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COMPUTATIONA L COMPLEXITY OF FOURIER T RANSFORMS OVER FINITE FIELDS~

by

*F. P. Preparata and D. V. Sarwate

Abstract

In this paper we describe a method for computing the Discrete Fourier
Transform (DFT) of a sequence of n elements over a finite field GF(p )

- with a number of bit operations 0(nm log(run) P(q)) where P(q) ts the
number of bit operations required to multiply two q-bit integers and
q 2log

2n + 4 1og~tn + 4log2p. This method is uniformly applicable to all
instances and its order of complexity is not inferior to that of methods
wh ose success depends upon the existence of certain primes . Our algorithm
is a combination of known and novel techniques . In particular the finite—
field DFT is at first converted into a finite field convolution; the latter

- is then imp lemented as a two-dimensional Fourier transform over the
complex field. The key feature of the method is the fusion of these two
basic operations into a single integrated procedure centered on the Fast

- Fourier Transform algorithm. V
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COMPUTATIONAL COMPLEXITY OF FOURIER T RANSFORMS OVER FINITE FIELDS

I
I. Introduction

The discrete Fourier Transform (DFT ) over a f i n i t e  f ie ld occurs in

many applications . It occurs , under the name of Mattson-Solomon polynomials,

in the theory of error—correcting codes [1], [21. Also, in applications of

7. ECH error-correcting codes , the computation of the syndrome of the error

pattern and the determination of the locations and values of the errors all

correspond to the computation of the DFT of a sequence of elements from a

finite field. The DFT over a finite field has been suggested as a means of

computing exactly the results of the convolution of sequences of integers

[3-8] and for implementing the multiplication of very large integers [3], [9].

For these reasons , it is desi~~ b le to devise ef f ic ient  methods of computing

the DFT over a finite field.

Pollard [31 has shown that  an a lgor ithm , which is the finite field

analogue of the well known Fast Fourier Transform (FFT) algorithm [121, can

be applied to computation of the DFT over a finite field. This algorithm

requires O(n(n1
+n

2+. . .+n
2
)) arithmetic operations in the field to compute the

-- DFT of a sequence of n elements where n = n1~ n2 .  .. ~~~ Thus, the finite-

field FFT algorithm is efficient only when a is highly composite , and in this

case the algorithm requires O(n log n) arithmetic operations in the field.

Several authors [6-9] have considered specia l cases of the FFT for particular

app lications , using special. properties of carefully chosen fields to achieve

computational efficiency. For the general case, however , the efficiency of

the FFT algorithm depends upon the vagaries of the factorization of a.

In this paper , we present a method of computing the DFT in a finite

‘ V i
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field that iS uniformly app l i cab le  to a l l  finite fields. The method used is

based on some ideas that have been discussed in the past ([3 1 and [9-Il]) as

well as on some novel techniques. The basic idea is to convert the computation

of tht/ DFT of a sequenc e of length n into the computation of the cyclic convo-

lution of two appropriatel y defined sequences. The techniques for doing this

are due to Bluestein [101 (also briefly discussed by Pollard [31 for application

in certain special cases only) and to Rader [iii. The main feature of these

techniques is that the length of the sequences to be convolved can be chosen

as any integer N 2n-l. Since , by virtue of the well-known convolution

theorem , convolutions can be implemented via Discrete Fourier Tranforms over

a field which we are now free to choose, N will be selected as a power of 2 for

optimal FFT-implementation of the transforms .

The latter transforms are computed in the complex field. In order to

- 
- 

app ly the complex field DFT to elements of a finite field GF(P
m),  we resort

to the standard representation of the latter as polynomials with integer

coefficients and of degree less than m. The convolution of sequences over

GF(Pm) could then be recovered by combining the results of m2 convolutions of

integer sequences; however, by observing that the latter combination can be

formulated as a cyclic convolution , the entire operation is implemented via

a two-dimensional FFT. Finally by noting that Bluestein’s technique , i.e. the

conversion of the DFT to a cyclic convolution, involves a pre-conditioning

and a post-conditioning consisting of multiplications in GF(P
m ) ,  a considerable

computationa l saving is obtained by combining preconditioning , convolution, and

postconditioning into a single procedure. In this procedure , which involves

computations in several transform domains, those three conceptual steps essentially
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blur their confines . The result is that the DFT of sequences of n elements

over GF(P
m
) can be computed with O(nm.log (nm).P(q)) bit operations , where

P(q) is the number of bit operations required to multip ly two q-bit integers

and q 21og
2~ 

+ 4log2
m + 4log2p.

