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given measurements. Two propagated values can be discovered for the same

point. This is called a coincidence. In a faulted circuit, the assumptions
made about components in the coinciding propagations can then be used to
determine information about the faultiness of these components. In order for
the program to deal with actual circuits, it handles errors in measurement
readings and tolerances in component parameters. This is done by propagating
ranges of numbers instead of single numbers. Unfortunately, the comparing

of ranges introduces ,many complexities into the theory of coincidences.

In conclusion, we show how such local deductions can be used as the basis for

qualitative reasoning and troub]eshooting.!‘\~
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INTRODUCTION .

Troubleshooting involves determining why a particular correctly designed piece of equipment
is not fnmhnlhg as it was intended; the explanation for the faulty behavior being that the
particular piece of equipment under consideration is at variance in some way with its design. To
troubleshoot, a sequence of measurements must be made to localize this point of variance, or fauk.
The problem for the troubleshooter is to determine what a particular measurement tells him and
what measurement to make next. :

This paper investigates how local knowledge about the circuit can be used to answer these
two questions. By lecel, we mean that only one particular component in the circuit will be
considered at one time and any interactions between larger collections of components will be
ignored. The teleology of collections of more than one component will not be discussed; instead
only the characteristics of the individual components will be used (such as their VIC's -- the
volkage-current characteristics).

The central goal of this research is to achieve a better understanding of troubleshooting.

One role for this new knowledge is in an expert problem solving program. However, it can also be
used in the expert component of an ICAI tutoring system. <Brown et.al, 74> This means that there

has to be some communication between the troubleshooting strategy and the human student. In
fact, this is also true if we wanted the expert problem solver to explain its deductions. Therefore

we huve imposed the constraint that our troubleshooter’s deductions be explainable. This constraint
has motivated many of the design choices in the implementation of this theory as a program
(INTER). In this paper we also include some comments about how the theory can be used in a
tutoring context.

The way to obtain new information about the circuit is to make a measurement. In
troubleshooting, new information is provided by coincidences. In the most general sense a
coincidence occurs when a value at one particular point in the circuit can be deduced in a number of
different ways. Such a coincidence provides information about the assumptions made in the

deductions. A coincidence can occur in many different ways; it can be the difference between an

O ;




expected value and a measured value (eg. expected output voktage of the power supply and the
actual measured value); it can be the difference between a value predicted by Ohm's law and a
measured value; or it can be the difference between an expected value and the value predicted by
the circuit designer. There are numerous other possibilities.

A troubleshooting investigation into a particular circuit proceeds in two phases. The first
involves discovering more values such as currents and voltages occurring at various points in the
circuit, and the second involves finding coincidences. The usefulness of coincidences is based on the
fact that nothing can be discovered about the correctness of the circuit with a measurement unless
something is known about the value at that point of the circuit in the first place. If nothing is
known about that point, a measurement will say nothing about the correctness of the components.
One actual measurement implies many other values in the circuit. The first phase of the
investigation involves discovering many such values in the circuit, and the second involves making
mMu at those points for which we know the implied values so that we can see whether the
circuit is acting as it should, or if something is wrong.

We will zall such an implication a propagation and the discovery of a value a point at which
we aiready know a propagated value for a coincidence. When these two values are equal, we will
call such a coincidence a corroboration and when they are different we will call it a contradiction.

Information about the faultiness of components in the circuit can only be gained through
~ coincidences. Propagations involve making certain assumptions about the circuit and then
predicting values at other points from these. These assumptions can be of many kinds. Some of
them involve just assuming the component itself is working correctly. For example, we can derive
the current through a resistor from the voitage across it. Others require knowing something about
how the circuit should work, thus predicting what values should be. For example, knowing the
transistor is acting as a class A amplifier, we can assume it is always forward-biased. Coincidences
between propagated values and new measurements provides information about the assumptions
made in the propagation.

Coincidences between propagated values and values derived from knowing how the circuit
should work require a teleological description of the circuit. As indicated earlier, this paper does not




investigate these latter kinds of assumptions. Research into this area was pursued by Brown

<Brown, 74> <Brown, 78>. Instead, this paper investigates propagations employing only assumptions
about the components themselves. Although, at first sight, the teleological analysis of

troubleshooting is the more interesting, ii cannot proceed withou: being able to propagate
measurements in the circuit. |

It may appear that this kind of circuit reasoning is essentially trivial and thus should not be
investigated. This paper will show that the issues of local nonteleological reasoning are, in fact,
very difficult. Some of the problems arise because the nonteleological knowledge should interact
with the teleological knowledge. A particularly difficult problem which will arise again and again
is the question of how far to propagate values. Often the propagations will be absurd, and only a
small amount of teleological knowledge would have pruned out these uninteresting propagations.
Part of the effort of this paper is directed into determining what other kinds of knowledge and
interaction is required, aside from the nonteleological, in order to troubleshoot circuits effectlvel.y.

The sections that follow present an evolution of the knowledge required. The first sections
will present a simple theory about local reasoning and troubleshooting. Next the problems of the
approach will be investigated, and some of them answered by a more sophisticated theory. Finally
the deficiencies of the theory and how it must interact with more teleological knowl‘edge will be
discussed.

SIMPLE LOCAL ANALYSIS

The domain of electronics under consideration will be restricted to DC circuits. These are
circuits consisting of resistors, diodes, zener diodes, capacitors, transistors, switches, potentiometers
and DC voltage sources. All AC effects will be ignored although an analogous type of analysis
would work for AC circuits. It will be assumed that the topology of the circuit does not change so
that wiring errors or accidental shorts will not be considered as possible faults.

In this section we will present a simple theory of propagation. Initially, only numeric values
will be propagated. Interacting local experts produce the local analysis. Each kind of component
has a special expert which, from given input conditions on its terminals, computes voltages and
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currents on other terminals. For example, the expert for a transistor might, when it sees a‘lm'r
emitter voltage of less than 55 volts, infer a zero current through the collector.

