AD=AD034 991 ILLINOIS UNIV AT URBANA=CHAMPAIGN COORDINATED SCIENCE LAB F/G 9/2
ON A COMPUTER SYSTEM FOR PLANNING AND EXECUTION IN INCOMPLETELY==ETC(U)
AUG 76 S J WEISSMAN DAABO7=72-C=0259
UNCLASSIFIED R=741 NL

AEPTEMBE

> RE—— g

. A—

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)
REPORT DOCUMENTATION PAGE e amil

2. GOVT ACCESSION NO,

A “UOMECTER SYSTEM FOR PLANNING AND EXECUTIQN
IN INCOMPLETELY SPECIFIED ENVIRONMENTS ¢

7. OR(= 7
teven Jax/Weissman 7-72-C-0259,
; J &P F33615-73-C-1238
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::ggR‘AgOEILKEOGSrTT.NPuRuO.J!!'Cf, TASK
Coordinated Science Laboratory z—f”
University of Illinois at Urbana-Champaign
61801
11. CONTROLLING OFFICE NAME AND ADDRESS 12
Augugty ¥76
Joint Services Electronics Program MBER OF PAGES
135
DRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)
UNCLASSIFIED
15Sa. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) . } NN

= ‘._“ SR
18. SUPPLEMENTARY NOTES A" \\: ,\v‘.\ >

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Computer Planning Systems
Planning in Incompletely Specified Environments
Deferred Planning

20. ABSTRACT (Continue on reverse side if necessary and identify by block number) 5 e v st

- ov 0 solve more complex and realistic tasks, it—is- consider the

associated with operating in domains which are not completely specified at
the time of initial planning are considered. A — ;

e

o \
One of the(hajor probleml’is how to satisfy goals when some possibly” -

~£» 1In order to be-abl® to construct computer planning systems which @se able .

problems involved with planning and execution in broader domains. Problems

oy

‘DD |52:M73 1473 ﬁreomou OF 1 NOV 65 IS OBSOLETE 0

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) S .E”\

Y . e ———

i 0

ki

SECURITY CLASSIFICATION OF THIS PAQE(When Date Rntered)

v
p)LD A

e L'r ’ s ot
2r—()c"f/:«BnS}lRﬁ?ircr(S?nq{t/ig}Pe(}s) -f'-‘/f,“,‘/n'_. A nielhod toc d-‘“"?r / Q/(’GA'QCI
to satisfy goals until a @ate;7ﬁime when new information becomes available
is discussed. The plans %hieh—arZ’produced take the form of outlines which
specify the major actions which have to be executed. As new information is
obtained, additional operations are added to the plan, filling in details
cf the outline. Problems involved with how to determine whether informa-
tiocn is missing as well as how to obtain the information are discussed.

In this system an attempt is made to relax the distinction between
planning and execution phases. Execution of actions must be able to be
initiated before a completely detailed plan has been constructed. While

executing a portion of a plan, observations or other sensory inputs could
be made in order to obtain new information,

A

/

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

i 5 it

e el ettt el = <

§9 = s s bed el e amE e

UILU-ENG 76-2229

ON A COMPUTER SYSTEM FOR PLANNING AND EXECUTION
IN INCOMPLETELY SPECIFIED ENVIRONMENTS

by

Steven Jay Weissman

This work was supported in part by the Joint Services Electronics
Program (U.S. Army, U.S. Navy and U.S. Air Force) uncer Contract DAAB-07-
72-C-0259 and in part by the Air Force Avionics Laboratory under Contract
AF F33615-73-C-1238.

Reproduction in whole or in part is permitted for any purpose
of the United States Government

Approved for public release. Distribution unlimited.

ON A COMPUTER SYSTEM FOR PLANNING AND EXECUTION
IN INCOMPLETELY SPECIFIED ENVIRONMENTS
Steven .Jay Weissman, Ph.D.
Coorditar~d Science Iahoratory and

Department of Electrical Engineering
University of Illinois at Urbama-Champaign, 1976

In order to be able to construct computer planning systems which
are able to solve more complex and realistic tasks, it is necessary to
consider the problems involved with plamning and execution in broader
domains. Problems associated with operating in domains which are not
completely specified at the time of initial planning are considered.

One of the major problems is how to satisfy goals when some
possibly relevant information is unknown. A method for deferring detailed
planning to satisfy goals until a later time when new information becomes
available is discusced. The plans which are produced take the form of
outlines which specify the major actions which have to be executed. As new
information is obtained, additional operations are added to the plan,
filling in details of the outline. Problems involved with how to determine
whether information is missing as well as how to obtain the information are
discussed.

In this system an attempt ic made to relax the distinction between
planning and execution phases. Execution of actions must be able to be
initiated before a completely detailed plan has been constructed. While

executing & portion of a plan. observations or other sensory inputs could

be made in order go obtain new information.

P R

iii

ACKNOWLEDGMENT

I would like to thank my advisor, Dr. Robert T. Chien for his

support during my graduate career at the University of Illinois.

Bl S

INTRODUCTION....ccveeeenn L R A i s ol el sts Ve tadote el skakutotsita olioo > ois leiinta el
RELATED RESEARCH...... DU D OO GO IO als| sis oliol s stals olplieln e ars ofetietoke she s olioints
2.1. languageS............ S ehatetsotalalisters k2 or 0 P DI 09 00 2 A0 1 ke ’
22 N SYBECMA . o s e el el s e el e et o o ailaiiells ek o ot e e ol Vet atura SA e e e
s e R B P A B s i R B B (2 8 S e 5 o o e A O TS DO
RESEARCH PROBLEMS........ PP 7 O O R0 0 R 00 O GO O O 0 G O O R o P S
3.1. Problems Ini Planning cocceeioooisiessiosssaes . SR el ot oo tote
3.2. Problems In Linking......... 5 AT T O D T G RO R .
3.3. Problems In Execution......c.cesecoacscocssssos 5 A A A
SYSTEM OVERVIEW.....0c... RO 0 F115] 5 00 Qs 0 N 0iC O ol oiskarelolls . A 0 aheeles
EXPERIMENTAL DOMAIN....cvvievencennnnns R R i Py S oot -
PLANNING: . ¢ cs cos vovo e GO B OO O aie i Nieks . . 5895 0
6.k ‘Rankeodeaocscs i A A O £t O 3 0 OO (S RO 0 (G 5 .
6.2. The APPROACH-LIST....... A0 1 OO i it e 5 Sere s eiolinre 555 ot
6.3. Unknown Information.................. eloks otetelelets o G OB O AT
6.4. Making AssumptionsS............... T i e o A A T
6.4.1. Assumption Because of Rank..........ccovenaecineeinnn
6.4.2. The Logical Assumption.......ccceeue L0 3 01y A OR H e
6.4.3. The Dominance Assumption.......ccoceeeveens e T
6.4.4. Linkage As ptions...... 5 S A s R i avis
6.5. Assumption Preconditions..... S OO OO A ARk 3 RGO i .
6.6. The Planning Environment.........ceoveeeeeconns sl iy :
6.6.1. Condition FrameS.......ccooeees V.6 8 w00 0 e e wielle e ae
6.6.2. EXECUTE FrameS............ TG SRRl v e e %
6.6.3. PCS Framés.....ccovnceveocns P e e Trt
6.6.4. ASSUMPTION FrameS.....ccoocceoceaccecsccssoassscanns
67 The SHOTELCUL. vovvivvvslovinvirsvoessobesssssnessssssssssseesess

6.7.1
6.7.2. Finding A Shortcut.......

TABLE OF CONTENTS

¢« ReasonB..i.civiisesvscsovs

e

s e s ss s 00000

#8000 00000000000

18

27
30
30
32
34
38

40
41

45

47

— —— —— o —— P —

.-

v
Page
6.8. Searching For Plans........ T e TRt s s A AR 60
(s el S 5 6T 5 B S B Ot o O o O s b 4 5 £ 0L IO TS CUES (0 055 B 63
R I R T oS Y o M e g S i e Al Kt sl L P s S BhS
6.8.3. Choosing Among Various Options............covceuuennn 65
6.9. Databases And World Models..... S I N D S T O - 67
659 e G o bal Mad e 8l o T e o F e e s ote Satete 008
6:9.2. Locall Modeks . i e it ins e s s s e e lehe s e aee 70
T EENKING.. . .icii coiees : IR ke G L s . o Py s . 72
7.1. Linking And Planning.......... BTG GER0D08 6 OTha b0 R 0D 72
7.2. Choosing A Link..... el oslints O s R e Y O A s 73
7.3. Replanning......... e T N O b e T e o L S U e e e 77
8 EXECUTION. ¢cccceouvse RO T o O O O O AT RO AT I SOOI DO B RO I 84
9 EXAMPLES....... ol alerel o ariole ake o wielio et alielo'n) vtelinrle 5 olviiakers lots oo eliaialel o e o alialie 89
9. L. Example L. ciiec et o sisiorstoiieiie sisias S oreinie G B D e e 89
9.2 Bxamplel T . i oot iaeieceisioes B IO S OIC SO OO0 B Ao 108
10. CONCLUSIONS AND FUTURE DIRECTIONS.......c00... 50 0 GBI GG 5 vt 119
REFERENCES - - cvcvecconnseoosiane S e et ey s oheNelan el ok ete et olie totale e le o n ! s Bl W s oo stue 122
APPENDIX I. DATA REPRESENTATION OF
EXPERIMENTAL DOMAIN......cv0vvnn S e e chels S 126
APPENDIX II. OPERATORS IN THE EXPERIMENTAL
DOMAIN.:scoosscsssscssossscsccossosesss O OO £ CR T G . 128
APPENDIX III. PROGRAM FOR ASSUMING A DOOR CAN BE OPENE
IN A MOVING BOX SITUATION::.:cccvveveavcscenncsens sersee 132

St e o

|

g

i bed eed e e s Sy eed G AR B SRR el e e e e W e

|

1. INTRODUCTION

""Some questions can be decided even if
not answered." He meant by that that it
isn't always necessary for all the facts
on a given situation to be available.
They almost never are, perhaps never are.

-Dean Atcheson
on Louis Brandies[21]

High-speed digital computers allow the rapid manipulation of data
for tasks which would be difficult and time consuming to accomplish manually
or using mechanical techniques. Using a computer, data can be entered and
processed according to a predefined plan specified by the programmer.
Programs are written to provide solutions to problems for which algorithms
are known. In most cases, while it is easy to alter the factual input
to a program, altering the overall goal of the program may require extensive
modification. This type of performance may be unacceptable in cases where
the exact problem specification and/or data available may not be known at
the time of programming.

One approach that had been taken in order to try to increase the
capability of computer systems is to construct programs which attempt to
make the computer "understand" the problems it is to solve and the domain
in which it is to operate. One general class of systems are planners,
programs whose input in its simplest form just specifies desired output
conditions. The planner constructs a plan which can be executed, at which

time, the final conditions will have been satisfied.

e ———

e e
Fai

-

Most of the existing high level planners, such as STRIPS[9] and
PLANNER([16], will report a success only where a complete and detailed plan

has been developed. These planners have thus far only been applied to

domains in which all of the relevant data concerning the state of the world
are known to the planner.

Most planners divide the problem into a series of subgoals.
These subgoals may in turn be further divided into simpler subgoals. A
subgoal may be satisfied by one of a variety of techniques, including applying
an operator or sequence of operators to alter the state of the world into

one in which the subgoal is satisfiable. The sequence of appropriate operators

is the solution. However, much of the deduction depends upon certain data
being present in the world model. If some of the data were not known during
the planning state, it may be impossible to construct a plan. In some

cases information may be absent because of incomplete world modeling due to
the complexity of the domain. But in many cases, while the overall concepts
have been adequately modeled, specific pieces of information may not be
"known' to the planner. These could be portions of the state of the world

which are outside the immediate sensory capabilities of the planner. One

human analogy is a man not knowing a fact which is outside of his field of
vision.

In order to construct planners which could operate in more realistic
environments, it is necessary to first consider problems which arise when
operating in incompletely specified environments. This would correspond to
the real world situation in which a human being has to make an intelligent

evaluation missing some possibly relevant facts. This missing information may

-

range from significant items to minor details. In this type of situation,
it would be futile to attempt to formulate a detailed plan when some of the
information may be absent. Planning for all of the possible alternatives
would, in most cases, be unfeasible due to the large number of future

states possible. One approach would be to construct a planner which would

"know'" that it existed in a world in which some of the information may be
missing. The planner would have the ability to vary the complexity of the
plans generated according to the situation. A system built around such a
planner would have to be able to initiate actions before a completely detailed
plan has been formulated. As a consequence, there wonld not be just one
planning phase followed by an execution phase, with further planning only
used to treat unexpected failures. The plan generated would be general in
nature, stating the important steps to be executed and tasks to be
accomplished. The planner must have the ability to gather new information.
Among the possible methods in which this could be accomplished are to have

the system develop a question (if a user is involved), or allow the system to
seek out information by inspecting the environment using any sensory equipment
available. As the execution of the plan progressed, new information

would become available, aliowing more details of the plan to be determined.

The planning and execution would be continually modified to reflect the new
information.

The problems associated with planning in incompletely specified
environments are described in the following chapters. Included are: how to
determine when information is missing, how to plan around the missing

information, how to incorporate newly obtained information into existing plans,

and how to determine when to plan and when to initiate execution. A system

employing the strategies and techniques developed which has been constructed

to plan in simple domains in which relevant information is missing is

described.

it BB AR VIR a1

—

2. RELATED RESEARCH

Research concerning the application of planners, problem-solvers
and general deduction mechanisms to problems which are incompletely specified
has been extremely limited. Most of the existing systems are predicated on
the concept that all relevant information is always available. Because
of this, it would be difficult if not impossible to handle problems in
more realistic environments. Of course, the problems of how to structure
all concepts and how to plan when all information is available has not been
completely solved. Systems which do plan in incompletely specified environ-
ments are geared to plan by drawing inferences and using global defaults.
Either there is no execution phase when new information may become available,

or there are distinct phases for planning and execution.

2.1. Languages

PLANNER[16] allows strategies and relationships to be expressed as
procedures called theorems. The problem to be solved is specified as a
conjunction of goals. Appropriate theorems may be applied in order to
satisfy a goal. These procedures may contain conditions known as subgoals,
which must in turn be satisfied. The applicability of theorems is determined
using pattern matching techniques. Each theorem has a pattern (a list of
constants and variables) associated with it. If a pattern matches a goal,
then the theorem is possibly appropriate. The control structure is depth
first search with backtracking[12].

The embedding of backtracking into the control structure frees the

user from keeping track of all the possibly relevant approaches available

for satisfying a goal or subgoal. The list that contains these alternatives

-

is not readily available for inspection or modification. There is a definite
tradeoff of ease in bookkeeping and programming for closer control over
the execution of the program and how the problem is satisfied.

It appears that it would be very difficult to express the
concept that certain facts may not be known at a given time within the
strict PLANNER structure. PLANNER understands only one type of failure,
that being when a goal cannot be satisfied. If, however, a goal has failed
not because it is "wrong', but rather because some of the necessary
information is missing, then a different type of failure has occured, a type
which PLANNER-like systems could not understand. When dealing with
incompletely specified situations, it is often necessary to maintain several
different plausible world models representing alternate possibilities.
Storing this type of information is difficult in PLANNER (more precisely,
MICRO-PLANNER[40]).

When evaluating a theorem, PLANNER treats all of its subgoals as
equal. Each subgoal is examined in the order encountered and must be
satisfied before going on to the next subgoal. If a subgoal fails, the back-
tracking mechanism tries to continue using alternate approaches. This
backup could lead to a case in which a whole theorem fails. But it appears
that subgoals should have different levels of importance. This could
possibly be reflected in the planning by having the planner spend more time
trying to satisfy a key subgoal than a relatively minor one. The depth first
control structure employed by PLANNER would not allow consideration of
subgoals in a hierarchical manner.

Many of the philosophies of PLANNER are also reflected in QA4[32].

A context mechanism does facilitate the representation of alternate plans

SNSRI

|
|
a

e . B]

and world models resulting from different possible values of unspecified
information. The limitations of QA4, as in PLANNER, arise from the
dependency on backtracking in the control structure. The introduction of
new types of failures make backtracking an undesirable search technique.

The main advantages of CONNIVER[20,39] over PLANNER and QA4
are freedom from compulsory backtracking, the inclusion of a context
mechanism and flexible possibilities lists. The POSSIBILITIES-LIST, which
specifies the procedures and data which could be considered, can be inspected
or edited at any time. The control structure is based upon a frame[1l]
model which allows a total deduction environment to be maintained, inspected
and reentered. This allows great flexibility in specifying how a theorem
is to be evaluated. Despite its advantages, it appears that CONNIVER has
not yet been applied in systems which require the integration of planning
and execution, such as those problems encountered when operating in
incompletely specified environments. The system which will be described

employs many CONNIVER-like primitives for handling contexts and data.

2.2. Systems

Much of the research which has been done concerning the problems
found in executing and planning have been outgrowths and extensions of
STRIPS[7,8,9,10] which employs a GPS[27] strategy and resolution based
theorem prover to generate solutions to problems which could be solved by
applying a sequence of operators. For each operator there is a corre-

sponding real world action. An operation is relevant if its application

e AR A

would aid in satisfying the overall goal. Each operator has preconditions

which must be satisfied before the operator could be applied (during planning %

-

or action taken during execution). These preconditions may be satisfied by
using the theorem prover or by applying other operators. The PLANEX[8]
system takes a complete STRIPS plan and monitors its execution. Using this
system, actions may be deleted from the plan if it is determined that

their consequences are not needed. It can also recognize when certain
initial conditions are absent and enter a replan mode. It is also possible
to take solutions which have been generated and generalize them. These
MACROPS[10] are saved to be used in future planning. STRIPS only succeeds
when a complete plan has been generated. The system (especially the theorem
prover) would have great difficulty operating in an incompletely specified
environment.

Recent resultshave demonstrated that systems can be made more
efficient by employing a hierarchical approach[29,33,34,35]. These systems,
such as ABSTRIPS[33] and LAWALY[35], have been constructed using the principle
that the preconditions of an operator are of varying importance and that
some should be examined and satisfied before others. The increase in
efficiency arises because by trying to satisfy preconditions which are more
basic or are harder to achieve first (possibly due to complexity of pre-
conditions or restriction on when it could be satisfied), irrelevant operators
can be eliminated from consideration sooner. Each of the precondition types
is assigned a rank. The higher ranked preconditions represent tasks which
must be satisfied first. So, in ABSTRIPS[33], a precondition of the form
(TYPE box object) would have the highest possible rank because it could only
be satisfied in the database or by using logical deduction techniques. If

partial instantiations of conditions are also considered, then a precondition

|
|
|
I
I
I
I
|
'l
I
I

-

of the form (INROOM box room) would have a higher rank than (INROOM ROBOT room)
because if the former was satisfied first, it would still be possible to
satisfy the latter, but the reverse ordering would not be solvable
(if the ROBOT was the only one capable of moving boxes). When the goal
conditions are input, the rank is set to a maximum value. Preconditions
with rank below this value are initially ignored. A plan is constructed
using whatever operators are appropriate in the domain. The plan produced
will satisfy all of the final conditions, but the operators specified will
only be satisfied through the highest ranked preconditions. As the rank is
lowered, new preconditions are introduced for the operators which are
already in the output plan. As these preconditions are satisfied, new
operators may be introduced forming a more detailed plan. When the rank has
been set to its minimum value, a complete and detailed plan will have been
generated.

While this type of planning has proven to be more efficient than
STRIPS, of more interest are the types of plans which are generated. In
ABSTRIPS[33], some of the unfinished plans with a threshold of medium rank
have many of the desired attributes of a partial plan outline. The plans
do not contain every necessary detail, but rather only the major steps which
must occur (i.e., those operators used to satisfy highly ranked preconditions).
These approaches have not been used to satisfy problems in domains which
are incompletely specified. The techniques used to satisfy preconditions
would make it difficult to extend these systems into incompletely specified
domains. This is generally true because these procedures are used primarily

to make searches more efficient by eliminating inappropriate operators rather

. ‘ - . —

10

than to introducing new methods by satisfying goals.

In NOAH[34], Sacerdoti describes the procedural net which extends
the hierarchical planning approach to procedural descriptions. This system
was originally constructed as a component of the Computer Based Consultant.
Plans are generated and stored at many levels of detail. The system
monitors the execution of the plan, generating greater levels of detail as
needed. The level of planning to which the system originally plans is
not necessarily a function of the complexity of an individual goal; a more
easily achievable goal may be completely planned before the system plans
how to do a more complicated task. NOAH employs constructive critics to
determine ordering necessary to avoid any protection violations among the
goals.

In HACKER[41], Sussman demonstrates a system which has the ability
to perform tasks by constructing a plan or program, and by patching (debugging)
or modifying an existing program. The goal of the program is to acquire
skills by generalization of plans. By analyzing error messages reported
while simulating execution of the plan, the specific cause for the error is
determined. In order to eliminate the error new code is written or old code
is modified. Every link and segment of code representing the plans produced
by HACKER has a purpose or a reason which is stored as documentation to be
used during planning. This self-documenting appears to be very useful in
aiding the program in "understanding" the motivation for steps in the plan.
However, HACKER only operates in a world in which all of the relevant factual

information is available and one in which there is no "real" world execution.

So HACKER can and must repeatedly simulate execution of the programs internally 1

e

11

during debugging. HACKER has a self-criticism mechanism which is used to make
suggestions as to how the planning should proceed and to warn of possible
mistakes. Because there is no unspecified information, these criticisms may
be collected and reviewed at convenient occasions during the planning.
Several systems([34,42,43,44] have dealt with the problems which
arise when trying to satisfy several goals simultaneously. All discuss
the Sussman anomaly[41] in which a solution is not possible if only a
linear concatenation of the solutions of the top level goals is considered.
Approaches for reordering subgoals such as critics[34], promotion([42] and
passing goals up[43] are developed. These techniques are also valuable
in more realistic situation when there may be a high degree of interaction
among goals. The system which will be presented here, however, is more
concerned with how to continue planning while lacking some possibly relevant
information. In this case, only problems which permit a linear solution
are considered.
In [6], Fahlman describes a system written in CONNIVER[20], which

constructs complicated structures out of various block shapes, many of the

tasks involve unknowns introduced in the form of stabilities of the structures.

But here again, there is no real execution and no new information can be
obtained. All of the possibilities have to be considered at the time of
planning.

The system proposed by Charniak[4] to understand stories does deal
with a domain which is incompletely specified. This system is not a planner
in the sense that a plan is to be constructed in order to be executed, but

rather is a system designed to understand a body of natural language text.

12

The stress is on filling in any missing information by inference and
generated defaults. In this domain, a human being would understand the
story and there is no way of determining the value of missing information.
So, there is no advantage for the planner to know that it exists in an

incompletely specified environment other than to aid in filling in

information.

2.3. General
Games [28,30,31] have provided an area for artificial intelligence

research, but most of the techniques developed have been ad hoc and have

limited values in other domains. In many games the concepts and strategies
have to be expressed probabilistically, but these may diverge from
strategies used in real world situations when humans do not think in these
mathematical terms. As it is, most of the games which have been investigated
have been completely specified, and therefore, in theory, have an optimum
strategy. Incompletely specified games, such as poker and bridge have as an
optimum solution a mixture of strategies. This type of game may be close
to the real world: situations occur where no one strategy can be proved to
be optimal for all future cases. Of course, in the real world one has to be
able to deal with problems which cannot necessarily be placed in a numerical
model.

References [2,11,13,17,18,19,25,26,31,35,38] contain further
discussions of problems concerning modeling, planning and executing plans in
more realistic environments. References [3,15,24] are concerned with

problems encountered when modeling time and it consequences.

Gud Gmd G el ey Gy G e N Sus Gas Gy eay SN SN TN owm @R BB

13

In [22], Minsky describes a framework for a representation of
knowledge which would permit the inclusion of situation dependent default
values. The scope of the world model which is considered at any time is
a function of the present environment. In its broadest applicability this

would encompass incompletely specified environments of the type being

discussed.

A

"
i —

b1

4 =

14

3. RESEARCH PROBLEMS

Programming computers to have a higher-level problem-solving
ability would permit the computer to be more useful. Of particular interest
is the case when the environment is incompletely specified. Here, relevant
information is unavailable at a particular stage of planning and the
computer has been programmed to understand the concepts, if available.

In the following chapters, problems associated with operating
in this type of environment will be described. Possible approaches and
strategies for solutions of these problems will be discussed. A program

which has been implemented to test some of the strategies will be presented.

3.1. Problems In Planning

When planning in any environment, it is unrealistic to expect that
all of the relevant information will always be available. It would seem
reasonable to expect that the more significant facts would be known while
the less important ones would not. The planner must be programmed in such
a manner that planning could continue even in cases when some information
is not available. In order to do this, the planner must have some knowledge

about:

1. How to differentiate the situation in which information is
genuinely missing from those in which information can be obtained
by applying an operator or by logical deduction.

2. How and when the missing information will become available. The
planner should have an overall plan and should be able to determine
at what stage of the execution the information will be available or

observable through some sensory input.

RC TR A

4

e N =~

= =N

15

3. How to determine the relative importance of the precondition.
Is it a key fact or an insignificant detail? 1Is this fact dependent
upon the domain and/or the particular problem specification?

4. How to plan around a precondition which cannot be solved directly
due to insufficient information. Is it possible to "assume"
that the precondition can be satisfied at the appropriate time
or is it necessary to develop an alternate approach? This would
allow the planner to defer planning of a condition until relevant
data becomes available.

5. When missing information is finally obtained, how can it be
incorporated into an already developed plan in order to achieve

the "most intelligent” solution.

Because it generally will not be possible to generate a completely
detailed plan, it may be difficult to determine the best order to satisfy
the main goal conditions. In order to avoid committing itself to an ordering
too early (avoiding first planned, first executed), the approach expected
to be used to satisfy each main goal could be developed by the system as an
individual subplan outline. It could then be linked to other plans at execution
time. This would allow the planner to have a better overview of the problem
and proposed solution. There must be a determination made concerning which
results of a developed subplan outline should be made available for use in
developing plan outlines to satisfy other main goals. Conversely, it is necessary

to determine how the planner should use the results of previously generated

subplans while developing a subplan outline.

