
Mechanics 5-n--dMaterials R esar h Center
TEXAS A&M UNIVERSITY

College Station, Texas

VISCOELASTIC CHARACTERIZATION OF

A NONLINEAR, GLASS/EPOXYH COMPOSITE INCLUDING THE EFFECTS

Li OF DAMAGE
[I S. W. BECKWITH

J AN 28, 197'

A

ýAerojet Solid Propulsion Company
Sacramento, California ~

Under Contract No. FO4-611-72-C-OO654,
Air Force Rocket Propulsion Laboratory

Edwards Air Force Base, California

MM 2895-74-8 October 1974

Approved for public release; Distribution unlimited



DCif NOTICE
\ •

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

REPRODUCED FROM
BEST AVAILABLE COPY



VISCOELASTIC CHARACTERIZATION OF AAONLINEAR, GLASS/EPOXY

CUMPOS1TE 114CLUDING THE EFFECTS OF DAMAGE

A Dissertation (7L

CSCOTT WILLIAMS BECKWITH

Submitted to the Graduate College of
exas A&MI University

in partial fulfillment of the requirement for the degree of

DOCTOR OF PHILOSOPHY

Major Subject: Interdisciplinary Engineering

MM 28953-74-8 ( d/ cte'beCw1974

Approved for public release; Distribution unlimited .

"0



iii

ABSTRACT

Viscoelastic Characterization of a Nonlinear,

Glass/Epoxy Composite Including the

Effects of Damage. (December 1974)

Scott Williams Beckwith, B.S., Texas A&M University.

M.S., California Institute of Technology

Chairman of Advisory Committee: Dr. R. A. Schapery

Isothermal creep and recovery tests were conducted on an

epoxy resin and a glass fiber-reiiforced composite made from the

same bulk resin. The glass/epoxy which was studied included uni-

directional and laminated (angle-ply) composites as well as samples

removed from a Minuteman III solid rocket motor case. The creep

and recovery tests were carried out at a series of stress levels

well into the nonlinear region at temperatures oc 20, 75 and 140°"F
v for several fiber angles. Both the epoxy and glass/epoxy were

found to be thermorheologically complex materials with a creep

compliance which may be represented by a power law in time.

The linear viscoelastic principal creep compliances were

determined for the glass/epoxy using fourth-order tensor transfor-

mations. Using the Halpin-Tsai relationships and the "rule of mix-

tures", the principal creep compliances were compared with those

predicted by micromechanics. The experimental results were found

2 to agree very well with the Halpin-Tsai model except at the highest

1 temperatures and were within the upper and lower theoretical bounds



Or! comupl ianfce. Iven at 1lowtrs level, the presence of ni(. ro-

-crack growth was found to produce appreciable softening at t~he

Qhighest temperatures.

The nonliinear properties were found to dlepend primwarily onl the

stress noriiial to the fiber-, sugg~esing a crack opening-mulde- as the

essential mechani sm of grow th. Muilti ple cycle,, of creep a nd ivr:nivcury

showed a Oi s:wroportionate amount of damage durinrg the f irst t:y( !e.

Crack growth was rluiid LL. reduice iure rapidly and with 'less :,ufteninig

effect in the II allni ted (' u) composi tes , probably as a resunit of the

composi tes exhWibit considerable softening due to micro-.crark growthi.

LB3andi og tosLý conducted on glass/epoxy beam and plate sirecimei~s

b rouqht out a s ti~rong i nflIu~Tce of the s tra in g radi ent .Jt was, f ounId

that linear theory car. be used for mjost of the useful engineering-i range of appl icacti on. Nonli nedr theory based on tensile Ltis ts of

unidirection specimens predicts considerably wore reduction in

bending stiffnc - t han observed experimentally

Multiple cycling effects on the glass/epoxy composite were

found to be more sensitive to the stress normal to the fibers than,

to the shear' stress. The second-order Lebesgue niormi (L,) was

found to approximately characterize multiple cycling effe(At"s suc(h as

seen in a solid rocket; motor case, The L2 norm which, at a ,ivenl

time, is proportional to the root mean square value ofý the stress is,

therefore, proposed as a parameter for defining the damage produced

by hydrotesting.

-~MQ-2-46. ii
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SECTION I

INTRODUCTION

During the past fifteen years there has been an increased

emphasis on the development and structural application of composite

materials. In general, there are two primary divisions of compos-

ite materials, viz., particulate and fibrous composites. These

classes and several others are discussed in detail by Holliday [I];

however, this study is limited to fibrous composites. Typical

fibrous composites in current use within the aerospace and commer-

cial fields consist of composites made from continuous, parallel

fibers embedded in a matri:; material. The use of fiber-reinforced

plastic composites such as glass/epoxy and graphite/epoxy for

structural components has evolved as a result of increased interest

in their mechanical properties relative to conventional materials.

Of particular interest are their high strength-to-weight and high

modulus-to-weight characteristics. This type of composite is dis-

cussed in detail by Ashton, Halpin and Petit [2], Lubin [3], Tsai,

Halpin and Pagano [4] and [5]. This interest is also mirrored in

the large number of published works on this class of materials as

evidenced in the abstracts of recent literature surveys conducted

specifically on the mechanics of fiber-reinforced plastics by

The :ormat of this dissertation follows the style of the
Journal of Composite Materials.
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Beckwith et al. [6-8].

Although the constituent materials are usually assumed to ex-

hibit linear elastic behavior up to failure, the overall fiber-

reinforced plastic composite exhibits a significant amount of time

and temperature dependent mechanical behavior in many service envi-

ronments. The efficient and safe design and utilization of these

composites demand a good understanding of their viscoelastic be-

havior. The surveys by Beckwith et al. [6-8] point out that while a

significant amount of research has been conducted on the visco-

elastic behavior of polymers and particulate composite polymers,

there have been only a limited number of investigations of the

viscoelastic behavior of plastic composites.

It has further been established by Lou and Schapery [9], Ashton

[10], Halpin [11] and Schapery, Beckwith and Conrad [12], that the

behavior of many of these composites is not linearly viscoelastic
except at small strains, often well below the design limits

normally imposed fcr structural applications. More recent studies

of the nonline-ar viscoelastic behavior of unidirectional glass/-

epoxy composites [9] seem to indicate that the nonlinearity can be

attributed to internal crack growth within the matrix (or at the

fiber/matrix interface) and viscous flow in the plastic matrix.

Composites have typically found their way into several areas

itivolving pressure vessels through the process of filament winding

techniques [13-16]. The early emphasis on fiber-reinforced

4. ,
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composites can be attributed to their application in solid rocket

motor cases in the late 1950's and early 1960's. This interest is

currently at a very high level as evidenced by the use of some of

the "advanced" composites such as graphite/epoxy [15]. Part of

the motor case design problem rests in the complete mechanical

characterization of the material and subsequent application after

the vessel has been subjected to one or more cycles of "hydrotesting"

to pressure levels about 10-25% above the expected operating condi-

tions [17]. This technique of "non-destructive testing" (NDT) has,

""1 in facL, bien shown to cause considerable internal damage to the

composite and in glass/epoxy composites creates a condition for

further damage due to moisture r14, 15].

The importance of the nonlinearity due to crack growth is

considered significant, particularly during the first few cycles

when a considerable amount of non-recoverable deformation occurs.

There is also an associated softening of the composite from cycle-

to-cycle, which should be accounted for in determining subsequent

deformations during the application of the service conditions.

Constitutive theory for fibrous composite materials is re-

viewed in Section II. In addition to reviewing the basis for lin-

ear elastic constitutive theory, the definition of linear visco-

elastic behavior is presented and the effects of temperature on the

overall composite response are discussed. Schapery [18] has re-

cently reviewed many of the major areas of viscoelastic behavior

it-
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normally observed in fibrous composite materials. Some of the more

important areas are reviewed here, with particular emphasis on

pernanent damage as a result of crack propagation [12, 19, 20].

Finally, the prediction of effective properties using some of the

current micromechanics theories [2, 4, 5] are discussed.

The experimental program, which was designed to provide the

mechanical characterization data necessary for the evaluation of

the glass/epoxy composite material currently used in the third

stage Minuteman III solid rocket motor case [17], is described in

Section 111. The program consists of mechanical characterization

tests on unidirectional and laminated glass/epoxy composites as

well as the matrix material. A small number of tests were also

conducted on samples of the laminated glass/epoxy composite taken

from the actual motor case.

Reported in Section IV are the experimental results from a

series of uniaxial creep and recovery tests and several beam tests

designed to emphasize the effects of temperature, stress level and

load history. The linear viscoelastic constitutive properties are

established for the various materials and compared with several of

the micromechanics theories used to predict the effective proper-

ties. The observed effects of material nonlinearities as a result

of crack propagation are discussed.

The effect, of the observed nonlinear material behavior of

the glass/epoxy composite on the design and analysis of typical 4:"I -
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- solid rocket motor cases are reviewed in Section V. The current

approach to motor case design and the effects of hydrotesting and

temperature on the case properties are discussed. A method of

accounting for the effects of multiple loading using second-order

Lebesgue norms is proposed.

•I'
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REVIEW OF CONSTITUTIVE THEORY FOR

FII3ROUS' COMP~OSITE MATERIALS

Introduction

The analysis of any structure or body in terms of a re!sultant

stress (strain) field requires the satisfaction of a set of equil-

ibriumi dfnd s Lrain-dispi ocement 'aqua Lions [21-233. This se, oif

equati ons 1:; 1 odependeni, 'L. ulth pairticular na teriol makeup but the

general solIuti on depends on the rel ationshi p between the streýs,. and

stra in tensors. This rel aLionship is known as the constitutive

equation and' in the theor~y of linear anisotropic elasticity is

~eieredto as general ized Hooke's 1law [22] and simply as Hooke's

lajw in the ca.. o isotropic mnaterials. The application of Hlooke's

law has been extensively studied during the past century, partic-

ularly for homogeneous, isotropic materials.

Indeed, several excellent treatments of the subject are given *
in Love [21], Sokolnikoff [22] a~id Funcj [23] to mention only a few

of 'the m;ore classic: r~eferences. These references, developed pni*-

;narily along the lines ol classical elasticity theory, treat Hooke 's

law in generalized ter:.Is initially and then tend to concentrate on

the more- specialized case of isotropic materials.

The analysis of anisotropic mnaterials is obviously more com-

plicated due to the nature of the constitutive theory and therefore,
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has not received the same degree of attention until recent years.

The works of Lekhnitskii [24, 25] and Ambartsumyan [26] concentrate

on the development of anisotropic theory. With the current interest

in the use of fiber-reinforced composite materials at an all-time

high, their works have served as primary references for current

analytical developments in areas where fibrous composites are being

used as structural materials.

It has, in fact, only been within the last few years that

these works have been translated and presented to the Western world.

Some of the more notable presentations of their works in the eng-

ineering terminology were done by Ashton et al. [2], Ashton and

Whitney [27], Dong et al. [28] and [5]. The use of fibrous com-

posites by the aerospace industry for structural applications has

resulted in several analytical developments and a complete reassess-

ment of the overall design philosophy.

Fibrous composites have been developed along two different

paths classified by the matrix material holding the load carrying

fibers; namely, metal matrix and plastic matrix. The metal matrix

composites are of interest primarily for their higher temperature

capability, although they often possess potentially higher strength

and stiffness due to the matrix properties. Plastic matrix compos-

ites have a lower density and can be readily fabricated into more

complex shapes than metal matrix composites, thus making them more

attractive for filament-wound pressure vessels and similar
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structures. We shall be more concerned in this dissertation with

the plastic (polymeric) matrix composites which exhibit a signif-

icant amount of time-dependent mechanical behavior in many service

environments. This behavior, termed viscoelasticity, has only

recently been investigated with regard to fibrous composites

[9, 11, 12, 18, 29] although considerable attention has been given

to particulate composites [20, 30, 31] (e.g. solid propellants). &

Glass fiber/epoxy and graphite fiber/epoxy composites are typical

of this class of materials.

The application of linear, anisotropic viscoelastic theory to

fibrous composites in recent years is evident in the works of

Schapery [18, 32], Halpin [11, 33] and Hashin [34]. Unfortunately,

and the gross difference in both physical and mechanical properties

of the constiLuents, linear theory is not always adequate to predict

the response to various loading situations. in many cases linear

theory at least provides the starting point. Nonlinear viscoelastic

behavior is reported by Schapery [35] and Ashton [10] in the

United States and by Ogibalov and Tiuneeva [36, 37], Rabotnov et al.

[38] and Martirosian [39-42] in the Soviet Union. The nonlinear

behavior may be "reversible" or "nonreversible", the latter norm-

ally considered to be due to "microcracking". "Reversible non-

linearities" are usually attributed to secondary bond failure within

the polymer and essentially consist of polymer molecules sliding

i2
7 "',.: " - " ---1 -" I -



9

past one another. On the other hand, primary bond failure in which

the molecules are actually torn apart leads to microstructural

damage. During fabrication there are a number of voids and flaws

which develop as a result of the polymer's curing process and the

difference in the physical properties of the various constituents.

As a result, microstructural damage in fibrous composites is

thought to be due primarily to the growth of these small flaws or

"microcracks" [18].

Analysis of fibrous composite structures requires a careful

consideration of the constitutive theory of the material. The

decision to use linear or nonlinear anisotropic viscoelastic thec y

depends on the particular application and material. The develop-

ment of viscoelastic theory with regard to fibrous composites will

be reviewed in this section. Particular attention will be given to

the contribution of the polymeric matrix to the overall response

and the influence of microstructural damage on the composite con-

stitutive relationship. Thermal effects will also be discussed

since they strongly affect the behavior of the polymeric phase.

Viscoelastic Behavior and Matrix Constitutive Theory

Typical polymeric matrix materials fall into several classes

of epoxies, phenolics, polyesters, etc. depending on the particular

strength characteristics desired and many other design considera-

tions. All of the materials exhibit some degrec uf vriscoelasticity



and are generally considered to be of a homogeneous, isotropic

nature. Therefore, in addition to reviewing matrix constitutive

theory for this class of materials, it is also fitting that several

ground rules be defined in terms of what is meant by the term

"linear viscoelasticity".

. The behavior of viscoelastic materials falls into two major

divisions; linear and nonlinear. Farris and Schapery [20] recently

conducted an extensive review of the entire field of linear and

nonlinear viscoelastic constitutive theory and the reader is re-

ferred to this excellent review article. The authors noted that

although an extensive amount of work, both theoretical and exper-dI
irnental, had been conducted during the last decade toward the dev-

clopment of a nonlinear viscoelastic constitutive theory, the

definition of linearity was often incomplete or misunderstood. As

a starting point we shall review linear viscoelastic theory and

proceed from there.

Linear Viscoelastic Theory

An understanding of linear viscoelastic theory is important

for two reasons. First of all, linear theory is at least an

approximation to real behavior and one should be familiar with its

range of applicability. Second, the exact definition of material

linearity should be firmly established before one can assess the

significance of nonlinear behavior. All too often it has been



found that only part of the definition of linearity has been

applied [fY3, 44] while in actuality, the material is indeed non-I

linear. A definition of linearity compatible with that used in

current literature [18, 20] will be given in order to provide a

precise statement of linear viscoelastic behavior. We shall neglect

the effects of large strains since the strains in fibrous composites

are usually below 3-5 percent.

Statement of linearity. Following [18], the mechanical be-

havior of a linear viscoelastic material can be described in the

form of a general input-response relationship. By applying the

definition of linearity along these lines we treat the material as

a "black-box" without specifying a priori its physical makeup and

the physical significance of the input and response quantities.

The representation of a response function, R, due to an input

function, I, is given by

R = R{I} (1)

in which the brackets ( } indicate that the current value of R is

dependent upon the entire history of I, and not just its current

value.

The response R is said to he linear, and the material conse-

quently, linearly viscoelastic, if and only if it satisfies the

property of homogeneity and obeys the superposition principle [18].

The property of homogeneity, or proportionality is given by

=-~4 ~ 77
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R{cI) cR{I1 ; c constant (2)

while the superposition principle is given by

RO a + IbI = R[l a + R{Ib} (3)

where I and I are arbitrary input histories.
Although the use of Equation (2) alone is not sufficient to

prove linearity, many standard characterization wethods used today

use only this criterion to establish linearity. However, if the

material obeys Equation (3), it can be shown to automatically sat-

isfy homogeneity for all rational values of c (including c = 0).

Thus, the primary condition for a material to be linear is that it

satisfies superposition.

Knowledge that a material is linear is sufficient to establish

explicit single-integral expressions connecting responses to inputs

[45]. The response R can be written as an integral containing the

actual input I and the response of one preselecteý input history.

For use in the characterization of viscoelastir rnaterialZ it is

customary and convenient to use the Heaviside unit step function,

H, as the preselected input history. The step function is giver, as

H(t - t' 1 ', t > t't< ' (4)

where t is the current time and t' the time at which the input " is

applied. The response to H is usually denoted by RH, and, for nany

applications where aging considerations are not important, the
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representation of R. becomes

RH = RH(t - t') (5)

As a consequence of the definition of the step function, RH

vanished when t < t' in as much as aging effects are excluded.

If the input is time varying, the response is found by considering

the input to be the limit of a sum of step-inputs. An integral

relationship between input and response immediately follows in the

form given by Volterra [45] and Pipkin [46] as

R t ,
t t)dl~t 6

JRH(t dt' 6

Equation (6) is called a hereditary law and is sometimes referred

to as the convolution integral, the Duhamel integral or the

Boltzmann superposition integral.

The superposition integral may be generalized to represent

multiple responses due to several inputs when the response oF the

material or body is linear with respect to all inputs. This gener-

alized form of the response is given by
t ~dl8

R =J R 8 (t -t'-dt' (7)

in which R is the cumulative response due to all inputs I and

where RHaa is the unit response of R a when only Ia = H(t) is

applied. The summation convention over the range of indices O and

o• will be implied whenever the index is repeated in a term.

_x_

M-
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Isothermal constitutive equations. The general linear rela-

tions between the stresses, o ii, (i, j 1, 2, 3) and infinitesimnu1

strains, tij, may be found ý,y replacing the responses and inputs in

Equation (7) with these variaoles, respectively, hence

t ";k o

a.. t. (tt
i~j Cijkyt(t (8)

where C ijk is the "effective relaxation modulus tensor. The

spatial dependence of oij rk• and C are implied although notijl '--zi j ky.

shown for simplicity in the notation scheme, and the stress, ij

and strain, r~k',, may be any time-dependent functions. The inverse

relations, in tenns of the "creop compliance tensor", Sijk•, are

ijiven by

t
-t t t (9)

The compliances Sijk• and moduli Cijk are fourth-order

tensors which possess symmetry with respect to index changes of

i with j and k with z due to the symmetry of the stress and strain

tensors [23],

C..•(t) = C (t) = c t) -C CQ (t) (10a)
ijk j ik~ - ij Pk j ji 9k

Sijkz(t) = Sjik2 (t) = Sijxk(t) Sjik(t). (10b)

Additioial symmetry of the tensor with respect to an interchange of

ILI



the first two (iJi) and second two (ki) indices, i.e.,

Cijkz(t) = Cki (t) (Ila)

i (t) = Sklj(t) (11b)

has been shown by Biot [47] based on the thermodynamics of stable,

irreversible systems. These symmetries considerably reduce the

number of material properties required to completely characterize

linear material behavior.

In order to bring out the significance of the material prop-
erties in Equation (9), consider a gene!ralized creep test where the

tie-dependent input stress is given by

Crij : CiJ H(t) (12)

where all the a.' are constant. Substitution of Equation (12)

into the constitutive relation, Equation (9), leads to the function

dH
at, which is the Dirac delta function 6(t') given by

(0 ,t' /0
6, o(13)s~t) = t' 0o

Consequently, Equation (9) becomes

t

cij f Sijkt(t - t')a 6(t')dt'. (14)

Using the sifting property associated with the Dirac delta function,

Ii•.



16~

Equation (14) reduces to

Lij = Sijkz(t)Oij (15)

If the test is a uniaxial creep test then aij =j and we find

that

(16)

or, with single-index notation for stress and strain [22],

SI t ()a (17)

where ul is used to denotu the strain in the x: direction, and rjI

is the constant value of stress in this direction; S1 (t) is I
called the "uniaxial creep compliance". When the material is iso-

tropic it is often common to rewrite Equation (17) after a change

in notation to

- D(t)a (18)

where the corresponding terms still have the same significance as

before.

