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1.0 INTRODUCTION

Diffusers are an important component in many areas of application,
such as propulsion systems, wind tunnels, test facilities, etc. Yet the
prediction of diffuser flows remains one of the most difficult fluid dy-
namics problems, especially when the inlet conditions to the diffuser
are highly nonuniform. Since the optimum operating condition for a
diffuser, i.e., maximum pressure recovery, has been shown experi-
mentally to occur with some flow separation (Ref. 1), a realistic solu-
tion for the flow field can be obtained only by solving the full Navier-
Stokes equations. In addition, the diffuser flows of practical interest
are turbulent in nature, The performance of a diffuser depends not
only on the shape of the inlet velocity profile but also on the turbulence
level. The modeling of turbulence with the large pressure gradient
existing in the diffuser flows requires a more sophisticated approach
than the use of simple eddy viscosity models (Ref. 2).

Currently, the diffuser design information is obtained almost solely
from empirical data (Refs. 1 and 3). Many of the available diffuser
performance maps and correlations provide only static pressure re-
covery. Very few detailed turbulence properties of diffuser flows, es-
tablished experimentally, are available (Refs. 2 and 4) for non-separated
cases. Data for separated diffuser flows is even more sparse because
conventional instruments, such as the hot wire anemometer, cannot pro-
vide meaningful measurement in regions where the flow direction re- -
verses with time, This situation may improve in the future as the re-
cently developed laser velocimeter (L.V) becomes more available and
reliable (Refs. 5 and 6) so that the flow field data can be obtained for
use in the development and verification of analytical prediction methods.

In the past, the flow in a diffuser has been analyzed by assuming
that diffuser flow can be approximated by a thin boundary layer adjacent
to the wall and an inviscid core in the center of the diffuser. The
boundary-layer equation and the inviscid core equation are then solved
with or without interaction (Refs. 7, 8, and 9). No rigorous method is
available to analyze diffuser flows with a highly nonuniform inlet pro-
file with or without separation (Refs. 10 and 11),

The purpose of the investigation reported herein is to develop nu-
merical prediction methods for the calculation of turbulent, incompres-
sible, separated, subsonic diffuser flows with nonuniform inlet conditions.



AEDC-TR-76-169

The theory development, the turbulence models, the coordinate trans-
formation, and the numerical finite difference solution procedures are
presented along with comparison of the results with available experi-
mental data.

2.0 GOVERNING EQUATIONS

2.1 NAVIER-STOKES EQUATIONS AND REYNOLDS STRESSES

The basic equations which describe the motion of laminar or tur-
bulent flow of an incompressible fluid are the Navier-Stokes equations.
In turbulent flow, it becomes necessary to use some averaging proce-
dure (or statistical method) to provide useful information about the
gross features of the flows which are random in nature. Among the
-methods available, the time-averaged method has been widely used for
constant density non-reacting flows. The resultant equations, as shown
by Osborne Reynolds (Ref. 12), can be written in 2-D Cartesian or
cylindrical coordinates:

Continuity Equation
$ 2 ,.8

X-Momentum Equation

2U U 2 P 2 [p2U
uZb+ve s —,,7(?-”{23—(1’ )

+(-}—-s-,—,-.-[»r (%—+§-‘;‘-)]}-{%(u" (+ ) =r(r uV’)}

Y-Momentum Equation
U2 +vI = - (—§-)+{z =(»3)

(3% Z'r‘)]'f“’s( - D)2 e 2 )

(3)

where if 6 = 0, r represents y in Cartesian coordinates, and if
6 =1, r represents the radial coordinate,

10
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In Eqgs. (1) through (3), the flow variables (u, v, p, and p) are time-

averaged quantities. The turbulence quantities, such as u’2, v°2,

w’2, and u’v’ are usually called Reynolds stresses.

2.2 THE EDDY VISCOSITY CONCEPT

The eddy viscosity concept, which relates the Reynolds stresses to
the product of the time-averaged velocity gradient and an eddy viscosity,
can be attributed to Boussinesq (Ref. 12). With this concept, Reynolds
stresses can be defined as

Wt a2 a2k
EGEREES e 1
‘w2 =-z>’t-'—,f- +-%-k @
Wy = =R (35 +ax)

k = (w?+v2 +w2)/2
where v, is the eddy viscosity and k is the turbulent kinetic energy (TKE).

By substituting Eq. (4) into Egs. (2) and (3), one obtained the mo-
mentum equations in the following forms:

U 2U 2 (P 2 ? U
Uz—+V = - % (?-l- —3-k)+2-a—x'I(l’+}?t) T

2X r
§ Y
+3) 3lr 450+ 37

v 2V 2, ¥P v U
T L RRTE R IR (CRS12 3% )

"‘3%[()’”%);{'] + 5-%-0’”{)(':{-“%)

Equations (5) and (6) are similar in form to the original Navier-
Stokes equations if one replaces (p/p +2/3 k) by (p/p) and (v + vy) by v.
Thus, methods developed for solving the Navier-Stokes equations can be

11
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used to solve Eqgs. (5) and (6), which allows both laminar and turbulent
flows to be solved within one numerical framework.

2.3 VORTICITY-STREAM FUNCTION FORMULATION

Equations (5) and (6) are coupled nonlinear partial differential equa-
tions. It can be seen that the pressure term appears only in the gra-
dient form, i.e., 3/8x(p/p) and 3/3r(p/p). In most cases, the pres-
sure distribution is unknown. Therefore, it is advantageous to remove
the explicit pressure gradient terms from Eqs. (5) and (6). This is
done by a cross-differentiation (or a curl operation). The resultant
equation written in terms of the vorticity becomes

2
{219-+§ri}- -1 {(u z""*)"“ (v-2 2% r“’ AN

2x? (J’-l-)’) r
! v .1 3% (l’ﬂ’t)
*m{‘“[— T 1+ - T3
Y l]t . }
+Z(3x"3( zx) s 0
where €2 is the vorticity defined as
(14 U

The continuity equation (Eq. (1)) must be modified to obtain a solu-
tion because it is a first-order differential equation as opposed to the
vorticity equation (Eq. (7)), which is a second-order equation. A
second-order differential equation can be formulated to replace the con-
tinuity equation by introducing a stream function,

L 8 AV

L=l s (9)
5

v=-(f ¥

The stream function defined in Eq. (9) satisfied continuity Eq. (1) auto-
matically. By combining Eqs. (9) and (8), a single second-order differ-
ential equation for the stream function (¢) is obtained

12
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2 1
{aw+auf}_(s)ow+rﬂ_o (10)

2x% ar?

Equations (7) and (10) replace Eqgs. (5), (6), and (1) to form a ""Vorticity-
Stream Function' formulation.

2.4 THE PRESSURE EQUATION

Since the pressure term was eliminated in the first stage of the
formulation, it needs to be recovered after the 2 and ¢ solutions are ob-
tained. Two methods are available, namely: (1) the integration of mo-
mentum Eqgs. (5) and (6), and (2) the solution of a pressure equation.
The first method is straightforward. Since the pressure appeared in
the momentum equation in the gradient form, i.e., 8/8 x(p/p) and
o/ or(p/p), one can integrate the momentum equation from a reference
point where the pressure is known to provide a continuous distribution
along any path, i.e

X-Integration
2
fof=s| {-(ui“—w%)-;’;(%m o
+z—[(?+;’) ]+( ) r[rs()’ﬂ’t)(—:—:’ra-;—':-)]}dx

r-Integration

Ret=sf faogh 2o
|

(12)

2 2 [Pe B (2 B 42 2 (241 2]+ 23 042 2E- ) dr

The accuracy of the pressure calculated by Egs. (11) and (12) generally
depends on the numerical integration quadrature in addition to the accu-
racy of the numerically calculated variables, such as u, v, k, etc. The
method is commonly used to evaluate the wall pressure distribution
where Egs. (11) and (12) can be simplified because of the non-slip wall
boundary condition, i.e., u = v = 0 at the wall. The approach can also
provide an initial pressure distribution to be used as an initial guess in
the solution of the pressure equation given below.

13
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The second method requires the solution of a pressure equation
which can be derived by a further differentiation (or a gradient opera-
tion) of momentum Eqs. (5) and (6),

i SR S § 32
EZART IR TS = - u{ +?_n.} “"{ax
(u+rr)+ (unr ) 48 u-w‘ (13)
{ax' z 3P ¥ rar T )
Although Eq. (13) can provide uniquely defined pressure distributions
as opposed to the path dependent integration procedure, one needs to
solve an additional equation along with the related boundary conditions.
Even with the pressure distribution uniquely determined, the accuracy
still depends on the numerical method used. However, in contrast to
the first method, the error does not accumulate along a particular path

of integration.

The pressure equation (Eq. (13)) is a Poisson's equation with
source terms appearing on the right-hand side of the equation. In the
present analysis, Eq. (13) is solved iteratively by a point iteration
method. The specification of the boundary condition for the pressure
equation requires special attention and is discussed in detail in Section
6.1.

3.0 MATHEMATICAL MODELS OF TURBULENCE

The concept of the eddy viscosity (v¢) introduced in the previous
secjion simplified the modeling of the Reynolds stresses. Thus, in-
stead of considering the Reynolds stresses directly, one can work with
a single eddy viscosity. The modeling of turbulence, in this case, is
directly related to the modeling of the eddy viscosity. Because the eddy
viscosity is not a physical property of the fluid, one needs a mathemati-
cal relation to calculate it. In general, the models of the eddy viscosity
can be divided into three groups depending on the degree of sophistica-
tion, namely, (1) constant values, (2) algebraic relations to the mean
flow property and (3) differential equation representations of the turbu-
lence properties (Refs. 13 and 14),

14
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3.1 CONSTANT VISCOSITY MODEL
The simplest eddy viscosity model is

;% = constant (14)

in which the eddy viscosity is given a constant value throughout the flow
field. This modeling, although crude, can provide approximate solu-
tions when used in the calculation of certain simple flow problems, such
as the far field of a free turbulent round jet. The model is also useful
in the early stage of the development of a particular numerical method
or procedure because the resultant governing equations are the same

as those derived from laminar flows with a constant molecular viscosity.
The only difference is that the eddy viscosity is usually several orders
of magnitude larger than the molecular viscosity. Without the spatial
variation of the eddy viscosity, one can concentrate directly on the sta-
bility or the convergence of a particular numerical method used in the
analysis.

The vorticity equation (Eq. (7)) in the present vorticity-stream
function formulation can be simplified to the following form by using
the constant eddy viscosity model:

"N (Il s m
2x? '"‘} wn’){“ V- ar}*mﬁt

s [_Y_-M]}w

(15)

Equations (14), (15), and (10) were used in the calculation of a planar
diffuser flow field with a fully developed parabolic entrance velocity
profile. The detailed numerical results for separated and non-separated
flows, along with an evaluation of convergence characteristics of the nu-
merical method used, are discussed in Section 6. 1.

3.2 ALGEBRAIC VISCOSITY MODEL

In the algebraic viscosity model for boundary-layer flows, the eddy
viscosity is related to the mean velocity field parameters through an
algebraic relationship. There are two types of algebraic models com-
monly used, namely, a local model and a global model. The former,
such as Prandtl's mixing length theory, relates the eddy viscosity to
the local velocity gradient. On the other hand, a global model such as

15
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the one proposed by Clauser (Ref. 15) relates the eddy viscosity to the
integral quantities such as the displacement thickness of a boundary
layer. The Prandtl's mixing length model is

U
%,—,—I (16)

where £ is the mixing length, In the wall region, the mixing length is
given by Van Driest (Ref. 16) as

L=o041y[1-exp (- 355 [ T)] (17)

where Tw is the shear stress at the wall.

The Van Driest model has been widely used and modified to include
other effects such as the pressure gradient (5p/5x), wall suction, etc.
(Ref. 17). The model has been used to obtain fairly good results for
certain boundary-layer flows (Refs. 18 through 21). It is used in the
present analysis to calculate the velocity distribution for a fully devel-
oped channel flow. The fully developed velocity profile is then used as
the inlet condition for a diffuser flow calculation, For fully developed
channel flows, the total shear stress can be written as

___= (18)
(v+ J’) ’

With the agsumption that shear stress is constant near the wall,
i.e., T =Ty, Eqs. (16), (17), and (18) are used to derive the velocity
gradient:

' _ ot 2
3”* =.n = - (19)
1+[144(0.40 Y E[1-exp (-47/26)]F
where
w Nt up
T
and {(20)
y-u*
y'e -

16
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From the vorticity distribution, given by Eq. (19), the velocity and the
stream function distributions can be easily obtained by numerical inte-
gration.

