLDALE
WNMNMNNN = = e e

WWWWMNI N NN = et o
w N - wn —

HwWwnN —~

N =

w N -

TABLE OF CONTENTS (cont'd)

PROJECT PERFORMANCE ATTRIBUTES

RESOURCE ALLOCATION
WORK/PRODUCT DEFINITION
SUMMARY OF MANAGEMENT DATA

CONFIGURATION MANAGEMENT DATA
CONFIGURATION IDENTIFICATION
CONFIGURATION CONTROL
CONFIGURATION ACCOUNTING

QUALITY CONTROL PROCEDURES
QUALITY ASSURANCE REVIEWS
PROGRAM ERROR REPORTING PROCEDURES
SUMMARY

PRODUCT QUALITY MEASUREMENTS
STATIC ANALYSIS TOOLS/AIDS
STRUCTURAL CHARACTERISTICS OF MODULES
DATA DEFINITION AND COMMUNICATION
MODULE LOGIC EVALUATION TOOLS
EXECUTION ANALYSIS TOOLS
AUTOMATIC EXECUTION ANALYSIS SYSTEMS
TEST DRIVERS/TEST DATA GENERATORS
DYNAMIC ANALYSES OF SYSTEM STRUCTURE TOOLS
OPERATING AND PERFORMANCE MEASUREMENT TOOLS
SUMMARY

iv

e o

e,

Page

83
83
90
92
94

98

100
101
102
104

112
113
114
116
118
118
119
120
121
122
124

s e T TSP

| P INTRODUCTION

The material herein presented is the final report for Task II, Data Require-
ments for Productivity and Reliability Studies for RADC Contract F30602-75-C-
0248.

Data collection on software development projects is a complex process of
obtaining a number of parameters at strategic points during the software
development life cycle for the purpose of measurement and analyses. Compari-
sons of quantified data from differing projects, albeit collected in the

same manner, can not be altogether valid unless the collected data is mapped
to the set of conditions that uniquely produced it. It is the conclusion of
this study that there are three major categories of data needed to meet the
current research needs of the RADC Software Data Repository, including:

1) the project environmental data reflecting conditions under which the soft-
ware is developed; 2) the progress and performance data current to the
reporting cycle; 3) the product quality measurements of the software as
demonstrated through testing and analysis tools.

The purpose of this study has teen to determine what data items to collect
with justification as to the reasons for selection. It is apparent that there
may be a RADC research requirement at some time that encompasses a set of data
items heretofore not considered important to the repository, but the collection
process must be sufficiently flexible so as to allow collection of an expanded
parameter set at a later time. The central research studies of project prod-
uctivity, program reliability and software development costs have had the
dominating influence in the study and selection of data requirements. Some

v attention has been focused on the accessibility and costs of collecting

: specific data parameters, but for the most part, selection of the data has

; been based on the utility of the parameter for the specific research needs

stated above.

s

The data requirements are presented in a classification scheme that relates
to both the research uses of the data and the content of the parameters
themselves. The priority of data importance, established by both RADC and
SDC personnel, is also considered in presenting the justifications for
collection of specific data parameters.

ol VL R e e
SR R

& SURVEY OF LITERATURE

Currently, world-wide attention is being focused on the problems besetting
the software industry. These problems range from the tremendous costs
incurred during the production of software to the growing need for secure
systems for the protection of national interests as well as individuals'
rights. One of the most significant problems facing the industry has always
been, and continues to be, the reliability of the software produced. While
software systems are growing in costs, size and complexity, and are invading
all aspects of day-to-day living, the progress towards improving the relia-
bility of the software has fallen short of the demands and needs for that
reliability. Concurrently, the productivity of all phases of the software
project are being discussed with the hope of finding the key to increase
project performance, while developing techniques to improve reliability.
When these goals are achieved, software development costs will be signifi-
cantly altered.

It has been the intent of this study to determine the parameters contributing
to software reliability, project productivity and costs of software produc-
tion by reading past and present literature, surveying a sample of software
managers, and examining established project control forms.

In the survey of the literature four principle areas of investigation were
found to contribute to the conclusions derived in the course of the study.
They include:

1. Productivity Analyses
2. Reliability Analyses
3. Advances in Project Performance Monitoring

4. Programming Technology Advances

Although these areas of study overlap and impact work being performed in
each of the other categories, there are significant and independent conclu-
sions to be made in looking at the progress and evolution of the work in
each field. A brief summation of the findings of the literature search

will be presented for each topic; many of the references will be examined in
depth later in the report.

2.1 PRODUCTIVITY ANALYSES

In the 1960's several studies were made on factors affecting the growing
costs of producing software. Two companies, System Development Corporation
(SDC) and Planning Research Corporation (PRC), did extensive work in this
field in order to determine the factors affecting resource expenditure for
program development.

The purpose of the SDC study [26] contracted by the U.S. Air Force was to
identify variables which were thought to seriously impact computer program
development. The technique employed by SDC was to develop a questionnaire
to collect quantitative data on variables affecting programming costs, and
subsequently, statistically analyze the data. The collection and analyses
procedures were refined over a three cycle period covering a large sample
of completed software projects on each cycle. The most significant result
of the iterative study was to indicate that cost analysis of empirical
software experience data is a means for cost estimation using regression
analysis predictor equations. It is also noteworthy that only 15 of the
over 100 variables included in the questionnaire were used in the final
predicator equation which can be reduced to:

effort = (constant) x (number of instructions)]'5

From this study, SOC proceeded to extend the findings in a handbook for
management to be used during the broader area of the life cycle of
software development, including preliminary planning and cost evaluation,
system analysis and design, program development, system test, installation
and maintenance. The major productivity factors as determined by SDC in
these studies are shown in Figure 2-1. It is interesting to note that the

R e

YEAR

AUTHOR/ORGANIZATION

MAJOR PRODUCTIVITY FACTORS

1962-1966

sbc [38])

Stability of initial design
Size/complexity of data base
Frequency of operation
Schedules

Size of system

Complexity of system

Type of application

Timing requirements

1968

Gotterer [52]

Communications

Bemer [52]

Standardization

Sackman [49]

Individual ability

Environment, including computer
system usage

Familiarity with problem

1969-1971

PRC [52]

Number of I1/0 formats
Size/complexity of data base
Number/complexity of input records

1969

Fried [52]

Program size
Number of programmers

Krauss [52]

Program size
I/0 complexity
Language
Programmer skill

Gi11 [52]

Organization

Harr [14]

Communications

Brophy | 52]

Standardization
Programming tools
Training

1970

Brandon [52]

Standardization

Inadequate functional descriptions
Creativity syndrome

Staffing shortages

Personnel management

Program psyche
Management/Programmer training
Technological change

FIGURE 2-1, SYNOPSIS OF PRODUCTIVITY ANALYSES

YEAR AUTHOR/ORGANIZATION MAJOR PRODUCTIVITY FACTORS
197 Gayle [52] Programmer experience
Distance between computer and programmer
Number of output formats
Frequency of operation of obiect program
1972 Hirsch [52] Work Environment
Lassiter [52] Employee morale
Programmer experience
Office Tayout
Shell [52] Type of programming application
Programming language
Computer hardware
Program complexity
Program size
Weinberg [52] Communications
Programmer ego
Perceived objectives
19?2 Aron [14] Complexity and size of programmer
interactions with computer system
192? Portman [14] Estimations on productivity reflected
in schedules should reflect actual
hours spent in activity
1974 Wolverton [70] Subjective and objective project
dependent variables :
1974 Scott-Simmons [53] Quality of external documentation
Programming language
Availability of programming tools
Programmer experience in data processing
Programmer experience in functional area
Effect of project communications
Independent modules for task assignment
Well-defined programming practices
1975 Brooks [14] Complexity of task (Operating systems

most difficulty; compilers second
most difficult.)

Figure 2-1. Synopsis of Productivity Analyses (cont'd)

YRR

YEAR AUTHOR/STUDY PRODUCTIVITY MEASUREMENT PROJECTS

1969 ADPREP [52] Resource estimations, for proposed tasks
based on experience data.

Harr [14] Summation of productivity figures for
four projects: productivity rate for:
control programs - 600 words/man year;
translators 2200 words/man year

1973-74] Patterson [42] | Programmer/project productivity estima-
tions for proposed tasks based on
experience data.

Figure 2-1. Synopsis of Productivity Analyses (cont'd)

work that SDC did in cost estimation techniques has been examined and
reexamined in an attempt to use cost estimation techniques for proposal work,
but the algorithms being used do not use the linear regression analysis
equations previously mentioned. .

The study performed by PRC [72] under a U.S. Air Force contract attempted to
derive a correlation between development resources and independent variables.
Although the PRC study was inconclusive due to the small sample used [45], a
handbook was published. It attempted to provide a means by which the esti-
mated project dependent variables were compared with existing data from 18
completed software systems in order to determine whether the proposed software
system was reasonably similar to the established data base.

Both the SDC and PRC studies made a significant impact on management's view
of the software development process in showing a lack of conclusive results
from the wide range of possible variables affecting software expenditures.

It was seen that from the number of variables examined and used in projecting
costing techniques, the key variables clustered around three main categories.
These groups of variables include:

1. The familiarity of project personnel with the hardware,
software, and problems to be solved;

2. The environment in which the software is being produced;

3. The type and complexity of the software project.

It is exactly these three areas which do not readily support quantification
and measurability. The result, therefore, was that no usable prediction
technigues became established as a means for cost estimation. Almost more
important than this, however, was the attention that became focused on the
complex process of software development. It became apparent that since the
costs of producing software were rising at an extremely rapid rate, emphasis
should be placed not on cost prediction techniques, but new, more efficient
mehthods to be used in the software development cycle in order to reallocate
for the rising costs and/or update original cost estimations.

By mid and late 1960's, the focus of attention had expanded to include
innovative techniques in program testing capabilities, conceptually better
programming languages, programming and documentation quality control
standards, and more efficient programming disciplines.

The interest in productivity analysis remained, however, and is succinctly
presented by Scott [52]. First, Scott examines what he calls the commentary
literature-articles and books based upon authors' opinions and experience
dealing with the problem of program management. Second, the research on
predicting project expenditures is presented, including the SDC and PRC
studies. Third, the application literature which explores attempts to apply
past research to management practices. The survey presents a host of
variables thought by various authors to contribute to programmer productivity,
as shown in Figure 2-1. The commentary literature supports the subjective
and human related factors, which are not only difficult to quantify, but

are also difficult to even obtain a consensus of opinion on their definition.
It has been suggested by A.M. Pietrasanta [45] that these subjective human
characteristics inherent in the software development process might turn out
to be the most important variables. The research literature supports the
concept on which the RADC data repository is based: historical data covering
a wide range of software products in all phases of development is necessary
before adequate research can be accomplished. The application literature
reviewed by Scott was primarily concerned with attempts to apply the data
gathered in previous studies to obtaining a more meaningful estimation

of project productivity. The main objective of the research covered by
Scott's survey was to predict project costs, rather than quantify produc-
tivity variables.

One observation made by Scott, as well as J.W. Patterson [42], is that in the
process of data collection, the differing collections are incompatible because
of a lack of standardization of either data items, recording techniques, for-
mats, or purpose. Patterson did an extensive study for IBM in 1973-74. As

of now, the findings of the study, and subsequent techniques for utilizing the
productivity data, have not been published. However, IBM-FSD

is attempting to support proposal cost estimates with data gathered from the
Patterson study. It appears that project managers contributing to proposal
cost estimates are eager to have a substantive method by which to tentatively
validate or invalidate their estimated costs, according to Patterson.

Wolverton [70] has presented an excellent analyses of the factors impacting
large-scale software development costs, including data supporting productivity
rates. In order to arrive at valid estimation techniques, a data base
consisting of experience data is thought to be necessary. This data can be
obtained only by analyzing objective and subjective parameters characteristic
to the given software development project. Utilizing "“average productivity
rates" is not meaningful unless the components of the productivity rate are
known; even utilizing data from large samples are only useful in estimation
if the estimator is certain of “comparing truly equivalent measures".

Frederick Brooks [14] also reviews significant work performed in estimating
productivity. Some of the more important conclusions presented by Brooks
are:

@ The actual number of hours spent by members of a programming
team account for realistic estimations of schedules. It is,
however, important to note, that the members of the particular
team were spending only 50 percent of the work week in the
programming effort. :

@ The more complex and numerous the interactions between
programmer and computer system during the design and programming
activities, the lower the number of instructions produced per
man-year.

] Productivity rates ranged from 600-800 debugged words/man-year
for developing control programs; 2000-3000 debugged words/man-
year for developing language translator programs.

[] Productivity is affected by the language in which a system is
written. "Programming productivity may be increased as much as
five times when a suitable high-level language is used." [14]

10

- e - e LT ———
IR S

AT Y o 0t o e s
o

S ——

In summary, much analysis has been done and continues to be done on
productivity rates in the software development process. The parameters
that are crucial in determining productivity are, to a large extend, the
same parameters affecting costs and eventual reliability of the software
system. Further work is needed in establishing a historical data base of
estimated and actual parameters in order to provide sufficient data for
detailed analyses on productivity rates. The eventual goal should be to
establish technical and performance standards and criteria for the software
development process, which, when understood and applied, will not only
contribute to reliable predictions of productivity, but will also improve
project and individual productivity.

2.2 RELIABILITY ANALYSES

The amount of work performed during the past decade on software development
aimed towards improving software reliability is staggering. Many people
have written extensive surveys addressing the major techniques used in
validating programs, while others have concentrated their writing on one
particular aspect of the reliability field. Conferences addressing the
questions of software reliability are being held several times each year,
and the attendance at the majority of these conferences has been most
impressive. However, software remains predictably unpredictable and there
appears to be no panacea for the problems of producing high quality, error-
free software. A brief analysis of the work that has been done towards
improving software reliability will indicate the techniques that are
available, or under development, for improving the error rate of software,
and the effect these have on the proposed data repository.

For many years, the major concern in the computer world was the reliability
of the computer itself. Much engineering work was directed as this problem
until today, hardware failures have diminished to the point that they are not
even considered in the day-to-day coding and debugging activities of the
average programmer. Attention is now being focused on software réliability.
The Air Force in 1972 spent over 1.5 billion dollars on software development,

n

of which half was used for software verification; in contrast, they spent
less than one billion dollars for computer hardware equipment [56]. Techni-
ques for predicting hardware failures by mathematical models have advanced
to quite a successful state. C(onsequently, many people have tried to apply
the work done in hardware reliability to software reliability. The basis
for the hardware reliability modeling relies on observing the rate at which
a physical digital circuit fails over time. This type of analysis was
applied to software errors in the Satellite Control Facility (SCF) programs
by SDC personnel a decade ago. Hudson [30] and Ellingson [21] presented the
error-detection and correction scheme as a birth-and-death stochastic process,
uSing the data obtained as a basis for predicting the number of errors
remaining in a software system during checkout. It was Hudson's conclusion
that this data could then be used to: 1) define the point where the system
development process was complete; 2) determine the cost of program quality;
3) set standards for the turnover of new system; 4) better evaluate systems
during the design phase to ensure production phase quality.

What then has happen to Hudson's optimistic conclusion reached after relia-
bility modeling of the SCF programs? The SCF models are based on data collected
by an independent integration and test contractor, using delivered and
contractor-tested software over a lengthy test-retest process. While this
method is valid, it occurs later in the production period. Earlier, more
rigorous test methods are desired.

Work in the reliability field has continued with goals for obtaining: 1) a
standard definition of software reliability; 2) the data variables affecting
software failure rates (as well as the critical parameters to be used in the
modeling process); 3) a reliability model itself. The work of Shooman [57],
Jelinski and Moranda [63], Schick and Wolverton [63], Littlewood and Verrall
[33] a1l contribute to this growing field, but as yet, the application of a
single reliability model to a large number of software systems with the intent
of estimating the software relfability of each system is currentiy not
feasible.

12

While individuals pursued the field of reliability prediction, work was
concurrently being performed in the area of formally proving the correctness
of programs. This work is based on providing a set of assertions representing
Program functions that can be analytically verified by formal mathematical
techniques. In effect, by proving the correctness of program assertions,
one can prove the correctness of the program itself. Floyd, Naur,

London [37], and others have made significant contributions in the area of
formal program proofs. However, the application of these mathematically
complex and lengthy proofs to anything but a small piece of code makes
formal program proving impractical and infeasible. The assertions and the
assertion language themselves become yet another error producing construct.

The development of verification and validation tools has also proliferated
in the past ten years. These tools range from simple debug snapshots and
traces of individual program behavior to large and complex execution analysis
tools. The majority of tools have attempted to provide information on the
dynamic operational behavior of the program, or to offer test case informa-
tion to be utilized by the programmer during the test phase. Such tools as
PACE [40], PATH [41], RXVP [48], and QUALIFIER [46] are designed to analyze
the execution frequency of the program, or parts of the program in order to
indicate the statements which have, or have not, been executed. The princi-
ple behind these verification tools is that they provide the user with
exactly the frequency that each program statement has operated for each test
case. They do not improve the reliability of the object program, but they
do provide information supporting the "testedness” of the said program.
Reliability of the program is indirectly improved by these programs when the
user has proof that every statement in the program was executed during the
successful operation of a set of comprehensive test cases.

Another set of tools are being developed that attempt to provide the user
with a set of test cases that guarantee the execution of every statement in
the program. While these test tools are in their infancy for wide applica-
bility to large scale software systems, the information they may provide will
“greatly reduce the amount of testing applied to a program. The user will be

»

13

able to examine the data values required for execution of all statements
to determine the validity of the values. In addition, the execution of all
program statements with a small, non-redundant set of test conditions will
simplify the testing requirement procedures, while increasing program
reliability.

The analysis used in the automatic generation of test cases is also used to
determine the flow of control in the program. The concept of representing
the program as a directed graph, whose arcs represent the potential flow
of program control and whose nodes represent the basic blocks (a set of
consecutive instructions) of program code, also contributes to the analysis
of the complexity of the individual program. The fact that automatic test
case generation is presently not feasible for the industry as a whole does
not alter the needs addressed by this type of tool. Software errors result
from the failure to adequately provide for all conditions and combinations
of conditions relevant to the intended program operation. A method to
represent the actual program operation, and/or combination of operations,
can provide the user with information for more adequately devising and
selecting test data.

Also contributing to the software reliability movement has been the emergence
of a set of concepts or philosophies which contribute to the overall

quality of the software produced. Structured programming is largely derived
from the work done initially by Dijkstra [20], but more recently it has come
to represent the collective name for a specific group of techniques that
contribute to the reliability of software, while providing for greater
understanding and maintainability of the software. Briefly, these techniques
consist of a design methodology (levels of abstraction), which is used to
divide a complex software system into a logical and compact set of modules;

a programming discipline (structured programming, top-down development and
the elements of programming style), which is used during implementation and
testing of the modules; and a management organization (chief programmer
teams), which supports the design, implementation and test methodology.

While it is generally believed that structured programming techniques do

14

P e T
oo o S AR L

P

improve program quality, and there is some proof to support this believe [4],
these techniques do not in themselves guarantee software reliability.

In summary, the needs of the software industry for reliability not only
remain but are ever-increasing. There appears to be no one solution or
technique for providing that reliability. An approach which combines new
tools, technology and concepts, as well as an in-depth evaluation of
historical experience, is a necessary first step towards producing higher
quality software systems.

2.3 ADVANCES IN PROJECT PERFORMANCE MONITORING

Although practitioners in the industry were well aware of the problems of
managing large scale data processing system development projects, Hosier's
[29] 1961 paper on real-time system pitfalls was the first to make a real
impact on the industry. In the post-Korean war, large schedule slippages
and overruns of aerospace and naval systems were causing considerable furor
in both Congress and the news media [43]. In data processing, experiences
with SAGE and NTDS were equally disturbing. Hosier set forth the principles
derived from those experiences much in the way they are viewed today.
Developmental milestones, test plans, interface specifications, developmen-
tal measurement, debugging tools, concurrency, validation, and prototype
programming were all mentioned. A1l this management paraphernalia, plus
change and problem reporting, machine time recording and reporting, and
other aids to management were developed on these large scale systems. Yet,
project management tools have not had general usage until recently.

The Air Force and Navy in the late 1950's adopted PERT, or other critical

path scheduling techniques, for large system development projects, and the
techniques were soon introduced into software development. Ewart and Nanney
[24] have evaluated the use and value of PERT techniques in weapons system
acquisition from the time it was acclaimed as a panacea for the ills of system
development to its downgrading in importance by the recent C/SCS regulations
[1]). Besides being oversold, there was considerable user resistance; a

15

- B Nt oudts | 1P o e it

R T

general lack of management support for the technique; and protests at the
costliness of generating and maintaining the detailed plan required, as well
as keeping both ordinary cost accounts and PERT/COST accounts. For project
control, there is no denying that PERT scheduling and costing are probably

" the best techniques available. However, there is still a great deal of
subjectivity in schedule and budget estimates. PERT is a tool for planning
and control; not 2 substitute for good managerial analysis and evaluation.
On most projects for which PERT is required, it appears that the technique
evolves into a repsrting tool for the client, and is not really used to plan
and control the project. To be effective, PERT must be used on a day-to-day
basis, not updated at the end of the month or quarter as a result of other
control operations. Also, it cannot be the only tool of the project manager.

In the early 1960's, the Air Force devoted a considerable amount of effort
to the development of project management concepts, culiminating in the
issurance of AFSCM 375-1. This manual was best fitted for management of
hardware acquisition. During 1964, .and subsequently, considerable effort
was expended interpreting and expanding the series to cover software and
personnel subsystems acquisition. For instance, ESD sponsored an indepth
study of computer program configuration management (partially reflected in
Searle [55]), and computer program data requirements [54] that were
eventually reflected in AFSCM/AFLCM 375-7 and AFSCM/AFCM 310-1. Although
much of this effort was directed at specification practices, it also covered
change control, documentation maintenance, configuration accounting practices,
and configuration reviews. It was in these'working groups that general
models of the software development life cycle were worked out, and products
and reviews identified for each developmental phase.

