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I, Introduction

The Fast Fourier Transform (FFT) algorithm of length n over a finite
field [1] is essentially the well-known complex field FFT algorithm (e.g. [2])
with the primitive nth root of unity exp(j27/n) in the complex field being
replaced by a primitive nth root of unity in the finite field (or an
extension thereof). When n is composite, with factors nl,nz,...,ns, the
finite field FFT is essentially what is called a mixed-radix FFT and
requires n(n1 +n

+ oo ns) multiplications and n(n1 = e G SN ns)

2 2
additions as compared to the n2 multiplications and n2 additions required to
evaluate the Fourier Transform in the most obvious way. If n is not highly
composite, (or if n is a prime), the saving in computation is quite small

( or nonexistent). In such cases, the Fourier Transform can be computed from
the cyclic convolution of two appropriately defined sequences of length
approximately 2n or more [3] - [5]. This convolution itself can be computed
by computing the forward transforms of the two sequences, a pointwise multi-
plication of the transforms, and an inverse transform. If the length of the
sequences is chosen to be highly composite, the FFT algorithm can be used to
compute the three transforms and significant savings in computation can be
achieved.

For small to moderate values of n, however, the cyclic convolution
technique can be slower than direct evaluation. One other problem that arises
with finite fields is that the finite field may not contain an appropriate
primitive root of unity, and computations may have to be done in a much larger

field. For example, if we wish to compute the transform of a sequence of 31
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elements from GF(25), we can find it from the cyclic convolution of two
sequences of length (say) 63. Unfortunately, the smallest field that contains
GF(ZS) as well as a primitive 63rd root of unity is GF(ZSO) [6], [7]. of
course, one might cyclically convolve two sequences of length 93, which will
allow the use of GF(ZIO). On the other hand, 93 is not highly composite.
In fact, computing three FFTs of length 93 (or 63) requires more computation
in a larger field than a brute-force evaluation of the original transform.
The situation is somewhat better if one redefines the problem so that
computation can be done in GF(p) for some large prime p or in the complex
field itself. However, these techniques will not be analyzed in this paper.
The algorithm proposed in this paper requires 2(n-1)(m-1)
multiplications and (n-1)(n+m-1) additions in GF(2m) to compute a transform of
length n, n a prime, over GF(Zm). If n is not a prime, the number of multi-
plications is somewhat less and the number of additions is somewhat more.
Since multiplications require more time than additions, the algorithm is some-
what faster than the direct method, though both have arithmetic complexity of
the same order OA(nz). The bit complexity of the proposed algorithm is
OB(nzlog n) which is better by a factor of log n over the direct method. For
small values of n, the proposed method is also superior to the cyclic
convolution technique. Asymptotically, of course, the cyclic convolution
technique using the FFT has arithmetic complexity OA(n log n) and bit
complexity OB(n logsn), and is vastly superior. For these reasons, the

proposed algorithm is dubbed a Semi-Fast Fourier Transform (S-FFT) algorithm,




II1. The S-FFT Algorithm

Let n be an odd integer,
m the multiplicative order of 2 modulo n
L th . m
@ a primitive n = root of unity in GF(2 )

an element of degree m in GF(Zm). It is convenient, but not

w

necessary, to take B to be a primitive element. In fact, one
can take B = .
gt i m
Let A(x) = X Aix be a polynomial over GF(2 ).
i=0 )

Every element of GF(Zm) can be represented as a polynomial of degree

less than m in B (see, e.g. [7]). Thus,

m=-1 %
A = kEO Ai,k B where Ai,k € GF(2) ()
Hence,
a) = A0 +8aM (x) + 82aP %y + ... + g™ 1a@ D oy 2)
1 PG 2
where A "(x) = £ A,  x 1is a polynomial over GF(2).
i=0 oK
n-1 j
The Fourier Transform of A(x) is B(z) = I sz where
j=0 |
n-1 s
B, = A@@)) = ¢ A, (@)t (3)
J i=0 1