D o somere e .

Sem——

SRS

i

v

16

3.2. Problems in Linking

Once subplan outlines have been generated, it is necessary to link
them to form a larger plan outline which could be filled in with more
details and executed. If the plans are linked together arbitrarily, it would
generally be possible to find a series of linkages which would form a
successful plan. But this would probably not be the most intelligent or
the most efficient plan. On the other hand, it would obviously not be
computationally feasible to examine all sets of linkages. So, a major
problem is how to determine which plans should be linked together and in what
order they should be linked.

When the plan outlines are being developed, conditions may be
specified for proper linking. If a link is found which does not exactly
meet these conditions, it may be possible to reformulate the subplan outline
to agree with the found link. This type of performance would be highly
desirable. It would demonstrate a flexibility in planning, simple plans
would be generated to solve a general problem and would be refined by

replanning to increase its appropriateness in a specific instance.

I1f, when searching for linkages, two or more "best'" linkages are
discovered which are determined to be equivalent, one must determine how the
linking, planning and execution should proceed. This also requires a method
to compare plans in order to determine what is the '"best'" linkage or plan

available.

3.3. Problems in Execution

One of the major problems concerning execution of problems in real-

istic domains is how to determine when to stop planning and initiate execution.

i

17

Existing systems, which operate in domains in which all of the information

is available, generate a complete plan before execution. This is primarily
to insure that there is a plan to execute. In incompletely specified
environments, however, this is not possible or feasible. In most cases,

it would be impossible to generate a completely detailed plan. Only

during execution can new information be obtained. In some situations,

the lack of information may make it impossible to develop anything more

than a skeletal plan outline. It would be desirable to recognize these cases
and postpone any planning until additional information can be obtained through
execution.

During execution it is necessary to insure that portions of plans
which are superfluous possibly because of new information determined sub-
sequent to original planning can be determined in order to avoid unnecessary
execution steps.

The introduction of new information may necessitate the reentry
into a planning mode in order to satisfy conditions whose planning had been
deferred. Throughout the entire operation it is necessary to try to achieve
an expeditious interweaving of planning, execution and observation. As

broader domains are considered, the strict partitioning of operation into

distinct phases will become less appropriate.

4. SYSTEM OVERVIEW

In most conventional planning systems[9,16,32], there are basically

three general cases which are encountered when trying to satisfy a goal
or subgoal. First, the goal could already be satisfied in the world and
be represented in the system's world model. The goal is immediately
satisfied. Second, the goal could be true in the world but not explicitly
represented in the system's model. The goal would be satisfied if it
could be deduced that the goal is a logical consequence of available
information. This could be done using theorem proving techniques. Third,
the goal may not be true. In this case, it may be possible to perform
actions which would alter the world in such a manner that the goal would be
satisfied. The possibly appropriate actions to be investigated could be
found by using techniques such as primary addition[33] or patter-invocation[16].
| All of these approaches are based on the idea that all relevant

information is directly known or could be deduced. But this may not be a

realistic assumption. In some cases information may be absent not because
" of simplification or faulty modeling, but rather because the information is
just not known, no matter how relevant the fact may be. This case is of
major interest because this type of unspecification may occur in realistic]
problems when a portion of the world is beyond a system's monitoring capability. {

To operate in this type of domain, a system must have additional

- capabilities. A system must be able to determine whether a certain piece of
relevant information is missing. As soon as it is determined that a needed
fact cannot be satisfied in the database, it is necessary to be able to check

to determine whether the concept is unspecified. If key information is

AT AT T PR AP

i

e N e

e T

19

missing, it may be impossible to satisfy all of the preconditions of an
operator whose application would satisfy the goal or subgoal.

However, if too much information is absent, a planner may not
be able to successfully satisfy its goals because no operators would
be applicable. In order to surmount this difficulty, it is necessary
to find some way of satisfying a subgoal when information is missing.
The system which will be described determines whether a condition can be
"assumed" to be satisfied. This is done by invoking pattern-directed
procedures which could examine the overall environment in order to decide
whether an assumption is appropriate. If it is, the planning could continue.

If information is missing, it is imperative that the system be
able to determine how and when the information can be obtained. The
information can be secured by observing, questioning or activating other
sensory inputs. This would allow the system to incorporate necessary
observations into the plan.

Of course, just because information is absent, it is not reasonable
to always assume that the goal is satisfied in order to delay planning
until new information becomes available. In some cases, as in conventional
planners, failures can occur. But unlike a standard failure which may
indicate a dead end, failures which occur because there is insufficient
information may still point to possibly productive paths and should not
totally be discarded. A method is needed in order to try to naturally
incorporate paths terminated by failures due to unknown information into the

plans. This is accomplished by introducing what will be called a shortcut

into the plan.

I o e T

20

The system which will be described is designed to operate for
problems in which the linear assumption[41,43]) holds. A conjunction of goals
which is to be satisfied is given. The system will generate plan segments
in order to satisfy particular goals. The order in which these plans will
be executed will not generally be in the order planned. The system tries
to find plan segments which will link these plans in such a manner that

the overall plan is still logically correct.

Even after initiating execution, the planning is not finished.
The planner may be called upon in order to incorporate new information into
the existing plans. The planner is used to formulate plans to satisfy main
goals, to create linkage plans and to modify existing plans when new informa-

tion becomes available.

PR —— st . s samamn e . P lg—

To be able to operate in the manner described above, the planner
must possess certain desirable attributes. There must be some way of
differentiating the importance of different goals and goal classes. It must be
able to insure that goals dealing with higher priority conditions are
considered before those of lower priority. The planner has to have the
ability to generate partial or intermediate plans. A hierarchical planner

is well-suited for these purposes. If some correlation can be made between

a highly ranked subgoal and a subgoal which is either important and/or more

difficult to satisfy, a hierarchical planner will encounter and plan to

satisfy the more important goals first.
]} A hierarchical planner which is modified to deal with incomplete

- specification is used in the system which will be described.

21

The overall system structure is portrayed in Figure 4-1. The blocks

represent executable routines, the circles represent databases. A solid
line between two routines is used to indicate that one routine may invoke
the other. The broken lines indicate flow of data. An arrow pointing

into a routine from a database indicates that the database is read, while
an arrow pointing out indicates that the database is being altered by the
routine. The blocks shown may not actually represent physically distinct
portions of the program but rather only conceptual divisions. The input to
the system is a list of state specification conditions which must be
satisfied at the end of the planning and execution. The system must also
have a description and programmed knowledge of the domain in which it is to
operate. The form of these components will be discussed below.

The CONTROLLER is responsible for scheduling the overall flow of
control and major phases of operation. The major phases are: 1) satisfying
main goals, 2) satisfying linking conditions and 3) executing plans.

The MAINGOAL planner is responsible for satisfying an arbitrary
number of main objectives. This is usually done by checking to determine
whether the fact is already represented as true in an appropriate world model
and if so, the objective is satisfied and is protected, preventing any
alteration of the fact. If the condition is not already satisfied, the PLANNER
may be called to create a new plan. The plan generated at this point will
not usually include all details. This is a plan outline, unrelated to the other
plan outlines which may already have been constructed.

The LINKER is responsible for linking together previously generated
plan outlines. Using information left by the PLANNER when creating the plan

outline, the LINKER determines preliminary orderings for links and for which

e

CONTROLLER

/ v

MAINGOAL

INTERMEDIATE
WORLDS

OPERATORS

/

REAL
WORLD
(MODEL)

ASSUMPTION
MAKER

SHORTCUT
GENERATOR

UNKNOWN
PROCEDURES

ASSUMPTION
PROCEDURES

FIGURE 4-1
SYSTEM OUTLINE

22

e

LINK
LIBRARY
a5 i
= i
|
|
REASONS
{
|
| 3
|
|
|
d
]
FP - 4885

e R

' S——1

23

plans linking should be attempted. The LINKER then determines the input
link requirements for these plans. In order to find a link, the LINKER has
access to general links which it has already developed and to the
HIERARCHICAL-PLANNER which can be used in order to create a new link. After
a link has been found, it is sometimes necessary to replan portions of

the main goal plan outline.

The EXECUTOR takes the existing plans and linkages and attempts to
execute them. Its main function is to insure that all necessary preconditions
for an operator are satisfied in the real world before the actual execution
is attempted. To do this some further planning may be necessary, largely
to fill in details which were left unspecified by the MAINGOAL planner.

After the execution of an action, the EXECUTOR tries to determine whether it
is possible to observe any new information. If so, the information is
obtained and incorporated in the models and plans.

The heart of the sytem is the HIERARCHICAL-PLANNER. The planner
takes a goal specification and will attempt to produce a plan. The plan
which is produced is a function of the type of goal (eg., main goal, link
condition), state of operation (eg., execution, initial planning), depth of
planning desired and information available. It is also possible to use the
planner to replan selected portions of an existing plan.

The HIERARCHICAL-PLANNER may call the UNKNOWN-TESTER which has access
to pattern-invoked routines which allow it to determine if a particular fact
is incompletely specified in the present models. The ASSUMPTION-MAKER can then
see if it is possible to assume that the precondition can be satisfied, and

defer planning until a later time when more information is available.

e weuas 2 esss O ews mn N

24

To aid the planner in preparing the plan to incorporate new infor-
mation which will become available, the SHORTCUT-GENERATOR is applied. The
SHORTCUT-GENERATOR determines logical points to reexamine the state of the
world during execution in order to try to introduce a shorter, more efficient
plan segments into the plan. The SHORTCUT-GENERATOR calls the HIERARCHICAL-
PLANNER to construct these plan segments called shortcuts.

The planning system also maintains several databases. Among the

more important information represented are:

1. Operators to alter the state of the world -
Included are the preconditions for the operators, as well
as their expected effects (additions and deletions). These
are pattern invoked with patterns reflecting the primary
desired changes to the state of the world.

2. Assumption theorems - These are procedural pattern invoked
data for determining how to '"plan around" missing information.

3. Unknown theorems - These are procedural data used to aid in
determining what information is missing.

4. 1Initial world and world models - These are representations of
the initial state of the world and partial world models which

are the expected result of executing a plan.

The HIERARCHICAL-PLANNER also creates and maintains databases representing |
the overall plahning structure, backtracking points, local planning world
models and reasons for sections of the plan. All of the components will

be discussed in the following chapters.

25

This type of system is not as easy to describe in terms of a conven-

tional flow chart because the flow of control is not as well defined initially,

e Semaed Summ

being very dependent on the individual problem. Figure 4-2 is a rough

flow chart for the system which has been implemented. The planner, not
shown here, is employed by the LINKER, EXECUTOR or MAINGOAL planner.
Satisfying conditions may be done by using a database, making an assumption
or by planning.

This system should never enter the FAILURE situation. This would
be a case in which a goal could not be satisfied or a goal become unsatisfied
because of the execution of an operator. The second case should not occur
because there are checks during planning and execution to insure that no
execution step will undo any necessary condition. There is a protection
mechanism which keeps track of various levels or protection, ranging from
a protected precondition to an already satisfied main goal. There are also
checks for protection violations when operators are applied, actions executed,
and when checking for missing information.

The program was written in MACLISP[23] to operate on a PDP-10

computer. Primitives were written to simulate the database manipulation

I function and syntax of CONNIVER [20].

L gy R B T

2

REPORT
SUCCESS

SATISFIED

REPORT
FAILURE

USSR S—

ALL CONDITIONS

GET INPUT
CONDITIONS

BREAK INTO
CLASSES
PRELIMINARY
ORDERING

CONSIDER
NEXT CLASS

4
e

i

LINK A

MAIN GOAL

FIRST LINKED
EXECUTABLE

-

MOR?NCg?XgIONS EXECUTE (LINK)
AND
FIRST PLAN
DATABASE
MAIN-GOoAL = L | .o ...
FIRST COND
MAKE APPROACH- PLANNER
LIST ASSUMPTIONS
SHORTCUTS
SATISFY CONDITION | |
USING APPROACH |- —-»J |
LIST AS GUIDE |
i
[
REPORT
FAILURE
FIGURE 4-2

SYSTEM FLOW CHART

FP-4886

o RSP TN LN >

AR e e S 080 e

[———

e b o i i

1 5. EXPERIMENTAL DOMAIN

| In order to demonstrate the program and strategies which will be
described, examples from a boxes and room environment will be employed.

An imaginary robot (HAIRRY-REASONER) is to operate in the domain as

depicted in Figure 5-1. Among the possible operations available are 4

pushing a object to a specific position, pushing the object next to another

object or door, going to a position, going next to an object or door,
opening a door and closing a door. The data specifications for the floor

plan, initial conditions and complete specification of operators are

shown in Appendix I.

In this domain nothing can occur without HAIRRY-REASONER executing
an action. Certain facts necessary to do complete planning can and will
be missing. Primarily, the missing information will be the exact location of
boxes within a room and whether the states of various doors are opened or
closed. In this domain a door can only be opened from a room it does not
OPEN-INTO, and can be closed only from the room that it does OPEN-INTO.

Once opened or closed, a door will not change state automatically (i.e., unless

another action is applied).

In order to obtain information, HAIRRY-REASONER must be in

"visual contact" with the object he has a question about. At this time an
observation can be made. In this implementation, observing is done by
printing the question and receiving a typed in response.

The inputs are an arbitrary number of conditions (main goals) which

are to be satisfied at the end of operation. In this system only problems for

28

EXPERIMENTAL DOMAIN

R17 R16 R15 R11
B7 DI6-17 DI15-16 B5 D11-15
~— ~— |
N B6
R14 R13 iz D16 0 i
D13-14 — |Bg| » D12-13 - D11-12
D2-13| D2-12 D3-12 D4-11
R1 (R2 () |R3 (R4 (
v Dp1-2 [BY] p2-3— [B4] »p3-4 m
RS p2-5|R® "p2-6 D3-6 |R7 Da-7
[D1-5 —~ |B2| v D5-6 |B3 v D6-7
FP-4887
FIGURE 5-1

i
I
]

Pr—

29

which the linear assumption holds (i.e., some successful simple ordering of
the plans to satisfy the main goals exists) are considered. It is up to the
system to schedule its planning, execution and information seeking.

The problems in planning within an incompletely specified environ-
ment are such, that experimentation, even in the simple domain described
here is fruitful. For the most part, the procedures and peculiarities
associated with this domain are not embedded into the routines and control
structure. The introduction of domain related material is accomplished
through the factual data and pattern-invoked theorems.

This domain is used to illustrate the problems and demonstrate
strategies which arise in incompletely specified environments for several
reasons. The domain is easy to understand and the operators and axioms have
already been constructed. Hopefully, many of the problems which arise in
this world which are due to a lack of information are symptomatic or problems
which occur in more robust domains. Throughout the following discussions,
an attempt is made to relate problems found in this world to those found in

human problem solving in the real world.

6. PLANNING

The planner is the key element of the entire system. It is called
by routines responsible for satisfying main goals, links, shortcuts,
replanning and execution. The planner constructed for this system is
hierarchical in operation. The approaches used to satisfy a condition
(e.g., checking databases, applying operators, making assumptions) depend
upon such factors as phase of operation, the information available as well
as the overall planning environment. The planner is responsible for

creating and/or updating a variety of databases.

6.1. Rank

Every predicate which has an interpretation within the domain or
operation has a number associated with it. This is the rank of the
predicate. The rank in some sense indicates the order in which a condition
should be examined and satisfied, the higher ranked preconditions being
satisfied first.

As an example consider a goal state for a robot and box world
which has among its conditions that a robot end up at a certain position and
a box be located at another position. If the first condition is satisfied
first, it will be impossible to satisfy the second, while the other ordering
is possible. So (AT ROBOT x) should have a lower rank than (AT BOX y).

The use of rank as applied to planners[33,35] has led to an increase
of the computational efficiency of the planners by giving the planner the
means to eliminate operators from consideration sooner than would be possible

in non-hierarchical systems. Without ranking predicates, the goals would

i il

i

31

still be satisfiable but would take longer due to the larger search space

with more back up necessary. HACKER[41] is primarily concerned with the
order of actions in cases when two conditions have the same form and would
therefore have the same rank. HACKER would try to analyze the logical
reasons to determine the proper ordering.

In existing systems[33], the rank is generally incorporated into
the planning as follows: when first considering an operator, the rank is
set to some maximum value. Any precondition with rank below this value
is not considered. The preconditions are satisfied using a normal STRIPS-GPS

approach. An appropriate sequence of operators is determined. The rank

is lowered and new preconditions are introduced. As these are satisfied,

new operators may be determined to be needed and are inserted into the
sequence. Note, a strict GPS approach would not insert an operator but
rather would return the sequence in which the operator was originally applied.

The rank is lowered until a minimum level has been reached by which time

all preconditions would have been seen and satisfied. At this point a complete,
detailed plan should have been zonstructed.

In the domain being discussed here, the ranks assigned to the
predicates encountered as preconditions is shown in Figure 6-1. Note that
unlike ABSTRIPS[33] but like LAWALY[35], the rank is not solely determined by
the predicate, but also by the type of object which would be instantiated.
Typically, the maximum rank (in this case 5) is reserved for those conditions
which cannot be altered by an operator but must be satisfied either in a

database or by being logically deducible from available information. The

actual numbers used for the ranks and the number of rank classes are not fixed.

: ! 32

—

The significant feature is the relative ordering of the different predicates.

(TYPE bx OBJECT)

(CONNECTS dx rx ry)

(TYPE dx DOOR)

(PUSHABLE bx)

(LOCINROOM x y rx)
(OPEN-INTO dx rx)

(INROOM bx rx)

(STATE dx state)

(NEXTTO bx dx)

(NEXTTO bx by)

(AT bx x y)

(INROOM HAIRRY-REASONER rx)
(AT HAIRRY-REASONER x y)
(NEXTTO HAIRRY-REASONER bx)
(NEXTTO HAIRRY-REASONER dx)

HFRERHFNOWWwWLWPSPPUULULLULLUL WV

FIGURE 6-1
CRITICALITIES OF PREDICATES

There are various methods which can be used to determine the rankings

for predicates in a domain. Some of the approaches are discussed in

T

references [5,33,35].

There appears to be a definite relationship between the rank of a
predicate and how to defer planning of a precondition. As could be expected,
planning of low ranked preconditions may in many cases be postponed without
adverse effects on the planning and execution, but with possible savings of

planning time. The details of how this is done will be presented in

section 6.4.1. f

6.2. The APPROACH-LIST
It is necessary for the system to be able to determine the potential
methods which could be used to satisfy a particular goal or subgoal. To do

this, whenever a goal or subgoal is first encountered, a pattern-directed

-

procedure is invoked in order to construct an APPROACH-LIST. This list
contains entries indicating the appropriate methods for satisfying a goal.

Among the most common entries in an APPROACH-LIST are:

1. FACT - The condition may be satisfied in a database. Also
indicated are which of the system-maintained databases are
possibly relevant. Examples are the database which reflects
the current real world situation and those which represent
the expected world after some actions have been executed.

2. ACTION - The condition may be satisfied by applying an operator,
i.e., construct a plan.

3 ASSUMPTIOﬁ - The condition may be satisfied by making an
assumption, i.e., defer planning by assuming that the condition

could be satisfied at some later time.

The APPROACH-LIST for a condition is a function of reason for
planning (e.g., linking, execution) and type of condition (e.g., precondition,
main goal). So, while during initial planning, the planner may be able to
examine all databases and assumptions to satisfy a goal, it may only be
restricted to the real world (model) to satisfy the same goal during execution.
The APPROACH-LIST is created when the condition is first encountered in a
planning phase. The APPROACH-LIST can be altered to add new methods or delete
untried approaches which are determined to be inappropriate. For example,
the most common occurrence of editing in this system is when the APPROACH-LIST

is initially of the form:

SRR % o

e s W R o AN T Il e

34

(6-1) (FACT (PRESENT INITIAL) ASSUMPTION ACTION)
which will tell the planner to inspect the appropriate databases (present
local world model, initial model and any intermediate models), then check
for possible assumptions and then finally, try to find a relevant operator.
The different databases and approaches will be explained in later
sections. When searching the databases, the planner may determine that not
only is the condition not satisfied, but that some key information necessary
to satisfy the goal is missing. If no assumption, which is the main way
ci dealing with missing information, is found to be applicable, the system
may decide that under these circumstances, an ACTION is inappropriate
because lack of information may prevent the satisfying of preconditions

of relevant operators. The ACTION option would be deleted from the list.

6.3. Unknown Information

If a planner is to operate in an incompletely specified environment,
it is necessary to be able to recognize if a condition is unable to be
satisfied because some key piece of information is missing or unknown. No
matter how complete the model, certain information represented by instantiated
versions of predicates used to represent the knowledge may be absent if the
system is solely responsible for collecting and storing the information.

As examples of unknown information consider the following predicates:

(6-2) (STATE door state)
(6-3) (INROOM box room)
(6-4) (NEXTTO box door)

If an instantiated version of (6-2), (STATE DOOR OPEN) is encountered as a

precondition and is not immediately satisfiable in a database (or logically),

AL i

i € Pk o sl i s R B o

e i At ol i L s A

35

the (OPEN DOOR) operator would be considered. Bu® one of the preconditions
of the operator is that the door be closed. If the only way of satisfying
the new precondition is through presence in the database, the absence of
the data would lead to a failure. If applying an operator is a possibility
and the precondition to that operator is that the door be open, a loop
and/or a failure would result. This can be avoided if before checking

for possible operators, the system checks and in some manner determines
that the possible states of a door are OPEN and CLOSED. The database could
then be inspected to see if the door is in fact closed. It it is, the
system can conclude that this concept is not missing and could continue the
planning by searching for operators. But if this fact is not found, then
this concept would be considered to be unknown and the system will act
accordingly.

In preconditions which are cases of (6-3), a similar situation may
occur. If the condition is not immediately satisfiable, the information
could be obtained that a box has to be in some room (or have some location).
If the box is determined to be in another room, the overall task is just
more completely specified: get the box from the room it is in to the
destination room. Not finding the location of the box indicates that some
information is unknowm.

In the case of (6-4), little can be said if the database does not
contain information from which to conclude that a box is next to a door.
This does not necessarily mean that the box is not next to the door. The
best that could be done is something of the form: if the box is not in

one of the room which the door connects, then it cannot be next to the door.

et g AN L3

s o kg it el s M e T i i i

|

-t

'Y

I
1
1
]

36

For this system the possibility of unknown information has been
confined to predicates with limited restrictions which are expressible in
a fairly straightforward manner.

In order to ascertain values for information which is known to
be missing, it is necessary to activate some type of input. This input
may include any sensory device available, such as a camera for observation.
The system must know the methods available and appropriate time to make
an observation. To do this, each class of unknown information has
associated with in an OBSERVATION-ENVIRONMENT which states under what
condition an observation can be made. The OBSERVATION-ENVIRONMENT contains
two types of environments. In a CONCLUSIVE case, an observation may be
made after which the system will definitely know whether the precondition is
satisfied. In the INCONCLUSIVE case, more than one observation may be
needed to resolve the difficulty. For example, if

(6-5) (INROOM BOXA ROOMA)
is a precondition and the location of BOXA is unknown, then ROOMA would form
the CONCLUSIVE environment and all of the other rooms would be in the
INCONCLUSIVE environment. For in each room, the system could observe if the
box was present. But until the box is observed, the truth or falsity of the

precondition will not have been resolved. Because the system operates in a

nondynamic environment, once a fact is observed, it is never '"unknown" again.

The restrictions as to the number of instantiations of any statement type,
one of the basis for formulating the various observation environments, are

discussed for a completely specified box and rooms environment in [5].

T T,

37

In this system checks for missing information are only made after

unsuccessful searches of the data bases have been completed (i.e., cases in
which FACT is on APPROACH-LIST). This is done by activating a method which

is pattern-invoked by a match with the precondition. The method would |

be a procedural description of the approaches just described in the

previous examples. One such method, shown in Figure 6-2, represents

i
i

the procedural check for an unknown of the form of (6-2). PROTECTED?

i e ews ®wes SNy TN B

checks for possible protection violations. HERE determines if a fact is
I true in a given database. ?atom is a variable and =?atom is the current

value.

(ADD
(IF-NEEDED U-II (STATE ?UDX ?USTATE)
(PROG (X)
(COND ((SETQ X
(OR (PROTECTED? (LIST 'STATE
2UDX
i . 'OPEN))
1 (PROTECTED? (LIST ’STATE
| - 2UDX
E CLOSED))))
- (RETURN X))
o ((OR (HERE ’ (STATE =?UDX ?US) PRESENT)
i (HERE ' (STATE =?UDX ?US)
iR - INITIAL)) ;
ﬁ (MEMQ ?US ' (OPEN CLOSED))
} (RETURN NIL))) i
(HERE ' (CONNECTS =?UDX ?URX ?URY)
INITIAL)]
(RETURN i
(‘= " (CONCLUSIVE (=?URX =?URY)))))) i

' UNKNOWN)

FIGURE 6-2
A METHOD FOR DETERMINING UNKNOWN INFORMATION

38

The method could return three types of results:

1. NIL - While the precondition is not satisfied, no information
appears to be missing.

2. Missing - Some relevant fact concerning the precondition is
absent. The CONCLUSIVE and/or INCONCLUSIVE environments are
specified.

3. Protection violation - This precondition is not satisfied,
information is not missing, but if an operator is applied, a
protection violation (of a main goal or other precondition) will
be encountered. It is convenient when checking the databases

to also check for potential protection violations.

By applying techniques such as trying to prove the negation of
the precondition or partitioning as in DISPROVER[37], it would be possible to
determine that a precondition was not satisfiable and use this information
to determine that information is missing. But the approach employed allows
the system to use the knowledge that it operates an uncertain environment

in order to directly check for missing information.

6.4. Making Assumptions

In general, there is no reason that a completely detailed plan has
to be generated before execution can begin. In earlier systems the main
objective was solely the construction of the plan itself. There are several
traditional approaches which can be used to intermix planning and execution.
The system could try to examine '"n' moves ahead, as in chess programs, choose

the best move and make it (execution). Another approach is to employ

traditional planning methods and when the preconditions of an operator are
met, execute the action. The drawback to both of these approaches is that
they may lead to ultimate failure because the planner, not having an
overall plan, may not foresee possible long range adversities.