For more complicated turbulent flows, such as those with strong
adverse pressure gradients and with separation, Prandtl's mixing
length model is not adequate to obtain satisfactory results. Although
extensions and modifications of the model are possible, they usually re-
quire experience in the turbulence modeling of a particular flow problem.
Often, a trial-and-error approach or a numerical optimization proce-
dure is employed to obtain the desired eddy viscosity distribution.

3.3 DIFFERENTIAL EQUATION VISCOSITY MODEL

In the differential equation models, the eddy viscosity (v;) is re-
lated to the characteristics of the turbulent motion, such as the turbu-
lent kinetic energy, which are obtained by solution of additional differ-
ential equations. Two models in this category are commonly used,
namely, (1) the Prandtl's one-equation turbulent kinetic energy model
and (2) the Prandtl-Kolmogorov two-equation model (Ref. 13).

For the Prandtl's turbulent kinetic energy model, the eddy viscosity
is related to the product of a length scale and the square root of the tur-
bulent kinetic energy, i.e.,

e l-Jk (21)

where £ is a length scale. The turbulent kinetic energy (k) is obtained
from a differential equation and the length scale (£) is specified alge-
braically. For simple turbulent flows, several length scale formula
have been proposed (Ref, 13). Unfortunately, the specification of the
length scale still requires experience and, more often, a trial-and-
error approach. Therefore, the method is not general and cannot be
used for complex turbulent flows with ease, Nevertheless, Prandtl's
turbulent kinetic energy model contains more information about the
turbulent motion than does his mixing length theory.

The TKE equation, which can be derived from the Navier-Stokes
equation (Ref. 12), is written as

17
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ak __ e LV ]
Yiax; ~ 2*.‘,[ &5 Lt ) (22)
a7 A% 911 2U;
- w o] )’( 2%j —)

where the summation convention has been used.

Equation (22) contains convection, diffusion, and source terms.
Because the turbulent kinetic energy is dependent on the history of the
turbulence motion, the eddy viscosity model (Eq. (21)) also depends on
the history of the turbulence motion. Examples of turbulent flows with
a strong history dependent nature are flows with separations, flows
with strong adverse pressure gradient, etc.

For the Prandtl-Kolmogorov two-equation model, the length scale
(£) is obtained from a transport equation. For high Reynolds number
regions of the flow where the molecular viscosity effect is small, the
length scale associated with the turbulent kinetic energy dissipation
(e = (k)3/2/4,) is used in Eq. (21) to obtain

: 2
V* = (;u._%' (23)

where CM is assumed to be a constant (0.09) at high Reynolds number.,

Although additional equations for € and k are needed, the specification
of the length scale is completely eliminated which makes the model at-
tractive for the calculation of complex turbulent flows.

3.3.1 High Reynolds Number Two-Equation k-¢ Model

For high Reynolds number, the governing equations for the turbu-
lent kinetic energy and its dissipation are modeled as (Ref. 22)

k-Equation

(B Fo ol R0 32 -5 105]

He (B GRS T (3 + 3} - =0

(24)

18



AEDC-TR-76-159

€ -Equation

€ 2¢ €¢ 2, V2 2 S ¥ 1 2€
i) {215}
(25)

+0,% T[RR8T e (B3} -q E5F -0
where
C,=144 , ¢, =192 and &

The wvalue of constants used follows that of Launder (Ref. 22), and € is
the so-called isotropic part of the total TKE dissipation,

In deriving Eqgs. (24) and (25), it was assumed that the effect of the
molecular viscosity is negligible. The assumption is valid in the fully
turbulent regions at high Reynolds number where the turbulent eddy vis-
cosity (vt) is usually several order of magnitude larger than the molec-
ular viscosity (v). Inside the viscous wall sublayer, however, the as-
sumption is no longer valid because the molecular viscosity does play a
dominant role there. For this reason, a special sublayer formulation
is necessary which can be accomplished, for example, by matching the
solution from the fully turbulent region to an analytical law of the wall
solution. Two types of analytical expressions are commonly used,
namely, a logarithmic law of the wall and a power law velocity profile.
The former is given as

W= v [25(yU"y) +55] (26)

where y is the distance from the wall and v* is the friction velocity de-

fined as 7y /p.

In the present study, the high Reynolds number k- model with the
law of the wall matching is used in the calculation of a conical diffuser
flow field with a fully developed turbulent pipe flow at the entrance.
The results are presented in Section 6. 3.

3.3.2 Low Reynolds Number Two-Equation k-¢ Model
For turbulent separated diffuser flow calculations, the prediction

of the point of separation and the reverse flow field in the separated re-
gion is of major importance. The high Reynolds number k-€ model

19



AEDC-TR-76-159

with the law of the wall matching procedure is not applicable in the sep-
arated flow calculation because Eq. (26) becomes singular at the point

of separation, i.e., v¥* = 'rw/p = 0. In addition the validity of the law
of the wall profile (Eq. (26)) in a flow with a strong adverse pressure
gradient is also questionable (Refs. 23 and 24). Therefore, it is neces-
sary to include the sublayer in the formulation so that the point of sep-
aration can be predicted. In the present analysis, this is accomplished
by the use of (1) a low Reynolds number two-equation k-€ model that
includes the effect of the molecular viscosity, and (2) a coordinate
transformation which stretches the sublayer region to provide many
computational grid points in that region,

For low Reynolds number, C;, in Eq. {23) is redefined in the pres-

ent study as
C=—A
7 3ta+ a/b) (27)

where A = \12k y/v, y is measured from the wall, and a and b are con-
stants. The k-equation becomes

k3 Y v »
CE R SRR P

(V+%) 2% 19x ar r lor
7, IRy .y U oy
¢ o (PG (1o G )
i y K1,
¢v+vt){€” 9'} 0

The last term of Eq. (28) is the total TKE dissipation which consists of
the isotropic and the non-isotropic parts of the dissipation. The
€ ~equation becomes

€ o€ __ | LT 2 %, 5 Y%y
{ax‘+ or‘} (p...;%/q){[u " (sg)]ax LV-ar 'Gi)'?ig_]a_r}
¢ LA AP A U, W3 (29)
*C g kGG S G

2
-c __'___i_.=o

: (‘)*J’t/ei)
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where
C,=144 , G =132[1- 03exp(-R)] , & =11 (30)
and"
R= k'/¢re) (31)

Note that Eqs. (27), (28), and (29) reduce to Eqgs. (23), (24), and (25),
respectively, when v is neglected. The low Reynolds number terms in
Eqgs. (27), (28), and (29) are derived in the following paragraphs.

3.3.2.1 Derivation of the Total Turbulent Kinetic
Energy Dissipation at the Wall

The exact expression for the total turbulent kinetic energy dissipa-
tion is (Ref. 12):

{[( )+( +(%')z]+(:';'+;:') av’ """) au, v }(32)

9t ax

At the wall, velocity gradients such as ju”/ox, su’/a9z, ov’'/ox, av’/ oz,
ow’/8x, and sw’/ 9z vanish, In addition, from the continuity equation,
ov’/ oy also vanishes. Therefore, the total turbulent kinetic energy
dissipation at the wall can be simplified to

Erow = {( (W') } (33)

Equation (33) can be evaluated at the wall in the following manner:

& w=7] (35)+ (357
~p{ (5 (39}
=P O iy
=p{('u_”+-v_l'-;)/$'}

(34)

Y=4%

where y is measured from the wall. Equation (34) can also be written
in terms of the TKE as
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I V{%}yug -P{%}sdﬂ (35)

The last term in Eq. (35) is small compared to the first term near the
wall and, therefore, may be neglected. The final expression for the
total turbulent kinetic energy dissipation at the wall becomes

Epw © zv{—;%}a“% (36)

This term was ignored in the high Reynolds number formulation of the
turbulent kinetic energy equation (Eq. (24)). But, it should be included
in the low Reynolds number formulation in regions where the molecular
viscosity effect is not negligible, In the high Reynolds number regions,
the total TKE dissipation consists of only the isotropic part of the dis-
sipation. The isotropic part decreases rapidly near the wall and van-
ishes completely at the wall. Since the total TKE dissipation term is
needed in the calculation of the low Reynolds number TKE equation not
only at the wall but also throughout the viscous sublayer, a formula that
represents the non-isotropic part of the turbulent kinetic energy dissi-
pation needs to be developed. In the present study, Eq. (36) is used not
only at the wall to represent the TKE dissipation but also throughout the
flow field to represent the non-isotropic part of the TKE dissipation.
The total TKE dissipation is represented by

Er ={e +zv-;—,} (37)

throughout the flow field. Equation (37) appears as the last term in the
low Reynolds number formulation (Eq. (28)).

3.3.2.2 Derivation of the Coefficient (C“) for the
Low Reynolds Number Model

In order to determine the coefficient (Cu) from Eq. (23), one needs
to have a realistic distribution of v; and k2 /e near the wall. Since one
of the ultimate goals of the present analysis is the prediction of sep-
arated diffuser flows, the eddy viscosity models proposed by Mellon
and Herring (Ref. 25), Glusko (Ref. 26), and Alber (Ref. 27) for nearly
separated or separated boundary-layer flows are used. These authors
represent the eddy viscosity in the sublayer region by

22



AEDC-TR-76-159

2

_ A
- y(a-r(A/b)) (38)

%

where A is the characteristic length in the sublayer defined as \I 2k ylv
and a and b are constants, The total turbulent kinetic energy dissipa-
tion is modeled by Mellon and Herring as

e kR )Y A (39)
&= (263 /[ ATyl »

The isotropic part of the TKE dissipation can be obtained irom IEgs.
(39) and (37) as

2
£ = k/(3vA) (40)

Equation (40) can also be written as
-'E‘-f = 3VA (41)

By substituting Eqs. (41) and (38) into Eq. (23), the final expression for
the coefficient (C) is

A
9‘ ) 3(a+ A/b)

(42)

In this study, the value of a is taken to be 1,100, while the value of b is
determined by taking the high Reynolds number limit of Cy, i.e.,

C ~ b _
A-vLarge~ 3 =009 (43)

where the value 0,09 appears to be representative for high Reynolds
number flows (Refs. 28 and 29). Thus, the coefficient (b) determined
from Eq. (43) is

b=o.27 (44)

The function C is plotted in Fig. 1. It should be noted that direct mea-
surement of the dissipation term ¢ is difficult. Thus, the validity of the
analytical model expressions can be verified only through the comparison
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of the numerically computed and experimentally measurable quantities
in turbulent flows.

3.3.3 Discussions on the Present and Launder's Model

There are some basic differences between the present and
Launder's model. The approach used by L:aunder, et al., in determin-
ing the coefficient {Cy) was based on the less general Van Driest form
of the mixing length formula (Eq. (17)) which determined the eddy vis-
cosity distribution in a constant shear Couette flow. The eddy viscosity,
thus determined, was used on the left-hand side of Eq. (23). The
€ -equation was then "adjusted and calculated" so that a reasonable tur-
bulent kinetic energy distribution was obtained in the viscous sublayer
region. Finally, with k and € determined, Eq. (23) was inverted to
provide a preliminary estimate of Cy. The functional form of C, ob-
tained from Eq. (23) was then used to provide the final expression which
is given in Table 1.

During the course of the numerical optimization, Launder found
that an additional artificial term is needed in the € -equation in order to
have a maximum value of the TKE distribution at y+ = 20 as indicated
by experimental data. The final form of Launder's artificial term is
also given in Table 1.

Consider the modeling of the non-isotropic part of TKE dissipation
term. From Table 1, it can be seen that both models use the TKE dis-
tribution (k). For the purpose of demonstration, a typical TKE distri-
bution in a fully developed channel flow is given in Fig. 2, The turbu-
lent kinetic energy reaches a maximum value near the wall and decreases
monotonically toward the wall and the centerline, Since the present dis-
sipation model is directly proportional to the turbulent kinetic energy,
it is always positive. The present model provides a non-zero value at
the maximum TKE location (y:nax)‘ Because the slope of the TKE dis-

tribution vanishes at the peak location, the Launder's model for (e - €)

is zero {see Fig, 2), As a result, Launder s model underestimates the
energy dissipation in the neighborhood of ymax which probably affects the

solution in such a way that both the TKE and its second derivative can-
not reach the experimental value.