Nonisothermal constitutive equations. It has generally been

found that viscoelastic materials exhibit significant temperature

dependence. The influence of temperature on viscoelastic behavior

can be divided into reversible and irreversible effects. Irrever-

sible effects result in permanent changes such as primary bond
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rupture and weight loss, brought about by thermal degradation.

These effects will not be considered within this discussion.

Reversible effects, on the other hand, consist of thermal =

expansion and temperature dependence of those mechanical properties

which appear in the constitutive equations, i.e., Equations (8) and

(9). Thermal expansion effects will not be treated here; a de-

tailed analysis of these effects is presented by Schapery [48] for

anisotropic materials in the context of irreversible thermodynamics.

We shall concentrate on the temperature dependence of the mechan-

ical properties in our discussion of reversible thermal effects.

In general, these effects further divide material behavior into

two categories: thermorheologically simple behavior and thermo-

rheologically complex behavior.

The simplest realistic representation of material response

for viscoelastic materials under transient temperatures is that

for a "thermorheologically simple material" (TSM). Morland and

Lee [49] originally defined a TSM for an isotropic material and

Schapery [50] extended the concept to anisotropic materials using

irreversib 1 thermodynamic principles. By definition [50] for a

TSM, the constitutive equation is given by

a4  f rk(i-j) 2 ~~ (19a)

or, equivalently,

,- t@

4.h
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J CiJk.M - TF dt' (19b)

where is the so-called "reduced time" defined by

dr_' dr'(20)
=1 aT &' W) f a T

The scalar function aT reflects the influence of temperature on

internal viscosity and is quite sensitive to temperature changes.

The so-called "temperature shift-factor" is given by

aT = a T [T(te)e (21)

and is used to evaluate the reduced times r and t'. For isothermal

tests, Equation (20) becomes

t a(22)

since a is constant in this case. By rewriting Equation (22),

(where log logl0),

log =log t -log aT (23)

we find that plots of isothermal moduli, or compliances, can be K

shifted horizontally along the time scale with the magnitude of the

shift equal to log aT. It is interesting to note that Schwarzl

and Stavennan [51] shifted isothermal data in this manner to obtain

"~ii
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a single, "master", curve as a function of • and subsequently

defined a TSM as one which behaved in this manner. A reference

temperature is usually selectedwith aTdeflned as aT T

The shift-factor aT is usually obtained by graphically

shifting the data horizontally along the time scale as noted by

Equation (23). However, several analytical representations have

been postulated over the years for polymers. When T < Tg, an

Arrhenius type of temperature dependence is usually observed

[l, 52]. This shift factor has exponential dependence with re-

spect to the inverse of absolute temperature (I/T),

log aT AH 1 1 (24)
T 2.3 3RTR

where AH is the activation energy (per mole), R is the universal

gas constant, and TR i• an arbitrary reference temperature. By

plotting log aT against the reciprocal of absolute temperature,

I/T, a straight line results and the activation energy, AH, may be

found.

When T > T the so-called WLF equation normally applies [523,

log -C(T- TR) (25)
loaT C, .+ T-TR

where C1 and C2 are constants. The form of the equation is sim-

ilar regurdless of the choice of TRI only the values of C1 and C2

change. When TR is chosen to be approximately 50*C above the Tg,

the values of C1 and C2 have been found to be universal constants

L
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for many polymer systems [52, 53] with the following values,

C1 = 8.86 (°K- 1 ) (26)

C2 = 101.6 ('K)

Schapery [32] has used a power law form of aT when T > Tg,

[(TR Ta]

T (T Ta) (27)

where Ta and ji are material constants. Again, the value of TR is

arbitrary and it has been found that 1ý assumes a typical rancje of

12-15. T takes on values several degrees below the T This
a g'

power law has been found to be a good approximation of experimental

data over a wide range of temperature for filled polymers [54] and

enables the reduced time, viz., Equation (20), to be evaluated

analytically for constant rates of change of temperature whereas

the WLF equation does not.

The inverse representation of Equations (19a) and (19b), in

terms of the "reep compliance tensor, Sijkx, is given by

F

i - ',.D i (28a)

0

or, equivalently,

t at

Fi=f Si -,, )2 at.- (28b)
0
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In both cases, Equations (19) and (28), we have neglected the

effects of thermal expansion, however, these terms generally

represent only a simple addition to the strain tensor as shown

in [32]. Furthermore, by specializing these relations to isotropic

materials and changing notation to correspond with that used in

Equation (18) we find

S E(g - ý' ,dt' (?9)

0

and

€ / D(& -')tdt' (30)

for the uniaxial stress-strain behavior of a TSM. These relation-

{ ships correspond to the constitutive theory proposed originally by

4 1 Morland and Lee [49].

There is a significant amount of published data to verify

isothermal curve shifting of relaxation moduli and creep compli-

ances front several sources [52, 55]. Moehlenpah et al. [56]

treated isothermal relaxation moduli for an epoxy resin to form a -

master curve in terms of t. The superposition of individual iso-

thermal responses to form a master curve is not sufficient to estab-

lish the behavior of a TSM although most characterization methods

tend to totally ignore this fact. Transient temperature tests are

necessary to completely define the TSM behavior. Only recently

tests of this type have been conducted by Leeming. [57] and
•, •,,

:,N ,...•: %
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Farrls [58] on solid propellants, Johnson et al,. [59] and Watkins

[60] on epoxy resins, and by Kabelka and VeJchar [61) and Schapery

et al. [12] on fibrous composites.. With few exceptions [12, 60]

the behavior of the materials characterized using transient temp-

erature tests have been TSM.

The data of Moehlenpah et al. [56], Schapery et al. [12],

Watkins [60], and Sims and Halpin [62] definitely show that hori

zontal shifting along the time scale is not entirely sufficient to

form a smooth, well-defined master curve.' However, by using vert-

ical and horizontal translations, it is possible to superpose

the data over a large time-temperature range [18].

Viscoelastic materials whose temperature dependence cannot be

characterized by Equations (29) and (30) for isotropic materials

and Equations (19) and (28) for general, multiaxial behavior of

anisotropic materials are defined as "thermorheologically complex

materials" (TCM). Some materials are composed of several constitu-

ents or phases, each behaving as a TSM with different a.T shift

factors. This particular type of TCM has been designated by

Schapery [18] as TCM-l. The behavior of materials in this class

has been studied only under isothermal conditions which, as we

noted earlier, is nct sufficient to completely verify behavior

under transient temperature conditions [33, 63].

Schapery [18] has also defined a second class, TCM-2, composed

of materials which by definition satisfy the uniaxial stress-strain

IL
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behavior under Isothemal or transient temperatures as qiven by

t

where { and t' are given by Equation (20), a is any arbitrary

stress input, and DO = DO(T) is the initial value of the creep

compliance. For the case of an isothermal creep test, the creep

compliance becomes

D1 =Do(T) + AD( (32) 1
where t = P"ost data reduction techniques follow a normalization

condition by assuming aG aT I at some arbitrary reference

temperature,.TR, which results in

AD(t) = D(t,TR) Do(TR) (33)

where AD(t) is the transient component of the compliance at temp-

erature TR.

In order to determine aT and aG from experimental data at

different temperatures Schapery [18] rewrote Equation (32) in the

form

log [D - D ) log AD - log aG. (34)
0 G

A plot of log ED - D I against log t for isothermal tests at various
0

temperatures, T, will be identical to that at TR except; for a rigid

horizontal translation of log aT and a similar vertical translationI.



24

of log aG. The final result is, again, a master curve similar to

that obtained for a TSM.

A special case of Equation (31) occurs when the temperature

dependence of D is given by
0

Do(TR) (35)

which results 4 n

D (36a)

where

D(u) D (TR) + AD(Q) (36b)

As a result the constitutive relation given in Equa-.ion (31) becomes

td

EG ( (-)d (37)I

which is the same as Equation (30) except for aG'

Superposition procedures or normalization techniques, in add-

ition to that of Schapery's based on Equation (34), have been

suggested for accountiný foi the behavior of TCM [64-69]. McCrum

and Pogany '70) have reviewed several of these procedures and com-

pared the master curve predictions for an epoxy resin over a temp-

erature range which included the glass transition temperature, Tg.

Four of these different techniques are given in-the following

discussion.
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1. Tobolsky-Ferry procedure [65, 65]:

D o( TR)
G (38),

aG(T) T -p
GPR

where p and PRare the ,. sities at temperatures T

and TV, respectively.

2. Ferry-Fitzgerald procedure [68]:

D D0(T) D 0°(T I0!

3. Ke procedure [66]:

D o() D0(T R)I•
D°T G• (40)

a T _D°0(T R)
aG D0(T) Do

4. McCrum-Morris procedure [67p:

D 0o(T) F D(O,T) (41)
DO(T R) Do0(T R)

a G(T) H Db(T) D o(T)

The Tobolsky-Ferry and Ferry-Fitzgerald procedures are based

on the kinetic theory of rubber elasticity; the Ke procedure uses
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the initial compliance to define the temperature dependence of aGS

and the McCrum-Morris procedure contains the first three as special

cases by allowing for arbitrary variations of the initial and long-

term compliances with temperature. The most successful of these

procedures is the McCrum-Morris normalization although the specific

reduction technique given by McCrum and Pogany [70] requires know-

ledge of the Initial and long-term compliances which are not always

available because of experimental limitations. Another form of

aG proposed by Schapery and Martin [69] is based on kinetic theory

and is given as

y ln( -

aG(T) (42)eG -T-'-

where y is a factor related to pressure, volume and excess molar

energy and ln loge.

Graphical shift-methods [18) appear to be the easiest proce-

dure for providing the best "average" material properties In the

absence of the limiting values of compliance. The general techni-

que involves the use of Equation (32) by making preliminary esti-

mates of DO and then forming master curves of AD(ý). By using a

smoothing technique, the best master curve may be found by adjusting

the values of the initial estimate of Do.

Analytical representation of time-dependent properties. No

mention has been made up to this point about the representation of

"• . I



27

the relaxation and creep functions in Equations (8) and (9).

According to thermodynamic theory [47], they have the following

time-dependence,

G jkW(t) Cijk + j t/Ps (43a)

ijk(t) Sijk. + Sijkkt + E S ijkk( -( e-t/-s)
s

where the range of the summation index, s, depends on the particular

material, Ps are relaxation times and -s are retardation times. The
00

constants C ijtare elastic moduli which produce long-term stress

response to strains whereas the constants Sijkz are elastic compli-

ances which produce the short-term strain response to stresses. The(S) (~S)
exponential coefficients Cijkn andSiPa the corresponding con-

stants Ps and Ts define the time and rate-dependence of the material.
r

The coefficients Sjk lead to steady-flow under constant stress

such as might be found in uncrosslinked polymer systems.

Thermodynamics gives us the general form, Equations (43a) and

(43b), of the material properties. Although there may be a large

number of time constants as a result of the polymer's molecular

configuration, creep and relaxation functions are often approxi-

mated by exponent'il series [71] consisting of relatively few terms

(typically ten to twenty).

The modified power law [72]

I.:.
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E(t): E E (44)E-
= (I + t o)n

viere E., E0 , T0 and n are independent oF time, often provides an

excellent approximation to polymer behavior above their T Also,

when t/To >> 1 then Equation (44) reduces to

E(t) = E + (E E)( )-n (45)

and further to

E(t) E (- (46)

when E << E A similar form for the compliance is [72]

N(t) D + (+ )n) (47)

where DO, D., To, and n are material properties. If t/T 1

then Equation (47) reduced to

(t n
D(t) = D + (D. - D)(To (48)

and further to

D(t) = D n (49)-r

0

when D >> DO 0. I,;

The forms of Equations (48) and (49) have often been found in
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the literature as

D(t) -o + tn (50)

and

D(t) Datn (51)

respectively. rhese particular forms have been found to represent

the behavior of many rigid plastics with and without reinforcement
S~~[73-761."

i Nonlinecar Viscoelastic Behavior

We have already defined the conditions necessary for linearity,

viz. Equations (8) and (9), and have further co:mented on the use-

fulness of linear viscoelasticity. However, the behavio',- of most

materials is generally nonlinear prior tn complete fracture and,

for some materials, this nonlinearity exists even at small stress

levels well within the design range of structural aDplications.

Therc are many theoretical works on constitutive theory, both lin-

ear and nonlinear, such as those of Green, Rivlin and Spencer

[77, 78], Coleman and Noll [79, 80], Truesdell [81, 82], Wang

[83, 84], Volterra [45], Pipkin [85, 86], Hermann [87], Lianis and

co-workers [88, 89], Schapery [90, 91], Huang and Lee [92], tong

[93, 94], Williams [72), Tobolsky [65, 95], Alfrey [96], Ferry [52'

and others [97-107]. The development of nonlinear constitutive
i, ,.,'.,4

I "

11,'.
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theory hes also resulted in several applications to various mater-

ials such as reported in the works of Findley, Lai and Onaran

[108.I113], Gottenberg et al. [114], Lockett [115, 116], Valanis

and Landel [117], Lee and Huang [92], Schapery [35, 91], Freudenthal

[118], Ward [119-121] and others [122-127]. It would be a formid-

able task to comment on all of these works; therefore, in the

sections to follow, we shall cornment only on observed deviations

from linear behavior and discuss some of the more general approaches

taken to describe nonlinear viscoelastic behavior.

Equations (2) and (3), homogeneity and superposition, respec-

tively, completely define the mathematical rules of linear material

response. Linear, viscoelastic behavior is achieved through the use

of these relationships to derive Equations (8) and (9). Nonlinear-

ity is defined only as the failure to satisfy one or both of these

rules. It is therefore possible for a material to satisfy The

homogenmeity rule and fail the superposition rule [128, 129].

Multiple-;ntegral theorits. Because of its gererality, the

variou; approaches to multiple-integral theory have received wide-

spread attention in recent years. These mathematical theories are

probably general enough to account for almost all types of observed

nonlinearities, but they are very impractical with strong nonlinear-

ities. This type of representation was developed by Green, Rivlin

and Spercor [77, 130] and has been applied Ly several investigators

over the years [110, 119, 124, 131].

Nw
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For the case of uniaxial loading, the multiple-integral repre-

sentation takes the following form,

J KI(t-TI) d T ,+r1  (52)

do(T1 ) dot)
•! K2 (t-T 1 ,t-T. 2 ) -d•----I---- iddT2  +

t

DVdo(T) do -c2) dci-r 3)

:-.•. . ~ where K1, K2 , K3 , ... are the kernal functions containing time (t) •i-

S~and material constants, and r•, t 2 , T3, "'. are the dummy time -

_--• variables of integration. The corresponding creep relation

(constant stress) takes the form

JI

, -Kzto+ K2 (t,t)a2 + :%(t,t,t)o• .+ . .. (53) •

' ~~For a linear viscoelastic representation the higher order kernals •.
wherand KK do not appear; however in publisheapplications of this (t)

theory, the series is usually truncated at three irtegrals fo" the
vrep ese ntation gof tonli Tea or.
Fralna iceatcrepresentation the nhlier orde behvio. als•

K.- nd K3 d notappar; oweer i pulishd'aplictio,.ofthi

theory, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ , th eisisuulytunae tthe reYls-ct h

represntatio ofnnier eair
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In order to define the material behavior one may either solve

the relations by numerical techniques or assume some form of the

kernal functions KI, K2. and K3 . Findley and Onaran [110]used a

product form suggested by Nakada [107] where the kernals take the

form

K1 = 1 (t-TI) (54)

K2 = a 2 (t--Cl)1/2 (t-T2)1/2

K3  OL3 (t-i 1)1/3 (t-, 2 )1/3 (t-T 3 ) /3

where a,, U2 and X3 are material constants. Nolte and Findley

* [1321 have also used creep kernal functions of the form

JA
K, = + B,(t-_,)n (55)

) K2 =2 + 32(t-'ri)n(t-.r2-)n

LK3  c3  + B3(t-Tl)ll(t-'r2nt-T3n

where al, a2, a3, ý11 ý2, 63 and n are again material constants.

A more general form of Equation (55) was recently proposed by

Smart and Williams [133] where the kernal functions may be written
JI

K, = a1 (t-: 1 ) 1  (56)

K2 = 2 (t-1l)P+"(tT 2 )-P

•il • K3 a3(t" t )qln( t- )r(t-3

K 3  "

, , 2-
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with q + r + s 0 and where al, a2, a3 and 1, m, p, q, r and s are

the material constants.

Without going further into multiple-integral representation of

nonlinear viscoelastic materials, one must be impressed at this

point with the complex nature of such an approach. In fact, the

representation of nonlinear behavior often requires more than

three integrals, particularly if a strong nonlinearity exists.

The solution of boundary value problems and the inversion of even

the simplest formulation becomes very involved and complex. In

addition, the determination of the material functions requires an

experimental program consisting of many multiple step loading

sequences. Generally speaking, the multiple-integral approach has

not found its way into serious engineering consideration with regard

to material characterization and subsequent structural otpplications

of composites. As a result we shall not consider this approach any

further.

Sirgle-integral theories. Several methods exio.t which fall

into a class called single-integral theories of no-Alinear visco-

elasticity. The modified superposition principlpc (MSP) was first

suggested by Leaderman [134] who observed that the creep behavior

of certain fibers and plastics could be separated into time and

stress-dependent parts so that the creep response to a stress, o, a

could be written as

t-

mEi
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L DOa +J AD(t-T)-Idt (57)

0

where D0 is the initial value of the compliance, AD is the trans-

ient component of the compliance and g is a nonlinear function of

the stress, a. This theory has met with varying degrees of success,

the accuracy depending on the particular material as well as on the

type of loading. The MSP cannot represent a material which posses-

es permanent miiemory effects which exist as a result of permanent

internal changes such as microcracking.

Schapery [90, 91, 135] used thermodynamic theory to develop a

nonlinear constitutive theroy which has been successfully applied

to several materials [9, 35]. When stress is treated as the inde-

pendent state variable, then the theory can be written as

t dg~a

g aDoo + g1 J AD(ý-,')-- dt (58)

0 I
where D and AD are the initial and transient components of the

linear viscoelastic creep compliance, i is the so-called reduced-

t ;..e defined by

t

0: t ao t')J (59a)

and

I f dt'IP 0 ~(T) (59b).a,, AIt)
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and the material properties go0 g1' g2 and a are functions of

stress. When the applied stress is sufficiently small,
go = gl = g2 = a 1a and Equation (60) reduces to the familiar

Boltzmann superposition integral for linear viscoelastic behavior,
t

D o +4 AD(t-T)d- dT. (60)

The MSP, i.e., Equation (57), Is obtained from Equation (58) by

setting go = g, aa = 1 and 7lowing all of the nonlinearity to be

contained in 92 The stress-dependent properties have specific

thermodynamic significance; changes in go, g, and 92 reflect third

and higher order dependence of the Gibb's free energy on the

applied stress, and a arises from similar high-order effects in

both entropy production and free energy.
A constitutive equation with strain-dependent properties has

also been developed [90] and can be put in the form

-, /dh 6
a = h E + hi AE(p-p')- 2  d-r (61)

with the reduced-time, p, defined as

t

Sdt'

p = p(t) 7 f . (62a)

0

and

P, =P,(T) ~fa6 (t) (62b)2
0
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The strain-dependent properties are hes nh, h2 and a.; variations

of the first three are due to third and higher order strain effects

in the Helmholtz free energy, while changes in a arise from similarC
strong strain influences in both entropy production and free energy.

Schapery's theory involves only a limited amount of experi-

mental testing in addition to that normally required by linear

theory. The determination of the nonlinear properties does not

represent much in the way of additional work, especially considering

the improvement over MSP when significant nonlinearity exists.

Consider the case of a creep and recovery test as shown in

Figure 1, where the stress input is given by

a= 0[H(t) - H(t - t)I. (63)0i

Equation (58) yields the creep strain

g + gDg2AD(--)io 0 - t t' (64)

and the recovery strain

Cr = g[AD(p) - AD(* - i')]oo, t > t' (65)

where in Equation (65)

= ; = + t - t'. (66)a aa U

We have already noted, e.g. Equation (50), that many metals

and plastics obey a power law in time where the transient component

t '..
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Figure 1. Relation between creep and recovery of
a linear viscoelastic material.
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may be represented as

AD(r) .D DIn (67)

where D, and n are independent of stress level and time. Rewriting

Equation (64) using Equation (67) we find

goo+ !1g2 _ (68)
0 00 a n t0a nl

and also by a similar substitution into Equation (65),

Ac
-_ [(I + ax)n - n(a G)n] (69)•r g a - a

where

IA t-(70)

and

AC1 (t') - 0 g D Y' (71)

1 21 0 71

is the transient component of strain existing immediately before

the stress is removed.

