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COMPUTATIONAL COMPLEXITY OF FOURIER TRANSFORMS OVER FINITE FIELDs?
by

*
F. P. Preparata and D. V. Sarwate

Abstract

In this paper we describe a method for computing the Discrete Fourier
Transform (DFT) of a sequence of n elements over a finite field GF(pm)
with a number of bit operations O(nm log(nm) * P(q)) where P(q) 1s the
number of bit operations required to multiply two q-bit integers and
q = 2log,n + 4log,m + 4log,p. This method is uniformly applicable to all
instances and its order of complexity is not inferior to that of methods
whose success depends upon the existence of certain primes. Our algorithm
is a combination of known and novel techniques. In particular the finite-
field DFT is at first converted into a finite field convolution; the latter
is then implemented as a two-dimensional Fourier transform over the
complex field. The key feature of the method is the fusion of these two
basic operations into a single integrated procedure centered on the Fast
Fourier Transform algorithm.
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COMPUTATIONAL COMPLEXITY OF FOURIER TRANSFORMS OVER FINITE FIELDS

I. Introduction

The discrete Fourier Transform (DFT) over a finite field occurs in
many applications. It occurs, under the name of Mattson-Solomon polynomials,
in the theory of error-correcting codes [1], [2]. Also, in applications of
BCH error-correcting codes, the computation of the syndrome of the error
pattern and the determination of the locations and values of the errors all
correspond to the computation of the DFT of a sequence of elements from a
finite field. The DFT over a finite field has been suggested as a means of
computing exactly the results of the convolution of sequences of integers
[3-8) and for implementing the multiplication of very large integers [3], [9].
For these reasons, it is desirable to devise efficient methods of computing
the DFT over a finite field.

Pollard [3] has shown that an algorithm, which is the finite field
analogue of the well known Fast Fourier Transform (FFT) algorithm [12], can
be applied to computation of the DFT over a finite field. This algorithm
requires O(n(ni+ni+...+nz)) arithmetic operations in the field to compute the

DFT of a sequence of n elements where n = n Thus, the finite-

LSRR PR
field FFT algorithm is efficient only when n is highly composite, and in this
case the algorithm requires O(n log n) arithmetic operations in the field.
Several authors [6-9] have considered special cases of the FFT for particular
applications, using special properties of carefully chosen fields to achieve
computational efficiency. For the general case, however, the efficiency of

the FFT algorithm depends upon the vagaries of the factorization of n.

In this paper, we present a method of computing the DFT in a finite
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field that is uniformly applicable to all finite fields. The method used is
based on some ideas that have been discussed in the past ([3] and [9-11]) as
well as on some novel techniques. The basic idea is to convert the computation
of the DFT of a sequence of length n into the computation of the cyclic convo-
lution of two appropriately defined sequences. The techniques for doing this
are due to Bluestein [10] (also briefly discussed by Pollard [3] for application
in certain special cases only) and to Rader [11]. The main feature of these
techniques is that the length of the sequences to be convolved can be chosen
as any integer N _- 2n-1. Since, by virtue of the well-known convolution
theorem, convolutions can be implemented via Discrete Fourier Tranforms over
a field which we are now free to choose, N will be selected as a power of 2 for
optimal FFT-implementation of the transforms.

The latter transforms are computed in the complex field. In order to
apply the complex field DFT to elements of a finite field GF(pm), we resort
to the standard representation of the latter as polynomials with integer
coefficients and of degree less than m. The convolution of sequences over
GF(pm) could then be recovered by combining the results of m2 convolutions of
integer sequences; however, by observing that the latter combination can be
formulated as a cyclic convolution, the entire operation is implemented via
a two-dimensional FFT. Finally by noting that Bluestein's technique, i.e. the
conversion of the DFT to a cyclic convolution, involves a pre-conditioning
and a post-conditioning consisting of multiplications in GF(pm), a considerable
computational saving 1is obtained by combining preconditioning, convolution, and

postconditioning into a single procedure. In this procedure, which involves

computations in several transform domains, those three conceptual steps essentially




s e

3

blur their confines. The result is that the DFT of sequences of n elements
over GF(pm) can be computed with O(nmelog(nm)+P(q)) bit operations, where
P(q) is the number of bit operations required to multiply two q-bit integers
and q = 21082n t 410g2m + 4log2p.