The method proposed in this paper basicall y resorts to the complex field

FFT for computing integer convolutions and departs from the prevalent trend . V

In fact , in recent years severa l authors [3-8] have suggested that the complex

field FFT not be used for computing integer convolutions because of the

prob lems of round-off error. The alternative is , of course , the finite field

FFT based on a careful choice of the finite field. We have not followed the

latter approach for the following reasons: (i) we are interested in techniques

which are uniformly app licable to all cases , whereas the success of the FFT

over a f i n i t e  f ie ld  depe nds upon the existence of primes of a special type [13]

and , as is easily shown , no higher efficiency is achieved , even for the case of

prime fields; (ii) the round-off error problem is entirely controllable , since

rea l numbers can be economically represented so that in all cases the results

will be correctly interpreted .

I

__________ 

_________
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~~~~~~~~~~

4

II. Discrete Fourier Transforms via Convolutions

Let p denote a prime ,

m m
GF(p ) the finite field containing p elements ,

n a d ivisor of

a primitive nth root of unity in GF (P
m) .

In what follow s we shall also make use of a short-hand notation for

vec tors: (a.)j~ with k <- j  denotes the vector .- ak, a~~1,... ,a >  and (0)
t

denotes the vector <- 0,0, . . .  ,O > whose t components are all equa l to 0; also

uv denotes the concatenation of two vectors u and v.

Let a. E GF(P
m
) for i = 0,1,... ,n-l. The Discrete Fourier Transform

n-i
of (a~ )g is defined to be the sequence (A~)0 

wher e

n-i
1JA . = E a .0~ i E [0 ,n -l ]  (1)

-~ i=O 
1

The inverse Fourier Transform to (1) is given by

n-i
a. (n) E A .n i E tO,n—l ] (2)

j=0 ~

-l m
where (n) is the multiplicative inverse in GF(p ) of the field integer n.

As is well known , the direct method of computing the DFT requires 0(n
2
)

arithmetic operations in GF(P
m
). If n is composite , with n = n

1
•n2•..

then the finite-field analogue of the FFT algorithm over the complex field

can be used to compute the DFT [3]. This algorithm requires 0(n(n
1
+n

2
+. .

arithmetic operations in GF(p ). Thus for highly composite n , the DFT can be
r i

computed in 0(n log n) arithmetic operations in GF(P
m
).

When n is not high ly composite , or is a prime , the saving in computation

achieved by resorting to the FFT can be small (or nonexistent). In such cases

_ _ _ _ _ _ _  _ _ _ _ _ _ _
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the DFT problem is reformulated as a convolution prob lem , to the solution of

wh ich mor e general  me thods can be app lied. There are two main techniques

for such reformulation , which we now briefly review for the reader ’s benefit.

The first technique is due to Bluestein [10], and is based on the

following expression for A .:

n—l
A. = 

~i=0 ‘

n—i .2 .2 . . 2
— ]- ~~3 — ( j —i) ’
- E a.0. J

i=0

2 n-i .2 . . 2
= 

i=0 
(a .~~ ) (8

(J 1) 
) , where ~ = (3)

The sum in (3) can be recognized to be a term of the convolution of the

~
2 n—i . j~2 n—isequence (a~~ 
~~ 

with the sequence 
~ 

It is easy to see that the

convolution of these sequences can be obtained from the cyclic (or periodic)

convolution of the sequences (a.~~
2
)~~

1 
(0)