The AFSCM 375 series was replaced in the early 1970's by MIL-STDs 490

(Specification Practices), 480 (Engineering Change), and 1521 (Review
Procedures). The Air Force carried most of the provision of 375 into MIL-STDs

483 (Configuration Management Practices) and 499 (System Engineering Practices).
AFR 800-14 (Computer Resource Acquisition) May 1974 (Vol. 1) and August 1975
(Vol. 11) is the latest in the sequence of regulations on configuration

management .
16

P R
’555~'§..

R e

%

In addition to progress reports, work breakdown structures (MIL-STD 881) and
other management plans are normally required on military developed projects.
The work breakdown structure (WBS) ties into both project management by
providing the basis for tasking, and into configuration management, by
breaking the system product into smaller segments. The WBS identifiers
provide the basis for both cost and configuration accounting. While a WBS
helps to organize and simplify the project, it is usually at too gross a
level of decomposition to provide close control, and too inflexible to
reflect the realities of a developmental project.

The notion of concurrency in software development preceded Hosier's report,
and despite many difficulties, is still most appealing. It is reflected in
the current notion of the "Software First Machine" [8]. That is, since
software now represents the major cost item and the pacing factor in develop-
ment, its development should begin by first using a simulation of the end
machine for initial development. Concurrency has always been present in the
simultaneous development of many programs and system segments, a now popular
concept in top-down implementation and integration. That is, while simultan-
eous development of many portions of the system demands very close attention
to interfaces to assure integration later, the top-down approach seeks to
control proper interfacing by implementing control segments and operating
interfaces first. This does not necessarily increase the degree of concurrent
testing, but permits the detection of interface and control errorsfearly. and
avoids the rework necessary to correct the incompatibilities when discovered
later.

17

i“

\
Considerable attention has been given recently to proposed “innovations” in
organizing for software production. In 1965, Willmorth {69] summarized the
agreements for and against various organizations. A Jine (or assembly line)
organization takes high advantage of job specialization, but has high
communication needs as work is passed from one Job stop to another. Appointing
a "system manager" to control funds and coordinate work expedites the process
and speeds decision processes, but has only moderate impact on reducing
communication needs and increasing concurrency. A matrix organization in
which the job specialists are organized into skill groups, but assigned to
projects (with or without relocation and shift of supervision), ensures the
advantages of job specialization. This considerably reduces communication
needs, but introduces some conflict of authority and control into the manage-
ment situation. The project organization is conceded to have the least
coordination and communication problems, but it also takes least advantage of
job specification. The present emphasis on Chief Programmer Teams [4,5]
seeks to ameliorate the situation by specifying an internal organization for
the team and calling for highly gualified team members. However, it would
seem that the team would have a greater chance of success if the internal
organization remains flexible to meet the demands of the particular project.
It is unlikely that highly qualified individuals will be available for all
teams. Greater success is 1ikely to accrue if the highly qualified are
assigned to the trouble areas and/or highly sensitive control and interface
areas.

In summary, it is now recognized that in order to provide effective manage-
ment, the manager must have a set of plans, standards, and a method to deter-
mine how closely actual matches planned performance. However, there are many
levels of management, and information needs are somewhat different at each
Tevel. The first level supervision needs day-to-day, or hour-to-hour infor-
mation, and top level management may be satisfied with monthly or even less
frequent information, except on major problems. To improve management,
further information is required on the way in which management is conducted,
including the techniques and approaches used.

18

Management techniques are most apparent in the project management monitoring,
configuration management controls, and quality assurance tools and techniques
employed. To evaluate these, information is required on the plans laid and
the performance realized, plus an evaluation of the project environment -
customer relations, project characteristics, working conditions, stability of
requirements, management and personnel, and such environmental stress factors
as the adequacies of personnel skills, computing equipment, developmental
tools, and developmental time.

2.4 PROGRAMMING TECHNOLOGY ADVANCES

The problems of software development are complex, and the complexity and
interrelationships of these problems directly and indirectly affect
reliability, productivity and costs incurred during software development.
While modern computing power continues to increase, and the per unit cost of
that power is decreasing, the size and complexity of the automated systems is
also increasing. Although the technological skills of programming personnel
is advancing, the problems tc be solved continue to increase in complexity,
requiring the application of new techniques. The effect of this dynamically
changing field is that the newly developed computer systems become obsolete
before the costs of producing those systems can be amortized over a period of
time. In looking at the progression of the state-of-the-art in the software
field, one can tentatively conclude that much of the programming technological
advances has had its impetus from the problems of growing costs related to
productivity and reliability. There is growing technology in all phases of
the software production life cycle. The concepts, techniques and tools used
during the life cycle reflect the attempts to alleviate the problems, but
there remains no one panacea, nor little hope for one.

! Perhaps one of the single largest contributions to the software field was the
advent and development of higher level languages. This technological advance
contributes to both increased software reliability and programmer productivity.
Although it is not always feasible to select the language which best fits the
problem to be solved, most higher-level languages of today incorporate the
following attributes which significantly impact software production:

19

° Machine and operating system independence

s Object code optimization

0 Ease of learning, reading, writing

@ Increased power (fewer instructions to solve a problem)
° Built-in functions

® ~ Self-documenting aspects

Since 1970 use of higher-level languages has become so extensive that machine
coding is the exception rather than the rule. Even more specialized languages
evolved, such as time-sharing, on-line languages as JOSS and BASIC, formula
manipulation languages as FORMAC, simulation languages as GPSS and SIMSCRIPT.
Along with these specialized languages, there evolved the development of a set
of official standards for COBOL and FORTRAN. From the development of the
specific languages, there evolved some definite concepts which directly impact
programming style and the use of the languages. Formal syntactic notation is
a concept which not only provides a method of defining syntax without ambiguity,
but allows for a link between theoretical work and its application. Formal
semantic definition techniques provide concepts currently being employed in
the areas of formal program proofs. User defined languages are in their
infancy, but much work is being focused in this area.

Although the directions that languages are evolving in the future are not of
direct concern in this study, the higher-level language technology of today
does offer the user a tool that increases both his productivity and program
reliability. It is to be expected that future advances in computer languages
in all phases of the software cycle will further productivity and reliability.
For example, work on design languages is currently being done by several
people. The objective of these projects is to aid the design process by
converting the functional requirement specifications to a structure that

can represent the software system and the environment it requires to operate.
The work is motivated by the principle that the construction of reliable
software systems is predicated upon the existence of a good design of those
systems.

20

It must be noted that the subroutine library associated with most compilers
of higher-level languages has also made a significant impact on the produc-
tivity level of the individual programmer. The subroutine library is a
collection of standard, proven routines, through the use of which problems
and/or parts of problems may be solved. The common routines obtained from
the library can be combined with other programs, depending upon the specific
user application. The library subroutines are on call to be loaded by the
operating system when needed. The user's need for specific routines is
communicated to the operating system through the compiled code. The use of
the subroutine library allows for reduced costs by the sharing of common
routines, increased programmer productivity by the availability of such
routines, and increased quality by the reliability of the proven routines.

The development and refinement of large multipurpose operating systems.has
been another significant factor in increasing software productivity and
reliability. Computer manufacturers have developed operating systems that
satisfy diffuse and varied requirements for a diverse set of customers. To a
large extent, these operating systems are a collection of tools, techniques
and functions that may be used to construct a system independently of the
hardware and associated interfaces. The programmer is relieved of the
necessity to know and to create many hardware/software interactions such as
optimizing loads, handling interrupts, devising paging algorithms and many
other supervisory, memory management and I/0 handling functions that once
consumed a great deal of his time. This allows the manpower resource to be
used elsewhere on important application problems, while the operating system
provides reliable and efficient system interfaces.

The programming methodology, including concepts, techniques and tools, used
in the development of software have significantly evolved over the years
until today software projects have considerable choice in how they elect to
go about software production. Proper selection of programming methodology
is an issue of great interest in software development today. Examination of
some of the techniques that have recently been developed have disclosed

21

st

significant data points to be collected. While there is a general move to
use the new concepts in the software industry, proof that they improve the
overall quality of software systems does not at this time exist.

It is the task of the system designer(s) to determine the basic programming
approach to be used after the functional components and interfaces of the
system have been defined. Even the process of system definition has
available to it a variety of tools and techniques to aid in the alternatives
and trade-offs inherent in the analysis process. Often, the decision to use
specific concepts rely heavily on established corporate standards, existing
methodologies, and languages available for the programming task.

Traditionally, software under development has moved through the developmental
phases as a unit, the product of each phase being baselined before work
officially began on the next phase. Exceptions to this lockstep approach
were frequently made to admit incremental or evolutionary builds, and to give
priority to programs, such as programming support tools or data base tools,
that were needed in advance of the rest of the system. Once program design
was complete, final development of the software advanced in a “"bottom-up"
mode - the most primitive system routines were identified and implemented
first, with control structure and interface routines implemeted later. As
routines were coded, they were first unit tested, when subsequently tested

in more and more complete aggregations until the system ran as a unit. Such
an approach requires the development of test drivers that define the control
and data structures necessary for the execution of the bottom-level modules.

A number of problems can be identified in the traditional software develop-
ment approach. Some of the problems, such as the complex internal control
structures and flows and the late discovery of system inadequacies and errors,
helped give rise to the alternative and more current development approaches.

22

In contrast to the traditional approach, a concept called structured
programming evolved. One characterization of it by Bratman [12] includes:

° The hierarchical development of systems
@ Modularization and simple control structures
® "Good" programming practices

® Design languages and proofs of correctness

Hierarchical development introduces the notation of "levels of abstraction."
That is, the concept that a system is composed of successive layers of more
and more abstract operations, beginning with very primitive operations at
the machine level and ending with very abstract, very powerful operations at
the user level. The interface interaction between levels is controlled such
that lower level operations are "hidden" from higher level operations and
the flow of control, or command, constrained to interfacing levels so that
no level communicates with any level far removed from itself.

Hierarchical development also implies a top-down implementation, such that
the total control and interaction structure is defined from the top (the
highest level of abstraction) to the bottom (the most primitive level of
abstraction). The system is implemented in the same fashion; the control
structure being implemented and tested before application algorithms are
written; proceeding in a 1ike manner, level by level, to the most primitive.
Thus, logic and flow errors in one part of the system should be limited by
the interaction rules.

Structured programming also insists upon highly modularized programs in which
the interactions among modules are limited to very simple control structures.
The rules for modularization includes designing for program strength and
independence. This includes programming modules to contain a single function,
while minimizing external interactions, plus carefully delineating the system
structure as stated above. Again, ease of understanding, verification, and
maintenance is sought through the organization of such simple, easily
understood modules.

23

e Traus socncen b B

s

Although "good programming practices" and the "elements of programming
style" may be practiced anywhere, they have been most closely associated
with structured programming. The structured modules are paragraphed,
nested, and identified in such a way as to make program structure overt and
the modules' functions easily grasped. Commentary and naming conventions
strive to introduce understanding through much mnemonic and symbolic content.

Structured programming has also striven to extend language capabilities,
both by normal programming language extensions and the introduction of design
language and verification language features. More precise specification
languages, coupled with verification features, promise much in the way of
reliability, although most of these claims have not been substantiated.
Language extensions, largely to reveal program structure and delimit control,
holds similar promise.

Brooks [14] indicates that structured programming, specifically top-down
implementation, improves reliability in many ways, including:

a. The structure supports a precise definition of the functions.

b. The partitioning and independence of modules of code
contribute to clarity during test.

c. Excessive detail is missing and, therefore, design errors
are more easily recognized.

d. Testing of completed levels can start in parallel with
implementation of lower levels, allowing for early design
error detection.

Another programming methodology, the software engineering approach, has been
defined by Book, et al [9]. It is the application of the accumulated
knowledge of the data processing sciences to the construction of computer
program systems, especially in terms of creating optimally cost-effective
systems using standard components and modular designs. The methods advocated
by the software engineers stress reliability, management control, automatic
engineering of design, and, of course, the structured programming approach to

24

ET L6t e ere e n e

developing additional modules. Since there is an emphasis upon standard
components, equal stress must be placed on writing programs for maximum
transportability and generalization. In the long run, the advantages of
having transferable, general purpose routines that are easily modified and
maintained ought to be more cost effective. This opinion is held dispite
increased execution times, less machine-dependent optimizations, and increased
developmental costs of individual modules in making them general and trans-
portable.

In its detailed recommendations, software engineering differs little from
structured programming. There is, however, a much stronger emphasis on
standardization, system simulation, design and/or specification languages,
and other system-oriented techniques than in the more limited programming
orientation of the structured programming advocates.

The effort to specify the characteristics of languages and their processors
might be considered an offshoot of either structured programming or software
engineering. However, while these approaches take a more or less traditional
approach to the software system life-cycle, the HOL approach seeks to short
circuit most of the developmental cycle by going directly from a statement of
a problem (requirements specifications) to a finished program. This is a
most difficult proposition, and perhaps best approached through simulation
programs that may be later polished for real world use.! On the other hand,
steps are being taken toward higher level languages as evidenced by the

Very High Level Language Symposium in March 1974 [62]. The featuresadvocated
there included:

° Associative referencing (accessing data on some intrinsic
property of the data)

(] Aggregate operators (operations over entire arrays or structures)

At a recent symposium, Mr. John Lawson of Texas Instruments disclosed such
a system, but no published data on the system exists at this time.

25

g s s

OB <

® Elimination of arbitrary sequencing (sequencing based on data
dependencies only, for instance)

® Nondeterministic programming and parallelism

® Pattern directed structures

Such systems have a long way to go before attaining a production status,
but the promise is there.

Some sort of compromise among the competing approaches is sought by an
approach like that described by Bratman [13] for the SDC Software Factory.
This concept assumes a software engineering approach to software development,
complete with structured programming methodology, but proposes that a stand-
arized facility be used for all software development with cross-compilers used
to bootstrap developed programs onto target machines. The Software Factory
encompases standardized methods and procedures, many programming tools, and
program production libraries as an inherent part of the Factory. Standard
production facilities may be the wave of the future, and may provide many
production economies and efficiencies, but these remain to be proven.

In conclusion, in looking at the state-of-the-art in software technology,

the industry is moving toward a more standard, engineering approach to
software development. In short: the costs of producing software, the
programmer productivity, and the software quality have been most impacted by
a collection of concepts, which form an organized and standard base from
which to proceed in the software development process. It is in the applica-
tion of accumulated knowledge of the data processing industry to the specific
problem that optimizes the elements inherens in software production.

26

T — T

2.8 SUMMARY

After surveying the literature, analyzing management and resource utilization

control forms and procedures, and questioning experts in the field of software
development, the summation of the results of this work is as follows:

The data to be collected sufficient to support future analysis
of reliability, productivity, and cost studies are of three
types. First, there are the project environment and subjective
data relating to factors which directly and indirectly influence
human behavior and performance during program production. There
must be an attempt to systematically collect and weigh these
variables in the process of determining which factors truly
impact productivity, reliability, and costs within the project
specific environment.

Second, there are the data necessary for the proper management of
a software development project of varying size and objectives,
including the objective real data relating to al) phases of »
software development. These data points are detailed and exten-
sive, and must be collected in such a manner as to be represen-
tative but not overwhelming in their volume. A technique for
reducing the volume of data obtained must be established before
collection and analysis of both estimated and real data can be
accomplished. These data must aid the project manager in his role
of ensuring that the performance of the project meets the contra-
ctually specified objectives within the allocated resources with
proper regard to configuration management and quality control.

Third, there are the data obtained from test tools, aids, error
procedures, etc., that are used by project personnel to determine
the quality of the emerging software product. These data can also
be used to support specific analysis on productivity, reliability
and costs depending upon the current objective of the repository.
As the objectives of the repository evolve, more or less of the
product quality measurement data may be obtained.

27

The data points analyzed by this study for the proposed
repository should be viewed as an evolving set, subject to
addition or deletion as analyses to their overall validity are
performed. The data repository must become a means for
standarizing collection criteria in order to relate uncommon data
to common analyses. At the same time, however, the repository
must remain dynamic to the extent of discontinuing collection
procedures and collected data that proves to be obsolete or
useless during analysis.

Bt e e e —
¥

R

e —

3. ANALYSIS OF PROJECT ENVIRONMENT ATTRIBUTES

This section will discuss project specific factors affecting all software
develoment processes. The classes of data include:

e Customer/Contact Considerations
e Project Organization/Personnel
® Hardware Equipment/Computer Facilities

o Software Project Attributes

The data parameters that are discussed in this Section include estimated/
actual values, and objective/subjective values. A major intent of the
discussion is aimed at recognizing the human factors element involved in the
software development process, and subsequently, attempting to quantify those
elements inorder to provide data for future analysis and study in this area.

3.1 CUSTOMER/CONTRACT CONSIDERATIONS

Little attention is given to the overall effect of the customer/vendor
relationship and its effect, directly or indirectly, on the individual
programmer and/or the working environment. Generally, the vendor is so eager
to contract to produce the software system that the customer interactions

are not considered during the proposal phase. Scheduling and costing are
predicted based on established in-house productivity algorithms, without
regard to the extra liason with and accountability to an external customer.

Examinations of the contractual committments should be made prior to the
actual signing of the contract. Many proposals are written without an
in-depth examination and study of the actual end-times specified in the RFP
(request for proposal). Many of the issues which should be addressed in the
proposal phase are shelved until contract negotiations, or later, because of
the nature of competitive bidding. Anderson [71] has termed bidding a "liars'
contest", based on what he has observed in the defense industry. His opinion
is that bidders agree to whatever the government has decreed as to schedules,
costs and configurations, and that real costs and impending problems are
discussed only when "the time is right" for those requests, such as a cost
overrun or schedule delay.

29

Once the ccntract has been awarded, the contractor has the responsibility to
deliver the product within the cost, schedule and performance requirements
established in the contract. However, unless all conditions are properly
established in the contract, the contract itself becomes a source of

problems for both the customer and the contract management. Renogotiations on
contract items are both time-consuming and costly.

3.1.1 Types of Contracts

Most common federally negotiated contracts fall into one of several standard
classes. Special clauses and provisions make almost every contract unique.
Although the project manager must understand his contract in its entirety,
even complete familiarity does not indicate all the factors that may impact
software production.

For instance, the type of contract awarded does not necessarily fit the work
to be performed. There has been a move away from awarding cost plus fixed
fee contracts for research and development software projects. Despite the
high risk and uncertainty involved, industry attempts to make the contract
fit the work to be performed. Often, the job is not compatible with the
funding, and overruns become inevitable. If the conditions of the contract
do not fit the work being performed, the effect may be that the vendor is
penalized instead of rewarded upon completion of the work.

A brief description of contract types follows.

30

Fixed Price Contracts

1. Firm Fixed Price (FFP)

2. Fixed Price with
Escalation (FP-E)

3. Fixed Price Incentive
(FPI)

3a. Fixed Price Incentive
Fee (FPIF)

Price is set initially and is not subject to
any adjustment. The contractor assumes

maximum financial risk, and all profits and

all losses are his. This type of contract is
used where prices are established at the

outset. Requiremeﬁts are usually measurable
and definite, and ,iittle innovation is required.

This type of contract provides for upward and
downward revision of the stated contract price
due to certain defined, measurable contingen-
cies. This type of contract is used in cases
where contract cost elements (such as labor
rates, material cosls, or component prices)
are likely to be unstable over an extended
performance period.

This type of contract provides for the adjust-
ment of profit and contract price by a nego-
tiated cost to target cost formula. The
contractor may share in cost savings by
higher profits, or may be penalized by over
estimated costs, that can end in a loss.

Other incentives may also be contractually
specified which alters original cost estimates
when savings are shared with the contractor.

At inception of FPIF, estimated costs, profit
price ceiling, and formula for sharing costs
over and under estimation are established.

This type of contract is used when there is a
modest degree of innovation and the contractor's
assumption of a degree of éost responsibility
will give him a positive profit incentive for
effective cost control and contract performance.

3

PTCRRR

Cost Reimbprsement Contractors

1. Cost

2. Cost Sharing

3a. Cost Plus Incentive Fee
(CPIF)

3b. Cost Plus Award Fee
(CPAF)

Provides for reimbursement of contractor's
allowable costs, with no fee. This type of
contract is usually used in research and
development work with nonprofit institutions.

Provides for reimbursement of an agree-upon
portion of allowable costs, with no fee. The
contractor bears part of the costs. This type
of contract is used for projects jointly
sponsored by the government and the contractor,
with other benefit to the contractor.

Provides for reimbursement of allowable costs
with provision for adjustment of fee in accor-
dance with the relationship of final cost to
estimated cost. At inception, maximum fee,
minimum fee, and formula for sharing costs
over and under the estimations are established.
This type of contract is used primarily in
development, where an estimated cost and fee
formula can be negotiated that will provide
the contractor with a positive incentive for
effective management. This type of contract
usually involves some amount of innovation

in the work to be performed.

CPAF and CPIF contracts are similar. In both
contracts the amount of fee is based 4n how
well the contractor performs. In the case of
CPAF, a board of review determines how the
contractor is doing and awards a variable
amount of fee over some base fee.

R o L

Cost Reimbursement Contracts (cont'd)

4. Cost Plus Fixed Fee Provides for reimbursement of contractors'
(CPFF) allowable costs and payment of a fixed fee.
These contracts are usually awarded for
research, preliminary exploration, or study
where the level of effort required is unknown.

Miscellaneous Contracts

1. Time and Materials (T&M) Provides for payment of labor hours worked,
plus the cost of the materials used. This
type of contract is used where it is not
possible to estimate the duration of the
work and/or where the government feels
surveillance and control is essential in the
performance (This type of contract is generally
used only when no other type of contract will
serve, e.g., consulting work.)

2. Labor Hour Same type of contract as T&M, except no
material cost is included.

Wolverton [70] indicates that’incentive fee schedule types of contract must
be understood by all people performing work on that contract, and they must
be conscious of the contribution they make in order to affect the fee that
can be realized by the contract company. If either the incentive fee
structure is misunderstood or not recognized, there is 1ittle chance of
success in obtaining that incentive fee.