The method proposed in this paper basically resorts to the complex field
FFT for computing integer convolutions and departs from the prevalent trend.
In fact, in recent years several authors [3-8] have suggested that the complex
field FFT not be used for computing integer convolutions because of the
problems of round-off error. The alternative is, of course, the finite field
FFT based on a careful choice of the finite field. We have not followed the
latter approach for the following reasons: (i) we are interested in techniques
which are uniformly applicable to all cases, whereas the success of the FFT
over a finite field depends upon the existence of primes of a special type [13]
and, as is easily shown, no higher efficiency is achieved, even for the case of
prime fields; (ii) the round-off error problem is entirely controllable, since
real numbers can be economically represented so that in all cases the results

will be correctly interpreted.
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I1. Discrete Fourier Transforms via Convolutions

Let p denote a prime,
m - ) m
GF(p ) the finite field containing p elements,
B m
n a divisor of p -1,
o a primitive nth root of unity in GF(pm).
In what follows we shall also make use of a short-hand notation for
. : L 4
vectors: (ai)k with k « g denotes the vector « ak, ak+1,...

denotes the vector <« 0,0,...,0 > whose t components are all equal to 0; also

,a > and (0)t
£

uv denotes the concatenation of two vectors u and v.

m
Let a; € GF(p ) for i = 0,1,...,n-1. The Discrete Fourier Transform

= n-1
of (ai)g : is defined to be the sequence (Ai)O where

A= 3 ‘8.0 j e [0,n-1] (1
The inverse Fourier Transform to (1) is given by

n-1

o> (n)‘1 a ie [o,n-11 )

™M

Ao
=0 7
2l St : m
where (n) is the multiplicative jnverse in GF(p ) of the field integer n.
As is well known, the direct method of computing the DFT requires 0(n2)
arithmetic operations in GF(pm). If n is composite, with n = nl-nz-...-nz,
then the finite-field analogue of the FFT algorithm over the complex field
can be used to compute the DFT [3]. This algorithm requires O(n(ni+n2+...n£))
arithmetic operations in GF(pm). Thus for highly composite n, the DFT can be
computed in O(n log n) arithmetic operations in GF(pm).

When n is not highly composite, or is a prime, the saving in computation

achieved by resorting to the FFT can be small (or nonexistent). In such cases
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the DFT problem is reformulated as a convolution problem, to the solution of

which more general methods can be applied. There are two main techniques

for such reformulation, which we now briefly review for the reader's benefit.
The first technique is due to Bluestein [10], and is based on the

following expression for Aj:

n-1

A.= g a,aij
J i=0 1
=1 2
18 L
i=0
.2 n"l ,2 3 P 2
ot SlE: (ap" )@ 9™y | vhere p = o 3)
1=

The sum in (3) can be recognized to be a term of the convolution of the

i2.n-1 -i2\n-1

sequence (aia )0 with the sequence (B )l-n' It is easy to see that the

convolution of these sequences can be obtained from the cyclic (or periodic)

3 & - $2 e - -
12)8 1 (O)N R (B-l )T-i (O)N (2n 1),

convolution of the sequences (aia
of common length N, where N must be no smaller than 2n-1l, and, in view of
optimally executing the FFT, is conveniently chosen as a power of 2. Thus,
N = 2°, where s > [log,(2n-1)1.

Notice, however, that the two length-N sequences to be convolved are not
always over GF(pm). Indeed, they are over GF(pm) in the following two cases:

% (ot 1)

(i) p=2, since g = ¢ is primitive of order n in GF(pm); (ii) p#2 and

2n|(pm-1), since g is primitive of order 2n in GF(pm). Otherwise, when p#2 and
2n I(pm-l), B is a primitive 2nth root of unity in GF(pzm) and we have a convo-

2
lution of sequences over GF(p m). In this case we carry out the computation in

|
|
|
|
{
|
|
|
|
|
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2
this larger field. However, the result of multiplying by aJ the corresponding

term of the convolution will be an element of GF(pm). Thus in the sequel we

shall simply refer to convolutions of sequences over GF(pm), with the under-
2

standing that whenever this field must be replaced by GF(p m), the complexity

analysis is correspondingly modified.