N n  
and (~~~

2
)~:~ ~~~~~~~~

of common length N , where N must be no smaller than 2n-l , and , in view of

optimally executing the FFT, is conveniently chosen as a power of 2. Thus ,

N = 2
S 

where s > Ilog
2(2n—l)1

Notice , however , that the two length-N sequences to be convolved are not

always over GF(P
m
). Indeed , they are over GF(P

m
) in the following two cases:

(i) p=2 , since = is primitive of order n in GF (p
m
); (ii) p~2 and

2n~ (~
m_1), since ~ is primitive of order 2n in GF(P

m). Otherwise, when p~12 and

2n ~(~m_1), ~ is a primitive 2~~th root of unity in GF(P
2m
) and we have a convo-

lution of sequences over GF(P
2m
). In this case we carry out the computation in

_  V
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this larger field. However , the result of multipl ying by ~~ the corresponding

t erm of the convolution will be an element of GF(P
m
). Thus in the sequel we

shall simp ly reter to convolut ions of sequences over GF(P
m
), with the under-

V 2m
standing that whenever this rield must be rep laced by GF(p ), the complexity

anal ysis is corresponding ly mod i f ied .

A second technique to compute DFTs via convolution is due to Rader [11].

This technique is unfortunately restricted to the case in which n is a

prime , but in some instances it is slightly more efficient than the more

general Bluestein ’s technique, as illustrated below. Let the integer 
~ 

be

a primitive root of unity modulo n and let 0(i) be- the smallest integer

such that mcd n = i for i E [l,n-i]. Then

n-i
A . - a

0 
= a .0

13

n-i 0(i) + 0 ( j )
i.e. A ( 0 ( J )  n) 

- a0 
— 

i~ l 
a
(Ø
(1) d n) ~

Since ( 0 ( i ) )~ 
~ is simp ly a permutation of (i)~ 

l
, we can set L = ~~(J)  and

use k = 0(i) as the index of summation to get

n-l k-FL
A - a 0 = E a k

(8L mod n) k=i (8 mod n)

This shows that the sequence (A 
~ 

- a
0)~~

1 is the cyclic correlation
(e med n)

of the sequences (a(8k~ ,d n) )
~~ l and ( 0E~ )~~

1 
of length n-i. We obtain a

cyclic convolution by reversing one of the sequences. The advantage of Rader ’s

II. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ,. _ V ~~~~~~~ V- V~ ~_, ~~~~~~_~V_  V ~_-~~~~ - _ -- -
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method is that both sequences are always over CF(P
m
) and are shorter.

In particuiar , if the prime n happens to be of the form 2
k 

+ 1, Rader ’s

method gives a convolution of sequences of length ~~ whereas Bluestein ’s

method would give a convolution of sequences of length 2~~
2
. In this paper

we shall not further consider Rader ’s method due to its limited app iicab i iity ,

and marg inal supe rior ity when app licable.

The preceding discussion indicates that to compute the DFT of a

sequence (a.)g ’ over GF(P
m
) using (3) we must

~2 n—i ~~ n-i 
~~

2 n—i
( 1)  construct the sequences (

~ 
)~ ~ 

and (a
~~ ~

and extend thc  l a t t e r  two to length N with appropr ia te  s t r ings

of zeros ;

(ii) compute the cyclic convolution of the latter two sequences ;

(iii) multip ly by ~~~ j E (O ,n-i], the corresponding term of the

convo lu t ion .

In the next section we shall show how the preceding three steps , which

are separately sta ted f or conceptual  conven ience , can be integra ted into a

single efficient computational procedure .

~ 

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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V III. An Integrated Procedure For DFT Implementation

- The objective , embodied by Bluestein ’s and Rader ’s techniques, of

reformulating DFTs as cyclic convolutions of sequences, is that the common

lengths of the latter can be chosen so that the VFT technique is always

- 
optimally applicable. In fact , as is very well known , efficient  computation

of convolutions is based on the convolution theorem [3], which states: Let

denote t:: result of cyclically convolving (x~)~~~ and i.e.