While the definition of the contract terms may Be explicit, the terms are
often agreed to by contract or legal people who have a limited knowledge

of the software development process. The project manager may have a
different opinion of the contractually specified statement-of-work than does
the contract negotiation team. Or, the project manager may not even examine

33

the contract after award, and remain ignorant of the conditions of perfor-
mance or deliverable end-items until unpleasantly surprised during the
performance period. Even where the project manager is cognizant of the
contractual committments, these are rarely communicated to the persons
responsible for performing the work. To evaluate the actual contract
constraints ‘and/or requirements on the development of the software, the
following data supports analysis:

e Overall quality of funding for contractual committments,
including requirements for research development on fixed
price, inconsistencies or lack of specificity on deliverable
items, and provisions for redirection of effort without add-
itional funding.

e Overall quality of stated specifications, including impossi-
bility of performance, ambiguity, omissions, conflicting
provisions, disputed interpretations, and mutual mistakes.

e Evaluation of customer supplied data and/or equipment, including
completeness of manuals/directives/data, timeliness of equip-
ment/data, and defective equipment/data.

e Evaluation of customer's method of approval or review plans,
including overly stringent review criteria, reasonableness of
review/inspection process, timeliness of review action, and
penalties imposed due to non-compliance or disapproval.

It is important for the project manager to be aware of the direct or indirect
results of the customer's action or inaction on contractually specified
end-items. Results may include:

® An unpleasant working environment when the customer-vendor
relationship is strained.

e Forced application of more manpower to the project, impacting
the planned vs. actual manpower requirements.

34

=

® Resources allocated must be renegotiated because of escalated
expense, schedule slippage, and higher costs of material
services, and rentals due to customer imposed restrictions,
changes or approvals.

3.1.2 Questions of Risk -

Both the customer and the contractor assume some degree of risk in the
Procurement and development of software. At this point in the technology
of sc ware development, there is no scient1ficallx»progen method for
produciny reliable software, and there is no amount of legally specified
end-items that will guarantee that the customer will indeed receive exactly
what he thinks he has contracted to buy.

The risks that both the customer and contractor must consider when purchasing
and producing software products and/or services include:

a. Direct and indirect risk resulting from failure in current
technology.

b. Direct risk of nonperformance or delayed performance in
contractor's organization.

The data processing industry itself has not defined what falls into the
category of technological risk. It does appear that the industry needs a
technical and legal framework which defines the questions of technological
risk in an evolutionary industry. The impact of technological risk cannot
at this point be precisely evaluated by customer or contractor, and the
effect of this problem on the production of software is uncertain. Perhaps
the conclusion to be made is that there should be open recognition of the
problems involved in taking risks of this nature, or that costs incurred for
high risk projects be shared by both customer and contractor in a more
equitable manner.

35

The number of software houses which have survived such problems as
technological risk are few, and the trend towards establishing yet new
software-producing companies has significantly decreased. The move away
from large numbers of people concentrating on a coordinated effort to a
small group of people solving the same problem was one approach to solving
the problems of the management of large numbers of people, but it did not
solve the problems in the technology.

Obviously, there is nothing inherently wrong with taking technological risk
by either customer or contractor. These risks become a problem only when
either party is unaware or unwilling to acknowledge or share the risk, and
take contractual remedies for the possibility that the contract will not be
performed as specified. The relationship between the risk involved in the
contract and the effect it has on the contracting team appears to be most
significant when the size of the contracting team is small enough to be
directly influenced by the customer's satisfaction, or the contract has not
limited the 1iability of the contractor or customer in some way.

3.1.3 Subcontracting in Software Development

It has often been stated that communication is one of the key elements
affecting productivity in the development of software. If, indeed, this is
true, the concept of subcontracting portions of the software development

to one or more contractors, or being in the position of a sub-contractor,
magnifies the communication problem, the management and control problems,
and the other contractual considerations previously discussed. The
dependency relationships existing between sub contractors and contractors
impacts not only the human factors element but actual schedules for hardware
and/or software deliveries. In many very large program development projects,
the government has had a policy of awarding contracts to a number of organ-
izations in order to distribute the funding, as well as technological
resources. Although this policy has obvious benefits, the problems of
communication, interface, competition, etc., will remain in the industry

and should be examined.

A positive aspect of sub-contrccting work directly relates to costs.

Robert Patrick, consultant, addressed the Special Interest Group on Software
Engineering (SICSOFT) in September, 1975 on the subject of common myths in
the development of software. One point made by Patrick was that although
sub-contracting software development appears to be an expensive way to
produce programs because of profits, burden, etc., in the total cost, it
may be less expensive than in-house programming where costs can be hidden,
diverted, or at least, are not always carefully scruntinized.

Another advantage of sub contracting work is that often the requirements for
visibility of project progress, quality, etc., are more stringent between
contractor/subcontractor than for work being performed in-house. This
increased visability contributed greately to the overall quality of the

emer ing product. The impact of sub contracting work in data processing is
unknown and it does need to be evaluated. At a minimum, the number of

sub contractors, their responsibilities and their experience in the specific
area of responsibility should be examined in relation to the entire develop-
ment project.

L¥

3.1.4 Customer Data Processing Experience

The familiarity of the customer with the software development process is
important for a number of reasons. The quality of the interaction between
customer and vendor is demonstrable from the RFP to the acceptance testing.
The more knowledgeable the customer is with the software development process
in relation to the problem to be solved, the more likely it is that the
customer will get what he has contracted to buy. Also, the customer's
experience and knowledge can directly relate to the reliability of the
system under development by the quality of the system requirements, the
resource documentation, and official approval criteria. Perhaps equally
important :are the customer's specified standards for programming and
documentdtion, as well as the technical support and direction, especially
in defining system or acceptance test cases and procedures.

37

A human factors aspect of the customer's impact on software production is
the rapport that is established between customer and contractor. Again,
government agencies have established a policy, or contracting strategy
albeit not official, that work is contracted to companies or organizations
which have proven to have performed in an amiable as well as satisfactory
way. The relationship that exists between the customer and contractor
becomes a real and viable resource. (Although there are dangers of the
contractor taking advantage of the existing relationship, the competitive
nature of software contracting tends to ameliorate this situation.) The
interactions between contractor and vendor can range from being strained and
hostileto honest and openly communicative. In any case, the existing
contractor/customer relationship may influence directly the reliability and
indirectly the productivity of the software developed.

3.2 PHASES OF SOFTWARE DEVELOPMENT

The life cycle phases of software development were previously discussed in
Volume I of this study. Further delineation of the phases will not be
presented in this section, except to define the phases as consisting of the
following:

e Preliminary Analysis and Feasibility
¢ Requirements Analysis

e System (or Preliminary) Design

e Program (or Detailed) Design

® Program Implementation

o Test

e Installation and Operation

The subdivision of a software development project into distinct phases is

necessary for a number of reasons. First, allocation of resources, such as
manpower and computer time have differing requirements during the software
development process. Second, configuration control procedures require that

the developing product be baselined after distinct milestones. Even when
configuration control procedures are not a requirement for the software
project, quality assurance provisions, such as design and performance
reviews, provide management with a mechanism by which to evaluate the
emerging product. The subdivision of phases differs to some extent within

all development projects. Although there are many opinions as to the optimum

time allocation for each phase, the collection and examination of data of
this nature may provide a definition of effective phasing and possible
alternatives substaniated by a reservoir of historical data.

At a minimum it is necessary to collect data sufficient to identify the
total elapsed time of a software project, and the allocation of the total
time to each of the software development phases. Resources allocated and
expended during the performance period are discussed in more detail in
Section 4.

3.3 MANAGEMENT ORGANIZATION STRUCTURES

The organization and management of the personnel involved in the software
development process remain one of the most complex problems of computer
software development. The impact that the structure and people of the
organization have on the productivity of the project, the reliability of
the software, and the costs of development is undetermined at this time.
Specific data parameters need to be collected that represent a wide range
of differing organizational structures and personnel attributes in order
to determine more effective management techniques and/or identifying and
training individuals for data processing needs.

The management of computer system development is not a simple problem of
cause and effect, but a complex function involving muitiple variables, all
of which have direct and indirect effects on each other. Effective manage-
ment is closely tied to the manner in which the available resources are
organized and deployed in solving the software developmental problem.
Hence, management effectivity must be considered in relation to:

39

"% -
B
o e b ey
ler i L e
B b7 I

e e o

a. The system of people developing the product

b. The system of hardware and software tools and facilities
utilized in the development process.

c. The time and funds committed to acquiring and utilizing
the above.

There are a number of contributing factors which make the management of
computer programmers and the software development process as complex as
it is. Brandon [11] lists the following key problems:

e Ineffective and/or inadequate technical training
e Problems of communication
e Problems inherent in the management of "creative" personnel

e Lack of uniform management procedures and performance
standards

e Shortage of competent personnel

This list can be extended by Clewlow [17]:

e Problems of determing manpower effectiveness, as well as
general organization structure effectiveness.

e Evaluation of individual capabilities

To a large extent, tentative management solutions to software development
problems have centered around a joint effort to develop management tools

and disciplines that can be used to train personnel and to establish

quality standards for project control and performance evaluation. (One

major aerospace company is reported by Brandon [11] to be spending well over
$300,000 for basic standards of this nature.) Little work has been done to
develop objective measures of individual productivity, performance, capability
or effectiveness within the federal structure because it lacks a set of
"meaningful quantitative standards". Subjective personal judgment remains

the prime means of evaluation [17].

40

As the size and complexity of software system increases, the factors
influencing effective management and measurement increase. The ability to
recognize the impact of adverse critical factors on the production process,
and take action to adjust cost, schedules, and other plans contribute both

to the human factors element and to the eventual quality of the end product.
The effect of this management, which depends upon individual acumen, analysis
and action, may never be effectively measured and analyzed.

The purpose of a management organization is to establish procedures and
standards which allow for the monitoring of technical progress and resource
expenditures, while ensuring that the contractually specified end-items are
produced in the elapsed time period allowed. There are a number of organi-
zational structures used to fulfill the responsibilities of management; all
of which are designed to reduce the total amount of individual communication
and coordination required, while establishing a responsible divisionof labor.
The methods to obtain this division of labor are numerous, but the principle
methods of organization include:

a. Project Organization. This type of structure consists of a
manager who subdivides his responsibilities into project
specific components. As projects are initiated or completed,
reassignment of personnel to new projects is necessary.

b. Matrix Organization. This type of structure may consist of
one of the following alternatives:

1. A project manager who obtains the technical personnel
required to perform his specific project work from an
established organization, which consists of personnel
with a varied mixtures of skills. In effect, this organ-
ization becomes a project organization until project
completion, at which time the personnel return to their
original positions.

41

2. A program office which, in effect, sub-contracts work to
the appropriate technical personnel. In this case, the
program office role is that of monitoring and integrating
the functional components of the line organization while
excluding other managerial responsibilities.

¢. Line Organization. This type of structure consist of subdividing
responsibilities by functional specialization. The mechanisms
for division of work can reflect the type of application, the
type of internal function, or emplovee skills and disciplines.

Data reflecting the type of organization, the organization's functional
responsibilities, the number of units and sub-units in the structure, the
number of people per unit, and the personnel skill level will support
analysis on the effectivity of differing organizational structures representing
the software industry. These data should be detailed enough to allow at
least a partial assessment of an optimum structure for software development
projects. Although there remains a basic problem of attempting to quantify
and qualify unlike management characteristics and practices in order to
obtain standard measures, data collection forms should provide a mechanism
by which to capture a wide variety of differing organizational structures.
A historical file of data of this nature will support research on organiza-
tional issues described in more detail below.

42

PRy o e

3.3.1 Project Organizations

From the experience at SDC and at other software development firms, the project
organizational structure appears to be the most efficient means for management
of the systems of resources present in software development. It has been
found that there are a number of advantages to this type of structure, encom-
passing bcth human factor elements and real, measurable data. Some of these
factors include:

a. Mission orientation. Assignment to a specific project often
gives the project member a sense of mission and a set of
specific goals with which he may identify. Morale, efficiency,
and willingness to work over and beyond normal working hours
and conditions may result.

b. Ease of Communication. A project organization tends to reduce
formal communication requirements while improving the ease of
information flow and the currency and quality of the information
passed.

c. Problem-solving Continuity. The project organization supports
the continued use of concepts and approaches needed to solve the
problem throughout the development process.

d. Skill Composition Team. The project team theoretically contains
all the skills necessary for the development of a software
product. While this is not always true and consultations with
experts may be expected on high technology projects, the same
situation may arise in other diversely organized departments.

The chief programmer team concept [4] has been one attempt to solve the
problems of organizational structure of software projects while supporting
project organization. In effect, it represents the management structure
paralleling modularity of program design. Specifically, the concept includes
a structuring of job assignments by individual specialization with a clear
definition of the relationships existing between team members. The team is
headed by a highly competent chief programmer, whose principal job is to

43

Fc e 2

design, code and test the critical segments of the code. At the same time,
he designates specific program stub assignments to the rest of the team
members. A backup programmer, also well qualified, assists the chief
programmer in the design of the program; and, generally, acts as an evaluator,
but is not held responsible for the code. A program secretary is also
included in the chief programmer team concept. This person has the respon-
sibility of maintaining the project records, project notebook, and the
program production library (PPL) in both the hardware facility and the
listing records. Other programers and analysts are members of the team,
and perform duties as designated by the chief programmer. The entire team
usually consists of five to nine people.

One of the prime ingredients in the chief programmer concept is the visibility
into exactly what work is being performed by whom. The software produced

by the programming team is the public property of all team members. The
quality of the work performed is the responsibility of the team as a whole.

The chief programmer team concept differs from traditional organizational
methods by the placement of the individual programmers who are generally
placed at the base of the management pyramid. The chief programmer teams
can be insitituted as a part of this traditior.? structure by hierarchically
structuring teams according to experience and/or compentency, or difficulty
of assignments. In this structure, each team reports to a higher-level
team, with the highest team reporting directly to the project manager [12].
Another major difference in chief programmer teams is the emphasis upon
communication between team members. In the traditional organization, the
assignment of a group of individuals into distinct problem and/or system
oriented subdivisions may have the effect of limiting the flow of informa-
tion between people with separate task assignments. Perhaps an even more
important contribution to open communication in system development is the
emphasis of shared responsibility and public programming existing within the
team. Data reflecting the psychological factors involved in the chief

44

- ;"d"ﬂ’-"‘"o’-"’ E

programmer team concept are difficult to obtain, but assessment is necessary.
The chief programmer team concept without open communication, public
programming, and shared responsibility may be nothing more than the program-
ming units found at SDC on the SAGE program a decade ago.

3.3.2 . Line Organizations

The 1ine organization is based on the principle of work specialization and
simplification in a technical or engineering environment, matching the formal
disciplines and training of its personnel. Functional specialization breaks
a job down into relatively small tasks, and permits the development of a

high degree of skill in the task area specialty. Since technology is
concentrated in an area, it encourages the development of techniques and
tools in that area.

Line organizations appear to work well as long as a reasonably standard
product is produced, and similar operations are performed in every instance
of development by the specialized unit. The line organization becomes
inefficient when the development of a product is accompanied by a degree
of speciality.'and relearning is necessary in order to perform the develop-
ment task. Also, this organization is inefficient when a great deal of
intergroup coordination and communication is necessary to preserve the
integrity and continued compatibility of the product. Certain functional
specializations have proven very efficient for system development, such as
machine operators of all types, e.g., typists, keypunchers, computer
operators. As long as independent program modules are produced, the
programmer analyst who designs, codes and tests a unit of code representing
400-1200 source statements and four-size manweeks of effort is an effective
specialization. However, in the concurrent production of many interacting .
modules, the need for communication increases and the product team (which
may still be a unit in a functionally specialized organization with sub-
specializations as in the Chief Programmer Team) may be more efficient.

45

3.3.3 Matrix Organizations

In effect, the matrix organization is a compromise between the intergrated,
but short-lived project structure and the stable, but communication-bound
line organization. Matrix organization seeks to take advantage of the high
level of technical development and speciality skill of the line organization
by retaining a "home" organization based on skill, discipline, or work
speciality. At the same time, it attempts to retain mission-orientation,
ease of communication, continuity of personnel, and flexibility of composition
of the team. The "full-matrix" structure, which is a relocation of

personnel into project organizations, permits the workman to retain identi-
fication with his primary discipline or speciality. The "semi-matrix"
structure, which is a project office overseeing the efforts of line organized
personnel, is more like the line organization. It places the burden of
coordination and communication on the project office, and appears to work
well only when the project office has full control over funds, technical
direction, and quality assurance for its product. Lacking this control,

the line organization involved may disregard the authority of the project
office, assign its own work priorities, and use its own product standards
without fear of reprisal.

3.4 PROJECT PERSONNEL

Programmers have often been thought of as a special breed of people, for
any number of reasons. There is some evidence to support this contention,
although if one looks at individual specialization across the country,
indices on uniqueness can always be derived. Ershow [23] presented three
reasons why he felt programming to be “the most humanly difficult of all
professions involving numbers of men". These reasons are worth examining
in the light of the following discussion:

e Programmers constitute the first large group of men whose
work brings them to those limits of human knowledge which
are marked by algorithmically insolvable problems and which
touch upon deeply secret aspects of the human “rain.

46

e A programmer's personal pushdown stack must exceed the depth
of 5-6 positions,which psychologists have discovered to
characterize the average man; his stack must be as deep as is
needed for the problem which faces him, plus at least 2-3
positions deeper.

® In his work, the programmer is challenged to combine with the
ability of a first-class mathematician to deal in logical
abstractions, a more practical, a more Edisonian talent,
enabling him to build useful engines out of zeros and ones
alone. He must join the accuracy of a bank clerk with the
acumen of a scout, and to these add the powers of fantasy of
an author of detective stories and the sober practicality of a
businessman. To top all this off, he must have a taste for
collective work and a feeling for the corporate interests of
his employer."

If indeed, programming is such a difficult task, managing the system of
people involved in the production of the task is equally difficult. Several
factorsare involved in the data processing people problem; the problems
recommended for study by the data collection effort in order of importance
include:

e Size of Project Staff
e Project Staff Experience

e Turnover Rate

3.4.1 ize of Project Staff

As the phases of software development are characteristically distinct with
regard to functions performed, the requirements of manpower for the life
cycle phases are also distinct. Manpower requirements build rapidly from
the initiation of the project to module level/integration level testing
where they more or less plateau at a constant level. Although the manpower

47

e, TR A
& ./F,’ fss g
gL by "

requirements are well recognized in the software industry, the total number
of people required to do a given job appears to be a significant factor in
both the manpower requirement build-up and the productivity of the project
staff.

Cammack and Rodgers [15] have identified two factors that impacted prod-
uctivity when a project was rewritten with improved programming and manage-
ment techniques. The first and most important factor, according to Cammack
and Rodgers, is the size of staff and schedule commitments. If the schedule
demands a rapid and high level build-up of personnel, “productivity will
suffer." The second factor is concerned with the learning curve of the
personnel, a factor that every industry must recognize and deal with. There
is a definite learning curve with each particular software application,
which may be further complicated by a new programming process, and/or with
the organization and methodology of the individual software project. When
the software development project requires a large staff from onset, the

time perjod necessary for the staff to become a productive unit must allow
for the acquisition of qualified personnel, and the learning curve of each
individual, which together forms the learning curve of the project.

A further consideration is the amount of training time required from the
existing staff to bring the new comers to an anticipated productivity level.
On most projects where a "buddy-system" is used to guide and instruct a new
man, it is estimated that approximately 20% of the experienced person's

time will be consumed in instructing eqch new person. (Obviously, more

time is required initially but is then;dgcreased as training progresses).
Even if a separate training staff is employed, some "buddy-training" will
remain, and the relatively "hands-off" training may stretch out the learning
curve.

R

An observation made by Odgin [39] directly relating to project size was
that the reasonable 1imit for manageable units was about 30 man-years of
total effort. "Beyond this point the performance of personnel, managers
and the infosystem itself deteriorate with startling rapidity." Besides
the man-year effort, there is a critical staff-size of about 20 people,
after which managerial control becomes impossible. The number given by
Ogdin includes analysts, programmers and other system development personnel.

Peitransanta [44] claimed that "a linear increase in the elements of a system
is accompanied by an exponential increase in the potential interfaces

between the elements. Since system development requires both the development
of elements and of interfaces, then one should expect a nonlinear increase

in man-years as systems grow larger." The people involved in the system are
one of the elements; the more people, the greater the exponential increase

in interfaces between the people and the programs they are writing.

Willmorth [68] noted that the process of developing a software system is an
"interdisciplinary task, involving people trained in mathematics, engineering,
human factors, and other disciplines depending upon the nature and purpose

of the system". It is clear that as the task grows, so do the need for
communication, coordination, and skills of the people grow. In order to
evaluate the importance of project size and the effectivity of staffing
requirements experience, the accumulation of data reflecting estimated and
actual staff loading for each phase is necessary.

3.4.2 Project Staff Experience

Computer programming is a human task that has become an increasingly more
demanding skill, requiring knowledge of complex machinery, abstract
reasoning, and specialized tools, languages and techniques. The training
offered to people interested in the profession ten to fifteen years ago does
not resemble the computer science courses now offered in educational
institutions of all levels today. Experience in the profession has become

a much valued resource, but even that experience is not always applicable to
the one-of-a-kind systems being engineered, designed and programmed today.

49

PR 0

There are several considerations to be discussed when analyzing the data
necessary to present the staff experience of programming projects. The
evaluation of individuals is a human activity, filled with human fallibilities.
Personal likes and dislikes, prejudices, measures of competency, and
subjective performance evaluations all contribute to the problems of measuring
the individual's worth to the programming project. Besides the lack of a
common denominator for measuring individual skill in the software industry,
the educational backgrounds of data processing people only contribute to the
confusion «f the prdblem. When programming came into existence, it attracted
people from all walks of life, trained (or perhaps, untrained) in totally
unrelated fields. Very many of these people were educated in data processing
by the individual hardware and software firms after a cursory data processing
- test was administered and found to support a firm's acceptance criteria. As
both secondary and college-level schools began offering courses related to
the data processing field, formally and theoretically trained programmers
and systems analysts begain infiltrating the software industry. It has been
said, however, that while the educational background may contribute to an
individual's skill, the hands-on experience in data processing and in the
specific appliéation area are probably the two most important considerations
in evaluating project personnel.