A second technique to compute DFTs via convolution is due to Rader [11].
This technique is unfortunately restricted to the case in which n is a
prime, but in some instances it is slightly more efficient than the more
general Bluestein's technique, as illustrated below. Let the integer g be
a primitive root of unity modulo n and let ¢ (i) be. the smallest integer
1)

such that e¢ mced n =i for i € [l,n-1]. Then

-

A Dnoa ny ~ %0~ E 2@ Pnoa n) @

=]

e¢(i) + ¢(3)

=1 - :
Since ( ¢(i))2 is simply a permutation of (i): 1, we can set g = ¢(j) and

use k = (i) as the index of summation to get

n-1 ek+£
A P = ao = = e o
(e mod n) k=1 (e mod n)

n-1

This shows that the sequence (A )1 is the cyclic correlation

- a
(gzmod n) 0 i
of the sequences (a(ekmod n) )?- and ( QBR)T- of length n-1. We obtain a

cyclic convolution by reversing one of the sequences. The advantage of Rader's




method is that both sequences are always over GF(pm) and are shorter.

{ In particular, if the prime n happens to be of the form 7% 4 1, Rader's
method gives a convolution of sequences of length 2k whereas Bluestein's
method would give a convolution of sequences of length 2k+2. In this paper
we shall not further consider Rader's method due to its limited applicability,

and marginal superiority when applicable.

uibbuabila e i

The preceding discussion indicates that to compute the DFT of a j
1
{ -1
sequence (ai)g over GF(pm) using (3) we must i
. ;2. n-1 -i2.n-1 :2.n-1
(i) construct the sequences (gt )0 S )l-n’ and (a;plt )0 ’

and extend thc latter two to length N with appropriate strings

of zeros;
A (ii) compute the cyclic convolution of the latter two sequences;
(iii) multiply by sz, j € {O,n-1], the corresponding term of the
convolution.
In the next section we shall show how the preceding three steps, which
are separately stated for conceptual convenience, can be integrated into a

single efficient computational procedure. |




III. An Integrated Procedure For DFT Implementation

The objective, embodied by Bluestein's and Rader's techniques, of
reformulating DFTs as cyclic convolutions of sequences, is that the common
lengths of the latter can be chosen so that the FFT technique is always
optimally applicable. 1In fact, as is very well known, efficient computation

of convolutions is based on the convolution theorem [3], which states: Let

1

(wi)0 denote the result of cyclically convolving (xi)g- and (yi)g-l, i.e.

N-1

W 5 iy for . ge 0]

N-1 - =
where ((j-i)) denotes (j-i) mod N. If (Wi)0 5 (Xi)g 1, and (Yi)g . denote

their respective Fourier Transforms, then

Wy =X Y for j € [O,N-1]. )

Suppose at first that GF(pm) contains an Nth root of unity. We can find
g-lwith O(N log N) arithmetic operations, find the W

x5 ‘and (7)) 's from (4)

|
with N multiplications and then find the wj's with O(N log N) arithmetic opera-
tions, all in GF(pm). This implies that, when GF(pm) contains an Nth root of
unity, the Fourier Transform of a sequence of length n can be found in

O(n log n) arithmetic operations in GF(pm). However, recall that, by the
original formulation of the DFT problem, GF(pm) is assumed to contain an nth
root of unity. Thus we must have both nl(pm-l) and Nl(pm-l). Now, notice

that N, 3 power of 2, is highly composite, while n is presumably not so;
therefore, if n and N have a very small G.C.D., then we may reasonably

conclude that n is 0(/pM) or smaller; thus the event that GF(pm) contains

an Nth root of unity is likely to be quite rare.