Using (1), it is easy to manipulate (3) to give

m=-1
By = kZO (a® @)1 g*
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If B(k)(z) denotes the Fourier Transform of A(k)(x), then, from (2) and (4),

we get
B(z) = BD(z) + 881 (2) + 828D (2) 4 ... + g 1p® D),y (5)

The basic idea behind the algorithm is to find the pdlynomials
B(k)(z) as efficiently as possible and then use (5) to compute B(z). It is

easier to compute B0 directly from (3) using (n-1) additions rather than from
(5). The rest of the coefficients of B(z) can be computed from the coefficients
of the B(k)(z)'s in (n-1)(m~1) multiplications and (n-1)(m~-1) additions using
(5). We now show that the ccefficients of the B(k)(z)'s can be computed quite

rapidly because the B(k)(z)'s are transforms of binary polynomials.

~n=1 - ."fz
B8N2 -z 4, @ht
j Li=0 i,k _J
Lol ST
= % Ai k(a ) in a field of characteristic 2,
i=0
Ll 2.1
=0 Ai’k(a ) since Ai,k € GF(2)
i=0
Thus,
[3)]2 & pK)
j 2j (6)
Given ng), one can compute Bé?), Bé§)’ Bég), «ssy €tc, (subscripts taken
modulo n) simply by successive squarings. Note that aj, azj, daj, eesy €tc,

oo
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are conjugate elements in GF(Zm) and are the roots of the same irreducible

polynomial, Let I(n) denote the number of such irreducible polynomials

(of degree greater than 1) that are divisors of x"-1. If we compute B(k)

j

ék) which need not

be computed at all) can be obtained by squaring. Now, to compute B(k)

for I(n) values of j, then all the other B§k)'s (except B

requires at most (n-1) additions because the Ai k are 0 or 1 and, hence,
’

either (Q'J)i is added to the sum or it is not. Thus, we can compute all the

(k) (k)
0

coefficients of B* "(z) except B in (n-1)I(n) additions and (n-1) - I(n)
squaring operations (i.e. multiplications) in GF(Zm). There are m such
polynomials B(k)(z) and thus, we find that all the coefficients of B (z)
can be computed using a total of m(n-1)(I(n)+l) additions and
m(n-1-I(n)) + (n-1)(m-1) multiplications over GF(2").
Let #(°*) denote Euler's ¢ function and let Y(d) denote the multiplicative

order of 2 mod d. Thus, Y(d) divides ¥(n) = m if d divides n. Then we have [8]

f(n) = & %f% (7)

i>1,

d|n
If n is a prime, then we get I(n) = (n-1)/m. In this case, B(z) can be computed
using 2(n-1)(m-1) multiplications and (n-1)(n+m-1) additions. If n is not a

prime, then, using the fact that ? ¢(d) = n, we get that I(n) > (n-1)/m
din

and thus the number of multiplications required is somewhat less than 2(n-1)(m-1)
while the number of additions is increased. If n = 2m-1, (7) can also be

written [8] as

I(n) = i [dii ¢(d)2“‘/d] - 22 (2"2)/m
m

(PR
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Summarizing, the algorithm works as follows. Let the I(n) irreducible

polynomial divisors of x" - 1 be ordered in some manner; for £ = 1,2,...,I(n),
P(L) th

let P(Z) be an integer such that « is a root of the 4 irreducible

polynomial; and let Q(£) denote the number of roots of the lth irreducible

polynomial. {
Algorithm S-FFT | %
Input: Polynomial A(x) = A0 + Alx * et A“_lxn-1 over GF(Zm) é
Qutput: Fourier Transform B(z) = B0+Blz+...+Bn_1zn-1 of A(x) over GF(Zm)
begin |
n-1
for k - 0 step 1 until (m-1) do ;

for £ <= 1 step 1 until I(n) do

begin
n-1
(13 S P(L) i |

for § < 1 step 1 ungil (Q(£)-1) do

2
5 (K) - [ ]