With the present model, Eq. (28) becomes

2k, _*
ot (wm( - (V+ vw{“” 3*}"’ (45)
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With the Launder's model, Eq. (28) becomes

2k Ve qouy | 0 (46)
ar (V+3) (ar : “a.,;%){& }

The last term of Eq. (46) represents only the isotropic part of the
energy dissipation. To overcome this difficulty, L.aunder created an
artificial term (Table 1) in the € -equation so that the magnitude of the
isotropic part of TKE dissipation (€) can be increased to a higher level,

4.0 COORDINATE SYSTEMS AND TRANSFORMATIONS

The governing equations introduced in the previous sections must
be solved in conjunction with boundary conditions for the particular flow
problem of interest, The key to the successful use of a given formula-
tion is strongly a function of the coordinate system used and the nu-
merical method adopted in the calculation. Several types of coordinate
systems and transformations may be used depending on the problem to
be solved. Since the governing equations and boundary conditions
usually are discretized in finite difference form and then solved alge-
braically on digital computers, important factors, such as the computer
storage, the computing time, and the accuracy of the solution, need to
be considered in the formulation of a computer program. The size of
the computer storage limits the number of discretized variables one
can use for a particular flow problem. It also limits the accuracy of
the solution because of the finite number of grid points available to de-
scribe the flow field. Naturally, the more the grid points the higher the
accuracy.

4.1 UNIFORM AND NONUNIFORM SYSTEMS

The simplest way to describe a flow field is to use a uniform co-
ordinate system that has equal spacing in each of its coordinates (see
Fig. 3). The advantages are (1) the physical location can be easily
identified which eases the interpretation of the solution, and (2) fewer
calculations are needed because the grid spacing needs to be calculated
only once in a program, In the present study, the uniform system is
used in Section 6.1 to calculate the flow field in a diffuser with a para-
bolic inlet velocity profile. The diffuser geometry used has constant
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width inlet and exit sections which fit the coordinate system nicely ex-
cept at the boundary of the diverging section. The diverging section can
be represented by generating the coordinate lines from the diverging
section so that grid points lie along the diverging wall (see Fig. 3b).
This approach works well when the diverging angle is neither too large
nor too small.

When large velocity gradients occur in the flow field, the uniform
system is no longer adequate to describe the flow. In that situation, a
nonuniform system is necessary. By arranging more grid lines in the
region where large velocity gradients occur (Fig. 3c), the accuracy of
the solution can be improved. But the approach requires experience on
a particular flow problem, and in most cases, the manual arrangement
of the coordinates is inevitable. In addition, the accuracy of the re-
sult from a nonuniform system is difficult to interpret in terms of grid
spacings. Nevertheless, the nonuniform coordinate system is highly
flexible in the early stages of program development so that the basic
features of the solution can be obtained. This approach was adopted
for the calculation of a turbulent separated diffuser flow with an algebraic
turbulence model in Section 6. 2,

4.2 COORDINATE TRANSFORMATION
4.2.1 Body-Aligned Coordinate Transformation

For diffusers with a small diverging angle, it becomes very diffi-
cult to use the nonuniform coordinate system such as the one shown in
Fig. 3c. A body-aligned coordinate system is essential for a proper
solution in this case, and it also works well for curved walls., The co-
ordinate transformation used in the present analysis is

< = _r
= - em——— (47)
X=X , T 300

where S(x) represents the lateral coordinate of the diffuser wall., Equa-
tion (47) is a linear stretching function. The corresponding transforma-
tion factors are

X 2X ? | 2F -~ St
—_—= ] —_ —_— — ez =
X T oar > 2t 8w X T am (48)

where S{x) represent dS(x)/dx. The transformation given by Eq. (47)
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transforms a physical domain of a diffuser into a rectangular shape (see
Fig. 4). The governing equations developed in the previous sections are
transformed into the X, T plane by using the chain rule differentiation,

a._ 0 ATya . ¢ ("‘%'

X X r , ar ‘ar‘ar

o 2 oF & sFad (49)
%t %2 2% 9X oT ox’/ aF2

? ( (

9xar g'a' ] Ol'

Although the transformed domain shape becomes simple, the num-
ber of terms in the governing equations grows. In the present analysis,
Eq. (47) is used to transform an 8-deg conical diffuser into a rectangu-
lar shape. The computation was then carried out in the transformed
domain. The results are presented in Section 6, 3.

4.2.2 Coordinate Transformation with a Sublayer Stretching

The existence of a thin sublayer commonly found in the turbulent
wall boundary layer makes it very difficult to solve the whole problem
in the physical domain with a uniform coordinate system. It becomes
necessary to stretch the sublayer region in such a way that the sharp
gradient in flow variables can be reasonably resolved. In the present
analysis, a composite coordinate transformation is used to provide
good resolution throughout the flow field. For a fully developed channel
flow velocity profile, the sublayer velocity distribution is a linear func-
tion of the distance from the wall, i.e

+ + 50
=g (50)

where ut = u/v* and y+ = y v¥/y. The velocity gradient of the sublayer

profile, i.e., du/9y = v#2 [y, provides the basic stretching factor for
8¥/ oy in the coordinate transformation given by

'3=%"“"P'5 , 0¢4sy, (51)

where y is the coordinate measured from the wall with y = 1 at the
centerline, ¥ is the stretched coordinate, and o, 3, and Yo are parameters
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in the transformation. In the core region, the stretching factor (3¥/5y)
is gradually changed to unity at the centerline where no stretching is
needed because of the low gradients in the velocity profile. The smooth
transition is provided by the core transformation function

y=cq+nfcosh(F-T)]+F, g89¢10 (52

where c and F are parameters in the transformation., By proper match-
ing of the two transformation functions, one can determine the coeffi-
cients and thus provide a continuous transformation for the whole flow
field, A typical coordinate transformation given by Eqs. (51) and (52)
is shown in Fig. 5. The detailed derivation of the parameters used in
the transformation is given in Appendix A,

The ability of the coordinate transformation to provide good resolu-
tion in the transformed coordinate plane is demonstrated by considering
the velocity and the turbulent kinetic energy distributions in a channel
flow shown in physical coordinates in Fig. 6a. It can be seen that large
gradients of the velocity and turbulent kinetic energy profiles exist near
the wall., Poor resolution can be expected in the sublayer region when
one attempts to use a uniform coordinate system to describe the pro-
files. However, when Eqgs. (51) and (52) are used to stretch the sub-
layer and the core region, sharp gradients in velocity profiles diminish
as indicated in Fig. 6b., Thus, the detail velocity and turbulent kinetic
energy profiles can be adequately described in the transformed coordi-
nates. For this reason, the coordinate transformation plays an impor-
tant role in obtaining an accurate numerical solution.

4.2.3 A Complete Coordinate Transformation for a Diffuser Flow

Both the body-aligned coordinate transformation and the sublayer
stretching are necessary to provide a good spatial resolution through-
out a diffuser flow field. The complete coordinate transformation is
achieved first by mapping the diffuser shape into a rectangular domain
then followed by a sublayer stretching (see Fig. 7). The complete
transformation is given as

X=X (53)

In the sublayer region,

r= S(x){l- % t‘"(e (?:nax- F)}

-~y ~ ~
£
, Fo$T & Fpoy (54)
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In the core region,

r= S(*){l-[C(Fm“"F)"'ln[COSh(;':'F)]"'F]} .

Lo d

0<F<F,
where r is measured from the centerline, S(x) represents the diffuser
wall shape, 'i-'o is the transformed matching location, and ¥ is the

max
transformed wall shape. The complete transformation factors are:

(55)

In the sublayer region from Eq. (54),

L
(

?

2 ar.y 4!

ax =" (Fr)sm
X

N~

r
S

2
% Zs( ) i) CoS[(S(?'m”-?)] Si“[P(?m“'F)]
::xr: == g:‘; )"’ 28 t‘"[@(rmax r)]( (56)
S(x) 2
-( ){S""sm S >) }
L
28
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Su) (ar)
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In the core region, from Eq. (55),

|
(x)[c+tnnh(r.-r)]
S’(:)g%( .
__) sech'<?;-r)
[c + tanh(F,-F)]
)( __sech*(F-F) Sfx) (i
ax [C+1'o.nh(r,-r)] Sx)‘ar

T o AF ot S \2
X = s( s(x)(axar) ( )[S()s“) (St)) l']

DD vl V]
l.,'ixl-n-l -

(57)
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The transformation factors given by Eqs. (56) and (57) will be used in
the next section to derive the governing equations in the transformed
coordinates. In the present analysis, the coordinate transformation
given by Egs. (53), (54), and (55) was used in the calculation of sep-
arated and non-geparated diffuser flows. The results are presented
in Section 6. 4.

5.0 FINITE DIFFERENCE FORMULATION AND NUMERICAL
SOLUTION PROCEDURE

The governing equations and the turbulence models presented in
the previous sections are a system of coupled non-linear partial differ-
ential equations. The system cannot be solved analytically and, there-
fore, must be solved by numerical methods. The system of equations
becomes even more complicated when it is written in the transformed
coordinates such as those described in Section 4, 2,3, In the present
analysis, a standard form of the transformed equations is first de-
rived to represent the common features of the governing equations., A
general finite difference formulation is then developed so that stable
and convergent solutions can be obtained for a wide range of Reynolds
number. The stability limitation associated with the central difference
scheme and the accuracy problem inherent to the up-wind difference
scheme are avoided by the use of the locally evaluated decay functions
in the finite-difference formulation,

5.1 COMPLETE GOVERNING EQUATIONS IN THE TRANSFORMED
COORDINATES AND THE STANDARD FORM EQUATION

For the separated or non-separated diffuser flow calculations,
the coordinate transformation given by Eqs. (53), (54), and (55) is
necessary to provide adequate resolution in both the core and the vis-
cous sublayer region. The vorticity-stream function formulation and
the two-equation low Reynolds number turbulence model written in the
transformed coordinates are:
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Vorticity Equation (Q):
'm en aF 2 | 2 'ar (LY
'ax‘ ar‘[( —)] -(1)+;>){u-2[ X ax) ]}

o) DY) {[V Z(ﬂ%( ) (V"’)’t)]( )+[u 2( +(3l" 971;)](

?X ar
_(,u,g‘)[(w)u",)]} L (:;)3 2 vsfLs ;:)r’e(or) m;:u}wm
{M){::f (3035 ax)or j:E{ GHIE 3% (o8
(%;);’:]n(— -[— ) (2 (224} 4 ”*{(:,: ':,:)r'"(
HaghE)s (:;‘;,.)[-ﬂ- 7 ::>,F>1} o ()
['}:‘-(F)*;f*(%) 2 J+a(2x )[”( ::),-r-)]}} 0
Stream Function (y):
:.i": w[( )] : [:ﬁ-;’:’;] aurs( )+2{;;):;K srfn =0
Velocity Recovery (u, v): e
U= TI" (a_f)__‘if (60)
ve- L[ 2%+ 2D (61)
Turbulent Kinetic Energy Equation (k):
:;‘-kz :'Fk‘[( :::)] _(_“_;_){u 'ajx' (er ﬂ’t]}
- - 2265 -F a1 + [u- 3+ G :?)](
-(vww[(u,),s(ar, ]}3? + z( 2"1 + (62)

axar (vn%){
+(a;)::-l] +[av{zr)] +5(= )}ﬂ_‘% ).,,W +(9r 'av]}

3*)
o Sk 201,
(th){ % g f k=0

where y is measured from the wall,
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Turbulent Kinetic Energy Dissipation (¢):

[(or) ( )] m{ [Qx(c') (“ )]}:—‘,',"

ﬂt

>°< )] (E)- (v+4/sz>[(w)+l,,.)]}°‘ rlh 2

c |< o v +8(L)
' —L——(wvt/ez { [( (,x 2y [ LD+ 8]

u N
+[2 (30 + =1 - -6 ¥ k el °

The Prandtl-Kolmogorov eddy viscosity formula is

ka
= _— 6
®=Cug (64)
The coefficients (Cy, Cg, o, and Cu) are given as
C,= 144 , C, =1.92[1~0.3exp(-RDY ], € = .| 5)

Ge=A/[3(1100+4/0.27)]

where

A=fzk $/¥ |, R=k*/(ve)

The equations are lengthy and complicated, especially, when the
transformation factors are calculated from Eqs. (56) and (57)., To sim-
plify the analysis, Egs. (58), (59), (62), and (63) can be cast in a
standard form which retains the basic features such as the diffusion,
the convection, the production and the dissipation of a flow variable.
The standard form derived is

{a.a:ﬁ +0, } {b,a§+5,z¢}*d =0 (66)

where ¢ represents the flow variables, i.e., @, ¥, k, and €. The cor-
responding coefficients (a;, ag, by, bg, and d) are given below for each
of the variables, @, ¢, k, ande€,
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s

d = “9:33 'I'S{
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Q=1
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k-equation:
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5.2 A GENERAL FINITE DIFFERENCE FORMULATION WITH
DECAY FUNCTIONS

The partial differential equation (Eq. (66)) can be written as

L»{4>} +d =0 (71)

where L represents a differential operator. Equation (71) written in
a conventional finite difference form is

L.}{d:} +dg = (72)

where L, is a finite-difference operator and e represents the
difference

e=[ Lé}+d ]-[L{d}+4d] (73)

In the present approach (Ref, 30), the finite-difference equation is
written as

Ly{d,a}edg =¥ (74)

where the additional function (G) is named as the '"decay function"
which is used to minimize the truncation error (y). The expression
for the decay function (G} is derived in Appendix B.