7
Until such things aré unanimously defined and accepted by the industry as
a whole, company assigned personal titles and salary grades lack uniformity
and cannot be well utilized as a data point for demonstrating project
personnel experience.

Because of the special demands of the management task, it would appear that
experience in the field of management would greatly contribute to its
overall effectiveness. This conclusion, however, has not been substantiated
with real data. One possible reason for the lack of data is that the
computer industry and technology have developed so rapidly that there is
always the need for the manager to expand his awareness, involvement, and
planning. The introduction of new ideas, and the actual implementation of
those ideas, requires a great deal of skill, to say nothing of risk to the
project manager if those ideas prove ineffectual or costly. Data supporting

50

varw

the individual manager's total number of year's experience in software
development, the manager's number of years experience in the management of
of software development personnel, and the manager's number of years exper-
ience in the specific type of development project is necessary to attempt
to evaluate the components impacting management effectivity.

In summary, data reflecting levels of experience in the data processing field,

and the specific application area must be collected on management ,
systems analysis/design, programming and system test personnel.

3.4.3 Project Personnel Turnover Rate

It has been estimated that a project may expect a turnover rate from 20-30%
per year of personnel, taking into consideration transfers, departures, and
promotions [68]. (This percentage turnover rate has been experienced by
large software develompent projects; data supporting analysis of the turn-
over rate of small software projects has not been found.) The turnover

rate is an important consideration in both the estimation of resources and
the organizational structure of manpower within the project. For example,
one effect the turnover rate has is escalating software development costs by
the need for continuous training of new personnel in the specific application
area, in addition to time and money spend in recruitment procedures.

There appears to be an even higher turnover rate within the government sector
of the data processing industry. Diesen [19] gives several reasons for
this phenonmenon. The transfer of personnel from one government agency to
another does not result in a loss of accrued benefits, such as seniority,
vacation, retirement funds, and sick leave. The effect of the turnover on
the individual software development project is the same, however.
Departures due to retirement in prive @industry are just beginning to have
an impact because of the youth of the industry and the age of the people it
attracted in its infancy. This is not true for the Federal government
employees for two reasons. First, it was possible to transfer into a data
processing agency, without changing positions in stature. Second, retirement
eligibility is based on length of service, resulting in the possibility of
retiring at a relatively early age.

51

3 oy ——— e

B e

Turnover has always been recognized as a factor in produetivity and product
quality. Each time a key person vacates a work assignment some information
is lost or must be relearned. Part of the emphasis upon documentation in the
software industry is aimed at combatting the i11 effects of turnover. That
is, turnover indirectly increases costs by demanding that more documentation
be done. If a person leaves an undocumented, or poorly documented, module
behind, it is often more cost effective to recode the module than to try to
interpret the old code.

Turnover in managerial and/or other key personnel may be especially critical
events. A decision-making position left open for any length of time delays
work because the decisions are not made. Even when the position is filled,
a person new to the project may make some poor or uninformed decisions. In
such a case, there is usually a period of inefficiency. Certainly, turnover
rates of such persons may be an index to project performance.

In short, estimated and actual turnover rates for project personnel at each

phase for each organizational unit are important data for analysis in the
people probiems.

3.5 HARDWARE EQUIPMENT/COMPUTER SUPPORT FACILITIES

A basic factor impacting project productivity and software development costs
(and, perhaps, program reliability) is the hardware environment available to
the development team. The computer hardware and support facilities are
generally restricted to those dictated by the specific software firm or
government contracting agency. The computer installation is a business
enterprise in itself, and cannot always be available for fluctuating
individual projzct usage requirements because of economic reasons. The
computing equipment and support facilities are becoming more efficient, and
do attempt to meet the needs of the individual user because of the competi-
tion in such service bureaus. However, the expense of maintaining and
running the computing equipment and employing the necessary personnel for
support activities requires that the computer facility be saturated with users
in order to meet its resource expenditures.

52

BT S

While it has not specifically been stated that improving project productivity
through analysis of hardware components and/or modes of computer operation

is an objective of the RADC repository, there is a significant amount of work
that can be done in this area. The analysis of computer usage data may
include such factors as system throughput or individual programmer's
frustration with poor response time. While the collection of data of this
nature may be a potential and direct benefit to users of the repository, it
constitutes a large bulk of data, and should only be collected to support
specific studies. In any case, the structure of the data base should be
flexible enough to allow ccllection and storage of this type of data when the
need arises.

3.5.1 Computer Hardware Definition

The computer hardware components are project dependent variables greatly
affecting the software product being developed. An attempt must be made to
gather data on the factors that make each software project unique. When these
factors are quantified, there will be a basis for comparison of the projects'
characteristics. At a minimum, the parameters necessary to define the computer
hardware include the type and name of equipment, the components comprising the
configuration, storage capacity, and the processing speed.

3.5.1.1 Systems Throughput

The computer configuration and components are basic to the software develop-
ment project. As such, many of the problems of the project personnel are
predicated on the capacities of the hardware environment and how they are
managed. The total productive work of a system from machine readable input of
data through utilization and processing to the human readable output of data
is defined as system throughput. Although it provides a measurement by which
project hardware environments may be compared, the cost expended to obtain

the measurement may be prohibitive.

The basic hardware configuration supplied by the manufacturer is generally
accompanied by an equally basic operating system. Both hardware and software
are becoming more and more modular in design, and can be expanded with
increased costs as users' needs increase. An evaluation of the efficiency

53

SRR T

of the hardware/software system in its entirity is a more difficult
measurement to obtain. Generally, a compiler is used for performance
evaluations at this nature. The data obtained from performance monitoring
is not altogether relative to the data necessary to form a basis of
hardware/operating system comparisons, even if the data were available from
individual software development projects. This is due to the fact that the
measurements are obtained on basic hardware/software components and do not
take into consideration such things as simultaneous functions, inconsistant
input loads to the system, and complex paging algorithms. Especially in a
system supporting time sharing operations, measuring system efficiency and
capacities with transactions reaching the system at random, the load on the
system will vary from minute to minute. It would be extremely difficult to
estimate the impact that this has on project productivity, if the data could
be even be quantified in the first place. In order to compare system through-
put across software projects, the measurement must be obtained in a like
manner for each hardware/software environment. It appears possible to
develop an algorithm of this type of measurement if further studies
necessitate these data for comparative purposes.

3.5.1.2 Modes of Computer Operation

Many computer facilities have a variety of operational modes to offer the
user. There are advantages and disadvantages to each mode of operation -
mainly concerning costs and productivity. Therefore, project management
must be aware of the choices available ana the consequences of each choice.
Much work in the past has been done in anailyzing the characteristics of
modes of operation. Figure 3-1 is a summary of the data found concerning
modes of operation. (This data has been obtained from Aron [3], Erickson [22],
Sackman [49].) Further, current attention on this problem has been addressed
by Brooks [14]. He presents data supporting increased productivity by the
use of interactive computer systems, including the data obtained from Harr
which indicates "that an interactive facility at leas:t doubles productivity
in system programming".

b2

=

S————_ " T,

BPS - Batch Processing System (Remote Job Entry)

DESCRIPTION

A computer facility 1.
characterized by

users submitting
computer run jobs

at pre-established
remote locations.

The user picks up

the job generally 2
at the same loca- 3
tion after it has

been run. The

user has no 3.
direct contact

with the computer
hardware and his
specific run.

ADVANTAGES

Costs are significantly P

lower, especially in
non-prime times.
(Except when total
user load is less

than one-third 2

system capacity.)

Greatest amount of
throughput for non-

interactive jobs. 3

User tends to check
components of job
more carefully when

turnaround time is 4

high.

User can submit more
than one job at one
time for different
objectives.

Easy to introduce
into a project as it
requires no change

in management or
programming practice.

Supports program
librarian's control

of PPL and acquisition
of job related data.

Supports "public"
program concept of
chief programmer
teams.

DISADVANTAGES

Submittal and pick-
up of jobs is
dependent on
preestablished
times and places.

There is a queue
for processing both
input and output of
the job.

No communication/
interaction with
program during
execution.

Programmer's
productivity dependﬂ
on turnaround time.

Figure 3-1.

Modes of Computer Operation

55

T P et e

MCB - Multi-Console Batch Processing or Remote Job Entry Terminals

DESCRIPTION ADVANTAGES DISADVANTAGES
A computer facility 1. Programmer has some 1. Cost of terminals, card
characterized by direct access with readers, printers and
multipleiconsoles computer. It is not communication lines.
with individual interactive as the !
input devices, such computer stores 2. ggt?ggm:?::at;gnﬁ;;ter-
as card readers or input queues. Surd prog

ng execution.
termingls. and 2. Reduces turn-around
output devices, ' tine ot comerad to 3. Costs of familiarizing
such as printers. BPS -y personnel with equip-
Each console is 2 ment.
operated by 3. Can support more than
individual users one user per location.

running their
specific job.

Each job runs to
completion in a
queue of first in,
first out. Many
facilities of this
nature use the
traditional batch
processing mode of
operation for the
bulk of the input,
using the remote
terminals for
subsequent changes
or execution
commands. (Many
of the advantages
and disadvantages
of the BPS apply
to MCB.)

Flgure 3-1. Modes of Computer Operation (cont'd)

P ——

DESCRIPTION

which supports
multi-users,

jobs with the
same computer

through a remote
console. On-line
terminals provide

capability of
communicating

progress and
control of the

A computer facility 1.
running individual 2

simultaneously £

the user with the 4

directly with the 5.

ljob he has input 6

via the terminal. :
7.
8.
9.
10.

TSS - Time Sharing System

ADVANTAGES

Least amount of user
time required to run
a job.

Least amount of com-
puter idle time.

Greatest throughput
for interactive jobs;
resulting in less
personnel idle time.

Immediate feedback
from job execution.

Turnaround time can be
reduced to immediate
response.

Storage and retrieval
of data is immediate.

Monitoring of program-
mer's time for produc-
tivity measures is more
flexible because of
terminal hours data.

On-1ine debugging and
analysis contributes to
a decrease in manhours
required for program
production.

Programmers appear to
"like" T.S. and inter-
active communication
with the computer. On
this basis, productivity
and product quality may
improve.

Problem solving with
interactive T.S.
capabilities is
available.

DISADVANTAGES

Highest computer
system cost ($/hr);
or higherst overhead
per user transaction
in the operational
systems and support
tools currently
available.

Terminal acquisition
and maintenance
contributes to costs1

Costs of training
users with tools and
techniques of T.S.
systems.

Figure 3-1. Modes of Computer Operation (cont'd)

57

PC - Personal Computer

[DESCRIPTION ADVANTAGES DISADVANTAGES

A computer facility characterized by the user
having full control of the computing equipment
in running his job. (Comparisons of the
personal computer will not be presented because
of its limited applicability to the data
repository.)

Figure 3-1. Modes of Computer Operation (cont'd)

58

A tentative conclusion to be reached from the data presented is

that the advantage of one mode of operation over another mode depends to a
large extent on the conditions and resources of the particular software
development project. Further and more current analysis of mode of operation
on productivity and reliability measurements may be possible with the
collection of detailed log reports of computer usage. It is recommended
by this study, however, that collection of data of this type be initiated
only in direct 'Qrt of specific studies concerning the problems and
alternatives of computer utilization and man-hour allocation.

3.5.2 Computer Support Facility

There remains another set of factors associated with .the hardware environ-
ment that impact project productivity and performance.. These factors

are all related to\ the accessability of the people to the problem center,
and the services offered by the computer support to meet the requirements
of the individual prypject.

The optimum situation Xor project personnel is to have the computer center
in close proximity to the people using the facility. The need for this is
not as great when a time §haring system is being used; however, even with
time sharing use there are\sometimes high volume printouts which are only
initiated in an interactive Ypode and subsequently printed off-line. Courier
service, or other personal deNivery service, serverely limits the turnaround
time, which is perhaps the sing\e most important factor affecting productivity
during the unit and integration t{sting periods. Even when an efficient
courier service can be obtained, t R cost of the service is not insigni-
ficant. The wear-and-tear on projectspersonnel required to drive some
amount of distance to the computer cenéér.(regaruless of whether they are
reimbursed for the mileage or not) is hardly a better solution. A short
time of inconvenience does not appear to seriously impact the overall 7
performance of the project; a long term of inconverience and delay produces
i11 feelings and resentment amongst project personnel and impedes productiv-

ity. .J“’

/ 59

e Ol

s o

Project management does appear to realize the problems associated with a
computer center remote from the project location, and appropriate steps are
generally taken in making the service problem impact productivity as little
as possible. Distribution of the work package in such a way as to allow

(or require) programmers to be working on more than one work unit at a time
has the effect of utilizing time during service delays. Also, emphasizing to
project personnel the need to fully analyze test results between computer
runs reduces the total number of computer runs necessary to debug the
program.

The turna}ound time delays caused by the computer's inaccessability, the

additional costs to meet travel requirements of courier service or project
personnel from office‘to computer site, and the length of time of inconven-
ience of computer inaccessibility are factors to weigh in certain analyses.

3.5.3 System Installation

It is often the case that the software system developed at one computer
location must be installed and maintained at another location. The final
acceptance of the product by the customer may be at the on-site location, or
it may be transferred to the customer after the system has met a predeter-
mined set of acceptance requirements, regardless of the location. The terms
of software acceptance are generally specified in the contract agreement.

Of interest to the analysis of software reliability and development costs
are the problems that result in the transfer of a software system from one
location to another, albeit the same hardware configuration. The resources
required to install a computer system at a site are frequently underestimated.
Metzger [35] sites an example where one project manager dismissed the costs
of system site installation as being of little consequence. The result of
this action was that "the final bill for site activities was about a

quarter of a million dollars, which was almost equal to the original
estimate for the entire project, excluding equipment costs."

s

There are generally two methods used for installing a new computer system.
The first method is to install the new system in parallel with the old
system, and compare the results. The second method is to immediately replace
the old system with the new. In either case there are no standardized
techniques for acceptance testing of the new software. When adequate
acceptance procedures and criteria are formulated, both the software
developers and acceptance personnel will have more confidence in the site
operation of the product delivered. The acceptance criteria for software
systems depend heavily on the individual problem to be solved in a specific
environment. Modifications to software during on-site installation often
involve a design change, which is a costly item at this stage of the software
life cycle. Redesigning, recording, and retesting at a remote site may
necessarily indicate additional man-power, increased traveling costs, etc.

Identification of the personnel required to install the software system is
generally made well in advance of software delivery and installation. The
personnel must be familiar with the software system, with the technical
problems associated with installations of this nature, and with the customer.
Often, project personnel will have the responsibility for training the
customer in the system use. Resource allocation for travel and lodging
facilities must be made with adequate resources available for extended
stays. The problems of multi-site installation only magnify the original
problems by the number of installation sites.

Data collected on installation costs, methods, personnel, number of errors,
and amount of code modification incurred during the remote site software

installation will support analysis of the conversion problems.

3.6 SOFTWARE ATTRIBUTES

At the center of the software development process is the nature of the pro-
blem to be solved and the mechanisms chosen to solve it. The process of
solving the problem involves its analysis and complete understanding; a trans-
lation of the analysis to operational software, plus the associated activities
of program documentation, design and implementation of the data base, and

61

storage and maintenance of the software system components. Many software

attributes have been examined: from this study, the following have merged as

being the most significant attributes examined:

e Type of Programming Application

o Program Complexity

e Software System Size

e Programming Methodology

e Programming Language

e Documentation Requirements

o Data Base Requirements

e Program Production Library
3.6 Type of Programming Application

It is generally accepted that a specific programming probl~2m is one of the

following four classifications:

a.

Business applications programming: computer programs designed
to solve predefined business oriented problems.

Scientific applications programming: computer programs design
to solve problems in the field of research, engineering or
science.

System programming: computer programs designed to solve the
interface and control problems between the computer hardware
and the application programs.

Maintenance programming: computer programming designed to
effect changes in existing programs in any of the above types.

However, the classification of application does not necessarily indicate the
scope of the problem to be solved. There is such a vast range of problems
within any one of these classifications that the class alone does not
characterize the programming problem. A more detailed description of the

62

TS . ST O RIS ST

software characteristics appears to be necessary. Hence, in addition to
the general application area, the following statistics should be
automatically collected:

a. Number of input/output formats

b. Percent logical instructions

c. Percent mathematical instructions
d. Percent input/output instructions

e. Percent control instructions

3.6.2 Program Complexity

There is currently no effective, non-subjective compiexity measure available
to the software industry by which one can determine the difficulty of a given
program. Although much research work has been performed in this area,
especially in the field of program structural analysis and data structure
and relationships, a reliable method for quantifying complexity has yet to
be developed. Factors such as the number of logical paths, realtime opera-
tional characteristics, the number of input/output transfers, number of
decisions, etc., are all components of the complexity measure. However,
none of these measurable program characteristics by themselves provide a
consistant and acceptable, overall complexity indicator. Estimating the
complexity of a computer program is a basic component to the entire

resource expenditurés of the software project, the overall project
productivity, and the reliability of the software.

63

3.6.2.1 Program Complexity and Resource Estimation

Much analysis has been done on the implication of complexity to resource
expenditures. Detailed study was presented by Weinwurm [65] using the

Shaw Index!. Figure 3-2'and 3-3 indicate computer usage rates in different
types of program applications. One may not be able to conclude that the
different applications are more or less complex than one another from the
data presented, but noting the variance in resources expended on computer
usage and the productivity rates for given types of applications, allows for
a basis of complexity estimation as it pertains to particular applications.
One conclusion drawn by Weinwurm after analysis of the data is that
increasing the amount of data collected to include organizations of all
types and sizes in order to represent every kind of programming task will
provide a basis for future economic analysis of computer programming. The
benefits derived from a joint effort of such a data collection and analysis
scheme proposed by Weinwurm would provide "an excellent change of eventually
establishing economic control over the programming function."

Aron [2] suggest a complexity estimation technique to be used in the process
of estimating resources for large computer systems. Complexity ratings are
characterized by the following definitions:

a. Easy - Programs that have very few interactions with other
system elements. For example, this includes modules that
solve a mathematical or logical problem. "“Easy programs
generally interact only with input/output programs, data
management programs, and monitor programs."

b. Medium - Programs that have some interactions with other
system elements. For example, this would include utility
programs, language compilers, schedulers, input/output
routines, data management systems. Generally they are

TShaw Index - |3.6x109xBits per Memory Word | | its per
(ki1o babbages per hour) -~ |High-Speed Memory Cycle Time | '°92 |Memory Word
x Words in
High Speed
mory

Eoch rectangle represeris o confidence intervel
oround the meon for progroms that were coded in
machine- oriented or assembly longuages, on
computers with Show indices of 0.0 1o 0.5. in each
case, the confidence limits were computed with

“" values, so that the probability of a point

falling above or below the interval is 0.10. In
140} each case, the lower confidence limits are negative
and are not shown. The number of points in each
somple is indicated in parenthesis.

120

8

8

fl Business

Computer Hours for Progrom Design,Code and Test
Thousands of Delivered Machine Instructions

o
(=)

O scientific

E3 sottware

Reseorch ond Develop-
ment

o
o

n
o

Computer Usage Rote =

o

Figure 3-2. Computer Usage Rates for Different
Applications [65].

65

o

BT e e

Computer Hours for Program Design, Code, and Test

Thousands of Delivered Machine Instructions

Computer Usage Rate

400

300

20.0

10.0

00

The four lines ore least-squares fits of data
for progroms coded in machine-oriented or
assembly languoges. The data are all for
Shaw indices of 0.0 to 0.5 and represent
the following applications:

Curve Application Points
| Software 19
2 Reseorch ond Development 38
3 Business 35
4 Scientific 5

4

o

Production Rate:

Figure 3-3.

1 1
S00 1000 1500 2000

Number of Delivered Machine Instructions

Man -Months for Program Design, Code, and Test

for Different Applications [65].

Computer Usage and Production Rates

b—i’-{

< Y DA N

programs that interact with the hardware functions, monitors
and/or application programs, and/or may be generalized to
handle multiple or variable inputs or outputs.

c. Hard - Programs that have many interactions with other system
elements. This category includes all monitors and operating
systems, as well as some special-purpose programs.

The productivity rate of a given software development team is directly related
to the complexity of the software under development. Data presented in
Figures 3-4 by Aron [2] summarizes an informal IBM estimate on historical

data for the time period 1960-1969 from IBM systems programs (1410, 7040,
7030, System/360 0S/PCP) and application systems (Mercury, SABRE, banking

and brokerage, FAA). Aron indicates that the productivity rates appear to

be the same for 1969 as 1960, without an apparent reason. Aron gives a
possible explanation for the apparent lack of any increase in praductivity

in the industry at the time the data is presented: "Programs are getting

more difficult at the same rate that programmer skills improve. This implies
that as computers become more powerful, we use them to tackle harder problems."

Since the time Aron presented the IBM data, Baker [4] has presented more
recent data showing increases in productivity rates using Aron's measures
of complexity, as shown in Figure 3-5. (Baker attributes the increase in
productivity and the high quality of the software of the information bank
system to the chief programmer team approach of functional organization in
the project, and not to the complexity of the software. It is presented
here as a contrast to Aron's explanation).

67

Duration
6-12 12-24 More Than
\ Months Months 24 Months
Difficulty

Row 1 Easy 20 500 10,000

Row 2 Medium 10 250 5,000

Row 3 Hord 5 125 1,500
Instructions Instructions Instructions

per per per

Units Mon=Day Man=-Month Man-Year

Figure 3-4. Productivity Table [2].

