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I
A Semi-Fast Fourier Transform Algorithm over GF(2m)

by

Dilip V. Sarwate*

July 28, 1976

Abstract

An algorithm which computes the Fourier Transform of a sequence of length

n over GF(2
m) using approximately 2nm multiplications and n2 + nm additions

is developed . The number of multiplications is thus considerably smaller than

the n
2 

multip lications required for a direct evaluation, though the number of

additions is somewhat larger . Unlike the Fast Fourier Transform, this method

does not depend on the factors of n and can be used when n is not highly

composite or is a prime. The bit complexity of the algorithm is analyzed in

detail. Implementations and app lications are briefly discussed.

*The author is with the Coordinated Science Laboratory and the Department of
Electrical Engineering, University of Illinois at Urbana-Champaign, Urbana ,
Illinois 61801.

This work was suppor ted in par t by the Joint Services Electronics Program
• (U.S. Army, U.S. Navy and U.S. Air Force) under Contract DAAB-07-72-C-0259.
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I. Introduction

The Fas t Fourier Transform (FFT) algorithm of leng th n over a finite

field [i] is essentially the well-known complex field FFT algorithm (e.g. [2])

with the primitive nth root of unity exp(jZrt/n) in the complex field being

* 
replaced by a primitive ~th root of unity in the finite field (or an

extension thereof). When n is composite, with factors n1,n2,...,n , the

finite field FFT is essentially what is called a mixed-radix FFT and

requires n(n1 + n2 + ... + n5) multip lications and n(n1 + n
2 

+ ... +
additions as compared to the n2 multiplications and n2 additions required to

evaluate the Fourier Transform in the most obvious way. If n is not highly

composite, (or if n is a prime), the saving in computation is quite small

( or nonexistent). In such cases, the Fourier Transform can be computed from

the cyclic convolution of two appropriately defined sequences of length

approximately 2n or more [3] - [5]. This convolution itself can be computed

by computing the forward transforms of the two sequences, a pointwise multi-

plication of the transforms, and an inverse transform. If the length of the

sequences is chosen to be highly composite, the FFT algorithm can be used to

compute the three transforms and significant savings in computation can be

achieved.

For small to moderate values of n, how ever , the cyclic convolution

* 
technique can be slower than direct evaluation. One other problem that arises

with finite fields is that the finite field may not contain an appropriate

primitive root of unity, and computations may have to be done in a much larger

field. For example, if we wish to compute the transform of a sequence of 31

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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elements from GF(2 5) ,  we can f ind it fro m the cycl ic convo lution of two

* . sequences of length (say) 63. Unfortunately, the smallest field tha t contains

GF(2 5) as well as a primitive 63rd root of unity is GF(230
) [6], [73 . Of

course, one might cyclically convolve two sequences of length 93, which will

allow the use of GF(2’°). On the other hand, 93 is not highly composite.

In fact, computing three FFTs of length 93 (or 63) requires o~ re computation

in a larger field than a brute-force evaluation of the original transform.

The situation is somewhat better if one redefines the problom so that

computation can be done in GF(p) for some large prime p or in the complex

field itself. However, these techniques will not be analyzed in this paper.

The algorithm proposed in this paper requires 2(n-l)(m-l)

multiplications and (n-l)(n-fm-l) additions in GF(2
m
) to compute a transform of

4 length n, n a prime, over GF(2m). If n is not a prime, the number of multi-

plications is somewhat less and the number of additions is somewhat more.