The present finite difference formulation of the standard Eq.
(66) is

a { l.ﬂ).’ ¢'-)J ¢ I ‘ bl) ¢l+|r.l =) }
! 8: GL a’l 28§ (75)
+ a {¢C’Jf|-z¢l:pj +¢G’.j" } _(_b_l) ¢GDJH ¢.-I.|"', }+ d . =o
2 5F2 G & 28T b
where the decay functions (G; and Gj) are determined from
R, 2R, !
GL=(-:—_t)[|-z(e‘-|)](e ‘-1) (76)
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_, 2 Ry zRJ’__
GJ- (‘E})["Z(e -l)](e ') (77)
and the grid Reynolds numbers (R; and Rj) are defined as

T @
The decay function is shown in Fig. 8. For the conventional central
difference scheme, the decay functions (G; and Gj) are set equal to
unity, i.e.,

a'l{ d>|:-H 2d z¢l-:_l ¢l'."h.i._ ( b, ) ¢¢+} ») ¢|‘,-l.j}

£x? 286%
+Q ¢(v:.H'l 2¢h.l "'¢c».l- ) c.;m 4’c.j-t +d; =0 (79)
2 §T2 25T Ly =
The well-known stability limitation for Eq. (79) is (Refs. 31 and
32):
bI ’bz ~ <

which for the conventional central difference scheme severely limits
the grid sizes (6% and 6T) when the coefficients (by/a; and bg/ag) are
very large. In order to obtain a stable and convergence solution, the
total number of grid must be increased when the small grid meshes
are needed, which creates computer core storage problems. The
stability problem is avoided by using the decay functions given by
Eqgs. (76) and (77). Equation (75) is written as

) { i+l ,| Zbi-rj +¢£"..i _ G ) |,+I.,| 4’1‘.—':5 }
8% 2 85X (81)
+( _a_z_ ) ¢I-,j+| 2¢£,J ¢'::J° ( b:. ) ¢|.,,|+I ¢‘JJ" + d =0
G. s"‘.' 2 J 28 r l;J

Equation (81) is similar to Eq. (79) except that the coefficient
(ay is replaced by a;/G; and by/a; is replaced by (b1/a;1)Gj, etec.
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Therefore, the stability limitation (Eq. (80)) can be written as

b| g £ b" . 4 < (82)
ETG'L)E"‘Z , azaj)shz
After re-arrangement, Eq. (82) becomes
2 P
G; € R , G R; (83)

which is the upper bound for G; and G; shown in Fig. 8. It can be seen
from Fig. 8 that the decay functions (&j) given by Eq. (77) is lower
than the upper bound of the stability limitation. Therefore, there is

no stability limitation on the grid size (6% or §%) with the present
general finite difference formulation because Eq. (83) is automatically
satisfied with Gj, G; determined from Egs. (76) and (77). The uncon-
ditional stability is achieved because additional analytical information
has been incorporated into the derivation of decay functions (Gj and

G;) (Appendix B). This characteristic of the present formulation makes
it possible to solve the complicated equations given by Eqs. (66)
through (70) and obtain stable convergence solutions.

The calculation of the decay functions (G and Gj) can be simplified
by the following approximation,

G = 1.0- 0,625(R). , IRI1€2

- | (84)
= 'I_RT'-—(R)I » IRI>22

for both Gi and G;, and R; and R

The approximation (Eq. (84)) is
also shown in Fig. 8. :

j-

It is also interesting to examine the high grid Reynolds number
limit of the present formulation. When the grid Reynolds number is
large, the decay function can be approximated as

2
G = m (85)
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By using Eq. (85), the finite difference formulation (Eq. (81)) becomes

( ‘Rd al) l.'l-l,j- ¢L»J ¢|.-|..~,| ( by 2 4"|.+hj-¢l.'-bi}
2 sx* ay IRl 258%
(IRsla.){¢a,j+|-z¢¢,j+4>c,j-:_ b 2 $i, 0= Fissl }+d- =0
2 8Tt ax IR;)l’ ~ 28F b

(86)

For Ri,RJ. > 0 and by using Eq. (78), Eq. (86) can be written as

¢ diyi =

- bi -‘ + b, —=1 byt } +d;: = (87)
{ sx t8F Lj =0

Equation (87) is the up-wind difference formulation of the high grid

Reynolds number inviscid equation:

-{ :: + b, :}-rd =0 (88)

which may be derived directly from Eq. (66) by neglecting the viscous
terms. Note that Eq. (88) is valid outside the boundary layer region.
Thus, the present finite difference formulation approaches the con-
ventional central difference scheme at low grid Reynolds number but
gradually changes into the up-wind difference scheme as the local
grid Reynolds number (R;, R;) increases. This transition is provided
by the decay functions (G; and G;), which are determined through the
use of local analytical solutions (Appendix B).

53 NUMERICAL SOLUTION PROCEDURE

When the finite difference equation (Eq. (75)) is applied at each
grid point for each flow variable, a large system of algebraic equa-
tions is formed. The system of equations and the corresponding
boundary conditions are solved in the present analysis by a standard
Gauss-Seidel point-iteration scheme (Refs. 33 and 34). This approach
has several advantages, namely, (1) a relatively small amount of
computer storage is required (one location for each variable), (2) the
program is easily written, and (3) under- or over-relaxations can be
easily incorporated so that the rate of convergence can be optimized.
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The general solution procedure is shown in Fig., 9. The iteration pro-
cedure begins with an initial guess of the flow field which can be obtained
by assuming that the flow profiles are similar to the inlet profiles. The
inlet profiles must be specified, as well as the wall geometry and
boundary conditions, The flow-field variables and boundary values are
updated point-by-point from iteration to iteration until convergence is
reached, '

6.0 RESULTS AND DISCUSSION

In this section, the techniques which have been developed are
applied to the computation of turbulent internal flows. A series of
computations is discussed in the order of increasing complexity,
First, solutions for planar diffuser flows, with constant eddy viscos-
ity, are described. The solution of a conical diffuser flow, with
algebraic eddy viscosity models and a wall matching procedure, is
then presented., Because of limitations in the algebraic eddy viscosity
models, solutions obtained with the two-equation turbulence model and
the wall matching procedure are then presented. Finally, the two-
equation turbulence model, along with the numerical technique for
computing the wall region, is applied to planar channel and planar
diffuser flows.

6.1 SOLUTION FOR A PLANAR DIFFUSER FLOW WITH A
CONSTANT EDDY VISCOSITY

The formulation presented in the previous sections was applied
to the calculation of flow in the planar diffuser shown in Fig. 10,
The complete finite difference formulation with a constant eddy vis-
cosity is given in Appendix C. The exit to inlet area ratio is two,
and the diffuser half-angle is 26. 5 deg. The nonuniform inlet veloc-
ity is represented by a parabolic profile for a fully developed channel
flow. The inlet station is placed one inlet channel width ahead of the
diverging section so that the upstream influence of the diverging sec-
tion on the inlet profiles is negligible. A long exit section (8 inlet
channel heights) is used in the calculation to provide enough distance
for the flow to reach a parallel flow condition, i.e., 8/8 x = 0. The
exit section, although not always existing in diffuser applications, is
convenient for computational purposes because a parallel flow bound-
ary condition can be easily incorporated in the program.
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Six cases were calculated which correspond to the Reynolds num-
bers, based on the inlet centerline velocity (U,), the channel width
(h), and (v vy of 6, 60, 120, 600, and 3,000, The variation of the
Reynolds number was easily achieved by changing the value of the
eddy viscosity. The solutions are also applicable to laminar flows if
(v +vy) is taken to be v,

The calculated centerline velocity distribution (normalized by the
the average inlet velocity (U) is shown in Fig, 11, At low Reynolds
number, the centerline velocity remains at a constant value of 1.5 in
the inlet section except in the region near the diverging section. The
velocity begins to decrease in this region before the flow enters the
diverging section. The upstream effect is related to the elliptic
nature of the flow. The disturbance created by the turning of the
flow in the diverging section propagates upstream to cause the flow to
slow down. The magnitude of the '"upstream effect" decreases as the
Reynolds number increases. At a Reynolds number of 3,000, the
centerline velocity varies only slightly from the inlet to the exit. The
physical mechanism of the changing behavior of the flow in the diverg-
ing section as a function of Reynolds number can be understood more
easily by examining the velocity profiles and streamline patterns
given in Figs., 12, At low Reynolds number, the streamline follows
the wall smoothly (Fig. 12a). At Re = 60, the flow separates from
the wall at x/h =1, 5. In the separated flow region, the reverse flow
velocity is very low (Fig. 12b), The point of separation moves up-
stream toward the inlet corner of the diffuser as the Reynolds number
increases (Fig. 12c). It is interesting to note that, once the separation
point moves to the upstream corner, the central flow becomes jet-like,

The centerline and the wall static pressure distributions are
shown in Figs. 13 and 14, respectively. Direct comparison of the
two sets of data shows very little vertical pressure gradient. The
linear pressure drop in the constant area inlet section corresponds
to fully developed channel flow (Ref. 35). Since the flow near the wall,
in general, turns more than the flow near the centerline, the pressure
distribution across the diffuser shows a larger nonuniformity at the
inlet corner section than at any other section. At low Reynolds num-
ber, the pressure rises sharply in the diverging section, but the
rise tends to diminish as the Reynolds number increases. For the
jet flow cases, Re = 3,000 for example, the pressure remains con-
stant which is typical of completely "'stalled" diffuser flows,

To investigate the quality and accuracy of the present numerical
formulation, a conventional upwind difference formulation was also

40



AEDC-TR-76-159

employed in the solution of the planar diffuser problem, The six test
cagses were calculated by using the upwind difference scheme to 400
iterations. The final residue ratio is well below 1 x 107, The six
cases were re-calculated by using the upwind scheme for the 200
iterations, followed by the present formulations to 400 iterations.