Very Few
Interactions

Some
Interactions

Many
Interactions

i

— e -

Staff ime
(man monthys)

Work tvpe Programmer F
Chief Bachup Analvst I 2 3 4 S Technician | Manager Sec'y
4 +
Requirements |+ 2.8 1.0 8.0 0s - - - - - i -
Analysis ! l‘
System design . 4.0 4.0 4.5 1.0 - - - - - f -
Unit design. |
programming. | |
debugging. ! i
and testing 1 12.0 14.0 10.0 130 45 28 137 45 - | -
Documentation . 2.0 20 4.5 .S 02 02 03 03 - -
Secretanal - - - - - - - - - i -
Librarian ‘ - . — = - - - - s.S | -
Manager LS 2.0 - - - - - - - | 100
Total 24.0 0 27.0 160 47 30 40 48 ss 1.0

7.0

2.0

9.0

e — b —

Total

12.0

13.5

64.5
1.0
7.0
7.5
16.5

11320

Analysis of project staffing by time and type of work

Level
Difliculty High Low Total
Hard 034 - 5034
Standard 44247 4513 48760
Easy 27897 1633 29530
Total 77178 6146 83324

Lines of source coding by difficulty and level

Sounrce lines per
Organization programmer day

Unit design. programming

debugging. and testing 65
All professional 47
With librarian support : 43
Entire team 35

PRODUCTIVITY RATES

Figure 3-5. Productivity Data using Chief
Programmer Team Concept [4].

69

3.6.2.2 Program Complexity and Program Reliability

Cheng and Suilivan [16] stated that the quality of the software is a function
of a set of independent variables contributing to the construction of the
software. According to these authors, one of the independent variables is
the algorithm, or problem, to be implemented. The resources and the manipu-
lation of those resources needed to mechanize an algerithm is one component
of complexity. However, some programmers have the facility for transforming
even the simplest algorithm into a complex, multi-path routine. The
converse is also true. "Good" programmers can transform a complex algorithm
into a straight forward, easily understood program. One must conclude with
Cheng and Sullivan that the algorithm itself is only a part of the total
complexity problem.

Complexity in a program makes that program less understandable, not only to
code-readers or testers, but also to the programmer who originally coded
it if he has been away from it for a time. This contributes to making the
program less reliable in that testing is incomplete due to the difficulty -
of devising adequate test cases. Also, modifications to the program
because of errors or changes are less readily made. One reason for the
current attention being focused on modularity is that when programs adhere
to a set of rules restricting data relationships and module interfaces,

the complexity level of the programs is decriased. This, in turn, makes
program development, testing, and maintenan.: easier to accomplish, while
increasing the overall productivity and rel ability.

Collection of complexity estimations before and after the process of conver-
ting an algorithm into a program is important, as is estimation of complexity
of the same program by different people, e.g., the originator of the code and
the personnel testing the code. Because complexity must be an estimation
until there is an automatic and acceptable method for determining it, a dual
estimation process will serve to authentica: the original complexity
estimation.

PRI T e e e

R

T i SR

3.6.3 Software System Size

The size of the project staff is obviously related to number of instructions
necessary to solve the programming problem, i.e., system size. System size
is not the whole determiner, however, since the number of staff members
required will also be related to the difficulty and complexity of the
problem, the amount of interaction and coordination necessary with the
customer, as well as organizational and managerial considerations previously
mentioned. The number of instructions, whether MOL or POL, that must be
written to solve the problem is probably the bottom line in estimating
resource requirements.

The estimation of the number of lines of code needed to deliver the software
system usually begins in the proposal stage. What is necessary to manage
the resources of the project effectivity is a method for updating the size
of the system on an incremental basis throughout the development process.
Aron [2] states that when the software project reaches the design phase,
reestimates of system size can be made based on the level of detail in the
design process. "The key to estimating system size is found in the design.
Since the system is an aggregate of elements, its size can be determined

by counting the number of elements and multiplying the result by the average
element size. The number of units is estimated from the design by carrying
at least one package design down to the unit level."

Initially, estimates of software system size should be collected prior to
work initiation. Depending on the validity of these estimates, incremental
updates may be obtained as; guidelines for estimation became established.
With this data, aralyses can te made on the estimation process which may
result in considerable improvement in the estimated/actual variances.

3.6.4 Software Development Methodology

Examination of some of the programming concepts, techniques and tools
currently being employed by the industry was presented in Section 2, Survey
of the Literature.

n

There are probably many additional methodologies currently used in the
analysis, design and programming process. It is necessary to identify as
near as possible the method, and characteristics of the method, employed by
each particular project in order to determine the effect that methodology
has on the project productivity and software reliability. Identification

of the software development methodology does not necessarily indicate that
all characteristics of the methodology were consistently employed by project
personnel. Therefore, the specific characteristics that project personnel
generally employed, such as top-down development, must be identified.

In order to collect project specific data on the employment of software
development methodologies, it is recommended that a set of data be obtained
for each class of technique used. In this manner, information can be
obtained on all techniques contributing to the project's methodology, but
which are not necessarily identified with one specific programming approach.
For example, the use of decision tables may support structured programming
but are generally not considered to be a paft of structured programming
methodology. The classes of methodology proposed include:

a. Analysis Methodologies - Tools, techniques and/or concepts
used in the analysis phase of software development, such
as modeling, simulation, trade-off studies.

b. Design Methodologies - Tools, techniques and/or concepts
used in the design phase of software development, such as
top-down, modeling, proofs of correctness, informal design,
bottom-up, hierarchical structure, modularity, decision
tables.

c. Implementation Methodologies - Tools, techniques and/or
concepts used in the implementation phase of software
development, such as modularity, control flow restrictions,
programming standards, bottom-up, proofs of correctness,
program production library.

72

P 3

d. Management Methodologies - Tools, techniques and/or concepts
used by management during software development, such as chief
programmer teams, configuration management, program production
library, build approach, automated schedulers.

e. Quality Assurance Methodologies - Tools, techniques and/or
concepts used to assure software quality, such as static and
dynamic test tools, test teams, top-down testing, bottom-up,
program production libraries, formal design walk-thru,
automatic test case generators.

f. Notational Mechanisms - Tools or techniques used in documenting
the software components, such as HIPO, programmer's notebook,
decision tables, flowcharts.

A significant problem exists in identifying methodologies used in the
development process in that common terms lack common definitions. Even
within a given project, there is ambiguity in definitions. If sufficient
data is obtained to support studies of the impact of specific methodologies
employed by projects, the elements of that methodology as applied by the
projects are sure to differ. Because of the lack of standardized software
terminology, a glossary of terms containing descriptions of

programming methodologies may be useful in obtaining data that is actually
representative of what is used by differing projects. Although this may be
a large task, it appears to be necessary if collection of data on this level
is to be made and be meaningful.

Additional information concerning the programming methodologies will support
reliability, productivity and cost studies, including the degree of
mechanism involved, resource expenditures for acquisition, training and
maintenance. Also important are subjective evaluations as to the effectivity
of the methodology as it relates to the specific application, and the
independence of the methodology as it is supported by other project
characteristics. ¥

73

3.6.5 Programming Languages

Programming languages have become an important attribute to software
production because of their practicality. They are suitable for a large
variety of problems and are an economical means of solving those problems.
Although there have been over 200 higher level languages developed in the
past 20-25 years, only 10 to 20 of those languages have had wide spread use
and applicability. Much work continues in the field of language development,
assessment of the "right" language for the particular application [31], and
extensions ov programming languages to support work in requirements
specification and the software design process.

The method by which a programmer communicates a specified problem to the
computer is formulated in a rigorous set of preestablished rules inherent
in the programming language. Early communication between man and machine
were so rudimentary as to almost guarantee unreliability, as well as
seriously affect productivity. As languages developed and became more
sophisticated, an increase in reliability and productivity was an immediate
reward. However, the use of a specific language for the problem at hand
does not guarantee increased productivity or reliability. The language
used is sometimes imposed on the project by the contractor, and/or may be
i11 suited for the application. Structured programming techniques call for
a language that can represent specific control constructs, top-down program
implementation, and data communication relationships. At this point, the
major procedure-oriented languages do not contain all the attributes
necessary to suppert structured programming methodology.

Another consideration in the selection and use of a programming language

is the debugging aids associated with the compiler. Program modification
and checkout time is affected by the reliability, the optional control and
data information 1istings, and associated language documentation. Machine
and operating system independence is another attribute impacting reliability
and productivity, especially when software is being developed at multi-
locations. (More than one face has turned red when a "debugged" software

74

system is delivered to the customer's installation and the source file of
that system will not even compile.) The familiarity of the project
personnel with the language selected directly affects the costs incurred
during the implementation phase if one considers the training and “break-
in" time required of programmers to effectively use a new language.

The preceding discussion has been primarily aimed at the considerations of
the use of a procedure-oriented language in the programming project. It is
not always feasible to use a POL. Although procedure-oriented languages
are recognized by most people to be preferable to assembly or machine-
oriented languages, the need for MOL's and associated debugging tools will
probably continue for the foreseeable future. The current trend for
providing users with source-level debugging facilities is a move away from
the needs of the MOL users. It must be recognized that the software
systems written in a MOL may not be supported by debug tools other than
core dumps, which may further 1imit programmer productivity and software
reliability.

There has been much discussicn on the advantages of using a higher-level
language over a machine-level language in the software industry. Brooks [14]
states definitively that the "chief reasons for using a high-level language
are productivity and debugging speed...there is not a lot of numerical
evidence, but what there is suggests improvements by integral factors,

not just incremental percentages." Discussion at the Software Workshops [27]
sponsored by ESD in 1974 indicated that the participants' experience with
assembly language or machine-oriented language "was about twice the cost

per source instruction in a higher-order language such as COBOL or FORTRAN.
The dollar figures were derived from an estimate of 15-30 HOL source
instructions per man-day and the typical figure of $35,000 per burdened
man-year for software manpower."

In summary, the programming language used on the software development
project, whether a MOL or POL, must be evaluated not in relation to the
attributes that the particular language has, but in relation to the project
problem and programming methodology used.

75

AR . PR

The information to be collected on the source language used in performing
the programming task may contribute to the analysis of the overall
contribution that that specific language made to the software development
process. A more detailed analysis of what language attributes specifically
relate to errors incurred during program implementation, or how language
constructs increased programmer productivity, may be possible if one were
to collect error data from first compilation through maintenance programming
on the specific task. Because of the volume of data generated by a collec-
tion procedure of this sort, it is not recommended that data collection on
compiler error statisticsand construct usage be done unless an in depth
study of this nature were being supported, and there are automatic methods
to gather this type of data.

3.6.6 Software Documentation

There is a definite need for quality documentation before, during and after
the development of any given software development project. Documentation
must provide technical guidance for many different people at all levels of
the software project throughout its life cycle. It is an important

and vital communication link; yet, it is beset with a myriad of problems,
based for the most part on the reluctance of software systems personnel

to record the functions and conditions specific to the give software project.
Documentation is responsible for a large percentage of the costs incurred
in software development, both as a deliverable requirement and as a-vehicle
for transmitting erroneous, vague and/or poorly defined information.
Trauboth [60] has stated that "for certain real-time software systems, the
documentation effort has been estimated to be up to 30 percent of the total
development costs." For all the analysis directed at costs of development
software, perhaps a basic element to those costs - documentation - has

been overlooked.

The Sizing and Costing Workshop [27] indicated that documentation costs were
approximately 10% of the total software costs, or $35 - $150 per non-
automated page. Using the data presented by Nelson [38] in estimating
resources needed for each task, the preparation of each user documentation
requires:

76

a. Two man weeks per outline

b. Three-five pages per man-day for drafting

osecue-Twenty pages -per-man-day -for technical-review- - c e

d. Fifty pages per man-day for editing
e. Ten pages per man-day for revisions
f. Two pages per man-day for illustrations

g. Twenty pages per man-day for typing

With these estimations, it becomes obvious that documentation costs could
easily run 10% of the total software budget.

Productivity has been, and continues to be, measured in lines of code (source
or machine) per man-power unit. It seldom includes number of pages of
documentation reflecting detailed study and analysis. Perhaps the emphasis
in the software industry has been too much and too long on measuring
productivity on the Tines of deliverable code, which is only one component
of the software development process.

There are documentation requirements in almost every software development
project. These range from simplified user's manuals to complex descriptions
of trade-off studies and algorithm specifications. There have been some
advances in automating the documentation process, including storage and
retrieval of documents, selective extraction of information, automatic
editing of document information files, and automatic flow chart capabilities.
However, these automatic aids do not provide for all the documentation needs
of the software industry. An important factor in productivity measurement
is the total amount of documentation required to be written for, or
distributed to, the customer for the design, implementation, and the testing
phase of the s~ftware under development.

”n

Az

Em—————————

An evaluation of the availability and quality of documentation needed by
project personnel to be used in the development process is also an important
piece of information to be evaluated in relation to the overall quality of
the final software product.

s a o Bk gom e e O pen B M s o A S g AP crimae &
v B - P i e -

o & -weeees -

3.6.6.1 Requirements Specification

The single most important document produced in the software development
process, according to the attendees at the Monterey conference [58] and the
ESD workshop on Sizing and Costing [27], is the requirements specification
document. The design, implementation and test activities of the software
development process are based on this set of agreements between customer
and contractor. If the specifications are poorly defined, or if there is

a redirection of effort and purpose during the course of development that
is not reflected in this document, estimates of resource requirements,
productivity and reliability will be invalidated. Much time will be lost
in defining requirements and getting agreement on them; much code may be
discarded through misinterpretation, misdirection and change; and numerous
errors in logic and performance may be expected to result. Dr. Carl Davis,
BMDATC, indicated at the Data Collection Workshop at SDC in December 1975
that the stability and quality of the requirements specification may be the
key factor in project productivity.

The quality and stability of requirements specification should be evaluated
both before and after the software system is' developed. They could also be
correlated to the quality of the system design and eventual ease of testing.
The measurable characteristics of documents (size, mode of presentation,
amounts of tabular and illustrative material, organization, clarity, and
completeness of coverage) may be related to project productivity and
software reliability. If these specifications are found to influence
performance, data may be obtained to improve both presentation and inter-
pretation of requirement specifications for future software development
projects. Initially, a subjective evaluation of the requirements specifica-
tion should be a definite data parameter to collect.

78

3.6.6.2 Design Specifications

Design specifications, whether expressed as narratives, flow diagrams,

decision tables, or as special forms, are usually better documented than _

~ “pequirements ‘specifications. Controversy exists over the degree of detail,
mode of presentation, and, to a certain extent, the content of design
specifications. Recently IBM has suggested HIPO (Hierarchy-Input Process,
Output) charts for design documentation [28]. For large military systems
several levels of documentation and many aspects of the system may be
involved (see MIL-STD's 490 and 483; DOD Manual 4120.77M); so that design
specifications may represent a hugevolume of paper and a great deal of work.
Obviously, these have high impact on project costs. Hence, design specifi-
cation quality should be evaluated.

3.6.6.3 Program Documentation

In the commercial world, program documentation usually means a description
of what has been produced, which becomes the basis for program maintenance
and training. In military systems, where much more detailed design documents
are produced and maintained, these documents become the maintenace manuals.
Recent advocates of structured programming, higher level languages, and the
elements of programming style have stated that top-down design, levels of
abstraction, functionally simple modules, and adequate commentary have
removed the need for much descriptive documentation. That is, the programs
are self-documenting and all that is needed is descriptions of the levels of
abstraction and the data structures of each. Further, it is alleged that the
use of a Chief Programmer Team reduces the communication and documentation
requirements to such a degree that formal design and descriptive documents
are greatly reduced in importance. A single person, the Chief Programmer,

is responsible for all designs by persons under his management (requiring

at least a small team and a phenomenal memory), and needs no detailed
documentation to communicate. The use of design walkthroughs may catch

most incompatibilities among submodules. However, Wasserman [64] states

that "the discipline involved in actually preparing documentation is often

as valuable as the document itself." 1In short, the act of organizing the

information and writing it down forces many minor design decisions and
¢

79

clarifies many problems that could later cause difficulty in implementation
or maintenance. Evaluating the impact of various methodologies of program
documentation also appears to be an important investigation.

S ee e @ios e s

3.6.6.4 User Documentation

The requirement for user documentation varies greatly with the nature of the
system. Certainly a realtime command and control system requires a great deal
more in the way of positional handbooks and console guides than a simple,
stand-alone function. Minimal operating and using instructions are usually
provided with a program, but in large multi-purpose systems separate
documentation is normally provided. There are many questions that can be
asked about the effectiveness of various ways of presenting using procedures,
But these may be beyond the scope of the repository.

3.6.7 Data Base Requirements

The construction and maintenance of the data base used by a software develop-
ment project can range from a simple common declaration to a complex data
management program and data base structure. It appears necessary to at least
estimate the complexity of the software project data base in order to quantify
this project attribute for comparative purposes. Some of the variables to be
considered in estimating complexity of the data base structure include the
type and number of relational representations, hierarchical structure,
repeating substructures, and number of instances of each data type. The
parameters to be considered for the complexity of the management system
associated with the data base include volume of transactions, including
updating and retrieval, response time requirement§ for transactions,

retrieval idertification logic, and number (or porportion) of elements in

data base upon which retrieval can be made. It is recommended that, initially,
the repository collect only data base complexity estimates.

80

%

p—

“consists of a set of office and computer procédures designed to provide

3.6.8 Program Production Library (PPL)

One of the programmihg support aids currently being employed by many software
development projects is the program production library. This support tool

program and test case maintenance, enforce established programming standards,
and provide information and visability for both project management and program-
ing personnel. The use of the PPL helps to coordinate the status of program
components under development, while also helping to automate configuration
control procedures. This is accomplished by storing program modules in a

data base and maintaining records of data on the contents of the data base.

The procedure is analogous to the storage and cataloguing of books in a
library.

The program production library system attempts to reduce error and increase
project productivity by providing information relating to and storage of
modules of code. Usually a program librarian is assigned to clerical tasks
inherent in the handling of program decks and job submittals. In this manner,
the program librarian serves as an interface between the project personnel

and the computer operations, while collecting any necessary data specific to
the requirements of the project.

There has been much discussion on the benefits derived from a program
production library, although there are obviously costs incurred in the
establishment and maintenance of a PPL. Small programming projects may not
need a library, and/or may not be able to justify the costs associated with
it. However, the PPL concept can handle many small programming projects,
thereby distributing the costs.

It does appear that the PPL system facilitates the collection of project
data by assigning the task to the program librarian. It may serve to remove
bias, or other effects, inherent in a data collection procedure by removing
it from the actual programming team. However, a PPL can be maintained by
programming personnel when the costs of a librarian are prohibitive for the
specific project.

81

Data reflecting the use of a PPL, or equivalent, is meaningful to the
analysis of project productivity. Further, data should be gathered that
represents what the costs of establishing and maintaining a PPL represents

oo e oo-to e project s - These -costs include-the -program -librarian-and-computer over-........

head charges. It would also be useful to obtain subjective evaluations of
the PPL from project personnel as to its contribution to project effectivity.

//

82

4. PROJECT PERFORMANCE ATTRIBUTES

In order to ensure the success of a computer programming project, there must
be a means by which a project manager can monitor the work being performed

..in_the time frame _allowed... Regardless. of .the .type .of management..practices.oooeo ..

employed, the major objective of software management is to obtain a suffi-
cient quantity of data by which to evaluate and control the data processing
expenditures, coordinate and direct the systems plans and activities,
allocated and direct the available personnel, and monitor the quality of the
final product. Often, the project manager must ensure that configuration
control procedures are followed. The plans and procedures established for
the management of software projects range from being totally inadequate to
being overwhelmingly detailed and complex.

The objective of this section is to delineate a minimum set of data necessary
to adequately define and measure the work package, the products to be
delivered and the quality assurance provisions pertaining to the entire
development process. In some cases the data are estimated data, but these
parameters are considered to be firm and measurable because they are generally
mapped to the available resources of the project within a specific time frame,
both of which are firm and measurable. The three areas of data parameters to
be discussed are associated with the work and product data, the configuration
items, and the quality control procedures.

4.1 RESOURCE ALLOCATION

The definition of the work plan is necessary inorder to establish a viable
direction by which to proceed in the development of a product, and subse-
quently, obtain sufficient data from project personnel and cost centers to
provide visibility into what is actually occurring in the software develop-
ment. The manager has the responsibility of dividing the entire task into a
number of sub-tasks with the proper allocation of available resources, and
most 1ikely, under the scrutiny of the procuring agency, as well as his own
upper management. This problem requires the manager to accept an extremely
large number of factors (including those mentioned in Section 3), mentally
process these factors, and produce an optimum solution.

83

g et

The division of the total development process into distinct phases has been
discussed in a previous volume. The necessity of these phases is of interest
here for the specific task of allocating and expending the project's
resources adequately.

Aron [2] indicates that the "ideal" elapsed time of software development should
be allocated such that 30% of the time is used for design, 40% used for
implementation and 30% used for testing. Since there is a relationship
between the resources required and the product produced, the trade-offs
applied to resource allocation during project duration need careful analysis
by project management. This is demonstrated by looking at the “crash"
project syndrome. A crash project is one where the allocation of time to the

development phases, as well as to the total elapsed time, is far from optimum.

In other words, excessive resource expendituresare required to complete the
project in the time period allowed with the result that individual productivity
and organizational efficiency is decreased [44]. Generally, the results of

the "crash" project reflect the improper allocation by management of resources
to time by poor system design, excessive computer usage, poor quality soft-
ware, and poor moral of project personnel.

McHenry [34] states that the traditional design phase of the software develop-
ment process expends 20% of the total costs, and the traditional development
phase expends 40% of the total costsf’ After analyzing software errors
generated in those two phases, he states that the design phase contributes to
40% of the errors, and the development phase contributes to 50% of the errors.
(Of course, percentages are approximations.) The remaining costs expended
and errors generated occur in other testing and administration activities.
In practice, the software phases are not always distinct time phases, and the
actions that properly terminate one phase are not always performed until the
subsequent phase has been initiated. Unfortunately, reliability of the
software and production costs are greatly impacted by this occurrence. (Design
errors found in integration and system testing have the probability of having
much greater impact on system components than if those design errors had
been discovered during a design review that terminated the analysis and design
phase and preceded the production phases.)

84

e . <

_..large programming tasks.