W
j 

= 

~ o 
X~ y((J_1)) for j E [O,N-ll

- 

where ((i-i)) denotes (j-i) mod N. If (W
1)~~

1, (X
i)~~
4
, and ( Y ) ~~ 1 denote

- their respective Fourier Transforms, then

= X~ Y~ for i E [O ,N-l]. (4)

Suppose at first that GF(P
m
) contains an Nth root of unity. We can find

(X~)~~
1
and (Y~ )~~~

1with 0(N log N) arithmetic operations, find the W
i
’s from (4)

withY N multiplications and then find the w . ’s with 0 (N log N) arithmetic opera-
V 

tions, all in GF(P
m
). This implies that , when GF(P

m) contains an Nth root of

-

~ unity , the Fourier Transform of a sequence of length n can be found in

O(n log n) arithmetic operations in GF(P
m
). However, recall that , by the

— original fo rmulation of the DFT problem , GF (Pm) is assumed to contain an nth

root of unity. Thus we must have both nf (~
m_1) and NI (~

m...1) Now, notice

that  N , a power of 2 , is highly composite , while n is presumably not so;

therefore, if n and N have a very small G.C.D., then we may reasonably

conclude that n is 0(J~~) or smaller; thus the event that GF(P
m
) contains

an Nth root of uni ty is likely to be quite rare.

I
_ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _
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4.

On the o ther  hand , it has been suggested in a similar context [3] that

since an Nth root unity will exist in some extension field of

the DFT can be found in 0(n log n) arithmetic operations in this extension

field. This approach can be quite deceptive, however , because the extension

field could be very large and the complexity of the arithmetic could far

outweigh the reduction of the number of operations from 0(n
2
) to 0(n log n),

as the following examples indicate.

Example 1. Take p = 3, m = 3, n 26. Since 2nV (pm _ i ) ,  we have to

compute a convolution of sequences of length 2
6 

over GF(36). Now, a

64th root of unity exists in GF(3
16
); however , the smallest extension

field of GF(3
6
) containing a 64th root of unity is GF(3

48).

Example 2~ Take p = 2 , m 5 , n = 1 • Here we have to compute a con-

volution of sequences of length 34 ~~~) • An 81st root of unity exists in

GF (2 54
) and the smallest extension field of GF(2

5
) containing an 81st

- 270
root is GF(2 ).

Actual l y ,  one can use any h ighly composite integer N ’ , satisf y ing

N ’ 
~ 

2n-l and p 
~ 
N ’, as the length of the sequences to be convolved;

and try to find a (N’)th root of unity in an extension field of GF (P
m
).

- Thus, we have

(1) A word of caution is in order. No finite field of characteristic 2

can contain an Nth root of unity . To avoid this difficulty , when p = 2

one could choose N = 3~> 2n-l , still permitting an efficient implementation

of the FFT .

—~~~~~ -~~
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Exa mple  2. (continued) .  Choose N ’ = 63 > 61. A 63rd root of un i ty

exists in GF(2
6
) and the smallest e:tension field of GF(2

5
) containing

a 63rd root is GF (2
30).

The prec eding disc ussion indica tes that computation of the convolution

in GF (P
m
) or its extensions is not viable in general. What is desirable

instead is a method universall y app licable to all instances of p and m and

of easily determinable complexity, although for specific isolated choices of

p and m other approaches may be slightly mole efficient .

To this end we propose to transform the problem of convolving sequences

over GF(P
m
) into the problem of convolving arrays of integers , i.e. natural

numbers. This approach is not novel: in fact it was proposed by Pollard

([3] , sect.8) in connection with the use of Bluestein ’s method for the

very particu lar case m = 1 and 2n1 (p-i), i.e., for a prime field containing

a 2n-th root of unity. Both restrictions , however , are unnecessary . In fact ,

we have shown in Section II that if the f ie ld  does not contain a 2n-th root of

unity, we merely need to compute the convolution in a somewhat larger field.

The condition m = 1 was imposed so that the sequences could be treated as

sequences of integers in the range [0 ,p- l]  and convolved by the methods of

[3 , section 3]. We now show that this  restriction can be easily removed.