This propagation scheme is very similar to that used in EL <Sussman & Staliman, 75>
<Staliman & Sussman, 76>. Although similar in that they are both based on propagation of
constraints, the different goals of analysis and troubleshooting lead to many differences in the
details of the two propagation schemes. Therefore, we include a very terse description of our
propagation scheme, and the reader is referred to the two EL papers for a deeper explanation of
propagation of constraints.

Since EL is primarily interested in analysis, it must discover every value in the circuit. When
conventional numeric propagation fails it resorts to propagating variables and advlng algebraic
equations. Since we are mainly interested in explaining and not analysis the propagation of
variables and solving of equations is not done.

In order to give explanations for deductions, a record is kept as to which expert made the
particular deduction. Most propagations make assumptions about the components involved in
making it, and these are stored on a list along with the propagated value. Propagations are
represented as:

(<type> <location> (<local-expert> <component> <argy) <assumption-|ist>)

<type> is VOLTAGE or CURRENT.

<location> is a pair of nodes for a voltage and a terminal for a current.
Note that every such propagation has a value assoclated with it. For those examples where the
exact numerical value is important, exact numbers will be included.

The simplest kinds of propagations require no assumptions at all. These are the Kirchoff
voitage and current laws.
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The circuit consists of components such as resistors and capacitors etc., terminals of these
components are connected to nodes at which two or more terminals are joined. In the above
diagram T/, T/2 and T/3 are terminals and NI, N2 and N3 are nodes. Currents are normally

associated with terminals, and voltages with nodes.
Kirchoff’s current law states that if all but one of the terminal currents of a component or

" node is known, the last terminal current can be deduced.

(CURRENT T/1)
(CURRENT T/2)
(CURRENT T/3 (KCL N1) NIL)
Since faults in circuit topology are not considered, KCL makes no new assumptions about the
circuit.
Kirchoff's voltage law states that if two voltages are known relative to a common point, the
voltage between the two other nodes can be computed:
(VOLTAGE (N1 N2))
(VOLTAGE (N2 N3))
(VOLTAGE (N1 N3) (KVL N1 N2 N3) NIL)
As with KCL, KVL makes no new assumptions about the circuit.
One of the most basic types of the circuit elements is the resistor. Assuming the resistance of




the resistor to be correct, the voltage and current can be deduced from each other using Ohm's law:

| LR\ RIRI
i ~ M VvV _ V N2

R

(CURRENT R1)
: (VOLTAGE (N1 N2) (RESISTORI R1) (R1))

(YOLTAGE (N1 N2))
(CURRENT R1 (RESISTORY R1) (R1))

(In all the example propagations ipresented so far it was assumed that the prerequisite values had no
assumptions, otherwise they would have been included in the final assumption list)

These three kinds of propagations suggest a simple propagation theory. First, Kirchoff’s
3 voltage law can be applied to every new voltage discovered in the circuit. Then for every node and
- component in the circuit, Kirchoff’s current law can be applied. Finally, for every component which
has a newly discovered current iﬁto it or voltage across it, its VIC is studied to determlﬁe further
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propagations. If this produces any new voltages or currents, the procedure is repeated.

-

The current through a capacitor is always zero, so the current contribution of a capacitor

S

terminal to a node can always be determined.
(CURRENT C (CAPACITOR C) (C))




.

bt
S S RS

TR YT
N B,

e atand 4o " — " . 3

Similarly, the voltage across a closed switch is zero.
(VOLTAGE (N1 N2) (SWITCH VR) (VR))
The remaining components are semiconductor devices and these are very different from

those previously discussed. Although the VIC's for transistors, diodes and zener diodes can be
modeled by one nonlinear equation, these devices are usually thought of as having 2 numbe;' of
distinct regions of operation, each regiun having a simple linear VIC. The region of operation
must be determined before any VIC can be used.

The diode is the simplest kind of semiconductor device. The only thing we can say about it
in our simple propagation theory is that if it is back biased, the current through it must be zero.

(CURRENT D (DIODEV) (D))
For the zener diode we can propagate more values. If the current through a zener diode is
greater than some threshold, the voltage across it must be at its breakdown voltage. '
(VOLTAGE Z (ZENERI) (2))
If the voltage across a zener diode is less than its breakdown voltage, the current through it must be
zero.
(CURRENT Z (ZENERY) (2))

The transistor is the most difficult of all devices to deal with. This is both because it has the
peculiar discontinuous characteristics of a semiconductor device and because it is a three-terminal
device. If the current through any of the transistor’s terminals is known, the current through the
other terminals can be determined using the beta characteristics of the device (except in the case in
which it is saturated). Furthermore, if the voltage across the base-emitter junction is less than some
threshold (55 volits for silicon transistory), the current flowing through any of its terminals should
be zero also.

(CURRENT C/Q1 (BETA Q1 8/Q1) (Q1))
(CURRENT C/Q1 (TRANOFF Q1) (Q1))
Having experts for each component type as has been just described makes it possible to

propagate measurements throughout the circuit. As an example, consider the following circuit

fragment:
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RS RY

R3
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Assume that the fault in this circuit is that D4 has a breakdown voltage too low. This causes the

voltage across D5 to be less than its breakdown. Assume the following measurements are made:
;
(VOLTAGE (N1S N14))
(VOLTAGE (N16 N14))
propagations:
(VOLTAGE (N16 N1S) (KVL N16 N14 N15) NIL)
(CURRENT RS (RESISTORY RS) (RS))
(CURRENT DS (ZENERY DS) (DS))

the voltage across the zener is less than ite breakdoun
(CURRENT R4 (KCL N16) (RS DS)) A
(VOLTAGE (N24 N16) (RESISTGRI R4) (R4 RS DS))
(VOLTAGE (N24 N14) (KVL N24 N16 N14) (R4 RS 0S))
(VOLTAGE (N24 N15) (KVL N24 N16 N15) (R4 RS DS))
(CURRENT D4 (ZENERY D4) (D4 R4 RS DS))
‘the vol tage acr‘;ou the zener is less than its breakdoun.
(CURREN"I’ R3 (KCL N24) (D4 R4 RS DS))
(VOLTAGE (N24 N25) (RESISTORI R3) (R3 D4 R4 RS DS))




(VOLTAGE (N25 N14) (KVL N25 N24 N14) (R3 D4 R4 RS DS))
~ (VOLTAGE (N25 N16) (KVL N25 N24 N16) (R3 D4 R4 RS DS))
(VOLTAGE (N2S N15) (KVL N25 N24 N15) (R3 D& R4 RS DS))

The propagation proceeds one deduction at a time; never is it necessary to make two
simultaneous assumptions in order to get the next step in the propagation chain, since the

propagation can always go through some intermediate step.