A typical centerline velocity distribution is shown in Fig., 15. The
upwind difference scheme predicts a faster velocity decay than the
present method, Typical behavior of the two solution techniques is
indicated in Fig. 16 by the history of the centerline velocity conver-
gence at x/h = 2,0, The difference between the two solutions becomes
most pronounced at Re = 120, As would be expected, the difference
gradually diminishes with increasing Reynolds number, At low
Reynolds numbers, i.e., Re - 0, the difference between the two
schemes also approaches zero because the contribution from the con-
vection terms vanishes and the flow is completely controlled by the
diffusion mechanism,

The convergence should be considered in the evaluation of any
iteration process. The velocity residue ratio (AU/U) is shown in
Fig. 17 in terms of the iteration number, The upwind scheme was
used for the first 200 iterations, The residue ratio reached a value
below 1 x 1076 in 150 iterations. The change in numerical method to
the present scheme with decay functions at the 200th iteration causes
the residue ratio to rise. But it decreases rapidly within the next 100
iterations. The solution obtained at the end of 400 iterations is essen-
tially the converged solution. Once the Q-y solution is obtained, the
pressure equation (Eq, (13)) is solved iteratively, The rate.of con-
vergence of the centerline pressure at x/h = 2 is shown in Fig, 18,
One possible explanation for the slow rate of convergence compared
to that shown in Fig, 17 is that the boundary condition for the pressure
equation is of the gradient type which usually requires many iterations
for convergence,

6.2 NUMERICAL SOLUTION OF A CONICAL DIFFUSER

The calculations made with a constant viscosity model have been
useful to define the nature of the flow-field solutions and to gain
experience with the numerical method. However, real turbulent
diffuser flows are poorly described by a constant eddy viscosity; in
a real.flow, the eddy viscosity vanishes as the wall is approached.
In this section, algebraic models are used in the calculation of the
separated flow in a 23-deg conical diffuser. Two eddy viscosity
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models are used, namely the Prandtl's mixing length model and a
"convective'' model, The region very close to the diffuser wall is
analyzed by the use of the law of the wall; therefore, the boundary
condition for the numerical solution of the remainder of the flow field
is an effective slip velocity distribution along the wall. The slip
velocity is related to the local skin friction coefficient by the law of
the wall, so one can assume either a skin friction coefficient distribu-
tion or a slip velocity distribution,

The geometry of the diffuser and the computational grid are
shown in Fig, 19, A nonuniform grid system is used to provide
adequate flow definition near the wall. The numerical formulation
for a nonuniform grid system does not pose any serious difficulties,
except that simple approximations for the decay functions, such as
given by Eq. (84), are not readily available. Therefore, the decay
functions must be evaluated at every grid point with exponential
functions. The derivation of the decay functions for a nonuniform
grid system is given in Appendix B,

The mixing length model used in the present analysis is

2 13U
V=1 ],;g (89)

where £ = 0,4 y in the region near the wall and £ = 0,09 § for the
remainder of the flow. The thickness (6) is an assumed function of
x. The wall slip velocity was specified so that separation was fixed
at x/D = 0, 619. Predicted wall and centerline pressure distributions
are shown in Fig. 20, The wall pressure drop in the diffuser inlet
section is realistic, but the pressure distribution downstream of
separation is unrealistic in that the wall pressure reaches a maxi-
mum and then decreases. This unrealistic behavior of the pressure
distribution is attributed to the eddy viscosity model., The mixing
length model, with a rather conventional specification of the length
scale distribution, cannot provide an adequate solution for the flow
downstream of separation,

More reasonable flow-field solutions can be obtained by specify-
ing a "convective'' model, which approximately includes the tendency
of the viscosity to be convected along streamlines (Fig. 21). Wall and
centerline pressure distributions computed with the convective eddy
viscosity model are shown in Fig. 22; the unrealistic peak in the
pressure distributions has been eliminated. The predicted distribu-
tion of the axial component of velocity is compared with experiment
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(Ref. 36) in Fig. 23, A comparison of the predicted and experimental
wall pressure distributions is shown in Fig. 24, along with the assumed
distribution of the wall slip velocity. The experimental results are
reasonably well predicted,

In the results which have been discussed, the wall slip velocity
distribution was held constant. The feasibility of relaxing the slip
velocity distribution as the flow-field solution is relaxed was investi-
gated. A smooth converged wall slip velocity distribution can indeed
be obtained as long as the separation point is specified. And, in
principle, one can iterate on the location of the separation point. But
in practice, the logarithmic wall region profile becomes singular at
the separation point, Perhaps another wall region profile, such as a
power law, could be used in the vicinity of separation. But the validity
of any assumed profile in the vicinity of separation is questionable,
Clearly, an adequate solution requires that the equations of motion for
the wall sublayer be solved along with the solution of the remainder of
the flow field. A complete numerical solution requires a low Reynolds
number turbulence model and coordinate stretching in the sublayer.

The results presented in this section, although not predictions in
the true sense of the word, show that accurate flow-field solutions
can be obtained if reasonable eddy viscosity and wall slip velocity
distributions are assumed, But adequate predictions of the entire
flow field requires a turbulence model which takes into consideration
that the turbulence is convected by the mean flow field.

6.3 NUMERICAL SOLUTION WITH A HIGH REYNOLDS NUMBER
TWO-EQUATION k-¢ MODEL AND A WALL MATCHING PROCEDURE

In this section, the two-equation k-e model is used for the flow
outside the wall sublayer, while the wall slip velocity boundary con-
dition is retained, The purpose of this study was to validate the
k-e¢ model for the high Reynolds number portion of the flow.

6.3.1 Numerical Solution for a Fully Developed Channel Flow
with a Wall Matching Procedure

The detailed numerical formulation for the channel flow is given
in Appendix D. It is commonly known that a region described by the
law of the wall exists in a turbulent boundary layer when the Reynolds
number is high. The velocity profile is described by the simple
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logarithmic law (Eq. (26)). The existence of the "law of the wall
region'' provides a birdge between the sublayer and the numerically
calculated core region, The basic criterion which allows the use of
Eq. (26) in the commonly valid region is that both the velocity (u)
and the friction velocity (v*) must be continuous at the matching
location (y,). Since Eq. (26) contains two unknowns (u and v*), one
of them, v* in this case, must be determined iteratively so that
continuous solution can be obtained. The determination of v* re-
quires the additional assumption that the shear stress is constant
from the wall to the matching location., The validity of this assump-
tion and its effect on the accuracy will be discussed below.

There are two methods for determining the friction velocity;
the direct and the indirect:

In the direct shear stress determination, the friction velocity
v¥ ig calculated from

v*sT/R ={T/s I,o’"J vt-;:l;- ,,, (90)

at the matching location (y,). The velocity gradient (3u/98y) and the
eddy viscosity are determined numerically from the core region
solution., This simple and straightforward method, unfortunately,
does not provide accurate determination of the friction velocity be-
cause both the eddy viscosity (v,) and the velocity gradient must be
determined iteratively, As a result, the value of the friction veloc-
ity (v*) fluctuates from iteration to iteration. Hence, the velocity
determined from Eq, {26) does not give a smooth convergent value,
The other factor which affects the accuracy of the numerically deter-
mined velocity gradient (9 u/5 y) is the grid size. Coarse grid sizes
can have a significant effect on the numerical value of 9u/gy be-
cause large velocity gradients normally exist in the matching region,
Thus, it is better to replace the direct method with the indirect
method.

In the indirect friction velocity calculation, the method uses two
grid points in the matching region to determine the correct match-
ing condition for u and v*, First, Eq. (26) is applied to a point at
(yo + 8y) to determine v* iteratively as

n
wnel) .t (91)
v ‘{u/fz'”’”(""/”)+5'5]}g=(5.+$‘4> ,
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where n is the iteration number. With v determined, the correct veloc-
ity at the matching location is calculated from

U, = u*{z,sh(g.v%)w.s}g’, ,gozspeci-ﬁed, (92)

This method does not require the evaluation of the eddy viscosity (vy)
nor the velocity gradient and thus eliminates the unnecessary fluctua-
tion in determining v* and ug. The method has been successfully
employed to obtain convergent solutions for the channel flow and the
8-deg conical diffuser flow described in Section 6, 3. 2,

In addition to the boundary conditions for u, and v*, one needs
to have boundary values for the turbulent kinetic energy and its
dissipation, To determine the turbulent kinetic energy (k) at the
matching location, it is usually assumed that the production of the
turbulent kinetic energy is balanced with the dissipation, i.e.,

(au) 3 (93)

By using Eq. (93) and the Prandtl-Kolmogorov eddy viscosity formula
(Eq. (23)), one obtains

2 2
k= J 37) /5 V2N (94)

Similarly, by combining Eq. (93), the law of the wall (Eq. (26)), and
the definition of the shear stress (7), one can determine €, as

U T, U 3
£, =0 (25 = CyZh = v* 2;” )= 25X (g5

The numerical solution for a fully developed channel flow was
obtained with a standard Gauss-Seidel iteration procedure, At the
end of each iteration, the boundary condition at the matching loca-
tion is updated by using Eqgs. (91), (92), (94), and (95). The initial
guess is provided by the logarithmic law of the wall. The initial
viscosity is calculated from the Prandtl's mixing length theory
(Eq.' (16)). The distribution of the mixing length is obtained from

L
- 4— -
s 0,1 0,08 (i Sh

sh (96)
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which is the Nikuradse's formula for pipe flow. The initial turbulent
kinetic energy and its dissipation are calculated from

U
k= ’4'('3'-5')/@ (97)
and
kz
€ =G ey (98)

The computation was carried out with 51 grid points,

In the iteration procedure, the eddy viscosity was held constant
for the first 700 iterations so that the distributions of the turbulent
kinetic energy and its dissipation can be brought to a convergent
state, The Prandtl-Kolmogorov eddy viscosity model is used there-
after with an under-relaxation factor (n) of 0.1, i.e.,

y(h+l)= _ n ) -tz(m_n (99)
t -0% + (G ¢)

The convergence of the vorticity at the matching location is shown
in Fig. 25 for a Reynolds number of 30, 533 based on the centerline
velocity (U.) and the half channel width (h). The solution proceeded
through 1, 200 iterations. The fairly constant value of the vorticity
indicates that the solution has reached a steady value. The calculated
velocity profile is shown in Fig, 26, Agreement with Laufer's ex-
perimental data (Ref, 37) at Re = 30, 800 is excellent. The match-
ing location specified in the calculation was y, = 0,06, The calculated
wvelocity profile near the wall follows closely the law of the wall, A
small deviation from the law of the wall profile occurs near the cen-
terline so that the symmetry condition can be satisfied. The log-
arithmic law of the wall does not satisfy the symmetry condition.

The calculated turbulent kinetic energy distribution across the
channel is shown in Fig. 27. The maximum TKE occurs at the match-
ing location where the profile closely follows the experimental data by
Clark (Ref. 38). The present solution slightly overpredicted the tur-
bulent kinetic energy near the centerline., In general, however, the
agreement is good.,

The calculated shear stress distribution is given in Fig, 28,
The profile is fairly linear as it should be for a fully developed
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channel flow, For a linear shear stress distribution, the shear
stress at the matching location is always lower than that at the wall.
The difference can be minimized by making the location closer to the
wall. In general, this can be achieved only by increasing the Reynolds
number of the flow since the matching location must be outside the
sublayer in order to use the law of the wall,

6.3.2 Numerical Solution of an 8-deg Conical Diffuser Flow
with a Fully Developed Inlet Velocity Profile

One of the few experimental investigations of diffuser flow field
is reported by Okwoubi and Azad (Ref, 39), Velocity distributions
were obtained at various stations in an 8-deg conical diffuser. The
inlet condition of the experiment is a well-defined fully developed
pipe flow profile, which can be easily represented by the present
numerical procedure. In the present numerical calculation, the
inlet profile is specified through the use of the Van Driest formula,
The inlet condition was allowed to relax to the self-consistent fully
developed pipe flow profile in the iteration process. A coordinate
transformation is necessary to map the diverging section and the tail
section into a constant diameter pipe., The calculation is then per-
formed in the transformed plane, The detailed numerical formulation
of the governing equations is given in Appendix E, The diffuser
geometry is shown in Fig, 29,

The calculated velocity field in the 8-deg conical diffuser is
shown in Fig. 30. The development of the velocity profile from that
of a fully developed channel flow into a free shear profile is clearly
demonstrated in the figure, The change in the turbulent flow
behavior can also be seen in Fig. 31 in terms of the turbulent
kinetic energy distributions at the inlet and a far downstream station,
At the inlet station, the TKE has a maximum value at the core-
sublayer matching location near the wall and monotonically decreases
to the centerline. On the other hand, the maximum TKE appears in
the middle of the diffuser at a far downstream station which is typical
of results associated with a free shear profile, In Fig., 32, the
turbulent shear stress distribution is also given at the two stations.
The linear shear stress distribution at the inlet gradually changes
into a sine function profile of a free shear layer at a far downstream
station. The location of the maximum shear stress in the diffuser
diverging section is shown in Fig, 33. The predicted position of
maximum shear stress agrees fairly well with the experimental data
of Ref. 39 indicating that the turbulence transport is well modeled in
the present numerical solution. In Fig. 34, the centerline velocity
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distribution in the diverging section of the diffuser is also shown to
agree well with experimental data, The predicted value, in general,
is slightly lower than the experimental value, but the experimental
data show some scattering especially in the middle of the diffuser.
A comparison of the experimental and predicted velocity profile
across the diffuser is shown at four stations in Fig. 35. The agree-
ment between the experiment and theory at the inlet and at the

x/D = 5,95 is excellent. At the intermediate stations, however, the
predicted centerline velocity is about 3 percent lower than the data,
This discrepancy was probably caused by the wall matching procedure
near the wall. The experimental data show that the velocity profile
near the wall in the diverging sections is not represented by the log-
arithmic law of the wall, In the present approach, since the stream
function is used, a slight overprediction of the wall slip velocity in
the diverging section can be magnified through the (1/r) factor
associated with the axisymmetric flow formulation (Appendix E),

Calculations for the 8-deg conical diffuser flow were performed
with 41 lateral grid points across the flow, which is considered more
than adequate to provide accurate numerical solution. The program
developed also can be applied to variable shape 2-D or dxisymmetric
channel flow problems.