First of all , we review the standard representa tion of elements of CF(P
m
)

as polynomials. Let be a root of a monic irreducible polynomial g(z) of

degree in over GF (p). Then every element x~ E GF(Pm) can be represented as a

polynomia l xi(C) 
of degree less than m in ~ , i.e.

rn-i

= E xi k~ 
~~X

j k E GF(p) (5)
k=O ‘ ‘  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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As is well-known , addi tion in GF(P
m
) corresponds to addition of polynomials

over GF (p), and multip lication in GF(P
m
) corresponds to mu l t i p l i c a t i on  of pol y-

nomials over GF(p) ruodulo g(~).

As before , let (w1
)~ 

1 
deno te the resul t of the cyclic convolution of

N—i N— i
(x.)

0 
and (y.)~ . Then we have

N—l

V 
= 

i=0

and , using the representation (5) of elements of GF(P
m) as polynomials , we

have

= E (x.(~) Y ((~~1)) (C)) 
mod g(

~)

= 
O k=O 

X
i ,k ~~~~~~~~~ 

t
) mod g(ç)

where x . and y .
~~~ -k 

are taken to be zero if the second subscript
i ,k ( ( j  )),t

exceeds rn-i. Thus,

2m-2 t N-i
w
~ (C) E E ( E E X~ k Y((j..j)) t-k~ ~~~ 

mod g(~)
t=O k=O i=O

2m-2
= ( ~ z .~~~~~)mod g(~)

t=0
t N-I

where z E ~ x 
k 
y 

- -k E GF(p).J,t kzO i=0 ~ ((.1 )),t

Now suppose we treat all the terms of (x j k )
~~

’ and as elements

of Z, the set of the integers , rather than of GF(p). With this stipulation ,

we define the integers

—- ~~~~~~~~~~~~~~~~~ _~~_ ~~~~~ ~~~~~~~~~~~~~~ ~~~~~~__ ~~ __  - -— - — - -

~~~
— —~



-- _V - - V V ~~ — .—-— —‘.~~~~-— . ~~~~~~~~~~~~~~~~~~~~~~ V-- - - -

I
12

j,t 
= 

k=0 ~~i~O 
X i k  ~((j-i)),t-k ) for i E [O ,N-l) 

(6)
- 

and t E [O,2m-2]

and , obviousl y, z . mod p = z . . The r igh t side of (6 ) ha s th e fo rm of
j,t j,t

a double , or two-dimensional , convolution which is a periodic convolution in

one dimension and an aperiodic convolution in the other . The latter can be

easily converted into a periodic convolution by extending the range of k and

t to [0,M—l] where M > 2m-1. Lett ing [[t k] ] denote (t-k) mod M , (6) can be

rewri tt en as

• 
— 

M-1 N-l

k=0 i=0 
x.k y ((~_~)), [[t-k]J (7)

It is convenient to think of the set (x jk)0 ~ I ~ N-i, 0 ~ k ~ 
M-l

as a two-dimensional N x M array ç x . ~~, and of (7) as art array convolution.i,k

Let [X ] denote the two-dimensional Fourier Transform of [x 1 over theJ,L i,k

complex field , i.e.,

Xj,i 
= 

1, 1 1  N~1 
xi,k ~

2N r~
L (8)

where = e
j2
~~
’1
~ and = e

j2fulM 
are primitive roots of unity of order N

and M respectively in the complex field. If [z. ] and [Y I denote theJ,L i,L

transforms of the arrays [z I and [y1 k~’ 
respectively, then we havei,k

= ~~~ ~~~ 
for j € [O,N-l] and t E [0,M—l ] (9)