A SIMPLE THEORY OF TROUBLESHOOTING ‘

This section examines how the propagation strategy of the previous section can be used to
troubleshoot the circuit. The ideas of contradictions and corroborations between propagations will
be used to show how the propagator can be used to help in troubleshooting the circuit. In this
simple theory we will assume that coincidences occur only between propagated values and actual
measurements.

The meaning of the coincidences depends critically on the kinds of assumptions that the
propagator makes. For the coincidences to be of interest every assumption made in the derivation
must be mentioned, and a violation of any assumption about a component must mean that
component is faulted. Then, when a contradiction occurs, one of the components of the derivation
must be faulted. Furthermore, if the coincidence was a corroboration, all the components about
which assumptions were made are probably unfauited.

The usefulness of the coincidence depends critically on how many faults the circuit contains.
The usual case is that there is only one fault in the circuit. Even the case where there is more than
one fault in the circuit, the approach of initially assuming only a single fault in the circuit is
probably a good one.

If there is only one fault in the circuit, all the components not mentioned in the deﬁvation of
the contradiction, must be unfaulted. If a corroboration occurs, all the components used in the
derivation can be assumed to be unfaulted. In a multiple fault situation these would be invalid

deductions: in a contradiction only one of the faulted components need be involved and in a

corroboration, two faults could cancel out each other to produce a correct final value.
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If, in the propagation example of the previous section, the voltage between N25 and Ni4 was

discovered to contradict with the propagated value, one of RS, D4, R4, R5 and D5 must be faulted.
But, if the values were in corroboration, all the components would have been determined to be
unfaulted. ;

Now that the fault has been reduced to one of R3, D4, R4, R5 and D5, the propagations can
be used to determine what measurement should be taken next. The best sequence of méasuremems
to undertake is, of course, the one which will find the faulted component in the fewest number of
new measurements. Assuming that the relative probability of which component is faulted is not
known, the best strategy is a binary search. This is done by examining all propagations in the
circuit, eliminating from their assumptloﬁ lists components already determined to be correct, and
picking a measurement to coincide with that propagation whose number of assumptions is nearest to
haif the number of possibly faulted components. :

In the example there are five possibly faulted components, hence the best propagations to
choose, are those with two or three assumptions. That means either measuring .the current through
R4, voltage across D4, the voltage across R4 or the voltage between N24 and NI5.

(CURRENT R4 (KCL N16) (RS DS))

(VOLTAGE (N24 N16) (RESISTORI R4) (Ré RS 0S))

(VOLTAGE (N24 N14) (KVL N24 N16 N14) (R4 RS DS))

(VOLTAGE (N24 N15) (KVL N24 N16 N1S) (R4 RS DS))
All the other measurements, in the worst case, can eliminate only one of the possibly faulted
components from consideration.

The current through R4 is measured. This coincidence is a corroboration; so R5 and D5 are
verified to be correct. Therefore one of RS, D4 and R4 mu‘st be faulted. This leaves the following
interesting propagations.

(VOLTAGE (N24 N16) (RESISTORI R4) (R4))

(VOLTAGE (N24 N14) (KVL N24 N16 N14) (R4))

(VOLTAGE (N24 N15) (KVL N24 N16 N1S) (R4))

(CURRENT D4 (ZENERV D4) (D4 R4)) 3
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(CURRENT R3 (KCL N24) (D4 R4))
.A.t this point there are too few possible faults to make a binary search necessary. Any measurement
which would coincide with any propagation having RS, D4 or R4 as assumptions, but not all three
at once, is a good one. One such measurement is the current through D4. In the actual circuit D4
has its breakdown voltage too low so it is drawing a great deal of current. The propagator deduced
the current should be zero. This contradictich would indicate that R3 was verified since it was not
involved. Two possible fauks remain; R4 and D4. R4 could be fauited high. D4 could be faulted
low. Measuring anyone of the following will indicate that D¢ is faulted:

(VOLTAGE (N24 N16) (RESISTORI R4) (R4))

(VOLTAGE (N24 N14) (KVL N24 N16 N14) (R4))

(VOLTAGE (N24 N1S) (KVL N2& N16 N1S) (R4))

UNEXPECTED COMPLEXITIES OF THE SIMPLE THEORY

The dlscuubn of the previous section presents an interesting and, on the surface, very simple
scheme for troubleshooting. Unfortunately, the entire approach is fraught with difficult problems!
This section deals with some of these problems and attempts to provide a solution to them within
the original framework. Such an investigation will clarify the deficiencies of using only local circuit
knowledge for troubleshooting.

Basically, three kinds of problems arise. First, the handling of corroborations and
contradictions leads to faulty assertions in certain situations and thus must be examined much more

closely. Second, it will be shown that the propagation scheme, the knowledge contained in the

-experts, and the troubleshooting strategy are all incomplete. Each of them cannot make certain

kinds of deductions which one might expect of them in the framework that has been outlined.
Finally, accuracy is a problem; all components and measurements have an error associated with
them (if only a truncation or roundoff error), and these cause many kinds of difficulties.

The nature of corroborations requires closer scrutiny. It has already been shown that every
component on which a derivation depends is in the assumption list of that derivation, so a

contradiction localizes the faulted component to one of those mentioned in the assumption list. For

J




corroborations, the simple troubleshooting scheme used the principle that a coincidence indicated
that all of the components in the assumption list were cleared from suspicion. This principle must

be studied with much greater scrutiny, as there are a number of cases for which it doesn’t hold.