2jP(£) mod n Zj_lP(l) mod n
end;
for i+ 1 step 1 until (n-1) do
-1
B~ mz gk gk
L e i | i

end
$




II1. Analysis of Bit Complexity

We now analyze the S-FFT algorithm, the FFT algorithm and direct
computation of the Fourier Transform to determine the numbers of bit operations
required for each. We consider an implementation consisting of a large combina~
tional network with nm inputs representing the Ai and nm outputs representing
the Bj; and count the number of gates required to build such a network. For
simplicity, we consider the case n = g =1 only and also take ¥ = B,

For direct computation of the Fourier Transform, the Bj's, g o= 0.1 e sn~1
can be computed by Hornmer's rule as

B, = ({ «uv ((&

i ] ] A
; Wy B N R

0

For j = 0,1,...,n~1, we need (n-1) multipliers capable of multiplying their
inputs by aj. These multipliers can be implemented as linear transformations
of the m-bit vector inputs (e.g. 7] p. 45). The rows of the m X m matrix of
such a transformation are the m-bit representations (as in (1)) of the elements

j+l

aJ+m'1, et vee, @37 @), If there are t ones in the matrix, the linear

transformation can be implemented with t-m exclusive-OR (XOR) gates. Note
that multiplication by 1 corresponds to the identity transformation and thus
requires no XOR gates. Consider the n m X m matrices corresponding to
multiplication by 1, &, az, vlely dn-l which are exactly the n nonzero binary
m~-tuples, Each nonzero binary m-tuple occurs in m different matrices. Hence,

the n matrices contain a total of m22m-1 ones and (Zm-Z)(m22m-1-m(2m-1))

XOR gates are required to implement all the multiplications.
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Since (2m-1)(2m-2) additions, each requiring m XOR gates to implement, are

also required, we see that a total of m22m(2m-1-1) XOR gates is required to
compute the Fourier Transform by the direct method. The total delay through
the network is (Zm-Z)(rlogZM‘ + 1) gate delay ,

Another possibility in the direct method is to compute Bj by multiply-
ing Ai by aji simultaneously for i = 0,1,...,n-1 and summing the products. When
n is a prime, the hardware requirements are exactly the same as before. When
n is not a prime, the hardware requirements actually decrease very slightly.

This is because whenever j and n are not relatively prime, the set of elements

1, aJ, azJ, leiels a(n-l)J used in computing Bj is not the same as the set of
elements 1, «a, az, Talely an-l. In fact, if o) is a primitive dth root of unity
(where d is some divisor of n), then each of the elements 1, QJ, azJ, cevy

a(d—l)J occurs exactly n/d times in the former set. As a consequence, the

hardware required to compute Bj depends on the order of the element aj. In
column 4 of Table 1, we give the total hardware required to compute Bj where

aj is a primitive dth root of unity for nontrivial divisors of n. Since

there are ¢(d) primitive dth roots of unity, the total hardware is easily
inferred from these numbers. The delay through the network is m + rlogzd] gate
delays which is considerably smaller than that required for Horner's rule: the
saving in hardware when n is not a prime is less than 1%.

Turning to the FFT algorithm, let p be the smallest nontrivial

grese sk

[

[+)

=]

[=%

o
I

divisor of n and let n = pq. Let A = [Ao,Al,A ]