Recall from Section II that one of the two sequences to be convolved is

(a
1
~12)~~~ (Ø) N~~, i.e. it is the term-by-term product of the two sequences 
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(aj)~~~ (O)
N_n 

and (8i2) ’(Q)~~n • Represent ing the field elements as polynomials

as in (5), the element a .~~’
2 

is a polynomial of degree (2m—2) before it is

reduced mod g(~). If we neglect to do this reduction , the convolution

in (3) will give a polynomial of degree Orn-3)and the post-convolution multi-

plication by will give a polynomial of degree (4m-L~. Reducing this last

pol yn snial mod g(~) produces the same result as a reduction mod g(~
) after

each multiplication . With this in mind , we choose M = 2
r 
where r =

Ilog2 (4m-3)1 and define the N x M arrays [a. k1’ [
b~ k1’ and ~~~~~ k1 

corres—
- 

ponding to the sequences (a.)~~~~(O)~~~~, (~
i2;

n l (0)N n  and (~_i2
)~
:~ (0)

N_2~~ l
•

Let us also define the row-Fou rier Transform (RET) of the array [X i k ~~ 
as

the array [x
~~L

] wher e

4 M-l k
x~ ~ 

x~ (10)
V ‘~L k=O i ,k N

and the column-Fourier Transform (CFT) as the array [X
~~k] 

where

N-i
13

- x’ = E x. c~z (11)
i=0 ~

V 
Using the notation [xj ~~

] = RFT [x j k ] and (x ’j k ] CFT[x
~~k], we have

I. CFT[RFT[xI k I] = RFT[CFT[xjk
] ]

= CRFT [X~ k1

1. [ x ~ ~
1

- 

where Xj L  
was defined in (8).

- We thus have the following al gorithm.

~ ~~~ V 

j

—— .— --- - ~~~-~- —- — - - --- - - ~‘V -
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I Algorithm

Step 1. [ a ’~~LI RFT(a
~~ k I

[b ~~1
] .- RFT[b j k ]

Step 2. [x~ ] . ra~ b~I. 

~~ ~~~
(Comment: The rows of the array [x

~~L J are the transform domain

representations of the polynomials a .~~
2
).

Step 3. IX ~ ~- CFT Ix ! ]
- j,~ J L

Step 4. 
~~ 

CRFT(Y~~~~]

- 

Step 5. [ZJ L I [X J 1 Y
J L I

(Comment: 12 J L 1 is the transform domain representation

of the convolution in (3)) .c -

Step 6. [zI ] ..— CFT

fJ (Comment: The rows of the array [z
~~L
] are the transform

domain representations of the polynomials defined by

11 E (a~~~~) 
~
_ (i_i)

),

Step 7. 1’
~i ,L] ~~

- [zi L~
b
~~L]

Step 8. [
~ ] 

~
_ RET~~[u ’ Ii,k i,L

II (Comment : The arr ay [UL k ~ 
represents the desired

Fourier Transform as polynomials of degree 4m-4

I I with integer coefficients.)

II
F 

- -  V ~~~~~~ V ~~~~~~~~~~~~~~~~~~~~ •~~~~~--— ~~~~~~—-V~~~~~~~ •~~~~-— - -  - - — -~~~-~~~~~~~~~~~-- --~~~~~~~~~~
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Step 9. lU i k ]  [u i ,k 
mod P

Step 10. A
1 

. (
4m~~ u1 k mod g(

~) for i—O ,1,.. .,N-l.
k=0

-

~~ V 

- -_ _ _ _ _ _ _ _ _ _ _ _ _ _  

____________
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I IV. Performance Eva luation of the Algorithm.

The following ana lysis is based on the so-called “logarithmic model”
‘-V

( [4] ,  Chapt er  1), t ha t  is , the t ime requ i red  by the al gorithms will be

- - estimated in terms of “bit operations ” rather than of “operand operations ”

(as is the case with tire so—called “uniform model”). This choice is justified

on the grounds that the length of the operands used by the algorithms depends

upon the pa rameter n , the orig inal sequence length . Thus assuming a fixed

operand size would be crr~~reous; on the other hand the running time on any

given conventional mach ine of the random access memory type will be propor-

tiona l to the bit comp lex ity to be eva luated.

A basic operation used by the convolution algorithm described in the

preceding sec tion is the Fourier Transform of a sequence of integers in the

comp lex field. The choice of this field is obviously mot iva ted b y the fac t

that a primitive root of unity exists for every order N; thus N can be chosen

as t he one which yields an optimal imp lementation of the FFT algorithm.