On the other hand, it has been suggested in a similar context [3] that
| since an Nth root unity will exist in some extension field of GF(pm)(l),
the DFT can be found in O(n log n) arithmetic operations in this extension
& field. This approach can be quite deceptive, however, because the extension
field could be very large and the complexity of the arithmetic could far
outweigh the reduction of the number of operations from 0(n2) to O(n log n),
as the following examples indicate.

Example 1. Take p= 3, m = 3, n = 26. Since ZnY(pm-l), we have to

compute a convolution of sequences of length 26 over GF(36). Now, a

64 th root of unity exists in GF(316); however, the smallest extension

6
field of GF(3 ) containing a 64 th root of unity is GF(348).

Example 2. Take p =2, m=5, n= 1. Here we have to compute a con-

volution of sequences of length 34 (1). An 8lst root of unity exists in

i it

GF(ZSA) and the smallest extension field of GF(25) containing an 8lst
root is GF(2270).

Actually, one can use any highly composite integer N', satisfying
N' > 2n-1 and p | N', as the length of the sequences to be convolved;

and try to find a (N') th root of unity in an extension field of GF(pm).

Thus, we have

(1) A word of caution is in order. No finite field of characteristic 2

can contain an Nth root of unity. To avoid this difficulty, when p = 2
one could choose N = 352 2n-1, still permitting an efficient implementation

of the FFT.
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Example 2. (continued). Choose N' = 63 > 61. A 63rd root of unity

6
exists in GF(2 ) and the smallest e:xtension field of GF(ZS) containing

a 63rd root is GF(230).

The preceding discussion indicates that computation of the convolution
in GF(pm) or its extensions is not viable in general. What is desirable
instead is a method universally applicable to all instances of p and m and
of easily determinable complexity, although for specific isolated choices of
p and m other approaches may be slightly more efficient.

To this end we propose to transform the problem of convolving sequences
over GF(pm) into the problem of convolving arrays of integers, i.e. natural
numbers. This approach is not novel: in fact it was proposed by Pollard
([3], sect.8) in connection with the use of Bluestein's method for the
very particular case m = 1 and 2n|(p-1), i.e., for a prime field containing
a 2n-th root of unity. Both restrictions, however, are unnecessary. In fact,
we have shown in Section II that if the field does not contain a 2n-th root of
unity, we merely need to compute the convolution in a somewhat larger field.
The condition m = 1 was imposed so that the sequences could be treated as
sequences of integers in the range [0,p-1] and convolved by the methods of
[3, section 3]. We now show that this restriction can be easily removed.

First of all, we review the standard representation of elements of GF(pm)
as polynomials. Let ¢ be a root of a monic irreducible polynomial g(z) of
degree m over GF(p)» Then every element x; € GF(pm) can be represented as a
polynomial xi(g) of degree less than m in ¢, i.e.

m-1 Ck

X L) = A H s%; 1 € CF(p) (5)
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As is well-known, addition in GF(pm) corresponds to addition of polynomials
over GF(p), and multiplication in GF(pm) corresponds to multiplication of poly-
nomials over GF(p) modulo g(c).

As before, let (wi)g-l denote the result of the cyclic convolution of

N-1 N-1
(xi)O and (yi)O . Then we have

N-1
i L
and, using the representation (5) of elements of GF(pm) as polynomials, we
have
N-1
wj(g) = izo (x; () y((j_i))(c)) mod g(¢)
N-1 2m-2 t ¢
= igo ( tEO ( kgo X % y((j-i)),t-k) ¢ ) mod g(g)

where xi,k and y((j-i)),t-k are taken to be zero if the second subscript

exceeds m-1. Thus,

2m=2 t N-1 :
w,.(r) = b ¢ = M X y % 2 ) € 7 mod g(c)
j . [ t=0 k=0 i=0 i’k ((j i')):t k 4 S
2m=2

(£ 2y, ¢") mod g()
t= .

t N-1
4 .
where zj’t k{o i§0 xi,k y((j‘i)),t'k € GF(P)