In order to do this we must examine the precise nature of the propagations, and, more
importantly, examine the relation between a single value used in a propagation with the final
propagated value. Consider a propagated value derived from studying the component D. Let the
resulting current or voltage value be f{D). The propagator is entirely linear; so the propagated
value at any point can be written as a linear expression of sums of products involving measured 3
and propagated values. For every component, current and voltage vary directly with each other and
not inversely. Hence, in the expression for the final propagated value, f{D) can never appear in the
denominator. So the final value can be written as:

value= f(D)a + b

Where a and b are arbitrary expressions not involving D. The relation between f{D) and the final
propagated value is characterized' by a. By studying the nature of component experts, the structure
of a can be determined. Every expert derives f(D) either by multiplying the incoming value »(D) 3
by a parameter, or by applying a simple comparison test to the ®(D). As many such comparison tests
can be involved in a single propagation, each propagation can have a predicate associated with it
indicating what conditions must be true for the propagation to hold. With both kinds of
propagations there is a problem if a is zero. In that case, f{D) has no influence on the final value
and so a coincidence says nothing about the validity of D). |

A corroboration with a propagation involving a predicate only indicates that the incoming
value »(D) of the predicate lies within the tested range, thus saying little about the assumptions

which were used to derive »(D). Note, however, that in a contradiction the predicate may be testing

an erroneous value, and thus »(D) might be incorrect. We shall call these assumptions, which
corroborations do not remove from suspicion, the secondary assumptions of the propagation, and the
remaining, the primary assumptions.

The situation for which a is zero can be partially characterized. Using the same assumption

more than once in a propagation is relatively rare. In such a single-assumption propagation ¢ must




be a single term, consisting of a product of parameters (resistances, betas, etc.) or their inverses, and
since no circuit parameter is zero, a cannot be zero.

If multiple assumptions about D aré made in a single propagation ¢ may become a sum, and
hence possibly zero, so another argument must be used. Every occurrence of an assumption about D
in a propagation possibly introduces another term to a. Each of these terms must itself be a prc;duct
of parameters. Unfortunately, we cannot prove that a<0 is impossible, but can only appeal to a
somewhat heuristic argument. Consider the case where ¢ is zero. By the previous argument a is
only a function of circuit parameters and so is independent of any measurements. That means
whatever value f{D) has, or even whatever value is actually measured; that value, no matter how
extreme, has absolutely no influence in our propagation scheme on the final propagated value.
That seems absurd, so ¢ must never be zero. In other words, a specifies the degree of coupling
between two values in the circuit and it seems impossible that two values in the circuit are
. completely decoupled. In the case where a is smalil but not zero (Le. weak coupling) accuracy issues
become critical, but these will be discussed later.

The propagation scheme cannot make all the propagations that one might reasonably expect.
Incompleteness of this type manifests itself in two ways. One is just a problem of circuit
representation, and the other is an inherent problem of the propagator. In both certain obvious
propagations are not made.

Kirchoff's current law can af;ply to collections of components and nodes, not just single
components and nodes. Recognizing relevant cutsets in the topology of the circuit is a tedious (yet
performable) task. Circuit diagrams usually present n visual organization so that such cutsets (and
teleological organization) become clear.

The process of propagation as outlined consists of using a newly discovered value to call an

. expert which can use that value to make new discoveries. The expert then looks at the
environment, and from this deduces new values for the component about which it is an expert.
The communication with the environment always involves numeric values. Experts cannot

communicate with each other, nor can they handle abstract quantities. Furthermore, propagation




stops when a coincidence occurs and iteration toward an accurate solution is never attempted.

( This entire scheme is motivated by what we see in human troubleshooters, yet the strategy
has some very surprising limitations. The fact that only one expert is invoked at any one time
means that only one assumption can be made at any step in the propagation process. This me.as
that propagations which require two simuitaneous assumptions cannot be made. Most pror.agations
which require more than one assumption do not require simultaneous assumptions si-.ce they can be
derived using some intermediate propagation (eg. all the previously discussed examples).

One such case requiring simultaneous assumptions is the voltage divider.

Supposing ¥ and ¢ are known, the current through Rl (and hence through R2) can be propagated
by simultaneously assuming the correctness of both Rl and R2.

Vet Rl+iyR2

i=i, -,

i, = (V -t R2)I(RI+R2)
Admittedly, the voltage divider is an important enough entity that it should be handled as a special
case pattern, but this kind of incompleteness will arise in other situations, and it will not be possible
to design a special case pattern for each of them.

If multiple faults are allowed, simultaneous assumptions must be handled with even greater

caution. For example, a propagation involving a simultaneous assumption can propagate a correct




value even though both components involved in the assumptions were fauked. In the case of a
voltage divider, the resistance of both Rl and R2 could shift without affecting the voltage at the
tap, yet the voltage divider would present ari erroneous load to the voltage source to which it was
connected.

Due to this inherent incompleteness in the propagator, coincidences can also occur between
propagated values. This is much more complicated than the coincidences we have been considering
since both propagations have assumptions that have to be examined. If one of the propagations
has no unverified assumptions, the coincidence can be handled as if it were between a propagated
value and an actual measurement. However, if both propagations have unverified assumptions the
coincidence becomes far more difficult to analyze. The effects of such coincidences depend
critically on whether the intersection of the unverified assumptions in each propagation is empty or
not. If the intersections is empty, a contradiction reduces the list of possible faults to the union of
the assumptions used in the propagations, and a corroboration indicates that the value in question is
the correct one, and can be treated as two separate corroborations between propagated and measured
values.