Resort ing to the complex-field FFT is by no means novel; it was proposed in

the past in connection with similar problems , notably by Sch8nhage and

Strassen [9) as a device for fast integer multiplication. The main problem

encountered with this approach is that the accuracy with which complex numbers

are represented must be sufficient to guarantee that the rounded-off results

- 
exactly yield the correct integers. We now estimate in detail the number of

- 
bits that must be used to represent the powers of the primitive roots of

uni ty  ç2
~ 

and ç
~
. A similar analysis , applied however to a considerably

- 
simpler situation , can be found ii~ [9] .

- Let N~f
2
t
. As is well-known , the ith stage (i=O,l,...,t-l) in the execution 

~~~- - -- --~~~~~~~~~~~~~ —- -- - - - -V - - - -  - -V .. 
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of the FFT consists of a set of “butterfly operations”, in each of which two

complex numbers A
1 and B1 are combined to yield two outputs A1+i 

and B .÷l

where

A
i+l 

= A . + ç~B. 

(12)
V 
B.+1 = A . - flB.

~2 ~where ç
~ 
is some power of = e~ ~~~‘ 0. Let 1~ be the maximum error in any

power of 
~~~0 ’ let €. be the maximum error in the inputs to the ith stage and

let L1 be the maximum modulus of the inputs to the ith stage. From (12) we

have

i+ 1Li+i~~~
2L . < 2  L0

and < + B111 + :~c~ � Lill + ~ 2~L~l1 +

since IB~f ~ 
L
i 
and = 1. Therefore , we have

5i+l < (i+l)2’ L0fl + 2
1+1• 

€0
and

~ t 2~ 
~ L0t~ + 2~ €

0 
ftN0

LQ fl -I- N050

is the bound on the error of the Fourier Transform.

For the inverse Fourier Transform , the equations (12) are slightly

modif led. Using £
j~ 

~~ 
i.~, and ~ 

to denote the corresponding quantities for

the inverse transform , we have

~
ii+i = f ( A ~ + ~~~ (14)