N=-

Now suppose we treat all the terms of (x 2 and (yi k)0 5 as elements
’

N
i,k)O
of Z, the set of the integers, rather than of GF(p). With this stipulation,

we define the integers

Lo et e il
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X Vi 1 ) for j e [0,N-1]
j=0 1ok "((3-1)),t-k 4 ©)
and t €[0,2m-2]

and, obviously, ;j,t mod p = zj,t' The right side of (6) has the form of

a double, or two-dimensional, convolution which is a periodic convolution in
one dimension and an aperiodic convolution in the other. The latter can be
easily convefted into a periodic convolution by extending the range of k and

t to [0,M-1] where M > 2m-1. Letting [[t-k]] denote (t-k) mod M, (6) can be

rewritten as

5, M-1 N-1
e LA e I e ) Q)

It is convenient to think of the set {xi k],O < i< N-1, 0 < kg M-1
3

as a two-dimensional N x M array [x, k}, and of (7) as an array convolution.
1’

Let [X, ] denote the two-dimensional Fourier Transform of [xi k] over the
b b}
complex field, i.e.,
M-1 N-1
ij kg
a2 SRR Oy Oy
where QN = eJZF/N and QM = ejzﬂ/M are primitive roots of unity of order N

and M respectively in the complex field. If [Ej Ll and [§j L] denote the
’ 3

transforms of the arrays [;i k] and [y1 k]’ respectively, then we have
bl bl

Z = X

5, 5 ¢ Yj . for j € [O,N-1] and t € [0,M-1] )

Recall from Section II that one of the two sequences to be convolved is

i2\n-1 N-n

(aia )0 ) , i.e. it is the term-by-term product of the two sequences
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U 2 el R
(ai)g 1(0) " and ®* )3 )", Representing the field elements as polynomials

as in (5), the element aigiz is a polynomial of degree (2m-2) before it is
reduced mod g(¢). If we neglect to do this reduction, the convolution

in (3) will give a polynomial of degree @m-3)and the post-convolution multi-
plication by sz will give a polynomial of degree (4m-4). Reducing this last
polynomial mod g(g) produces the same result as a reduction mod g(g) after
each multiplication. With this in mind, we choose M = 2r where T =
rlog2(4m-35] and define the N x M arrays [ai,k]’ [bi’k],and [yi,k] corres~
ponding to the sequences (ai)g-l(O)N-n, (Bi‘z)g-l(O)N-n and (B'iz)i:i(O)N-2n+l.
Let us also define the row-Fourier Transform (RFT) of the array [xi,k] as

the array [x! where
e y [ l’ﬂ]

M-1

£ mogox . gf (10)
i,g k=0 ik M
and the column-Fourier Transform (CFT) as the array [xg k] where
bl
N-1 ij
e 11
e (11)

s ] oo " -
Using the notation [xi,g] = RFT[xi,k] and [xj,k] CFT[xi,k]’ we have

CFT[RFT[x, ,1] RFT[CFT[x

1,111
1

i,k

CRFT[xi,k

[X;,,0

where xj s was defined in (8).
bl

We thus have the following algorithm.




Algorithm
1
Step 1. [ai,z] « RFT[ai,k]
[b;’zj .- RFT[bi,k]
(] ' é (]
Step 2. [xi,zl - [ai’z bi,L]

(Comment: The rows of the array [xi £] are the transform domain
2

representations of the polynomials aiaiz).

]
Step 3. rxj,zl « CFT[xi,g]
Step 4. [Yj,z] - CRFT[yi,k]
tep 5. 2 X, o¥
S ep [ j’ll 2 [ J’l j)z]

(Comment : [E l] is the transform domain representation
bl

j
of the convolution in (3)).

-— _1_
Step 6. & « CFT [2Z
" (21,1 (25,4
(Comment: The rows of the array [zi L] are the transform
’

domain representations of the polynomials defined by

n-1 2 S liaiyE
=0
Step 7. (Ei’L] - [;i,z'bi.z]
Step 8. T, B RFT'I[ui z]

(Comment: The array [;i kj represents the desired
’
Fourier Transform as polynomials of degree 4m-4

with integer coefficients.)