= [30,31,...,Bn_1

and define M to be a n X n matrix with entries a =
-n,u ij

,i,j b 0,1,...,[1"1.
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9
3 Ly (2) - (3) (4) (5) (6) (@A)
3 Number of bit Number of Bit Number of Bit Number of Bit
i n d ¢(d) Operations to Operations to Operations to Operations to
; i Bj “alpgEe Bj Compute B(k) Compute B(k)
‘i after Folding ] O Folgin
i g 2 126 22 26 2
5 4 122 38 26 6
3 2 1,002 42 204 4
Rl 6 1,182 126 T 14
9 6 1,156 160 190 22
21 12 1,146 378 186 58
3 8,322 90 1,012
5 4 6,418 118 706 6
255 15 8 7,744 448 944 48
17 16 8,062 530 892 52
51 32 8,192 1,632 1,032 200
85 64 8,200 2,728 1,024 336
511 7 6 18,679 247 1,743 15
73 72 20,767 ~ 2,959 2,315 323
3 2 45,002 122 4,082 2
11 10 49,466 522 4,826 42
1024 31 30 49,622 1,494 4,742 134
33 20 52,938 1,698 4,950 150
93 60 51,206 4,646 5,094 454
341 300 51,206 17,062 5,126 1,702
2047 23 22 122,453 1,365 11,381 117
89 88 123,637 5,365 10,845 461

Table 1: Numbers of bit operations to compute Bj and Bﬁk) where aj is a primitive
th

d™ root of unity.
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computing the Fourier Transform is equivalent to computing B = A Moo If we
’

rearrange the columns of Mn = in the order 0,p,2p,...,(q-1)p,1,14p,142p,...,

(p-1),(p-1)+p,...(p-1)+(q-1)p to get the new matrix M;,a' then A g:’a is simply
B with its elements permuted into the same order. However, H:,a factors into
two matrices X and Y where X is a p X p array of q X q diagonal submatrices and
Y is a p X p diagonal array ;f q X q submatrices, The entries along the
diagonal of Y are all identical and equal to gq’ap. The q X q diagonal
submatrix on the ith row and jth column of the p X p array comprising X

(L. =0,1, sop-ty s diagiadtl gietd MEie e tatia- Lty o s Figare 1.

Since p is the smallest divisor of n, the elements a,az,a3,...,ap-1

are all primitive nth roots of unity. It follows that (p~l) multiplications

by each of 1,0,02,...,0n-1 and n(p-1) additions are required to compute A X.

m-1

The total hardware for this part is (p-l)m22 XOR gates and the delay is

rlogzﬁ1 + rlog2§1 gate delays. Of course, we still have to multiply by Y,

but this is equivalent to computing p transforms of length q. If q is not a

prime, let p' be the smallest nontrivial divisor of q and let q = p'q’.

Proceeding with the factorisation of Hq oF exactly as before, we get
3

g*q 4P - X'Y' etc. To multiply by X' requires (p'-l) multiplications by each
’

P _2p p(q-1) p

of 1, & ; &, siay & and q(p'-1) additions. Now & =Yy is a qth root
of unity. The total number of bit operations required to multiply q elements
of GF(2m) by l,y,vz,...,vq-l respectively and sum the results is given in
column 5 of Table 1 (the heading on the column will be explained later).

Hence, we can determine the hardware required to multiply by X' (remember that

p transforms of length q have to be computed), and proceed to determine the
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the total number of bit operations required to compute the Fourier Transform

using the FFT. If n = n1n2n3...ns, the overall delay is at most

Srlog2ﬁ1 + rlogznil + ... + rlogznéT gate delays. It is also easy to show

that a total of n(n1+n +...+ns-s) additions and n(n1+n +...+ns-s-1)+1

2 2
multiplications (by quantities other than 1) are required. However, in order
to count bit operations, we have to consider the orders of the elements
involved.

Let us now consider the S-FFT algorithm. First, let n = 2™-1 be

a prime. We note that (n-1) additions, requiring a total of m(n-1) XOR gates

are needed to compute BO' Since l,aj,azj,...,a(n~l)3 are the n distinct
nonzero m-tuples, we see that computing
n-1 AR
e
J =0 —F

requires a total of m(Zm-l-l) XOR gates and a delay of rlog22m-L1 = (m-1) gate
delays. Such computations are required for m values of k and I(n) = (n-1)/m
values of j. Now, the squaring operations in (6) can also be implemented by
linear transformations (e.g., [7], p. 50) as can the multiplications in (5).
The numbers of ones in matrices corresponding to squaring can be
made quite small if the minimal polynomial of « is chosen carefully. The
numbers of gates and the delays in a squaring circuit are given in Table 2.