The method which has been developed for use in this system is
to use general hierarchical planning techniques in order to obtain an
outline of how the goal or goals will be satisfied. The key element is
that planning of certain tasks may be deferred. To do this the system must
have a model of its capabilities. A subgoal or precondition of an operator
which is satisfied by deferred planning is said to be satisfied by assumption.
The appropriateness of making an assumption is related to such factors as
the type of preconditions and operators, the rank and stage of planning and
the entire planning environment.

The assumption may have preconditions and restrictions which

L aeidilig o

must be satisfied during planning and/or execution. The system must have
justification for making an assumption.

Assumption procedures are pattern-invoked via matching of a pattern
to the precondition statement. In the present system, these procedures are
hand-coded, with varying complexity. The strategy used during the coding
of the procedures generally reflects the philosophy of the various assumption |
types. These types will be discussed in the following sections. The emplasis
of this research is not to describe a general method for formulating these
procedures but to investigate how they could best be incorporated into a
planning mechanism to aid operations in a special class of environment. It may
be possible to have the assumption procedures built up (as in MACROPS[10])

over a period of time.

The original motivation for the assumptions was to enable the

planner to continue operation in the case of missing information without
eliminating possibly successful approaches (as would be done if unknown
information automatically generated a failure). However, it soon became
apparent that using assumptions was valuable even if all information
were known. The following sections describe certain general classes of
assumption, how these classes relate to human planning and they are

incorporated into the present system.

6.4.1. Assumption Because of Rank

The most basic type of assumption is that made on a lowly ranked
precondition. In most cases it is possible to assume that a precondition
with rank below some cutoff can be satisfied. A precondition will have a
relatively low rank if a plan to satisfy the precondition is possible
even after other preconditions have been planned. This occurs because a
low ranked condition can be satisfied by operators whose preconditions
are general in nature and are satisfiable in a straightforward manner.
In human planning this would correspond to a minor detail which may not be
considered explicitly during early stages of planning. While it has to be
satisfied before an action is taken, it is not difficult to satisfy and
planning for this condition (practically) never fails. Facts representing

these things are good candidates to be absent from the world model. Because

the precondition would be true if present and assumable if missing, there
is nothing to be gained from checking the database, unknowns and.actions

during early stages of planning; an assumption due to low rank is just made.

41

As an example, consider the proposed operation (PUSHB BOX1 BOX2).
The entire PUSHB operator is in Appendix II. The lowest ranked precondition
is (NEXTTO HAIRRY-REASONER BOX1). If not already satisfied, this could be
accomplished by the operation (GOTOB BOX1). The preconditions for this are
(see Appendix II):

(6-6) (INROOM BOX1 ?rx)

(6-7) (INROOM HAIRRY-REASONER =?rx)
(Words of the form ?x are interpreted by the pattern-matcher as variables
while those of the form =?x cause the current value of the matched variable
?x to be used). These preconditions find where the desired box is and
then make HAIRRY-REASONER in the same room. But in this case, these
preconditions are similar to those of PUSHB. By the time that GOTOB is
ready to be executed, the preconditions should have been satisfied. This
coincidence of preconditions is not necessary for this type of assumption

to be relevant.

6.4.2. The Logical Assumption

In cases where certain relevant instantiations or partial instan-
tiations of the desired precondition are known, the system could check to
determine if it is possible to plan from each initial instance to the
desired condition. If these all can be planned, then the precondition
could be satisfied in some manner, depending on the value of the missing
information. The system should not go through this procedure each time a
precondition is encountered. Rather, a structured amalgamation of some of

the relevant preconditions to the various plans can be used to determine if any

v wBadd,

b= 4

b

-

42

plan would be relevant (but not necessarily which plan). If this done and

the conditions are met, then a logical assumption can be made.

As an example, consider the precondition

(6-8) (STATE DOOR2 OPEN)

If the system determines that some information is missing (in that it does
not know whether DOOR2 is OPEN or CLOSED), it would be possible to reason
that if the door were observed to be OPEN, then the precondition would be
satisfied. It could hypothesize that the door is CLOSED and try to plan

to see if it could be OPENed. With more than two cases and with the
possibility of compounding unknowns, this approach could become too large
and unmanageable. By examining the known environment and planning structure,
it may be possible to determine if the goal could be satisfied and which
other conditions have to be met. If the conditions are satisfied, a logical
assumption can be made. The conditions which have to be satisfied before

an assumption can be made are assumption preconditions and are discussed

in the next section.

The assumption procedure for (6-8) is shown in Appendix III. 1In
general the assumption procedure first examines the planning environment
(both data and planning structure) to determine what the immediate operator
is being considered as well as other operators up through the one being used
to satisfy the main goal. Because it is possible to examine the entire
planning environment, other potential plans which are or have been considered
can be inspected.

For this example, using the above information, the system has an

idea of why and under what conditions it is trying to open the door

|
i
|
1
i
1

s sl

o SR

(i.e., as a precondition to close the door, or to allow something

or someone to pass through the door for some reason). The system would
then be able to determine the "source" and "destination" rooms. If the
door OPENs-INTO the destination room and it is possible for HAIRRY-REASONER
to get into the source room (he may already be there or there méy be

other doors which QPEN-INTO the source room or which are already OPEN),
then an assumption is possible. If the door OPENs-INTO the source room,
then a check is made to see if it is reasonable to expect HAIRRY-REASONER
to push the door OPEN. If so, an assumption can also be made.

The types of conditions checked and information used when checking
for assumptions is consistent with the philosophy of the system: hierarchical
planning with missing information. Minor details will not usually play an
important role, but the overall plan, goals, plan outlines and alternate
plans will. This will allow the system to maintain a general overview of

the problems and developing solution.

6.4.3. The Dominance Assumption
In certain cases a subgoal can be assumed to be satisfiable if
certain relationships exist among the preconditions of the operators defined
in a domain. An operator, OPl, is defined to dominate another operator, OP2,

through a rank n, if all of the preconditions of OP2 above rank n are

among the preconditions of OPl with the same relationship restricting any
uninstantiated variables.
If some precondition of an operator OPl may possibly be satisfied

by the application of another operator, OP2, and OP1 dominates OP2, then the

precondition can be assumed to be satisfied. This is a dominance assumption.

ed ed emd

bo-d

44

In the present domain, consider the operators PUSHTHRUDR and PUSHD.
The complete specifications are in Appendix II, All of the preconditions
of PUSHD are contained among the preconditions of PUSHTHRUDR. PUSHTHRUDR
dominates PUSHD. When considering the operation

(6-9) (PUSHTHRUDR BOX1 DOOR1)
the precondition

(6-10) (NEXTTO BOX1 DOOR1)
is encountered which could possibly be satisfied by an instance of the PUSHD
operator. The precondition would be assumed satisfied by dominance. This
type of assumption could be applied whether or not information is missing.
If (6-10) were a main goal or a precondition or another operator, this
assumption could not necessarily have been made.

This type of assumption has an intuitive interpretation in human
actions. It corresponds to a situation in which when trying to solve a
problem, the environment is "hospitable", in the sense that subproblems
could be easily handled because of existing conditions. For example, if a
precondition to a main goal is to solve an integral, and if in the course

of planning a book of tables is known to be available, then solving the

integral should be simple (and in planning could be assumed to be satisfiable).

I1f the book is not available, the integral may still be solved but it may

not be prudent to guarantee it until checking further.

As a side note, all of the lowest ranked preconditions in the experi-

mental domain would all be assumable by dominance. This is compatable with
the definitions and interpretations of dominance and low rank assumptions.

What this means is that for each of the operators for which an assumption is

bod i i s e s ems e=s SE SN AN S O EE BB

—d

45

possible, a "hospitable" environment has been established. But if a wide

variety of environments is "hospitable', then the precondition should be

satisfiable in a straightforward manner under varied conditions and constraints.

These are the low ranked preconditions.

An interesting and relevant discussion concerning relations
among preconditions or operators is contained in [5]. Here, Davis is able
to define new, more efficient operators if a dominance type relationship

between operators is satisfied.

6.4.4. Linkage Assumptions

Another type of assumption is the linkage assumption. The system
attempts to generate plan outlines for each of the main goals. At the
time of main goal planning, the system may not have determined the exact
order of execution. This may cause temporary, system-induced missing
information if a fact, especially a low ranked condition is altered by a
previously constructed plan (or plans). However, the information is not
missing and the system is aware of the value in the real world.

As an example of this in the present domain consider the main goal
of trying to place two boxes next to each other. The operator PUSHB
(see Appendix II) could be’employed. Assume that planning continues until
the precondition:

(6-11) (INROOM HAIRRY-REASONER ROOM2)
is encountered, where ROOM2 is the location of the box to be pushed. Now,
the system does know the position of HAIRRY-REASONER in the real world, but the
final positiori may vary 'in the world models of any othexr plans that have been

constfucted. If the final world model from another plan is used to try to

46

satisfy the precondition, the order of execution may be restricted prematurely.
In order to avoid this, the condition could be assumed satisfied by virtue

of a linkage assumption and the condition becomes a linkcondition of the

plan. Before a plan could be executed, all of its linkconditions must
be satisfied. Other assumptions may place restrictions on how the link-
condition could be satisfied. This will be discussed in the sections

on Linking and Assumption Preconditions.

This type of situation does not occur in a system which has the
goal of producing any plan which would accomplish the desired goals. Such
is the case in a system such as ABSTRIPS[33]. 1In that system several
appropriate operators would be determined while planning at a high rank.

As the rank is lowered, the operators are reconsidered in the initial order
determined. Each operator builds upon the cumulative world model which
evolves from applying previous operators. This is not desirable in a

system which is aiming for something more than just a plan. It is necessary
for the system to have a wider freedom of ordering.

Recently, systems[34,42,43,44] have been trying to comstruct
planners for problems which do not adhere to the linear assumption. If an
ordering has not been specified, these systems can reorder the sequence of
execution by applying techniques such as criticism([34], promotion{42] or
passing goals back[43].

Some of the preconditions of operators are used primarily to supply
information and to bind variables in order to define other preconditions.

Consider two preconditions associated with the PUSHB operator:

(6-12) (INROOM =?by ?rx)

(6-13) (INROOM =?bx =7?rx)

The function of (6-12) is to return the location of a box (?by has a value).
/6~13) causes ?bx and ?by to be in the same room (possible by checking
databases or constructing a plan). The assumptions described thus far
have been exclusively concerned with preconditions of the type of (6-13).
Now, if while satisfying (6-12), information is determined to be missing,
the planning along this direction may not be able to be continued
(because variables are not bound, affecting the rest of the preconditions).
The box (?by) in question in (6-12) may have been moved around
by several other subplans, but it is advantageous to find the latest known
or planned position of the box. If the location was found in a plan P,
the system would have to remember that the present plan would have to be
executed after P, but not necessarily immediately after. This also affects
which intermediate plans could be used to satisfy preconditions of the
main goal. This will be developed in Section 6.9 which describes database

control.

6.5. Assumption Preconditions

Whenever an assumption is made, the assumption procedure checks to
insure that certain conditions are true in the local planning environment.
This generally involves inspecting the local world model and the sequence
of operators being used to satisfy the goal. The procedure may also
specify that certain other conditions be satisfied in the future in order

for the assumption to remain valid. Because of this, the order of plans to

- I — e

£ kS e B A i P SN 5 Sk A s

48

satisfy other subgoals may be altered. To insure the validity of the
assumption, the assumption procedure can also specify aids on how the
linking should be accomplished. This is a linkaid.

Consider the case where the goal is to get BOX1 into ROOM2.
BOX1 is originally in ROOM1. DOOR1 connects these two rooms and opens
into ROOM1. An instance of PUSHTHRUDR is appropriate. After planning
at the highest rank (5), embedded in the planning environment, the
planner would have the preconditions of the operator. A simplified (and

instantiated) version of the ordered preconditions of the operator is:

((G1 (CONNECTS DOOR1 ROOM1 ROOM2) INITIAL)
(G2 (TYPE DOOR1 DOOR) INITIAL)
(4 (STATE DOOR1 OPEN))
(6-14) (4 (INROOM BOX1 ROOM1))
(3 (NEXTTO BOX1 DOOR1))
(2 (INROOM HAIRRY-REASONER ROOM1))
(1 (NEXTTO HAIRRY-REASONER BOX1)))
The first two preconditions (Gl and G2) have already been satisfied. When
the rank is lowered, the planner encounters two new preconditions, the
first being
(6-15) (STATE DOOR1 OPEN)
Now, if the system does not known whether the door is opened or closed, the
applicability of a logic assumption may be investigated. While checking
the environment, the system determines to the best of its ability that the
box is already in the room, but that HAIRRY-REASONER is not. HAIRRY-REASONER
will have to get into the room in some manner, and if this just happens

to be via DOOR1l, then a by-product would be that the door would be open.

The assumption procedure would like to leave two instructions. One, before

Sin e

T ————

e b 1 e A5 AN 2 .

49

the precondition is considered for execution, make sure that HAIRRY-REASONER
is in ROOM1. Two, make sure that HAIRRY-REASONER enters via DOOR1 (unless
the door is observed to be open). This is accomplished by leaving a tag
indicating where the precondition

(6-16) (INROOM HAIRRY-REASONER ROOM1)
should be placed for planning and execution. The precondition whose
position is to be altered and/or has a linkaid (in this case (6-16)) is
updated to reflect these changes. This same set of preconditions after

the assumption is

((G1 (CONNECTS DOOR1 ROOM1 ROOM2) INITIAL)
(G2 (TYPE DOOR1 DOOR) INITIAL)
M1
(*FRAME A1 (STATE DOOR1 OPEN) ASSUMPTION)
(6-17) (4 (INROOM BOX1 ROOM1))
(3 (NEXTTO BOX1 DOOR1))
(2 (INROOM HAIRRY-REASONER ROOM1)
(M1 (STATE DOOR1 OPEN))
LINKAID (DOOR1) (STATE DOOR1 OPEN)))
(1 (NEXTTO HAIRRY~REASONER BOX1)))
The *FRAME entry is used to indicate an assumption or plan solution is being
used to satisfying a precondition. Frames will be discussed in Section 6.6.
In this case Al is the framename and associated with it would be an
assumption type. It will be replaced by another entry at execution time
or when more information becomes known. The components to be shifted
and linkaids are very dependent on the individual planning environment.
After satisfying (INROOM BOX1 ROOM1) in some database, the rank

would be lowered, revealing a new precondition

(6~18) (NEXTTO BOX1 DOOR1)

This could immediately be satisfied by a dominance assumption but the system

e

-~

|
|
|

— .

e R R

50

would like to insure that HAIRRY-REASONER is in the room with BOX1 (ROOM1)
before the precondition is executed. As in the previous case, a tag

and precondition entry are set, yielding the new precondition list

((G1 (CONNECTS DOOR1 ROOM1 ROOM2) INITIAL)
(G2 (TYPE DOOR1 DOOR) INITIAL)
M1
(*FRAME Al (STATE DOOR1 OPEN) ASSUMPTION)
(G3 (INROOM BOX1 ROOM1) INITIAL)
(6-19) M2

(*FRAME A2 (NEXTTO BOX1 DOOR1) ASSUMPTION)
(2 (INROOM HAIRRY-REASONER ROOM1)

(M2 (NEXTTO BOX1 DOOR1))

(M1 (STATE DOOR1 OPEN))

(LINKAID (DOOR1) (STATE DOORL OPEN)))
(1 (NEXTTO HAIRRY-REASONER BOX1)))

When the rank is lowered and the next precondition, (6-16), is
inspected, one or more tags is noted. This system finds the first tag.
The precondition is substituted at that point. The world model that
existed when the tag which is replaced was created is used when satisfying

the condition. In this case, it is satisfied by making a linkage assumption

yielding

((G1 (CONNECTS DOOR1 ROOM1 ROOM2) INITIAL)
(G2 (TYPE DOOR1 DCOR) INITIAL)
(*FRAME A3 (INROOM HAIRRY-REASONER ROOM1)
ASSUMPTION
(LINKAID (DOOR1)(STATE DOOR1 OPEN)))
(6-20) (*FRAME Al (STATE DOOR1 OPEN) ASSUMPTION)
(G3 (INROOM BOX1 ROOM1) INITIAL)
(*FRAME A2 (NEXTTO BOX1 DOOR1) ASSUMPTION)
(1 (NEXTTO HAIRRY-REASONER BOX1)))

The LINKAIDS are not considered again until this plan is to be

B

AN GH DA L BB AR ey av

\ The last precondition would not be considered during initial

planning. It is an assumption because of low rank. During initial planning,
three of thé preconditions are satisfied in a database while four are
satisfied by assumption.

Using this approach, the system can alter the order of execution
of the subplans so that the first planned is not necessarily the first
executed. This allows the system to deviate from the initial ordering

defined by the hierarchical planning.

6.6. The Planning Environment

The planning environment for the system is composed of a collection
of objectscalled frames. These were inspired by the frames of McDermott
and Sussman[20] who adapted the formalism of Bobrow and Wegbriet[1l], but
they are unlike these frames in that there is no explicit procedural
information embedded. They are primarily for storing factual (as opposed
to control) data. The types of frames in this system are condition frames,
EXECUTE frames, PCS frames and ASSUMPTION frames. Each frame has a reason
or goal associated with it. If the plan associated with a frame is executed,
then the goal will have been accomplished. An example of a plan associated

with a main goal frame is shown in Figure 6-4.

6.6.1. Condition Frames
The condition frame types are MAINGOAL, PRECONDITION, LINKCONDITION
and SHORTCUT. The main function of a condition frame is to satisfy a condition
(e.g. main goal or precondition). After planning a MAINGOAL frame will point

to a plan whose execution would satisfy the given main goal condition. Embedded

G S MDA 265 S e e

RESEINEI-S -

e

bed

¥

52

with the plan would be PRECONDITION frames. Executing the plan associated

with a PRECONDITION frame would satisfy some precondition of an operator.

All of these frames specify the rank through which they have been planned

and a final world model generated by applying the operators of the plan.

The MAINGOAL and PRECONDITION models are built up from other PRECONDITION

models. The MAINGOAL, LINKCONDITION and SHORTCUT frames can have initial

world models. In the plans that will be discussed, the information

contained in the frames would be denoted by the label prefixes MG, SC, PC

and LINK for MAINGOAL, SHORTCUT, PRECONDITION and LINKCONDITION, respectively.
Each of these frames points down to (¢ontains) one or more

EXECUTE frames. PRECONDITION and SHORTCUT frames point up to (are contained in)

PCS frames.

6.6.2. EXECUTE Frames

Each EXECUTE frame points up to only one condition type frame.
The EXECUTE frame has two basic responsibilities. It is responsible for
satisfying the preconditions of a specified operator. To do this, it
delegates this function (and points down to) a PCS frame. It is also
responsible for applying the operator (actually executed during the execution
phase) and consequently, updating the world model.

In the plans, the portion of the plan encompassed within the scope

of an EXECUTE frame is initiated with a tag with prefix EX.

6.6.3. PCS Frames

The PRECONDITIONS frame is responsible for satisfying all of the

precondition for a given operator. This frame type is reinspected each time

53

that the rank is lowered. The preconditions are marked to reflect how they
are being satisfied or what other frames are to be used to satisfy them.
(6-14) shows an example of how the entries are marked. The responsibility
may be delegated to PRECONDITION or ASSUMPTION frames. The PCS frames

also have associated with them an alist, a list of conditions which are

to be protected, cumulative world models and world models built up solely
by the current PCS frame.

If there are several possibilities for satisfying a precondition
in a database, alternate frames called EXTENSIONS are. created. 'Each
EXTENSION has its alist and other PCS attributes. A PCS frame points down
to the extensiomswhich are also considered to be of type PCS. PCS frames

and EXTENSIONS have names prefixed by PCS.

6.6.4. ASSUMPTION Frames
ASSUMPTION frames store information generated when a precondition
is satisfied by assumption. Included in a frame are the assumption type and
whether the condition is thought to contain missing information. 1In this
last case, the OBSERVATION-ENVIRONMENT is also present as well as any
appropriate LINKAIDS (linkage restrictions).
The ASSUMPTION frame points up to a PCS frame and is named with

tags prefixed by A.

6.7. The Shortcut
During the initial planning of links and main goals, relevant facts
may be determined to be missing or unknown. Throughout the preceding

discussions, it was always possible to say that a subgoal hampered by unspeci-

fication could be satisfied by virtue of some sort of assumption. Of course,

st N B SR S 4 A

——_—

!
?z;
£
i

Y

WO T e e

e 8 A A B

-t

54

this is not the case all of the time. If an assumption cannot be madé; other
possible methods remaining on the APPROACH-LIST are checked. If the pre-
condition still cannot be satisfied, a failure has occurred.

A failure which has occurred because of missing information is
called an unknown-failure. When this type of failure happens, it is
still necessary to find and pursue alternate paths. But in this case,
the planning environment is still useful and is maintained. After the plan
has been completed, the plan outline, observation environments of the
information associated with the unknown-failure and the saved planning
environments are analyzed to try to improve the plan. This modification is

called a shortcut.

6.7.1. Reasons

After a plan or plan outline has been created, a compact statement
of the plan which is suitable for execution is produced. An example of this
is shown in Figure 6-4.

This plan (through rank 2) will operate on the world depicted in
Figure 5-1 and satisfy the main goal:

(6-21) (INROOM BOX6 R16)
in the domain depicted in Figure 5-1. At execution time, the assumptions

will be verified by observation or expanded into detailed plans. The pre-

conditions marked by 1, are the low ranked conditions which have not yet been

considered. Statements of the form EXECUTE number are the actual actions

which will be taken.

55

(MG1 PROG
(EX4 PROG |
(PCS5 PROG |
(G9 FACT (CONNECTS D13-16 R16 R13) INITIAL) |
(G18 FACT (TYPE D13-16 DOOR) INIITAL) |
(PC26 PROG ,
(EX27 PROG 1
(PCS28 PROG 1
(G30 FACT (CONNECTS D12-13 R13 R12) INITIAL) i
(G31 FACT (TYPE D12-13 DOOR) INITIAL)
(PC36 PROG
1 (EX37 PROG
k| (PCS43 PROG
(G45 FACT (CONNECTS D11-12 R12 R11) INITIAL)
(G46 FACT (TYPE D11-12 DOOR) INITIAL)
(A70 ASSUMPTION (INROOM HAIRRY-REASONER R11) 4
LINKAGE) ;
(A52 ASSUMPTION (STATE D11-12 OPEN) LOGIC)
(G55 FACT (INROOM BOX6 R11) INITIAL)
(A58 ASSUMPTION (NEXTTO BOX6 D11-12) DOMINANCE)
(1. (NEXTTO HAIRRY-REASONER BOX6))
(EXECUTE75 ACTION (PUSHTHRUDR BOX6 D11-12 R12)))))
(G72 FACT (INROOM HAIRRY-REASONER R12) PRESENT)
! (A32 ASSUMPTION (STATE D12-13 OPEN) LOGIC)
(A62 ASSUMPTION (NEXTTO BOX6 D12-13) DOMINANCE)
- (1. (NEXTTO HAIRRY-REASONER BOX6))
(EXECUTE76 ACTION (PUSHTHRUDR BOX6 D12-13 R13)))))
(G73 FACT (INROOM HAIRRY-REASONER R13) PRESENT)
(A22 ASSUMPTION (STATE D13-16 OPEN) LOGIC)
(A66 ASSUMPTION (NEXTTO BOX6 D13-16) DOMINANCE)
(1. (NEXTTO HAIRRY-REASONER BOX6))
(EXECUTE77 ACTION (PUSHTHRUDR BOX6 D13-16 R16)))))

i
i
i
!
|
I

SRS s,

FIGURE 6-4
OUTPUT PLAN TO SATISFY (INROOM BOX6 R16)

4 > The system associates a HACKER-type [41) reason with each segment

-~ of the plan. The reasons associated with this plan are shown in Figure 6-5.