The case of a nonempty intersection is the most difficult. If the coincidence was a
corroboration, a fault in the intersection could have caused both pmpagguoni to be incorrect yet
corroborating. Even so, something can be said about the dis joint assumptions in the propagations,
since if there was a fault in one of the disjoint primary assumptions it must have caused a
contradiction; thus all the disjoint primary assumptions can be verified to be correct. If the
coincidence was a contradiction, the list of possibly faulty components can be reduced to the union
of the assumptions. In this case it is very tempting to remove from suspicion all those components
mentioned in the intersection, because this would capture the notion that correct propagations from
a single (albeit incorrect) value must aiways corroborate each other or, equivalently, that each point
in the circuit has only two values associated with it: a correct value and a faulted value (which is
predicted by the propagator). |

Unfortunately that analysis is not valid. Consider a feed-back loop. A faulted value is
propagated into this feed-back loop, the feed-back loop propagates a value completely around the




loop and contradicts with the value we entered the loop with. Either the feed-back loop is faulted,
or the initial value we entered the loop with was incorrect, thus by the nature of feed-back giving a
contradiction when that value was propagated completely around the loop. (Not every feed-back
loop exhibits this property, however, although it is easy enough to construct one that does.)

All measurements in the circuit and all circuit parameters have errors associated with them.
Even if perfect measurements are assumed, truncation and roundoff errors would still cause
problems. One way to view the problem is to study the size of a relative to the error in b. If a is
smaller than the error in b, a large error in some f{D) could be undetectzd. Again we see the
greatest problem lies with corroborations. In a corroborating coincidence we must make absolutely
sure that an error in any of the verified assumptions could have been detected in the value (ie., a is
not too small).

There is a simple partial solution that works in most cases. Instead of propagating numeric
values through the cir@ 't, we propagate values and their tolerances, or just ranges of values. Each
measurement and circuit parameter could have a tolerance associated with it, and the arithmetic
operations could be modified to handle ranges instead of numeric values. Instead of computing a
and fts tolerance, the propagator could note whenevar an error in some incoming value could be
obscured in larger errors in other values. This is required since errors in parameters and
measurements are usually percentages, and thus adding a large value and a small value will often
obscure an error in the small value. Since such problems occur only with addition and subtraction
of ranges, KVL and KCL are the only experts which need to be directly concerned with the
accuracy issue.

Assuming that errors in values are roughly proportional to their magnitude, those
piopaggtlom involved in a sum whose magnitude is less than the error in the final result should
not be verified in a corroboration of the final value. (As this assumption is not always true, some
assumptions may not be verified in a corroboration when they should be) KVL and KCL can
easily check for such propagations. Fortunately, a category for assumptions which should not be
verified in a corroboration has already been defined: the secondary assumptions. So, primary




assumptions of the incoming values into a Kirchoff law expert may become secondary assumptions
4 of the final resul.
f. As usual, this theory of handling accuracy has subtle problems. If the only possible effect of
a particular f{D) was descrit@™¥®} opagation, then no matter how insignificant its contribution
| was to the final value, a coincidence should verify D since it wouldn't matter in such a case if D
were faulted or not. Furthermore, the propagation through certain components is so discontinuous
that no matter how insignificant its propagatory contribution is, a fault in the final value would so
greatly affect the propagation that the assumption in question should really be treated as a ma jor
assumption. An example of the former is a switch in series with a resistor, and an example of the
: fatter is a zener diode contributing zero current to a node.
g Consider the case of a resistor in series with a switch. The only contribution of that switch to
! the circuit is in the voltage across the switch and the resistor. A voltage across a closed switch is
g zero; 30 unless the resistance of the resistor i3 zero, the switch becomes a secondary assumption of
ﬁ the final voltage. Unfortunately, a corroboration with that voltage should indicate the switch was f
' acting correctly. :
Similarly, a zener diode contributing zero current to a node will always become a secondary

assumption of the KCL propagation. But, a corroboration should indicate that zener was

; functioning correctly. That is because this propagation would not even have been possible if the

| -voltage across the zener was near its breakdown. A heuristic solution to this problem is not to
i secondarize propagations with zero value which were just propagated from discontinuous devices.
4 This, of course, makes the teleological assumption that the discontinuous component makes a
:v" significant contribution whenever it is contributing a non-zero value, as is aimost always the case
with the switch, diode, zener diode and transistor.

Accuracy brings along other problems, as testing for equality between ranges becomes a
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rather useless concept. A simple workable strategy is to use a rough approximation measure such as
accepting two ranges as equal if the corresponding endpoints of the two ranges are within a certain
percentage of ‘each other. More satisfactorily, the actual width of the range should also enter into
consideration so that if one end of the range is extremely small relative to the other, a much more
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liberal percentage is used to compare the smaller endpoints. One certainly would want the range (0,
ljwberoughlyequalto[lt-a.ll A coincidence can thus be of three kinds; either the ranges can
be approximately equal (or just significantly overlapping), which is a corroboration, or the ranges
can be disjoint, which is a contradiction, or the ranges can overlap but not significantly, which
provides no information at all. :

The following simple aigorithm implements these ideas. A tolerance for the comparison is
computed by choosing the minimum width if the widths are very different and choosing half the
width if the widths are approximately the same. Depending on the circuit and whether the
coincidence is between voltages or currents a minimum tolerance is specified. The minimum
tolerance for a typical circuit is .| microamperes and .1 voits. Then the differences between the
corresponding ends of the ranges are determined. If both differ within the tolerance, the values are
determined to be corroboratory. For example, (1 , .2] volts and (15 , 3] volts are judged to be
eoirobontory. If only one side is within tolerance the tolerance is relaxed by 50% and the failing
side is checked again. If this still does not match, we cannot really claim a corroboration; instead
we cah only say that one value splits the other. For example, [0, 1] splits [0 , lOlA The two
remaining cases occur when the values are completely disjoint (eg. [0, 1] and [3, 4]) and when they
contain each other (eg. [0, 8] and (3, 4]). The containment case is treated as a split. Ranges are
considered disjoint only if the they differ by greater than the tolerance. If none of these conditions
are met, the coincidence is neither a corroboration nor a contradiction. For example, [0 , .I) volts
and [2, 3] neither contradict nor corroborate. This algorithm is only a simple attempt at defining
equivalence of ranges, and some of the parameters may have to be tuned for specific circuits.