6.4 NUMERICAL SOLUTION WITH A LOW REYNOLDS NUMBER
TWO-EQUATION k-¢ MODEL

The k-¢ model, along with the wall matching procedure, has been
shown to yield reasonable results for flows in which the law of the wall
is applicable. However, as pointed out in Section 6, 2, the validity of
the law of the wall is questionable in the vicinity of the separation
point, In order to avoid the problems associated with the law of the
wall, the whole flow field including the sublayer region is solved by
the finite difference formulation so that the point of separation and
the separated flow field can be predicted. The numerical formulation
of the whole flow field requires the use of the low Reynolds number
version of the k-e model as well as a sublayer coordinate stretching
technique,

6.4.1 Numerical Results for a Fully Developed Channel Flow

The numerical formulation of a fully developed channel flow with
a low Reynolds number two-equation k- model requires the sublayer
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coordinate stretching to provide adequate resolution through the flow
field. The detailed finite difference formulation of a fully developed
channel flow is given in Appendix F.

" The velocity profiles with Reynolds numbers (Uh/v) ranging from
1,700 to 207,000 are shown in Fig. 36. In the sublayer region, all
velocity profiles follow the linear velocity distribution, i.e., Ut = y"',
As the Reynolds number increases, the velocity profile gradually
approaches the law of the wall in the core region. The velocity pro-
files in the physical coordinate are presented in Fig. 37. The profile
shape changes from near parabolic at the low Reynolds number to a
fuller profile at higher Reynolds number, At Reynolds number 1,657,
the profile agrees well with experimental data of Patel and Head
(Ref, 40). Results at higher Reynolds number also agree well with
Laufer's data (Ref, 37).

The turbulent shear stress distribution is given in Fig, 38, At
high Reynolds number, the turbulent shear stress distribution
approaches the linear profile of the total shear stress because the
contribution from the molecular viscosity is small, The maximum
turbulent shear stress also appears near the wall, As the Reynolds
number decreases, the location of the maximum turbulent shear
moves away from the wall and deviates from the linear distribution
of the total shear stress because of the significant contribution from
the molecular viscosity. The present calculated shear stress distribu-
tion at Re = 5,360 agrees well with Eckelmann's experimental data
(Ref, 41) at Re = 5,600,

The TKE distribution is given in Fig. 39. The location of the
maximum TKE also moves toward the wall as the Reynolds number
increases. The numerical result closely follows the experimental
data of Clark (Ref. 38) except near the centerline,

The effect of the total number of grid points on the accuracy of
the numerical solution is shown in Fig, 40, With only 41 grid points,
the calculated total shear stress deviates substantially from the
exact solution, On the other hand, the 101-point case is in excellent
agreement with the exact solution.

In Fig. 41, the ratio of the centerline velocity and the mean
velocity (averaged across the channel) is shown versus the Reynolds
number, The value of the velocity ratio (U,/U) is directly related
to the flatness of the velocity profile, For a uniform velocity profile,
U./U is equal to one, For Reynolds number below 1,000, U./U is
equal to 1.5, which indicates that the velocity profile is parabolic,
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The velocity ratio decreases from a value of 1.5 as the Reynolds num-
ber increases. The velocity ratio will presumably reach 1.0 asymptotic-
ally as the Reynolds number goes to infinity, The skin friction coefficient
is presented in Fig. 42, The agreement between the numerical result and
the experimental data (Ref. 42) in both Figs. 41 and 42 is very good.

When the low Reynolds number model is used to calculate the
eddy viscosity in the numerical iteration, it is necessary to use an
under-relaxation factor on vy as in Eq. (99) to provide smooth con-
vergence, The effect of the relaxation factor (n)on the solution
convergence is shown in Fig, 43, Large oscillations occur when the
relaxation factor (n) is greater than 0,05, It was found that the best
value of n is the inverse of the number of lateral grid points which
in this case is 0,01, When the relaxation factor is greater than 0,01,
the sublayer thickness oscillates as the iterations proceed, The
oscillation phenomenon becomes more pronounced at high Reynolds
numbers, Therefore, the proper selection of the under-relaxation
factor for the eddy viscosity associated with the low Reynolds num-
ber two-equation model is very important to ensure the smooth
convergence of the numerical iteration process.

6.4.2 Numerical Solution of Separated and Non-Separated Diffuser
Flow in a Stretched Coordinate System

A series of preliminary calculation was made for a family of
planar diffuser flows to illustrate the nature of the solution. The
test case selected is a two-dimensional planar diffuser with a 4:1
aspect ratio (Fig. 44) investigated by Reneau, et al., (Ref. 1),

The Reynolds number based on the inlet mean velocity (Uy) and the
height (hy) is 1.2 x 109, The inlet profile was a fully developed
channel flow profile, It was shown that the maximum pressure
recovery occurred with a total diffuser angle of 20 deg. This experi-
mental evidence is used to provide limited verification for the present
numerical solutions because more detailed experimental data are not
available. The coordinate transformations are given in Eqgs, (53)
through (57), and the set of governing equations is given in Eqs, (66)
through (70)., Fifty-one lateral grid points are used across the
diffuser which includes both the core region and the sublayer region.
The number of grid points is considered adequate to provide a quali-
tative description of the flow field but not necessarily an accurate
result, The numerical procedure is given in Fig, 9. In the itera-
tion process, the first 600 iterations are used to determine the flow
field at the first three stations so that a fully developed channel flow
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profile can be obtained. With the inlet condition known, the next 600
iterations are used to compute the diffuser flow field. The calculated
skin friction coefficient is shown in Fig. 45 for six different angles.
Based on the skin friction distributions, flow separation does not occur
in the first three cases, namely, 2 0 = 3,58, 7.15, and 14, 25 deg.
The point of separation, which appears in the last three cases, moves
upstream as the diffuser angle increases. The rise in the skin fric-
tion coefficient around the inlet corner (X/hI = 2,0) is a result of the
elliptic nature of the flow, i.e., disturbances propagate upstream
from the diverging section. Such behavior cannot be obtained from

a conventional boundary-layer formulation in which there is no feed-
back mechanism. The skin friction coefficient near the exit corner
(X/hy = 6) in the separated region shows some oscillation (Figs. 45e
and f), which indicates that the solution is not fully converged. How-
ever, the solution is stable upstream of the separation point,

The development of the velocity profile in the diffuser is shown
in Fig, 46. As the diffuser angle increases, the fully developed
channel flow profile gradually develops into a wake profile near the
wall. For the separated profiles, the sublayer is so thin that it looks
as if the velocity profile has a discontinuity near the wall. The veloc-
ity profile in the sublayer with an enlarged scale is shown in Fig, 47
for 2 6 =34,7 deg. The reverse flow velocity near the wall at
X/hr = 6 is about 14 percent of the local centerline velocity, The
predicted turbulent kinetic energy distribution is shown in Fig. 48.
The distinctive feature of the turbulent kinetic energy distribution
is that the location of the maximum TKE moves away from the wall
in the diverging section. In general, the magnitude of the maximum
TKE increases as the diffuser diverging angle increases, For 2 6
= 34,7 deg, the maximum TKE at X/hy = 6 is roughly double the
maximum inlet value.

Although there are no detailed flow-field data available to
verify the predicted flow-field structure, the centerline velocity
distribution is an indication of the pressure recovery. In Fig, 49,
the centerline velocity distribution is given in terms of the total
diffuser angle. The minimum centerline velocity at X/hy = 6
occurs at 2 6 = 20 deg, which corresponds to the experimentally
defined optimum diffuser angle by Reneau, et al. (Ref, 1), A
comparison between the present fully developed inlet velocity
profile and that of curve 5 in Ref, 1 is given in Fig, 50.

To provide some indication of the accuracy of the present
solution, the total shear stress distribution at the inlet station is
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shown in Fig. 51. Although the linearity of the total shear stress is
preserved in the core region, the slope of the profile is somewhat
lower than the exact analytical solution, The accuracy check is
consistent with that given in Fig. 40. Clearly, the number of grid
points used in the computation is only marginal. An increase to an
81- or 101-point system should provide excellent result as was
found for fully developed channel flow (Section 6.4.1 and Fig. 40),

7.0 CONCLUDING REMARKS

A numerical method has been developed to provide the detailed
flow-field structure of two-dimensional, turbulent, imcompressible
stalled and non-stalled subsonic diffuser flows with nonuniform inlet
conditions. The general formulation is also applicable to a wide
variety of incompressible internal flow problems. An important
feature of the numerical method is the use of the ''decay function"
technique, in which local analytical information is used in the finite
difference formulation to ensure stability of the solution. A co-
ordinate transformation including sublayer stretching was developed
to provide adequate flow definition throughout the whole flow field.
Further study of the coordinate transformation could provide opti-
mization of the grid network.

A hierarchy of solutions were obtained, based on turbulent
transport models of increasing complexity, i.e., constant viscosity,
algebraic, and two-equation models. In general, treatment of the
wall layer with a matching procedure, based on the law of the wall,
yields fairly good results for non-separated flows, but is unsatis-
factory for separated flows. Therefore, a method was developed to
compute the whole flow field numerically, including the viscous
sublayer. The approach involves coordinate stretching and a low
Reynolds number two-equation turbulent model. Predictions of
fully developed channel flows, obtained with the sublayer stretching,
are in good agreement with experimental results. Predictions of
the performance of planar diffusers are also in reasonable agree-
ment with experimental results. However, additional correlation
between the numerical method and experiment is needed, particular-
ly for stalled axisymmetric flows. Unfortunately, the currently
available data are very limited, particularly for evaluating the
quality of the flow structure,
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The present numerical analysis should be extended to include

compressible and non-adiabatic flows.
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Figure 2. Turbulent kinetic energy distribution and models for the
nonisotropic part of turbulent kinetic energy dissipation
near a wall.
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b. Uniform system, unequal spacing

¢. Nonuniform system

Figure 3. Uniform and nonuniform coordinate systems.
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Table 1. Comparison between Two Low Reynolds Number Models

S G | &€ | “7da
2vk
present | A/[3(a+A/b)] M| Se NONE
. adkyz
Launder's oo?exp((lmlm.) .3 9(95 ) | 2vy S’(,,a
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APPENDIX A

DERIVATION OF A COORDINATE TRANSFORMATION
WITH A SUBLAYER STRETCHING

The purpose of the transformation is twofold: (1) to provide ade-
quate resolution in the sublayer region which normally occupies only
about 1 percent of the flow field, and (2) to obtain a smooth stretching
of the coordinates from the sublayer to the core region, Because of
the complexity of the velocity profile near the wall, separate trans-
formation functions are derived for the sublayer and the core region.
They are matched smoothly at a proper location (y,) so that the
functions are continuous up to the second derivatives,

TRANSFORMATION FUNCTION IN THE SUBLAYER
Inside the sublayer, the velocity distribution is linear, A tangent

function is a suitable stretching function for the sublayer region:

g% ton ae

The stretching factor (9§/9y), which must be adjusted to provide good
resolution of the sublayer velocity profile, is related to the slope of
the velocity profile by

w2
?1’ =o(.—.-;l‘- =X (A-2)
d

The condition determines the coefficient (¢) in terms of v*2/v. The
coefficient (B) will be determined through the matching procedure at

Yo-

TRANSFORMATION FUNCTION IN THE CORE REGION
In the core region, there is no need to have a large coordinate

stretching because the profile is rather smooth, Therefore, the
stretching factor (5¥/8y) must gradually decrease to unity from the
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sublayer to the centerline. In the present analysis, a hyperbolic
function is selected for this purpose, i,e,,

.;-%.-: ¢ + tanh (9‘-?,) (A-3)

Upon integration, Eq. (A-3) becomes

Y=CY + fn(cosh(G-7)) +F (A-4)

Equation (A-4) is the transformation function for the core region.