(GOAL MGl SATISFY MAINGOAL (INROOM BOX6 R16))
(EXECUTE EX4 (PUSHTHRUDR BOX6 R16) TO (INROOM BOX6 R16)
MG1)
(GOAL PCS5 SATISFY PRECONDITIONS EX4 TO (INROOM BOX6 R16))
(PURPOSE G9 SATISFY PRECONDITION (CONNECTS D13-16 R16 R13)
EX4 IN PCS7)
(PURPOSE G18 SATISFY PRECONDITION (TYPE D13-16 DOOR)
EX4 IN PCS7)
(GOAL PC26 SATISFY PRECONDITION (INROOM BOX6 R13)
EX4 in PCS7)
(GOAL PC26 SATISFY LOGIC (INROOM BOX6 R13)
(STATE D13-16 OPEN))
(EXECUTE EX27 (PUSHTHRUDR BOX6 D12-13 R13)
TO (INROOM BOX6 R13) PC26)
(GOAL PCS28 SATISFY PRECONDITIONS EX27 TO (INROOM BOX6 R13))
(PURPOSE G30 SATISFY PRECONDITION (CONNECTS D12-13 R13 R12)
EX27 IN PCS28)
(PURPOSE G31 SATISFY PRECONDITION (TYPE D12-13 DOOR)
EX27 IN PCS28)
(GOAL PC36 SATISFY PRECONDITION (INROOM BOX6 R12)
EX27 IN PCS28)
(GOAL PC36 SATISFY LOGIC (INROOM BOX6 R12)
(STATE D12-13 OPEN))
(EXECUTE EX37 (PUSHTHRUDR BOX6 R12)
TO (INROOM BOX6 R12) PC36)
(GOAL PCS43 SATISFY PRECONDITIONS EX37 TO (INROOM BOX6 R12))
(PURPOSE G45 SATISFY PRECONDITION (CONNECTS D11-12 R12 R11)
EX37 IN PCS43)
(PURPOSE G46 SATISFY PRECONDITION (TYPE D11-12 DOOR)
EX37 IN PCS43)
(LINKCONDITION A70 (INROOM HAIRRY-REASONER R11) EX37 PCS43)
(PURPOSE A70 SATISFY LOGIC (INROOM HAIRRY~-REASONER R11)
(STATE D11-12 OPEN))
(PURPOSE A70 SATISFY DOMINANCE (INROOM HAIRRY-REASONER R11)
(NEXTTO BOX6 D11-12))
(PURPOSE A52 SATISFY PRECONDITION (STATE D11-12 OPEN)
EX37 IN PCS43)
(PURPOSE G55 SATISFY PRECONDITION (INROOM BOX6 R1l1)
'EX37 IN PCS43)
(PURPOSE A58 SATISFY PRECONDITION (NEXTTO BOX6 D11-~12)
EX37 IN PCS43)
(ACTION EXECUTE75 (PUSHTHRUDR BOX6 D11-12 R12)
TO (INROOM BOX6 R12) PCS43 EX37)

FIGURE 6-5
REASCKS FOR PLAN OF TICURE 6-4 (continued)

(PURPOSE G72 SATISFY PRECONDITION
(INROOM HAIRRY-REASONER R12) EX27 IN PCS28)

(PURPOSE G72 SATISFY LOGIC (INROOM HAIRRY-REASONER R12)
(STATE D12-13 OPEN))

(PURPOSE G72 SATISFY DOMINANCE (INROOM HAIRRY-REASONER R12)
(NEXTTO BOX6 D12-13))

(PURPOSE A32 SATISFY PRECONDITION (STATE D12-13 OPEN)
EX27 IN PCS28)

(PURPOSE A62 SATISFY PRECONDITION (NEXTTO BOX6 D12-13)
EX27 IN PCS28)

(ACTION EXECUTE76 (PUSHTHRUDR BOX6 D12-13 R13)
TO (INROOM BOX6 R13) PCS28 EX27)

(PURPOSE G73 SATISFY PRECONDITION
(INROOM HAIRRY-REASONER R13) EX4 IN PCS7)

(PURPOSE G73 SATISFY LOGIC (INROOM HAIRRY-REASONER R13)
(STATE D13-16 OPEN))

(PURPOSE G73 SATISFY DOMINANCE (INROOM HAIRRY-REASONER R13)
(NEXTTO BOX6 D13-16))

(PURPOSE A22 SATISFY PRECONDITION (STATE D13-16 OPEN)
EX4 IN PCS7)

(PURPOSE A66 SATISFY PRECONDITION (NEXTTO BOX6 D13-16)
EX4 IN PCS7)

(ACTION EXECUTE77 (PUSHTHRUDR BOX6 D13-16 R16)
TO (INROOM BOX6 R16) PCS7 EX4)

FIGURE 6-5
REASONS FOR PLAN OF FIGURE 6-4

57

58

Using CONNIVER[20] like FETCH functions, it is possible to find
out how a task is being accomplished as well as the role of any logical

subpart. For example, PC26 is responsible for satisfying the precondition

(INROOM BOX6 R12) as well as being an assumption precondition of (STATE
D12-13 OPEN). Using these reasons, it is easy to determine that A70 is

the LINKCONDITION for this plan.

6.7.2. Finding a Shortcut

If possible, the system would like to incorporate into the final
plan adopted plan segments which had planning terminated because of
missing information. In order to do this, the missing information must
become available, and the goal of the aborted plan segment must still be

applicable. The use of the (hopefully) shorter plan segment is a shortcut.

In order to isolate all possible shortcuts, the system reviews

1 each UNKNOWN-FAILURE trying to find out:

: 1. Is the operator which was being examined at the time of the

i failure still useful in that some other sequence of operators
- in the final plan accomplishes the same task?

" 2. 1Is it possible to observe the unknown fact before the portion

of the plan satisfying the goal of the failed operator is
executed? That is, can the uncertainty be resolved before
it is too late?

3. 1f the failed condition were assumed to be true, could the

precondition of the operator be satisfied resulting in a

"better" plan than the existing plan?

59

If these conditions are met, then the plan segment, the shortcut,
including the missing information could be inserted into the plan after
the point where the missing information is to be observed. This segment é
could replace the portion of the original plan which was to satisfy the
same goal as the segment.

As an examplé, reconsider the plan just presented in Figure 6-4.
During the planning, several UNKNOWN-FAILURES were encountered. Among !

these were:

(6-22) (STATE D12-16 OPEN)
(6-23) (STATE D15-16 OPEN)
For (6-22) the system knows the OBSERVATION-ENVIRONMENT (R16 and R12) and
the reason that the operator
(6-24) (PUSHTHRUDR BOX6 D12-16 R16)
was being considered (i.e., in order to satisfy the main goal (INROOM BOX6 R16)).
The system first tries to determine if (6-24) is still relevant. It does
this by examining the reasons, trying to find matches- for:
(6-25) (GOAL ?WHAT SATISFY ? (INROOM BOX6 R16))
This can be matched with a reason if ?WHAT=MGl, indicating that (6-24) is
still potentially useful.
The system then checks for observability by trying to match the
reasons with:
(6-26) (PURPOSE ?WHAT2 SATISFY PRECONDI TION
(INROOM HAIRRY-REASONER
(‘R ?WHERE OBSERVATION-ENVIRONMENT))
? 1IN ?WHATPCS)
The !R restricts the matching to the proper OBSERVATION-ENVIRONMENT. A

match is found with ?WHAT2=G72 and ?WHERE=R12. By examining the planning

™

“—nd oamd aad S S BR

60

environment, the system can determine that the observation can be made

before the main goal is satisfied.

The system then reenters a planning mode, where the planning
world model is that which would be expected to exist after the observation
(i.e., just after (INROOM HAIRRY~REASONER R12) is true in the model).

In this case the planning is successful. The system concluded that

there is a good shortcut. This new plan is inserted at a point after i
where the observation is to be made. If the missing condition specified
is observed to be true, the new plan will replace a specified segment of
the original plan. The plan in Figure 6-4 is modified to reflect the]

shortcut (see Figure 6-~6).

Now consider (6-23). The operator (PUSHTHRUDR D15-16 R16) is
found to be relevant, but no appropriate observation of D15-16 can be

macde before the execution of the plan. So, this is not an appropriate

shortcut and no modification of the plan is made.

4 6.8. Searching for Plans

¥ Whenever a planner is designed there are two major desires: H

reduce the search space in order to come up with a plan quickly, and produce

the most "intelligent", "efficient"” plan possible. If a planner searches

for a successful plan, there may be no guarantee that it is the best plan

¢ possible. 1In order to try to find the best plan, it may be necessary to
investigate alternate possibilities. This could be accomplished by :

incorporating costs or utility into the planning criteria. #

61

(MG1 PROG
(EX4 PROG
(PCS5 PROG
(G9 FACT (CONNECTS D13-16 R16 R13) INITIAL)
(G18 FACT (TYPE D13-16 DOOR) INITIAL)
, (PC26 PROG
f (EX27 PROG
(PCS28 PROG
(G30 FACT (CONNECTS D12-13 R13 R12) INITIAL)
(G31 FACT (TYPE D12-13 DOOR) INITIAL)
(PC36 PROG
(EX37 PROG
(PCS43 PROG
(G45 FACT (CONNECTS D11-12 R12 R11) INITIAL)
(G46 FACT (TYPE D11-12 DOOR) INITIAL)
(A70 ASSUMPTION (INROOM HAIRRY-REASONER R11)
LINKAGE)
(A52 ASSUMPTION (STATE D11-12 OPEN) LOGIC)
(G55 FACT (INROOM BOX6 R11) INITIAL)
(A58 ASSUMPTION (NEXTTO BOX6 D11-12) DOMINANCE)
(1. (NEXTTO HAIRRY-REASONER BOX6))
(EXECUTE75 ACTILON (PUSHTRRUDR BOX6 D11-12 R12)))))
(G72 FACT (INROOM HAIRRY-REASONER R12) PRESENT) {
(SC79 IF (STATE D12-16 OPEN) |
(REPLACE MG1
(EX80 PROG
(PCS10 PROG
(G12 FACT (CONNECTS D12-16 R16 R12) INITIAL)
(G17 FACT (TYPF D12-16 DOOR) INITIAL)
(A81 ASSUMPT.ON (STATE D12-16 OPEN) OBSERVATION)
(G83 FACT (INROOM RBOX6 R12) PRESENT)
(G88 FACT (INROOM HAIRRY-REASONER R12) PRESENT)
(A84 ASSUMPTION (NEXTTO BOX6 D12-16) DOMINANCE)
(1. (NEXTTO HAIRRY-REASONER BOX6))
(EXECUTE89 ACTION
(PUSHTHRUDR BOX6 D12-16 R16))))))
(A32 ASSUMPTION (STATE D12-13 OPEN) LOGIC)
(A62 ASSUMPTION (NEXTTO BOX6 D12-13) DOMINANCE)
(1. (NEXTTO HAIRRY-REASONER BOX6))
(EXECUTE76 ACTION (PUSHTHRUDR BOX6 D12-13 R13)))))
(G73 FACT (INROOM HAIRRY-REASONER R13) PRESENT)
(A22 ASSUMPTION (STATE D13-16 OPEN) LOGIC)
(A66 ASSUMPTION (NEXTTO BOX6 D13-16) DOMINANCE)
(1. (NEXTTO HAIRRY-REASONER BOX6))
(EXECUTE77 ACTION (PUSHTHRUDR BOX6 D13-16 R16) PCS7))))

2 g B

T T

SRS N T

FIGURE 6-6
OUTPUT PLAN WITH SHORTCUT FOR PLAN OF FIGURE 6-4

i
: 3
1
%‘,
¥
1
¥
5

T

62

The present system is not explicitly concerned with costs.

It is not possible for the system to simply value the cost of a plan by the
number of operators it contains when a goal is to defer the planning as
much as possible. The approach that is used is to employ a breadth-~

first search. Ideally, parallel search would be desirable. Each path

is examined and expanded upon until a state is reached where certain

paths are deemed to be inferior to others. If while examining the next
series of n approaches to satisfying subgoal(s), i paths report that the
relevant subgoal could be satisfied in a database or by assumption, and j
paths report that some type of action would be necessary, then the j paths
would be terminated and the nodes saved. These would serve as return
points called backpoints (see Section 6.8.2). If all paths had reported
needing an operator or all used facts or assumptions, none would be eliminated
from the search.

While this approach is time consuming, this type of procedure has
the advantage that several plans may be found which satisfy a task, and in
general, the plans found will, in this domain, be the "best" (intuitive) plans
available. While much of the particular method of planning is dependent
upon the simplicity of the domain being considered, altering the search to
accommodate a wider and more complex variety of operators would be possible
without affecting the overall system structure and philosophies.

If after the planning of a main goal has been completed there are
multiple approaches, the system does check to see if one of the approaches

is "better" than the others. While the number of operators in each approach

should be the same, some may have shortcuts. The system examines the number

e ———

63

of shortcuts as well as the possible potential savings in terms of operations
by these shortcuts. Plans which are determined to be inferior according to
these criteria are eliminated from the final plan. An implicit heuristic
used throughout the planning and the choosing of options is that the
directions which show the most promise early are pursued. However, this

may not always yield the best plan.

6.8.1. Pruning

Sometimes when planning to satisfy a main goal, two or more possible
approaches may be found. The system dislikes discarding any plan unless
there is a definite reason for preferring one plan over another. The most
common reasons for preferring one plan over another are:

1. Choosing one plan will lead to a more efficient plan for
another main goal.
2. A better linkage exists to one of the subplans than to the

others. This will be discussed in Linkage (Chapter 7).
In the first case, the output world model of a plan may be used in order to
try to satisfy a subgoal during construction of a subsequent plan. If the
precondition contains variables and the old plan contained several approaches,
the preconditions may be satisfied in several different ways. This would
lead to the possibility of several approaches in the current plan. If it
develops that one of the new approaches is determined to be best, the corre-
sponding approach(es) and models from the previous plan which were used to
satisfy the preconditions of the present plan will be saved, while those which
lead to alternate approaches will be eliminated. Any subplans in other plans
which were dependent on the eliminated plans will also be discarded. This

elimination of plans is pruning.

kv

S BRI W

iAoz i

%
q

64

As an example, suppose a goal Gl is satisfied by a plan Pl which
is composed of two approaches, Pl,1 and P1,2. Let the corresponding output
world models be W1,1 and W1,2, respectively. While planning another plan P2
to satisfy another goal G2, satisfying a precondition leads to an inspection
of Wl,1 and W1,2. If the precondition is satisfied in two different ways
(one for each subplan), two parallel approaches will be developed, P2,1
and P2,2, with local planning world models W2,1/1,1 (read as W2,1 which
depends on W1,1) and W2,2/1,2. If one of these plans, say P2,2, is found to
be superior, P2,1 will be pruned, which will cause Pl,1 to be pruned,
resulting in P1=P1,2 and P2 =P2,2.

Suppose the two plans, P1,1 and P2,2, are "equal" and no pruning is

done. Now if G3 is considered, and a dependence is found such that P3,1 and
P3,2 are created with corresponding worlds W3,1/2,1 and W3,2/2,2. If P3,2
is found to be best, P3,1 would be eliminated. P2,1 would then be pruned,
and finally P1,1 would also be pruned.

The preceding example of pruning is referencing backward with

respect to the order planned, but the pruning could be in the other direction.

Consider the last case with the dependency being W3,1/1,2 and W3,2/1,1.
If P3,1 is determined to be best, P3,2 and P1l,1 would be pruned. This would
lead to the pruning of P2,1.

There could be any number of partitions of a plan and any number of

references.' The effects of the pruning will propagate whenever any approach

is deleted and this may lead to other pruning.

65

6.8.2. Backpoints |

As the planner searches for a suitable sequence of operators,
certain possibilities are eliminated, not because of any failure, but
because there are more promising approaches available. In order to main-
tain the information about eliminated paths, a backpoint is formed
associated with the choice point. Included in a backpoint are:

1. The names of the PCS frames containing the preconditions which
are being eliminated. A marker inside the PCS frames denotes
which preconditions were to be satisfied at the time of
the break.

2. Thenames of the PCS frames of the continuing approaches.

3. The precondition being satisfied by the continuing
approaches.

As the backpoints are created, they are placed on a stack. If
at any time, all of the leads terminate in failure (real or unknown), the
first backpoint is used to reestablish a previous environment, allowing
planning to continue. If all of the backpoints are exhausted, the system
fails in planning to satisfy a goal.

In some cases, it is desirable only to replan a certain section
of an existing plan (see Section 7.3). The information on the backpoint

list can be used to isolate the appropriate approaches.

6.8.3. Choosing Among Various Options

While trying to satisfy goals or subgoals, the planner will come
upon cases when the conditions can be satisfied in various ways. Preconditions

could match several data or several operators could be relevant.

— s wd s ows Smy N

* 1

66

These various options would cause the system to create new alternate plan
directions which would have to be investigated.

To try to limit the size of the search space, the system has the
option of eliminating some of the possibilities immediately. For each
precondition, multiple approaches would first be manifest on a POSSIBILITIES-
LIST (see [20]). When these lists indicate that more than one possibility
has been determined, procedures are invoked which can inspect the planning
environment and world models to eliminate entries from the POSSIBILITIES-LIST.

These procedures are, of course, dependent upon the domain, but
are included in the system in such a manner that they could easily be altered
or replaced to meet requirements of other domains.

Before the system tries to satisfy any main goal, some reordering
of main goals may take place. The system examines the goals with respect
to what it knows about the domain in order to specify an initial ordering
(among goals of the same rank) which would lessen contradictions and conflicts.

As an example in the present domain, if two goals of the same rank are input:

(6-27) (NEXTTO BOX1 BOX2)

(6-28) (NEXTTO BOX2 DOOR1)

the system would determine that (6-28) should be planned before (6-27) in order
to avoid protection violations. The procedures used for the ordering in
this system are predefined.

In most cases, even if there is no method for initially reducing the
number of possibilities, a solution would still be obtainable, but at a
higher cost in planning time. Similarly, without ordering, a solution would

generally be obtained with proper backtracking procedures.

s s i i

67

6.9. Databases and World Models

The databases or contexts in this system are implemented as a list

of context layers. The form and motivation for the contexts are similar to

those in CONNIVER[20] and QA4[32]. Each context layer contains any number

of data items as well as an indication of whether the items are to be

present or absent in the context. Contexts are usually built by adding
context layers to the front of the sequence, although it is possible to
insert a layer anywhere.

For example, if there is a context called THEN (made up of an

arbitrary number of layers) which contains the fact
(6-29) (JOHN IS AT HOME)
and a new context is created

(6-30) (SETQ NOW (PUSH-CONTEXT THEN))

Py g gy g Bed Sud Ged O BN G @B

where PUSH-CONTEXT adds a new context layer to the context, then the context

could be updated by the instructions

(6-31) (REMOVE (JOHN IS AT HOME) NOW)

g gy

(6-32) (ADD (JOHN IS AT WORK) NOW)

In NOW, John is at work but he is still at home with respect to THEN. To

determine if a fact is true in a context, the layers are searched in order.

If the fact is found to be present on a layer (or there is a match), the fact
is true unless an absent marker has already been found for the fact.

Otherwise, a fact is considered to be absent. By using contexts it is always

- /.M

possible to recreate a previous world model.

PR

RIS

6.9.1. Global Models

The system maintains two types of world models, the initial model
and intermediate models. The initial model of the world represents the
true state of the world to the best knowledge of the system. The initial
model is stored as a context. For ease in searching, the initial model
is divided into two disjoint sections: facts which are known to be true
but cannot be altered by system action (eg., BOX1 is a box) and facts which
are true but could be changed. The initial world model represents the
present real world and is therefore always changing. In this system, the
model will be augmented any time an observation is made. It will also be
updated any time that an action is executed in the real world (as opposed
to the application of an operator during planning).

The intermediate models are used to represent key portions of
the output state of plans to satisfy a main goal which have not yet been
executed. These models are stored as contexts with only one context layer
per model.

After a plan has been created for a main goal, some of the final
state conditions are known down to a low level of detail, but most of the
planning does not make use of it. The intermediate models just contain the
major features. Included are the main goal (that is, the condition which
lead to the construction of the plan) and the output fact corresponding to
the LINKCONDITION. Also included would be any alterable facts of rank higher

than or equal to that of the main goal which were used in or are products of

the plan.

[o—

bed ed

69

As has previously been stated, the system may have determined
several ways of satisfying the main goal. The intermediate models have to
represent these, if present. This is done by associating with each fact,
an indicator of which subplan it is a consequence. If a fact is true in
all subplans (approaches), then there will be no tag. There must be
at least one untagged entry, the main goal. In some cases, although there
may be several subplans, the major output conditions which are represented
may all be the same. The intermediate models would not be concerned with
the subplans but just the results.

So, for example, the system when planning to make BOX1l next to
BOX2 with the boxes in two different rooms would find that either box could
be pushed to the other. Two subplans may be developed. Among the elements

of the intermediate model for the plan would be

((INROOM BOX1 ROOM1) PLAN1)
((INROOM BOX2 ROOM1) PLAN1)
(6-33) ((INROOM BOX1 ROOM2) PLAN2)
((INROOM BOX2 ROOM2) PLAN2)
((NEXTTO BOX1 BOX2))

If this model was used to satisfy preconditions of future main goals,
the system would have to note from which subplan of the intermediate model
that data came from. This is necessary for proper pruning. If in the above
case, the system had obtained the location of BOX1l and BOX2 from this plan

for the goal MGA, then included in the intermediate model would be

(6-34) (DATABASE PLAN1 MGA)
(DATABASE PLAN2 MGA)

Also stored would be an indication that MGA would have to be executed before

either of these two plans. If one of the plans was later pruned, the

™y
|

70

intermediate model would be updated to indicate that only one subplan was

active. Any subplans dependent on the pruned subplan would also be pruned.

6.9.2. Local Models
When a subplan is being constructed, local models are created as

contexts to represent an expected state of the world. Because the planning

is hierarchical, new context layers cannot just be added to the front of the
context. The layers must be inserted during each pass of the planning.
There are two world models being built concurrently. The OUT-WORLD is a

cumulative model containing all layers which have been created since the

beginning of the current plan. The model is reconstructed during each
planning pass. When the planning is completed, the model is consolidated into
the intermediate model for the plan. The condition frame may contain a
model which would be used as the initial OUT-WORLD during planning.

The ADD-WORLD is a list of context layers associated with one frame.
A PCS frame would have as its ADD-WORLD the concatenation of all ADD-WORLDs
of the individual preconditions it contains. The ADD-WORLD of a PRECONDITION

frame would be the context layers storing facts relating to applying an

operator followed by the ADD-WORLD of the corresponding PCS frame. The
elemental context layers of an ADD-WORLD are in general the single layer of an
ASSUMPTION frame and the previously mentioned layers representing the ADDITIONS
and DELETIONS of an operator.

In the discussion concerning shortcuts, it was mentioned that the : %
world model to be used for planning was that world which would be expected to

exist following an observation. This model is not explicitly saved, but is

L

Bood i et i pued Saad e ey e e Ga BN BB R

e il iy 4

71

built up from preceding ADD-WORLDS each time it is needed. Using these
ADD-WORLDS, the planning environment at any point in the planning could be
recreated. The OUT-WORLD is rebuilt in part using existing ADD-WORLDS.

Also stored on the local models is information concerned with
which plans in the intermediate models are being used to satisfy
preconditions. By using this information, the system checks to be sure that

conditions are satisfied using proper and consistent intermediate models.

_‘.__...__.._....--y

72

7. LINKING

After the system has formulated the plan outlines for a number

or all of the main goals specified, it will try to initiate linking of

some of the plans. This generally occurs when there is a break in the

rank of the main goals being planned. In order to start executing a

plan, all of the initial preconditions must be satisfied. Some of the pre-
conditions of the first action which would be executed were designated

as linkage conditions. These may be satisfied by constructing a plan whose
effect would be to satisfy preconditions using the current model of the real

world.

7.1. Linking and Planning

When the system is trying to form a link, certain types of infor-
mation are available. The system has a model of the real world, the
LINKCONDITIONs (see 6.4.4) for plans it has generated (which are determined
using the REASONS of a plan), the analogous conditions for output which are
found in the intermediate models (this is called the output linkage),
restrictions on the ordering or plan execution which were developed during
planning, and what plans have already been executed, if any.

The first thing that the system does is to check the restriction on
the ordering of the main goal plans to ascertain which plans are immediately
available for linking. A plan is unavailable if a plan which must come
before it has not been executed or linked (awaiting execution). For each of
the possible candidates, the system forms a pair consisting of the output
linkage(s) from the last executed or linked plan to the input linkage of the

candidate. Common linkage pairs are grouped together so that duplicate links

are not planned.

The system now has determined a set of possible links. The output
links are used as the initial planning models and the LINKCONDITIONS are the
goals. The system then reenters a planning mode. The approaches used
are similar to those of planning to satisfy the main goals, but the
planner is aware that it is working on a linkage. This will affect what
types of assumptions could be made. In particular, because linkage condi-
tions are fairly low ranked and because linking is nearer to an execution
phase than the initial planning, the planning will generally be more detailed.

As in planning main goals, the planning of the linkage is done
in the breadth first "parallel" manner. For each call to the planner this
may result in the construction of several potential linkages. All of these

linkages have the same number of planned operators.

7.2. Choosing a Link

The object of the LINKER is to link one main goal plan at a time.

Because of multiple subplans for a particular main goal, there may be several
possible linkages. During the planning of the links, the particular specifi-~
cations of the main goal plans were not incorporated into the planning in any
manner (other than providing the barest input-output specifications without
any restrictions). The restrictions are not incorporated into the early
stages of planning because the system has two diverse goals. It wants to
form linkages which are general within the given domain and it also wants to
make use of all known information, some of which may differ from run to run.
Once the links have been planned, the individual demands of a main goal can

be considered. Associated with each of the LINKCONDITIONS may be LINKAIDS,

e

74

restrictions that the linkage must satisfy in order for some assumption in
the main goal plan to remain valid.

Each linkage and the plan to which it is linked is examined. If
there are no LINKAIDS for the particular plan, then the linkage is passed
on for further consideration. If there are LINKAIDS for a plan, the
corresponding linkage is checked to see if the conditions are met. This
is accomplished by inspecting the specific actions and reasons for a linkage.

Due to the possibility of alternate subplans and shortcuts
within a linkage plan, the actual linkage may be satisfiable in several
ways including alternate plans and shortcuts. By using the reasons to
isolate particular actions, the precise manner of satisfaction can be deter-
mined and checked.

If, when planning a main goal, subplans representing alternate
approaches were determined to be "inferior" to other subplans, they were
pruned. But for a linkage, the desire is to keep the plan as general as
pcssible (in order to be reusable). Because of this, it is not useful to
prune potentially good subplans or eliminate shortcuts of a linkage which are
inappropriate in a specific situation. The system associates with each
linkage a number of hints called caveats. At the time of execution of a
linkage, the caveats will be checked to aid the system in avoiding the
accidental execution of subplans which do not satisfy the LINKAIDS of the main
goal plan which is being linked. Of course, these would only have effect if
the LINKAID condition were still in force. So, if a LINKAID was instituted in

order to maintain the validity of an assumption used to satisfy a precondition,

and the precondition is observed to be satisfied, then the corresponding caveats

are no longer meaningful. This may allow the execution of shortcuts which

would otherwise be restricted by the caveats. The caveats are filed
according to the main goals linked and by whether the caveat refers to a
shortcut or an alternate plan.

For example, consider a main goal from the domain of Figure 5-1
(7-1) (INROOM BOX1 R12)

The plan which would initially be generated would have D2-12 assumed open
by assumption. HAIRRY-REASONER would have to be in R2 (this is the
LINKCONDITION) and should enter via D2-12 (this is the LINKAID) if the door
has not been observed to be open prior to execution. If at the time of
linkage planning HAIRRY-REASONER is in or is expected to be in R4, the
linkage specifications are just to have HAIRRY-REASONER go from R4 to R2.
The linkage plan which would be developed would have two subplans
and one shortcut. The two subplans would be
1. PLAN1l - Go to R3 via D3-4. Go to R6 via D3-6 and go to R2 via D2-6.
2. PLAN2 - Go to R3 via D3-4. Go to R12 via D3-12 and go to R2 via
D2-12.
The shortcut would go through D3-2 if it were observed to be open while in
R3 (when executing either plan). Note that this plan does not reflect the
precise needs of the main goal plan. The system would determine that the
LINKCONDITION was satisfied via doors D2-12, D2-3 and D2-6. D2-6 and D2-3 do
not satisfy the LINKAID. Caveats would be created preventing the shortcut or

PAN2 from being executed only when linking to this particular main goal

#n and only when the LINKAID condiiion, D2-12 open, has not been observed

» TrMae

i
|

SO

R

AL AN AT

B AL ateta

A TR NG SR g e 2
i -

76

The linkages which have satisfied all LINKAIDS are reconsidered
with respect to the number of operators in the plan, but now including all
of the restrictions introduced by caveats. The elimination of the avail-
ability of some shortcuts may reduce the attractiveness of some linkages.
These are eliminated from consideration. If at any point there is only
one main goal being linked (by one or more linkages), then this goal is
considered to be linked. The system goes on to further linking or
execution.