Since multiplications require more time than additions, the algorithm is some-

what faster than the direct method, though both have arithmetic complexity of

the same order O
A (n

2). The bit complexity of the proposed algorithm is

05
(n 1og n) which is better by a factor of log n over the direct method. For

small values of n, the proposed method is also superior to the cyclic

convolution technique. Asymptotically, of course, the cyclic convolution

* technique using the FFT has arithmetic complexity °A~~ 
log 11) and bit

complexity °B~~ 
log5n), and is vastly superior. For these reasons, the

proposed algorithm is dubbed a Semi-Fast Fourier Transform (S-FFT) algorithm.
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• II. The S-FFT Algori thm

Let n be an odd integer ,

rn the mul t ip licative order of 2 modulo n

~ a p rimitive n~’~ root of un ity in GF( 2m )

an elemen t of degree m in GF( 2m ). It is convenient , bu t not

necessary , to take ~ to be a primitive element. In fact , one

can take ~ =

n—i
Let A(x) = E A~x be a polynomial over GF(2

m
).

i=O
Every element of GF(2m) can be represented as a polynomial of degree

less Lhan m in B (see, e.g. [7]). Thus,

rn-i k
A4 = E A 4 ~ B where A4 E GF(2) (1)

k=O ‘

Hence,

A(x)  = A~
0

~ (x) + BAW(x) + B2A~
2
~~(x) + ... + Bm

~
lA (m

~
l) ( )  (2) 

*

‘k’ n— i
where A’ ‘(x) = E A~ kx is a polynomial over GF(2).

i::O

n-i
The Fourier Transform of A( x) is B( z) = 2 B z~ where

.1=0

n-i
B = A(cv 3 ) = 2 A (~i)i (3)j  i=O i

Using ( 1), it is easy to manipulate (3) to give

m- 1
B = 2 [A~~ (~ i )] Bk (4)

k~0
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If B~~~~(z )  denotes the Fourier Transform of A~~~(x), then, from (2) and (4),

we get

B(z) = B~
0
~(z) + SB W (z)  + 82B~

2
~~( z )  + ... + Bm

~
lB (m

~
l) (Z)  (5)

The basic idea behind the algorithm is to find the po1.ynomials

B~
1
~~(z) as efficiently as possible and then use (5) to compute B(s). It is

easier to compute B
0 
directly from (3) using (n-i) additions rather than from

(5). The rest of the coefficients of B(z) can be computed from the coefficients

* 
of the B(~~~(Z)I S in (n-l)(m-1) multiplications and (n-1)(m-i) additions using

(5). We now show that the coefficients of the B~~~(z)’s can be computed quite

rapidly because the B(’~~(Z)l S are transforms of binary polynomials.

-n-i . .
[B9’

~]
2 

= [ 2 A~ k~~~~~ ij  i=O

n-l
= 2 A~ ~~~~~ 

in a field of characteristic 2.
i=o
n-i

= 2 A~ 
~~~~~ 

since A . k 
E GF(2)

=0 ‘ 
1,

Thus,

[B~~~]
2 

= ~~~~ (6)

Given ~~~~ one can compute ~~~~ ~~~~~ ~~~~~ ..., etc. (subscripts taken *

modulo n) simply by successive squarings. Note that c~ ~2) cr4~, ..., etc.

I
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are conjugate elements in GF(2
m
) and are the roots of the same irreducible

polynomial. Let 1(n) denote the number of such irreducible polynomials

(of degree greater than 1) that are divisors of xn_l . If we compute

for 1(n) values of j, then all the other B~
l
~~ I s (except B~

’
~ which need not

be computed at all) can be obtained by squaring. Now, to compute

requires at most (n-i) additions because the A
ik 

are 0 or 1 and, hence,

• either (~ 3 )i is added to the sum or it is not. Thus, we can compute all the

coefficients of B~~~(z) except ~~~ in (n-l)I(n) additions and (n-i) - 1(n)

squaring operations (i.e. multiplications) in GF(2
m
). There are m such

polynomials B~
’
~~(z) and thus , we find that all the coefficients of B (z)

can be computed using a total of m(n-i)(I(n)+l) additions and

m (n-~-I(n)) + (n-1)(iu-1) multiplications over GF(2m).

Let ø() denote Euler ’s ~ func tion and let ~i’(d) denote the multiplicative

order of 2 mod d. Thus, V(d) divides Y(n) = m if d divides n. Then we have [8]

I(n)= 2 (7)
4>1,
d In

If n is a prime, then we get 1(n) = (n-l)/m. In this case, B(z)  can be computed

using 2(n-l)(m-l) multiplications and (n-l)(n4in—l) additions. If n is not a

prime, then , using the fact that 2 0(d) = n, we get that 1(n) > (n-i)/m
d

~
n

and thus the number of multiplications required is somewhat less than 2(n-l)(m-l)

while the number of additions is increased. If n = 2m_ 1, (7) can also be

written [8] as

1(n) — ~ [ 2 O(d)2m/d] - 2 � (2m_2),m
m dim
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Summarizing , the algorithm works as follows. Let the 1(n) irreducible

$ 
polynomial divisors of x~ - 1 be ordered in some manner ; for .t =

let P( .~) be an integer such that  is a root of the 2th irreducible

polynomial; and let Q(2 )  denote the number of roots of the 2th irr educib le

polynomial.

Algorithm S-FFT

Input: Polynomial A(x) = A0 + A 1x + ... + A~~1X
n_l 

over GF(2
m
)

• Output: Fourier Transform B(z) = B O+Blz+...+Bn lz n 1 of A(x) over CF(2m)

be~.in
n-I.

B E A . ;0 •

for k — 0 ~~~~ 1 unt i l  ( rn- i )  do

4 for L °- I 
~~~~ 