While it is necessary to recognize definite phasesof the software develop-
ment process and the requirements for each, the need for delineation of
software phases depends greatly on the size and substance of the project
itself. The following discussion of project phasing is chiefly aimed at

8 tiv oin Biee Bl Sz (8 S i isa arme ‘aln Metuica wes

The data presented in Figure 4-], presented by Wolverton [70] for a specific
TRW project, are representative of the resource allocation necessary during
the software development 1ife cycle. Weinwurm [65] presents requirements
for manpower, machine-time, and overall project cost in Figure 4-2 and 4-3.
It is important to note that although these variables are directly related
to time, they are also related, directly and indirectly, to each other.
Estimating the resources needed to accomplish the given task is a difficult
job not only because of the number of parameters involved, but also because
of the wide range of possibilities in manipulating those parameters. For
example, the maximum expenditure of resources is found to be during the
implementation and test phase of the development period. However, even these
costs can be greatly increased if the originai system design was poorly
constructed or the design phase was not well defined. The consequence of
poor design is that more implementation and test time, in both computer and
manpower requirements, is needed to correct the design errors. Weinwurm
presents a sample effect of resource allocation trade-offs in Figure 4-4.

Cammack and Rodgers [15] discussed IBM's examination of maintenance costs!
for Release 18, 19, and 20.0. Average costs for these releases for

one year following FCS was 56% of the original costs. This was due, in part,
to the fact that the cost of finding and correcting an error was increased

as the programming cycle progressed. "The cost of finding and fixing a
problem after the system was released was thirty times the cost of fixing

it in unit test, the first set of tests our code goes through in develop-
ment." In order to decrease costs and increase overall project produc-
tivity, the objective at IBM has been to spend more money early in the cycle
so that they will have significantly fewer errors when the product is

IMaintenance costs began with FCS-First Customer Shipment.

85

= COMPUTER PROGRAM OPERATIONAL USE
DELIVERY TO OPERATIONAL
€ NT
80| @ UPDATED (“AS BUILT") DETAILED kAT
RESIAN BEG DEMONSTRATION
@ DATA DEFINITION SPECIFICATION psentin
© COMPUTER PROGRAM LISTINGS e
o © TEST AESULTS
CONTRACY
TARGET SYSTEM VALIDATION STARTS
COST %) (INTEANAL MS §)
ol DETAILED DESIGN SPECIFICATION
RSP ers dnd | Cr cre oo o AND PEST-PROCEDURESICODING BTARTS) = = +- ©o sec 8- o o o e cinee vm v on
WPLEMENTATION CONCEPT ANO
»} TEST PLAN
DESIGN REQUIREMENTS SPECIFICATION
. . " " A A N A
L " » t] © 0 ® »]] 10

T PERIOD OF ~

Typical Software Development Cost Experience

oemonsTRATION | REQUIREMENTS

DETVAILED DESIGN
"o

Cost Distribution by activity during full period of
performance. (A1l activities include documentation
and travel costs.)

REQUIREMENTS ANALYSIS P rrrzZ”2

18

PRELIMINARY DESIGN iz

INTERFACE DEFINITION
DETAILEDDESIGN o
CODE AND DEBUG

DEVELOPMENT TESTING

. VALIDATION TESTING
AND OPERATIONAL
DEMONSTAATION

Typical allocation of resources in custom
software development and test.

Figure 4-1. Specific Project Resource Allocation Experience [70].
86

B

¢l

Manpower '

Technical Support Functions

Pr Time System
S&T Operation
Manpower Requirements
£
Project T System
Start 2o Operation
Machine-Time Requirements

Figure 4-2.

Typical Resource Allocation [65]

87

Machine - Time Cost

§
Manpower Cost
Project Time System
Start Operation
Project Cost Requirements
Figure 4-3. Typical Resource Allocation [65]

R

L S—————

el
A i 5
: 5 '
[o e e o e,
-)
/"""'I |
7 | |
| |
l I
| |
1]

Time

Time-resource Alternatives

|
|
: Time Ranges
1. Mininum Cost
l 2. Inefficient
& i 3. Crash Project
| 4. Impossible
dhscon
g |
@ |
|
|
|
|
1

Allowable Elapsed T'me

Cost-time Trade-off Function

Figure 4-4. Resource Allocation Trade-offs [65]

89

R el

shipped to the customer. The results of this change in resource expendi-
ture are demonstrated in Figure 4-5.

Besides estimating resource allocation for each distinct phase of the
development cycle, it is necessary to review the resource estimates with

“-actuals at termination of “the phase. Depending upon the result of this— -~ ~-—--*

analysis, forecasting and estimation of the next phase can be more realistic,
or problems like project overrun or schedule slippage can be determined.

It may be necessary to terminate the project altogether if the actual cost
data far exceeds the estimated costs.

4.1.1 Work/Product Definition

The project work plan, or combinations of plans, defines and distributes the
total work package in such a way as to produce the deliverable items within
the resources allocated and the time allowed. Project management's defini-
tion of the work package relates all the elements of work to be accomplished
to each other and to the end product. Once the work and product have been
defined and assigned, it is management's task to monitor the performance of
the work within the available resources and time. While this information

is necessary for effective management, it is also necessary for the reposi-
tory to support cost and productivity analyses. Obviously, RADC does not
need to obtain the data at the same reporting frequency as do projects, but
the same data, albeit summarized for RADC, is necessary.

It is the conclusion of this study that RADC establish a standard method of
work definition and product identification in order to collect performance
data during software development. Unless there is a commonality in the
collection of this type of data, measurements across projects will not be
comparable, and perhaps measurements within projects may be meaningless to
RADC research needs unless the project's system elements are defined.

AD=A036 064 svsn:n ocvnm conv SANTA MONICA CALIF F/¢ 9/2

SOF TWARE DATA COLLECTION STUDY. VOLUME II1. DATA REQUIREMENTS Fe==ETC(U)

DEC n - c FINFER F30602=75=C=0248 '
UNCLASSIFIED TM=-5582/003/01 RADC=TR=76=329=VOL~3 NL

= 22 2

gl

o

"m TR

lliL
23 s s

2L

o

E

[0 0]

|

MICROCOPY RESOLUTION TEST CHART
- NDARDS 19638

z

Sverem Cosrs

Douass

R ws O SHEIOR S e i

PPN,

e A

Figure 4-5. 01d and New Curves for Resource

Allocation in Software Life Cycle [15].

9N

The definitions of the system elements should include:
a. Project Identification

b. Identification and description of the work elements,
including stop/start dates, duration, resources
allocated and expended to date, products to be
produced, milestones, identification of the level
of work element, and hierarchical structure of the
work elements.

c. Identification of the products, including type,
description, size and cost, language information,
complexity, stability, programming techniques used
in the production, and hierarchical structure of
product components.

Once work elements and products are defined, monthly progress data can be
submitted to the repository. This data can be summary in nature, but
should include data from the product configuration reporting level and the
work configuration reporting level as follows:

® Product Configuration Reports - including data reflecting
progress on the module, subsystem, and system level for
the current reporting period.

® Work Configuration Reports - including data on work
performed for activity, task, phase, and total project.

4.1.2 Summary of Mangement Data

Regardless of the automatic or manual method for obtaining the management
summary data, this information is derived by comparing and calculating the
work plan, or estimated, data against the work actual data. It is necessary
to have the planned data represented in a format so that actual progress

can be measured against it. When the required project tasks have been
identified with their required resources allocated, it is necessary to

monitor the actual events and activities in the time span allowed with the
resource available. There are numerous management techniques for this
evaluation, such as Critical Path Method (CPM), Project Evaluation and Review
Technique (PERT), and Line of Balance (LOB). '

The major objective of the management techniques, regardless of the type used,
is to provide a picture of the actual time and costs of the individual
activities and total project against the projected estimates. The management
summary should provide at a minimum the following data:

Time-schedule slippages and cost overruns in actual time , and cost variance
by a comparison of estimated costs with actual cost on a module, subsystem
and system level, current to the reporting period.

In addition to the cost data, the management summary should provide an indi-
cation of productivity rates of individual programmers through the activity
and/or milestone status reports, and, perhaps, computer utilization reports.
The productivity rate is certainly more difficulty to assess, and depends
heavily upon the parameters previously discussed, such as individual skill,
program complexity, working environment, etc. The examination of the progress
data and computer usage data can indicate to the manager areas of inefficiency
or programming difficulties. If the management data reflects schedule
slippages and overruns in resource expenditures, the problems inherent in the
project may not be due to programmer productivity at all. They may be a
result of unrealistic estimations in initial staffing and scheduling. How-
ever, it is important for productivity data to be included as an integral

part of the actual:work data for evaluation of this nature.

93

4.2 CONFIGURATION MANAGEMENT DATA

The purpose of configuration management is to define the software products
to be produced, control changes to the products, maintain accounts on the
current status of the products during development, and certify the quality
and completeness of the products on and after delivery. Configuration
management procedures became established as an adjunct to military contracts
in order to ensure the technological content and integrity of the software
as specified by the contract. While configuration control procedures are
especially necessary for military contracts, configuration management
procedures are a valid method of monitoring the status of the software
configuration for any software development project.

The amount of work and the formality of the procedures involved in config-
uration management depend heavily upon project characteristics. Procedures
should vary directly with the size, complexity and degree of innovation of
the software package; the amount of coordination among project personnel;
the number of clients and subcontractors; and the complexity and number of
external interfaces. For small projects, the project manager's office may
have total responsibility for configuration management; for large software
systems, an entire organizational structure may be required to perform this
function. After delivery, unless an office or agency is specifically
charged with configuration management duties, modification and error
corrections quickly obsolete the delivery system and knowledge about it.

Configuration management is normally divided into procedures for configur-
ation identification, configuration control, and configuration accounting
and reporting. The procedures mesh with project performance through the
work breakdown structure, allied tasking procedures, and with quality
assurance through the auditing, reviewing and testing schedules that
establish configuration identification and processing status at any of the
development and operational 11ife-cycle phases.

4.2.1 Configuration Identification

The intent of configuration identification is to define the technological

content and structure of the system as it is being developed. This is done
both through the issuance and mutual agreement upon sets of formal specifica-

tions and through the recording of formal lists of configuration elements
relationships.

Each phase in the development process has its formal specification, its
inventory of configurational elements, and its formal authentication

and

procedures to "baseline" the configuration at the end of each phase. These

are shown in Figure 4-6.

In the Operation System Requirements Phase, the system concept of operation

is developed and major functions allocated to the software subsystem. If

the requirement are not entirely firm, importance and priority ratings may
be assigned. When a contract is let, a Work Breakdown Structure showing the
major functional subsystems (to a four level hierarchy) and the major develop-

mental tasks will depict the system. If implementation priorities are
involved, incremental builds of the system may be shown. Requirements,
priorities, WBS and builds are subject to negotiation between client and
developers. Configuration data for this phase include: Function Lists,
Priority Ratings, Operational Flows, Data Characteristics.

In the Software Requirements Analysis Phase the functions allocated to the
software system agxe decomposed in detail. The structural requirements for

the system (language, modularity, reliability, security, etc.,) are

established, as are the decompositions to achieve generalizations and simpli-
cations, remove redundancies, and evaluate the information flow and temporal

dependencies of the functions. Software acceptance criteria and testing

requirements are determined and external interfaces defined. If protocols,

formats, and traffic across any interface have not yet been determined,

Interface Working Groups resolve these. Configuration data for this phase
include: Functional Descriptions, Functional Flows, Interface Characteristics,

Data Definitions, Acceptance Criteria.

A M 22 530,

| g

bui3sa) yJewyouag

(40d) matA3y uoraedtyL(eny (euwuoy

(v34) 34pny uog3eunbijuo) (euor3ouny
(¥2d) 3tpny uoijeanbijuo) (edyshyg
(uot3dadsu] adueidadoy)

(¥aD) mataay ubisag ea13ta)

(¥0d) majaay ubysag Aueujuy|aug

(¥as) mapaay ubysag waysAs

(YYS) MoJAIY SIuWLNbay wa3sAs

uoLjejuasaaday aseyq juawdo|anag 3.emM3joS ‘9-¢ a4nbi4

SU0L323440) Aduedasdsig +
$,dJ3 +

sabexoeq abuey) +

JUSWNJ0Q UOLIdLADSB] UOLSABA

3SVYHd FINYNILINIVW QNY SNOILWVY¥34O

JUaWNO0(Q u043dL4IS3Q UOLSUIA
3ISYHd ONILS3L W3ILSAS 3¥VYML40S

mon .ms_uufum“»ea:»ma
‘s2ads pautejutey ‘sbujisiy
‘3p0) 3unog :abexdey weubouy

ISYHd NOTIVINIWI dWI Wvy908d

(5.d23/N3S Snid)
uog3edy12ads ubysag pajie3ag

ISVNd ND1S30 [ININOdWOD) 0371vi30

(5.d23/N3S snid)
U034 LAdS
ubysag (Aueujuy|dad) w3 sAs

UOLII|§}I3dS FSURILIOSIDY WRubO0ud 433Indwo)
3SVHd SISATVNV SIN3WITNDIY JUVMIH0S

uo}3d1d95aq wWRISAS |euojieddad

— KIIR39 NIV

(3547 vog3diadsag e3eg)
(9ouduasay-ss04) WIISAS)
(sweabeyg %2015 pue moLJ)
sN3e3s/xapu] uojeanbyjuo)

(s3s17 uop3diadsag ejeq)
(32ud430y-5504) wWIISAS)
(sweabeiq %3015 pue MOLj)
SWR1] PaJIIALLIQ 30 K40Judau]

(31901 dudua;3Yy-5504) WIISAS
(swesberq mo(4
A1030341q 3114 431sey We4bOLy
sn3e3§/xapu] uoj3eanbyjuc)

(s34ey) moL4

(weabeyg 32019 paLInIag
(sjuauodwo) weaboug J33ndwo)
sn3eys/xapu] uoj3ednbyjuo)

Xpa3e ..,ozu.st-ilw
(weabeyq ¥201g Laa97 W3sAS
SNIRIS/XIPU] U0}IRANGLU0)

(weabeyq ¥o018
ubysag weIsAs |021607)
3547 SUOEIRI0| Ly [ewoiIdungy

{34n3ona35 umopyedsg 3Jon)
3517 SuoEIdUNy paajnbeYy

_AVIGSTO/AMODEANT

$
|
H
|
i
|

In the System or Preliminary Design Phase, the major modules of the

Software are identified and functions allocated to them. This includes
sorting functions into successive versions of the system if a build approach
is taken. The structure and operating dependencies of each version are
established. A cross-reference matrix should show in which medules every
identified function will be performed. Test plans should show how the proper
performance of the function will be verified. Configuration data for this
phase inciude: Major Modules, Module Dependencies, Function/Module Cross-
Reference, Module Classifications, Module Sizes, Difficulty Levels,
Complexity Level, Data Modules, Classification, and Sizes.

In the Detailed or Componenet Design Phase, the internal structure and
operation of the major modules are defined, design optimizations performed,
and data formats and interface formats defined in detail. Procedures for
accomplishing each of the planned tests are also defined. In this stage,
decisions concerning implementation strategy may be made. Implementation
priorities may be assigned to modules and partial builds defined. Blocks of
work (modules) may be independently scheduled for design, code and test
with appropriate reviews and audits governing quality. Configuration data
for this phase remain the same as for the Preliminary Design Phase, but with
further differentiation of structural elements and interactions. Implemen-
tation priorities may also be assigned.

In the Program Implementation Phase, modules are coded, compiled, debugged
and verified. The system inventory consists of those mdoules actually
included in the programming support library (if one is used). The initial
representation may oniy be program stubs, and modules may be moved from a
"development” to a "tested"file in the library.

Configuration data for this phase include all the system elements defined to
the programming support library: source and object program modules, data
modules, test modules, load modules, builds, versions, and mods. Actual

sizes may be.added to estimated sizes. Actual module cross-reference matrices
may be compared to those designed.

97

In the Software System Test Phase, the delivered software system is

submitted to inspections, audit procedures, and tests to verify that all
required items have been delivered, all functions are encompassed, program-
ming (and other) standards have been observed, and all functions operate

at the required performance levels._ Configuration data of this phase include
the status updatesas the system is certified.

In the Operations and Maintenance Phase, the system is installed in its
operational environment (sometimes considered a separate phase). It is
maintained to remove discovered discrepancies in programs, using and operating
instructions, changes in specifications, and improvements and modifications.
Configuration data of this phase include the tracking of system versions

and modifications, change packages, the addition of new functions and
modules, and/or the revisions of existing program and data modules.

In most military software systems configuration identification is exercised
through the specification tree. Documents are produced for each phase of the
development and for each configuration item and computer program component
defined, but more detailed statistical information is buried with the
specification and must be extracted if it is to be treated as manipulatable
data. The Configuration Index 1ists each baselined document produced (for
requirements, performance, modules, interfaces, operating instructions,
tests, data base, etc.,) and the state and date of authentication. Alterna-
tively, structural descriptions may be made of the various representations
and their interrelationships, often in much finer detail than if controlled
through specifications. It would appear for research purposes that the
finer information is highly desirable, revealing much about the implementa-
tion strategy and the exactitute of record keeping and control.

4.2.2 Configuration Control

The second function of configuration management is to protect the integrity
of the approved configurations against unauthorized change and to ensure
that all authorized changes are in fact incorporated into the system.
Changes to the system may arise as a result of a change in requirements, a
problem arising in design or implementation, or an error or discrepancy

discovered in a design, program, data module, or using instruction following |
the baselining of a specific system definition (identification). Normalily,
a configuration control board (CCB) is created to receive, coordinate,
obtain evaluation, and determine the disposition of all significant changes
to the system. (Non-cost, non-impact changes are permitted without
approval, but must be announced to the configuration control system.)

(ECP). The CCB may approve, reject, or direct further study of the proposed
change. If study is directed, an analysis team is formed of one or more
persons, and the technical and project (schedule and cost) impacts of the
proposal evaluated. The CCB again decides the disposition of the ECP, and
contracts personnel may be brought in to negotiate changes in funding and
scheduling. When implemented, change pages to specifications are issued
under the cover of a Specification Change Notice (SCN). Changes to modules
may be issued as new mods of the module, or as a change packet to the
system under cover of a Change Notice (CN) or Modification Transmittal
Memorandum (MTM).

Requirements changes are submitted to the CCB as Engineering Change Proposals
|
|

The developer may decide to write up a problem arising in design or imple-

mentation that can be implemented without impact costs, or resulting in
degradation of performance (i.e., Class II Changes), on a Change Report (CR).
It is then transmitted to specifications on a SCN or to modules on a CN.
Problems that are serious (i.e., that could result in a Class I change -
impacts on costs or functions, or require renegotiation of contract terms)
may be submitted as ECP's or as Problem Reports (PR). If technical, the
CCB again disposes and may request an ECP to be filed and processed. Or,
the CCB may request the problem to be studied prior to making a decision
to consider a change. ECP processing is completed as above. If the PR
fnvolves revision and renegotiation of the project, contract personnel are
also brought in. (NOTE: PR's are much more frequently used on internal
projects than on client-oriented contracts.) Change Notices are issued as
befcre.

ISR .

¢

Error or Discrepancy Reports (DRF) are also submitted to the CCB, which
forwards them to the responsible agency for response. (Errors are

frequencly passed through a screening committee for preliminary review

before being officially submitted.) After verifying that the alleged discre-
pancy exists and after determining the actions necessary fix it, the CCB
disposes of it by rejecting, deferring, or directing its correction. Minor
corrections are frequently deferred to be cleared up on the next version of
the system rather than incorporated in the current version as new mods or
change packages. Transmittal of changes is via SCN'sand CN's as above.

A V?rsion Description Document (VDD) also 1istsECP's and DRF's cleared by the
review.

When Configuration Status Reports are issued, the exact content of the system
representations is posted by listing all the SCN's or CN's issued against a
specification or module, and the ECPs, CRs, and DRFs that are disposed of

by the notice. Change Status Reports, usually listed by type, are issued

to report the current state of all changes, including those rejected.

Configuration data for changes includes the change identify and type, the
configuration items impacted, including all affected specifications, the
classification (within change type); the project cost (estimated and actual);
and the current status.

4.2.3 Configuration Accounting

Configuration Accounting is the record keeping and report generation functions
of configuration management. Records are kept of all the various system
representations that exist; either as specifications and documents, or as
system elements; all versions and mods of the system elements; and of all

the changes to the representations. Status records of configuration defini-
tion are kept vis a vis milestone events, i.e., the reviews or tests that
baseline the definition. Status records are kept on the processing state of
all proposed modifications (as rejected, pending, deferred, approved, or
implemented).

100

In addition, inventory and status records may be kept on other project
products, such as document libraries, tape libraries, subroutine libraries,
master program files, disc files, data files, equipment, etc., Records are
kept on the distribution lists for sensitive documents, as a security
procedure, and of specification documents to be sure that changes are
properly distributed. Records may be kept on the system version, or versions,
that are active at particular locations to ensure that changes are properly
distributed.

At a minimum, the RADC data collection system must be compatible with the
established military configuration control procedures. It can be seen that
it is possible to obtain meaningful system development data from current
reporting forms. However, since configuration management procedures were
not designed to establish an historical data base to support research needs,
this study recommends that the RADC data collection effort be compatible
with configuration management initially, while being cognizant to more
direct support at a later time.

4.3 QUALITY CONTROL PROCEDURES

Generally spezking, there is 1ittle commonality in either the quality
control procedures or methods used by project managers in the development
of software. Most large companies that produce software have established
and/or published a set of standards and procedures to be followed during the
life cycle of software development. The objéctive of these documents is to
establish guidelines and steps during the entire process which contribute
to the overall quality of the product. Formal reviews and audits of
specified software products establish a set of "baselines," which are not
only important for configuration management, but are essential for deter-
mining performance of the software to the contract as specified. These
periodic reviews are an important step in assuring quality of the end
product. Failure to establish either quality project standards or conduct
the reviews contribute to poorly defined. or absent, programming standards
and conventions; poorly defined, or absent, software acceptance criterias
poor, or inadequate, system design; and/or insufficient, or poor quality

system documentation.
101

s Ffiff‘«urf“' :
) ke B oLy 5
¥ IR ol

Sp

4.3.1 Quality Assurance Reviews

On large software development projects and/or military contracts there is
a necessity to terminate each phase with a benchmark of the products and a
formal quality assurance review of those products. (Al1though software
projects are initiated at the marketing and proposal stage, the reviews
discussed will begin with the Requirements Analysis Phase and Performance
Requirements Review). The organization of phases and reviews vary with
completions of specific tasks throughout the industry, but the purpose of
the phase reviews is essentially the same. That is, periodic and consistent
reviews allow an examination of the work performed to date in order to
checkpoint its quality and proceed with the subsequent work from that
checkpoint. It allows the control authority, management and programmer to
evaluate the work in relation to the entire system, and it has the effect
of reducing software costs by discovering discrepancies earlier in the
development cycle than they otherwise would be. Figure 4-7 depicts the
software system life cycle phases with the associated reviews according to
System Development Corporation.