THE MATCHING CONDITION

The matching conditions are provided at the location (y,) by the
continuity of the function, the first and the second derivatives., With
the continuity of the second derivatives at Yor 1-€.,

core _ sublayer
Y| Y
Ty = = (A-5)
Wy, 4,

the coefficient (3) can be determined from Eqs. (A-1), (A-4), and
(A-5) as

t P ~
zdP secH,-tanP'g.- =0 (A-6)
For the continuity of the first derivatives, the condition becomes
core sublayer
ayp e, g Y
~ i~ (A-7)
%y, ily,
Equation (A-7) determines the coefficient (C) as
2 ~
C=d secpy (A-8)
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Finally, the continuity of the transformation functions provides the
following relation for the constant (F), i.e.,

F=-CF + (%)tanpg, (A-9)

By setting y = 1.0, the transformed centerline location (¥,,,,) can
be determined from Eq. (A-4) as

1-cY . - n(coshq,  -§N-F=0 (A-10)

Equations (A-2), (A-6), (A-8), and (A-9) permit the transformatmn
functions (A-1) and (A-4) to be written in terms of v*2/y and Yoo :
which are characteristic parameters of the sublayer.

NUMERICAL PROCEDURE

The numerical procedure used to calculate the coordinate trans-
formatmn functions is outlined in Fig, A-1, First the parameter
(v¥2 /) is determined based on some flow condition, such as the
inlet condition to a diffuser, The stretched sublayer thickness is
then set equal to unity so that enough resolution can be obtained. In
addition, the number of grid points is specified in the transformed
?coordinate. The coefficients (o, C, and F) can be calculated
directly from Egs. (A-2), (A-8), and (A-9), respectively. On the
other hand, coefficients such as B and ¥j,,, must be determined
iteratively by Newton's method, i.e.,

R /73]
Bns Pn f'(Pn)

where B4, represents the (n+1)!! value and B, represents the old
value,

(A-11)

The functions (f and f’) are obtained from Eq. (A-6) as
f(pa) = 22, sec'P,. tan @y -1 (A-12)

f (P ) = ﬁ. = 2d secz(ﬁ,. (tan (3,, +P,,sec’Pn+2‘a”tanzP,,)

Pn
(A-13)
where Vo = 1.0 has been used in the derivation, The converging
solution for 8 is obtained by applying Eq. (A-11) successively from
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an initial guess until a convergence criterion is reached, Since the
Newton's method converges fairly rapidly with a good initial guess,

the maximum number of iteration is often specified to terminate the
calculation,

The coefficient (F) can also be determined in a similar manner,
i- el >

f(gmax,n)
gmax,m—l = Hmax,n - f'(gmax,n) (A-14)

where f and f’are now derived from Eq. (A-10) as

f=-14 cym“m + ﬂ,,(cash(gmx’n-!))ﬂ»' (A-15)

f' = C + tanh (’gm,,, -1) (A-16)

With all the coefficients determined, one can proceed to determine
the uniform grid spacing (Ay = (¥ax/ INM)), the stretched coordinate
(¥ = (N. AY)), and the physical coordinate (y) by Eqs. (A-1) and (A-4),
The coordinate transformation as a function of v¥2/y is shown in
Fig, A-2,

The transformation factors derived from Eqs. (A-1) and (A-4)
are in the sublayer, 0 < ¥< Jy:

(A-17)
Y Jalv_
0_,'4;/(?7) = -2 tan (BT)
and in the core region, o< ¥< ~max
i,
¥ c+ -tanh (§-9 (A-18)
a‘

/G

- [Seh (lj-g.)] /[c+tanh(g-§;)]
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Input Data:
(v¥*2/vy), JNM, §_ = 1.0

o
a: From Eq. (A-2)

[

R: From Eq. (A-6)
Newton's Method (A-11)

1

C: From Eq. (A-8)

F: From Eq. (A-9)

~ ]

Ymax: From Eq. (A-10)
Newton's Method (A-14)

BY = ¥pax/INM

, 1, ... JNM

y: From Egs. (A-1), (A-4)

Figure A-1. Numerical procedure to determine the
coordinate transformation function.
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APPENDIX B
DERIVATION OF DECAY FUNCTIONS

The derivation of decay functions is illustrated by using the steady-
state vorticity equation. The derivation of the decay function for the
time -dependent equation is given in Ref. 30, The one-dimensional
vorticity equation is

(E a0
V(gqE)-vigy) =0 (B-1)

The finite difference expressions with the decay functions for a uniform
grid system are

o Ry, -2+ 0,
9'42 & syz G_,‘

ll | njﬂ"%j:_l_ A (B-2)
Y~ 28y F;
The resulting finite difference equation is

{ﬂm -20; +R,,

J

-0,
-1y J+| =
s & V) } =289 } 0 (B-3)

The function (F;) is not explicitly used in Eq. (B-3) because only one
decay function is required for an equation with only two terms, For
a nonuniform grid system, one obtains the finite difference equation,

{ -""-'D' )/5‘9, (ﬂ -Q_H)/B‘y,_ A - (¥ )(Qm J-ﬂ
(6Y,+8Y.)/2 Gj Vi (§Y,+8%:)

where 6y, and 8yy are the grid spacing between (j+1) and (j), (j) and
(j-1) gr1d points, respectively, After re-arrangement, Eq. (B-4)
becomes

=0 SH; (Sﬂ, S”') G
.l J-lHn.lﬂ n-l){(gy,.,.ggz) (P.), 2(€9+8Ye)

The local analytical solution of Eq. (B-1) can be cbtained by assum-
ing that v is locally constant, i,e., v.. The analytical solution of
Eq. (B-1) is ) v

(59
Cl + Ca'e (B-6)

}= 0 (B-4)

(B-5)

¢
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The local boundary condition is

380 » .Q.s.ﬂj-;

Y=8Y,+8Y, , {1=1y, (B-7)

The final expression for y = 8yy is obtained by combining Eqgs. (B-6)
and (B-7).

v
(3); 842
- 3 e p J- l
n; =0, +(nj+,-nj_.)[e(%)j (69,+89:) _ } (B-8)

The decay function (G;) can be easily obtained by direct comparison
of Egs. (B-5) and (B—%). The result is

(¥ 5%
G - (B *84) { 8. e ¥t } (B-9)

j- (%)j(ﬂz'—‘?-') (59454) o (%% (59+55:) _
for a uniform grid system, 8y; = 6yg = 8y, and Eq. (B-9) reduces to
v
G = —— {" z(e(vv)isg_,) } (B-10)
(5% L (26354 )

or in terms of the grid Reynolds number (R; = (v/v)j 5y),

.1 Ry
2 2(e™-1)
G’J' = _R;- (1- E’,‘,—.‘T‘jl——) (B-11)

Equations (B-9) and (B-11) represent the decay functions in a non-
uniform and a uniform grid system, respectively,
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APPENDIX C

FINITE DIFFERENCE FORMULATION OF A 2-D FLOW
WITH A CONSTANT VISCOSITY

The governing equations for a two-dimensional planar steady-
state flow of an incompressible fluid with a constant viscosity can
be written as:

fau Y

ey 7"_“’_.0 (C-1)
u_ o __|_'aP Tu , 2U Cc-2
UaxtVay = T oax Pt g (c-2)
2V 1 2P v v )
Ut —3,_-9 ag V(,“, a%’,) (C-3)

Equations (C-1) through (C-3) can be written in terms of the vorticity-
stream function formulation as

N 0 1, e,
3X‘+ 3,2 -?(ub—){*’v-ﬂ_‘;) =0 (C-4)

(C-5)
A second-order pressure equation can also be derived as
[ oP }
— - 2 -
oy [ Ty (c-6)
where the source term of Eq. (C-6) has been written in terms of the

derivatives in the y-direction for ease in the numerical computation.
The velocity field (u, v) is obtained from the relation

(14 " 4 _
'U.=ﬁ- R V= X (C-7)

The corresponding finite difference equations for the general network
shown in Fig. C-1 are:
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Vorticity Equation {2)

(niﬂ.j -zni,,j +‘Ql'-"aj) A u) lﬂw,, c.-l,J)

2 . y
58X G., Li 28X (C-8)
(Ri,jn -2, +805-) 4 v (= 0isjer)
Tk Gi Y4 284
where the decay functions Gj and Gj are defined as
G = (2/R)(I- 2-(eR‘-l)/(em‘-u )) (C-9)
G = (2/R)1-2 (e Ri_n/teN-) (C-10)

Ro=(u/p), 5x  » Ry=(V/y),; 84 (C-11)

Stream Function Equation {{/)

(W =2Wij + Wiy )80+ (o2 2 W V547 2

(C-12)

Pressure Equation (p)

Pu-lj l'..j |.-l )/Sx + (Pl. J# 2&4 PLJ'I )/8,
=-2 {[ D+ W2+ U /g 1 (W2 Y+ ¥ ) oy ]

+[(Veyn = Vi, 1) /284 ]’} (C-13)
Velocity Relation (u, v)

U= w{',jﬂ-u@,j-l )/258 » Vi ® w’m_, =11 /288 (co1a)

When Eqs. {C-8), (C-12), and (C-13) are solved iteratively by Gauss-
Seidel iterative method, the corresponding successive substitution
formula can be derived as
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¢ . = (€ Pias; + Cos Pit,j + Co* Pijur +Ca P, i) + SOURCE )
o )

(C-15)

The corresponding Cq, Cq, C3, C4, SOURCE, and CU terms for
each function are:

Q-Equation
¢ =1/6-R /2
C; = 1/6,+Ri/2
¢, = (1/G; -R;/2)-(62/8Y )
¢, =(1/G; +R;/2 )-(sx/89)° (C-16)
SOURCE =0

cU = (2/G;) +(2/G;)-(6x/59)"

and the decay functions are approximated as

G, = 10-0.0625:(R) » IRI<2
2 |
« 2.1 L IR( 132
IR (Ri_)" | "lz
. (C-17)
G; = L0 -0.0625-(R})) , IR;I<2
= 2. R: |32
IR (Ry)? » IRj 13
Yy-Equation:
¢ =1 Cy = (5x/sy)
C, =1 CU= 242 (5x/8Y)

C; = (8x/8Y ¥ SOURCE = ;. (5x)°  (C-18)
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p-Equation:

C =

C, =1

Cy = (6x/8Y)?

G, = (sx/5y)’

CU= 2+2-(8x/59)°

SOURCE = 2{[ 0, + (W, -2+ U, ) /5yt ]
[(4:_.’#,-21!{'}. W Yoy 1+[(v, - Vi1 )/28y] 2}

(C-19)

The boundary conditions used for the planar diffuser calculation are:

UPSTREAM BOUNDARY CONDITION

A fully developed parabolic velocity profile is specified at the
inlet of the diffuser in the present analysis to represent the non-
uniform inlet condition, However, any other inlet profile can also
be specified. The corresponding vorticity and the stream function
distributions are derived from the velocity profile. The inlet static
pressure profile is assumed to be uniform,

DOWNSTREAM BOUNDARY CONDITIONS

When the length of the exit section of the diffuser is long enough
for a parallel flow to be established, the parallel flow condition can
be expressed as

ol _ow
2x --ﬁ-o (C-20

The corresponding downstream condition for the pressure can be
derived from the momentum Eq. (A-2) as

b,
22X = 9” (C-21)
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SYMMETRY CONDITION
Along the line of symmetry, both the vorticity and the stream
function are set equal to zero,

The pressure boundary condition along the line of symmetry can
be obtained from Eq. (C-3) by integration in y direction, i.e.,

. .2
[ (u—+v—)J5 = - I( )J3+ VJ' (%'%)Jy (C-22)

Subscripts 1 and 2 represent the centerline and its neighboring grid
point, respectively (see Fig. C-1). By assuming that the integrands
are linear function of y, one obtains

-8
P' - [ 89 (u v _ _:_;!.)_ 12.! (g%)]z (C-23)

where the continuity equation has been used for ov/9y. The second
and the third terms inside the bracket represent the higher order
term which vanishes in the limits as the 3y goes to zero.