I until 1(n) do

beg~~

— Ai k  (
~P(L)

)
i

for j  — I 
~~~2. 

I until (Q(L)-l) do

(k)  — [B 09
23P(~~) mod n 2~~~ P( L) mod n

for i — l ~~~~~~l uncil (n-l)~~~

$ tL.\
— 2  ~~~~~B~ 
k=O~~~

I
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III. Analysis of Bit Comple~city

We now analyze the S-FFT algori thm , the FFT algo rithm and direct

computation of the Fourier Transform to determine the numbers of bit operations

required for each. We consider an implementation consisting of a large comb ina-

t ional  network wi t h nm inputs representing the A. and run outputs  representing

the B .; and count the number of gate s required to build such a network. For

simp licity , we consider the case n = ?-.i only and also take Q~ =

For direc t computation of the Fourier Transform, the B .’s, j  =

can be computed by h o m er ’s rule as

• B . = ( (  ... ( (A
1
n3 + A 2

)c~
3 + A 3 )& + ... + A 1

)& + A 0

For .1 = 0 ,1, . . .  ,n-1 , we need (n-I )  mul t ip lier s capable of mult iply ing their

inputs by ~~~ These mu l t i p liers can be imp lemented as linear transformations

of the rn-bit vector inputs (e.g. ~7] p. 45). The rows of the in X m matrix of

such a transformation are the rn-bit representations (as in (1)) of the elements

~~im-l ~j-$in-2 Q~)+l o’~. If there are t ones in the matrix , the linear

transformation can be implemented with t-m exclusive-OR (XOR) gates. Note

that multip lication by I corresponds to the identity transformation and thus

requires no XOR gates. Consider the n in X m matrices corresponding to

multiplication by I, c~, cr2, ... , which are exactly the it nonzero binary

m-tuples. Each nonzero binary m-tup le occurs in in different matrices. Hence,

the n matrices contain a total of rn2?1 ones and

XOR gates are required to implement all the multiplications. 
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Since (2

m_1)(2m_2) additions , each requiring m XOR gates to implement, are

also required , ‘~e see that a total of m
22m (2m~~_i) XOR gates is required to

compute the Fourier Transform by the direct method. The total delay through

the network is (2
m_2)(rlog

2
rnl + I) gate delay

Another possibility in the direct method is to compute B . by multiply-

ing A . by ~ simultaneously for i = 0,1,... ,n-l and summing the products. When

• it is a prime, the hardware requirements are exactly the same as before. When

n is not a prime , the hardware requirements actually decrease very slightly.

This is because whenever j  and it are not relatively prime, the set of elements

1, ~~ ~
2J ~ (n-l)3 used in computing B~ is not the same as the set of

elements ~~, 
~~~
, 

~~~, ~~~~ ~n-1 In fact, if is a primitive dth root of unity

• (where d is some divisor of n), then each of the elements ~ ~i ~2i

occurs exactly n/d times in the former set. As a consequence, the

hardware required to compute B~ depends on the order of the element cr
y . In

column 4 of Table 1, we give the total hardware required to compute B~ where

is a primitive dth root of unity for nontrivial divisors of it. Since

there are 0(d) primitive d
th roots of unity, the total hardware is easily

• inferred from these numbers. The delay through the network is m + rlog2nil gate
• delays which is considerably smaller than that required for Hom er’s rule: the

saving in hardware when it is not a prime is less than 17..

Turning to the FFT algorithm, let p be the smallest nontrivial

divisor of n and let a = pq. Let A = 
~~~~~~~~~~~~~~~~~ 