If there are two or more main goals linked, the system then
checks to see if one of them has only one input linkage into the plan and
one output linkage. If there is only one plan with this one-in-one-out
property, then this main goal is linked. This is primarily used to "break
ties" when equally attractive links are available. It also eases planning
of future linkages because multiple output models are eliminated in favor of
those with just one output specification. If the chosen main goal linkage
only links one subplan, then the other subplans are pruned. As has been
discussed (see section 6.8.1), this may initiate a propagation of pruning.
This particular criterion is a result of the implicit system philosophy
which tries to choose a plan or direction which demonstrates the most
promise earliest. This is aimed at easing the planning by reducing the
number of possibilities which must be pursued.

At this point, it is unlikely that there will be more than one plan
left. But if there is, the system will find the set with the least number of
output linkages and pick one arbitrarily from among them. Any relevant

pruning is dome.

- ik

——y

77

When a linkage between two points has been planned, it is saved
and could be used if the same starting and ending conditions are encountered
again. In this system, what actually happens after the necessary linking
specifications are determined is that the system checks to see if any of
those particular linkages have been planned. If so, the planning stage is
eliminated and the system proceeds to the checks using criteria for length of
plan and satisfied LINKAIDS which have just been described. There is the
possibility that in any given situation the shortest link will be missed.
However, there is a great deal of time saved by not planning. Also,
because only the shortest links are saved and the selection process further
checks for a shortest case, the final link that would be chosen will
usually be among the best available.

This method of finding linkages to connect already developed plan
outlines should be useful in cases when there are primarily low-level
interactions and dependencies among the plans. For situations with a high
degree of interaction, a more fruitful approach may be to initially consider

the consolidation of some of the goals when constructing the plan outlines.

7.3. Replanning

Occasionally, none of the shortest linkages satisfies the LINKAIDS
of the respective main goal plans. The LINKER could reenter a planning mode
in order to try to develop a new link, or the system could try to modify the

original plan to accept the found linkage. This system initially uses the

latter approach.

-

P

DY

- —

78

This is done for several reasons. The goal of LINKER is to find
the most general link between two main goal plans. By replanning the link,
the most general, shortest link would be changed into one which was just
suited for a particular plan. If it is possible to replan the main goal
plan, the desired result would be a more general plan in which the
original plan is embedded, being executable if the proper conditions are
observed. By waiting to replan, the system will not attempt to initially
consider too many diverse possibilities. Rather the depth of planning and
options available for a given plan are developed as needed for a specific
situation. This demonstrates a system in which no plan is inviolate. The
linkage and main goal plans can be altered via shortcuts or replanning, depending
on the individual case.

When the system decides to replan, it does not just want to take
the first backpoint and continue planning from there. The system would
inspect the backpoint list to find the entry which corresponded to choosing
the PCS frame of the now invalid assumption. Any deferred PCS frames which
were in the same subplan would be reconsidered. The planning then continues,
hopefully terminating in a successful plan. If the LINKCONDITIONS for the
revised plan are the same as the old plan, the linkage-plan pair is.retained
for further consideration. The tests to insure satisfying of any new LINKAIDS
proceed as before.

To see how this works, reconsider the example presented in section 6.7.

The final plan determined during the initial state of planning was shown in

Figure 6-6. Recall that the LINKCONDITION was

e i i ol e s

(7-2) (INROOM HAIRRY-REASONER R11)

with a corresponding LINKAID of linking through D11-12 to insure that
(STATE D11-12 OPEN) can be gssumed'satisfiable. If at the time of linking
this plan HAIRRY-REASONER is in R4 (see Figure 5-1 for floor plan) and
observes D4-11 to be OPEN, then the shortest link would simply be to go
through D4-11 into R11. But this does not satisfy the LINKAID. If there
were no other links of equal attractiveness available, the system would try
to replan the main goal plan.
When the plan was first created, one of the preconditions encountered

in the path that was finally successful was
(7-3) (INROOM BOX6 R12)
Two operators were determined to be possibly appropriate:

(7-4) (PUSHTHRUDR BOX6 D12-15 R12)

(7-5) (PUSHTHRUDR BOX6 D11-12 R11)

Both doors were assumed to be openable, with the LINKAID for (7-5)
being that the linkage had to be by D11-12 for the assumption to be valid The

next series of preconditions which were established were:

(7-6) (INROOM BOX6 R15)

(7-7) (INROOM BOX6 R11)

Because (7-7) could be satisfied in an existing world model while (7-6)
would require additional action, (7-6) was preferred. Planning continued until

the plan of Figure 7-1 was developed.

i i e e oee omd aes Gn S TS IR B AN W O

=1

(MG1 PROG
(EX4 PROG
(PCS5 PROG
(G9 FACT (CONNECTS D13-16 R16 R13) INITIAL)
(G18 FACT (TYPE D13-16 DOOR) INITIAL)
(PC26 PROG
(EX27 PROG
(PCS28 PROG
(G30 FACT (CONNECTS D12-13 R13 R12) INITIAL)
(G31 FACT (TYPE D12-13 DOOR) INITIAL)
(PC36 PROG
(EX37 PROG
(PCS38 PROG
(G42 FACT (CONNECTS D12-15 R12 R15) INITIAL)
(G47 FACT (TYPE D12-15 DOOR) INITIAL)
(PC567 PROG
(EX568 PROG
(PCS569 PROG
(G571 FACT (CONNECTS D11-15 R15 R11) INITIAL)
(G572 FACT (TYPE D11-15 DOOR) INITIAL)
(A586 ASSUMPTION (INROOM HAIRRY-REASONER R11)
LINKAGE)
(SC592 IF (STATE D11-12 OPEN)
(REPLACE PC36
(EX593 PROG
(PCS43 PROG
(G45 FACT (CONNECTS D11-12 R12 R11) INITIAL)
(G46 FACT (TYPE D11-12 DOOR) INITIAL)
(A70 ASSUMPTION (INROOM HAIRRY-REASONER R11)
OBSERVATION)
(A52 ASSUMPTION (STATE D11-12 OPEN) LOGIC)
(G55 FACT (INROOM BOX6 R11) INITIAL)
(A594 ASSUMPTION
(NEXTTO HAIRRY-REASONER BOX6) CRITICALITY)
(A58 ASSUMPTION (NEXTTO BOX6 D11-12)
DOMINANCE)
(EXECUTE75 ACTION
(PUSHTHRUDR BOX6 D11-12 R12))))))
(A573 ASSUMPTION (STATE D11-15 OPEN) LOGIC)
(G576 FACT (INROOM BOX6 R11) INITIAL)
(G578 ASSUMPTION (NEXTTO BOX6 D11-15)
DOMINANCE)
(1. (NEXTTO HAIRRY-REASONER BOX6))
(EXECUTE590 ACTION
(PUSHTHRUDR BOX6 D11-15 R15)))))

FIGURE 7-1
OUTPUT PLAN OF FIGURE 6-6 AFTER REPLANNING (continued)

80

s A i o g B A

— e o= w=s w=d S N WS

81

(G588 FACT (INROOM HAIRRY-REASONER R15) PRESENT)
(SC596 IF (STATE D15-16 OPEN)
(REPLACE MGl
(EX597 PROG
(PCS13 PROG
(G15 FACT (CONNECTS D15-16 R16 R15) INITIAL)
(G16 FACT (TYPE D15-16 DOOR) INITIAL)
(A598 ASSUMPTION (STATE D15-16 OPEN)
OBSERVATION)
(G600 FACT (INROOM BOX6 R15) PRESENT)
(G605 FACT (INROOM HAIRRY-REASONER R15)
PRESENT)
(A601 ASSUMPTION (NEXTTO BOX6 D15-16)
DOMINANCE)
(1. (NEXTTO HAIRRY-REASONER BOX6))
(EXECUTE606 ACTION
(PUSHTHRUDR BOX6 D15-16 R16))))))
(A48 ASSUMPTION (STATE D12-15 OPEN) LOGIC)
(A582 ASSUMPTION (NEXTTO BOX6 D12-15) DOMINANCE)
(1. (NEXTTO HAIRRY-REASONER BOX6))
(EXECUTE591 ACTION (PUSHTHRUDR BOX6 D12-15 R12)))))
(G72 FACT (INROOM HAIRRY-REASONER R12) PRESENT)
(SC79 IF (STATE D12-16 OPEN)
(REPLACE MGl
(EX80 PROG
(PCS10 PROG
(G12 FACT (CONNECTS D12-16 R16 R12) INITIAL)
(G17 FACT (TYPE D12-16 DOOR) INITIAL)
(A81 ASSUMPTION (STATE D12-16 OPEN) OBSERVATION)
(G83 FACT (INROOM BOX6 R12) PRESENT)
(G88 FACT (INROOM HAIRRY-REASONER R12) PRESENT)
(A84 ASSUMPTION (NEXTTO BOX6 D12-16) DOMINANCE)
(1. (NEXTTO HAIRRY-REASONER BOX6))
(EXECUTE89 ACTION (PUSHTHRUDR BOX6 D12-16 R16))))))
(A32 ASSUMPTION (STATE D12-13 OPEN) LOGIC)
(A62 ASSUMPTION (NEXTTO BOX6 D12-13) DOMINANCE)
(1. (NEXTTO HAIRRY-REASONER BOX6))
(EXECUTE76 ACTION (PUSHTHRUDR BOX6 D12-13 R13)))))
(G73 FACT (INROOM HAIRRY-REASONER R13) PRESENT)
(A22 ASSUMPTION (STATE D13-16 OPEN) LOGIC)
(A66 ASSUMPTION (NEXTTG BOX6 D13-16) DOMINANCE)
(1. (NEXTTO HAIRRY-REASONER BOX6))
(EXECUTE77 ACTION (PUSHTHRUDR BOX6 D13-16 R16)))))

FIGURE 7-1
OUTPUT PLAN OF FICURE 6-6 AFTER REPLANNING

e il

82

During replanning, the system reevaluates (7-4), the discarded é
approach. This can be found because the system knows what assumption has
failed, the PCS frame of the assumption and all PCS frames that were eliminated
in favor of the successful frame. To be more specific, the system only
desires to replan (7-3) and only those approaches which would lead to .
this end are considered. In this case the plan arising from (7-4) is the
only possibility. The system uses the reasons and backpoints associated with
the plan to isolate which particular subpart of a plan should be reexamined
in order to continue planning to determine the best approach.

As part of the replanning process, the system would reexamine

any unknowns encountered to test for possible shortcuts. In the final
product of the replanning (see Figure 7-1), it can be observed that there
are three shortcuts. One is from the initial plan and was not involved in

the replanning. One shortcut (D15-16) was a direct consequence of the new

planning. The third, however, incorporates the failed assumption which was
the cause of the replanning. Taking this shortcut would be equivalent to
executing the original plan.

The conversion of a failed assumption into a shortcut will generally

occur if the assumption represented the system's attempt to plan around missing

information. This follows from the manner in which the system chooses what to

replan as well as the necessary conditions for a shortcut. Because it is

desired that the linkage condition remain the same, a good observation point
from the observation-environment is usually present. Becaus< Juring
replanning, the same goal is used ((7-3) in the example), failed assumption

operators are generally still useful. These parallel the requirevments for a

shortcut.

T o e LT ——

e "2 o

-

83

By planning in this manner, the system has developed a plan that
is more general in that the original plan is still available, and a wider
variety of options are included. But the system is able to avoid the
proliferation of options which would occur if every unknown was expanded
into a plan or if the replanning merely continued from where the planning
had left off. The unknown conditions are incorporated into the plan in
a unified manner, only containing those instances which are expected to be

useful in a given situation.

8. EXECUTION |

As has been previously stated, it is not generally possible to |
create a plan which specifies every necessary action. The more robust and
realistic the domain, the truer this is. So the system must be able to

initiate execution sometime before the planning is complete. But the

system does not want to execute until it determines an overall plan
outline of how it should accomplish its tasks.

In this system, execution is simulated by having the system state
that an action is being executed. The real world model is altered to reflect ;

the expected changes. This system does not deal with problems which arise

when expected changes do not occur.

Originally the system was programmed to try to form a plan outline
for each main goal specified. Then a set of possible linkages between the
plans would be determined. All of the plans and linkages would still not
be completely specified. At this time the execution would finally commence.
This approach worked, but there were several drawbacks. The plans representing
lower ranked conditions sometimes were no more than statements of the goals.

The sparcity of information available due to missing data and lack of infor-

mation which arises because the exact ordering is unknown makes early planning
of low ranked goals unfruitful.

To alleviate this problem, the program was altered so that goals

were divided into classes. Each class contains goals of one or more ranks.

The goals in a class are planned, linked and then executed. This is repeated

for all of the classes. The ordering of execution within a class is determined
by linkage conditions and restrictions determined during planning (from use

of intermediate models). This means that lower ranked main goals are not

-‘-m"""":m“ . - : e .

— s O

———-

e ———

85

examined until the higher ranked ones are executed, thereby allowing new informa-
tion to be obtained. Using this approach leaves unresolved some of the problems
associated with when to try to satisfy a lower-ranked main goal "out of order"
when proper environments exist as well as when to hold off satisfying a lower
ranked condition.

Similar problems occurred when all of the linkages were to be found
before initiating execution. Because the linkage goal is fairly low ranked,
lack of information may limit the depth of planning. 1In order to get new
information to aid in planning, it is to the advantage of the system to start
executing as soon as possible. fo accomplish this, the approach which was
finally adopted was to execute a main goal plan as soon as the one-in-one-out
condition is met for the first unexecuted but linked main goal plan. This
means that if only one 'best'" link exists into the main goal plan which has
only one out linkage, the link and the plan are executed. One advantage of
this approach is that it enables the system to gather new information. Another
is that is does not force the system to eliminate subplans arbitrarily; there
still would be ample time for the pruning mechanism to aid in determining
the most appropriate subplans. If the one-in-one-out conditions are not met,
then linking would continue to other main goal plans. As new links are planned,
subplans may be chosen, leading to pruning. After each plan is linked and
after each execution, the one-in-one-out condition is checked to see if the
first unexecuted main goal is ready to be executed. If at the end of the
class, there are still plans to be executed, the system will choose a subplan
arbitrarily. This may lead to pruning, after which the subplans which should

be executed would be more clearly specified.

t

86

The execution of a plan should be straightforward if the earlier

main goal and link plans have been properly constructed. The EXECUTOR should

— eeees es AN

encounter no conflicts and all deferred planning should be successful. The

input to the EXECUTOR would be a list of plans similar to Figure 7-1.
These would be either a link and a main goal plan or just a main goal plan.
In this system, the execution environment is maintained on a stack. A
plan is pushed onto the stack. The EXECUTOR pops each element off and
tries to execute it. The execution is complete when the stack is empty.
The system has to recognize relatively few form types during execution.
They are: PROG, FACT, ASSUMPTION, IF, OR and ACTION.
1. The PROG elements - All main goal (MG), linkcondition, pre-

condition (PC), preconditions (PCS) and execution plans or

subplans are PROGs. The interpretation is analogous to a

LISP PROG, all of the elements are evaluated in order. When

the EXECUTOR encounters a PROG, it checks to determine if there

are any more entries. If there are none, it means that all of

the PROG entries have been successfully executed. The PROG

is discarded and the next element on the stack is popped off

to be inspected. If there are other entries, the first one is

removed. The remainder are pushed onto the stack. The first

entry is pushed onto the stack and execution continues. If the

PROG is of the condition type (PC, MG, LINK), the system checks

to see if the goal, the reason for the existence of the entire

PROG, is true in the present real world. If so, the entire PROG

is unnecessary and is eliminated.

—— | et ‘

87

The FACT element - The FACT element denotes that a condition
was satisfied in some world model, either initial, intermediate
or local, during planning. When this is encountered a check is
made to insure that the specified fact is indeed satisfied in the
real world.

The ASSUMPTION element - An ASSUMPTION element signals the
EXECUTOR that a condition was assumed to be satisfiable at
execution time. The EXECUTOR would first check to see if the
condition is satisfied in the real world. If so, execution

can proceed. If not, the system enters a planning mode using
the present world model as a starting point to construct a
detailed plan to satisfy the condition. If planning is success-
ful, the new plan is pushed onto the stack and execution con-
tinues. An ASSUMPTION element is recognized by the keyword
ASSUMPTION or a numeric first element. Recall that this

latter case corresponds to the assumption due to low rank.

The IF element - IF elements are used to represent shortcuts.
Each IF element has associated with it a condition, a tag de-
noting what is to be replaced and a replacement. The condition
which represent a fact which must be satisfied in the real world
is checked first. If it is true, the shortcut is possible.

If the plan being executed is a link, the EXECUTOR must check
for relevant caveats before the shortcut can be taken. The
system looks for any caveats of the link associated with the

main goal plan. If there are no appropriate caveats, or all

LINKAIDS have already been satisfied, the shortcut can be
executed. If there is a caveat in force, the whole IF element
is eliminated and execution continues. To take a shortcut,
the stack is checked to find the position of the tag. Every-
thing between the top of the stack and the tag is removed.
The replacement plan is pushed onto the stack.

The OR element - At any time, the EXECUTOR may encounter

an OR as the first element of the top entry on the stack.
This serves to indicate that several alternate methods of sat-
isfying a goal are available. 1If the OR occurs at a high
enough level, the alternate plans are unresolved subplans.
If the top level plan is a link, all appropriate caveats

are retrieved, if any. The system then executes the first
alternative which is not prohibited by some caveat. Because
of the choice, some subplans of unexecuted main goal plans
may be pruned.

The ACTION element - When an ACTION element is encountered,
all of the preconditions of an operator should be satisfied.
The EXECUTOR examines the real world to insure that they are.
The action is then executed. The real world model is altered
to reflect any changes in state. In some cases, a new
OBSERVATION-ENVIRONMENT may be entered, in which case all

relevant observations are made.

88

AD=A034 991 ILLINOIS UNIV AT URBANA=CHAMPAIGN COORDINATED SCIENCE LAB F/6 9/2
ON A COMPUTER SYSTEM FOR PLANNING AND EXECUTION IN INCOMPLETELY==ETC(U)
AUG 76 S J WEISSMAN DAABO7=72-C~0259

UNCLASSIFIED R=741 NL

F =7

END

DATE
AT

|
.

9. EXAMPLES

This chapter presents the output of two runs of the system with

comments added. The numbers running down the left hand side of the pages
are the real world clock times.‘ In the two cases which are presented the
initial input specifications will be the same, but the response to the
system initiated questions (i.e., observations) may differ. Everything in
upper case is provided by the system while lowercase data represents input
to the system and comments. The initial conditions known to the system

are those portrayed in Figure 5-1.

g 9.1. Example I
i
6:31:43 RPTI O
; ; 6:31:43 1975 9 26
q 2 6:31:43 INITIAL SPECIFICATIONS -D TO EXIT
6:31:43 >>> (nextto box5 box2)
6:31:57 >>> (nextto box4 box2)
6:32:3 >>> (nextto box6 boxl)
6:32:13 >>> (state d6-7 closed)
6:32:34 >>> (inroom box3 r5)

The system has been instructed to satisfy these
five conditions in the final state, some of which
may be true initially. Because there is some
reordering, the order of initial planning is not
directly affected by the order of input.

Of course, at some point, the system has to choose
which condition to satisfy first. Once chosen,

the future planning may be affected by the order of

planning.

- WU
= o

o O
w W
wnN

oo
w W
v W
(v, Jyan

o O
w W

[V]

:27

Y

90

INITIATING PLANNING MGl (INROOM BOX3 R5)
FINISHED PLANNING MGl (INROOM BOX3 R5)

The original plan is to push D3-6 open
and then to push the box through the door
into R3.

INITIATING PLANNING MG23 (NEXTTO BOX6 BOX1)
FINISHED PLANNING MG23 (NEXTTO BOX6 BOX1)

The original plan, shown in Figure 9-1
contains two subplans.

This first is to enter R2 via D2-12,

push BOX1 into R12 and then into R11l.

The second subplan is to enter R1ll via
D11-12 and push BOX5 into R12 and then
into R2. The boxes are then pushed next to
each other in each plan.

INITIATING PLANNING MG132 (NEXTTO BOX4 BOX2)
FINISHED PLANNING MG132 (NEXTTO BOX4 BOX2)

The plan originally has two subplans, PCS136
and PCS139 (see Figure 9-2).

In PCS135, BOX2 is pushed into R3 through

R2 and then is pushed next to BOX4. In PCS139,
BOX4 is pushed into R5 through R6. The boxes
are then pushed together.

INITIATING PLANNING MG233 (NEXTTO BOX5 BOX2)
FINISHED PLANNING MG233 (NEXTTO BOX5 BOX2)

Because there were two major subplans of MG132,

the system had to investigate two approaches

91

to satisfy this condition, push BOX5 into R5
(for subplan PCS139) and push Box5 into R3

(for subplan PCS136). When the system decided
that the latter subplan was better, PCS139 in
MG132 was pruned. The plan produced

contains one shortcut and is shown in

Figure 9-3.

6:38:43 INITIATE LINK PLANNING

(LINK372 ((INROOM HAIRRY-REASONER R4)
(INROOM HAIRRY-REASONER R5))
(INITIAL NIL MG132 A217 PCS136))

(LINK367 ((INROOM HAIRRY-REASONER R4)
(INROOM HAIRRY-REASONER R2))
(INITIAL NIL MG23 Al1l6 PCS27))

(LINK362 ((INROOM HAIRRY-REASONER R&)
(INROOM HAIRRY-REASONER R11l))
(INITIAL NIL MG23 A118 PCS30))

(LINK357 ((INROOM HAIRRY-REASONER R&4)
(INROOM HAIRRY-REASONER R6))
(INITIAL NIL MGl A18 PCS5))

In this case the system determined while planning

that MG132 had to be linked (and executed) before

MG233. Four possible linkages are considered.

Two are for the subplans of MG23. Associated
with each linkage being planned are the input

condition, output condition, and the main goal and

subplan which the system is attempting to link.
So, for LINK372 the input and output conditions are
(INROOM HAIRRY-REASONER R%4) and

(INROOM HAIRRY-REASONER RS),

! respectively. The goal is to link the INITIAL world

“

:39
:39
:39
:39
:40
:40
:40
:40

[e)3« e We \ We e N SRR AN« AN e J0e)

6:41:

6:41:

6:41:

:41
141
141
147
:40
:40
:40
147
41
41
34 :
:41:

11

20

21

23

o 2

with no subplan (i.e., NIL) to MG132 with subplan

PCS136 and linkage assumption All7.

HAIRRY-REASONER IN ROOM R4
IS (STATE D4-11 OPEN) ?
>>> no
(STATE D4-11 CLOSED)
HAIRRY-REASONER IN ROOM R4
IS (STATE D4-7 OPEN) ?
>>> yes
(STATE D4-7 OPEN)
HAIRRY-REASONER IN ROOM R4
IS (STATE D3-4 OPEN) ?
>>> yes
(STATE D3-4 OPEN)

These questions and answers correspond to the
real world observations of the system. The
system has to be in the proper OBSERVATION-

ENVIRONMENT for a fact to be observed.

LINKS SUCCESSFULLY PLANNED (LINK357)

This was determined to be the shortest link

which also satisfied any restrictions. MGl is

linked. Because there is one input condition and

one output condition, the system can initiate

the execution of this linkage and the main goal

plan.

EXECUTION PLANNING BEGINNING
(NEXTTO HAIRRY-REASONER D4-7)

FINISHED PLANNING MG531
(NEXTTO HAIRRY-REASONER D4-7)

The preceding entries denote a return to a planning

mode to plan how to satisfy conditions which were

initially assumed.

92

e i,

T o0 O

ascaooccoooocorcooocccCooccocorov o

41

41

41
41
s41
i
4135

41

41

41

41
:41:
4l
41

142
142
42
142 ;
42

.—-\oxobbuxu

23 *%%**EXECUTE ACTION: GOTOD D4-7

24 *%***EXECUTE ACTION: GOTHRUDR D4-7 R7

25
25
25
31

:40
:40
24k

241

144

:49
:50
41
:41:
141
41
41
42

50
50

154

54

These entries represent the actual executions.
In this case movement allows new observations
to be made.

HAIRRY-REASONER IN ROOM R7
IS (STATE D6-7 OPEN) ?
>>> no
(STATE D6-7 CLOSED)
EXECUTION PLANNING BEGINNING (STATE D6-7 OPEN)
FINISHED PLANNING MG545 (STATE D6-7 OPEN)

#%¥EXECUTE ACTION: GOTOD D6-7
#*%##*EXECUTE ACTION: OPEN D6-7

#%%%*EXECUTE ACTION: GOTHRUDR D6-7 R6

Because of the hierarchical approach used in
planning, the fact that the D6-7 is now to be
opened but is to be closed in the final state
does not cause any protection violations.