A comparison test between two ranges can have five results: (1) values contradict, (2) values
corroborate, (3) first value splits second, (4) second value splits first, and (5) no comparison possible.
The last alternative raises the possibility tl_m it may be useful to propagate two independent values
for the same quantity! The splitting possibilities can be intelligently dealt with. If the value for 4

- splits the value for B, then if A {s valid, B must be valid, but not conversely. For example, since

A{3 , 4] splits B0, 10}, the validity of A implies the validity of B. But if B were valid, 4 might be
[7, 8) which still splits B but contradicts with the original [3 4). If 4 is not known to be valid, we
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must wait till it is proven before using this information. However, in a single fault theory a very
interesting deduction can still be made. It is easier to see in formal terms: 4 splitting B really says
valid( A)>valid(B), while A corroborating B says valid(A)®valid(B). Consider valid(A)>valid(B). If
the assumptions of 4 and B are not disjoint, construct a B+ that does not mention the common
assumptions. Now valid(A)>valid(B+) also implies invalid(B+)oinvalid(4). But the assumptions of
B+ and 4 are disjoint and the circuit can have only one fault. Hence B+ must be perfectly correct.
In summary, the split of B by 4 in a single fault theory implies all the assumptions involved with B
are correct (ie. a corroboration of B with truth) and nothing about the assumptions of A. This
corresponds with our intuition; a split ls a kind of corroboration in which one of the propagations
is much stronger than the other, and as such the corroboration only comments on the weaker of the

two propagations.
Although the range mechanism was introduced to handle errors in measurements and

component parameters, it can also be used to deal with new kinds of propagations that would have
been impossible in the simple scheme. Noticing that the collector current of a transistor is large
leads to the deduction that its base-emitter voltage must be between 5 and | volt. With the range
mechanism this kind of propagation can now be included: propagate the range [5, I There are
many possible uses for this idea. Every diode could propagate a non-negative current through
itself. Every transistor could propagate a base-emitter voltage of less than 1 vokt. The vokage at
every node could be asserted to be less than the sum of the voltage sources in the circuit. More
interestingly, it could handle the problem of having a range propagated over a discontinuous
device: a [-1, +1] current range propagated into a diode should have its lower limit modified to O
(1e. [0, #1)).

When a significant propagation occurs which overlaps a test point of a discontinuous
component, the best strategy is to interpret that measurement to have too wide an error associated
with it and stop the propagation there. In general, when error tolerances in pfopagaued values
become absurd (a significant fraction or multiple of the central value) the propagation should be

artificially stopped.
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When a coincidence occurred in the old propagation scheme the propagations stopped.
There was no advantage in also proptgtdng the new value. However, when ranges are involved,
the new propagation might be better than fhe old one. The range with the smallest error is the
better of the two. For example, the values [0, 10) corroborates with (1, 2}, yet the latter value would
provide much more information if it were propagated. ’fhis means that when a coincidence

between ranges occurs, the better of the two propagations must not be stopped from propagating.

There remain certain characteristics of the devices that are not captured in the propagation
scheme. These are the maximum ratings of the components. The power dissipation of a transistor
cannot exceed its power rating, the voltage across a capacitor cannot exceed its breakdown voltage,
the power dissipation in a resistor cannot exceed its wattage rating, etc. To a large extent these can
be captured by simple modifications of the component experts. Each expert could check whenever
it was invoked whether any ratings about the component were exceeded. If the component expert
detects that a rating has been exceeded it must treat it as a contradiction. The maximum rating, of
course, depends only on the component itself.

A contradiction casts suspicion on all the assumptions of the contradicting propagations. -
More careful examination of the contradiction may restrict the possible faults even further.
Knowing that the current in a resistor is higher than expected indicates that its resistance has
shifted downwards. If a contradiction suggests there is too little current through a capacitor, we
know the capacitor cannot be contributing to the faul.

We must tackle the problem of how to scan back through the propagation to determine what
faults in the components could have caused the final contradiction. Of course, a straightforward
way to do this would be to compute a for every component f{D) involved in the propagation. For
every two-terminal component the possible fauk can be immediately determined from a (unless of
course we have the inaccurate case where the range for ¢ includes zero). The only three-terminal

device, the transistor, requires a more careful examination as it has many possible fault modes, and
a single consideration of a propagation from it may not uniquely determine its fault mode.
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Continuing in the spirit of the original propagation scheme, a method different from that of
computing & should be used. The following simple scheme has difficulties only in certain kinds of
multiple assumption propagations. The contradiction indicated that the propagation was in error
by a shift in value in a certain direction. This shift can be propagated backwards through all the
experts except KCL and KVL. The Kirchoffs’ laws experts involve addition, so each of the
original contributors to the sum must be examined. For those contributors whose (unverified)
assumption list does not intersect with any of the other assumption lists, the shift can be propagated
back, after adding the appropriate shift caused by the remaining contributors. For those
contributors with intersecting contributions, it must be determined for each of the intersecting
components whether all contributions of all the possible faults do not act against each other (eg. will

a shift in the resistance of the component both increase a current contribution to a node and

decrease it through another path?). For such canceling intersections, nothing can be said about the
intersecting component. All this does is capture qualitatively whether the signs of the terms of a are
different and thus canceling. It should be noted, that if it really turns out to be the case that'a a¢
can be zero, such a scheme could be used at least to eliminate faulty verifications from taking place,
again at the cost of sometimes not verifying provably unfaulted components.

Incompleteness in the propagation scheme introduces incompleteness in the troubleshooting
scheme. Even if the propagation scheme were complete the troubleshooting scheme would be
incomplete, since the earlier answer to what is the next best measurement is inaccurate. The
measurement which reduces the list of possible faults by the greatest number is not necessarily the
best measurement. Future measurements must aiso be taken into consideration, a poor first
measurement may set the stage for an exceptionally good second measurement.