and B =

• and define to be a n x n matrix with entries ~~~ = ~~~~~~ = 0,l,...,n-l.

~~~rlE.. .. ~~~~~~~~~ 
,
~~~~~~~~~~~~~

. -•--.-
~~~~~~~ — ~~~~

. .— — -  .— -—=.
~
_

~
. -- . .  . .

~~~~
. ..— -, —---— 
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(1) (2) (3) (4) (5) (~~) (7)
Number of bit  Number of Bit Number of Bit Number of Bit

n d 0(d) Operations to Operations to Operations to Operations to
Compute B . Compute B (k) (k)

j  J Compute B Compute B
after Folding 

after Folding

15 3 2 126 22 26 2
5 4 122 38 26 6

3 2 1,002 42 204 4

63 6 1,182 126 174 
- 

14
9 6 1,156 160 190 22

21 12 1,146 378 186 58
3 2 8,322 90 1,012 4
5 4 6,418 118 706 6

255 
15 8 7,744 448 944 48
17 16 8,062 530 892 52

51 32 8,192 1,632 1,032 200

85 64 8.200 2,728 1,024 336

511 6 18,679 247 1,743 15
73 72 20.767 2,959 2.315 323

3 2 45 ,002 122 4,082 2

11 10 49,466 522 4,826 42

1024 31 30 49,622 1,494 4,742 134
• 33 20 52 ,938 1,698 4 ,950 150

93 60 51,206 4,646 5,094 454
341 300 51.206 17.06 2 5,126 L702

2047 23 22 122,453 1,365 11,381 117
89 88 123.637 — 5.365 10,845 461

Table 1: Numbers of bit operations to compute B~ and B~
k) where is a primitive

dth root of unity. 

-., - ~~~~~~~—* — -. .
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computing the Fourier Transform is equivalent to computing B = A M~~~. If we

rearrange the columns of in the order 0,p,2p,...,(q-1)p,l,l+p ,1+2p,...,

(p-l),(p-l)+p,...(p-l)+(q-l)p to get the new matrix M* , then A is simply

B with its elements permuted into the same order. However, M* factors into
~~T1,

two matr ices  X and Y where X is a p x p array of q X q diagonal subinatrices and

Y is a p X p diagona l arra y of q X q submatrices. The entries along the

H diagonal of Y are identical and equal to M p. The q X q diagonal

submatrix on the i row and j  column of the p X p array comprising X

(i,j = O , l , . . . , p — l )  is diag[~~~~, 
~(qi+l)j •~~•,  ~

(q i~~~l.)jj as in Figure 1.

Since p is the smallest divisor of n, the elements .. ,~~~~
*.‘

are all  p r imitive ~
th roots of unity . It follows that (p-i)  multi p lications

by each of ~~~~~~~ ~n-l and n(p-l) additions are required to compute A IL

The total hardware for this part is (P_l)~
22m~~ XOR gates and the delay is

¶ 
- 

rlog 2~1 + r1082~i gate delays. Of course, we still have to multiply by Y,

* but this is equivalent to computing p transforms of length q. If q is not a

prime, let p ’ be the smallest nontrivial divisor of q and let q = p ’q ’.