Findley and co-workers [76] have found that several of the

material properties obey a hyperbolic sine function as suggested

by Eyring's rate theory,

sinh o/oe a
igo /0 (72a) Mie
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and

g!g 2  sinh cr'am (72b)
an = / /•m
a0  m

where the constants ae and am have values which depend on the part-

icular material. The function g is generally close to go = 1 and

consequently, le >> am for many materials. Schapery [35] has

shown that aa contributes most of the stress dependence in Equation

(72b) with g= g2  1 for a glass fiber-reinforced phenolic

composite.

Lamina Constitutive Theory

In order to study the behavior of laminated fiber-reinforced

composites, it is first necessary to establish the constitutive I
theory of the lamina (or laminae) using linear, elastic, aniso-

tropic theory [24, 25]. We shall first review the basis for elas-

tic theory before proceeding on to viscoelastic behavior and sub-
sequent discussions on structure-property relationships. In des-

cribing the behavior of fibrous composites, it is often helpful to

keep in mind the general nature of the material at hand. Figure 2

shows the surface of a typical glass fiber/epoxy lamina which has

had the epoxy matrix removed by a resin-burnoff process. Evidence

of some degree of fiber misalignment is clearly visible. The fiber

ends are shown in Figure 3, and it can be seen that there are act-

ually groups or bundles of fibers. This is common in glass/epoxy .,A:
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Figure 2. Surface layer of a typical glass-fiber/-
epoxy composite after removal of resin.

V

Figure 3. Glass fiber ends, or bundles after
resin removal.

A .
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composites because of the fabrication technique, but generally does

not exist with boron/epoxy and graphite/epoxy composites.

Elastic Anisotropic Materials

Governing equations of anisotropic elasticity. Since the

principles of anisotropic elasticity represent the foundation for

the mathematical description of the elastic response of composite

materials, the governing equations for this theory will be presented

here,

Using the notation of Timoshenko and Goodier [136] we can de-

note the stresses acting on a small cubic element of the material

In the following manner; the three normal stresses are ax, ay and

Iz and the shearing stresses are y t, xz and •yz where we have

assumed symmetry with respect to Tij Tji. The basic equations of

static equilibrium for an anisotý-opic body are the same as those

given for an isotropic body,

+ + + = 0

ax ay at

a x + z +Y = 0 (73)

ax ay az -

-TX ay + aT Z :. 0

where X, Y and Z designate body forces referred to a unit volume -

in the directions x, y and z respectively. :

I11 _I_1 II__I I47__
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The infinitesimal linear strai',-displacement relations are

defined in the same way as in isotr,..pic elasticity, namely,

=x Lu ; C = L_ w (74)ax-z Dz

Y Lu + ýw ; LW + • aw + A= --a ax -yz ay z xz ax _z

In the conventional engineering definition of strain, the components

are the same as the general tensor notation, e.g. Sokolnikoff [22],

except for the shear strain components which are multiplied by a

factor of 2. Equations (73) and (74) are tensors of order twn and,

along with the boundary c.inditions and constitutive equations, spec-

ify the state of stress and strain at any point within the body.

The transformation relations are found in the reference by Ashton

et al. [2] and will not be repeated here for the sake of space.

Generalized Hooke's law. Equations (73) and (74) are insuffic-

ient to solve problems of equilibrium, motion or stability of an

elastic body without defining the ýelations between the components

of stress, oij, and the strain, F-ij. As in Equations (8) and (9),

we can formulate the relations for in elastic body to obtain

aijn= Cijkzykt (75a)

and

S=ij S (75b)

where the C ijk are the elastic moduli and the Sijkt are the

ijk2
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elastic compliances. Each set of material constants defines a

fourth-order tensor and possesses the symmetry discussed earlier,

namely, Equations (10) and (11). As a result, for a general aniso-

tropic material there are 21 independent elastic constants.

A contracted notation has frequently appeared in the literature.

In dealing with fourth-order tensors, this notation reduces the num-

ber of indices from four to two but expands the range from three to

six. Iii contracted notation, engineering strain is used instead of

tensorial strain. Table I shows the correlation between normal and

contracted notation where eij represents tensorial strain given by

eij = 1/2(ui ' + ui 1) (76)

and the comma denotes differentiation. A mixed notation uscd by

Ashton et al. [2] is also shown.

Table I. Conversion Between Tensor, Contracted

and Mixed Contracted Notations

Tensor Contracted Mixed r2]

022 e 2 2  U2 C2 02 C2

031, e33 (J3 E3 CT 1 E

023 2e 2 3  (N 64 t23  Y23

031 2e 3  05 E 5 T31 Y31

C12 2e 12  C06. 6 6T12 Y12

3.!
- -. i-T- - - --•,
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After changing to the mixed contracted notation, the constitu-

tive relation is given

EI S11 S12 S13 S14 S15 S16 a

M2 S22 S23 S24 S25 S26 02

C3 S 33  S34 S S3 6 03

Y23 S 114 Sis $16 T2S3k ~Sywmetri c

Y12 SG:( Tj1
L-L

"where use has been made of the symmetry conditions. This represents

the most general case of an anisotropic material.

Various kinds of geometric symmetry are often present, which,

in turn, lead to elastic symmetry. Elastic symmetry is expressed

by the property that under certain coordinate rotationr the elastic

moduli or compliances remained unchanged. Some of the constants S

become equal to zero and dependencies appear between other constants.

A inonoclinic material has a single plane of symmetry, which by

selecting a suitable reference system yields

S•1 1  S 12  S1 3  0 0 S1 6  a0 .

('2 S22 S23 0 0 S 2 , 02 I ".

-3 S33  0 0 $36 03 (78)
(78),'•

Y23 S4 4  S45 0 T23
Symmetric

Y31 S55 0 31

Y12 S66 T12
L J
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i - ,dth 13 independent elastic constants.

If an anisotropic material possesses two orthogonal planes of

symmetry, the material is called orthotropic and has the following

constitutive relation

C1 "S11 S12 S13 0 0 0 0

S2 S22 S23 0 0 0 (2

F:3 S 3 3  0 0 0 03

Y23 S44  0 0 T23

Y31 Symmetric S 5 5  0 T31

Y12 S66 T12

with 9 independent elastic constants. This form occurs in many

structural materials such as wood, plywood, fiber-reinforced rubber =

and plastics, etc.

When a material has a plane in which the coefficient matrix is

isotropic, it is called a transversely isotropic material. If we

assume that the y - z (or 2 - 3) plane is isotropic, then there is

no preferred orientation in this plane and the constitutive relation

becomes

C1 S1 1  S12 S12 0 0 0 01

e2 S22 S23 0 0 0 (2

63 S22 0 0 0 3 (80)

Y23 2(S 2 2 -S 2 3 ) 0 0 T23

Y31 Symmetric S66 0 T31

LY12J S661:•'L L'2 $ 12J
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The number of independent Aldstic constants for this material is 5

if we assume that S12 = S2 1 or 6 if complete symmetry is not assum-

ed, e.g.,Schapery [18]. The inverse constitutive relation for the

transversely isotropic material is given by [5]

[I C1 1  C12  C12  0 0 0

(3 C22. C2 3  0 0 0

UiC 22  (10 0 L
(81)

T31 Symmetric %C66  0 Y31

T12 C6 6  Y12

In the case of complete material symmetry, the material is

isotropic and we obtain
=

S1 "11 S12 S12 0 0 0 (3)

2 S1 1  $12 0 0 0

C3 Sil 0 0 0 82)8P2)

Y.3 2(S1 1 -S1 2 ) 0 0 T23

Y31 Symmetric 2(S 1 1 -S 1 2 ) 0

Y12 2(S11-S12) T12 " •'

wiLh 2 independent elastic constants. L',J
L• Engineering constants usually refer to Young's moduli,

Poisson's ratio and shear moduli which can be measured from simple -

tests. The following relations between the components of Si, and
T..
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C (i, J 1, 2, 6) and the engineering constants can be estab-

lished immediately from the nature of uniaxial and 3imple shear

tests for the case of a transversely Isotropic material:

S1, = lI/El

S22 = 533 =1E 2 2

512 S 3 -2 l/E z (83a)

S23 = -V23,1E22

S4.= 2(1 + V3/2

S55 = SGG = I/G12

and

C11  (I -V23)VEI

C2 2  C3 3 = (1 - v 1 2 v 2 1 )VE 2 2

C12  C1 3 = 2 1 (l + v 23 )VE1 ,

=V2(l + V23 )VE 2 2  (83b)

C23  (v2 3 + vl 2 v2 j)VE2 2

SC44 (C2 2 - C33 )/2,

(1 - V2 3 - 2vl 2 v 2 1 )VE 2 2 /2

C 5 5  C6 6  G12

where

V [( + v2 3 )(1 - V23 - 2v 12v2 1 )] (83c)

.=F

A.
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Two-6lmensional composites. Fibrous composites are generally

used in a manner such that the stress state is essentially two-

dimensional. As a result, the assunption:: of plane strain or plane

stress are often invoked. We shall review the constitutive rela-

tions given in Equations (80) and (81) for the transversely iso-

tropic material in terms of plane stress assumptions. This state

exists more often than most since the composite generally is a

thin laminated structure used in plates or shells.

The plane stress problem can be formulated by assuming

03= T2 3 o31 0 (84)

and we note that

Y23 Y31 = 0 (85)

as a result of Equation (84). Equation (80) nov: becomes

rC1 rS1, s1 0 a[,

1:2 1 S S 2 2  0 02 (86a)

Y1 0 $66 1 2

and

[01] [Q11 Q12• I l

[2J Q12 Q22 LF:2} (86b)
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Thus, for plane stress, the Stj remains the same as a three-dimen-

sional material, whereas the Cj must be replaced by a "reduced

stiffness" denoted as the QJj The Qtj (i, J 1, 2, 6) are given

by

i i - (87a)Q i i C3 3 A

where

Q11 Ell/(l " v 1 2 v 2 1 )

Q22 E2 2/(0 " V 12 V2 1 ) (87b)

Q12 = v2 1Ez1 /(l - v1 2 v2 1 ) = v1 2 E2 2 /(l -V2V21)

Q56 = G12

This is the constitutive relationship for a specially orthotropic

material in a plane stress state. It is called specially ortho-

tropic when the lamina principal axes (1, 2) coincide with the

reference axes. When the material axes are referred to any other

direction (x, y) as in Figure 4, the constitutive relations must be

transformed accordingly, e.g. Ashton et al. [2],

C X [Sh1  S12  Sl6 °X

1= s 2  S22  S y (88a)

Y Si6 SI6 S6

and

t ,

_______ __-.__
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where the S and Qjmatrices are now fully populated and the S

and Qjare the transformed compliances and stiffnesses, respec-

tively. Sj and Qjare related to the orthotropic lamina proper-

ties S iand Qjand the angle of orientation of the laniina, 9.

The transformation equations are found in the reference by Ashton

et al. [2] and are repeated here for convenience,

=i' S11cos40 + (2S12+S66)sin 2eCoS2e 4 2 sne

49si~ + (2S12+SGG)Sl n20COS20 + S22COS40

S1(sn0+COS4e) + (S11+S2 - 6 )i 29cos 2e(8)

S6 2(2S11+2S22-4S12-S6S)sin~eo~ +~ S66(sinecs)

S6 2(2Sjj-2S12-S6G)sinecos3o - 2(2S22-2S12-S66)sin 3 ecose

S2 2(2S11-2S12-S66)sin 38CoSO - 2(2S22-2S12-S66)sineCOS3e

and

Q1= Q11COS40 + 2(Q12+2Q66)sin 2eCoS2e + Q22S in4e

Q2= Q11sin 4e + 2(Q12+2Q66)sin2aCoS
2o + Q22 COS40

Q2=(Qll+Q22-4Q66)iG oo~ + Q12(sin 4e+COS4e)(8b

Q66 =(Q11+Q22-2Q12-2Q66)sin~eo 2  + Q66(sin~ecse

Q6= (Q11-Q12-2Q66)Sin6ocos3 + (Q12-Q22+2Q66)Sine9CosO

_- 2 2 _ _ _ _ _ S + _ _ _ _ _ _
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Visccrelastic Composite Material Behavior

The fibers and matrix materials used to form fiber-reinforced

composites are usually assumed by most investigators to exhibit

linear elastic behavior until they fail. In many cases, the matrix

material is actually a viscoelastic material which will exhibit a

significant amount of tirme dependence within certain ranges of

stress and temperature. However, it has only been within the past

decade that serious attention has been given to the viscoelastic

behavior of fibrous composites.

The works of Hashin [34, 137], Schapery [9, 18, 32] and

Halpin [11, 33] have done much to bring out the significance of

anisotropic viscoelasticity. In several recent literature surveys

on fiber-reinforced plastic composites by Beckwith et al. [6-8],

it is evident that these effects cannot be neglected in many design

situations. Experimental studies on the mechanical behavior of

fibrous composites have been reported by Hanson [138], Bott and

Barker [139], Delmonte [140], Zvonar and Tamchyna [141], Martirosian

[39-42] and Ogibalov and Tiuneeva [36, 37]. Some of the work done

in the Soviet Union, namely that of Antans and Skudra [142, 143],

Bulavs and Skudra [144] and Smotrin and Chebanov [145], have

attempted to model the viscoelastic behavior of glass/epoxy compos-

ites using simple spring and dashpot models consisting of only a

few elements typical of a Mdxwell or Voigt model [147]. Perhaps

the best documented work on reinforced polymers done in the Soviet
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Union is contained in Rabinovich [146] and Tarnopolskiy and Skudra

[147]. Both references contain a vast amount of experimental and

theoretical research on glass and cotton fiber-reinforced composites.

Time and temperature dependence are treated by using spring and

dashpot models. In most cases it is difficult to assess the

accuracy of these models since their data do not cover a very

long time scale and is almost always plotted against real time

rather than log time. Bryzgalin [148, 149] used the modified

superposition principle to predict the creep behavior of glass/-

epoxy plates, however, his work is not typical of the main approach

used by Soviet researchers, namely, mechanical modeling.

Kaye and Saunders [150] investigated the creep behavior of a

glass/epoxy laminate in the linear viscoelastic range and over a

small temperature range. They were not able to ascertain the

symmetry of the creep compliance, i.e., S12 : S21, as a result of

experimental limitations. Cessna [151], who studied a glass/-

polypropylene composite and Findley and Worley [152, 153], who

studied a glass fabric/resin composite both used the activation

energy theory of Eyring [154] and the hyperbolic sine law to des-

cribe the creep behavior, e.g. Equation (74).

Schapery [18, 32] has recently reviewed the use of viscoelastic

analysis of fiber-reinforced composite materials and comments on the

techniques required to characterize the material in terms of linear

and nonlinear viscoelastic behavior. Sims [29] and McQuillen [155] . '1
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have also recently applied viscoelastic theory to composite mater-

ials using several approximate methods developed earlier by

Schapery [18, 32].

Linear constitutive theoýr. Throughout this discussion we

shall limit ourselves to the viscoelastic behavior of an orthotropic

material in a state of plane stress, viz. Equations (86) and (88).

However, it should be kepy in mind that the general, three-dimen-

sional state of stress (strain) can be described in a similar

manner for a linear viscoelastic anisotropic material by Equations

(8) and (9).
t 

ak
, k0 & (8)ij Cfijk(t --

and t

1i Sijk(t )-T dT.

In an analogous fashion we can rewrite Equation (86a) as

t t

1 S1 1(t - T).-j-dt +[ S1 2 (t - dT

t t
0f chj +

f s1(t - .r) -D dT S 22 (t - T)- dt (9O)
0 +

t a

Y12 S66(t - )- 2 2  dT

&1

I ' . '_ _ _ I I I I I I I I I I I I I I .
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If the stress inputs are of the type aij cijH(t), i.e., creep

test, then we obtain

C1: S11(t001 + S 1 2 (t)a 2 l

E2 = S12 (t)0 1 + S2 2 (t)a 2  (91)

Y12 S6 6 (tT 1 2

where all of the stresses are time-wise constant. If the lamina

coordinate system is referred to an arbitrary set of coordinates

(x, y) which are not aligned with the principal material directions

C(1, 2) then Equation (88a) becomes

t t t

f Sj~(t-,) --ý- d., + 1.S!2(t-T)~--y dr+ S 16 (t -)-Yd T

(92)

t t t
Cy Sl,(t-T)T dT + S;,(t-T)--2 dT + -T)---- d.

-_• where the Sj are related to the S.. compliances in the same manner

j as given by Equation (89a) except that they are time-dependent. As

Ii ;" °ij~~~in Equation (91), when the stress inputs are of the type: i'Htte ehv

the wh

0 0

S . . . . I
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'x = S;0x + S12ay + S xy

.y Six + S;GG + S•x (93)

Yxy S6x + Oy + xy

The solution of the field equations, e.g., Equations (73) and

(74), along with any boundary conditions and either Equation (90)

or (92) for isothermal conditions can be accomplished with the use

of Laplace transforms in order to reduce the problem to an equival-

ent elasticity problem. This analogy is called the "correspondence

principle" and is limited to problems in which:

1. The boundaries do not move except by infinitesimal

di splacements,

2. the stress boundary conditions do not change to dis-

placement boundary conditions with time, or vice-versa,

and

3. the differential equations relating stress and strain

have time independent coefficients. If the stress-strain

relations are characterized by integral relations, then

the integral relations must be of the convolution type.

This principle was shown by Lee [156] for isotropic media, and by

Biot [157] for anisotropic materials. Unfortunately conventional

Laplace transform inversion is often not feasible because the elas-

tic solution is known only numerically, or is so analytically
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complex that standard methods are not adequate [18]. Schapery

[158] proposed two methods of transform inversion, the collocation

method and the direct method.

Another procedure whirh has been used very extensively is the

"quasi-elastic" method of analysis proposed by Schapery [159).

The method is easy to use in that transform inversion is avoided.

In the most general form, the method is equivalent to approximating

the constitutive Equations (8) and (9) by

Oij(t) • ik()k()(94)

and

where we have assumed it2 ijkt(t)•kL(t9 I
Sijk,,(t) [Cijki(t)] ,. (96)

This procedure has been applied successfully by Schapery [32] and

Sims [29] to fibrous composites.

In terms of general stress and strair inputs, Equations (90)

and (92) may be rewritten as

Cl(t) S-1 (t)o1(t) + S1 2 (t)a 2 (t)

y2 (t) S12(t01(t) + S22(t02(t) (97)

Y12(t S66 ý12(

[253=
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and

C (t) S11(t)o x(t) + S12(t)oy(t) + Sj6 (t)t xy(t

y(t) s 2(t)ox(t) + S22 (t)oy(t) + s26(tl Xy

y(t) S 6 (t)ax(t) + S' 6 (t)0y(t) + S66(t)yt)

Three-dimensional, nonisothermal constitutive equations for an

anisotropic TSM have already been given as

tiCiJk. ( r, - ').--- dT (19b)

and

t
cij f S ijkz( - ' -- -T d (28b.)

0

where i, and r,' are defined by Equation (20). The correspondence

principle exists for a lSM if the temperature is spacewise constant;

however, it may be transient as long as the first condition is

satisfied. When the temperature is both transient and spacewise

nonuniform, then the correspondence principle does not exist. When

the material is a TCM of the form of Equation (37), then the corres-

pondence principle is similar to that for a TSM where all the

stresses are divided by aG. The same conditions required by a TSM .•

must be met by the TCM [18].

If one (or more) phases of the composite is of the type TCM-2,

then a correspondence principle does not exist under transient
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temperatures. The overall composite behavior will generally be

more complex than TCM-2 under these conditions. Schapery [18]

discusses several other aspects of nonisothermal behavior of com-

posite materials in terms of predicting effective properties.

Nonlinear constitutive theory. We shall follow the previous

definition of material nonlinearity, i.e., failure to satisfy

homogeneity and/or superposition. In some fibrous composites one

important source of nonlinearity appears to be the growth of

cracks as part of the phenomena we shall call microstructural

damage. These cracks are generally a result of the fabrication

process and the mismatch in physical and mechanical properties of

the matrix and fiber. The latter problem leads to significant

thermal, or residual, stress in the matrix material surrounding

the fibers [160] and is further aggrevated by the high volume

fraction of fibers which creates triaxial stresses between the

fibers. This damage and consequent nonlinearity may be quite sig- A

nificant at relatively small strains (stresses) compared to ultimate

values. In particulate composites, e.g., solid propellant, an

advanced stage of crack growth causes a large amount of measurable

dilatation [161, 162]. Studies on several glass/epoxy and graphite/-

epoxy composites by Beckwith [163] at room temperature on both

laminae and laminates show no detectable (greater than 0.1% volume

change) dilatation prior to ultimate failure.