WALL BOUNDARY CONDITION

At the wall, the velocity components vanish and the stream func-
tion is a constant value along the solid wall, i, e

U=v=0 , V=¥, (C-24)
The vorticity at the wall can be obtained by the integration
v _ Ou
,( 0 dy j (5x ag (C-25)

where w and p represent the wall and its neighboring points, Note
that the integration can be performed in either the x- or y-direction.
Assuming that the integrand in Eq. (C-25) is linear, one obtains

2U ',
Q,=+—L
w Y + (ox
Similarly, the wall boundary condition can be derived by integration
of the momentum Egs. (C-2) and (C-3) in either the x- or y-direc-
tion. For example, the pressure boundary condition along a

) - }
% Ilr (C-26)
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diverging diffuser wall is obtained by integrating Eq. (C-2) in the
x-direction,

J’Sx[

R, =P, - ), e ]+ S-[ugy V35,

X U
to-[u -y Vg lw

(C-27)

For the horizontal inlet and exit walls, the condition (Eq., (C-27))}
can be reduced to

V-6x
Pw =rp [( -—) "'(gg) ]+ V (C-28)
The formulation is fa1r1y general in that it can be used for calculat-

ing most 2-D planar flows with proper assignment of the boundary
conditions,
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Figure C-1. 2-D diffuser and computational grid system.
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APPENDIX D
FORMULATION OF A FULLY DEVELOPED CHANNEL FLOW WITH A HIGH
REYNOLDS NUMBER TWO-EQUATION k-« MODEL AND WALL MATCHING

For high Reynolds number fully developed channel flow, the
governing equation is one dimensional, Since the sublayer is replaced
by a law of the wall matching procedure, the effect of the molecular
viscosity can be ignored. The complete set of governing equations
is:

Vorticity Equation ()

R I R TR YA I SN
—_— ;,t{z r-s} +8—{

w_» D-1
2 ‘} (D-1)

Stream Function Equation (y)

1 Y 8 (D-2)
ar' (r)or trq =0
Velocity Recovery (u)
3
a (Ly ¥ -
u (r) ar (D-3)
Turbulent Kinetic Energy Equation (k)
k1 % _ K a
R S T }ar +(55) - —,{ =0 (D-4)
Turbulent Kinetic Energy Dissipation Equation {e¢)
P€ S g Y, § E 6’;
R A ?5"?‘ s ragsdh-al (57)
(D-5)
Prandtl-Kolmogorov Eddy Viscosity Model
¢, K -
Ii = C/u ? (D-6)
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The constants used are C,, = 0,09, C1 = 1,44, and 02 =1,92, The
boundary conditions along the centerline can be written as

The matching condition near the wall is provided by the law of the wall.
The boundary condition and the related variables are

v*= Up /(25 n (V"4 /p)+5.5) k = U*’/@
U = U*(2.5 tn (U*y, /p)+5.5) € = v**/(oa1y,)
¥ =0 n=-

. (D-8)

where yg is the matching location measured from the wall and Yp is
the distance one point next to the matching point, The governing
equations written in the standard form are

ar‘} { } +d=0 (D-9)

where coefficients a and d are given in the following table for a fully
developed channel flow high Reynolds number model:

¢ a d
S B ks
¥ (+} o

k i{%‘%ﬂ} (3. 9“";&

e | Flm-i) | caHES -
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The general finite difference formulation of Eq, (D-9) becomes

{4%"-2%*-4’"‘"}-(—;.- - O.J{ﬁﬂ-_h} +d;=0
U

sr? 28r {D-10)
where the decay function (Gj) is calculated from
!
G = L0- 00625 (R;) » IR;l<2
2 i
. e = cm—— R. ;
IR (R)? » IR;12 2 (D-11)
RJ' = aj - 8r

The source terms (d;) are calculated from the conventional central
difference scheme. ]Note that the coefficient (aj and Rs) do not
necessarily represent the physical convective velocity and the
Reynolds number. The coordinate system used and the variation of
the eddy viscosity both contribute to the "effective' Reynolds
number (Rj)-
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APPENDIX E

FORMULATION OF 2-D OR AXISYMMETRIC TURBULENT FLOWS WITH A
TWO-EQUATION HIGH REYNOLDS NUMBER TURBULENCE MODEL

The governing equations for 2-D or axisymmetrical flows in
physical coordinates are:

Vorticity Equation (2}

{an m} {[ 22 I 2% % 5pn +——-{v+—5-’;‘}

x*  or?
2k 'a‘l’ (2u, 2v Y U] _
y{‘axa o) (ar 'ax)'”-axar(ar '57)}"0 (E-1)
Stream Function Equation (y/)
Y YY) sW_ § i}
(St |- Far=-re (®-2)
Velocity Recovery (u, v)
=t oY =1 o (E-3)
'I..l.--FE ar y V= 3
Prandtl-Kolmogorov Eddy Viscosity Model
e X ]
%= G .(E 4)

Turbulent Kinetic Energy Equation (k)

{912 or‘ {[“ *Lv- Wt 5%] } (B-5)

e[ 1B s )]+( ﬁ)‘}-Tﬁt—so
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Turbulent Kinetic Energy Dissipation Equation (¢)
€ .8 'ze | s % -
(35 38) - Fou- gt - rv- e )

4G k{zu:“) G+ OF >81+(2'¢ :I)}'C‘z(r";{“
(E-6)

a2 ”t
axs

where

’ C} =I.44 ? C‘,=l.92

9« = 0,09

For diffuser flows, a transformation is applied to the above set
of equations, i.e.,

? Gé =,|!

~ r ~- _
r=m— » X =X (E-T)

where (r, x) represents the physical coordinate system and (¥,%)
represents the transformed coordinate system, The chain rule and
the corresponding transformation factors are

2. _ 9 o
x - gg “' ( )

2 _ 29 31 L ary 2 IF\ 3
wr R ("")97‘+2(x)aza?+(x')3?' (E-8)
CE. _'L(?_?_) -
r ~ 9F ‘or

k3 ~ 2

N

3 ~ (ar YL

9 Ty 2

oxor = (F) % )(ax aar- (ax’r

where the transformation factors are

oTy_ |

(3r)= Sx)
y '3? - s‘(‘)

(5 =-T Sm) ' (2-9)
iF— - ~ S(‘) _% S"(‘) S“)

(axz)- ( scx) [ S Sn:))]

oF

(axar)='(s( )z)
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The governing equations written in the transformed coordinates in the
standard form of:

:¢ ’az¢ ’0¢ ?i A =
{a'oil “‘a'ﬂ} {"'i'f*bw'f +d=0

are

(E-10)
Q2-Equation
Q=1
a, =[ ‘:—;)l*'( ::-)']
b|=-|¥ u- Z[M4 ( zvt]}
3 Y, 'r
by = {Lv- w")(")-- BT+ fu-2(55+ (20 2H)3)-ne)
Y ) % 'ar % Fera¥
d-= (‘9_")3"'3” ?7&{‘”‘ a7 (" } %{ (ax) i
2%, ¥ *F ‘»’ aP TN 4
+zl—')a ;r+( ) - Gr ‘)((,, T4 GT)
+z(—Lr'") '")(2; :ft :;* ;x;,))(c‘;‘;);" >
-(%)3_?‘-)} (E-11)
y-Equation
Q =
az-[(‘g—;)( )]
by=0 ao
bl"(:xr')

d=-5u+2(3 )”’ o0 (E-12)
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k-Equation
= |
z N
Q, = [(" (3]

by =-,',T{u-(°v*+( )"v*)}

W Y% 7,9T
b, = 5| v- (2 8y, 1) + [u- (24 2 Ty

Vo
(& .
d =230 0 2{[ A ‘")1 [5F GPT
£
rErs e[ R (::’é? 2'2’ (E-13)

e-Equation
Q=
az=[( ATy (2 )z]
{s'eu (R )
b, = {[Gé '(:rr):vt = ](ar
o[&u- ( +(ax)a"t)]('ar) 'a’?'}

K2
2k U uo
ax):ar C'GE%—{ [_' = a;)]
r2 (6 [ G 3x+(3;)::‘]}

C, -k
‘Cz GE 'A;Iz—'é (E-14)

Velocity Recovery (u, v)

_;, P%f_+2£ _ai)-l (E-15)

<
1]
)
@
-
ﬁ
[
x
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FORMULATION OF A FULLY DEVELOPED CHANNEL FLOW WITH A LOW
REYNOLDS NUMBER TWO-EQUATION k-e MODEL AND SUBLAYER COORDINATE

STRETCHING

The complete governing equations for a fully developed channel

flow are:

Vorticity Equation (£2)

M % s T R T Y
are (pﬂn{ 2-3—-707”’0} r +(?+l’t) r2 (F-1)
2 L ak 1 P+t =0
VG T T v}
Stream’ Function Equation (/)
*Y 5.6 o
-F= -nr ‘f?';‘ (F-2)
Velocity Recovery (u)
N
H=7%s (F-3)
Prandtl-Kolmogorov Eddy Viscosity Model
kl
=g (F-4)
Turbulent Kinetic Energy Equation (k)
2k | { %% 8 e i'i 1
art ())-n)t) M (D’ £ )} (I’ﬂ’) (
_ { 2Pk P k } (F-5)
(V%)
Turbulent Kinetic Energy Dissipation Equation (¢)
€ i } Y
2 wwt/sp{ 3r( % ,.(3’ )}
fo £ R Figmn (F-6)

'k (D49, /G@)(" "G k (Vn{;/e-)
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The coefficients (C,, Cy, Cg, and o¢) are

Gu=A/[3(100+4/0.27)]

C, = 144

¢, = .92 [1.0- 0.3 exp -R¥] (F-7)
g = Il

A=d2kY /Y , REK/(»€)

For a given coordinate transformation, such as

T=T) (F-8)
the above set of equations can be written in the standard form,
2
2 _ ¢
— - Q _ + d = -
3'.2. ?F (F-9)

The coefficients (a and d) are listed in the following table for a fully
developed channel flow low Reynolds number model:

¢ Q d
| W § () Q % a9t
fh >+ —2-’—.?--? Fu } (v-n%)(?"‘ +k2 )
_F +_.__s'n' —'.ﬁ-.l_-.!_ (ﬂf’%)}
2 PP TR B ()
g 1 s O
Vi -Feregr e
K | {_gvt-imv,)} Y (L
(»thyl °F T Fi (V%) " F
“Fa __k {Suk .27 } [
L B Y J(R)
3 c Cuk U 42
¢ (;m;/eg){ "( "4 % /6) 7
g (P+%/6) £ Cuk |
NPLI LA A L -C
TR Fa ‘cvm/ep( % ) E
Foo=af/ar ,  Fa= (3F/er?)/(27/ar) _
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NOMENCLATURE

Parameter

Coefficient

Coefficients

Constant

Coefficient

Coefficients

Skin friction coefficient
Pressure coefficient
Eddy viscosity coefficient
Transform coefficient
Local diameter

Source term

Difference in finite difference equations

Transform parameters

Decay functions

Channel or 2-D diffuser height, y

AEDC-TR-76-159

Number of grid points along the T or ¥ coordinate

Turbulent kinetic energy
Differential operator
Prandtl mixing length
Iteration number

Pressure
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R
Re
Ri, Rj

L
r, r

Tmax

s(x)

o] |

€T

20

Parameter, k2/ve
Reynolds number
Grid Reynolds number

Radial coordinate in physical and transformed
plane, respectively

Diffuser wall coordinate in transform plane
Diffuser wall coordinate in physical plane
Axial velocity

Average axial velocity at diffuser inlet
Velocity components

Trubulent velocity components

Sublayer velocity, u/v *

Axial coordinate

Transform parameters

Trucation error

Index, zero for planar configurations, 1 for axisym-
metric configurations or incremental

Boundary layer displacement thickness

Isotropic part of the total turbulent energy
dissipation, k3/2/4

Total turbulent kinetic energy dissipation
Relaxation factor
Total diffuser divergence angle

Molecular viscosity
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SUBSCRIPTS

r.ef

sep

Eddy viscosity
Density

Constant

Shear stress
Dependent variable
Stream function

Vorticity

Centerline
Finite difference
Inlet section

Maximum

,
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Sublayer, core region solution matching location

Neighboring point
Reference
Separation

Total

Wall
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