Proceeding with the factorisation of exactly as before, we get

!*i*q~~P = X ’Y ’ etc. To multip ly by X ’ requires (p’-l) multip lications by each

p 2p p(q-l) . p • th
of I, ~~ , , ..., and q(p -I) additions. Now ~ = y is a q root

of unity. The total number of bit operations required to multiply q elements

of GF(2m ) by ~~~~~~~~~~~~~ respectively and sum the results is given in

column 5 of Table 1 (the heading on the column will be explained later).

Hence, we can determine the hardware required to multiply by X ’ (remember that

p transforms of length q have to be computed), and proceed to determine the

~ 1. 
•
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2 

- 

2 Q 
- 

2(p-l)°

Q ~~~q-i 

- 

Q ~. 2(q-l) 

- 

0 ~~ (p- 1)(q-l

-

~~ ~ i 0 [:2~~2 0 1 ~~~~~~~~~~~~~~~ Q
= 

.2 q-1 L~D ~. 4q-2 ] ... [~J . ( P . .i)(2~.i)

;q(p-’) ~~~~ 
- ;2q(p-l) - 

;(p-l)(pq-q)

i i”—1 ~2q(p-i)+2 
‘¼~)I ~q(p- )+ ... ~(p-l)(pq.~q+1)

— 

Q~~~_i 
— 

Q ,2(pq—1) 

— 

~(p-l)(pq-l)

Figur e I.. The FFT matrix ~~. I is a q X q identity matrix. All submatrices
of X are diagona l submatrices. 

• —- --~~~. -~~~~. — -~~~-.- ~~~~.- -~~~~-- . — ~ -~-
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the total number of bit operations required to compute the Fourier Transform

j using the FFT. If n = n
1
n
2
n3. * .n , the overall delay is at most

s Il.og
2
ml + rlog

2n1
l + ... + rlog

2
n~1 gate delays. It is also easy to show

that a to tal of n (n 1+n 2+. . .+n -s) additions and n(n
1+n2

+. . .+n~
-s- l)+l

mul t ip lications (by quanti t ies other than 1) are required . However , in order

to count bit operations , we have to consider the orders of the elements

involved.

Let us now consider the S-FFT algorithm. First , let n = 2
m_ 1 be

a prime . We note that  (n-i) additions, requiring a total of m(n-1) XOR gates

are needed to compute B0. Since 1~~J~~2j ~(n-1)J are the n distinc t

nonzero m-tuples , we see that computing

B~~~ = 
n-i 

A . 
~~~~i 0  1,

requires a total of ~ (2
m_ l_I) X0R gates and a delay of ri0~22m_ ul = (rn-I) gate

delays. Such computations are required for m values of k and 1(n) = (n-l)/m

values of j. Now, the squaring operations in (6) can also be implemented by

linear transformations (e.g., [7], p. 50) as can the multiplications in (5).

• The numbers of ones in matrices corresponding to squaring can be

made quite small if the minimal polynomial of ~ is chosen carefully. The

• numbers of gates and the delays in a squaring circuit are given in Table 2.

For example, if m = 5, a — 31, then one can successively compute

~~~~ ~~~ and ~~~ from ~(k) using a cascade of four squaring circuits,

giving a total of 12 gates and a delay of 4 gate delays. Alternatively,

since squaring is a linear operation, so is taking the 4th, 8th and 16th

power of an element. Hence, ~~~ can be applied to four different circuits

1~ 
• - .--•-~‘—• •.•

_- — -•~~~~~~-=~~ - ______

~~~ —• .,. - -—,—- .----*—-~~—.—-..~ 
~~~~~~~~~~~~~~
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m n Minimal Polynomial Squaring Circuit Multiplier Circuits
of ~ # of Hom er ’s rule Simultaneous Mult.

gates Delay # of gates Delay # of gates Max. delay

3 7 x~+x+1 1 1 2 2 3 1

4 15 x4+x+l 2 1 3 3 6 1

5 31 x5+x2+l 3 1 4 4 11 2

6 63 x6+x+1 3 1 5 5 15 1

7 127 x7+x+l 3 1 6 6 21 1

8 255 x8+x
4
+x

3
+x
2+l 20 2 21 7 86 2

9 511 x9+x
4+1 6 1 8 8 42 2

10 1023 x 10+x3+l 6 2 9 9 48 2

11. 2047 x11+x
2
+1 6 1 10 10 56 2

Table 2. Numbers of gates and delays required to implement (a) the squaring operation

(b) the (rn-i) multiplications in Hom er’s rule and (c) simultaneous multip lica-

tions by l,~ ,. . ,Or”~
4. Gates and delays in adder circuits are not included.