= ( ~L j - 
~~~j )

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V VV~~~V VV~ V ~~~~~~~~~~~~~~~~~~~~~~~~ ~V~~_ VV , _ , 
~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ _V VV_ V V~~~ _ -— ~~~~~~~~~~~
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Therefore, we can choose = •..  = L~,when~ a .+1 ~

- f [
~~ 

+ 
~~ 

+

~ 
+ 

~ ~~~~~~~ Hence, we have 
~ 

+ ft 
~~

From this , it is easy to determine the maximum moduli of and maximum

errors in the results produced at each of steps 1-8 of the algorithm. These

are given in Table 1.

Step Maximum modulus of result  Maximum error in result

1 Mp frMp~
2 2  2 22 M p  rM p T ~
2 2  1 2 2

3 N M p  (r+~~s)l*fpT~

4 NMp -~~(r-4-s)NMp 1~

5 N
2
M
3
p
3 ( ~r + s) N

2
M
3
p
3
T~

b N
2
N~~

3 
~~(r + s)N

2
M
3
p
3
T~

7 N
2
M
4
p
4 

(2r + 3s) N
2
M
4
p
4fl

8 N2 M4p 4 
~ (5r + 3s) N2M4p4~

Table 1: Maximum moduli of and errors in
comp lex numbers produced in Algorithm .

The results at step 8 must have a maximum error of less than in order

that the results may be correctly interpreted as integers. It follows that

the approximation error fl in the roots of unity ç] must satisfy T~<l/(5r+3s)N
2
N
4
p
4
,

(2) When the final maximum modulus is known , we can derive the bound

� 
~ 

+ 2~ ~~~~
‘ 

which is based on the inequality t~ ~ 2~~i L .  However ,

this bound does not improve our result in any significant way.

V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ -~~~~



- —
~~~~~~~~~ __ 2;=~~ , -

~~~~~~~~~~~
V -
~~~~~~~~~~~~~~~~~~~~~~~~ - - -

~~~~~~~~~~~~~ -~~~~~~~~ V

19

or , equivalently, the number of bits used to represent the powers of the

roots must be at least

q 4 log2p + log
2(5r + 3s)1 + 2s + 4r

We can now evaluate the performance of the Fourier Transform algorithm .

Let P(q) denote the number of bit operations required to multipl y two q-bit

numbers. We represent the real and imagina ry parts of both the powers of ç
~

and the terms A .,B. previously defined using q bits for each , and note that a

complex field multip lication corresponds to four multiplications of real numbers.

Note that the integer parts of the results grow at each step of the algorithm ,

but . concurrently their fractional parts lose accuracy so that the significant

operand length remains constant . it follows that steps 1 and 8 require

0(NM log
2 
M P(q)) bit operations , tha t steps 3 and 6 require 0(NMlog

2
N~P( q )) 

V

bit operations , that step 4 requires 0(NMlog2(NM) P(o)) bit operations, and

that steps 2 and 7 require 0(NMP(q)) bit operations. Obviously, the complexity

of Step 4 dominates those of steps 1-S .

In Step 9, MN integers , represented by q bits each , are divided by p,

which is represented with r log2i~< q 
bits. Thus , the complexity of this

step is dominated b y that  of steps 2 or 6 and hence by that of step 4. Finally ,

in Step 10, N polynomials over GF(p) of degree 6m-4 are divided by a polynomial

of degree m. Let D~(m) denote the number of bit operations required to divide 
V

a polynomial of degree 2m by a polynomia l of degree m in GF(p). Then , Step 10

requires at most O(N.D (2ni)~ bit operations. If m<< N, i.e., mis O(log N) or

less , then a long division method can be used at step 10 and the complexi ty

of Step 10 is 0(N m
2 
P(log p)) which is dominated by the complexity of Steps

3 and 6. On the other hand , if m is large compared to N, then fast polynomial

V . 

~~~~~~~~~~~~~ -
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divisitm methods r 4~~, [5~ can be used at Step 10. The complexi ty is then

0 (NM log m P(log m + log p)) bit operations and this is domina ted by the compl exi ty

of St eps 1. and 8. W~ thus have

Theorem: The Fourier Transform ot a sequence of n elements of GF(P
m ) ,

n ( (~
m..1) can be computed with 0(nm log (nm)~ P(q)) bit opera tions where P(c , )

is the number of bit operations required to multiply two q-bit numbers and

q 21og
2 
n + 41og2 m + 4log

2
p.

As a general observation , note that the number of arithmetic operations

depends on the degree of the extension of GF(p) but not on the characteristic

p itself. The latter affects the bit comp lexity of arithmetic operations

only. The following special cases of the theorem are also of interest.

4 (i) If m = 1 , the bi t comp lexity reduces to O(n log n P(q ))  where

q ~ 2 log n + 4 log p < 6 log p, i.e., P(q) is proportional to the

complexity of arithmetic in CF(p). Thus , the Fourier Transform

over GF(p) can be computed using O(n log a) arithmetic operations

whose bit complexity is essentially that of arithmetic operations

in GF(p).

(ii) If p = 2 and n = 2m_ 1 , (which is a case of great interest in coding

theory [l],[21) then P(q) is proportiona l to the complexity of

arithmetic in GF (2 ) .  Thus , t he Fourier Trans form of a sequence of
m m 2 - 

V

length 2 -l over GF (2 ) can be computed using 0(n log n) arithmetic

operations whose bit complexity is essentially that of arithmetic

operations in GF(2
m) .

Remark: Th e algorithm proposed in this paper can also be used (with

appropriate modifications) to compute the convolution of sequences over GF(P
m
)

V -i
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oI~ arb i t rary length n. The asymptotic comp lex ity is easil y shown to be

0(n log a) arithmetic operations whose bit complexity is essent i a l l y tha t of

multip lying two (log n)-bit integers.

I

_ _ _ _  
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