Lou and Schapery [9] and Schapery [35] have reported reversible

S-.4
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nonlinearities in glass/epoxy composites due primarily to highly

stress-dependent viscosity behavior. Their experiments were con-

ducted after mechanically conditioning the specimens until crack

growth effects reached a steady state, i.e., damage reached a con-

stant. No attempt has been made to date to explicitly predict time-

dependent microstructural damage using experimental data from fib-

rous composite materials.

Figure 5a shows the forward dome of a typical solid rocket

motor case made from a glass/epoxy composite. A closeup view

(Figure 5b) shows the winding pattern and the light areas represent

regions of visible damage after the pressure vessel has been loaded

just short of failure. The light areas represent severe damage as

evidenced by very fine c-acks in the epoxy resin, limited fiber

fracture, and delamination. The fiber fracture, which is presumed

to occur only in areas where the local stress is close to the ult-

imate fiber strength, is shown in Figure 6 for a graphite/epoxy

composite [12]. Matrix failure and interfacial adhesive failure is

clearly visible in another region of the same composite as shown

in Figure 7. Microstructrual damage of this type as not always as

severe as shown here; however, the same mechanisms are thought to

exist at very low stress (strain) levels within most structural

composites in use today.

Perhaps at this point we should recognize that there are

additional classifications of viscoelastic materials and divide

IwL1
p - - - - -
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Figure 5. Section of solid rocket motor case (a) showing p
winding pattern and (b) hydrotest damage.

I
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Figure 6. Evidence of fiber fracture in graphite/-
epoxy composite.

Figure 7. Matrix failure and interfacial adhesive
failure in the same composite.
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them into categories of -fading memory and nonfading or permanent

1. Fading memory viscoelastic theories are valid for

viscoelastic materials whose time effects are

reversible, such as those caused by internal vis-

cosity effects.

2. Permanent memory viscoelastic theories are required

for viscoelastic materials possessing additional

time effects or memory phenomena not caused by in-

ternal viscosity and are more permanent in nature,

e.g., microstructural damage.

A single-integral, fading memory representation was used by

Lou and Schapery [9] to characterize a glass/epoxy composite in

the absence of significant crack growth and similarly by Schapery

[35] on a glass/phenolic fabric composite. Equation (60), along

with Equations (61), (69) and (74b), were used to describe the

material behavior. It was found that the nonlinear, uniaxial creep

compliances obeyed a power law in time with the exponent being

independent of fiber orientation and stress level. The nonlinear

material properties, e.g., gOR g1, g2 and a , depended mainly on

the average octahedral shear stress in the matrix. They were able

to determine the principal creep compliances, e.g., S11 (t), S22 (t)

and S12 (t), directly from experiments and calculated S6 6 (t) using

fourth-order tensor transformations and additional creep

_ __ _
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compliance data. In [164], some preliminary work was done to

relate the viscoelastic behavior at various temperatures using

the Arrhenius form of aT given by Equation (24). Additional work

done on a graphite/epoxy in [12] gave similar results, indicating

good agreement when T < T . The main conclusion appears to be that

the single-integral, fading memory representation used in [9]

describes the material behavior only in the absence of time-depend-

ent microstructural damage. A constitutive theory which contains

permanent memory effects is needed to describe the behavior of

fibrous composites which generally exhibit time-dependent crack

growth. There are currently two approaches to modeling this type

of behavior; the theories put forth by Farris [44, 58, 128, 129,

161, 162, 165, 166] and those by Schapery [12, 19, 20].

Fitzgerald and Farris [44] proposed the theory originally

for filled elastomers such as solid propellant. Farris successfully

applied the theory under isothermal [44, 165] and, subsequently,

nonisothermal [58] conditions. Farris based his theory on a linear

cumulative damage model (viz. Miner's law) for the failing micra-

structure using the form

n
DIMt E• (t k/tfk) (99)

k~ 1

where D'(t) is the accumulating damage, tk is the time the sample

spent at strain level ck and tfk is the time-to--failure for the

I-



65

constant history of strain level ek. An important parameter in

this theory which results from Equation (99) is the so-called pth

order Lebesgue norm of strain,

H ll 1C~t.)IdtJ (100)

where J•- is the absolute value of strain. By judicious selection

of the Lebesgue norm functions, one is able to satisfy the propor-

tionality (homogeneity) condition, but not superposition. This

behavior is similar to that seen in fiber-reinforced composites

except that stress, rather than strain, is the predominant factor.

Motivated by these results and his own earlier work, Schapery et al.

[12, 20] used fracture mechanics, which resulted in Lebesgue norms

of stress, to model the microstructural damage in composite

materials.

The basic mathematical concepts which describe the crack

growth behavior in viscoelastic media are presented in [19]. Using

these concepts, Schapery [20] developed the constitutive equations

for particulate composites, viz. solid propellant, with micro-

structural damage. The theory was developed to predict micro-

structural damage effects during the initial stages of crack growth,

prior to extensive dilatation within the propellant. It was

assumed that the cracks propagated in an "opening mode" and that an

initial distribution of cracks existed within the matrix, or
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possibly between the matrix and filler particles. It was further

assumed that during most of the time required for local fracture,

the creep compliance is given by the power law,

Dm = D(t/a) (01)1 T
where D, and n are material constants. Fracture mechanics pre-

dicted Lebesgue norms of stress, Jiaj p, rather than strain, appear

in the general constitutive theory.

If linearity for a fixed crack length is assumed, then the

total strain is the sum of the strain due to the externally applied

stress acting on the undamaged composite material plus the strain

due to microcracking. The resultant constitutive relation is

given by

D . d I +- G~g~g] g11 , (102)

ýO g

where t. and ' take on the normal definitions for reduced-time, viz.

Equation (20), G(g) is a distribution function which reflects the

distribution of the crack lengths and stress concentrations in the

matrix, and

g, g(') MI/n a dl (103)

where

I
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g(1) (104)

The exponent q is given

q 2(1 + l/n) (105)

and Iol 1Mq is a "weighted" Lebesgue norm where M : M(Q) accounts

for aging and rehealing effects. In the absence of these effects

M is unity.

Equation (102) may be rewritten as

du
Dm(E -' d&' (106)

where aef is the "effective stress" seen by the material and is

given by

0e a]+ jG(g)dgj (107a)

or,

0ef all + fI aJ • (107b)

The effective stress exhibits both time and temperature dependence

in the usual manner but also is stress-dependent through the

Lesbegue norm function represented by fljoll. It may also be con-

venient to work with the inverse relationship given by

".F



68

Eef t- dr' (108)

The constitutive theory represented by Equations (106) and (108)

was developed under the assumption that the particles are rigid

relative to the matrix. Therefore, the crack growth is governed by

the stress intensity factor and fracture energy associated with

the matrix material. The theory represents the condition of cracks

which are initially isolated frum each other and do not interact.

It has been found that the cracks actually interact in some

materials depending on the constituent material properties.

Studies using a scanning electron microscope on graphite/eooxy and

glass/epoxy composites show that a crack arrest mechanism is present

under certain loading conditions [12]. Figures 8 and 9 show the

crack arrest mechanism and the degree of fiber bending present in

an E-glass/epoxy laminae which has been subject to a stress normal

to the fibers.

Motivated by this possibility, Schapery et al. [12] studied the

effects of fiber bending on the overall strain energy release rate

as a function of the loading condition and composite properties.

The energy associated with matrix stretching wes ultimately neglect-

ed and the effects of fiber bending and shear stress were used to

model the crack growth. Equation (101) was again used to model the

mimatrix creep compliance and the distribution function representing

! .'
I
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o I

Figure 8. Crack arrest mechanism in an E-glass/epoxy
composite subject to tensile stress [12J.

_ =_

Figure 9. Enlarged view (220X) showing presence of
significant fiber bending [12].
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crack lengths and stress concentrations was assumed, as an example,

to be

F1 = K1rp (108)

where K1 and p are positive constants with p>l. The model

allows for the possibility of crack arrest, a phenomenon which is

clearly evident in the behavior of multiple cycle .creep and recov-

ery tests on fibrous composites [12, 167] in which most of the

damage is done during the first loading cycle.

T The principle compliance parallel to the fibers, S,,, and. the

Poisson's ratio for loading in the fiber direction will not be

affected by cracks parallel to the fibers. Therefore, as long as

appreciable fiber failure does not occur, the principal stress-

strain equations are identical to those for linear viscoelasticitv

except for additional terms of Ay12 and C2. Hence, the principal

relations are

St t

i Si(t-T)J- d + S12(t-T)-T dT

00

t t
di f S22(t

=S + fS22 (t-T)"-rdT + AC2 (1o9)
0 0

t

-. I.Y 12 J S66(t-T)--~-- dT + A'y12
0 W

LI..
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As an example [12], we can rewrite the shear strain as

Y12 =f s*6(.t-T)-T• (110)

where S6* is the principal nonlinear compliance, and is given by

SDmKI 4Asin4 + Bsin 2 2e n n t 2pS6 s6G + Tp- 4M2°o ( )4r-p

for the case of a uniaxial creep test where a = (oH(t). In

Equation (111), r is the fracture energy of the matrix, and A and B

are constants which depend on the constituent properties and frac-

ture properties. Their explicit definition is given by Equation

(39) of [12].

Neither theory, Equations (102-108) or Equations (109-111),

has been compared with a specific fibrous composite material al-

though they appear to be general enough to predict the types of

nonlinearity presently observed.

Structure-Property Relationships

Micromechanics deals with the mechanical interaction between

the constituent materials of a composite. The study of micro-

mechanics of composite materials has received considerable atten-

tion since the early 1960's in an attempt to relate constituent

properties to the overall, macromechanical response of a single
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In the subsections which follow we shall discuss some of the

aspects of current micromechanics theory, paying narticular atten-

tion to the relationship between the constituent properties and the

overall response observed experimentally.

Basic assumptions. There are several basic assumptions which

are cowmion to almost all of the theories presently in use today

with regard to elastic behavior, namely:

1. The ply is macroscopically homogeneous, linearly

elastic and orthotropic.

2. The fibers are linearly elastic and homogeneous.

3. The matrix is linearly elastic and homogeneous.

4. Both the fiber and matrix are free of voids.

5. There is complete bonding at the interface of the

constituents and there is no transitional region

between them.

6. The fibers are (a) regularly spaced and (b) aligned.

7. In-situ mechanical properties are the same as the

properties of the constituents when not in the

composite.

In general, it is realized that the lamina often exhibits

behavior which is nonlinearly viscoelastic, particularly at high

stress levels and temperatures. There are, of course, a great

number of possible deviations from these assumptions and the net

result is an abundance of theories based on relaxing one or more
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of the basic assumptions.

Prediction of effective properties. We shall not attempt to

critique the various inicromechanics theories since time and space

do not permit even a minimal treatment. The interested reader is

referred to several excellent critiques of the area given by

Chamis and Sendeckyj [169], Ashton et al. [2], Pagano and Tsai

[170] and others [171, 172). The various theories which have been

proposed to date can be classified as follows: netting analysis,

mechanics of materials, self-consistent models, variational methods,

exact (elasticity) methods, statistical methods, discrete element

methods and semi-empirical approaches. An exhaustive bibliography

of many of these theories can be found in [6-8, 169] and will,

therefore, not be repeated here.

The prediction of the longitudinal composite properties,

viz., E1l and v12 , has generally proceeded along the classical lines

of parallel element models [137, 173-176]. The longitudinal com-

posite modulus, E11 , is given by [137, 174]

VEf +vE, +vvG [G - 2 (113)

E11 f vf f + vine l + " Vn f m v m G-- -- fGr.m m mf+ VmfGm ]

where E is the modulus of elasticity, G is the shear modulus,

K is the plane strain bulk modulus, v is the volume fraction, and

the subscripts f and w signify the fiber and matrix respectively.

ii'
r-
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Hill [174] demonstrated that El1 is actually bounded from below by

the "rule of mixtures" and that the last term can be neglected such

that

Ell= vfEf + VEmE . (114)

Tsai [172] allowed for the possibility for fiber misalignment by

applying a correction factor to Equation (114)

Ell = k(vfEf + VmEm) (115) ]
however, the value of k is often very close to unity for present

composites considering the fabrication techniques used.

The major Poisson's ratio, v 12 , was also derived in a form

similar to Equation (113), namely, [137, 174]

V Vin - m - KfK

V12  vfVf + i Vvf + fIV~inL (116)

where v is Poisson's ratio and the other symbols are the same as

previously defined. Again, neglecting the last term we have

\)12 Vff + vmvm. (117)

Most experimental evidence indicates that the "rule of mixtures"

representation, viz , Equations (114) and (117), are auite accurate

for the calculation of E1l and V1 2 respectively. Extension to

;t
.°-4
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include viscoelastic behavior can be readily accomplished using

the quasi-elastic approach,

E11 (t) V fEf(t) + VmEm(t) (118a)

and

v1 2 (t) Vfvf(t) + vrIv.n(t) (l18b)

where, for most advanced composites, the properties of the fiber

are takpn to be independent of time, except possibly at very high

temperatures.

The representation of the composite transverse modulus, t 2 2 ,

and shear modulus, G1 2 , is not quite so elementary; also, these

properties are much more sensitive to voids and fiber geometric

arrangement. Many investigators have looked at square arrays, rec-

tangular arrays, hexagonal arrays and random fiber geometries in

various attempts to model the actual behavior. Halpin [171] and

Ashton et al. [2] developed some approximate forms based on

Herinan's work [177] who originally used a method developed by

Kerner [178]. These equations are based on the application of

semi-empirical adjustment factors to the theoretica* representa-

tions of the orthotropic engineering parameters. These adjustment

factors depend on the fiber geometry and spacing and can possibly

account for void and microstructural damage effects. The "Halpin- L

Tsai equations" are given by

•i:, _ . . . _ -. _.4••• •- :•:--•-• •'::'••;;--' - • - : _•_ •7
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E = E f(l+"4EVf) + 4EEm(l'vf) (119a)

G12 = Gm Gf(l+-Gvf) + EGGm(l-Vf) (119b)SGf(l+vGf) + Gm(l+vf)l

where Eand are the adjustment factors. Reliable estimates for

the 4-factor can be obtained by Equations (ll9a) and (119b) with

various numerical micromechanics solutions. Typical values for

elastic compusites are 4E = 2 and 4G = 1 [2]. Deviations from

these values account for differences in the assumed microstructural

arrangement of the fibers and microstructural damage. As in

Equation (118) a quasi-elastic viscoelastic solution may be ob-

tained as

II r E~t)(l+E~ f + EEm(t)(Il-vf)"

i E22(t)' Em(t) [ f(t)(1+4vf) + EEm(tl(E+Vf) J 120a)
(t (10a

t Gf(t)([+iGVf) + 4GGm(t)(1-vf)] ( bG12_t Gin(t) G )lv~f4G~)(rf)= 1 20b)

where we can normally assume that Ef and Gf are independent of tiiwe.

The principal elastic compliances S1 1, S22, S12 , and S6 6 can

be found by applying Equation (83) to the engineering properties.

Corresponding viscoelastic compliances are derived by using Equation

(83) and the quasi-elastic method to obtain S1 1 (t), S2 2 (t), S: 2 (t)

Lnd 5.(t) We ran also include temperature dependence by using the
U 

I-.o' •

SI ;t:
It :
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reduced-time, ., provided we do not violate the correspondence

principle discussed earlier. Halpin [33] has used the Halpin-Tsai

equations to predict S?,2 and Sf for a viscoeldstic rubber rein-

forced with unidirectional, nylon fibers over a temperature range

using isothermal data. Sims [29] has also employed these relations

analytically to calculate the relaxation moduli for unidirectional

graphite and boron fiber-reinforced epoxy composites.

Laminate Constitutive Theory

The behavior of laminated composite materials is directly

related to the response of the various laminae after taking into

account the geometry and individual properties of the layers.

Laminated composite theory i; given in Ashton et al. [2], Ashton

and Whitney [27], Ambartsumyan [26], and Lekhnitskii [25] for

elastic materials and may be extended to linear viscoelastic be-

havior by using the correspondence principle or the quasi-elastic

approach.

A typical laminate consisting of n layers, or lamina, is

shown in Figure 10. The strain-displacement relationships are

generally derived for small deformations of the laminate and are

written in terms of the midplane strains and the plate

curvatures kx, ky and kxy as follows,

.r
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CO v_ k0 (121)

x~y Dy ax kxy _ýa

where u0 and v. are the midplane displacements and w is the trans-

verse displacement. The strains in any given layer are related to

the midplane strains and curvatures in Equation (121) by the

relationships

. + zk
X X X

r Ey + Zky (122)

Yxy Yxy k

where z is the coordinate distance measured perpendicular to the

laminate reference surface as shown in Figure 10.

Elastic Orthotropic Materials

Under the assumption that plane sections remain plane the

constitutive equations for an elastic, orthotropic laminate con-

sisting of n laminae having the constitutive relationship which

obeys Equations (88b) and (89b) are given as (see, for example,

Ashton et a!. [2]),



N× A 11 A12 AIG B11 B12 B16 E

N A12 A2 2  A2 6  B12 B22 B2 6  °

y y

N A16  A2 6  A6 6  B16  B26 B66 Y'

- - - - -- - L - - - - - -(123)
K. B11  B12 B16 D11  D12  D16  k

X
M B12  622 B26 D1 2  D2 2  D26 k

M B1 BI 26 BeG 6 D 6  D2 6  D6 6  k
xy xy

where Nx, N and N are the in-plane forces (stress resultants)

and M My and M are the moments (moment resultants) given by

h/2 h/ 2

Na dz M u zdz
Nx = xd Mx = x~d

-h2  -h 2

h/ 2  h/2

N oydz (124a) My ayzdz (124b)

hih/h/2 h/2

N xy f.•h/o rxy dZ M xy = /h/-2 -,xyZdZ

The quantities Aij, Bij and Dij are the laminate extensional stiff-

nesses, coupling stiffnesses and bending stiffnesses, respectively.

These laminate stiffnesses can be defined in terms of the lamina

stiffnesses given in Equation (89b) as
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Aij = (Qij)k(hk - hk.I)
k~ 1

n
• ~22

B I (Qij)k(hk - hk 1 ) (125)Bij 21 Q'~~~

k=1

n

Dij 31E (Q1  k(hk hk-

where hk is the coordinate distance to a lamina from the reference

surface as shown in Figure 10. The Qi. 's are the transformed

stiffnesses which depend on the orthotropic larmin. stiffness and

the angle of orientation of the lamina as shown in Equation (89b).

The most important feature of Equation (123) is the coupling

phenomena which exists between stretching and bending through the

Bij matrix. If the (Q k is an even function of z (symmetric

layup of the laminate), then Bij = 0 and coupling is eliminated.

Many laminates are constructed in this manner and, therefore, the

governing constitutive equations are considerably simplified.

Viscoelastic Orthotropic Materials

The constitutive equations for a linear viscoelastic laminate

can be formulated by replacing the products of the time-dependent

quantities in _'quation (123) by superposition integrals of the

formn

• ..
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t

Aij = A° (t - T)a•- dT

fI = B[ (t- hk -dT (126)

t

0

and, similarly,

n

A ij(t) 1 Qij(t)]k(h - hk-l)
k=l

it) [Qij(t)]k(hk - hk_) (127)

k=l

n

i* *t) [Q! (t)]k(h' h'1
k~ 1

wherL the 0 '- ',rc the timne-dperpdent transformed stiffnesses

defined by Equation (89b).

Jn the application of Equations (123), (126) and (127) for the

solution of many viscoelastic problems, the procedure often becomet

time consuming. Under certain conditions when the time-dependent

material functions or input quantities are slowly varying functions

of time, the convolution integral may be omitted. The quasi-elastic

approach used earlier to derive the lamina constitutive equai.ions
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may also be used here. The procedure involves direct subL, iltionrr

of the time-dependent properties of the Ai', B' and D r'. tri(e;.

Structure-Property Relationships

In order to apply the micromiechanics theory derived e,-lier r

to the behavior of the laminate, it is necessary to establish the

relation between the ii and Qij' These relations are given in

[2] as

SlSI 2 2 -12

;I~ Q22 -- 2
i~i SlIS22 - S12:

where S S), $, Si and S(;-, may either be measured directly or

predicted by Lhe various micromechanics theories already discussed. i

The Halpin-Tsai relations, Equations (114), (117) and (119), are

often used because of their relative simplicity. We may also

relate the Qij to the common engineering constants and apply the K,:

Halpin-Tsai relations directly, [2]

J_,
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El
°. 0~11 V 12V21

E2 2

Q22 1 - 2V21 (87b)

21 112
Q12 V12V21- - v1 2 2

Q6G = 21

In either case, the application of the quasi-elastic approach to

the solution of viscoelastic problems proceeds by inputting time-

dependent properties in Equations (128) and (87b) by using, for

example, time-dependent Halpin-Tsai relations, Equations (I18)

and (120).