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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to produce ~~~~ B?), ~~~ and ~~~ simultaneously. It can be shown that

* this requires 23 gates but the delay is only 2 gate delays.

A similar situation exists in computing the B
a
’s from the B?~

’s.

Using Hom er ’s rule , we can compute B . from the B~~~’s using (m-l) multiplications

by ~ and (m-l) additions. The total number of XOR gates and delays required

to imp lement al l  (rn-l)  multiplications by ~ are given in Table 2. We also need

(m-l) adders , which require m(m-l) XOR gates and delay the signals by a

further (rn-i) gate delay. Alternatively,  one can multiply each ~~~ by

(k — 0,1,2,... ,m-l) simultaneously and add the products. The total number of

gates and the maximum delay is listed in Table 2. As before, (rn-i) adders

are required but the increase in delay is only Eiog
2ml gate delays. While

discussing the direct method , we saw that we could decrease the delay without

4 increasing the hardware by changing to simultaneous multiplications. This is

not true here. Except for the case m 8, exactly one gate is required to

multip ly by ~ giving a total of (rn-i) gates to implement Hom er’s rule,

while the (rn-I) simultaneous multiplications require approximately ½ rn(m-1) gates.

Even so , these latter multip lications require very little hardware since the

average multiplication by a ~
th root requires ½m

2-m bit operations, compared

to a tota l of ½m(m-i) bit operations for (rn-i) multiplications. The numbers

of bit operations required to implement the S-FFT algorithm can be determined

from the above .

When n is not a prime, we have, as before, that the hardware required

to compute B(t
~ depends on th~ order of cv

i . This is given in column 6 of

* 
Table 1. Using these numbers and Table 2, it is straightforward to determine 

*

the total numbers of bit operations required for the S-FFT algorithm. 4
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A technique that I call folding can be used to reduce the number of

bit operations at the expense of increased delay for the S-FFT algorithm and

for direct computation , whenever it is not a prime. Suppose = 
~ 
is an

element of order d where din. Then

it

n-l . d-l
B. = ~ A~y ’ — Z ( Z A~~~~

j )y i

i=0 i—0 j=O ~

If we precompute the d inner sums, then d multiplications (by

• and d-l additions suffice to compute B~. I call the process of computing

the inner sums a folding of A(x) to length d and denote the polynomial

n
d-l d 1

E ( ~ 
Adj ÷ . )x ’ by A ( x l d ) .

i=0 j=0

Thus, we save (n-d) multiplications and (n-d) additions for 0(d) different

values of .~ but need to first fold A (x) which requires n-d extra additions.

Actually , the savings are even more as we illustrate by an example. Suppose

a = 63. Then, we need to fInd A(x~2l) A (x19), A(x17) and A(x13). To compute

the first two requires 42 and 54 additions respectively. To find A (x17), we

can either fold A(x) to length 7 using 56 additions, or fold A (x121) to length

7 using only 14 additions. Obviously, the latter is preferable. Similarly ,

we can fold A(x19) to get A(x13) using only 6 additions. Finally, we can fold

A(x13) to length I using 2 additions and this is exactly the same as computing

B0
! Consequently, only 42 + 14 extra additions are required for folding

operations since the 54 + 6 + 2 additions to fold A(x) to lengths 9, 3 and 1

are required for computing B0 anyway. However, we save some multiplications

I
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and additions in computing the L’s and the net result is a saving of 1284

multiplications and 1228 additions. This is approximately one-third of the

• total number of multiplications and additions required for direct computation

when n = 63. The total hardware required to compute B~ from A(x (d) is given

in column 5 of Table 1. The savings due to folding occur in the S-FFT

algorithm also. Thus, after folding A (x) to all the necessary lengths, we

can compute B~
1
~ from A~

1
~~(x~d) which is available directly from A(xjd).