14




Step 9.

Step 10.

=3

[ut,k] -« [ui,k mod p

4m=4 k
Ai e« kfo ui,k ¢ ) mod g(¢) for i=0,1,...,N-1.
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IV. Performance Evaluation of the Algorithm.

The following analysis is based on the so-called "logarithmic model’
([4], Chapter 1), that is, the time required by the algorithms will be
estimated in terms of "bit operations” rather than of "operand opcrations
(as is the case with the so-called "uniform model"). This choice is justified
on the grounds that the length of the operands used by the algorithms depends
upon the parameter n, the original sequence length. Thus assuming a fixed
operand size would be erromeous; on the other hand the running time on any
given conventional machine of the random access memory type will be propor-
tional to the bit complexity to be evaluated.

A basic operation used by the convolution algorithm described in the
preceding section is the Fourier Transform of a sequence of integers in the
complex field. The choice of this field is obviously motivated by the fact
that a primitive root of unity exists for every order N; thus N can be chosen
as the one which yields an optimal implementation of the FFT algorithm.
Resorting to the complex-field FFT is by no means novel; it was proposed in
the past in connection with similar problems, notably by Sch8nhage and
Strassen [9] as a device for fast integer multiplication. The main problem
encountered with this approach is that the accuracy with which complex numbers
are represented must be sufficient to guarantee that the rounded-off results
exactly yield the correct integers. We now estimate in detail the number of
bits that must be used to represent the powers of the primitive roots of
unity QM and QN. A similar analysis, applied however to a considerably

simpler situation, can be found in [9].

t
Let N0=2 . As is well-known, the ith stage i=0,1,...,t-1)in the execution
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of the FFT consists of a set of "butterfly operations’, in each of which two

1 b ’
complex numbers A1 and Bi are combined to yield two outputs Ai+1 and Bi+1
where
' - +
Ai-+1 Ai QBi
(12)
B = -
R Ai QBi

5 jZT-I /No - A
where () is some power of QNO = e . Let 7] be the maximum error in any
power of Ong > let eibe the maximum error in the inputs to the ith stage and

let L1 be the maximum modulus of the inputs to the ith stage. From (12) we

have
L - 2L 21+1L
#1 S ‘4 = 0
i
and e, 1< ¢; * BN+ Qe < Li'ﬂ+ 2€i5 2 Lo‘ﬂ+ Zei
since IBiI 2 1L, o [Q] = 1. Therefore, we have
i i+l
€i+1 < (i+1)2 Lon + 2 €o
and o :
i t
€, < t'2 Lo+ 27¢ ) = FtNoL M+ Nyeg

is the bound on the error of the Fourier Transform.
For the inverse Fourier Transform, the equations (12) are slightly

modified. Using Ki’ ﬁi’ k , and Ei to denote the corresponding quantities for

i

the inverse transform, we have

~

( Ai + nBi)

Bl

B =

i+1 (A -qBy)

N = N
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e s - LA s ~
Therefore, we can choose Ly =L} = .e. = Lt,whenaeei+l <y [e; + Bin + Q€]
— 1+ (2) - ; e Sar e
Se+5 Lon - Hence, we have €. S & + Et LO“'

From this, it is easy to determine the maximum moduli of and maximum
errors in the results produced at each of steps 1-8 of the algorithm. These

are given in Table 1.

’ Step “Maximum modulus of result Maximum error in result
‘; l[ I—W T M;“ R 'il'rMpY; ;
‘ 2l ; o’
‘ 3 e p2 (r + -2ls)NM2 pzn
i NMp %(H- s ) NMpT| ‘
E 5 N2M3p3 ( %r + s8) N2M3p3n i
i | b N2M3p3 %(r 2 s)N2M3p3n
3 7 Nle‘p4 (2r + 3s) NzMaphn
8 NZMAP4 %(Sr + 3s) NZMapan i

Table 1: Maximum moduli of and errors in
complex numbers produced in Algorithm.