EL
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SECTION III

MECHANICAL CHARACTERIZATION TESTS

The experimental program was designed to provide the necessary

isothermal data required to evaluate the effective (overall) lam-

inate stiffness of a typical glass/epoxy composite material. The

glass/epoxy fibrous composite studied is currently being used in

the construction of the third stage Minuteman III solid rocket

motor case. State-of-the-art filament winding techniques are used

to fabricate the actual case. The basic barrel (cylindrical sec-ii tion) consists of 14 layers of hoop-oriented S-901 glass wraps and

8 layers of glass wraps oriented 14.63c to the longitudinal motor

axis. The 5-901 glass filament rovings are used in a tape prepreq

system consisting of a Shell 58-68R epoxy resin.

Glass cloth is interwoven between hoop layers at the barrel

ends to provide stub skirts for attachment purposes. In the for-

ward and aft dome regions the fiber or wrap angle is variable be-

cause of the shape of the end closures. The geometry is further

complicated with the provision for six thrust termination ports in

the forward dome. These areas are reinforced locally with a glass

tape/epoxy during the winding process.

As a result, the effects of both variable thickness and wrap

angle must be taken into account in the forward dome area in order

'Formerly designated as S-HTS or S-994-HTS glass. Owens-
Corning Fiberglas Corporation trademark.

L:
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to determine the effective stiffness as a function of the fiber

angle. In the discussion of effective stiffness in Section II it

was noted that the controlling factors are primarily constituent

properties, volumetric content and stacking sequence. The fiber

content may be somewhat variable in the dome regions due to the

fabrication technique which causes both fiber slippage ("Qaps")

and shingling ("overlapping"). Current motor case analysis con-

ducted by the Aerojet Solid Propulsion Company (ASPC) 2 assumes a

nominal 65.7% fiber content (volume) as representative of the

actual motor case [17].

The mechanical characterization tests described in this section

were conducted in a manner that would permit the evaluation of the

effective stiffness in the glass/epoxy composite as a function of

Fiber angle, stacking sequence and load history. The effects of

multiple loading cycles, typical of the prooftesting of glass/epox)'

rocket motor cases, and temperature were considered in the latter j
area.

Materials and Equipment

Materials

The prediction of effective properties through the use of the

Halpin-Tsai Equation (119) and other associated micromechanics

theories rely very heavily upon accurate measurements of the

:'Aerojet Solid Propulsion Company, Sacramento, California.

i.I



constituent properties. In the glass/epoxy system, the glass fiber

properties are generally assunmed to be linearly elastic up to fail-

ure. Epoxy matrix properties, on the other hand, exhibit consider-

able time and tem~perature dependence.

The materials tested were representative of both the consti-

tuent materials as well as the actual rocket motor case. Four

materials were used in the experimental program:

1. Shell 58-68R epoxy resin.

2. S-901 glass/Shell 58-68R epoxy resin unidirectional

composite laminae.

3. S-901 glass/Shell 58-68R epoxy resin composite

laminates.

4. S-901 glass/Shell 58-68R epoxy resin laminate

sections removed from a third stage Minuteman III

solid rocket motor case.

The first three materials were fabricated by Structural Composites

Industries (SC) 3 for the experimental program and furnished under

a subcontract with the ASPC. All of these materials were made

according to the current ASPC specifications pertaining to the

materials preparation and method of construction as actually used

in the third stage Minuteman III motor case.

Epox resin. The Shell 58-68R epoxy resin system was orig-

inally developed by SCI in the early Polaris solid rocket motor

3Structural Composites Industries, Azusa, California.
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cases and has been used by NASA in several filament-wound tank

applications for cryogenic fuels [179,180]. The epoxy system used in

our tests employs the standard formulation given in Table 2.

Table 2. Ingredients of Shell 58-68R Epoxy Resin [181)
Formulation:

Material Parts by Weight

Epon 828 50

Epon 1031 50

Nadic Methyl Anhydride (NMA) 90 ± 5

Benzyldimethylamine (BOMA) 0.55 ± 0.05

The epoxy mixture was prepared by mixing the Epon 828 and

Epon 1031 components in an oven at 150 0F and then blending them

together once the Epon 1031 was completely melted. While the

components were still warm, the NMA (curing agent) and BOMA

(accelerator) were added separately and mixed thoroughly after each

addition. The resulting mixture was placed in a vacuum bell jar

in order to remove any entrapped air bubbles.

After the initial mixing and degassing, the epoxy mixture was

poured into flat casting molds with 8" x 8" x 1/8" dimensions,

Sufficient quantity of the epoxy was prepared to cast three sheets

from the same batch. The molds were then placed in an oven in a r

vertical position and cured for 2 hours at 200*F and then 2 hours at

3500F. Upon removal from the molds, the plates were visually estab- ,

lished to be void free and found to have a uniform thickness of

A
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0.125 ± 0.003 inches. The density of the cured plates, measured

by water displacement method, was found by SCI to be 1.24 grams/cc

[181]. This is consistent with other studies using the same resin

system with slight variations of cure times and temperatures

[179, 180].

Glass/epoxy composites. Both the unidirectional laminae and

the composite laminates were prepared by using the Shell 58-68R

epoxy resin and Owens-Corning S-901 Glass roving (20-end)4. The

20-end roving is used in the actual motor case because experience

has shown it to have a higher strength than the 12-end roving

which is also available [179].

All prepreg broadgoods materials required for panel fabrica-

tion were prepared by a drum-winding process. This process involved

winding the S-901 Glass roving onto a Mylar-film-lined, 24-inch

diameter cylinder at a controlled winding speed and load, and then

applying a quantity of the Shell 58-58R epoxy resin uniformly over

the entire surface. The amount of glass roving and epoxy required

for the prepregs was precalculated to yield a desired ply thickness

and glass volume percent close to 65% in the molded panels. To

facilitate processing, a 50% resin solution was made in methyi-

ethyl-ketone (MEK). Residual solvents in the prepregs were removed

by heating in an oven at 150°F prior to the final layup.

4An "end" is defined as the smallest commercially available
bundle of glass filaments; each "end" generally consists of 204
monofilaments in a single, continuous, untwisted strand.
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The prepreg broadgoods were cut into 13-inch strips with the

fibers running at the required angle of the molded panel. Single

ply patterns approximately 13" x 13" were cut and fifteen (15)

plies were laid up in a single stack. All panels, unidirectional

and laminated, had fifteen plies such that the outer layers were

oriented in the same direction in order to reduce warpagc during

the curing process. The plies were also stacked symmetrically

such that the bending-stretching (coupling) stiffness, Bij, is zero.

The prepreg plies were laid up on polished aluminum plates, covered

with a Teflon-impregnated release fabric, followed by another

13" x 13" x 0.065" aluminum cover plate over the outer layers, and

then subsequently covered with 2 plies of glass bleeder cloth.

The entire assembly was bagged with a Nylon film and placed in an

autoclave for cure. Curing was executed for 2 hours at 200OF and

then 2 hours at 350OF in a 75 psig autoclave pressure in addition

to the vacuum-bag pressure.

The cured panels were inspected for visible defects. The

panel thickness was measured at 25 locations and then trimmed to a

net delivery size of 12" x 12" x 1/8". Unidirectional glass/epoxy

panels were fabricated at fiber angles of 0, 20, 45 and 90' while

the laminated glass/epoxy panels were made in symmetric layups of

0/90, ±10, ±30, ±45, ±60 and ±800.

Filament-wound case materials. The third stage Minuteman III

solid rocket motor case is shown in Figure 11. The motor shown is
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instrumented and being prooftested by ASPC prior to casting the

solid propellant. The barrel section along with the strain gage

instrumentation can be clearly seen. Figure 12 shows the section

of the forward dome which has been removed from the barrel section.

The thrust termination ports and igniter adapter are shown in more

detail. In Figure 11 they are hidden by the interstage assembly

in the forward end of the mot.v ase. A closeup of the area be-

tween two of the thrust termination ports is shown in Figure 13.

In order to make a comparison between the effective stiffness

of the composite plates and the actual motor case, the ASPC furn-

ished both the forward dome (Figure 12) and the aft end of a third

stage motor case which had undergone prooftesting ("hydrotesting").

Although the effects of the hydrotesting damage may be significant

with regard to the first loading cycle, the results of subsequent

loading cycles (second through nth cycle) could be compared directly

with the glass/epoxy plates fabricated by SCI. For these series

of tests the forward dome was chosen since the aft end has an

outer layer of cork insulation which could not easily be removed

without damaging the case material.

Samples were obtained from an area between two of the thrust

termination ports similar to that shown in Figure 13. In this

region the motor case does not possess mid-plane symmetry since

there are eight (8) alternating layers and hence B 0. The

fiber angles of samples taken from the meridional and

I "Z
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Figure 12. Forward dome section of the third stege
Minuteman III solid rocket motor case.

Figure 13. Closeup view of the case region near
a thrust termination port.
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circumferential directions were approximately ±20 and ±70°

respectively.

Aluminum. A 6061-T6 aluminum plate was also used as a refer-

ence material for comparison with the glass/epoxy plate tests

which are discussed in a subsequent section.

Specimen Preparation

Uniaxial tensile coupons. The majority of the tests conducted

during the course of the experimental program utilized uniaxial

tensile coupons cut from the plates fabricated by SCI. Sample

preparation technique for both the Shell 58-68R epoxy resin and

S-901 glass/Shell 58-68R epoxy resin materials was the same.

The surfaces of the plates which were to be used wcre first

taped completely with masking tape. A sample layout corresponding

to the desired fiber angle and coupon dimensions was drawn directly

on one taped surface. All sample dimensions were drawn slightly

oversize to allow for final trimming. Using a tungsten carbide

band saw blade and a slow band speed, the samples were rough cut

from each plate used in the tests. After carefully removing the

masking tape, several samples were mounted in a vertical mill and

machined to the final dimensions using a fly cutting attachment.

Visual inspection of the sample edges showed little damage from

the cutting operation provided the cutting tool was resharpened

after each surface was completed.
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Several sets of samples were prepared from the SCI plates at

different fiber angles, o, with the emphasis placed on the off-angle

specimens (0Q - o - 900). These latter specimens exhibit significant

creep and nonlinearity. All of the samples were cut to the nominal

dimensions of 6" x 1/2" x 1/8".

Specimens for the failure tests, constant crosshead rate tests i
and the creep und recovery tests required end tabs to be bonded to ]
coupons in order to transfer the applied load to the specimen. I

Aluminum end tabs were sandblasted and bonded to the coupon ends

using Micro-Measurements' M-Bond AE-155 adhesive cured under slight

pressure for 2 hours at 170 'F. Th{ end tabs for the constant cross-

head rate tests were bas.ically 5' wedges measuring 1.5" x 1' x 1/8"

and the tabs for the failure and creep and recovery tests measured

I" x 5/8" x 1/8" with the edge tapered to about 20-30' (Figure 14).

Different types of tabs were used because of the difference in

grips.

Tensile coupons used for the creep and recovery tests were

loaded by means of pin-connected grips while the constant crosshead

rate coupons were held by a set of wedge-action grips. In order

to reduce the possibility of load-induced bending due to any pin

nmisalignment, an alignment fixture was used to clamp and align the

ends while a 1/8- or 3/16-inch hole was drilled through the tabs. 4

These holes were actually drilled slightly oversize to accommodate

SMicro-Measurements, Romulus, Michigan.
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the pin easily. The larger pin size was used for the higher loads

to prevent pin failure.

All of tne samples were strain-gaged using standard techniques.

The same adhesive system and cure conditions used to bond the end

tabs was employed during the strain-gaging. Axial strain was ineas-

ured by two Micro-Measurements' strain gages, type EA-06-125BZ-350.

They were bonded along the longitudinal direction of the sample

(Figure 14), one on each side, and connected to the signal condi-

tioning systei individually so that the strain on each gage was

known at all times in order to assess the effects of bending, if

present. Some of the epoxy specimens, as well as the e = 9' and

e = 900 glass/epoxy specimens, were strain-gaged with the type

EA-06-100VA-350 gages. These gages had an additional transverse

gage for measuring Poisson's ratio, v, in the epoxy resin, and

u:;, and V21 in the glass/epoxy for the two respective fiber angles.

Beam bending specimens. Several specimens of the glass/epoxy

laminates were also prepared for four-point beam bending tests.

These specimens were all cut and prepared in a manner similar to the

tensile coupons with several exceptions. The sample configuration

was slightly larger, namely, 7" x I" x 1/8" and no end tabs were

necessary. For comparison purposes only the 0/90 and ±45' fiber

angle layups were prepared. Only the bottom (tension), central

section of the beam was strain-gaged for these tests using type

EA-06-1258Z-350 gages. 7

I..
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Filament-wound case material specimens. Preparation of the

specimens from the forward dome required considerably more care

because of the case flexibility, curvature and lack of support

during the cutting operation. The case thickness varies from a

minimum of 0.08 inches (eight plies) near the barrel section and

thrust termination (TT) ports to approximately 0.375 inches near

the igniter adapter and other areas of local reinforcement

(Figure 13). An area between two of the thrust termination ports

was selected because of the uniform thickness (0,08 inches) and

"relatively small curvature. The interior of the forward dome

had a 1/2-inch layer of rubber insulation bonded over the complete

dome area which had to be removed from the case material.

Two areas measuring 10" x 10" were marked to be cut out. One

section was to be used for samples with a fiber angle of ±200I (meridional direction) while the other was oriented at ±70' (cir-

cumferential direction). Each section was cut out by using a saber

saw with a special tungsten carbide blade. Before further section- I -

ing into useable sample sizes could be accomplished, the rubber

insulation had to be removed. Removal was done with a high speed,

electric hand grinder in such a manner that only a thin layer of

the insulation was left to protect the fiber surface. The sections

were then marked and further cut such that at least four beam

specimens, of nominal dimensions 7" x 1" x 0.08", and two tensile

specimens, measuring approximately 6" x 3/4" x 0.08", were obtained

from each section. Final trimming and smoothing of the edges was
A' •:.



1 00

done with a high speed router.

All of the samples were strain-gaged by following the tech-

niques established previously for the tensile coupons and beams,

respectively, with one. exception. The surface of the filament-

wound case material was very irregular compared to the SCI plate

materials, and therefore, the surface was first coated with an

epoxy filler material and sanded smooth prior to gaging. Several

of the completed samples are shown in Figure 15.

Plate twist ecmsý . Two samples were used for these tests,

a ±45' glass/epoxy and 6061-T6 aluminum plate. Both plates were

12" x 12" x 1/8". The glass/epoxy plate was one of the original SCII

plates described earlier and therefore possessed midplane symmetry,

i.e., B.. = 0. The plates were strain-gaged on both surfaces at

the intersection of their diagonals using a Micro-Measurements'

EA-06-125RD-350 rectdngular rosette gage configuration. The gages

were mounted with the AE-15 adhesive with the two principal gages

oriented in the direction of the diagonals (Figure 16). A room

temperature cure for 24 hours followed by postcuring at 140OF for

4 hours was used for these samples in order to reduce plate warping.

Equipment and Procedures

All of the tests involved the use of strain-gaged specimens.
Whenever a test was conducted, a dummy samiple and identical gage

was mounted in the same environment in order to compensate for both

thermal expansion and humidity changes. Strain gage measurements
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Case Material]

Figure 15. Specimens used for four-point beam
bending tests.

'VI

Figure 16. Orthotropic ±451 glass/epoxy plate
specimen,
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were recorded using a B & F Instruments' Strain Gage Acquisition

System6 and a modified Hewlett-Packard 561 Digital Printer7 . The

printer was modified to include an input from a timing clock. The

system operated at a rate of two channels per second, accommodating

up to ten channels of strain gage signal conditioning, and provid-

ing reliable data within a few seconds of the actual loading.

Creep and recovery testers. The variation of fiber angle and

stress level studied during the program required the use of several

creep testers in order to provide the maximum amount of data in a

reasonable time period. Three sets of creep testers were designed

and fabricated for the test program:

1. Multi-station, dead-weight test unit (500 pounds

maximum) .

2. Single unit, lever arm system for medium loads

(2000 pounds maximum).

3. Single unit, lever arm system for heavy loads

(6000 pounds maximum).

The multi-station, dead-weight creep tester consists of five

test stations, each capable of sample loads up to about 500 pounds.

This unit, shown in Figure 17, was used for the majority of the

testing where the low load (stress) levels were of interest. For

the tensile coupon configuration shown in Figure 14 this

6B & F Instruments, Inc., Cornwells Heights, Pennsylvania.,I
7Hewlett-Packard, Palo Alto, California.

|I I I I I I 1 I 1 1 I Ii II I ii |
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(b)
Lo"-il

"Figure 17. (a) Multi-station, dead-weight creep tester
with (b) closeup view of heat chambers and
tensile coupon.
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corresponded to a stress level of almost 8000 psi.

The dead weights were connected to the lower grips which in

turn were lowered (creep-load application) and raised (recovery-

load removal) by means of a scissors jack which controlled the

motion of the base plate directly under the grips. Figure 18, shows

a typical tensile coupon mounted in the tester without the heatinq

chamber. The specimen was pin-connected, both at the top and

bottom, and a universal joint located at the top was used to min-

imize bending. The lower grips contained an oversized slot so that

the sample was completely free of any loads during the recovery

period. Details of the lower grip and pin-connection are also

shown in Figure 18.

Several tests required load (stress) levels higher than 500

pounds which in turn lead to the design of the lever arm creep

testers. Five single unit, lever arm systems were built such that

two load ranges could be obtained by simply changing the lever

advantage. The basic unit, shown in Figure 19, consisted of a

lever arm, counter-weight and essentially the same grips as used in

the dead-weight creep tester. The unit shown in Figure 19 is set
i4

up for the intermediate load range of 2000 pounds and has a 9:1

lever advantage. By making a suitable change in lever arms and

connections, these same units have a 30:1 lever advantage and can

be used with wedge-action grips to achieve 6000 pounds. The exact

lever arm advantage, necessary for accurate determination of the

II
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(a)

Loading Pan Assembly

(b)

Ie

Figure 19. (a) Lever arm creep tester and (b) closeup
of the sample and grip assembly.3
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stress, was obtained through an extensive series of calibration

tests using dead weights on the loading pan assembly and strain-

gaged aluminum and steel specimens mounted on the grips.

Even with the care taken to assure perfectly aligned loading

pin holes, it was not always possible to prevent some degree of

hole misalignment. In order to further reduce the bending effect,

a small load was applied to the sample prior to the actual test

(usually enough to induce about 50ue). The strains on both sides

of the sample were recorded and then the lower grip pin alignment

was changed until both strain readings were approximately equal.

This was accomplished by adjusting two small Allen screws which

engaged the pin vertically in the upper end of the slot until the

strains were equivalent. The entire procedure yielded strains

which were usually within 5-10% of each other.

Temperature conditioning. The creep and recovery tests as

well as some of the constant crosshead rate tests were performed

at several temperatures. Most of the tests at temperatures between

-20'F to 140°F were conducted in the large walk-in environmental

rooms located in Texas A & M University's McNew Laboratory. These

rooms had controls for the humidity as well as temperature, there.

fore providing a stable environment for long term tests. Almost

all of the creep and recovery tests on the glass/epoxy composites

were conducted in these rooms.

High temperature creep and recovery tests on the Shell 58-68R

I.



epoxy resin were run by enclosing each .specirien within individual

heaters such cit the ones shown in Figures 20 and 21. The cylin-

drical heating eleiiments were constructed with electrical houtinri

tape wrapped around a pre-formed wire cylinder servinrl as the

inner wall. The exterior was insulated with two layers of osbestos

tape and two ldy(er:s of caardloard. [Jurinq testinr, tne en(Js of 0.he

chainbers were covered with asbef_, os pltes tU ii n in zo heat l '.'e',

Temperature control WLI'S ,ccomplished with the use of a .w.-il Ithr:r-

mistor sensor locuted reai the specimen center ,nd an PIIL Indu-,rries

Model 70 Proportionafl Controller". Teronera r ur, m'iei 'are,,,epl: %a v,

achieved by insertinj a giass Lhermometer throurih a-i imail hole in

* i the side of the heat chamber. These heating chambers were capahle

* of temperatures up to and exceeding 260'F [12] with control to !2"F

or better. Previois calibration tests showed that the axial tew'o-

erature ,irddi ora tL the center of the chambers wad S1id]I

Beam testsP. l-'our-point bending tests were conducted in a

manner which essentially followed that rliven in the ASTM 1)/90-/I

procedure fur determining the f-lexural properties of plastic; [;?].