The number of bit operations required for this are given in column 7 of Table 1.

From this, we can determine the total numbers of bit operations required for

• the S-FFT algorithm.

In Table 3, we give the total numbers of bit operations required for

computing the Fourier Transform by the various algorithms. When n is a prime,

there is no FFT algorithm; when n is not a prime, we give the results both

with and without folding. We notice, that as might be expected , the FFT is

superior to the S-FFT for larger values of n, while at shorter lengths, the

S-FFT with folding is superior to the FFT. The S-FFT algorithm is superior

to direct computation by a factor of (rn-i) approximately. Folding reduces

the bit complexity by a factor of 0(n)/n approximately, i.e., the number of

bit operations to evaluate ~~~ after folding is quite small compared to the

number required when folding is not used. Finally, the case it — 255 is

exceptional in that the squaring circuits and multiplier circuits require

unusually large amounts of hardware and hence the S-FFT requires more hard- *

ware than the FFT.
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n Algor i thm Number of b i t
Operations

Direct 216

S-FFT 132

Di rect 1,788
* Direc t with  folding 1,284

15 FFT 760

S-FFT 778

S-FFT with folding 642

31 Di rect 
- 

12 ,000
S-FFT 3,480

Direct  71 ,412

Di r ect ‘~‘ith folding 48 ,300

63 FFT 11, 736

S-FFT 16,822

S-FFT with fo ld ing  11,494

Direct 395 , 136

S-FFT 64.764

•1 
Direct 2,069,788
Direct with folding 1,292 ,460

255 FFT 178 ,336

S-FFT 328,518

S-FFT with folding 219,766

Direct 10,565,952
Direct with folding 9,177 ,126

511 FFT * 1,620,288

S-FFT 1,259,292

S-FFT with folding 1.088.706

Direct 52 ,290,464

Direct with folding 36,222 ,784

1023 FFT 2,103,520

S-FFT 5 ,548 ,398

S-FFT with folding 3.798,638

Direct 253 ,453 ,376

Direc t with folding 240,403,042

2047 FFT 13,606 ,912

S-FFT 23,381,336

S-FFT with foldin2 22,241.274

* Table 3. Numbers of bit operations required to c9mpute the Fourier Transform
by various algorithms . 

.r - - ut .. ru .~~. - 1_ n,l j:. _~~
- . - :_ - ; ;_
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IV. Imp lementat ions and App l icat ions

The numbers of bit operations required to compute the Fourier Trans-

form using the various algorithms ~as discussed at some length in the previous

section. The nm-input , nm-output combinational network discussed there is not

necessar ily a practical imp lementation. Two more realistic methods are a

rn-input , nm-output sequential network and a nm-input, rn-output sequential

netwo rk. In the former , the input to the circuit is the sequence An _ i ,

~~~~~~ .,A0. When the last symbol is received , the nm outputs are the B.’s.

In the la t ter , th e input  is A
~~ i,A

~ 2 , . . . , A0 which is stored in the network.

The netwo rk then successively generates B0, B1,..., B 1. In the coding

literature , these are known as synd rome generat i ng ci rcui ts  and Chien sear ch

ci rcuits respectively [7 , Chapter 5~~, [9] . Unfor tunate l y,  the S-FFT algorithm

is not well-sui ted to either of these methods. It requires approximately the

same number of f l i p  f lops but cons iderably more XOR gates than the direct

met hod. I am not aware of any implementation of the FFT algorithm along

these lines. It appears to be even more difficult to implement than the S-FFT.

An alternative implementation is in software with multiplication

being done by means of tables of logarithms and antilogarithms in GF(2 m ) .

As discussed earlier , the direct method could be implemented using (n-i)
2

multiplications and n(n-l) additions while the FFT would require

multi p lications and rt(n
1-fn2+...+n 

-s)  additions.

For the S-FFT, one can trade-off time for memory space. Thus, one has

to compute ~~~ for m values of k and 1(n) values of j, say ~ 1~~12 * • • ) J 1(~~)•

4 th ~l ~2 ~~I(n)One can store a (n-i) x 1(n) array whose i row is ~ ,~~~ , , ,. ,~~ and