Reviewing the products developed in order to improve the quality of the
project and examine associated costs are the principal objectives of any
review. Cammack and Rodgers [15] have analyzed the effect of the "walk-
through" on development costs. (Walkthrough is IBM's term for a "structured
review attended by the persons most closely affected by the specification."
This corresponds to SDC's iterative DDR's in Figure 4-7). They found that
the cost of finding errors in a walkthrough were 14 to 15 times less than

to find a problem through unit test; unit test being the cheapest point in
the test cycle to find errors.

Analysis of the error rate and cost effect by IBM was possible by the
collection of strategic data points throughout the }ife cycle of software
development projects. Obviously, the benefits realized by IBM in reducing
overall costs were accomplished after spending resources on data collection
and analysis.

102

A
R BN

i
i

PHASE

PRODUCTS

REVIEW

Requirements 1) Performance Requirements Performance Requirement
Analysis Specification Review (PRR)

2) Acceptance Criteria

3) Project Studies

4) Estimate/Actuals Cost Data
System (or) 1) System Design Specification | System Design Review (SDR)
Preliminary
Design 2) Test Plan

3) Project Studies
4) Development Plan
5) Estimates/Actuals Cost Data

Program (or
Detailed)
Design and
Implementation

1) Detailed Design
Specifications

2) Program Documentation
User Interfaces, System
Interfaces, Cause-effect
Graphs

3) Test Procedures

4) Integration Test Results

5) Project Notebook

6) Estimates/Actuals Cost Data

Iterative Detailed Design
Reviews (DDR's)

Test (System
nd/or accept-
Ence)

1) Certified Programs
2) User Documentation

3) System/Acceptance
Test Results

Formal Qualification
Review

FIGURE 4-7. Software System Life Cycle
Phases at SDC

103

In summary, there is a definite need for a periodic set of reviews of the
work being performed. Whether these reviews are formal audits, resulting

in the customer “signing off" on the work performed to date in order to
establish a baseline for configuration control, the objective of the reviews
are to establish a mechanism by which to Jjudge the quality of the end
product. It is recommended that the repository collect estimated data on
the type, number, purpose, and timing of the project reviews. Subsequent

to the review meeting, the review results should be examined, as well as
actual updates to the original estimated data as demonstrated by the review.

4.3.2 Program Error Reporting Procedures

Most software development projects initiate a procedure for modification/
discrepancy/error reporting during some phase of the 1ife cycle of the
project. The time at which the procedure is initiated depends upon the type
of contract and customer for which the software is being developed, as-well
as individual management procedures. Generally, errors are reported
following the unit or module testing level, performed by the originator of
the module. Rubey [47] states that approximately 2% of the errors are
discovered during the validation phase of the development process; there
fore, 98% of the errors are discovered and corrected during the module through
integration testing periods, or equivalent test phases. While it would be
most infeasible to monitor the error data during module checkout by manual
methods, an error reporting mechanism is most valuable for monitoring product
quality during integration and system test phases. Accumulation of error
data of this nature is extremely important for reliability analysis.

The probiem report/correction procedures should be established early in thne
life cycle, such as the design phase. Education in the use of the forms is
also essential if the procedures are to be effective. A recent error
procedure was proposed for a project currently being performed at SDC. The
procedure was designed to collect productivity data as well as reliability
statistics. Although the procedure was examined and found to be comprehensive
enough in detail, the time in which the data collection procedure was

proposed was subsequent to the design phase, but prior to integration

104

testing. Consequently, the proposed data collection effort was rejected
because of the timing of the proposal, besides the additional costs to be
incurred when making a change of this nature.

The analysis of error data that the individual project manager makes can
provide a clear indication of the overall and continual quality of the
emerging product. However, it appears that the data obtained from many of
the error reporting procedures initiated on software development projects

are not effectively used. Either the goals of error reporting are vague,

or the knowledge obtained from the evaluation of the data is not disseminated
to project personnel. Many papers addressing the problem of error collection
and quantitization state that greater understanding of software errors will
lead to the improvement in the design and application of software
development tools and techniques [47], but the reality of the situation

does not support this conclusion. Project managers who have the ability

to both initiate error reporting procedures, and analyze the incoming data,
do not consistantly take action resulting from the analysis of the error
reports. Project cost is one area that is greatly impacted by software
errors. Data obtained from an error reporting procedure can indicate where
costs are being expended if the manager has records detailing the effort

and time expended on program bugs. Error analysis can indicate the necessity
to apply additional personnel to a particularly error prone program or
subsystem. A cluster of errors in a related group of programs may indicate
poor design of that particular software. It may also be possible to deter-
mine the competency of the originator of programs by examing the

frequency and severity of errors at the completion of the software projects.
Little post-mortem analysis is made by way of the established error reporting
procedures, either because of lack of time and funding, or because the error
reporting system contributes too little to the total success or failure of
the entire project.

One important contribution made by an established error reporting procedure
is that it helps control the number of changes and modifications arbitrarily
made to the software. Programmers are famous for altering their code for

105

any number of reasons. When a modification report must be filed for every
software change, with specificity to the reasons for modification, changes
are likely to be made only when the justification warrants the expense of
the modification and retest.

The volume of data obtained from an error reporting system for even a single,
moderately sized programming project is extiemely high. Collecting error
data from numerous projects for analysis and study must support the esta-
blished and specific objective(s) of the study; obviously, those objectives
must be determined first. It appears to be almost impossible to collect
error data sufficient in detail and quantity to support a variety of non-
specific reliability analyses. There have been many reliability studies,
such as examining error type and density, reliability modeling and
projection, etc. Besides these studies, configuration management procedures
have made it a requirement to document the type of change or modification
made to baselined configuration items. Perhaps one of the best and most
recent error studies was performed by TRW for RADC. This study [61]
categorized error types for several software development projects. Besides
the categorization of error types, several valid suggestions were made to
improve overall software reliability. However, there appears to be a
general reluctance in the software industry to examine the results of
exhaustive reliability studies, such as The Reliability Study done by TRW,
and benefit from the experience. Perhaps it is the competitive nature of
the industry that initiates the many duplicate efforts, but the TRW work
specifically states that the results could aid test teams in testing

by delineating a 1ist of symptoms produced by errors, while the list of
error causes could contribute to the generation of new testing aids.

A systematic error and correction procedure is a necessity in providing
reliable software. However, the error reports examined for many projects
were found to be lacking in detail, and correction or closure reports were
not always filed in response to the errors found. The procedure for error
reporting and correction reporting is often initiated late in the testing

106

process so that the project manager is unable to monitor software quality

until it is almost too late to take effective action. This study recommends
that the report vehicles used in the Project's error reporting procedure be the
same vehicles used by RADC to obtain error data. If the data collection

forms for error reporting and error correction are supplied by RADC to
contributing software development projects, the repository will benefit by:

a. Acquisition of real error data, not after-the-fact
error data that may be contaminated;

b. Data to support analysis on the adequacy of collection
forms;

c. The ability to request new parameters as the need for
them arises.

The software development Froject also has benfits, including:

a. RADC's experience in establishing effective procedures
and forms.

b. Effort saved by submission of the same error report
form as was submitted internally by project members .

The Software Reliability Study performed by TRW [61] strongly recommended
the establishment of a procedure for both the reporting and closure of
errors, with an additional separation in procedure for the explanation of
& the fix and delivering the modified code. Also, the procedure and forms
i for accomplishing the error tracking job should be established before
program implementation. Qther recommendations for establishing an
effective system include: :

R s £
EATLAREYIT -

a. Assignment of specific personnel for monitoring the
reporting procedure, and tracking the error(s) status.

b. Allocation of resources, either manpower costs for
manual accounting or computer costs for automatic collection.

107

C.

Development of problem report forms, including the
following suggested data items:

1.

Problem Reports (PR)

Problem Report Number - A unique PR number assigned by

Configuration Management (CM); or the Program manage-
ment Dffice (PMO).
Date - The date the PR is logged by CM, or PMO.

Time - Time of day the problem was discovered.
Originator - Name of employee submitting the PR.

Status - Status may be used to denote action taken,
such as open, closed, deferred.

Test Phase - Test phase during which the problem
was discovered, including: integraticn testing,
system testing, validation testing, acceptance
testing.

Problem ID - Identification or location of the
problem, including module, data base, document, or
other.

Priority - Indicates priority for fix, including
Tow, medium, or high.

Element in Error - Name of the element exhibiting
the problem. (If the specific module, data base,
document is not known, identify subsystem.)

Mod - Modification of module, data base, etc.,
exhibiting the problem, if known.

Test Case - ID of the test case(s) which demonstrated
the error, if available.

Problem Description - Description of the symptoms
and, 1if possible, a description of the actual problem.

108

Means of Detection - Description of how error
was discovered, including desk checking, personal
communication, 0/S error code, incorrect output,
missing output, other.

Remarks - Additional information relevant to the
problem.

Modification Reports (MR)

a.

Modification Report Number - A unique MR number
assigned by CM, or PMO, upon receipt of the modifi-
cation code.

Date - Date the MR is logged by CM, or PMO.

Time - Time the MR and the delivered modification
code are received by CM, or PMO.

Originator - Author of the modification (generally
the individual closing the PR's).

PR Reference Number (s) - PR number(s) being
totally or partially closed by this MR.

Response - Description of the correction being

made to the software item. (In the case of a
document or data base change, the document number
or name and data base change are referenced with the
description).

Source Code Type - Type(s) of source code involved
in the modification, including input/output,
computational or mathematical code, logical, control
and data management.

109

Element - Name of module being modified, document
being changed, or data base being altered. (In the
case of a change to a document the title of the
document to be changed is given. In the case of a
data base change, the data base identifier is to be
given.)

01d Mod/New Mod - Identification of old module
modification to be altered to produce the new
module modification.

PR Reference Evaluation - Identification of accuracy
of the problem statement in the reference PR.

Reason for Modification - As near as possible,
indicate type of error, including: Design Error,
Documentation Error, Logic Error, I/0 Error, Routine/
Routine Interface Error, Computational Error, Data
Handling Error, 0/S System Support Interface Error,
User Interface Error, Data Base Error, Global Data
Definition Error, Routine/System Interface Error,
Other.

Reason for No Modification - As near as possible
indicate the reasons a modification was unnecessary,
including: Operator Error, Documentation Error,
Error Not Repeatable, Correction Deferred, Data
Error, 0/S Error, Support Software Error, Hardware
Error, Other.

Estimated Resource for Diagnosis and Correction -
Indicate effort required in Number of Computer Runs,
Elapsed CPU Time, Man Hours Spent, Approximate Lines
of Code (Added/Changed/Deleted).

Complexity of Module Corrected - Indicated the com-
lexity as easy, medium, hard.

Approval - Signature of PMO, if applicable.

Ho

et A M AR S

RPN s et e 5
. ’

4.3.3 Summar,

At a minimum, the repository should manually collect quality control data
resulting from formal or informal project reviews and data generated through
an error reporting procedure. These data are necessary to support current
RADC research requirements. In order to obtain meaningful data, the
following recommendations are made:

Collection and categorization of detailed data is an
expensive and time consuming activity. Because of this,
definitive goals should be made known to project personnel,
as well as allocation of time and money for the activity.
Detailed error categorization should be done only in support
of specific requirements.

The error reporting procedure established should directly
support the stated and known objective of boththe development
project and the repository, as well as making a significant
contribution to the project's configuration management
requirements, if they exist.

The error reporting procedure must be established prior to
the project's program production, and must have proper
resources allocated to it from initiation to completion of
the activity.

A research effort directed at analyzing the best method
for reporting errors in order to establish a standard
reporting system applicable to a wide variety of program-
ming projects should be initiated; the result of which
should be shared with participating development projects.

Research in reliability analysis must establish a priori
the specific data necessary to support the analysis.

Continued examination of both the error reporting procedure
and the error data must be done by the Software Data
Repository in order to assure relevance of collected data
to data requirements.

m

L e P! A 6 NI S AP T, AN

S. PRODUCT QUALITY MEASUREMENTS

In order to produce reliable software, money and time are being spent in large
quantities to produce tools and improve techniques that will aid project per-
sonnel in the verification of the software. Papers presented at numerous con-
ferences address the problem of rising software development costs without an
equal rise in software reliability. To complicate the problems, many con-
tracts are specifying that a certain percentage of the statements contained

in the procured software system must have been successfully executed before
final acceptance of the product by the customer. Still other contracts
specify rigorous acceptance criteria before final delivery of the product.

The customer has become cognizant of the pervasive problem of non-reliable
software, resulting in the requirement or proof that the software system per-
form as specified. Unless there is a means by which to obtain that end and
the project manager ensures product quality measurement, determination of the
software reliability may be just an educated guess.

There are currently many tools and techniques available in the software indus-
try to be used in the process of software development and validation. RADC

is supporting the development of still other tools, designed to improve soft-
ware quality while lowering the costs of program production. The objectives
set forth by RADC include improving programmer productivity through the use of
better programming languages, design, code and test techniques; improving
management controls; and setting criteria for software quality by improvement
of program readdbility, maintainability, portability and reliability. The
Software Data Repository will provide a data base by which the data from the
tools and techniques can be evaluated, software characteristics can be
analyzed, and standards for quality can evolve.

Many of the tools used in the development of software generate output that
could be used in a data repository, while the output from other tools can not
currently be considered for that purpose. It appears that the data

generated by some types of development tools is so finely detailed that
specific research requirements for it need to be established before it

can be systematically collected, sumarized, filtered and stored in ihe

112

repository. This type of data may be essential for the repository to meet

its goals, but the sheer volume and detail of the data may invalidate its
utility to research unless there is a methodology for its acquisition, storage,
retrieval, and purging. At the same time, it is important to relate the fine,
product quality measurement data with both the project environment data (in
order to define its development environment), and to the project performance
data (in order to compare the performance to resources expended in the time
allowed).

While it is possible to collect project environment data and project perfor-
mance data by manual collection, it is nearly impossible to manually collect
large volumes of data generated by development tools. This category of
data, then, must be viewed as an evolving set of parameters, acquired as the
tools are developed and integrated into the repository. Therefore, the
exact structure, definition and content of these parameters must be obtained
from the specifications and use of the tools.

For purposes of discussion only, the product quality measurements will be
presented in relation to how this type of data is produced. There are two
major methods for producing these data, including static analysis tools and
the dynamic execution of the software under test conditions.

5.1 STATIC ANALYSIS TOOLS/AIDS

There are a number of tools available that collect data on the behavior and
structure of modules, subsystems and systems without the execution of that
software. Many of these tools are available as a part of existing compilers
or operating systems. Unfortunately, there is little historical data support-
ing a conclusive recommendation that specific automatic aids contribute to
quality software. There is growing evidence, however, that having available
a set of automated aids, programming standards and a means to ensure the use
of the standards have improved the overall performance of projects, as well

as contributing to more reliable software [67].

n3

5.1.1 Structural Characteristics of Modules

Recommendations by TRW [61] and others state that the structural characteris-
tics of program code that can be measured are important and necessary for
understanding the nature of software errors, and for providing a context for
comparison of software projects. The analysis and accumulation of structural
characteristics can be obtained by a syntax analysis program. The input to
this type of program consists of the source code; the processing consists of
examining the input stream according to the syntax rules of the specific
source language in order to perform the desired function; the output consists
of the structural analysis of the module of code, output as a subset of para-
meters to the primary processor capability. Programs that either currently
provide this data, or that could be modified to provide it, include compilers,
optimizers, instrumentation programs, code auditors, and complexity analyzers.

A display of structural characteristics can be done for individual modules of
code or for entire systems of programs. These displays support analysis of
both the set/use of data by system components and interface/communication
links between system components. (A set/use listing of module data and a
listing of internal/external data references are almost always an optional
feature of compilers, while PPL and other library monitors provide listings
of the programs contained in the system library, and other specialized tools
for displaying system design, structure and communication links are becoming
more widely used.) A1l of these tools provide project management and pro-
gramming personnel with a mechanism for obtaining characteristics of the soft-

. ware before the execution of that software. Analysis of this data before pro-

s gram test execution can minimize program failures during testing, and also
provide insight into the areas of poor design.

The structural characteristics of program modules that should be displayed and
analyzed by programmers are more numerous than those required for analysis by

project management and for the repository. However, summary reports of struc-
tural characteristics need to be generated for quality analysis and research-

related work. These characteristics include the following:

a. Module name

14

v ©o 3 3

There is another set of tools that has been used to demonstrate product qual-

S a - ®" a n oT

COMPOOL dependency indicator
Subsystem name

Data entered into data base
Source language used

Last compilation date

. Version and modification number

Routine size, including:

1. Total source code statement

2. Executable statements

3. Non-executable statements

4. Machine instructions

Number of branches

Number of external module interfaces

For each module called:

1. Name of module

2. Number of arguments in interface calls

Data interfaces, including:
1. Number of global data blocks
2. Number of internal data variables

Number of procedures

Number of entry points
Number of exit points
Routine code type, including:
1. % computational

2. % logical

3. %1/0

Loop and nesting levels
Branch statement (IF)/nesting levels

ity through static analysis of the program code. These tools, code auditors
of some type, are intended to ensure that programming standards established
by project management or military organizations are observed.

118

ey e N
B S T

TRW has had a

successful application of this type of tool on the Site Defense Software [67].
Originally, 18 programming standards were established that were based on
structured programming techniques, good programming practices, and the avoid-
ance of error-prone code constructions. Every Site Defense program had

to pass the analysis of the code auditor. It was found that this type of
analysis increased the overall awareness of TRW personnel to what was needed
in the growing field of software methodology. While individual program sta-
tistics generated by such programs as the code auditor can be unwieldy in the
volume of data produced, the automatic enforcement of quality standards is an
important data point to consider; and the contribution it makes to program
quality measurement is obvious.

In the long run, the analysis of structural characteristics and program re-
liability may produce insight into the types of development tools necessary
to improve software reliability. However, because of the large volume of
data generated by these tools, the method for collection must be on an auto-
matic, selective, and summary basis.

5.1.2 Data Definition and Communication

The data that programs use and set in order to perform their functions has
always been a source of errors. Data definitions are not always complete;
the wrong type of definition is used for the process; a supposedly common
data definition differs between the routines that use them; access to data
is not controlled, resulting in unexpected or erroneous value manipulation;
and many other perturbations of data occur. The communication links between
system components through the set and use of data is the basis for the deve-
lopment of multi-program software systems. If the data definition and
communication is continually changing or in error, there is no basis for
system reliability during the development stages of the software.

When the data structure or interface structure changes during program develop-
ment, corresponding changes must be made to the modules which reference those

116

P S T ST

S ————————————————

structures. The development of COMPOOL] facilities and COMMON2 data spaces
evolved in an attempt to minimize the problems inherent in data definition
and communication. The use of such tools as a COMPOOL greatly enhances the
visibility of data structures, and subsequently, of program reliability. It
provides a means to establish overt control over the formation of the data
base used by the system components, while providing public listings of the
structure and content of the data base. Also, it may increase the project
productivity by decreasing time required to alter program definitions.

Structured programming techniques address the problems of data relationships
by limiting the access rights of modules to data structure and establishing
rules for communication between modules. The concept of levels of abstraction
restricts the data flow between levels [20,23]. The rules supporting the data
communication in structured programming according to Bratman [12] include:

e Higher level of programs within the hierarchical system
structure use lower levels of programs to obtain data.

e Explicit program arguments are passed down to a module
from a higher level module while only values are returned
to a higher level module.

e Each hierarchical level owns its data resources exclusively,
so that changes in data structure are isolated from modules
at other levels.

e Implicit interactions on common data structures may occur
only within the modules belonging to the same hierarchical
level.

TA coMPOOL provides for automatic definition and linkage of data variables
used in program modules to the data base by a compiler.

Zp COMMON declaration in programs provides for identification of data
variables for information communication by automatic allocation of a re-
gion in memory to be shared by all programs containing the common declara-
tion.

17

The use of tools and aids which attempt to illustrate the data structure in
order to ensure a common use of the data, or 1imit the access to data, is an
important aspect of ensuring product quality. Provided that these tools are
used, they aid both programmers and management with problems associated with
data definition and communication. However, the volume of data generated by
these tools may make use of it infeasible for the repository. As an alter-
native, it can be stored as hard copy in the research library. Summarization
of this type of data may invalidate its utility for research, although this
possibility should be more thoroughly examined.

5.1.3 Module Logic Evaluation Tools

Although the tools available for evaluation of the program's logical, or com-
putational, structure are not widely used in the software industry because of
their lack of availability and unreliability, there is a growing need for them.
Until recently, determining the complexity of a program's logic was a subjec-
tive estimation, based partially on the estimator's experience and partially
on the intended function of the program. Currently, RADC is supporting work to
develop a tool that analyzes program structure in order to evaluate complexity
[7]. The basis for this work is the transformation of a program to a directed
graph; the same principles being applied here as in code optimization programs
[50], and automatic test case generation programs [25]. At this point, the
use of this type of complexity measure program cannot be used by project
management, programmers, or the repository to determine the quality of com-
putational and logical code because of the experimental nature of the tool.
This information could become an important asset to the repository and/or
software projects. Because of this, the structure of the data base should be
flexible enough to allow acquisition of this data, and other state-of-the-art
tool data when it becomes available.

5.2 EXECUTION ANALYSIS TOOLS

Other existing tools provide information about the actual execution of the
software in either a live or simulated environment. This classification of
data allows the user to more effectively evaluate whether the program has per-
formed according to a predetermined set of performance criteria. The use of

18

&H

these tools in the development of software generally follows module level
testing, although the time of their employment depends upon the management
decisions or the construction of the individual program system. Many of the
execution tools are geared to a specific language for a specific computer,
and are, therefore, not reusable. (Reusable in this context is defined as
having the capability of being extracted from their original environment and
incorporated into a new environment without reprogramming.)