HAIRRY-REASONER IN ROOM R6
IS (STATE D5-6 OPEN) ?
>>> yes
(STATE D5-6 OPEN)
HAIRRY-REASONER IN ROOM R6
IS (NEXTTO BOX3 D5-6) ?
>>>no
HAIRRY-REASONER IN ROOM R6
IS (STATE D3-6 OPEN) ?
>>> yes
(STATE D3-6 OPEN)
HARRY-REASONER IN ROOM R6
IS (STATE D2-6 OPEN) ?
>>> no
(STATE D2-6 CLOSED)
EXECUTION PLANNING BEGINNING (NEXTTO BOX3 D5-6)
FINISHED PLANNING MG573 (NEXTTO BOX3 D5-6)

P

o

AN OOV O

(oA 0 W« e J 0 N 0 W)}

42
47

<42

142
42

142

142

122
222
222
126
127
227
27
:30
:30
:30
134

38

47
:48

149

58

:58
159

118 *%***EXECUTE ACTION: GOTOB BOX3
119 *%***EXECUTE ACTION: PUSHD BOX3 D5-6

121 **%**EXECUTE ACTION: PUSHTHRUDR BOX3 D5-6 R5

HAIRRY-REASONER IN ROOM R5
IS (STATE D2-5 OPEN) ?
>>> no

(STATE D2-5 CLOSED)

HATRRY-REASONER IN ROOM RS

IS (NEXTTO BOX2 D2-5) ?
>>> no

HAIRRY-REASONER IN ROOM R5

IS (STATE D1-5 OPEN) ?
>>> yes

(STATE D1-5 OPEN)

The system does not have to plan a linkage now
because the LINKCONDITION for MG132 is already

satisfied in the real world (i.e., HAIRRY-REASONER

is already in R5).

EXECUTION PLANNING BEGINNING (STATE D2-5 OPEN)
FINISHED PLANNING MG596 (STATE D2-5 OPEN)

*%%%**EXECUTE ACTION: GOTOD D2-5
*%%**EXECUTE ACTION: OPEN D2-5

EXECUTION FLANNING BEGINNING (NEXTTO BOX2 D2-5)
FINISHED PLANNING MG624 (NEXTTO BOX2 D2-5)

*%%**EXECUTE ACTION: GOTOB BOX2
*%%%*EXECUTE ACTION: PUSHD BOX2 D2-5
*%%**EXECUTE ACTION: PUSHTHRUDR BOX2 D2-5 R2

HAIRRY-REASONER IN ROOM R2
IS (NEXTTO BOX1 D2-12) ?
>>>no
HAIRRY-REASONER IN ROOM R2
IS (STATE D2-12 OPEN) ?
>>>n°
(STATE D2-12 CLOSED)
HAIRRY-REASONER IN ROOM R2

:43:35
:43:35
:43:40
:43:42
:43:42
:43:42
:43:45
:43:46
:43:52

B

[e)WNe NN RN e \No Wo 0N e 0o)

(o))

:43:52

o)}

:43:56

:43:58
:43:58
:43:58

LT
447
:44:13

OO OO
S
S
~

6:44:14

6:44:17

6:44:58

IS (STATE D2-3 OPEN) ?
>>>'yes
(STATE D2-3 OPEN)
HAIRRY-REASONER IN ROOM R2
IS (STATE D1-2 OPEN) ?
>>> yes
(STATE D1-2 OPEN)
EXECUTION PLANNING BEGINNING (NEXTTO BOX2 D2-3)
FINISHED PLANNING MG647 (NEXTTO BOX2 D2-3)

*%%**EXECUTE ACTION: PUSHD BOX2 D2-3

%%**EXECUTE ACTION: PUSHTHRUDR BOX2 D2-3 R3

HAIRRY-REASONER IN ROOM R3

IS (NEXTTO BOX4 D3-6) ?
>>>no

HAIRRY-REASONER IN ROOM R3

IS (STATE D3-12 OPEN) ?
>>> yes

(STATE D3-12 OPEN)

%%**EXECUTE ACTION: PUSHB BOX2 BOX4

Now the system tries to link to one of the
remaining planned main goals. It can now also
consider MG233 because MG132 has been executed.

INITIATE LINK PLANNING
(LINK673 ((INROOM HAIRRY-REASONER R3)
(INROOM HAIRRY-RL = INER R15))
(MG132 NIL MG233 A.34 PCS240))
(LINK668 ((INROOM HAIRRY-REASONER R3)
(INROOM HAIRKY-REASONER R2))
(MG132 NIL MG23 A116 PCS27))
(LINK663 ((INROOM HAIRRY-REASONER R3)
(INROOM HAIRRY-REASONER R11))
(MG132 NIL MG23 A118 PCS30))
LINKS SUCCESSFULLY PLANNED (LINK668)

Because D2-3 is open, the shortest link is to

go into R2 to execute MG23, but this plan has

a LINKAID OF entering via D2-12. This door

(oA ¥

6:46:

6:46

.
]

6:46
6:46

6:46
6:46

44
145

6:46:

246
146

00 0 Qo

146
146

6:46:
6:46:

58
57

13
24

24
25

129

:32
:40

40
:42

:45
sy 6:46:
:45
! :46:50
i W 6:46:
6:46:

e 6:46:

51
51
51

96

has already been observed to be closed. The
system initiates a replan of MG23 to see
if this linkage could be used.

INITIATING REPLAN MG23 (NEXTTO BOX6 BOX1)
FINISHED REPLAN MG23 (NEXTTO BOX6 BOX1)

The replanning is successful. The new

plan is shown in Figure 9-4. Subplan
PCS30 has been pruned.

EXECUTION PLANNING BEGINNING
(NEXTTO HAIRRY-REASONER D2-3)
FINISHED PLANNING MG765
(NEXTTO HAIRRY-REASONER D2-3)

*%%%**EXECUTE ACTION: GOTOD D2-3
*%%%*EXECUTE ACTION: GOTHRUDR D2-3 R2

HAIRRY-REASONER IN ROOM R2
IS (NEXTTO BOX1 D2-3) ?
>>>no

EXECUTION PLANNING BEGINNING (NEXTTO BOX1 D2-3)
FINISHED PLANNING MG779 (NEXTTO BOX1 D2-3)

*%%**EXECUTE ACTION: GOTOB BCOX1
*%%%*EXECUTE ACTION: PUSHD BOX1 D2-3
%%%%*EXECUTE ACTION: PUSHTHRUDR BOX1 D2-3 R3

EXECUTION PLANNING BEGINNING (NEXTTO BOX1 D3-12)
FINISHED PLANNING MG802 (NEXTTO BOX1 D3-12)

%%%EXECUTE ACTION: PUSHD BOX1 D3-12
*%%%*EXECUTE ACTION: PUSHTHRUDR BOX1 D3-12 R12

HAIRRY-REASONER IN ROOM R12
IS (STATE D12-15 OPEN) ?
>>> no
(STATE D12-15 CLOSED)
HAIRRY-REASONER IN ROOM R12

IS (STATE D11-12 OPEN) ?
>>> 1o

s b s

—
S

oo O

(=)}

o

(o) NN e e) e Y N6 NN e NN W6 We)}

:46:;
:46:
:47:
7
47

47
<47

47
147
147
147
147

229
&7 :

e
/

47 s
Q.
147
47
<47
247 :

47

47
:48:

:48:

.
.

57
57

10
2K

21

422

227

29
29

35
3

36
36

142
142
242
:49

50

55

59
0

5

:48:5 **%*XEXECUTE ACTION: GOTOD D11-15

:48:7 *%%**EXECUTE ACTION: GOTHRUDR D11-15 R15

(STATE D11-12 CLOSED)
EXECUTION PLANNING BEGINNING (STATE D11-12 OPEN)
FINISHED PLANNING MG818 (STATE D11-12 OPEN)

*%%**EXECUTE ACTION: GOTOD D11~12
#*%%**EXECUTE ACTION: OPEN D11-12

EXECUTION PLANNING BEGINNING (NEXTTO BOX1 D11-12)
FINISHED PLANNING MG846 (NEXTTO BOX1 D11-12)

#*%%**EXECUTE ACTION: GOTOB BOX1
#%%%*EXECUTE ACTION: PUSHD BOX1 D11-12
*%%**EXECUTE ACTION: PUSHTHRUDR BOX1 D11-12 R1l1

HAIRRY-REASONER IN ROOM R11
IS (NEXTTO BOX6 D11-12) ?
yes
(NEXTTO BOX6 D11-12)
HATRRY-REASCNER IN ROOM R11
IS (NEXTTO BOX6 D11-15) ?
>>> no
HAIRRY-REASONER IN ROOM R11
IS (STATE D11-15 OPEN) ?
>>> yes

(STATE D11-15 OPEN)
*%%**EXECUTE ACTION: PUSHB BOX1 BOX6

INITIATE LINK PLANNING
(LINK869 ((INROOM HAIRRY-REASONER R11)
(INROOM HAIRRY-REASONER R15))
(MG23 NIL MG233 A334 PCS240))

The system now tries to link the remaining
planned goal.

LINKS SUCCESSFULLY PLANNED (LINK869)
EXECUTION PLANNING BEGINNING

(NEXTTO HAIRRY-REASONER D11-15)
FINISHED PLANNING MG882

(NEXTTO HAIRRY-REASONER D11-15)

(oW W e e N e)

s —

A R 1yt L ool o

e Sk R

98

:48:8 HAIRRY~REASONER IN ROOM R15

:48:8 IS (NEXTTO BOX5 D12-15) ?

:48:8 >>> yes

:48:12 (NEXTTO BOX5 D12-15)

:48:13 EXECUTION PLANNING BEGINNING (STATE D12-15 OPEN)
:48:26 FINISHED PLANNING MG896 (STATE D12-15 OPEN)

:48:26 *¥**%EXECUTE ACTION: GOTOD D12-15

:48:27 *¥x**EXECUTE ACTION: OPEN D12-15

:48:28 EXECUTION PLANNING BEGINNING
(NEXTTO HAIRRY-REASONER BOX5)
:48:31 FINISHED PLANNING MG924

(NEXTTO HAIRRY-REASONER BOX5)
:48:31 **%***EXECUTE ACTION: GOTOB BOX5

:48:32 *%***EXECUTE ACTION: PUSHTHRUDR BOX5 D12-15 R12

:48:38 EXECUTION PLANNING BEGINNING (NEXTTO BOX5 D3-12)
:48:47 FINISHED PLANNING MG932 (NEXTTO BOX5 D3-12)

:48:47 *%%%*EXECUTE ACTION: PUSHD BOX5 D3-12

148 :49 *%%%¥EXECUTE ACTION: PUSHTHRUDR BOX5 D3-12 R3
This action is possible because a shortcut existed.
Wher: the initial planning took place, whether this
door was open or closed was unknown and a
longer path was developed. (see Figure 9-3).

:48:53 **%***EXECUTE ACTION: PUSHB BOX5 BOX2

:48:58 INITIATING PLANNING MG948 (STATE D6-7 CLOSED)
:49:2 FINISHED PLANNING MG948 (STATE D6-7 CLOSED)

The main goal rank threshold has been lowered.
The system can now plan how to satisfy the goal
and find the linkage.
:49:2 INITIATE LINK PLANNING
(LINK968 ((INROOM HAIRRY-REASONER R3)

(INROOM HAIRRY-REASONER R6))
(INITIAL NIL MG948 A963 PCS954))

s I e 6

[0 e}

N

[n))

=)0« W« N \Ws W« \N= W= 0e J 0« N N A= AN A0S A0 s ile A WYa LN @ SR o NS e LTS AR e)

149

:49:

:49:

149

:49:

:49
:49:

20
2D
529
P
s27
127
27
<29
:29

8

12

12

:16

L

21

L

24

$2>

:29
:30
:30
:31
:32
:32
:32
32
134
:49:
:49:
:49:

34
34
35

LINKS SUCCESSFULLY PLANNED (LINK968)

EXECUTION PLANNING BEGINNING

(NEXTTC HAIRRY-REASONER D3-6)

FINISHED PLANNING MG981

(NEXTTO HAIRRY-REASCNER D3-6)

*%%**EXECUTE ACTION:

*%%%**EXECUTE ACTION:

GOTOD D3-6

GOTERUDR D3-6 R6

EXECUTION PLANNING BEGINNING

(NEXTTO HAIRRY-REASONER D6-7)

FINISEED FLANNING MG995

(NEXTTO HAIRRY-REASONER D6-7)

*%%%**EXECUTE ACTION:

%EXECUTE ACTION:

The planning and execution are over and all

nZ the goals have been satisfied.

GOTCD D6-7

CLOSE D6-7

REVIEW OF PLAN EXECUTED

(L)
(z)
€))
4)
(57
(€)
(7>
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)

GOTOD D&-7

GOTHRUDR D4~7 R7

GOTCD D6-7
OPEN D6-7

GOTHRUDR D6-7 R6

GOTOB BUX3
PUSHD BOX3
PUSHTHRUDE
GOTOD D2-3
OPEN D2-5

GOTOR BOX2
PUSED BOX2
PUSHTHRUDR
PUSHD BOX2
PUSHTHRUDR
PUSHB BOX2
GOTOD D2-3

D5-5
30X3 D5-6 R5

D2-5
BOX2 D2-5 R2
22=3
BOX2 D2-3 R3
BOX4

GOTHRUDR D2-3 R2

GOTOB BOX1
PUSHD BOX1
PUSHTHRUDR
PUSHD BOX1

PUSHTHRUDR BOX1 D3-12 R12

D2-3
BCX1 D2-3 R3
D3-12

99

PRECONDITIONS SATISFIED IN THE DATABASE:

GOTOD D11-12

OPEN D11-12

GOTOB BOX1

PUSHD BOX1 D11-12
PUSHTHRUDR BOX1 D11-12 R11
PUSHB BOX1 BOX6

GOTOD D11-15

GOTHRUDR D11-15 R15

GOTOD D12-15

OPEN D12-15

GOTOB BOX5

PUSHTHRUDR BOX5 D12-15 R12
PUSHD BOX5 D3-12
PUSHTHRUDR BOX5 D3-12 R3
PUSHB BOX5 BOX2

GOTOD D3-6

GOTHRUDR D3-6 R6

GOTOD D6-7

CLOSE D6-7

PRECONDITION SATISFIED BY PLANNING

DURING EXECUTION:

SHORTCUTS TAKEN: 1
TOTAL RUNTIME: 775.814 seconds

TOTAL GCTIME:

6:49:36 (24)
6:49:36 (25)
6:49:36 26)
6:49:37 (27)
6:49:37 (28)
6:49:37 (29)
6:49:39 (30)
6:49:39 (31)
6:49:39 (32)
6:49:39 (33)
5:49:41 (34)
6:49:41 (35)
6:49:41 (36)
6:49:41 (37)
6:49:42 (38)
6:49:42 (39)
6:49:42 (40)
6:49:44 41)
6:49:44 42)
6:49:44

6:49:44

6:49:46

6:49:46

6:49:47

N e s 0

121.877 seconds

77

17

(MG23 PROG
(OR
(EX26 PROG
(PCS27 PROG
(G34 FACT (INROOM BOX6 R11) REAL-PRESENT)
(PC40 PROG
(EX41 PROG

(PCS42 PROG

(G44 FACT (CONNECTS D11-12 R11 R12) INITIAL)

(G47 FACT (TYPE D11-12 DOOR) INITIAL)

(PC56 PROG

(EX57 PROG
(PCS58 PROG
(G72 FACT (CONNECTS D2-12 R12 R2) INITIAL)
(G77 FACT (TYPE D2-12 DOOR) INITIAL)
(A116 ASSUMPTION (INROOM HAIRRY-REASONER R2)
LINKAGE) :
(A87 ASSUMPTION (STATE D2-12 OPEN) LOGIC)
(G95 FACT (INROOM BOX1 R2) INITIAL)
(A100 ASSUMPTION (NEXTTO BOX1 D2-12) DOMINANCE)
(1. (NEXTTO HAIRRY-REASONER BOX1))

(EXECUTE128 ACTION (PUSHTHRUDR BOX1 D2-12 R12)))))
(G120 FACT (INROOM HAIRRY-REASONER R12) PRESENT)
(A48 ASSUMPTION (STATE D11-12 OPEN) LOGIC)

(A108 ASSUMPTION (NEXTTO BOX1 D11-12) DOMINANCE)
(1. (NEXTTO HAIRRY-REASONER BOX1))

(EXECUTE129 ACTION (PUSHTHRUDR BOX1 D11-12 R11)))))
(G123 FACT (INROOM HAIRRY-REASONER R11) PRESENT)
(1. (NEXTTO HAIRRY-REASONER BOX1))

(EXECUTE130 ACTION (PUSHB BOX1 BOX6))))
(EX29 PROG
(PCS3C FROG
(G25 FACT (INROOM BOX1 R2) REAL~PRESENT)
(PC36 PROG
(EX37 PROG
(PCS38 PROG
(G45 FACT (CONNECTS D2-12 R2 R12) INITIAL)
(G46 FACT (TYPE D2-12 DOOR) INITIAL)

FIGURE 9-1
OUTPUT PLAN TO MAKE (NEXTTO BOX6 BOX1l) (continued)

(PC60 PROG

(EX61 PROG
(PCS62 PROG
(G69 FACT (CONNECTS D11-12 R12 R11) INITIAL)
(G78 FACT (TYPE D11-12 DOOR) INITIAL)
(A118 ASSUMPTION (INROOM HAIRRY-REASONER R11)

LINKAGE)

(A84 ASSUMPTION (STATE D11-12 OPEN) LOGLC)
(G94 FACT (INROOM BOX6 R11) INITIAL)
(A104 ASSUMPTION (NEXTTO BOX6 D11-12) DOMINANCE)
(1. (NEXTTO HAIRRY-REASONER BOX6))

(EXECUTE125 ACTION (PUSHTHRUDR BOX6 D11-12 R12)))))
(G121 FACT (INROOM HAIRRY-REASONER R12) PRESENT)
(:22 ASSUMPTION (STATE D2-12 OPEN) LOGIC)

(A112 ASSUMPTION (NEXTTO BOX6 D2-12) DOMINANCE)
(1. (NEXTTO HATRRY-REASONER BOX6))

(EXECUTE126 ACTION (PUSHTHRUDR BOX6 D2-12 R2)))))
(G122 FACT (INROOM HAIRRY-REASONER R2) PRESENT)
(1. (NEXTTO HAIRRY-REASONER BOX6))

(EXECUTE127 ACTION (PUSHB BOX6 BOX1))))))

FIGURE 9-1
OUTPUT PLAN TO MAKE (NEXTTO BOX6 ROX1)

(MG132 PROG

(OR
(EX135 PROG
(PCS136 PROG
(G143 FACT (INROOM BOX4 R3) REAL-PRESENT)
(PC149 PROG
(EX150 PROG
(PCS151 PROG
(G158 FACT (CONNECTS D2-3 R3 R2) INITIAL)
(G167 FACT (TYPE D2-3 DOOR) INITIAL)
(PC177 PROG
(EX178 PROG
(PCS179 PROG
(G186 FACT (CONNECTS D2-5 R2 R5) INITIAL)
(G187 FACT (TYPE D2-5 DOOR) INITIAL)
(A217 ASSUMPTION (INROOM HAIRRY-REASONER R5)
LINKAGE)
(A192 ASSUMPTION (STATE D2-5 OPEN) LOGIC)
(G196 FACT (INROOM BOX2 R5) INITIAL)
(A201 ASSUMPTION (NEXTTO BOX2 D2-5) DOMINANCE)
(1. (NEXTTO HAIRRY-REASONER BOX2))
(EXECUTE229 ACTION {(PUSHTHRUDR BOX2 D2-5 R2)))))
(G221 FACT (INROOM HATIRRY-REASONER R2) PRESENT)
(A169 ASSUMPTION (STATE D2-3 OPEN) LOGIC)
(A209 ASSUMPTICN (HEXTTO EOX2 D2-3) DOMINANCE)
(1. (NEXTTO HAIRRY-REASONER BOX2))
(EXECUTE230 ACTICN (PUSHTHRUDR BOX2 D2-3 R3)))))
(G224 FACT (INROOM HALRRY-REASONER R3) PRESENT)
(1 (NEXTTO HAIRRY-REASCNER BOX2))
(EXECUTE 231 ACTZON (PUSHZ BOX2 B0X4))))
(EX138 PROG
(PCS139 PROG
(G144 FACT (INROOM RUX2 R5) REAL-PRESENT)
(PC145 PROG
(EX146 PROG
(PCS147 PRCG
(G161 FACT (CONNECTS D5-5 R5 R6) INITIAL)
(G166 FACT (TYPE D5-6 DOOR) INITIAL)

FIGURE 9-2
OUTPUT PLAN TO MAKE (NEXTTO BOX4 BCX2) (continued)

104

(PC181 PROG
(EX182 PROG
(PCS183 PROG
(G185 FACT (CONNECTS D3-6 R6 R3) INITIAL)
(G188 FACT (TYPE D3-6 DOOR) INITIAL)
(A219 ASSUMPTION (INROOM HAIRRY-REASONER R3)
LINKAGE)
(A189 ASSUMPTION (STATE D3-6 OPEN) LOGIC)
(G195 FACT (INROOM BOX4 R3) INITIAL)
(A205 ASSUMPTION (NEXTTO BOX4 D3-6) DOMINANCE)
(1. (NEXTTO HAIRRY-REASONER BOX4))

(EXECUTE226 ACTION (PUSHTHRUDR BOX4 D3-6 R6)))))
(C?22 FACT (INROOM HAIRRY-REASONER R6) PRESENT)
(A173 ASSUMPTION (STATE D5-6 OPEN) LOGIC)

(A213 ASSUMPTION (NEXTTO BOX4 D5-6) DOMINANCE)
(1. (NEXTTO HAIRRY-REASONER BOX4))

(EXECUTE227 ACTION (PUSHTHRUDR BOX4 D5-6 R5)))))
(G223 FACT (INROOM HAIRRY-REASONER R5) PRESENT)
(1. (NEXTTO HAIRRY~REASONER BOX4))

EXECUTE228 ACTION (PUSHB BOX4 BOX2))))))

FIGURE 9-2 |
OUTPUT PLAN TO MAKE (NEXTTO BOX4 BOX2)

— s AN

-

105

(MG233 PROG
(EX236 PROG
(PCS237 PROG
(G245 FACT (INROOM BCX2 R3) (MG132 PCS136))
(PC246 PROG
(EX247 PROG
(PCS248 PROG
(G262 FACT (CONNECTS D2-3 R3 R2) INITIAL)
(G267 FACT (TYPE D2-3 DOOR) INITIAL)
(PC282 PROG
(EX283 PROG
(PCS284 PROG
(G286 FACT (CONNECTS D2-12 R2 R12) INIITAL)
(G289 FACT (TYPE D2-12 DOOR) INITIAL)
(PC298 PROG
(EX299 PROG
(PCS300 PROG
(G307 FACT (CONNECTS D12-15 R12 R15) INITIAL)
(G308 FACT (TYPE D12-15 DOOR) INITIAL)
(A334 ASSUMPTION (INROOM HAIRRY-REASONER R15)
LINKAGE)
(A314 ASSUMPTION (STATE D12~15 OPEN) LOGIC)
(G317 FACT (INROOM BOX5 R15) INITIAL)
(A322 ASSUMPTION (NEXTTO BOX5 D12-15) DOMINANCE)
(1. (NEXTTC HATRRY-REASONER BOX5))
(EXECUTE 340 ACTION
(PUSHTHRUDR BOX5 D12-15 R12)))))
(G336 FACT (INROOM HAIRRY-REASONER R12) PRESENT)
(SC345 IF (STATE D3-12 OPEN)
(REPLACE PC246
(EX346 PROG
(PCS263 PROG
(G265 FACT (CONNECTS D3-12 R3 R12) INITIAL)
(G266 FACT (TYPE D3-12 DOOR) INITIAL)
(A347 ASSUMPTION (STATE D3~12 OPEN)
OBSERVATION)
(G349 FACT (INROOM BOX5 R12) PRESENT)
(G355 FACT (INROOM HAIRRY-REASONER R12)
PRESENT)
(A351 ASSUMPTION (NEXTTO BOX5 D3-12) DOMINANCE)
(1. (NEXTTO HAIRRY-REASONER BOX5))
(EXECUTE356 ACTLON
(PUSHTHRUDR BOX5 D3-12 R3))))))
(A290 ASSUMPTION (STATE D2-12 QPEN) LOGIC)
(A326 ASSUMPTiON (NEXTTO BOX5 D2-12) DOMINANCE
(1. (NEXTTO HAIRRY-REASONER BOX5))
(EXECUTE341 ACTION (PUSHTHRUDR BOX5 D2-12 R2)))))

FIGURE 9-3
OUTPUT PLAN TO MAKE (NEXTTO BOX5 BOX2) (continued)

—— @ aees wEE N

106

(G337 FACT (INROOM HAIRRY-REASONER R2) PRESENT)
(A274 ASSUMPTION (STATE D2-3 OPEN) LOGIC)
(A330 ASSUMPTION (NEXTTO BOX5 D2-3) DOMINANCE)
(1. (NEXTTO HAIRRY-KEASONER BOX5))
(EXECUTE 342 ACTION (PUSHTHRUDR BOX5 D2-3 R3)))))

(G338 FACT (INROOM HAIRRY-REASONER R3) PRESENT)

(1. (NEXTTO HAIRRY-REASONER BOX5))
(EXECUTE343 ACTION (PUSHB8 BOXS5 BOX2)))))

FIGURE 9-3
OUTPUT PLAN TO MAKE (NEXTTO BOX5 BOX2)

-

PRSP

!