For example, if m = 5, n = 31, then one can successively compute ng),

(k) o(k
34 ’ Bé ) and B%g) from B%k) using a cascade of four squaring circuits,
giving a total of 12 gates and a delay of 4 gate delays. Alternatively,
since squaring is a linear operation, so is taking the 4th, 8th and 16th

power of an element, Hence, Bik) can be applied to four different circuits
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m n Minimal Polynomial _Squaring Circuit Multiplier Circuits
of o # of Horner's rule Simultaneous Mult.

‘ _gates  Delay # of gates Delay # of gates Max. delay
1 3 R 1 1 2 2 3 1
4 15 4+’x+1 2 1 3 3 6 1
5 3 e 3 1 4 4 11 2
6 63 W 3 1 5 5 15 1
T 3T i 3 1 6 6 21 1
i 8 L B b

| 8 255 +x +x Hx+1 20 2 21 i 86 2
] g At 9+x‘*+1 6 1 8 8 42 2
| 10 - 102% % el 6 2 9 48 2
1. 4T X kT 6 1 10 10 56 2

Table 2. Numbers of gates and delays required to implement (a) the squaring operation

(b) the (m-1) multiplications in Horner's rule and (c) simultaneous multiplica-

tions by l,a,...,am-l. Gates and delays in adder circuits are not included.
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to produce ng), Bék), Bék) and sz) simultaneously. It can be shown that

this requires 23 gates but the delay is only 2 gate delays.

A similar situation exists in computing the Bj's from the ng)'s.
Using Horner's rule, we can compute Bj from the ng)'s using (m-1) multiplications
by o« and (m-1) additions. The total number of XOR gates and delays required

to implement all (m-1) multiplications by o are given in Table 2. We also need

(m-1) adders, which require m(m-1) XOR gates and delay the signals by a

(k)
i

(k = 0,1,2,...,m-1) simultaneously and add the products. The total number of

further (m-1) gate delay. Alternatively, one can multiply each B by ak
gates and the maximum delay is listed in Table 2. As before, (m-1) adders
are required but the increase in delay is only riogzﬁ] gate delays. While
discussing the direct method, we saw that we could decrease the delay without
increasing the hardware by changing to simultaneous multiplications. This is
not true here. Except for the case m = 8, exactly one gate is required to
multiply by o giving a total of (m-1) gates to implement Hornmer's rule,
while the (m-1) simultaneous multiplications require approximately % m(m-1) gates.
Even so, these latter multiplications require very little hardware since the
average multiplication by a nth root requires %mz-m bit operations, compared
to a total of im(m-1) bit operations for (m-1) multiplications. The numbers
of bit operations required to implement the S-FFT algorithm can be determined
from the above.

When n is not a prime, we have, as before, that the hardware required
(k) depends on the order of o). This is given in column 6 of

]
Table 1. Using these numbers and Table 2, it is straightforward to determine

to compute B

the total numbers of bit operations required for the S~FFT algorithm.
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A technique that I call folding can be used to reduce the number of

;q bit operations at the expense of increased delay for the S-FFT algorithm and
b

‘f for direct computation, whenever n is not a prime. Suppose g =y is an
element of order d where d|n. Then

)

2 i
n-1 i d-1 d i 1

B B oAy w o n (% AL W
J i=0 1 i=0 J=0 dJ+1 1

If we precompute the d inner sums, then d multiplications (by 1,y,y2,...,yd-1) ]

and d-1 additions suffice to compute B,. I call the process of computing
]

the inner sums a folding of A(x) to length d and denote the polynomial

o1
d-1 d i | j
Y (F A,.0% by &ex|d). n
1=0 j=0 dj+i

Thus, we save (n-d) multiplications and (n-d) additions for ¢(d) different

OSSR

values of j but need to first fold A(x) which requires n-d extra additions.
Actually, the savings are even more as we illustrate by an example. Suppose

n = 63. Then, we need to find A(x|21) A(x|9), A(x|7) and A(xl3). To compute
the first two requires 42 and 54 additions respectively. To find A(x|7), we
can either fold A(x) to length 7 using 56 additions, or fold A(lel) to length
7 using only 14 additions. Obviously, the latter is preferable, Similarly,