The choice of best measurement depends of course on what is currently known about the
circuit. The most general approach would be to try every possible sequence of hypothetical
measurements and choose the first measurement of the best sequence as the next measurement.
Again, that would be an incredible, and unnatural computation task. The current troubleshooting

scheme does not try to generate all possible sequences, but only considers making those




measurements about which it aiready knows something (so to produce a coincidence).

Since only measurements at points about which something is explicitly known are considered,
the information provided by coincidences between solely propagated values (the result of
incompleteness in the propagator) cannot enter into consideration. Thus the basic approach of the
troubleshooter is to make no hypothetical measurements and look only at those propagations with
unverified assumptions as predictions to try to coincide with. Unexpected information, such as that
provided by coincidences between propagated values, cannot be considered in that paradigm
(although making hypothetical measurements would handle this problem).

If we are only prepared to look ahead one measurement, our original search scheme remains
reasonable. The binary search for the best measurement must, of course, be reorganized. Since a
corroboration may eliminate different numbers of components from suspicion than a contradiction,
the search is not purely binary. A workable solution is to just take the average of the number of
components which would be verified in each case as the measurement’s score. Then that
measurement whose score was nearest to half the number of faulted components could be chosen as
the next measurement.

There remains the issue of generating an explanation for this choice. Although the above
argument for deriving a future choice of measurement could be made und?rstandable to humans it
does not always admit a very good explanation. A large part of the explanation for a future choice
of measurement involves indicating why a certain component cannot be faulted. Once a component
is eliminated from suspicion for any reason it is never considered again. However, a later
measurement might give a considerably better explanation for its non-faultiness. The problem of
generating good explanations, of course, also must take into account a model of the student and
what he knows about the electronics and the particular circuit in question.

The above scheme for selecting measurements does not take into account how “close” the
measurement is to the actual components in question. For example, a voltage measurement across
two unverified resistors is just as good as a measurement many nodes away which also has only
those two resistors as unverified assumptions. Fortunately these can be easily detected: just remove

from the list of possible measurements all those which are propagated from other elements on the
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list. These are the propagations which make no new assumption in their most recent propagation

step and involve only one unverified propagation. For example in the first troubleshooting §

scenario the measuring the voltage between NI5 and N24 wa: a candidate. Since KVL makes no

assumptions and the other voitage between NI5 and NI6 had been already verified this suggestion

should have been thrown out.

SOME ILLUSTRATIVE EXAMPLES

The following are some debugging scenarios to illustrate the ideas of the previous section. ’

Note that primary and secondary‘assumption lists are kept for each propagation.

The case of RIl being high:

.(.
(=
(=
(=
(=
(=
(=
(=

RW
Ql

N3

N
p Q

R1

(CURRENT C/Q2 (MEAS M@@84) NIL NIL) (.88817 , .88813])
(CURRENT B/02 (BETA Q2 C/Q2) (Q2) NIL) [1.1E-6 , 3.8E-6])
(CURRENT E/Q2 (BETA G2 C/G2) (G2) NIL) [-.88819 , -.888171)
(VOLTAGE (N2 GROUND) (MEAS MB@BS) NIL NIL) (45 , 43])
(CURRENT R9) (RESISTORY R9) (R9)) NIL) (.812 , .8171)
(CURRENT C/Q1 (KCL N2) (R9) (@2)) (.812 , .8171)

(CURRENT B/Q1 (BETA Q1 C/Q1) (Q1 R9) (Q2)) [8.1E-5 , 33E-5))
(CURRENT E/Q1 (BETA a1 C/a1) (a1 R9) (@2)) (-.817 , -.8121)
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(= (CURRENT R11 (KCL N3) (Q1 R9) (Q2)) (-.00015 , .000811))

(= (VOLTAGE (N1 N3) (RESISTORI R11) (Q1 RS R11) (Q2)) (-.26 , .18))

(= (CURRENT C/01 (TRANOFF Q1) (R11 Q1 RS) (Q2)) (-1.E-6 , 4.8E-S])
A contradiction occurs. The new propagation is “better” than the old one. The old propagation
cannot not be removed in favor of the new propagation because it is an antecedent of the new
propagation. We conclude that one of Ril, Q}, R9 or Q2 must be faulted.

Consider the problem of R9 being open:
(= (CURRENT C/02 (MEAS M@@®1) NIL NIL) [.88833 , .00036))
(= (CURRENT B/02 (BETA Q2 C/G2) (Q2) NIL) [2.2E-6 , 7.2E-6])
(= (CURRENT E/02 (BETA Q2 C/Q2) (Q2) NIL) (-.88837 , -.88833))
(= (VOLTAGE (N2 GROUND) (MEAS M@BB2) NIL NIL) [44 , 49])
(= (CURRENT R9 (RESISTORY R9) (R9) NIL) (.812 , .816])
(= (CURRENT C/01 (KCL N2) (R9) (@2)) (.812 , .816))
(= (CURRENT B/Q1 (BETA Q1 C/Q1) (Q1 R9) (Q2)) (BE-5 , .08833))
(= (CURRENT E/Q1 (BETA Q1 C/Q1) (Q1 R9) (G2)) (-.817 , -.812])
(= (CURRENT R11 (KCL N3) (01 R9) (Q2;) [2.6E-6 , .080883])
(= (VOLTAGE (N1 N3) (RESISTORI R11) (R1l1 Q1 R9) (Q2))
(.8836 , .475))
(= (CURRENT C/Ql1 (TRANOFF Q1) (R11 Q1 RS) (Q2)) (-1.E-6 , &.E-S])
This contradiction indicates that one of RlIl, QJ, R9 or QI is faulted.