These tests were conducted for both creep and recovery and cons Lant

crosshead rate bendinl us;inq the same basic loading fixture shown

in Fiqure ?2. The !;uppor l was a section of 5-inch heavy aluminu,,i

channel with the edges sanded smooth and rounded. The loadirnq

points were the Lips of u small section of 3-inch steel channel

"RFI. J nduLiS ttries I nc . , .;onn Lon, New Jersey.

'a4
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Weight 
Pan•

(a)

BemSpec men

4 ~~(b) I!
B eam Specimen

'Support

2I

Figure. 22. Four-point beam bending test setup for
(a) creep and recovery test and (b)
constant crosshead rate test.

(aLrepan7ecvrytstad b



which had also been sanded. All of the loading and support points

were covered with a l-inch wide strip of Teflon tape to minimize

the friction.

The loading channel was fastened to the bottom of one of the

load pans in the multi-station, dead weight creep tester described

earlier and then lowered onto the upper surface of the sample. In

the constant crosshead rate tests the channel was bolted to the

lower moveable crosshead of an Instron9 Testing Machine. A cross-

head rate of 0..2 inches per minute was used for these tests.

Plate twist tests. Some of the previous .background and int-

erest in the plate twist tests has already been discussed in Section

I. Experimentally, the test is relatively simple to perform,

provided that the theoretical limitations concerning large deflec-

tions and localized loading conditions are considered. In the plate

twist test, a pure twisting moment is imposed on a square plate by

loading all four corners with equal forces. The forces are perpen-

dicular to the plate with those forces at the first and third

(diagonal) corners being upward and the other two forces downward.

The corner lodds cause the square plate to assume a hyperbolic

paraboloid or saddle-shaped surface :183, 184].

The vertical upward forces were applied through the base

support. The support consisted of a heavy steel plate about

1/2-inch thick with two large steel blocks welded to it at the ends

91nstron Corporation, Canton, Massachusetts.
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of one diagonal (see Figure 23 for detail). A hole was countersunk

into each block, making sure that the distance between hole centers

was 14 inches. A 3/4-inch diameter steel hall hedring was then

welded into the countersunk hole to provide a rounded lr)jdiri' i
support which would reduce the effect of a cuncentrjted load.

The verticul downwdrd forces were applied in a sfimilar marnner.

The bdll oedrings and blocks were welded 14 inches apart to Lhe

ends ut a section of 3-inch steel channel. A 1/2-inch diameter 1

steel rod was welded to the inside of the channel, midway between . i
the ball bearing.s. This rod was used to bolt the channel to the

upper crosshead of the Instron (constant crosshead rate cests) and

served as a guide for a load.bucket (creep tests). All of the ball

bearing sirfaces were covered with Teflon tape to minimize the

frictional effects.

The displacement of the corners under the downward Forces wa s

monitored by two linear variable differential transformers (LVDT).

Placement of the spring-loaded LVDT's was very critical, as was the

alignment of the channel loading fixture. They were mounted 14

inches apart, directly under the applied downward forces. Cross-

head deflections from the Instron tests were also used and found to

be in excellent agreement with the LVDT deflections.

The constant crosshead rate tests on the Instron testing

machine were performed by mounting the base support plate on a

compression load cell and the loading channel to the upper crosshead.

Dead-weight creep tests were run in a similar manner by carefully
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weighing the entire loading channel assembly (channel, load bucket,

weights, etc.) before the test. The load was lowered onto the

plate diagonal as rapidly as possible, using several guide clamps

to assure the alignment of the applied load.

Experimental Considerations

Bending and Grip Effects

The use of off-angle tensile specimens (0' < o < 90') under

uniaxial loads creates bending moment and shear stress distribu-

tions along the length of the specimen due to the existence of

rigid clamps which are prevented from rotating. The clamping con-

dition was investigated in [167,185] and it was shown in [167] that

the difference between the actual compliance and the compliance

defined by the centerline strain and the axial stress (axial force

divided by the cross-sectional area) was less than 1% for an

E-glass/epoxy composite. It was pointed out that the effect is a

strong function of the geometry of the tensile coupon as well as

its anisotropy. For the materials and specimens employed in this

program this condition was found to be negligible.

Strain Gage Heating

The use of bonded foil resistance strain gages has been found

to lead to significant gage-specimen interaction if the material

is near the softening or transition temperatures. High resistance

EL
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gages of 350 ohms were used to minimize the local heating. An

earlier study [60] conducted on the Shell 58-68R epoxy resin showed

that local heating for these same gages was on the order of 3-50F

for a 2.5 volt bridge excitation voltage. The gages used had a

lower power output than some other available gages such as the more

common 120 ohm foil gages.

Humidity Effects

Humidity has been shown to affect polymeric materials in much

the same way as temperature [l]. An increase in relative humidity,

or water content, is equivalent to an increase in temperature.

Several experiments were conducted on an E-glass/epoxy composite

P86]which showed that humidity control should be considered during

any characterization test program. In view of this fact, the

samples were always allowed to reach an equilibrium in the test

environment for a period of at least 24 hours. The humidity in the

environmental chambers was held constant during the experiments.

However, it was not possible to maintain a yvý relative humidity

level at all of the temperatures tested because of equipment

limitations.

Softening and Transition Temperatures

The softening temperature of a material has generally been

defined as thc approximate value at which a rapid increase in creep
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rate begins as the specimen is slowly heated. Above the softening

temperature the composite becomes extremely soft and loses its

practical structural value. One way to obtain a~n estimate of this

temperature has been to conduct a low stress level creep test on

an off-angle specimen while slowly increasing the temperature

[9, 12]. The point or region at which the creep rate rapidly in-

creases is then defined as the "softening temperature".

Another temperature, the glass transition temperature, TgV

represents the point at which the physical mechanism of deformation

within the polymer changes due to a significant change in free

volume [52]. As an epoxy resin or composite system is heated

through the transition temperature, the expansion coefficient has

been found to increase by a factor of two or three. The T repre-

sents a more physical change in the polymeric system and is always

below the softening temperature. It was necessary to determine the

region where the transition took place in order to define the max-

imum temperature for the characterization tests.

The thermal expansion behavior of the test materials (Shell

58-68k epoxy resin, S-901 glass/epoxy resin and aluminum) was deter-

mined with a DuPont Thermal-Mechanical Analyzer (TMA)' 0 . The TMA

consists of a fused quartz holding tube and an LVDT probe to measure

the expansion characteristics of small samples under variable heat-

ing and cooling rates. A sample of each material measuring

uo
S10E.I. DuPont de Nemours and Co., Inc., Wilmington, Delaware.
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approximately 1/4" x 1/4" x 1/8" was cut from a representative

section of the plates. The specimen was a unidirectional laminae

with the expansion measured in the direction of the plate thickness.

The aluminum sample was used primarily as a reference standard.

Each sample was thermally cycled (heating followed by cooling)

several times at a rate of 10C/minute. The results of these tests

are shown in Figures 24 through 26.

All of the materials exhibited a thermal hysteresis loop which

was believed to have resulted from the high heating rate used.

Even with the small sample dimensions employed, the temperature of

the specimen was not expected to be completely uniform at that rate.

However, the tests showed several distinct trends which were con-

sidered important. The hysteresis loop in the epoxy resin and

glass/epoxy composite can be attributed to some degree to the

shrinkage and weight loss associated with the initial moisture

content of the materials. Freeman and Campbell [187]reported the

same effects on epoxy resin and graphite/epoxy composites using a

quartz tube dilatometer and slow heating (cooling) rates. After

several cycles above the boiling point of water, 212"F, the material

appeared to reach a stable state. It is not known at this time if

the process is reversible or if any permanent damage has been done.

In the glass/epoxy composite (Figure 26), the effect was more

pronounced. The relaxation of thermal stresses (originally devel-

oped during curing) and drying out could possibly explain the

__ __'_ __ I
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-relatively large changes in the first and second thermal cycles.

The third cycle appeared to be very stable. The T for these mat-

erials appears to be around 180"F or so, while the softening tem-

erature was at a higher temperature. As a result, all of the

characterization tests were conducted below 160*F after drying the

samples for at least 24 hours. These effects are discussed in

Section V with regard to composite design and analysis.

Prelim, inary Characterization Tests

Several preliminary tests were conducted to determine some of

the basic properties of the S-901 glass and glass/epoxy composite

system. These properties were used as a guide in establishing

various test parameters.

Fiber Properties

The determination of the fibc:r properties by SCI was considered

necessary to insure that the S-901 glass used in the laminates was

within the normal specifications. Consequently, SCI conducted

several strength tests on the 20-end, 5-901 glass roving taken

from each of the three spools used in the fabrication. These strand

tensile tests indicated that the tensile strength was nominally

525,000 psi, well above the minimum specification of 500,000 psi

[181].

The specific gravity, tensile modulus and Poisson's ratio of

the glass fibers were not determined by SCI since this data has been
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reported previously [179, 188]

yf = 2.465

Ef = 12.4 x 1O6 psi (129)

Vf = 0.22

The value used for the specific gravity represents an average

of the reported values. These properties are used in subsequent

analysis of the overall composite behavior as discussed in

Section IV.

Fiber Volumetric Content

The fiber content (by volume), vf, of a composite material,

strongly influences the overall mechanical and physical behavior of

the composite as shown by the Halpin-Tsai Equation (119). As a

result of its importance in the analysis of the data, glass volu-

metric tests were run at SCI and TAMU. SCI conducted gravimetric

tests on the edge trimmings taken from each panel and determined

the resin content, voids and glass volume. Void determinations

were generally found to be less than 0.1% and were discontinued

after the first four panels [181]. 7he SCI data is shown in Table 3

along with the values determined by TAMU. Glass fiber content

values determined by SCI are considered questionable with regard to

being representative of the panel since the samples were edge

trimmings.

S.I ..FI~ r i n'~'|r q
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Table 3. Fiber Content of S-901 Glass/Shell F

58-68R Epoxy Resin Materials

Materi al Fiber Content (Volume Fraction)
or

Fiber Angle vf vf

SCI [181] TAMU

00 .625 .622

200 .616 .603

450 .642 .609

900 .625 .623

0/900 .667 .615

±100 .609 .624

±300 .624 .625

±450 .665 .613

"±600 .624 .609

±800 .609 .618

Forward .635
Dome

-i , K

14
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Fiber content values more representative of the actual test

samples were determined from samples cut from the interior of the

panels (i.e., away from the edges). These tests were conducted on

samples which had been tested and were not needed For further test-

ing. Specimens were generally cut from the center sections of the

tensile coupons after removing the strain gage. E, .h sample was

carefully weighed and then heated in a muffle furnace at 600OF for

4 hours and then 12001F for 24 hours [1791. After this sequence the

resin was completely burned off. The sample was removed to a

dessicator where it cooled to ambient temperature. The sample was
I

weighed again and the fiber content determined from the values of

specific gravity and measured weights. These values are shown in

Table 3 and were considered to be more representative of the

actual glass/epoxy composite use in the program.

The fiber content of samples taken from the forward dome of

the Minuteman III case was determined after removing the rubber

insulation material and the adjacent glass/epoxy lamina. Using the

same procedure as before, the fiber content shown in Table 3 was
I

found to be very close to the SCI panels. This makes the compar-

ison of plate and case properties more valid since the volumetric

contents of the constituents are almost exactly the same. A value

of 0.616, representing the average of the TAMU fiber volume content

on the panel specimens, was used for analytical purposes.

:1 4

[ I
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Tensile Coupon Stress-Strain Behavior

In order to establish the creep stress levels and approximate

strains for the test program, constant strain rate tests were con-

ducted on the various materials which were used during the program.

These tests were run using an Instron tensile tester at a crosshead

rate of 0.02 inches per minute at temperatures of 75'F and 140*F.

These temperatures essentially represent the range investigated

curing the program.

The rectangul-nr tensile coupons described in an earlier sub-

section were used for the tests. Wedge-action grips were used

w,-ther than the pin-connected creep grips since the samples were

taken to complete failure. It should be noted that this particular

specimen design provides excellent mechanical characterization

data for a uniaxial stress field: however, because the sppcimen

does not have a reduced test section, the specimen will usually

fail prematurely near the grips or end tabs. Consequently, these

specimens were not usea to generate failure stress-strain informa-

tion and the constant rate tests employed here served only as a

guide for establishing test limit conditions.

The stress-strain behavior of the Shell 58-68R epoxy resin and

S-9C0 glass/epoxy resin is shown in Figures 27 through 37. The in-

fluence of temperature is evident, and the possible presence of

nonlinear, viscoelastic material behavior is particularly notice-

abie for the off-angle glass/epoxy orientations. Strain data past

rbFrTTTT ,qr
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2% was not available for the o0/900 and ±45' fiber angles because

of equipment limitations, but the extrapolated behavior is shown

as a dotted line in the respective figures.

Constant Crosshead Rate Tests

Uniaxial Tension

Using the tensile coupons with the 50 wedge-shaped end tabs,

a series of constant crosshead rate tests were conducted on several

450 and ±45' glass/epoxy samples. These tests were carried out at

temperatures of 75°F and 140OF using the Instron and the environ-

mfental rooms. Each sample was tested at a crosshead rate of 0.02

inches per minute to a stress level of 6000 psi and then unloaded

to zero stress at a crosshead rate of 0.2 inches per minute. Three

cycles were run on each sample after waiting approximately 5 min-

utes between cycles. All of the tests were conducted with the

Instron wedge-action grips. A second set of 50 wedges, placed in

the grips with a piece of Teflon tape facing the sample end tabs,

permitted the sample to hang free of obstructions upon unloading.

This technique gave more consistent results and allowed the spec-

imen to recover unhindered (zero stress).

Four-Point Beam Bending

All of the beam bending tests were performed at 75°F using the

Instron tensile tester and a crosshead rate of 0.2 inches

a V



per minute. Glass/epoxy specimens with fiber angles of ±45" and

00/900 and filament-wound specimens with nominal fiber angles of

±200 and ±700 were used in the tests. Since only one side of the

specimen was strain-gaged, the side with the gage was mounted face

downward in order to record the tension strain. In the case of the

filament-wound specimen this corresponded to the surface without

the rubber insulation material. The temperature compensating

specimens were mounted on the end of the support fixture in the

same position so as to compensate for creep effects due to the

sample weight. This procec'ure was necessary primarily for the

thinner filament-wound case materials which were more flexible.

The beam samples were loaded to a preselected maximum stress

(load) and then unloaded completely, always at the same crosshead

rate. Strain and load information were recorded continuously

.,ring this period and at specified time intervals following the

complete unloading. A recovery period of approximately three times

the complete cycle time was allowed tefore starting the next l.dd

cycle. Each maximum stress (load) cycle was repeated in the same

manner until two or three cycles were completed. The beam was then

subjected to another preselected, higher, maximum stress (load)

cycle following the previous procedure.

The maximum stress (load) levels For each of the beams tested

are given in Table 4 in terms of the bending moment, M (in-ibs),
x

which existed at the center section of the beam.

-
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Yable 4. Summary of Maximum Bending Moment,
Mx (in-lbs), for Four-Point Bending
Tests (Constant Crosshead Rate)

Fiber ±450 00/900 ±200 +700
Angle (case) (case)

10 10 5 3

25 50 10 6
40 90 25

70 150

Plate Twist Test

Constant crosshead rate tests conducted at 75'F and 0.1 inches

per minute were carried out on a 6061-T6 aluminum and a .-450

glass/epoxy plate. During the tests the outputs from tV. Ins~ron

load cell, the surface strain gages and 'he c',rner LVDT's were mc,.-

itored continuously. The aluminum plate was used primarily as an

isotropic refereince material and was loaded only within its linr.-ir

elastic r'ange.

Each test consisted of loading and unloading tý,e plate co a

preselected maximum load level at the same crosshead rate. After

unloading, the plat'ý was allowed to recover for a period cf approx-

imately three times the compliete cycle time before starting the

next cycle. In the case of the aluminum, the plate was cycled

twice to a load level of about 50 pounds. This corresponded to a

twisting moment, Mxy, of almost 25 in-lbs. The ±45,
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glass/epoxy plate was cycled in a similar manner. Each cycle was

repeated three times before increasing the maximum load level.

Three load levels were studied, corresponding to twisting moments,

Mxy, of 25, 42 and'53 in-lbs in succession.

Single and Multiple Cycle Creep and Recovery Tests

Uniaxial Tension

In order to characterize the epoxy resin and glass/epoxy

composites, both single and multiple cycle creep and recovery tests

were conducted. The creep test consisted of rapidly applying a

constant uniaxial load to the tensile coupon and measuring the

resultant strain for one hour. This test was immediately followed

by a recovery test where the constant load was suddenly removed and

the strain was measured for two hours. Each specimen underwent

several creep-recovery cycles in order to assess the effects of

internal microcracking.J

Earlier studies corducted on an E-glass/epoxy composite [9] J

indicated that a significant amount of internal microcracking

occurs during the first few loading cycles with consistent creep

behavior occurring only after as many as ten loading cycles. The

effects of multiple cycling were investigated for approximately

three creep-recovery cycles in order to model typical hydrotesting

damage in filament-wound motor cases.

i.
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After completion of one cycle (creep and recovery), the

total strain was recorded, the strain electrically rezeroed and the

next cycle was initiated. The strain was therefore referred to the

specimen length which existed at the end of each cycle and little

time was permitted for bond reformation between flaw surfaces.

This last point was considered important since the earlier work on

the E-glass/epoxy indicated that long recovery periods created a

necessity for repeating the mechanical conditioning due to re-

healing.

Tests on the Shell 58-68R epoxy resin matrix material were

conducted over a temperature range from 20OF to 160"F for two cycles

of creep and recovery. Several stress levels ranging between

200 psi and 2000 psi were investigated during this phase of the

program. Most of the creep and recovery tests carried out on the

S-901 glass/Shell 58-68R epoxy resin were performed at 75°F and

140°F with the exception of a few tests conducted on 45' and ±450

glass/epoxy specimens at 20OF to establish the validity of time-

temperature superposition (Tables 5 through 7). Three cycles of

creep and recovery were completed for each sample. As many as

five different stress levels were studied for each fiber angle

studied, depending on the degree of nonlinearity observed in the

constant crosshead rate stress-strain behavior. Most of the work

centered around the 200, 450, ±300 and ±451 glass/epoxy composite

layups. S.,

• p.•
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Table 5. Summary of Uniaxial Creep and
Recovery Tests (T = 20°F)

Fiber Angle Stress Number of

Ce) (psi) Cycles

Epoxy 600 2

1200 2

0 7000 2

45 520 3

3010 3

90 500 3

+45 520 3

3270 3

_4_

SV
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Table 6. Summary of Unlaxial Creep and

Recovery Tests (T = 750F)

Fiber Angle Stress Number of

(W) (psi) Cycles

Epoxy 200 2

400 2

600 2

1200 2

2000 3

0 7000 3

42,000 3

20 2000 2

4800 3

8700 3

10,500 3

"12,500 3

45 500 3

3000 3

5000 2

6400 3J

8500 1

90 550 3 4

2000 3 .'W

4000 3

I,-o!,
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Table 6. (Continued)

Fiber Angle Stress Number of

Io) (psi) Cycles

0/90 4500 3

29,000 3

69,300 3

±30 2500 3

15,000 3

30,000 3

40,000 3

:L45 500 3

3000 2

5000 3

7000 3

8500 3

±60 300 3

2000 3

5100 3

-80 300 3

t7

I1
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Table 7. Summary of Uniaxial Creep and
Recovery Tests (T - 140 0 F)

Fiber Angle Stress Number of
(o) (psi) Cycles

Epoxy 200 2

(1450F) 400 2

600 2

1200 2

2200 2

0 42,600 3

20 2000 3

4800 3

8500 2

10,500 2

45 Soo 3

4 3000 2

5000 3

6500 1

90 500 2

1500 2

2400 2

IKE
::i i
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Table 7. (Continued)

Fiber Angle Stress Number of

(o) (psi) Cycles

0/90 4500 3

26,000 2

69,000 1

±30 2.500 2

15,000 3

30,000 2

40,000

±45 500 3

3000 2

5200 2

7000 3

±60 300 3

2000 3

5000 1

U
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Creep and recovery tests were also conducted on specimens of

the filament-wound case material at 75*F. A fiber angle of +70*

was used for this series of tests because of the lower specimen

curvature in the circumferential direction. Stress levels of .