4 we can fold A(x|9) to get A(x|3) using only 6 additions. Finally, we can fold

A(x|3) to length 1 using 2 additions and this is exactly the same as computing

B.: Consequently, only 42 + 14 extra additions are required for folding

0
operations since the 54 + 6 + 2 additions to fold A(x) to lengths 9, 3 and 1

are required for computing Bo anyway. However, we save some multiplications
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and additions in computing the Bj's and the net result is a saving of 1284
multiplications and 1228 additions. This is approximately one-third of the
total number of multiplications and additions required for direct computation
when n = 63, The total hardware required to compute Bj from A(xld) is given

in column 5 of Table 1. The savings due to folding occur in the S-FFT
algorithm also. Thus, after folding A(x) to all the necessary lengths, we

can compute ng) from A(k)(xld) which is available directly from A(xld). i
The number of bit operations required for this are given in column 7 of Table 1. L

From this, we can determine the total numbers of bit operations required for

the S-FFT algorithm,

In Table 3, we give the total numbers of bit operations required for
computing the Fourier Transform by the various algorithms. When n is a prime,
there is no FFT algorithm; when n is not a prime, we give the results both
with and without folding. We notice, that as might be expected, the FFT is
superior to the S-FFT for larger values of n, while at shorter lengths, the
S-FFT with folding is superior to the FFT. The S-FFT algorithm is superior
to direct computation by a factor of (m~1) approximately. Folding reduces

the bit complexity by a factor of ¢(n)/n approximately, i.e., the number of

(k)
J

number required when folding is not used. Finally, the case n = 255 is

bit operations to evaluate B after folding is quite small compared to the
exceptional in that the squaring circuits and multiplier circuits require
unusually large amounts of hardware and hence the S-FFT requires more hard-

ware than the FFT.
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n Algorithm Number of bit
Operations
7 Direct 216
S-FFT 132
Direct 1,788
Direct with folding 1,284
15 FFT 760
S-FFT 778
S-FFT with folding 642
31 Direct i 12,000
S-FFT 3,480
Direct 71,412
Direct with folding 48,300
63 FFT 11,736
S-FFT 16,822
S-FFT with folding 11,494
Direct 395,136
s S-FFT 64,764
Direct 2,069,788
Direct with folding 1,292,460
255 FFT 178,336
S-FFT 328,518
S-FFT with folding 219,766
Direct 10,565,952
Direct with folding 9,177,126
511 FFT 1,620,288
S-FFT 1,259,292
S-FFT with folding 1,088,706
Direct 52,290,464
Direct with folding 36,222,784
1023 FFT 2,103,520
S-FFT 5,548,398
S-FFT with folding 3,798,638
Direct 253,453,376
Direct with folding 240,403,042
2047 FFT 13,606,912
S-FFT 23,381,336
S-FFT with folding 22,241,274

Table 3. Numbers of bit operations required to compute the Fourier Transform

by various algorithms.
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IV. Implementations and Applications

The numbers of bit operations required to compute the Fourier Trans-
form using the various algorithms was discussed at some length in the previous
section. The nm-input, nm-output combinational network discussed there is not
necessarily a practical implementation. Two more realistic methods are a
m-input, nm-output sequential network and a nm-input, m-output sequential

network. In the former, the input to the circuit is the sequence An 1’

A A When the last symbol is received, the nm outputs are the Bj's.

0°

In the latter, the input is An-l’An-Z""’AO which is stored in the network.