1
The results at step 8 must have a maximum error of less than 5 in order

that the results may be correctly interpreted as integers. It follows that

the approximation error T in the roots of unity () must satisfy n<1/(5r+3s)N2M4p4,

(2) When the final maximum modulus 1t is known, we can derive the bound

~ A - A
gt < eO 3 2" Ltn, which is based on the inequality L1 < 2t : Lt' However,

this bound does not improve our result in any significant way.
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or, equivalently, the number of bits used to represent the powers of the

roots must be at least

4

q [ 4 log,p + log, (5t + 3s)1 + 2s + 4r

We can now evaluate the performance of the Fourier Transform algorithm.
Let P(q) denote the number of bit operations required to multiply two g-bit
numbers. We represent the real and imaginary parts of both the powers of ()
and the terms Ai’Bi previously defined using q bits for each, and note that a
complex field multiplication corresponds to four multiplications of real numbers.
Note that the integer parts of the results grow at each step of the algorithm,
but. concurrently their fractional parts lose accuracy so that the significant
operand length remains constant. It follows that steps 1 and 8 require
0 (NM log2 M - P(q)) bit operations, that steps 3 and 6 require O(NMlogzN'P(q))
bit operations, that step 4 requires O(anogZ(NM)‘P(q)) bit operations, and
that steps 2 and 7 require O(NM-P(q)) bit operations. Obviously, the complexity
of Step 4 dominates those of steps 1-8.

In Step 9, MN integers, represented by q bits each, are divided by p,
which is represented with [10g2ﬂ-< q bits. Thus, the complexity of this
step is dominated by that of steps 2 or 6 and hence by that of step 4. Finally,
in Step 10, N polynomials over GF(p) of degree 4m~4 are divided by a polynomial
of degree m. Let Dp(m) denote the number of bit operations required to divide
a polynomial of degree 2m by a polynomial of degree m in GF(p). Then, Step 10
requires at most O(N-Dp(Zm» bit operations. If m<< N, i.e., m is O(log N) or
less, then a long division method can be used at step 10 and the complexity
of Step iO is O(N m2 P(log p)) which is dominated by the complexity of Steps

3 and 6. On the other hand, if m is large compared to N, then fast polynomial
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divisinn methods [4;, {57 can be used at Step 10. The complexity is then
O(NM log m P(log m + log p)) bit operations and this is dominated by the complexity

of Steps 1 and 8. We thus have

Theorem: The Fourier Transform of a sequence of n elements of GF(pm),

nl(pm-l), can be computed with O(nm*log(nm)°P(q)) bit operations where P(q)
is the number of bit operations required to multiply two gq-bit numbers and
q = 210g2 n + 410g2 m + 4log2p.

As a general observation, note that the number of arithmetic operations
depends on the degree of the extension of GF(p) but not on the characteristic
p itself. The latter affects the bit complexity of arithmetic operations
only. The following special cases of the theorem are also of interest.

(i) If m = 1, the bit complexity reduces to O(n log n P(q)) where

q =2 logn+ 4 log p< 6 log p, i.e., P(q) is proportional to the
complexity of arithmetic in GF(p). Thus, the Fourier Transform
over GF(p) can be computed using O0(n log n) arithmetic operations
whose bit complexity is essentially that of arithmetic operations
in GF(p).

(ii) If p=2 and n = fn-l, (which is a case of great interest in coding
theory [1],[2]) then P(q) is proportional to the complexity of
arithmetic in GF(Zm). Thus, the Fourier Transform of a sequence of
length 2m~1 over GF(Zm) can be computed using 0(n 1og2n) arithmetic
operations whose bit complexity is essentially that of arithmetic

operations in GF(2m).

Remark: The algorithm proposed in this paper can also be used (with

appropriate modifications) to compute the convolution of sequences over GF(pm)




of arbitrary length n. The asymptotic complexity is easily shown to be

O(n log n) arithmetic operations whose bit complexity is essentially that of

multiplying two (log n)-bit integers.
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