—— wmd oSS TR W

107

(MG23 PROG
(EX26 PROG
(PCS27 PROG
(G34 FACT (INROOM BOX6 R11) REAL-PRESENT)
(PC40 PROG
(EX41 PROG
(PCS42 PROG
(G44 FACT (CONNECTS D11-12 R11 R12) INITIAL)
(Ga47 FACT (TYPE D11-12 DOOR) INITIAL)
(PC56 PROG
(EX57 PROG
(PCS58 PROG
(G75 FACT (CONNECTS D3-12 R12 R3) INITIAL)
(G76 FACT (TYPE D3-12 DOOR) INITIAL)
(PC712 PROG
(EX713 PROG
(PCS714 PROG
(G721 FACT (CONNECTS D2-3 R3 R2) INITIAL)
(G722 FACT (TYPE D2-3 DOOR) INITIAL)
(G727 FACT (STATE D2-3 OPEN) REAL-PRESENT)
(G729 FACT (INROOM BOX1 R2) R2) INITIAL)
(A748 ASSUMPTION
(INROOM HATIRRY-REASONER R2) LINKAGE)
(A731 ASSUMPTION (NEXTTO BOX1 D2-3) DOMINANCE)
(1. (NEXTTO BALRRY-REASONER BOX1))
(EXECUTE759 ACTION
PUSHTHRUDR BOX1 D2-3 R3)))))
(G752 FACT (INROOM HAIRRY-REASONEx R3) PRESENT)
(A90 ASSUMPTION (STATE D3-12 OPEN) LOGIC)
(A740 ASSUMPTION (NEXTTO BOX1 D3-12) DOMINANCE)
(1. (NEXTTO HAIRRY-REASONER BOX1))

(EXECUTE760 ACTION (PUSHTHRUDR BOX1 D3-12 R12)))))
(G120 FACT (INROOM HAIRRY-REASONER R12) PRESENT)
(A48 ASSUMPTION (STATE D11-12 OPEN) LOGIC)

(A108 ASSUMPTION (NEXTTO BOX1 D11-12) DOMINANCE)
(1. (NEXTTO HAIRRY-REASONER BOX1))
(EXECUTE129 ACTION (PUSHTHRUDR BOX1 D11-12 R11)))))
(G123 FACT (INROOM HAIRRY-REASONER R11) PRESENT)
(1. (NEXTTO HAIRRY-REASONER BOX1))
(EXECUTE130 ACTION (PUSHB BOX1 BCX6))))

FIGURE 9-4
REPLAN OF 9-1 TO MAKE (NEXTTO BOX6 BOX1)

9

~N~Noooooooao oo oo oo oo O

oo
=\

2

:53:
:53
+53:
:53:
154
254
154
:54

154
:54
:56:

157 :
:57:

Example II

The same initial goals are input into the
system. The first plans produced are the
same as in the previous example.

58 RPTII O

:58 1975 9 26

58 INITIAL SPECIFICATIONS -D TO EXIT

58 >>> (nextto box5 box2)

5 >>> (nextto box2 box4)

9 >>2 (nextto box6 boxl)

15 >>> (state d6-7 closed)

:20 >>> (inroom box3 r5)

228 INITIATING PLANNING MGl (INROOM BOX3 R5)

43 FINISHED PLANNING MGl (INROOM BOX3 R5)

143 INITIATING PLANNING MG23 (NEXTTO BOX6 BOX1)

37 FINISHED PLANNING MG23 (NEXTTO BOX6 BOX1)

+37 INITIATING PLANNING MG132 (NEXTTO BOX2 BOX4)

59 FINISHED PLANNING MG132 (NEXTTO BOX2 BOX4)

59 INITIATING PLANNING MG233 (NEXTTO BOX5 BOX2)

FINISHED PLANNING MG233 (NEXTTO BOX5 BOX2)
1 INITIATE LINK PLANNING

(LINK372 ((INROOM HAIRRY-REASONER R4)
(INROOM HAIRRY-REASONER R5))
(INITIAL NIL MG132 A217 PCS136))
(LINK367 ((INROOM HAIRRY-REASONER R&4)
(INROOM HAIRRY-REASONER R2))
(INITIAL NIL MG23 Al116 PCS27))
(LINK362 ((INROOM HAIRRY-REASONER R4)
(INROOM HAIRRY-REASONER R11))
(INITIAL NIL MG23 A118 PCS30))
(LINK357 ((INROOM HAIRRY-REASONER R4)
(INROOM HAIRRY-REASONER R6))
(INITIAL NIL MGl A18 PCS5))

The system sets out to determine the same four
linkages. In this case, when the system asks
(observes) whether D4-11 is open, the response is

affirmative. Because of this, there is a new

shortest linkage.

7:
7.

NNNNN
se s se es oo

N o
wWwwww
= wWwoOoOOo

2
4

32
6

%*%%**EXECUTE ACTION: GOTOD D4-11

*%%**EXECUTE ACTION: GOTHRUDR D4-11 R11

HAIRRY-REASONER IN ROOM R4
IS (STATE D4-11 OPEN) ?
>>> yes
(STATE D4-11 OPEN)
LINKS SUCCESSFULLY PLANNED (LINK362)

The LINKAID (entry through D11-12) is

not satisfied in this linkage. The
system enters a planning mode to attempt
to replan the linkage assumption segment

of the plan (MG23).

INITIATING REPLAN MG23 (NEXTTO BOX6 BOX1)
FINISHED REPLAN MG23 (NEXTTO BOX6 BOX1)

The planning is successful. The new plan
is shown in Figure 9-5. This plan
contains the original plan as a shortcut.
Because of the successful linkage and
replanning, the subplan PCS27 is pruned. From
here on, the order of execution differs from
Example I.
EXECUTION PLANNING
BEGINNING (NEXTTO HALRRY-REASONER D4-11)

FINISHED PLANNING MG500
(NEXTTO HAIRRY-REASONER D4-11)

HAIRRY-REASONER IN ROOM R11
IS (STATE D11-12 OPEN) ? i
yes
(STATE D11-12 OPEN)
HAIRRY-REASONER IN ROOM R11
IS (NEXTTO BOX6 D11-12) ?

-— ouk N 0w

-

..

> PRPPPPPPRR

w
(¢}

NNNNNSNNNNN
WWWWNNNDNDNN
VWoOowOPHPHdH—=

~

7:4:38

S
&S
o 0o

NNSNNNSNNNNNNNNSN
[ARGEVIE S o R R R R o o o
ocevwosrPrrPo

. ss es se

e AR R BV Y NV RV RV RV

(=)}

7:5:16
7:5:17

>>> 1o

HATRRY-REASONER IN ROOM R11
IS (STATE D11-15 OPEN) ?

=22 no

(STATE D11-15 CLOSED)
HATRRY-REASONER IN ROOM R1l1
IS (NEXTTO BOX6 D11-15) ?

>>> yes

(NEXTTO BOX6 D11-15)
EXECUTION PLANNING BEGINNING
(NEXTTO HAIRRY~REASONER BOX6)
FINISHED PLANNING MG514
(NEXTTO HAIRRY-REASONER BOX6)

*%%%*EXECUTE ACTION:

GOTOB BOX6

Because D11-12 was observed to have been

open the shortcut can be taken.

the original plan.

This was

EXECUTION PLANNING BEGINNING (NEXTTO BOX6 D11-12)
FINISHED PLANNING MG522 (NEXTTO BOX6 D11-12)

#*%%%*EXECUTE ACTION:

*%%%*EXECUTE ACTION:

PUSHD BOX6 D11-12

PUSHTHRUDR BOX6 D11-12 R12

HAIRR:-REASONER IN ROOM R12
IS (STATE D2-12 OPEN) ?

>>> no

(STATE D2-12 CLOSED)
HAIRRY-REASONER IN ROOM R12
IS (STATE D12-15 OPEN) ?

>>> yes

(STATE D12-15 OPEN)
HAIRRY-REASONER IN ROOM R12
1S (STATE D3-12 OPEN) ?

>>> no

(STATE D3-12 CLOSED)
EXECUTION PLANNING BEGINNING (STATE D2-12 OPEN)
FINISHED PLANNING MG538 (STATE D2-12 OPEN)

*%%**EXECUTE ACTION:

*%%**EXECUTE ACTION:

GOTOD D2-12

OPEN D2-12

R el e

110

ERTGES SS=S

e r——
Sus

~
v

~
w

~
w

~
(=)}

NN SNSNSNSNSNSNSNSNNNSN NN NN NN
Luuumuuuuuouuunumumuuutnunutuntntn

117 EXECUTION PLANNING BEGINNING (NEXTTO BOX6 D2-12)
:26 FINISHED PLANNING MG566 (NEXTTO BOX6 D2-12)

126 *****EXECUTE ACTION: GOTOB BOX6

127 F*¥%**EXECUTE ACTION: PUSHD BOX6 D2-12

:29 #**%**EXECUTE ACTION: PUSHTHRUDR BOX6 D2-12 R2

: 30 HAIRRY-REASONER IN ROOM R2
:30 IS (STATE D2-6 OPEN) ?

:30 >>>no

:36 (STATE D2-6 CLOSED)

.37 HAIRRY-REASONER IN ROOM R2
:37 IS (STATE D1-2 OPEN) ?

:37 >>> yes

142 (STATE D1-2 OPEN)

:42 HAIRRY-REASONER IN ROOM R2
:43 IS (STATE D2-3 OPEN) ?

:43 >>> no

:49 (STATE D2-3 CLOSED)

:50 HAIRRY-REASONER IN ROOM R2
:50 IS (STATE D2-5 QOPEN) ?

:50 >>> yes

:52 (STATE D2-5 OPEN)

252 HAIRRY-REASONER IN ROOM R2
:52 IS (NEXTTO BOX1l D2-3) ?
¢53 >>> no

:58 HAIRRY-REASONER IN ROOM R2
:58 IS (NEXTTO BOX1 D2-12) ?
:58 >>> no

22 *%%**EXECUTE ACTION: PUSHB BOX6 BOX1

The system tries to link one of the linkable
plans. MG233 cannot be linked until after

the linkage of MG132.

b L INITIATE LINK PLANNING

(LINK594 ((INROOM HAIRRY-REASONER R2)
(INROOM HAIRRY-REASONER R5))
(MG23 NIL MGI132 A217 PCS136))

(LINK589 ((INROOM HAIRRY-REASONER R2)
(INROOM HAIRRY-REASONER R6))
(MG23 NIL MGl A18 PCS5))

525 LINKS SUCCESSFULLY PLANNED (LINK594)

111

xR

R

~
(o)

232

:33
:33
<33
:38
:39
:39
:39
:43
:43
143
:43
146
147

NN NN N NN NN N
oo oo oo OO

~
o

:49

~
~N o~
(=)}

117

112

The shortest link was possible to plan because

an observation was made during one of the
execution phases. 1If all of the links had to have
been developed before execution, this one

probably would not have been found.

EXECUTION PLANNING BEGINNING
(NEXTTO HAIRRY-REASONER D2-5)
FINISHED PLANNING MG630
(NEXTTO HAIRRY-REASONER D2-5)

*%%**EXECUTE ACTION: GOTOD D2-5
#*%%**EXECUTE ACTION: GOTHRUDR D2-5 R5

HAIRRY-REASONER IN ROOM R5
IS (STATE D5-6 OPEN) ?
>>> yes
(STATE D5-6 OPEN)
HAIRRY-REASONER IN ROOM R5
1S (NEXTTO BOX2 D2-5) ?
> yes
(NEXTTO BOX2 D2-5)
HAIRRY-REASONER IN ROOM R5
IS (STATE D1-5 OPEN) ?
> yes
(STATE D1-5 OPEN)
EXECUTION PLANNING BEGINNING
(NEXTTO HAIRRY-REASONER BOX2)
FINISHED PLANNING MG644
(NEXTTO HAIRRY-REASONER BOX2)

%%%*¥EXECUTE ACTION: GOTOE BOX2
*%%**¥EXECUTE ACTION: PUSHTHRUDR BOX2 D2-5 R2

EXECUTION PLANNING BEGINNING (STATE D2-3 OPEN)
FINISHED PLANNING MG652 (STATE D2-3 OPEN)

*%%**EXECUTE ACTION: GOTOD D2-3
*%%**EXECUTE ACTION: OPEN D2-3

EXECUTION PLANNING REGINNING (NEXTTO BOX2 D2-3)
FINISHED PLANNING MG680 (NEXTTO BOX2 D2-3)

A et

SN N SN N N

® oo

NN NN

+17
.18
:20
:24
:24
124
:30
:30
:30
:30

137

141

:11
212
:13

:15
: 15

S i g

*%%%**EXECUTE ACTION: GOTOB BOX2

*%%**EXECUTE ACTION: PUSHD BOX2 D2-3

*%%%**EXECUTE ACTION: PUSHTHRUDR BOX2 D2-3 R3
HAIRRY-REASONER IN ROOM R3

IS (STATE D3-6 OPEN) 7
>>>no

(STATE D3-6 CLOSED)
HAIRRY-REASONER IN ROOM R3
IS (NEXTTO BOX4 D3-6) ?

>>> no

#*%%**EXECUTE ACTION: PUSHB BOX2 BOX4

Now the system can try to link MG233 as

well as MGl1.

INITIATE LINK PLANNING
(LINK708 ((INROOM HAIRRY-REASONER R3)
(INROOM HAIRRY-REASONER R5))
(MG132 NIL MG233 A334 PCS243))
(LINK70G3 ((INROOM HAIRRY-REASONER R3)
(INROOM HAIRRY-REASONER R6))
(MG132 NIL MGl A18 PCS5))
LINKS SUCCESSFULLY PLANNED (LINK703)

Now the system begins to execute MGL.
Although it was the first plan to be
constructed, it was not the first to be

executed.

EXECUTION PLANNING BEGINNING (STATE D3-6 OPEN)
FINISHED PLANNING MG727 (STATE D3-6 OPEN)

*%%**EXECUTE ACTION: GOTOD D3-6
*%%**EXECUTE ACTION: OPEN D3-6
*%***EXECUTE ACTION: GOTHRUDR D3-6 R6

HAIRRY-REASCNER IN ROOM R6
IS (NEXTTO BOX3 D5-6) ?

113

~

NNNNNN
o 0o 00 00 0O 0o

: 15
: 18
- 19
: 19
:19
222

124

:26

:26
:28

+31

+22
:25

128

:28
:29
:31

:36

:36
:37

:39

>>> yes
(NEXTTO BOX3 D5-6)
HAIRRY-REASONER IN ROOM R6
IS (STATE D6-7 OPEN) ?

(STATE D6-7 CLOSED)

The system now observes that a main goal

specification is true in the real world.

EXECUTION PLANNING BEGINNING
(NEXTTO HAIRRY-REASONER BOX3)
FINISHED PLANNING MG755
(NEXTTO HAIRRY-REASONER BOX3)

#*%%%*EXECUTE ACTION: GOTOB BOX3
#*%%**EXECUTE ACTION: PUSHTHRUDR BOX3 D5-6 R5

INITIATE LINK PLANNING
(LINK763 ((INROOM HAIRRY-REASONER R5)
(INROOM HAIRRY-REASONER R15))
(MG1 NIL MG233 A334 PCS243))
LINKS SUCCESSFULLY PLANNED (LINK763)
EXECUTION PLANNING BEGINNING
(NEXTTO HAIRRY-REASONER D2-5)
FINISHED PLANNING MG817
(NEXTTO HAIRRY-REASONER D2-5)

*%%**EXECUTE ACTION: GOTOD D2-5
%%**EXECUTE ACTION: GOTHRUDR D2-5 R2
EXECUTION PLANNING BEGINNING
(NEXTTO HAIRRY-REASONER D2-12)
FINISHED PLANNING MG831
(NEXTTO HAIRRY-REASONER D2-12)
*%%**EXECUTE ACTION: GOTOD D2-12
*%%%*EXECUTE ACTION: GOTHRUDR D2-12 R12
EXECUTION PLANNING BEGINNING
(NEXTTO HAIRRY-REASONER D12-15)

FINISHED PLANNING MG845
(NEXTTO HAIRRY-REASONER D12-15)

114

NN N NN

:10;
:10:
:10:

:10:
:10;

:10:
:10:

:10:
:10:

: 10
:10:
:10
:10
: 10

:9:44

:9:45

:9:47
:9:47
:9:47
:9:50
:10:

1

1

10
19

<33
+37
:40

<43

143

43

:43
143
145

*%%%**EXECUTE ACTION: GOTOD D12-15
*%%**EXECUTE ACTION: GOTHRUDR D12-15 R15
HAIRRY-REASONER IN ROOM R15
IS (NEXTTO BOX5 D12-15) ? :
>>> no |
EXECUTION PLANNING BEGINNING (NEXTTO BOX5 D12-15) '
FINISHED PLANNING MG859 (NEXTTO BOX5 D12-15)
#%%%*EXECUTE ACTION: GOTOB BOX5
*%%%*EXECUTE ACTION: PUSHD BOX5 D12-15
*%%%%EXECUTE ACTLON: PUSHTHRUDR BOX5 D12-15 R12

EXECUTION PLANNING BEGINNING (NEXTTO BOX5 D2-12)
FINISHED PLANNING MG882 (NEXTTO BOX5 D2-12)

#%%%**EXECUTE ACTION: PUSHD BOX5 D2-12

“*EXECUTE ACTION: PUSHTHRUDR BOX5 D2-12 R2

EXECUTION PLANNING BEGINNING (NEXTTO BOX5 D2-3)
FINISEED PLANNING MG898 (NEXTTO BOX5 D2-3)

#*%%**EXECUTE ACTION: PUSKD BOX5 D2-3
FHkA*EXECUTE ACTION: PUSHTHRUDR BOX5 D2-3 R3
%%k XEXECUTE ACTION: PUSHB BOXS5 BOX2

MAINGOAL MG914 (STATE D6-7 CLOSED)
SATISFIED IN PRESENT

This last condition had been observed to
be satisfied in the real world. Therefore
no further planniag or execution is

necessary.

REVIEW OF PLAN EXECUTED
(1) GOTOD D4-11
(2) GOTHRUDR D&-11 R11 it
(3) GOTOB BOX6 §
(4) PUSHD BOX6 D11-12

SN NN SN SN SN N NSNS NI N NI N NN

S N NN NN

~ e N N B I N B e T (N I N |

~ o~

: 10
: 10
+10:
:10
:10:
:10:
<10:
.10
:10:
:10:
:10:
:10:
:10:
:10:
:10:
210
:10:
:10:
: 10
< 10
:10:
+10:
: 10
:10
I
10
:10:
:10
+10;
+ 10
:10:
:10:59
St
B
o b
L
3 4
il

+11:

=11;

FISONS

:45
+45

47

47

47
47
49

89

49
49
50
50
50
50
52

252

52
54

154
: 54

54

B

-

156
+56

56

=
57

57

£57

51
59
59

S e

(5) PUSHTHRUDR BOX6 D11-12 R12
(6) GOTOD D2-12
(7) OPEN D2-12
(8) GOTOB ROX6
(9) PUSHD BOX6 D2-12
(10) PUSHTHRUDR BOX6 D2-12 R2
GLD) PUSHB 30X6 BOX1
(12) GOTOD D2-5
(13) GOTHRUDK D2-5 R5
(14) GOTOBR BUX2
(15) PUSHTHRUDR BOX2 D2-5 R2
(16) GOTOD N2-3
(17) OPEN D2-3
(18) GOTOB BOX2
(19) PUSHD BOX2 D2-3
(20) PIUSHTHRUDR BOX2 D2-3 R3
(21) PUSHE BOX2 BOX4
(22) GOTOD D3-6
(23) OPEN D3-6
(24) GOTHRUDR D3-6 R6
(25) GOTOB BOX3
(26) PUSHTHRUDR BOX3 D5-6 R5
27) GOTOD D2-5
(28) GOTHRUDR DZ-5 R2
(29) GOTOD D2-12
(30) GOTHRUDR D2-12 R12
(31} GOTOD DiZ-15
(32) COTHRUDR D12-15 R15
(32) GOTOE BOX5
(34) PUSHD BOXS D12-15
(o5 PUSHTHRUT:)R BOX5 D12-15 R12
(36) PUSHD BOXS D2-12
(37) PUSETHRUDK BOX5 D2-12 R2
(38) PUSHD BOXS5 D2-3
(39) PUSHTHRUDR BOX5 D2-3 R3
(40) PiiSH2 BOX5 ROX2

PRECONDITIONS SATISFIED IN THE DATABASE:

PRECONDITION SATISFILED BY

PLANNING DURING EXECUTION:

SHORTCUTS TAKEN: i
TOTAL RUNTIME: 726.243 seconds
TOTAL GCTIME: 108.046 seconds

74

17

116

117

(MG23 PROG
(EX29 PROG
(PCS30 PROG
(G35 FACT (INROOM BOX! R2) REAL-PRESENT)
(PC36 PROG
(EX37 PROG
(PCS38 PROG
(G45 FACT (CONNECTS D2-12 R2 R12) INITIAL)
(G46 FACT (TYPE D2-12 DOOR) INITIAL)
(PC60 PROG
(EX61 PROG
(PCS62 PROG
(G66 FACT (CONNECTS D12-15 R12 R15) INITIAL)
(G79 FACT (TYPE D12-15 DOOR) INITIAL)
(PC449 PROG
(EX450 PROC
(PCS451 PROG
(G453 FACT (CONNECTS D11-15 R15 R11) INITIAL)
(G456 FACT (TYPE D11-15 DOOR) INITIAL)
(A485 ASSUMPTION
(INROOM HAIRRY-REASONER R11) LINKAGE)
(SC496 IF (STATE D1l-12 OPEN)
(REPLACE PC60
(EX497 PROG
(PCS67 PROG
(G69 FACT (CONNECTS D11-12 R12 R11) INITIAL)
(G78 PACT (TYPE D11-12 DOOR) INITIAL)
(A118 ASSUMPTION
(INROOM HAIRRY-REASONER R11)
OBSERVATION)
(A8%4 ASSUMPTION (STATE Dil-12 OPEN) LOGIC)
{G94 FACT (INKOGM BOX6 R11) INITIAL)
(A498 ASSUMPTION
(NEXTTO HAIRRY-REASONER BOX6)
CRITICALITY)
(A104 ASSUMPTION
(NEXTTO ROX6 D11-12) DOMINANCE)
(EXECUTE125 ACTION
(PUSHTHRUDR BOX6 D11-12 R12))))))
(A457 ASSUMPTION (STATE D11-15 OPEN) LOGIC)
(G463 FACT (INROOM BOX6 R11) INITIAL)
(A471 ASSUMPTION (NEXTTO BOX6 D11-15) DOMINANCE)
' (1. (NEXTTG HAIRRY-RFASONER BOX6))
(EXECUTE 492 ACTION
(PUSHTHRUDR BOX6 D11-15 R15)))))

FIGURE 9-5
SECOND REPLAN OF 9-1 TO MAKE (NEXTTO BOX6 BOX1) (continued)

118

(G488 FACT (INROOM HAIRRY-REASONER R15) PRESENT)
(A80 ASSUMPTION (STATE D12-15 OPEN) LOGIC)

(A479 ASSUMPTION (NEXTTO BOX6 D12-15) DOMINANCE)
(1. (NEXTTO HAIRRY-REASONER BOX6))

(EXECUTE493 ACTION (PUSHTRUDR BOX6 D12-15 R12)))))
(G121 FACT (INROOM HAIRRY-REASONER R12) PRESENT)
(A52 ASSUMPTION (STATE D2-12 OPEN) LOGIC)

(A112 ASSUMPTION (NEXTTO BOX6 D2-12) DOMINANCE)
(1. (NEXTTO HAIRRY-REASONER BOX6))

(EXECUTE126 ACTION (PUSHTHRUDR BOX6 D2-12 R2)))))
(G122 FACT (INROOM HAIRRY-REASONER R2) PRESENT)
(1. (NEXTTO HALRRY~REASONER BOX6))

(EXECUTE127 ACTION (PUSHB BOX6 BOX1)))))

FIGURE 9-5
SECOND REPLAN OF 9-1 TO MAKE (NEXTTO BOX6 BOX1)

- oA

119
10, CONCLUSIONS AND FUTURE DIRECTIONS

Throughout the preceding chapters the problems and necessary capa-
bilities associated with modeling operations in an incompletely specified .
environment have been discussed. A system must be able to recognize when
certain relevant information is missing and must be able to continue planning.
The plans which are developed are just outlines of the proposed course of
action. Many of the details would be completed when execution of actions
allows new information to be obtained.

The technique of satisfying preconditions by '"assumption'" is
developed. Using an assumption, the planning of a condition is deferred
until after some phases of execution. The appropriateness of an assumption
depends upon such factors as the type of condition being satisfied, the
operator being considered, the planning environment for the plan being
developed, and other goals which have been satisfied and are yet to be
satisfied. Classes of assumptions are developed and discussed. Also dis-
cussed are techniques which enable the system to recognize when certain
information is missing.

Even though relevant data may be absent during some stages of
planning, execution allows some of the information to be obtained eventually.
The system is able to integrate into the plan the knowledge of when the informa-
tion will become available and how it can be used to possibly create shortcuts,
more general plans with more options and potentially fewer actions.

The planner applies a hierarchical approach in which different condi-

tion types have different ranks, representing their complexity and/or importance.

Generally, conditions with the higher ranks are planned first. The system tries

to create separate, stand alone plans for each of the main goal conditions

which it is to satisfy. Each of these plans has low ranked linking conditions
which may include restrictions and aids concerning how the linking is to be
accomplished. The plans are not completely specified, preconditions may be
satisfied by assumption. The main goal plans are then linked together, hope-
fully forming a shorter plan than would have been obtained had only one complete
plan been initially created. In this system, the first thing planned is not
necessarily the first plan executed. After a particular link has been deter-
mined, the system may return to a planning mode in order to amend the main
goal plan to reflect new conditions and data available. This does not involve
replanning the entire plan but rather just altering a specific section.

The system maintains reasons for each of the steps and logical seg-
ments of all plans in order to be able to inspect how a particular task is
expected to be accomplished. This feature is used during linking, replanning
and determination of shortcuts. The system maintains various world models
which can easily be updated as new information is obtained. This allows the
recreation of earlier planning world models.

During the execution, the system frequently returns to a planning

mode in order to satisfy cenditions for which planning had been deferred. 1In

this system, there is no absolute distinction between planning and execution

phases. The system plans until a procedure is available through some level
of detail. Execution, linking and observation could lead to modification of
the plans ranging from increasing the detail to major replanning.

There are many extensions of this work which would be valuable and

interesting to pursue. This system approaches planning from a modular viewpoint,

N S

in which, with certain constraints, the main goal plans could be executed

in varying order. The ability to replan only a section of the plan is a
result of this modularity. This approach may be more difficult to apply in
cases in which there is a greater interrelationship among the main goals. In
this system, the higher dependency leads to more prespecification of ordering
by the system.

A method of how to determine which of several alternate plans is
best is built into the system. There are biases for plans with least number
of planned operators, most shortcuts, and most 'success during early stages of
planning. The plan chosen using these criteria usually leads to what seems
intuitively to be a reasonable plan. Concepts such as cost and probability
play no explicit part in this system. However, it may be desired to allow the
introduction of criteria specifications in order to make the system better
able to cope with a broader class of domains.