~~~— ~~~~
—- —--

~~~~~ 
- ~~~~~~~~~~~~~~~~~~~~~~~~~~

•. .•~~•.~~~—--- •.--——
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a m 1(n) array containing the par t ia l  sums for ~~~~~ Then , a f te r  testing

one either adds (or does not add) the ~th row of the first array into

the k
th row of the second . Furthermore , if one stores two tables (with 2m

th . 2entries  each)  ~those V entr ies  are respectively y and V~ , one can dispense

with the log and antilog tables entirely. As in the hardware implementation ,

the squari ngs and mu l t i 1d icat ions by ~ in ( 5) are less comp lex than mul t ip l ica-

t ions in general , since the forme r require onl y one table lookup while the

la t te r require  two . If one ~iishes to avoid s tor ing a (n- i)  x 1(n) array ,

ii i hthen one can compute ~ 
(n , at the step . In this case , the S-FFT

requires approximatel y n2Im extra mul t i p l icat ions . As a result , it canno t

always compete wi t h the FFT when n is not a prime ; when n is a prime , the

S-FFT is still better than the direc t method.

In recent years, considerable attention has been paid to Fast Fourier

Transfo rms over f i n i t e  mathematical structures because no round-off or trunca-

tion errors can occur in such transforms . However , the major application

envisioned for the S-FFT algori thm (and , indeed , the initial impetus for

considering i t )  is in the encoding and decoding of BCH and Reed-Solomo n Codes

[7]. Mandelbaum [lO has proposed a technique for implementing Reed-Solomo n

• codes which requires both the encoder and the decoder to compute a Fourier

Transform. It has been shown Li i ] , [12] that if an FFT is used for these

transforms , then Mandelbaum ’s technique is superior over the usual impleinenta-

tion for a wide range of rates and block lengths. Use of the S-FFT increases

this range and also allows reasonable implementations when the block length

is a prime. 



For the us ual imp lementa t ions , one must wmpute syndromes i. e . ,

evaluate a pol ynomial of degree n-i at ~~~~~~~ j  — 1,2 , . . .  ,2t and locate errors

by the Chien search , i .e . ,  f ind the Fourier Tra nsform of a pol ynomial of

degree t. For b inar y BCH codes , the pol ynomia l of degree n-1 is a polynomial

over CF(2)  and the S-.FFT has no appl ica t ion.  Equatio n (6) is used to compute

some of the syndrome values but th i s  r esu l t  is well  known in the coding

l i terature.  However , f a s t  techni ques can be used for syndrome computation of

Reed-Solomon codes and Chien searc h for both BCH and Reed-Solomon codes. Here,

di rect computation requires approximately 2nt mul t i p lications and additions ,

and at mult ipl icat ions and additions respectively. The reduction in FFT

- • complexity is much smaller. If one think s of the FFT as mul t i p lication of a

row vector by a succession of sparse matrices , then (for  the Chien sea rch) ,

a vecto r with (t+1) nonzero entries becomes a vector with n1(t+i) nonzero

entries after one matrix multip lication and a vector with n
1
n
2
(t+l) nonzero

entries after the second matrix multiplication etc. so that the advantages of

beginning with a polynomial of small degree are rapidly lost. On the other

hand , for the S-FFT Chien search, one requires mtl (n) + nm + t additions

and 2mm multiplications approximately. Similar savings are available in

• syndrome computation as well. In short, for these specialized cases, direc t

computation and the S-FFT have reduced complexity in similar ratios while the

FFT has not. This is an added advantage for the S-FFT algorithm.
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