In this example the circuit has no faults.

s sl
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(CURRENT B/04 (MEAS M@81) NIL NIL) [ -.88836 » -.0808321)
(CURRENT E/Q4 (BETA 04 B/04) (04) NIL) [.816 » «85))
(CURRENT C/Q4 (BETA Q4 B/0Q4) (Q4) NIL) (-.85 , .816])
(VOLTAGE (N6 NS) (MEAS. MB882) NIL NIL) (.85, .931)
(CURRENT R22 (RESISTORV R22) (R22) NIL) (.8615 , .88281)
(CURRENT B/Q3 (KCL N6) (Q4) (R22)) (-.852 , -.814])
(CURRENT E/Q3 (BETA Q3 B8/Q3) (G3 Q4) (R22)) (.16 , 1.61)
(CURRENT C/Q3 (BETA Q3 B8/Q3) (G3 Q4) (R22)) (-1.6 , -.14))
(CURRENT E/Q3 (MEAS MB@B3) NIL NIL) [.64 , .71])

This split of (16 , 1.6] by (64, .71] indicates that Q3 and Q4 must be unfaulted.

Closer examination of the above examples reveals that more information about the faultiness

of the components could have been deduced earlier. The current theory embodies only a small

amount of the different reasoning strategies the student might have available. This is the sub ject

of the subsequent sections.

THE NECESSITY AND UTILITY OF OTHER KNOWLEDGE

In this section we will attempt to characterize where and why local and nonteleological

reasoning fails. Many such failures have aiready been demonstrated in the previous sections. Our
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method of attack will be from two directions. First, problems inherent in the earlier propagation
scheme can be alleviated with other knowledge about the circuit. Second, many of the kinds of
troubleshooting strategies we see in humans cannot be captured even by a generalization of the
proposed scheme. One of the basic issues is that of teleology. The more teleological information
one has about the circuit, the more different the troubleshooting process becomes. Currently, most
of the ideas presented in this paper so far have been implemented in a program so that much of
the discussions derive their observations from actual interactions with the program.

The most arresting observation is that the propagator cannot propagate values very far, and
at other times it propagates values beyond the point of absurdity. Examining those propagations
which go too far the most dominant characteristic is that either the value itself has too high of an
error associated with it, or that the propagation itself is not relevant to the issues in question. The
former problem can be more easily answered by more stringent controls on the errors in
propagations. The latter requires an idea of localization of interaction. This idea of a theater of
interactions would limit senseless propagation; however, it requires a more hierarchical description
of the circuit.

The idea that every measurement must have a purpose points out the basic problem: our
troubleshooter cannot make intelligent measurements until it has, by accident, limited the number of
possible faults to a small subset of all the components in the circuit. After this discovery has been
made, which the troubleshooter is not given and must make by itself, fairly intelligent suggestions,
can be made. However, as such a discovery is usually made when the set of possible faulits is
reduced to about five components, it can only intelligently troubleshoot in the last few (two or three)
measurements that are made in the circuit.

Clearly, many measurements are made before this discovery and the troubleshooter cannot do
anything intelligent during this period. Still, the propagation scheme and the ideas of
corroborations and contradictions can be effectively used even during this period.

The only way intelligent measurements can be made during this period is by knowing
something about how the circuit should be behaving. This requires teleological information about

the circuit. For example, just to know that the circuit is faulted and requires troubleshooting
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requires teleology. In the situations where the propagator did not propagate very far, the problem
usually was that some simple teleological assumption could have been made. The voltages and
currents at many points in the circuit remain relatively constant for all instantiations of the circuit,
and furthermore many of them can be easily deduced (eg. knowing certain voltage and current
sources such as the power supply, knowing contributions by certain components to be small, etc.).
Propagation can then proceed much further. Of course, the handling of coincidences requires
modifications, and a new kind of strategy to deal with teleological coincidences needs to be
developed.

Coincidences provided information only about the assumptions of the propagations involved.
Since the only kind of assumptions we were considering were those about the faultedness of
components, the consequences of violating assumptions were obvious. The consequences of
violating a teleological assumption is not at all obvious and requires more knowledge about the
circuit. The point is that the ability the propagate teleological assumptions is just a small step
towards dealing with teleology.

In his thesis Brown <Brown, 76> deals primarily with how to represent and use teleological
knowledge in troubleshooting. Although propagation plays only a small role in his theory, many of
his ideas address the problems that we have been discussing in this section.

FUTURE RESEARCH

The previous sections have sketched out the necessity for more teleological and non-local
knowledge. Since Brown addressed this problem, one obvious direction for research is to try to
incorporate his ideas. This direction suffers from two difficulties. First, Brown never implemented
his ideas and thus they require a major effort to become actually utilizable. (The troubleshooter
based on the ideas of this paper (INTER) is working and requires a practical theory of teleology.)
Second, Brown's troubleshooting theory would not be usable in a tutoring context where the expert
must be able to understand the student’s troubleshooting strategy. '

Fortunately, there appears to be a rather simple strategy based on the existing propagator
which can be used to deal with non-local knowledge. The idea is based on observations that
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’2 'i students often reason something like: “If the vokage limiter is off and it should be off, then the
| . constant voltage source cannot be contributing to the observed symptom.” Note that this argument
ﬁmmm&mlw&ﬂmummdmdmemumma The
component experts can be modified to determine what state the components are in. These |
observations could then be asserted in a data-base.

This collection of assertions forms a qualitative description of the state of the circuit. Of |
course, the assertions, like propagations, have their assumptions stored with them. Circuit specific
theorems can then be encoded referring to assertions in the description space. The rule of the
previous paragraph might be encoded as:

(ST ATE voltage-limiter off) A (CORRECT-ST ATE woltage-limiter off)
3 (0K constant-voltage-source)
It appears that only a small number of such theorems are necessary to determine what is known
about a circuit from a set of measurements. The theorems are, of course, very circuit specific. Since
only a few of them are be required for any specific circuit the principle is still usable.

The local reasoning strategy isolates the qualitative reasoner from worrying about many of
the idiosyncrasies of propagating numerical values by describing the circuit in qualitative terms.
TM:uﬂvnmmanmmydmmumumununmmm‘W
The failings of the local troubleshooting strategy Is ako showing exactly where this qualitative
| ' reasoning is required.
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