=22t

The network then successively generates BO’Bl""’Bn-l' In the coding
literature, these are known as syndrome generating circuits and Chien search
circuits respectively [7, Chapter 5], [9]. Unfortunately, the S-FFT algorithm
is not well-suited to either of these methods. It requires approximately the
same number of flip flops but considerably more XOR gates than the direct
methed., I am not aware of any implementation of the FFT algorithm along

these lines, It appears to be even more difficult to implement than the S-FFT.

An alternative implementation is in software with multiplication

being done by means of tables of logarithms and antilogarithms in GF(Zm).

As discussed earlier, the direct method could be implemented using (n-l)2
multiplications and n(n-1) additions while the FFT would require

n(n1+n +...+ns-s-1)+1 multiplications and n(nl+n2+...+ns-s) additions.

2

For the S-FFT, one can trade-off time for memory space. Thus, one has

(k)
j .

to compute B for m values of k and I(n) values of j, say jl’jz"°’j1(n)’

iy, 13 ij
One can store a (n-1) x I(n) array whose ith row is «o l,a 2,...,a el and
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(k)

a m x I(n) array containing the partial sums for Bj . Then, after testing
Ai,k' one either adds (or does not add) the ith row of the first array into

the kth row of the second. Furthermore, if one stores two tables (with o™
entries each) whose Vth entries are respectively yz and Y8, one can dispense
with the log and antilog tables entirely. As in the hardware implementation,
the squarings and multiplications by £ in (5) are less complex than multiplica-

tions in general, since the former require only one table lookup while the

latter require two. If one wishes to avoid storing a (n-1) x I(n) array,

then one can comput ijl ij1<n)  th i

pute o Sision 95O at the i step. In this case, the S-FFT
requires approximately nz/m extra multiplications. As a result, it cannot
always compete with the FFT when n is not a prime; when n is a prime, the
S-FFT is still better than the direct method.

In recent years, considerable attention has been paid to Fast Fourier
Transforms over finite mathematical structures because no round-off or trunca-
tion errors can occur in such transforms. However, the major application
envisioned for the S-FFT algorithm (and, indeed, the initial impetus for
considering it) is in the encoding and decoding of BCH and Reed-Solomon Codes
[7]. Mandelbaum [10] has proposed a technique for implementing Reed-Solomon
codes which requires both the encoder and the decoder to compute a Fourier
Transform. It has been shown [11], [12] that if an FFT is used for these
transforms, then Mandelbaum's technique is superior over the usual implementa-
tion for a wide range of rates and block lengths. Use of the S-FFT increases

this range and also allows reasonable implementations when the block length

is a prime.
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For the usual implementations, one must compute syndromes i.e.,

J, j=1,2,...,2t and locate errors

evaluate a polynomial of degree n-1 at «
by ‘the Chien search, i.e., find the Fourier Transform of a polynomial of
degree t. For binary BCH codes, the polynomial of degree n-1 is a polynomial
over GF(2) and the S-FFT has no application. Equation (6) is used to compute
some of the syndrome values but this result is well known in the coding

i‘ literature. However, fast techniques can be used for syndrome computation of
Reed-Solomon codes and Chien search for both BCH and Reed-Solomon codes. Here,
direct computation requires approximately 2nt multiplications and additions,
and nt multiplications and additions respectively. The reduction in FFT
complexity is much smaller. 1If one thinks of the FFT as multiplication of a
row vector by a succession of sparse matrices, then (for the Chien search),

a vector with (t+l) nonzero entries becomes a vector with nl(t+1) nonzero

entries after one matrix multiplication and a vector with n (t+l) nonzero

i

entries after the second matrix multiplication etc. so that the advantages of

beginning with a polynomial of small degree are rapidly lost. On the other
hand, for the S-FFT Chien search, one requires mtI(n) + nm + t additions

and 2nm multiplications approximately., Similar savings are available in
syndrome computation as well. In short, for these specialized cases, direct

computation and the S-FFT have reduced complexity in similar ratios while the

FFT has not. This is an added advantage for the S-FFT algorithm,
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