Many of the execution analysis tools generate an extremely large amount of
execution data, such as the common trace programs used in debugging. The
availability of the tools to project personnel is an important project envi-
ronment factor to consider in relation to productivity, resource expendi ture,
and eventual software reliability; the use of the data generated by the tools
is an important aid to personnel. However, the amount of data generated by
such tools is so voluminous as to be almost nonusable for the data repository.
If the data produced by these tools can be automatically acquired and summa-
rized, the summary information would be an important asset to research studies.

5.2.1 Automatic Execution Analysis Systems

Most of the automatic execution analysis tools in the software industry, are
designed to 1nstrument] a program written in a specific source language,
execute the program with user supplied input test data, and record dynamic
program operation by the way of instrumentation and recording. Depending
upon the size of the object module and the amount of test data provided by
the user, these programs can provide a staggering amount of output, but even
so, just sufficient to permit the programmer with enough data to determine
exactly which program statements have been executed. This data can be used
to generate a more exhaustive set of test cases, or determine that the code
itself is superfluous or in error. It should be noted that by using this type
of tool the project manager is able to determine the "testedness" of the pro-

‘Tinstrumentation is the process of generating and inserting recording in-
structions at strategic program locations during a statis syntax analysis
of the program. The modified program is subsequently compi{ed and 1inked
with recording programs. The instrumentation of the source program is,
in effect, transparent to the user.

n9

gram, which indirectly impacts the overall program quality. It does not prove
the program correct in any way.

While execution analysis tools are an effective contribution for aiding the
programmer and project manager in determining qualities of program testing,
the everyday use of these tools is not wide spread in the industry. Software
companies which have these tools available usually must require programmers
to use them. There are a number of reasons for the general nonacceptance of
the tool. It does require time and effort from the programmer to become
familiar with the automatic execution system operation. The output generated
from a moderately sized program with a minimum set of test cases takes a
great deal of time to analyze and understand. The tools themselves are not
altogether reliable. An instrumented program may take as much as 75-85%
longer to operate on a single test case than the non-instrumented version of
the program on the same test case, so that the use of the tool appears to be
quite costly. (It may save a great deal of later expense in resolving undis-
covered errors, however). Even so, it does provide an effective contribution
to product quality measurement.

5.2.2 Test Drivers/Test Data Generators

Many software systems, especially real-time programs, must be checked out by
the use of test drivers and simulated test data. Some, as has been done by
NASA for space born systems and by the Satellite Control Facility in its
STAGES (Station Ground Environment System), are even checked out using com-
plex hardware and software simulating the operational environment of the
application software. These types of tools provide dynamic program operation
within a controlled environment, allowing the user to evaluate the actual
operation of the program against expected results. Generally, the individual
test drivers and test data generation tools] are designed for specific

In this context, test data generation tools do not include automatic test
case generators that analyze a source program in order to provide input
data information sufficient enough to exercise all statements of the pro-
am. Rather, these test data generators work on the principle of supply-
d:gad:t‘ :or files, or input buffer streams, such as simulated telemetry
nput.

120

applications. The results aid project personnel in determining the perfor-
mance of the program, and in turn, the overall quality of the program. It
must be emphasized, however, that the test drivers and test generators are
software systems themselves, and do not guarantee reliability in their own
performance.

Several factors must be considered in both the production and use of test
drivers and/or test data generators. The test drivers must be constructed so
that they operate the application software modules in as nearly the same man-
ner as the live environment would. The test data generated for data files
must contain a variety of values, especially in minimum/maximum ranges. The
distribution of values generated should be equal, as nearly as possible, to
the expected distribution of actual values. A random sample of other values
is also important for test purposes. Also, values should be generated that
exceed the boundary range of values in order to test error conditions.

It is recommended that the data output by test drivers/test data generators
should not be collected for the data repository because of the large and
widely diversified volume of data generated by the tools. The quality and
availability of these tools, however, may be an important consideration for the
data repository as a project environment parameter.

5.2.3 Dynamic Analyses of System Structure Tools

There are many tools which output 1istings of the system or subsystem struc-
ture when it is prepared for execution, such as link editors and loaders.
These 1istings provide information on the contents of each load module. Often,
they specify the external references made by each module within the system.
Other 1istings and catalogs of this nature are output automatically by pro-
gram production 1ibrary monitors. An important program of the SAGE System
was the Automatic Core Allocator which output a core map of the subsystem pro-
gram each time there was a new core allocation. These types of 1istings pro-
vide important visibility into the software system components, and often, they
include information on the interrelationships of the program modules. This
data appears to be essential information for the Software Data Repository,

121

A - A e A T

‘l

and would have wide applicability for all projects participating in the data
collection effort.

5.2.4 Operating and Performance Measurement Tools

Performance and operating measurements became important with the development
of second generation solid state computers, which provided faster computa-
tional capability, as well as more efficient input-output peripheral equip-
ment. The overall efficiency and productivity of software systems increased
because of the ability to perform input/output functions simultaneously with
the execution of program instructions through the use of operating systems.
The third generation computers required even more complex operations and con-
trol of operating systems since the computer equipment was modular in design.
Besides the computer configuration, application programming became more
sophisticated, communicating with the computer system from a distance, i.e.,
remote access; communicating interactively with the computer, i.e., online
processing; and communicating with the computer during the time frame in which
an actual event occurs, i.e., real time processing. The problems of managing
this wide scope of computational abilities made it imperative to develop a set
of methods, techniques and tools which measured and evaluated the overall qua-
lity of the software systems, both being developed and operational.

While software and hardware measurement techniques have become quite sophisti-
cated and have greatly affected the productivity of software system, the use
of these techniques has been most widespread in evaluating the acquisition of
hardware and/or software. The efficiency of a set of coded instructions is
not as important today as it has been in the past, due, in part, to the speed
of the existing computers. The demands for reliability of the software are
far greater than the demands for efficiency from the individual programmer,

as evidenced by the growing acceptance of structured programming techniques.

The development and use of tools for performance evaluation requires that the
parameters impacting individual system performance be identified, as well as
the interaction and dependence of those parameters upon each other. Once
these critical performance parameters are established, controlled measurement
and study contributes to the performance evaluation of the system. The

122

et 31Tt e B

s
£

!
3
E
g
¥
:
-/
£

measurement and evaluation techniques that are currently in existance today,
such as utilizing kernel programs, kiviat figures, instruction mix analyses,
etc., contribute to improving the system cost effectiveness. However, the
individual project manager rarely has the knowledge or responsibility to per-
form evaluations of this type, unless there is a specific task defined for
this purpose.

A data gathering facility designed to collect information about the perfor-
mance of individual jobs, rather than the performance of the software itself,
is an important aspect of monitoring software projects. This facility is
accessable to project management in many forms. There are both automatic and
manual methods of obtaining and logging the job performance information. The
PPL concept is one such method that attempts to combine the automatically
collected data available to the individual computer installation with manually
collected data, as necessary. In order to perform analysis on the problems in
software development, either from the point of view of management to control
costs and performance, or by the researcher to analyze data for any number of
objectives, a monitor appended to the operating system to collect data about
critical activities appears to be a most effective means of obtaining reliable
and consistent data. The monitor can collect data as events occur, and store
the information for subsequent processing. The data, when tabulated later,
represent an accurate log of system operations. The amount and detail of the
data collected should support only the specific objective for which it will

be used.

A software monitor that collects data on system operations will cost money,
not only in the development of the software, but in terms of the day-to-day
computer run costs, storage costs, processing of the collected data, etc.
Schwetman [51] presents a summary of the overhead of a probe used at Purdue
University. This probe was designed to provide detailed data on the behavior
of system operation, in addition to common computer usage statistics. The
overhead statistics of the Purdue probe for the CDC 6500 computer are as
follows:

123

Summary of Probe Overhead

Additional CM 456 words
Additional Time, probe inactive

per PPU Function 1.3 psec”

per CPU Assignment 1.5 psec

per MSA Function 4.6-6.8 psec
Additional Time, probe active

per Recorded Event 50-55 sec

Summary of Usage Statistics for Data Collection Program

Date 02/06/76
Starting Time 10:32:31

Elapsed Time 1008.531 seconds
Central Memory 5952 seconds
CPU Time il 130.199 seconds
Events Received 3 1027409 events
Events Transmitted 767832 events

While Schwetman concludes that the data collection monitor used does impose an
additional load on the system, the "benefits outweigh the costs which are in-
curred”. These costs, however, are directly related to the type and amount of
data collected. The benefits that Purdue has realized from the installation
of the probe has been greatest for system designers and programmers by provid-
ing a detailed look at the system operation, and its impact on system design
and implementation. It has also provided data on system inefficiency, which
subsequently was improved; and on parameter values to be used by researchers
in simulation modeling of timesharing behavior.

The data collected automatically on system operations and errors, computer
usage, efficiency of processing, etc., is valuable and important data to mea-
sure program quality for both project management and the repository. Some of
this data can be collected manually, but manual collection should be used only
as a temporary method until an automatic method can be developed.

5.3 SUMMARY

The product quality measurements are that data demonstrating the product
structure and behavior through the application of analysis tools and testing
procedures. This category of data deals with very fine measures of the soft-

124

T —

ware product and/or summations of those fine measures. This category of data
should be collected automatically by support tools, software probes, or other
instrumentation devices, as they are developed. The exact structure, defini-
tion, and content of data to be collected depend upon the specifications of
the tools and the computer devices on which they are developed. It is recom-
mended that RADC incorporate this type of data in the data base on a selective
basis as the requirement for that data is realized. Therefore, the structure
of the data base and data collection system should be flexible to support the
acquisition of these data.

'8 (The reverse of this page is blank)

g A < W, -
Rpate = . - oS

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)

(M)
(12)

(13)
(14)

(15)

BIBL IOGRAPHY

AFSCP/AFLCP 173-5, AMCP 37-5, NAVMAT P5240, "Cost/Schedule Control
Systems Criteria Joint Implementation Guide"”, March 31, 1972,

Aron, J. D., "Estimating Resources for Large Programming Systems", IBM-FSD,
Gaithersburg, Maryland.

Aron, Joel D., The Program Development Process. Phillipines: Addison-
Wesley, 1974,

Baker, F. T., "Chief Programmer Team Management of Production Programming",
IBM September Journal, No. 1, 1972,

Baker, F. T.,'System Quality Through Structured Programming, Proceecings
FJCC 1972.

Bakkegard, I. "Quantitative Data Base" TM-HU-195/000/00, System Develop-
ment Corp., Santa Monica, Calif., April 1975.

Bell, D.E., Sullivan, J.E.,"Further Investigations into the Complexity of
Software", MTR-2874, Volume II, MITRE Corp., Bedford Massachusetts,
June 1974.

Boehm, B. M. "Software and its Impact: A Quantitative Estimate," Data-
mation, May 1973.

Book, E., Schaefer, M., Reemsnyder, M., and Willmorth, N. E. "A Software
Systems Engineering Study." TM-5157/500/01, SDC July 1973.

Book, E., "VMM Software Production Method Analyses", TM-5443/007/00,
System Development Corp., Santa Monica, Calif., June 1975.

Brandon, D. H., "The Economics of Computer Programming", in G.F. Weinwurm
#eg.), On the Management of Computer Programming. Philadelphia: Auerbach,
971.

Bratman, H., "Structured Programming: Techniques for Developing Reliable
Software Systems", SP-3693, System Development Corp., Santa Monica,
Calif., December 1972.

Bratman, H.,"The SDC Software Factory, TM-5175/100/00, July 1973.

?rgoks. Frederick P., The Mythical Man-Month. Philippines: Addison-Wesley,
975.

Cammack, W. B., Rodgers, Jr., H.J., "Improving the Programming Process",
TR0O0.2483, IBM, Poughkeepsie, New York, 1973.

e e

(16)

(17)

(18)
(19)
(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

BIBLIOGRAPHY (cont'd)

Cheng, R., Sullivan, J. E., "Case Studies in Software Design", MTR-2874,
MITRE Corp., Bedford, Massachusetts, June 1974.

Clewlow, Carl W., "Managing Camputer Programming in the Federal Govern-
ment", in G. F. Weinwurm (ed.), On the Management of Computer Programming.
Philadelphia: Auerbach, 1971.

Corrigan, A. E., et al, "Specifications for SIMON, a Software Implementa-
tion Monitor", MTR-3056, MITRE Corp., Bedford, Massachusetts, July 1975.

Diesen, C. F., "People Problems in Government EDP Work", in F. Gruenberger
(ed.), The EDP Proper Problem. Los Angeles: Data Processing Digest, 1971

Dijkstra, F. W., "Notes on Structured Programming", Technische Hogeschoal,
Eindhoven, The Netherlands, August 1969.

Ellingson, 0. E., "A Predictor Tool for Estimating the Confidence Level
of a Computer Program Subsystem in the Space Programs Department",

T™ 3335, System Development Corp., Santa Monica, Calif., January 1965,
May 1967.

Erickson, Warren Jr., "The Effect of Operating Systems on the Cost-Effec-
tiveness of Computer Programming", in F. Gruenberger (ed.), The EDP Peo-
ple Problem. Los Angeles: Data Processing Digest, 1971.

Ershov, A. P., "Aesthetics and the Human Factor in Programming", in
Communications of the ACM, Volume 15, Number 7, July 1972.

Ewart, R. F. and Nanney, D. M. An Analysis of Program Evaluation and Re-
view Technique (PERT) in Weapons System Acquisition. Master's Thesis,
Air Univ., Wright-Patterson AFB, Sept., 1974.

Finfer, M. C., Automatic Test Case Generation Program, Research Work Per-
formed at System Development Corp., Santa Monica, Calif., 1974.

Fleishman, T., "Current Results from the Analysis of Cost Data for Com-
puter Programming”, AD 637801, System Development Corp., Santa Monica,
Calif., August 1966.

Geran, Daniel B., "Summary Notes of a Government/Industry Software Sizing
and Costing Workshop", USAFESD, Bedford, Mass., October 1974.

HIPO - A Design Aid and Documentation Technique, GC 20-1851-0, IBM,
October 1974.

Hosier, W. A. "Pitfalls and Safeguards in Real-Time Digital Systems with
Emphasis on Programming," IRE Trans on Engineering Management, June 1961.

B-2

S e — B e e —
e T BB e

(30)

(31)

(32)

(33)

(34)
(35)
(36)
(37)

(38)

(39)

.40)

(41)

(42)
(43)

(44)

BIBL IOGRAPHY (cont'd)

Hudson, G. R., "Program Errors as a Birth-and-Death Process", SP-3011,
System Development Corp., Santa Monica, Calif., December 1967.

James, T. A., "Programming Language Characteristics and Comparison
Reference", Advanced Software Techniques for Data Management Systems,
Volume 111, February 1972.

Liskof, B.H., "Guidelines for the Design and Implementation of Reliable
Software Systems", MTR-2345, MITRE Corp., Bedford, Massachusetts, Aoril
1972.

Littlewod, B., Verrall, J. L., "A Bayesian Reliability Growth Model for
Computer Software", in Proc. Symposium on Computer Software Reliability,
IEEE, 1973.

McHenry, Robert C., "Software Development Process Revisions", Digest of
Papers, COMPCON 75, TEEE, September, 1975.

Metzger, Philip W., FSD Programming Project Management Guide, IBM-FSD,
Gaithersburg, Maryland, 197%.

Meyers, G. J., Reliable Software through Composite Design, Mason/Charter,
London, 1975.

Miller, E.F., "A Survey of Major Techniques of Program Validation",
General Research Corp., Santa Barbara, Calif., October 1972.

ielson, E.A., "Management Handbook for the Estimation of Computer Procram-
ming Costs", AD 648 750, System Development Corp., Santa Monica, Calif.,
March 1967.

Ogdin, Jerry L., "The Mongolian Hordes versus Superprogrammers",
Infosystems, December 1972.

PACE, Product Assurance Confidence Evaluator Tool, developed by TRW,
Redondo Beach, Calif.

PATH, Program Analysis and a Test Host Tool, developed by System Develoo-
ment Corp., Santa Monica, Calif.

Patterson, J. W., IBM Corp. Gaithersburg, Md., private communication.

Peck, M. J. and Scherer, F. M.," The Weapons Acquisition Process: An
Economic Analysis," School of Business Administration, Harvard Univ., 1962.

Pietrasanta, Alfred M., "Resource Analysis of Computer Program System
Development”, in G. F. Weinwurm (ed.), On the Management of Computer Pro-
gramming. Philadelphia: Auerbach, 1971.

8-3

B

(45)

(46)

(47)

(48)

(49)

(50)
(51)
(52)
(53)
(54)

(55)

(56)
(57)

(58)

(59)

BIBLIOGRAPHY (cont'd)

Pietrasanta, A. M., "Two Empirical Studies of Program Production", Proc.
IFIP Congress 1968, North-Holland Pub. Co., Amsterdam, 1968.

Qualifier, Automatic Execution Analysis Tool developed by Computer Soft-
ware Analysts, Inc., Los Angeles, Calif.

Rubey, R. J., "Quantitative Aspects of Software Validation", in Proc.
International Conference on Reliable Software, IEEE, April 1975,

RXVP, FORTRAN Automatic Verification System, developed by General Research

> Corp., Santa Barbara, Calif.

Sackman, H., Erikson, W. J., Grant, E. E., "Exploratory Experimental
Studies Comparing Online and Offline Programming Performance", SP-2687,
System Development Corp., Santa Monica, Calif., December 1966.

Schaefer, Marvin, A Mathematical Theory of Global Program Optimization.
Printice-Hall, Englewood C1iffs, New Jersey, 1973.

Schwetman, H. D., "Gathering and Analyzing Data from a Computer System:
A Case Study", in Proc. of the Annual Conference, ACM, October 1975.

Scott, R., "A Computer Programmer Productivity Prediction Model", Univer-
sity Microfilm, Ann Arbor, Mich., December 1973.

Scott, Randall F., Simmons, D.B., "Programmer Productivity and the Delphi
Technique", Datamation, May 1974.

Searle, L. V., Neil, G., and Benson, S. G., "Computer Program Acquisition:
Data Requirements", TM-2547/000/00, SDC, July 1965.

Searle, L. V., Neil, G., and Benson, S. G., "Configuration Management of
Computer Programs for Information Systems", TM-1918/000/01, July 1965,
(Org. pub. June, '64).

Shelley, Marlin, "Computer Software Reliability; Fact or Myth?", Ogden
Air Logistics Center, Hill, Utah, November 1973.

Shooman, M. L., "Quantitative Analysis of Software Reliability", Proc.
IEEE Reliability Symposium, January 1972.

Slaughter, J. B., Small, A., Speirman, K., Steele, S. A., "Proc. of a
Symposium on the High Cost of Software", Air Force Office of Scientific
Research, Monterey, Calif., Sept., 1973.

Smith, Ronaid L., "Management Data Collection and Reporting", Volume IX
in Structured Programming Series, IBM, Gaithersburg, Marlyland, Oct., 1974.

B-4

BIBLIOGRAPHY (Cont'd)

(60) Trauboth, H., "Guidelines for Documentat%on of Scientific Software Systems",
in Proc. Symposium on Computer Software Reliability, IEEE, May 1973.

(61) TRW Systems Group, "Software Reliability Study”, Interim Report, RADC-TR-
74-250, October 1974.

(62) Very High Level Languages Symposium, Santa Monica, Ca., March 1974.

(63) Wagoner, W. L., "The Final Report on a Software Reliability Measurement
Study", Report Mo. TOR-0074(4112)-1, Aerospace Corp., Redondo Beach,
Calif., August 1973.

(64) Wasserman, A. [., "A Top-Down View of Software Encineering”, in Proc. of

the 1st Nat'l Conference on Software Engineering, IEEC, September 1975.

(65) Weinwurm, George F., "On the Economic Analysis of Computer Programming",
in Weinwurm, G. F., (ed.), 02 the Management of Computer Programming.
Philadelphia: Auerbach, 1971.

(66) Willmorth, N. E., "Integrated Management, Project Accounting and Control
Techniques", System Development Corp., August 1975.

(67) Williams, R. D., "Managing the Development of Reliable Software", in
Proc. Int'l Conference on Reliable Software, IEEE, April 1975.

(68) Willmorth, N. E., “Managing an Acre of Programmers”, in Gruenberger F.,
(ed.), The EDP People Problem. Los Angeles: Data Processing Digest, 1971.

(69) Willmorth, N. E.,"System Programming Management, The Organization of
Work', TM-2222/003/00 SDC, May 1965.

(70) Wolverton, Ray W., "The Cost of Developing Large-Scale Software", IEEE,
Trans. on Computers, June 1974.

(71) Anderson, R. M., "Anguish in the Defensé Industry,” Harvard Business
. Review, December, 1969.

i . (72) EST-TR-66-673, Air Force ADP Experience Handbook (Pilot Version),
A.J. Gradwohl, et al, PRC, December 1966.

: ESD-TR-66-672, Primer for Air Force ADP Experience Handbook (Pilot
f Version), A.J. Gradwohl, et al, PRC, Decemb~r 1966.

ESD-TR-66-671, Phase Il Final Report on the Use of Air Force ADP Exper-
ience to Assist Air Force ADP Management, A.J. Gradwohl, G.S. Bechwith,
S.H. Wong, W.0. Wootan Jr, PRC, 1966

volume 1 - Summary, Conclusions and Recommendations

Yolume 2 - Phase 11 Activities

Volume 3 - Phase III Concepts and Plan

8 éThe reverse of this page is blank)

#US GOVERNMENT PRINTING OFFICE: 1977-714~028/86

%':

Ly

et
Ny

MISSION
of
Rome Avr Development Center

o e

LS

RADC plans and conducts research, exploratory and advanced
dgn.loput programs in command, control, and cosmunications
(C?) activities, and in the ¢? areas of information sciences
and intelligence. The principal technical mission areas
are communications, electromagnetic guidance and control,
survelillance of ground and aerospace objects, intelligence
data collection and handling, information system technology,
ionosphexic propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.

e

~
oy

S A I A S TR~ - I Al s SRS s g e S e

"y