300 psi and 1000 psi were used for this series of tests. Three

creep and recovery cycles were run on each specimen at the selected

stress level.

Four-Point Beam Bending

Using basically the same procedures applied in the constant

crosshead rate tests, three cycles of creep and recovery were run

on samples of the same fiber orientation at 750 F. The maximum

creep stress (load) levels for each of the beams tested are given

in Table 8 in terms of the bending moment, Mx (in-lbs), which

existed at the center section of the beam.

Table 8. Summary of Maximum Bending Moment,
Mx (in-lbs), for Four-Point Bending
Tests (Creep and Recovery)

Fiber ±45' 00/900 ±200 t70*
Angle (case) (case)

1.25 1.25 3.0 1.5

55.5 85.0 10.5 5.5

,. 4-1
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Plate Twist Test

Creep and recovery tests on the ±450 glass/epoxy plate were

conducted at load levels corresponding to a maximum twisting moment,

Mxy, of 3.0 and 16.7 in-lbs successively. Each cycle was re-

peated three times before increasing the maximum load level. The

strain output from the surface gages and the corner deflections

from the LVDT's were monitored on a logarithmic time scale durinq

the creep and recovery phases. The loads were set in place on the

surface of the plate manually, using the guide fixtures in Figure

to assure alignment. Recorded data was taken only after the loads

were completely aligned; usually on the order of 20-30 seconds

after initial application.

ii

I .

if
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SECTION IV

DATA REDUCTION AND ANALYSIS OF RESULTS

Uniaxial Creep and Recovery of Epoxy Matrix

Determination of Material Constants

In Section II several analytical forms used to represent the

compliance of viscoelastic materials were discussed. The power

law form given by Equation (50) has been found to represent the

behavior of many rigid plastics with and without reinforcement

[73-76]. The compliance given by Equation (50), repeated here for

convenience, is

D(t)= D + D tn (50)
0 1

where Dos DI and n are positive constants which are independent

Sof time. The values of the material constants may reflect temper-

ature dependence if the material is a TCM, as was noted earlier.

In the case of fiber-reinforced plastic composites where the

fiber is considerably stiffer than the plastic matrix, the net

compliance is relatively small and the initial compliance, Do, is
0H

not easily discernable from experimental data. This also is true

of the epoxy matrix without reinforcement when the epoxy is rela-

tively stiff, i.e., E0 = 0.5(106) psi. As a result, the constants

defining the power law cannot be found accurately from short-term

data.

7i
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Lou and Schapery [9] developed an analytical procedure for

evaluating the constants by employing the power law form of the

compliance with experimental data from both creep and recovery

tests. The procedure uses the superposition principle in order to

represent the recovery compliance defined by (see Figure 1)

(t)
D(t) - (130)

which results in

SDr(t) = D1t'n [(l+,,)n - An] (131)

where

-- (70)
t

Equation (131) is of the same form as Equation (69) when
il = g2 1a for the linear viscoelastic region and t' is the

time at which the recovery initiates. When Equation (131) is

plotted on log-log scales, the result is a standardized curve

whose shape is dependent only on the value of n through the function o

in the brackets. The exponent n may be determined by plotting

Dref = (,+,)n -X (132)

for several values of n (typically 0 < n < 0.5) and then overlaying

these curves on the experimental recovery data curves to select an .. [•
,K•,

-I' - '



n value as shown in Figure 38. The theoretical curve that fits all

of the data most accurately was found to be n = 0.19. This value

appeared to be independent of both stress and temperature.

There are two methods which may be used to evaluate DO and D1
- -m,

once the value of n is known. The first uses recovery data plotted

on log-log scales and Equation (131). The vertical shift, along the

compliance, is equal to log (D1t'n). With the values of n and t'

already known, the shift value may be used to determine DI. D0 may

be found by choosing any point on the creep curve and using Equation

(50). The second method for evaluating Dc and D1 involves the use

of Equation (50) and any two points from the creep data, which are

then used to yield two simultaneous equations with D0 and DI as

the unknowns.

There are several points which must be made with regard to

these procedures, all of which are designed to provide accurate

results in the analysis of the creep and recovery data. First of

all, it should be noted that, at least for cases where the amount

of net creep strain is relatively small, one should always work

with data points taken from a smooth curve drawn through the exper-

imental data rather than the individual data points. This is part- ,

icularly true when the recording equipment can only record strain in
7.

units of 1, 2 or 5 microstrain, which at low stress levels is in-

adequate to show the changes continuously over the time scale. As

a result, the data often appears in quantum, or discrete, Jumps.

wn
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Determination by the second method, solution If two simultaneous

equations, was found to be easier since the epoxy behaved in a

linear viscoelastic manner. In order to accur-ately determine D

and D1 , creEp data were taken at 21 time points, approximately

evenly spaced on a log time scale. A computer program was developed

to solve pairs of simultaneuis equations taken at several time

points. This procedure was easier and loss time consuming than the

method which involved recovery data.

The values of Do, 0 and n may be checked by rewritting

Equation (50) in the form

0(t) -Do D Itn (133)

which, if plotted on log-log scales should result in a straight

line with a slope of n and a value of Di at t 1.

Effect of Stress and Temperature

Creep and recovery tests were conducted over a temperature

range from 20'F to 160*F at stress levels up to approximately

3000 psi. In all cases the epoxy satisfied both the homogeneity

and superposition requirements for linearity up to the maximum

stress level studied. The ultimate stress for the epoxy has gen-

erally been reported to be in the 9,000-11,000 psi range [179, 180]

although the present tensile coupon design did not allow us to

rpach these levels prior to failure near the grips. Therefore,

___ - __
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it is possible that nonlinedrity is present at the higher stress

levels. The exponent in '.he power law, n, was found to be equal

to 0.19 under all test conditions investigated.

The creep compliances for several temperatures are shown in

Figure 39 for the epoxy resin using data taken at various stress

levels. The D values determined from the solution of simultaneous

equations, i.e., Equation (50), are given in Table 9. Also given

are the values of DI obtained in the same manner and the values

of DI obtained from the recovery data, i.e., Equation (131).

Table 9. Power Law Constants for Shell 58-68R Epoxy Resin

Temperature D x 10l6 D x lO- D0 x 10-
01

(OF) (psi-,) (from creep data) (from recovery data)

20 1.726 .019 .025

75 1.883 .069 .069

110 1.934 .124 .142

130 2.022 .161 .171

145 2.012 .198 .201

160 2.070 .232 .247

The temperature dependence of D can be sepn in Figure 40 to

increase linearly with temperature. As a result the epoxy must be

treated as a TCM-2 where D 0-0 0(T). This is par.icularly impor-

tant when ccnditions of transient temperature exist in a structure.

1.
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Figure 39. Creep compliance for Shell 58-68R epoxy
as a function of temperature.
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In all future analysis, the value of Do for a specific temperature

was obtained from the curve drawn in Figure 40 and not the individ-

ual data points. It should also be noted that Watkins [60] shows a

somewhat different relationship for D0 (T) In some earlier work.

The difference appears to be the result of only a limited amount

of preliminary data at the time the earlier work was done. The

preliminary work was done on several samples which were not ade-

quately temperature compensated; however, the general trend is the

same in both cases.

After subtracting the initial compliance, DO, the net creep

compliance, AD, given by Equation (133) was determined and is

shown in Figure 41. The data appears to validate the n value of

0.19 found from recovery data. The recovery compliances given by

Equation (130) are also shown in Figure 42 for the epoxy as a

function of the nondimensional time, x.

The values of the shift factors, aG and aT, were also found

from the isothermal creep data. Actually it is not possible to

separately determine aG and aT for the power law material using

isothermal creep data alone. However, Watkins [60] found that the

value of aG = 1 fit the data taken from transient temperature tests

on the same epoxy over a large portion (70°F < T < 160*F) of the

temperature range investigated in this study. As a result, the

evaluation of the time-temperature shift factor, aT, can be easily

determined by employing a graphical shift along the time axis of

U•

SiT-Ti.• TT'Ti



158
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o 160"F

* 1450F
S130"F
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0A
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Figure 41. Net creep compliance, AD, for Shell 58-68R
epoxy at different temperatures.
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the net creep compliance, AD (Figure 41), as well as evaluating

the ratios of D at different temperatures.

The graphical shifting of the isothermal net creep compliances

to obtain a smooth master curve is shown by Figure 43 where only

a few of the data points have been shown for illustration purposes.

The second procedure involves the use of the D values shown in

Table 9 for the various temperatures. Since the values of Di for

both creep and recovery are close, only one set, the recovery D1

values, was used for reduction purposes. The value of Di, as used

in Equation (130) in this instance, reflects temperature dependence.

In order to place the temperature dependence where it should be,

in the reduced time, it should be realized that the values given

in Table 9 are really
SDI'I

D, - (134)1 aT

where D1 ' is a constant. Thus, by choosing D at 750 F as a refer-
ence value (aT 1), the ratios of at other temperatures to D

at 750 F will yield the value of aT n(T) where aTn(75) has been given

the value of unity.

The shift factors found by these procedures are shown in

Table 10 and Figures 44 and 45. Good agreement between the two

methods is indicated. The shift factor is plotted against the

inverse temperature (Figure 44) in order to determine the activa- 1-)4

tion energy using Equation (24). The activation energy was found ..



161

WL II LA- .U Li. LA- L4.
0 0 0 o 0 a L
CO Ln C3ca nCD

s-0
o o

Z.3 C.

LD w

I 04 J

s.-

4-
C'.)

I GJ

L.-

(Lsd) Cv Sol i



162

71 4

4-)

L~ 0

C) It-

4-'
fo

V~S- 4-)

L LA

00 o0

002

C~ci

730

1? 90 1

'to,



163

0ý

0.

-P 0
0. L

S.-0

0 a
S.- S.-

Lua

i-p 0 .-- &)-

00

-1-

@00

L.aj

I- C

ie 901



164

to be 30 K cal/g-mole which is typical of that generally reported

for epoxy resin materials [1I].

Table 10. Shift Factors, aT, for Shell 58-68R Epoxy Resin

Temperature ('F) log aT log aT1
(from AD shift) (from DI ratios)

20 2.95 2.32

75 0 0

110 -1.34 -1.65

130 -1.94 -2.07

145 -2.41 -2.44

160 -2.77 -2.92

The Poisson's ratio, v, of the epoxy was measured at 20, 75

and 140'F at several stress levels below 600 psi. No appreciable

time dependence was noted although some of the tests lasted as

long as 60 minutes. A value of , 0.393, which represents the

average of tests at all three temperatures, will be used for all

future analysis. There was no strong temperature dependence of

Poisson's ratio and the value quoted represents a ±5% variation of

the experimental values.

V
I "glU _ ___ __ __ __ ___ __ _ _ __ ___ ___ _ ___ __ ___ __ __ .__
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Multiple Cycling Effects

All of the creep and recovery tests on the epoxy resin were

conducted for at least two cycles in order to assess any effects

from multiple cycling. The data from two cycles are shown in

Figures 46, 47 and 48 for the creep compliance, net creep com-

pliance and recovery compliance, respectively. Two different

stress levels are shown for comparison; however, as noted before,
I

there does not appear to be any strong nonlinearity due to stress

present at the levels investigated. The main difference in the

two creep compliance curves shown in Figure 46 for the different

stress levels represents less than 0.6% which is probably sample

variation. When the strain during the creep portion of the test

is referenced to the sample length existing just pror to the start

of the cycle, the epoxy appears to have become stiffer after the

first cycle. However, by always referencing the creep strain to the

initial sample length, the material softens slightly. This becomes

more evident in looking at the net creep compliance, AD, in Figure

47 where it is evident that the value of D1 has decreased. In

general, the value of D, was found to decrease by about 15% from

the first to the second cycle, regardless of the temperature range.

This behavior is not clearly understood at this time.

The previously quoted values for DO and Di are all based on

the second cycle data, which should be more representative of the

actual material in the glass/epoxy composite as a result of the

S...____
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Figure 46. Effect of multiple loading cycles on creep
compliance of epoxy resin (T =750F).
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Figure 47. Effect of multiple loading cycles on net
creep compliance of epoxy resin (T 75°F).
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fabrication process which induces stresses during cure.

Matrix Creep Compliance

The creep compliance for the Shell 58-68R epoxy can be deter-

mined for analytical purposes by using the D)0 values taken directly

from the solid line in Figure 40 and the values of D determined

using D1(75) = O.u69(•l0- 6) and the specific aT values defined by

the solid line in Figure 44 (or Figure 45). The total creep com-

pliance Is then defined by Equation (50) with n 0.19.

Later on we shall need to know the creep compliances for

20, 75 and 140OF in order to evaluate the various micromechanics

theories. Following the approach outlined above, we find the

values of the epoxy creep compliance. as shown in Table 11.

Table 11. Shell 58-68R Epoxy Creep Compliances

Temperature Creep Compliance

(OF) D(t) x 10-6 (psi- 1 )

20 1.732 + .021t" 1 9

75 1.865 + .069t'1 9

140 2.0?7 + .184t'19

r:'.

4•:
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Uniaxial Creep and Recovery of Unidirectional

Glass/Epoxy Laminae and Laminated Composites

Determination of Material Constants in Power Law Representation

The power law representation, Equation (50), has been found

to describe the behavior of several glass/epoxy dnd graphite com-

posites [9, 12] and will be used here to model the S-901 glass/-

Shell 58-68R epoxy composite system. Moreover, the use of visco-

elastic micromechanics theory implies that the composite obeys the

same power law, i.e., t 0 ,1 9 , at least in the absence of any signif-

icant crack growth and fiber deformation. When the fiber angle,

e, is not close to zero degrees the glass/epoxy exhibits an appre-

ciable amount of time dependence, particularly at the higher temp-

eratures and stress levels. Figures 49 through 52 represent the

typical strain response for 6 = 450 and a = ±451 at two of the

temperatures investigated. Since the transient part of the creep

strain .n'eys a po.v- law in time, the strain does not actually

level off in time, as it appears to do in these figures. j

In the case of the off-angle specimens, 00< o < 900, th._,

creep compliance measured was S11 . For 0 = 00 and e = 90', S,1

and $22 were measured directly for the respective angles. The use L 1

of a transversely mounted strain gage on the latter fiber angles

also gave us the values of the compliances S12 and S., respec-

tively. The power law creep compliance can be rewritten as

I....H



IUi

4-)

CD

0 - 0 LO
0r) 0') *- * .

0 0~I (A1 V) &fl(/

St - o.)CD C

00

Ln

LL.

C~0

_ _VK



172

0 U- X

In 0 0
4i-f a.

OJ 0) t- r V) AIn

- o I. D C-- Ci) ) C) CA V

%- CD 0: CD 0ý
w a) LO) C- CD CD U"n"

_n E. c") V)) `4(
o0 0 <

CD c_

- I
1)

ULJ >

r a

U-)

(0

ci.

Cj

CCi

4minis



173

4J~

1- 0

00 C)C)

s- w w~ LO -C5 - xnC

E~ L O -~

1-.~~L GJ ( L O LA

CD 4

0)

cu .

$ .-

LO

L0)L

'NlniS



174

Fiber- Anqie 145'

4.0 Temperature 140'F

Cycle 1

3.0
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0 500 psi

* 3000 psi
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0 50 100 150
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Figure 52. Creep and recovery of t•45'
-lass/epoxy at 140'F.
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S(t) S s + sit (135)

where the notation more closely represents that commonly used in

the composite area, and where

SSO $1 1(0) (136a)

and

AS = sitn (136b)

The Si coefficient is normally called the "creep coefficient".

By solving pairs of simultaneous equations using the creep data,

in the same manner used for the epoxy creep tests, it is possible

to determine both and S. with the assumption that n = 0.19.

The computer program was modified in order to account fir values

of n greater than 0.19 when crack growth appeared to be signifi-

cant. All of the strain-time data was first plotted on semi-log

paper and a 3iooth curve was drawn through each data set. The new

data points, taken from the smooth curve, were used in all sub-

sequent analysis. The computer program solved the simultaneous

equations for each data set and various values of n from 0.19 to

0.59. In order to determine the best fit for SO, S1 and n the

program output was set up to give the correlation coefficient be-

tween the experimental AS defined by

ASexp =S(t) exp So (137)

!I
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and the theoretical AS given by Equation (136b). The ratio of

A•Sexp/AS was also printed out to assist in the evaluation of the

fit.

Linear Viscoelastic Creep Compliances

In Section III it was noted that the residual, or permanent,

strain was rezeroed just prior to the start of the next loading
cycle, and, therefore, the resulting creep compliance was referred

to the sample length existing at the start of the cycle. For the

purpose of the analysis to follow, the creep compliance will always

be referred to the total strain referenced to the initial, first

cycle length. This procedure is more desireable for engineering

applications and comparisons with nonlinear theory.

At sufficiently low stress levels the behavior of the glass/-

epoxy composite can be considered linearly viscoelastic. The stress

range of linearity depends on the temperature as well as the fiber

angle. The linear viscoelastic creep compliances were determined

at stress levels between 500 and 2500 psi, depending on the fiber

angle. In all cases the value of n was found to be 0.19 with good

agreement in the correlation coefficient in the third or fourth

decimal point, e.g., 0.9995. The linear viscoelastic creep compli-

ances found experimentally are tabulated in Table 12.

Examination of the experimental data taken from various ten-

sile coupons showed that there is some variation between samples
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iable 12. Linear Viscoelastic Creep Compliances
for S-901 Glass/Shell 58-68R Epoxy

Temperature Fiber Angle Creep Compliance, S11!

(OF) (o) (x 10-6 psi-1)

20 0 .1210 + .0003t,19

45 .3021 + .0046t.1 9

90 .3115 + .0025t.1B
±45 .2876 + .0023t.19

75 0 .1213 + .0004t' 91
20 .1990 + .0038t19
45 .3260 + .0124t.v 9

90 .3315 + O081t.19
0/90 .1793 + .0015t- 1 9

±30 2037 + .0037t":9
±45 .3061 + .0082t. 19

±60 .3534 + .0103t" 19

±80 .3416 + .0152t'1 9

140 0 .1265 + .0003t"19

20 .1957 + .0439t'- 9

45 .3524 + .0503t" 19

90 .3490 + .1468t" 19

0/90 .1829 + .0096t" 19

±30 .2042 + .0345t' 19

±45 .1881 + .3032t. 19

±60 .3181 + .1786t.l

V"
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within the same plate as well as plate-to-plate variability.

This variability is reflected somewhat by the differences in the

fiber contents shown in Table 3 and can account for the approxi-

mately 3-7% variation in initial compliances. Strain gage mis-

alignment, small deviations from the desired fiber angle and

loading misalignment all are thought to contribute to the differ-

ences in initial compliance, as well as effecting the transient

compliance if the errors are high enough.

The creep behavior of the 0' fiber angle, although very small

(less than 0.5%), can probably be attributed to the straightening

out of any misaligned fibers. The effect is larger than would

normally be predicted by the rule ,f mixtures, viz., Exiation (114).

Antans and Skudra [142] also noted this behavior in a glass/epoxy

composite although their matrix material was considerably softer

than the present epoxy. In fact, the net creep compliance was on

the order of several percent of the initial compliance even at

slightly elevated temperatures.

Effect of Stress and Temperature

The general effect of stress and temperature causes an in-

creased degree of reversible (temperature) and irreversible (stress)

changes. Figures 53 through 67 show the effects ef stress level

for the various fiber angles during the first cycle of loading.

Data is shown for the 75'F and 140°F only, since the lower

A '
1 ~
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FIgUre 53. Creep compliance for differentX
stress levels (e 0', T 750F).
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Figure 54. Creep compliance for different stress
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Figure 55. Creep cOmpliance for different stress

levels (e 450, T 75-F).
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Figure 56. Creep conpliance for differont stress
levels (e 900, T 750 F).
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Figure 57. Creep compliance for different stress
levels (e 0'/900, T =75*F).
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Figure 58. Creep compliance for dlfforent stress
level s (0 ±300 , T 75'F) .
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Figure 59. Creep compliance for different stress
levels (e ±45', T 75*F).



f6

-6&38

[ Fiber Angle ±60"

Temperature 75'F

Cycle 1

-6.40

-6.462

LOG TIME (minutes)

levls(o ±60', T 75'F).