Throughout the planning, the system was able to make assumptions
because the planner took a fairly optimistic approach. This was possible be-
cause major facts were never to be missing and successful planning is possible.
As broader domains are encountered, the system will have to be modified for
cases in which key information is unavailable, and even planning outlines is
not feasible. The system may then have to execute actions explicitly to gain
information.

The system presented has demonstrated that it is possible to operate
in incompletely specified domains by deferring of certain conditions. This
leads to an intermixing of planning and execution. It is necessary to extend
these approaches into broader domains with more complicated tasks and ultimately

into dynamic situations.

§ d

O S Y AT A IS I AR,

10.

11.

12.

13.

122

REFERENCES

Bobrow, D., and Wegbreit, B., 'A Model of Control Structures
for Artificial Intelligence Programming Languages,' Third
International Joint Conference on Artificial Intelligence,
Stanford, California, August, 1973.

Bryan, G. and Shelly, M., '"Judgements and the Language of
Decisions,'" in Human Judgements and Optimality, (Shelly and
Bryan eds.), John Wiley and Sons, New York, 1964.

Bruce, B., "A Model for Temporal References and Its Application
in a Question Answering Program,'" Artificial Intelligence,
Vol. 3, No. 1, Spring, 1972.

Charniak, E., "Toward a Model of Children's Story Comprehension,"
M.I.T. Artificial Intelligence Laboratory TR-266, 1972.

Davis, M., '"On Constructing a Preprocessor for STRIPS-world
Problem-solvers', Machine Intelligence Research Unit, Memo
MIP-R-111, University of Edinburgh, Edinburgh, March, 1975.

Fahlman, S., "A Planning System for Robot Construction Tasks,"
Artificial Intelligence, Vol. 5, No. 1, 1974.

Fikes, R., '"Failure Tests and Goals in Plans,'" Artificial
Intelligence Group Technical Note 53, Stanford Research
Institute, March, 1971.

Fikes, R., 'Monitored Executicn of Robot Plans Produced by
STRIPS," Artificial Intelligence Technical Note 55, Stanford
Research Institute, April, 1971.

Fikes, R., and N. Nilsson, '"STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving,'" Artificial
Intelligence, Vol. 2, Nos 3/4, 1971.

Fikes, R., Hart, P. and Nilsson, N., '"Learning and Executing
Generalized Robot Plans,' Artificial Intelligence, Vol. 3,
No. 4, 1972.

Fikes, R., Hart, P. and Nilsson, N., '"Some New Directions in
Robot Problem Solving,' Machine Intelligence 7.

Floyd, R. W., "Nondeterministic Algorithms,'" Journal of the
A.C.M., Vol. 14, No. 4, October, 1967.

Hart, R., Nilsson, N., and Robinson, A., "A Causality Repre-
sentation for Enriched Robot Task Domains,'" Stanford Research
Institute Technical Note 62, January 1972.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

Hayes, P. J., "A Representation for Robot Plans," Proc.
Fourth International Joint Conference on Artificial
Intelligence, Tblisi, USSR, September, 1975.

Hendrix, G., '"Modeling Simultaneous Actions and Continuous
Processes,'" Artificial Intelligence, Vol. 4, No. 3/4, 1963.

Hewitt, C., 'Description and Theoretical Analysis (Using
Schemata) of PLANNER: A Language for Proving Theorems and
Manipulating Models in a Robot,'" Ph.D. Thesis, Department
of Mathematics, Massachusetts Institute of Technology, 1972.

Hewitt, C., Bishop, P., Steiger, R., "A Universal Modular
ACTOP. Formalism for Artificial Intelligence,'" Third Inter-
national Joint Conference on Artificial Intelligence,
August, 1973.

Jacobs, W., and Kiefer, M., "Robot Decisions Based on Maxi-
mizing Utility," Third International Joint Conference on
Artificial Intelligence, August, 1973.

McCarthy, J., and Hayes, P., 'Some Philosophical Problems
from the Standpoint of Artificial Intelligence,'" Machine
Intelligence 4, 1969.

McDermott, D., and Sussman, G., 'The CONNIVER Reference
Manual,'" Artificial Intelligence Memo No. 259, Massachusetts
Institute: of Technology, May, 1972.

Miller, M., Plain Speaking, Berkley Publishing Co., New York,
1974.

Minsky, M., "FRAME-SYSTEMS: A Framework for Representation
of Knowledge," in Psychology of Computer Vision, (P. Winston,
editor), McGraw-Hill, New York, 1975.

Moon, David, MACLISP Reference Manual, M.I.T. Artificial
Intelligence Laboratory, 1974.

Moore, R., '"D-SCRIPT: A Computation Theory of Description,"
Third International Joint Conference on Artificial Intelligence,
August, 1973.

Munson, J., "A Cost Effective Basis for Robot Problem Solving i
and Execution," Artificial Intelligence Group Technical Note 29,
Stanford Research Institute, January, 1970.

Munson, J., '"Robot Planning, Execution and Monitoring in an
Uncertain Evnironment,'" Proceedings of the Second International
Joint Conference on Artificial Intelligence, October, 1971.

Newall, A., and H. A. Simon, Human Problem Solving, Prentice-
Hall, Inc., Englewood Cliff, N.J., 1972.

|

28.

29.

30.

31.

32.

33.

34.

{ 35.

36.

37.

38.

e T B e

39.

40.

41.

Nilsson, N., Problem Solving Methods in Artificial Intelli-
gence, McGraw-Hill Publishing Co., New York, New York, 1971.

Nilsson, N., "A Hierarchical Robot Planning and Execution
System," Stanford Research Institute Report Project 1187,
April, 1973.

Rapoport, A., Fights, Games and Debates, University of
Michigan Press, Ann Arbor, Michigan, 1960.

Rigby, F., "Heuristic Analysis of Decision Situation," in
Human Judgement and Optimality, (Bryan and Shelly, eds.),
John Wiley and Sons, New York, 1964.

Rulifson, J., Derksen, J., and Waldinger, R., '"QA4: A Pro-
cedural Calculus for Intuitive Reasoning,' Artificial
Intelligence Technical Note 73, Stanford Research Institute,
November, 1972,

Sacerdoti, E., "Planning in a Hierarchy of Abstraction Space,"
Third International Joint Conference on Artificial Intelligence,
August, 1973.

Sacerdoti, E., "A Structure for Plans and Behavior,'" Artificial
Intelligence Center Technical Note 109, Stanford Research
Institute, Menlo Park, California, August, 1975.

Siklossy, L., and Dreussi, J., '"Simulation of Executing Robots
in Uncertain Environments," Report TR-16, University of Texas,
Austin, Texas, February, 1971,

Siklossy, L., and Dreussi, J., "An Efficient Robot Planner
Which Generates Its Own Procedures,' Third International Joint
Conference on Artificial Intelligence, August, 1973.

Siklossy, L., and Dreussi, J., '"Proving the Impossible is
Impossible is Possible: Disproofs Based on Hereditary
Partitions,' Third International Joint Conference on Artifi-
cial Intelligence, August, 1973,

Simon, H., ""The Structure of Ill-structured Problems,"
Artificial Intelligence, Vol. 4, No. 3/4, 1973.

Sussman, G., 'Why Conniving is Better Than Planning,' FJCC, 1972.

Sussman, G., Winograd, T., and Charniak, E., "MICRO-PLANNER

e e e e

124

Reference Manual," Artificial Intelligence Memo 203A, Massachusetts

Institute of Technology, December, 1971.

Sussman, G., '"A Computational Model of Skill Acquisition,"
Ph.D. Thesis, Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, Massachusetts, August, 1973.

42,

43.

44,

45.

125

Tate, A., "INTERPLAN: A Plan Generation System that Can Deal
with Interactions between Goals,'" Machine Intelligence Research
Unit Memo MIP-R-109, University of Edinburgh, Edinburgh, Dec., 1974.

Waldinger, R., "Achieving Several Goals Simultaneously,"
Artificial Intelligence Center, Technical Note 107, Stanford
Research Institute, Menlo Park, California, July, 1975.

Warren, D. H. D., "WARPLAN: A System for Generating Plans,"
Department of Computational Logic, Memo No. 76, University
of Edinburgh, Edinburgh, June, 1974.

Williams, J., The Complete Strategyst, McGraw-Hill Book Co.,
New York, New York, 1954.

e

(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE

APPENDIX 1

DATA REPRESENTATION OF EXPERIMENTAL DOMAIN

BOX4 OBJECT)
BOX8 OBJECT)
BOX6 OBJECT)
R7 ROOM)
D3-6 DOOR)
R6 ROOM)

R5 ROOM)
D14-17 DOOR)
D13-14 DOOR)
D12-16 DOOR)
D12-15 DOOR)
D11-12 DOOR)
D1-14 DOOR)
R2 ROOM)

R12 ROOM)

R4 ROOM)

(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE

(INROOM HAIRRY-REASONER R4)
(INROOM BOX5 R15)
(INROOM BOX2 R5)
(INROOM BOX1 R2)

(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS

D4-7 R4 R7)
D6-7 R7 R6)
D3-4 R4 R3)
D3-6 R3 R6)
D2-3 R2 R3)
D2-6 R6 R2)
D5-6 R6 R5)
D2-5 RS R2)
D1-5 Rl R5)
D1-2 R2 R1)

BOX3 OBJECT)
BOX7 OBJECT)
BOX5 OBJECT)
D6-7 DOOR)
D2-3 DOOR)
D5-6 DOOR)
D1-5 DOOR)
R17 ROOM)
D13-16 DOOR)
R16 ROOM)
R15 ROOM)
R14 ROOM)
R13 ROOM)
D2-12 DOOR)
D3-12 DOOR)
D4-11 DOOR)

(INROOM BOX4 R3)
(INROOM BOX8 R13)
(INROOM BOX6 R11)

D14-17 R14 R17)
D16-17 R17 R16)
D13-14 R13 R14)
D13-16 R13 R16)
D12-13 R12 R13)
D12-16 R16 R12)
D15-16 R16 R15)
D12-15 R15 R12)
D11-15 R11 R15)
D11-12 R12 R11)

D1-14 R14 R1)
D2-13 R2 R13)

(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECT

‘(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS
(CONNECTS

(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE

BOX2 OBJECT)
BOX1 OBJECT)
D4-7 DOOR)
D3-4 DOOR)
D2-6 DOOR)
D2-5 DOOR)
D1-2 DOOR)
D16-17 DOOR)
D12-13 DOOR)
D15-16 DOOR)
D11-15 DOOR)
R1 ROOM)
D2-13 DOOR)
R3 ROOM)

R11 ROOM)

(INROOM BOX3 R6)
(INROOM BOX7 R17)

D4-7 R7 R4)
D6-7 R6 R7)
D3-4 R3 R4)
D3-6 R6 R3)
D2-3 R3 R2)
D2-6 R2 R6)
D5-6 R5 R6)
D2-5 R2 RS5)
D1-5 R5 Rl)
Di-2 R1 R2)
D14-17 R17 R14)
D16-17 R16 R17)
D13-14 R14 R13)
D13-16 R16 R13)
D12-13 R13 R12)
D12-16 R12 R16)
D15-16 R15 R16)
D12-15 R12 R15)
D11-15 R15 R1l)
D11-12 R11 R12)
D1-14 R1 R14)
D2-13 R13 R2)

126

L]

(CONNECTS D2-12
(CONNECTS D3-12
(CONNECTS D4-11

(OPEN-INTO
(OPEN-INTO
(OPEN-INTO
(OPEN-INTO
(OPEN-INTO
(OPEN-INTO
(OPEN-INTO
(OPEN-INTO
(OPEN-INTO
(OPEN-INTO
(OPEN-INTO
(OPEN-INTO
(OPEN-INTO

D4-7 R7)
D3-4 R3)
D2-3 R3)
D5-6 R5)
D1-5 RS)
D14-17 R17)
D13-14 R14)
D12-13 R13)
D15-16 R15)
D11-15 R15)
D1-14 R1)
D2-12 R2)
D4-11 R4)

(PUSHABLE BOX4)
(PUSHABLE BOX8)
(PUSHABLE BOX6)

R12 R2)
R3 R12)
R11 R4)

(CONNECTS D2-12
(CONNECTS D3-12
(CONNECTS D4-11

(OPEN-INTO
(OPEN-INTO
(OPEN-INTO
(OPEN-INTO
(OPEN-INTO
(OPEN-INTO
(OPEN-INTO
(OPEN-INTO
(OPEN-INTO
(OPEN-INTO
(OPEN-INTO
(OPEN-INTO

(PUSHABLE BOX3)
(PUSHABLE BOX7)
(PUSHABLE BOX5)

D6-7 R6)
D3-6 R6)
D2-6 R2)
D2-5 R2)
D1-2 R1)
D16-17 R16)
D13-16 R16)
D12-16 R12)
D12-15 R12)
D11-12 R11)
D2-13 R13)
D3-12 R12)

(PUSHABLE BOX2)
(PUSHABLE BOX1)

R2 R12)
R12 R3)
R4 R11)

127

et o e

APPENDIX II

OPERATORS IN THE EXPERIMENTAL DOMAIN

(ADD ’(IF-NEEDED TO-NRB
(NEXTTO HAIRRY-REA ('R ?BX BOX?))
((?RX)

(PRECONDITIONS

(4. (INROOM =?BX ?RX))

(2. (INROOM HAIRRY-REASONER =7RX)))
(DELETION

(1. (AT HAIRRY-REASONER ? 7))

(1. (NEXTTO HAIRRY-REASONER ?)))
(ADDITION

(4. (INROOM =?BX =7RX))

(1. (NEXTTO HAIRRY-REASONER =?BX)))))

’

TO)

(ADD '(IF-NEEDED TO-NRD
(NEXTTO HAIRRY-REASONER ('R ?DX DOOR?))
((?RX ?RY)
(ACTION (GOTOD =?DX))
(PRECONDITIONS
(5. (CONNECTS =?DX ?RX ?RY))
(2. (INROOM HAIRRY-REASONER =?RX)))
(DELETION
(1. (AT HAIRRY-REASONER ? ?))
(1. (NEXTTO HAIRRY-REASONER ?)))
(ADDITION
(1. (NEXTTO HAIRRY-REASONER =?DX)))))

’

TO)

(ADD '(IF-NEEDED TO-AR
(AT HAIRRY-REASONER ?X ?Y)
((?RX)
(ACTION (GOTOL =?X =?Y))
(PRECONDITIONS
(5. (LOCINROOM =?X =?Y ?RX))
(2. (INROOM HAIRRY-REASONER =?RX)))
(DELETION
(1. (AT HAIRRY-REASONER ? ?))
(1. (NEXTTO HAIRRY-REASONER ?)))
(ADDITION
(1. (AT HAIRRY-REASONER =?X =7Y)))))

/,

TO)

(ADD '(IF-NEEDED TO-NBB-1
(NEXTTO ('R ?BX BOX?) (!R ?BY BOX?))

128

((?RX)
(ACTION (
(PRECONDI

(4.
(4.
(2.
(i
(DELETION
(B3
(o
@3
(i
(1.

PUSHB =7BX =?BY))

TIONS

(INROOM =7?BY ?RX))

(INROOM =?BX =?RX))

(INROOM HATRRY-REASONER =?RX))
(NEXTTO HAIRRY-REASONER =7?BX)))

(AT =7BX 2 7))
10 =7BX
(NEXTTO ? =
(AT HAIRRY-REASONER ?))
(NEXTTO HAIRRY-REASONER ?7)))

(ADDITION

(e
(4.
(3.
(3.
(1.

’

TO)

(ADD ’(IF-NEEDED TO-NBB-2
(NEXTTIO (.:R ?BY

(INROOM =?BX =?RX))
(INRCOM =2BY =?RX))
(NEXTTO =?BY =7BX))
(NEXTTO =?BX =?BY))
(NEXTTO HATRRY-REASONER =7BX)))))

BOX?) (!R ?BX BOX?))

((?RX)
(ACTION (PUSHB =72X =7BY))
(PRECONDITIONS

(4. (INROOM =9BY TRX))

(4. (INROOM =7?8X =7RX))

(2. (INROGCM HAIRRY-REASONER =?RX))

(1. (NEXTTO HAIRRY-REASONER =?BX)))
(DELETION

(3.0 (AT =2BX 7 7))

3. (NEXTIO =7BX 7))

(3. (NEXTIO 7 =2BX))

¢
(L.

(AT HATIRRY-REASONER ?))
(NEXTTO HAIRRY-REASONER ?)))

(ADDITION

(%.
.
3.
(3.
(1.

{ 4

TO)

(ADD '(IF-NEEDED TO-NBD
(NEXTTO (!R ?BX
((?RX ?RY)
(ACTION (

(INROOM =7?BX =7RX))
(INROOM =?RBRY =7RX))
(NEXTTO =7BY =7BX))
(NEXTTO =?BX =78Y))
(NEXTTO HAIRRY-REASONER =7?BX)))))

BOX?) ('R ?DX DOOR?))

PUSHD =7BX =7DX))

(PRECONDITIONS
(5.
4.
(2.

(CONNECTS =?DX 7RX ?RY))
(INROOM =7BX =7RX))
(INKOOM HAIRRY-REASONER =?RX))

TR

(L. (NEXTTO HAIRRY-REASONER =?BX)))
(DELETION

(
(
(
(
(
I
(

?
-
1
2
He
N
! 508
i
oy
’
.
!
4.
1

(NEXTTO =?BX ?))

(NEXTIO ? =?BX))

(AT =7BX ? 7))

(NEXTTO HAIRRY -REASONER ?))
(AT HAIRRY-REASONER ? ?7)))

(ADD
(INROOM =7BX =?RX))

) =2BX =?DX))
0 HAIRRY-REASONER =?BX)))))

10)

(ADD ‘(IF-NEEDED TO-AP
(AT ('R ?BX BOX?) 7X 7Y)
((?RX)

(ACTION (PUSHL =?BX =?X =?Y))

(PRECONDITIONS
(LOCINROOM =?X =7Y ?RX))

2) 7RX))
(ATRRY ~REASONER =7RX))
TRRY ~REASONER =?BX)))

€5

(4. (NEXTTO =7?BX 7))
(4. (NEXTTO ? =7BX))
(3. (AT =2BX ? 7))

(1. (AT HAIRRY-REASONER ? ?))
(1. (NEX'TTO HAIRRY~REASONER ?)))

(3. (AT =7%BX =?X =%Y))
(1. (NEXTTGC HAIRRY-REASONER =7BX)))))
TO)

(ADD '(IF-NEEDED TO -IRR
(INROOM HAIRRY-REASONER (!R 7RX ROOM?))
((?DX 7RY)
(ACTION (GOTHYRUDR =?DX =2RX))
(PRECONDITIONS
(5. (CONNECTS 7DX ?RY =?RX)) ;
(5. (TYPE =7DX DOOR)) ;
(4. (STATE =?DX OPEN)) '
(2. (INROOM HAIRRY-REASONER =?RY))
(1. (NEXTTO HATRRY-REASONER =?DX)))
(DELETION
(2. (INROOM HAIRRY-REASONER =7RY)
(1. (NEXTTO HAIRRY -REASONER ?))
(1. (AT HAIRRY-REASONER 7 7)))
(ADDITION
(2. (INROOM HAIRRY-REASONER =7RX)))))

/

TO)

(ADD '(IF-NEEDED TO-1BR

(INROOM (:R ?BX BOX?)

((?DX ?RY)

(ACTION (PUSHTHKUDR

(PRECONDILY
(1
55
4.
(4.
(3.
(2
€1«

(DELETION

~~

1
1.
(ADDTTION
2.
€l
i _

TO)

"(1F-NEEDED TO-SDO
(STATE ('R 1

((?RX ?RY)

(ACTION

(ADD

(o
()
(4.
{2
(i
(DELET ZOW
(4.
(ADDITION
4.

&

TO)

"(IF-NEEDED TO-SDC
(STATE ('R ?DX D
((?RX ?RY)

(ADD

(ACTION (CL

(PRECONDIT
(5.
(5
(&.
{2+
(1

(DELETION

(4.

(ADDITION
(4.

DX DOO

(OPEX

(PRECONDIT]

('R ?RX ROOM?))

=78X =7DX =?RX))
TTONS
(CONNECTS ?DX =?RX ?RY))
(TYPE =7DX DOOK))
(STATE =?DX OPEN))
(INROOM =7BX =7?RY))
{NEXTTO BX =7DX))
-REASONER =7RY))

(INROOM HATRKY
(NEXTTO HAIRRY-REASONER =?BX)))

=IRY))

=?BX 7))

? =7BX))

2 73

LRRY -REASONER =?RY))
RE “‘"R gt
SONER 7)))

{ HATR ASONER =?RX))
HATL V‘f-\,lluxrR =7BX)))))

R?)

30
. LUNS

(s X €1 Tﬁva)
},m‘;l‘w' -REASONER =7RX))
{NEXTTO HAILRRY-REASONER =7?DX)))
STATE =?DX CLOSED)))

(STATE =9DX OPEN)))))

QOR?) CLOSED)

Cl =70X))

v

(" TCTS =2DX 7TRX TRY))

(m'z f--,":m = DX =TRX))

STATE =7DX OPEN))

(* NROOM :.I\IRRY-RJ«‘.ASCNER =7RX))

.

(MEXTTO HAIRRY-REASONER =7DX)))

(STATE =?DX OFEN)))

(STATE =7DX CLOSED)))))

132

APPENDIX III

PROGRAM FOR ASSUMING A DOOR CAN BE OPENED
IN A MOVING A BOX SITUATION

(DEFUN ASSUMPTION-S-B (DOOR FRAME)
The arguments are the door which is to be assumed openable
and the PCS frame.
(PROG (ASSUMPTION-NAME P BOX OTHER SOURCE GOAL
REASON OTHER-BOX WHERE)
(SETQ GOAL (FVAL ‘?RX FRAME)
SOURCE (FVAL '?RY FRAME))
Find the source and goal rooms from information on the PCS
frame.
(COND
((HERE (LIST lOPEN—INTO DOOR GOAL)
INITIAL)
Does the door open into the goal room?
(COND
((NULL
(MEMO SOURCE
(WHERE -1S
(SETQ BOX
(CDR (ASSQ '?BX
(CET ERAME
ALIST))))
FRAME)))
Is the box going to get into the source room because of an
action?
(SETQ ASSUMPTION-NAME (CGEN IA))
(LINKAID '(INROOM)
(LIST ‘STATE
TOOR
'OPEN)
gIL
LOGIC
FRAME
ASSUMPTION~NAME)
(LINKAID '(INROOM HATRRY-REASONER)
(LIST 'STATE
DOOR
‘OPEN)
gIL
LOGIC
FRAME
ASSUMPTION -NAME)
(RETURN (LIST QSSUMPTION-NAME
LOGIC
FRAME)))
If the last two things were true, an assumption can be made.

G S 1 o A el R N il

- . P

133

The LINKAID function can alter the precondition ordering and set up the
LINKAIDS. Return that a LOGIC assumption is made.

((SETQ
OTHER
(OR
(DO
((POSS (CDR (GETALL (LIST OPEN INTO
D
SOURCE)
INITIAL))
(CDR POSS))
(LIST))
((NULL POSS) LIST)
(SETQ LIST

(CONS (CDR (ASSQ ‘?D
(CADDAR PO0SS)))
LIST)))
(OPEN- DOOR-X7 SOURCE DOOR FRAME)
(HERE (LIST IdROOM
HALRRY REASONER
SOURCE)
INITIAL)))
If the box is expected to be there initially, an assumption can be made if
there are other doors which open in the source, if there is a door
connecting the source which is already open or if HAIRRY-REASONER is there
originally. If any of these is true, make the gssumption.
(SETQ ASSUMPTION-NAME (CGEN A))
(LINKAID (INROOM HAIRRY-REASONER)
(LIST ’STATE
QOOR
OPEN)
NIL
LOGIC
FRAME
ASSUMPTICN-NAME
(RETURN (LIST ASSUMPTION-VAME
"LoGIC
FRAME)))
((RETURN NIL)))))
An assumption cannot be made.
(AND
(NULL
(MEMQ SOURCE
(WHERE-IS (CDR (ASSQ ’?BX
(GET FRAME
ALIST)))

FRAME)))
(RETURN NIL))
The door opens into the source and the box will be there because of an action.
No assumption can be made.

(AND
(SETQ REASON (ASSQ ‘NEXTTO
(GET FRAME
GOAL-LIST)))
(BOX? (CADR REASON))
(BOX? (CADDR REASON))
Check the planning environment to see if the goal some where
up the line is to push two boxes together. If so, what is
the other box.
(SETQ OTHER-BOX)
(CAR (DELQ (FVAL ?BX FRAME)
(SUBST NIL
NIL
(CDR REASON)))))
(SETQ WHERE (WHERE-IS OTHER-BOX FRAME))
Where is the other box?
(COND
((OR
(NULL (SETQ P
(PROTECTED? (LIST "INROOM
OTHER -BOX
(CAR WHERE))
: FRAME)))
(EQ (CADR P) PRECONDITION)))
((PROTECTED-NEXTTO? OTHER-BOX)))
No assumption unless the location of the other box is
protected.
(HERE (LIST :CONNECTS
D
WHERE
SOURCE
' (CONNECTS))
(RETURN NIL))
If one of the conditions in the AND is NIL, no assumption.
Otherwise the door can be pushed open with the appropriate
LINKAID.
(SETQ ASSUMPTION-NAME (CGEN ‘A))
(LINKAID (INROOM HAIRRY-REASONER)
(LIST STATE DOOR 'OPEN)
gLIST DOOR)
LOGIC

FRAME
ASSUMPTION-NAME)
(RETURN (LIST ASSUMPTION-NAME
‘LocIC
FRAME))))

134

VITA

Steven Jay Weissman was born in Paterson, New Jersey on October 6,
1947. He attended Cornell University where he earned the B.S. degree
in 1969.

He attended the University of Illinois where he earned an M.S. and
Ph.D. in 1974 and 1976, respectively. During his enrollment at the
University of Illinois, he was employed as a research assistant at the
Coordinated Science Laboratory.

He is a member of Tau Beta Pi and Eta Kappa Nu.