187

I

Fiber Angle 20'

-6.00 Temperature 1401F
Cycle 1

0 2000 psi

-6.20 * 4800 psi

Li 8500 psi

A10,000 psi

C-)

S -6.40

-6.60

-10 1 2

LOG TIME (minutes)

Figure 61. Creep compliance for different stress
levels (9 20*, T 140'F).
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Figure 62. Creep compliance for different stress
levels (e 450, T = 140°F).
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Figure 63. Creep cempliance for different stress
levels (8 * 900, T 1400F).
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Figure 65. Creep compliance for different stress
leves (e ±300, T =140"F).
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Figure 66. Creep compliance for different stress
levels (e = ±450, T : 140'F),
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temperature (20'F) does not exhibit as strong a time dependence.

All of the 20'F and 75'F data obey the power law with n = 0.19.

However, both the initial creep compliance and the creep coeffic-

ient increase with stress level. This behavior is evident for

both the unidirectional laminae and the laminated composites at all

stress levels. Equation (106) qualitatively reflects this behavior

although allowing n to remain unchanged.

If it is hypothesized that an initial uistribution of small,

microcracks already exist within the compositc as a result of fab-

rication, then the initial softening effect can be thought of in

ter.ns of crack growth and arrest. Actually, with power law creep

compliance behavior the crack growth occurs continuously. However,

the application of stress probably causes the existing crack dis-

tribution to grow while at the same time creating an additional

number of new crack surfaces. The initial compliance, therefore,

reflects crack growth (existing cracks) and crack initiation (new

crack surfaces). It is natural to expect that the creep coeffic-

ient would increase with stress level since there is continuous

propagation of the cracks within the material. The possibility of

crack arrest would be reflected by reduction in creep rate from

cycle-to-cycle, particularly in the off-angle composites where the

crack growth would tend to be limited by the fiber spacing.

Figure 57 reflects the damage done within the 90' layers of

the 0°/900 composite. At an applied tensile stress level of

I I_ _IIII
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4500 psi the strains within the 900 layers are considerably below

that which would cause failure in a 90° unidirectional sample

(see Figure 31). In Figure 32 this is the region below the "knee"

f in the stress-strain curve. At the higher stress levels, the
9O° layers have failed and the 00 layers are carrying the load.

C This is typical of the behavior in the barrel region of the motor

case where the layers are predominantly 00/900.

Crack arrest is not viýibily evident during the first loading

cycles for any of the unidirectional composites shown in Figures

53 through 56. However, the behavior of the ±45' laminated com-

posite (Figure 59) at the two highest stress levels shows a definite

decrease in the relative rate of creep after a period of time.

It is hypothesized that some of the cracks arrest under conditions

where they (i) move toward the fiber where the crack tip is arrested
and/or (ii) the crack moves away from the fiber/matrix interface

toward an adjacent fiber, with arrest occuring when it reaches this

fiber. The laminated composite provides additional crack arrest

boundaries in terms of the individual layers oriented at an angle of

20 with respect to the adjacent layer. This layering may tend to

cause the cracks to develop and propagate between layers, causing

considerable delamination at the higher stress levels. This delam-

ination is clearly visible as an edge effect at stresses near fail- A

ure when the top layers begin to curl upwards at the outer edge of

the tensile coupons.

! I I I• 1 III I• • =• • 1 I I- -
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The creep compliances which were measured at the lowest stress

levels are summarized in Figures 68 through 71 for the unidirec-

tional and laminated composites. These compliances were denoted as

the linear viscoelastic creep compliances previously listed in

Table 12; however, at 140"F even the lowest stress level tests

conducted on the 45, 90, ±45 and ±60' samples indicated some degree

of irreversible damage. Tests at lower stress levels were not

possible as a result of the lack of strain gage sensitivity coupled

with the effect of small temperature changes during the tEst.

With the small changes in creep strain at lower stress levels,

even minor changes in temperature (±I°F) create cyclic readings of

a few microstrain. A stress level of 300 psi was considered to be

the minimum.

The effect of temperature can be seen more readily in
Figures 72 and 73 which show the creep compliance measured at a

stress level of 3000 psi for both the 45' unidirectional and ±450

laminated glass/epoxy composite. Both figures show the strong

influence of temperature on the material's internal viscosity which

affects the creep coefficient through the reduced time, or aT shift

function. The vertical offset indicates at first glance that the

initial compliance may be temperature dependent. The initial com-

pliances, S' 1(0), for the 45, 90 and ±45' fiber angles are shown in

Figure 74. Since the behavior of the initial matrix compliance is

that of a TCM, it is not unexpected that the glass/epoxy composite
,'
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Temperature 753F

-6.40 Cycle 1

-6.60

S-6.80

41 _L)

0 0' (7000 psi)

-7.00 - 200 (2000 psi)
A 45' 500 psi)

o 90 (7550 psi) I,

I I ,- .

-l0 12
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Figure 68. Creep compliances at low stress levels
for various fiber angles (T = 75°F).
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LOG TIME (minutes)1Figure 69. Creep COMplances at low stress levels forvarious fiber angles Of' laminated composites
(T 75-F).
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Figure 70. Creep compliance at low stress levels
for various fiber angles (T = 140'F).
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Figure 71. Creep compliances at low stress levels for
various fiber angles of laminated composites
(T =140 0F).
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exhibits a similar behavior. The glass/epoxy composite, therefore,

is a TCM-2 by definition that the initial compliance is temperature

dependent. Similar behavior was noted for a graphite/epoxy [12]

and an E-glass/epoxy [9]. Unfortunately, many investigators do not

recognize this temperature dependence when trying to separate out

the elastic and transient components. This results in a series of

discontinuities in the experimental data when one attempts to form

a master curve using isothermal data from several temperatures [622.

The time-temperature shift factor, aT, was deterrined for the

glass/epoxy by using the method of the creep coefficient ratios for

the 45' unidirectional and ±45" laminated composite. These part-

icular fiber angles were selected primarily because it was felt

that the crack growth had essentially ceased by the third cycle at

low stress levels. Lesser fiber angles were expected to aive more

scatter since the creep coefficient was smaller. The aT factor is

compared in Figure 75 with the epoxy resin shift factor. An act-

ivation energy of 37 Kcal/g-mole was found for the glass/epoxy.

This corresponds to the values of 38 Kcal/g-mole and 35 Kcal/g-mole

found for an E-glass/epoxy [9] and a graphite/epoxy [12] earlier.

The value is physically consistent in terms of the fiber stiffnesses

in the three systems. It should be noted that the values of aT

determined for all of the laminated composites and the 90' unidir-

ectional composite at 140'F were considerably below the log

aT-temperature curve for the epoxy.

TI
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Studies conducted on the i700 motor case materials were

carried out only at 750 F; however, the same behavior is expected

in terms of material response at the higher temperatures. The

linear creep compliance could not be determined for this material

since the motor case had previously been pressurized to a high

level. Frum Figures 5 and 13 one can see that the case material

has undergone some degree of permanent damage already. However,

the results of some multiple cycling tests carried out at low and

high stress levels will be discussed in the next subsection.

Multiple Cycling Effects

All of the glass/epoxy con'wosite samples were tested for sev-

eral creep and recovery cycles. in order to simulate the actual

conditions in the motor case, at least two, and as many as three

cycles w2re run on the tensile coupons at all stress levels and

temperatures. Since the total number of tests was well into the

hundreds, it would not be possible to present the results from all

of them. The principal results from the tests conducted at 75°F and

140'F on the 20, 45, 90 and ±45' glass/epoxy composites are shown

in Figures 76 through 95. These results are also limited to only a

few representative stress levels.

Several general comments appear to be in order upon inspection

of the results. In all of the tests the initial compliance contin-

uously increases with each cycle, with a disproportionate change

tF
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Temperature 75°F

Fiber Angle 205

-6.66

S-6.68

La SO0 Cycle 1

ACycle 2

40 Cycle 3
-6.70

I..

I I •
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Figure 76. Effect of multiple loading on the creep compliance
of the glass/epoxy unidirectional laminae
(e 200, T 7 50 F, a 10,500 psi).
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Figure 77. Effect of multiple loading on the creep compliance
of the glass/epoxy unidirectional laminae
(e 200, T 140F, a 2000 psi).
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Figure 78. Effect of multiple loading on the creep compliance
of the glass/epoxy unidirectional laminae
(o =20, T 140*F, o = 4800 psi).
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Figure 79. Effect of multiple loading on the creep compliance
of the glass/epoxy unidirectional laminae
(o : 200, T = 140-F, a : 8500 psi).
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Figure 80. Effect of multiDle loading on the creep compliance
of the giass/epoxy unidirectional laminae
(e = 200, T 140-F, a 10,500 psi).
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Figure 81. Effect of multiple loading on the creep compliance
of the glass/epoxy unidirectional laminae
S(e 45•o T 751F, o 3015 psi).

I'.

i4,v•



213

!I

i •' ~~-6.34 .7°
Temperature 75OF

Fiber Angle 450

W . Stress 6350 psi
-6.36

L:

-6.38 -

CD

CL

"J -6.40

A Cycl e 2

-6.42 - Cycle 3

I I

0 1 2
LOG TIME (minutes)

Figure 82. Effect of multiple loading on the creep compliance
of the glass/epoxy unidirectional laminae
(o =450, T = 75°F, a = 6350 psi).
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Figure 83. Effect of multiple loading on the cre.ep compliance !
of the glass/epoxy unidirectional laminae
(a 45°, T 140 0F, a 500 psi).
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Figure 84. Effect of multiple loading on the creep crmpliance
of the glass/epoxy unidirectional laminae
(o = 45°, T = 140"F. a = 5000 psi).
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SCycle 2

I.

LOG TIME (minutes)

Figure 85. Effect of multiple loading on the creep compliance
of the glass/epoxy unidirectional laminae
S(o 90°, T = 75°F, o = 540 psi).
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Temperature 75OF
F~iber Angle 900
Stress 2015 psi
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L101 2

Figure 86. Effect Of multiple loading on creep compliance
of the glass/epoxy unidirectional laminae
(e 900, T = 50F, o=2015 psi).
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Figure 87. Effect of multiple loading on creep compliance
of the glass/epoxy unidirectional laminae
.( =90', T = 75'F, a = 4000 psi).
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Figure 88. Eifect of multiple loading on creep compliance
of the glass/epoxy unidirectional laminae
(e =90°, T = 140'F, a 480 psi).
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Figure 89. Effect of multiple loading on creep compliance
of the glass/epoxy unidirectional laminae
(e 90, T 140'F, a 1480 psi).
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Figure 90. Effect of multiple loading on creep compliance
of the glass/epoxy unidirectional laminae
(e= 90oT 140TF, 2375 psi).
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Figure 91. Effect of multiple loading on creep compliance
of the glass~/epoxy lamrinated composite
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Figure 92. Effect of multiple loading on creep compliaice

of the glass/epoxy laminated composite
±( +45', T = 75F,a 7035 psi).
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Figure 93. Effect of multiple loading on creep compliance of
the glass/epoxy laminated composite

(e=±450, T 75*F, a~8495 psi).
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Figure 94. Effect of multiple loading on creep compliance
of the glass/epoxy laminated composite
(o = ±450, T 1400F, a 500 p.).
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Figure 95. Effect of multiple loading on creep compliance
of the glass/epoxy laminated composite *( _•
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occuring between the first and second cycle. The initial compli-

ance, when plotted as a function of the loading cycle, appears to

asymptotically level off after a number of cycles. At the high

stress levels three cycles does not represent an equilibrium. Even

at moderately low levels it appears that three cycles are not

enough to generate data from which one can truly measure the effects

of stress level in the absence of crack growth.

Also evident is the change in the net creep compliance with

each cycle. During the first cycle a considerable amount of crack

propagation and possible fiber realignment occurs. The latter is

believed to occur more predominantly at the elevated temperatures

where the matrix viscosity is Qunsiderably reduced and fiber re-

arrangement is feasible. All of the 75OF tests obeyed a power law

with n = 0.19 regardless of fiber angle or stress level for all

loading cycles. However, the value of the creep coefficient gener-

ally decreased very rapidly from the first cycle. The creep coeffi-

cient for the second cycle was usually about 50-80% ct the value

during the first cycle, depending on the stress level. At 140'F

the glass/epoxy obeyed a power law in time where the exponent n

varied from cycle to cycle. The value of n for tests at the high-

est stress level sometimes reached as high as n = 0.59. As an

example of this behavior, the creep compliances determined by ana-
lytically fitting the data to a power law of the form in Equation

(135) are shown in Table 13 for several fiber angles and
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Table 13. Creep Compliances for 5-901 Glass/-
Shell 58-68R Epoxy Composite at 140OF

Fiber Angle Stress Cycle Creep Compliance, S11

(e) (psi) (x 10-6 psi-')

20 4800 1 .2185 + .0097t.4i

2 .2406 + .0105t. 3 9

3 .2531 + .0123t. 3 i

20 8501 1 .2633 + ,0582t. 5 9

2 .7196 + .0944t.",7

20 l0,501 1 .2642 + .0555t.s,

2 .7422 + .0873t.'5

45 3000 1 .4102 + .1077t. 4 1

2 .6947 + .0879t. 3 5

45 5000 1 .4419 + .0221t.53

2 .4997 + .0602t. 2 7

3 .5349 + ,0722t. 2 -

45 6501 1 .5264 + .1441t. 5 7

90 1480 1 .4357 + ,0498t.*4

2 .5318 + .0649t. 3V,

stress levels.

It can be seen that n decreases rapidly with each succeeding

cycle, with the creep coefficient generally increasing. The over-

all resu•t is a decrease in the net creep compliance with each

subsequent cycle. Given enough loading cycles the crack growth

should stabilize such that one could measure the effects of stress

',
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and temperature alone as did Lou and Schapery [9]. It was noted

in their work that as many as ten cycles were necessary to get

repeatable results, i.e., the same strain output under the same

load for every creep test thereafter.

Lou and Schapery [9] were able to express their data in terms

of Equation (68) and a normalized octahedral shear stress given by

To = a sine[y - (y-l)sin2 9]1/2 (138)

where a is the applied stress, e the fiber angle,and y is defined in

terms of the effective matrix Poisson's ratio, v e'

Y = 3 2 (139)
1 V e + ve

The nonlinear initial compliance, 51 1(0), in [9] was written in

terms of the linear viscoelastic creep compliance and a scalar fac-

tor, g0, as defined in Equation (68). In a similar manner the

creep coefficient was also defined using the linear viscoelastic

creep coefficient and the scalar factor (glg 2 aon). The latter

factor was found to roughly follow a hyperbolic sine function as

in Equation (72b) with a = rO and am = ao (Figure 96).

An attempt was made to model the early loading cycles using

this approach; however, Figures 97 and 98 show that g0 is a strong

function of fiber angle and T does not collapse the curves into a

single, invariant function for either test temperature. The creep

- -
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coefficient appears to fit the hyperbolic sine function fairly

well. Unfortunately, several points, especially for 0 = 900,

are not very close to the analytical function. The creep coeffic-

ient appears to depend primarily on the shear stress, T, existing

parallel to the fibers (see Figure 99). As might be expected, this

arises from the matrix contribution. However, this does not explain

the e = 900 behavior where the shear stress is zero. The initial

creep compliance appears to be controlled primarily by the stress

normal to the fibers through the nonlinear parameter, go, as shown

in Figures 100 through 105. The behavior of the two high stress

level points for the 20' fiber angle shown in Figures 104 and 105

is not understood at this time. We shall point out later how these

curves may be used as correction factors in the actual motor case

analysis.

The effect of multiple cycling on the creep compliance of the

case material for the ±700 fiber angle is shown in Figures 106 and

107 for two stress levels. Remember that these materials have al-

ready been stressed to a high level during the actual motor hydro-

testing. As a ro~sult, the creep compliances for both stress levels

are considerably higher than would be predicted by linear viscoelas-

tic analysis. However, the trends from cycle to cycle as well as

stress level follow the same pattern established for the tensile

coupons cut from the plates. The net creep compliances are shown

in Figures 108 and 109 and are found to obey the power law

i t --
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-5.94 .

Temperature 750F
Fiber Angle ±700

Stress 300 psi

-5.96

',-

C.-

LI

-5.98

C-)

LUU 0
LU

C-13

-6.00 0 Cycle 1
0 Cycle 2

-10 1 2

LOG TIME (minutes)

Figure 106. Effect of multiple loading on the creep
compliance of the case materiaI (e =700,
T = 75*F, o 300 psi).
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Temperature 75OF

-5.92 Fiber Angle ±70,
SStress 1000 psi

n -5.94

"' -5.96
LU

CZ)

-.J

J A Cycle 2

-5.98 - Cycle 3

0 2
LOG TIME (minutes)

Figure 107. Effect of multiple loading on the creep
cumpliance of the case material (e ±700,T 75*F, a 1O00 psi).
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-6.9

Temperature 75°F

-7.0 Fiber Angle ±700
Stress 300 psi

.-. -7.1 0
-7.

- : -7.2 -
V)

• -7.3

CL

S-7.4a

O Cycle 1
-J-7.5 0 Cycle 2

-7.6
-1 0 12

LOG TIME (minutes)

Figure 108. Net creep compliance for case material sub-
jected to multiple loading (0 ±700,
T 750F, 0=300 psi).
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-6.7

Temperature 75°F

-6.8 Fiber Angle ±70' O
Stress 1000 psi 0

O

-6.9 A

, A

'; -7.0 -

L -7.1

0 -7.2

.* 0 Cycle 1

A Cycle 2
o • Cycle 3

-7.4

-7.5
0 0 1 2

LOG TIMIE (minutes)

Figure 109. Net creep compliance for case material
subjected to multiple loading (o =.700,
T 75*F, 1000 psi).
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with n 0.19. The data from the plate material, therefore, yields I

comparable results to that seen in the filament wound motor case

materials.

Lamina Angular Dependence and Principal Creep Compliances

The angular dependence of the compliances are given by

Equation (89a). The uniaxial compliance, S~l(e), may be expressed

in terms of the two principal compliances S11 and S22 and the uni-

axial compliance S'j(ej) where a, 0 e. By eliminating the trm

containing S66 and solving for S11(e) we find that

&.!ls1(0e1) + Z4 Smt l
X~ 2 m2  lt M2 J

1 1 (140)

+ m4 2•-522

where

t. cose m -sino (141)

2: case 1  m1  -sine 1

and

S11 = S00(142a)

S22 = S900  (142b)

goI
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Therefore, in order to predict the angular dependence of the creep

compliance from experimental data, one only needs experimental com-

pliances for SO., S900 and one more angle, say S1 1(e). For the

present analysis the measured compliance S450 was used to predict

the other compliances. For this special case Equation (140) with

0, r 450 becomes

S;'(o) = 4m 2 S4 50 + (Z4-k 2 m2 )S00 + (m4-i 2m2 )S 9 00  (143)

The initial compliance and the one-hour creep compliance have

been calculated from Equation (143) for different fiber angles for

the three test temperatures and are. shown in Figures 110 through

112. The values for S0., S900 and S450 were taken from the linear

viscoelastic creep compliances shown in Table 12. The experiment-

ally determined compliances for the last cycle of the low stress .o

level tests are shown on the figures for both the unidirectional

and angle-ply glass/epoxy composites. The predictions agree reason-

ably well with the experimental points at 20'F and 75°F. The one-

hour curves for the 20°F and 140°F predictions were also derived

by applying the aT factor from the epoxy data to the 75°F creep

coefficient in the S450 and S900 compliances. The 20°F prediction

was essentially the same; however, the 140°F indicates what appears

to be considerable crack growth nonlinearity. It should also be
realized that a value of 6 0.19 was used for the predictions and

it was noted earlier that n >0.19 for most of the 140OF data as a

I *
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result of the apparent crack growth. In the absence of the crack

growth, it appears that the power ldw representation adequately

predicts the creep complian tceb.

The principal creep compliances, necessary for the complete

definition of the fibrous composite under conditions of plane

stress, are given by Equation (86a) for a transversely isotropic

material. They are SIl, S22, S1 2 and S6 G. The values of S11 and

S which are the compliances for a = 00 and o = 900, respectively,

have already been given in Table 12 for the linear viscoelastic

region. The principal creep cumpliance S12 is given by Eouation

(83,a)

S- (83a)
Ell E2 2)

which may be rewritten as

S12 - 12S = I -V,2IS)22 (144)

Both relationships assume that tUrn C')11pfidndCe matrix is symmetric,

i.e., Fi: - [xperimeritally, S),. may be found from the trans-

verse strain, t:y, rca'ured during d creep test (n a specmen with F

S-- o ,under' an axil stress, o

\/ xl\ \ x! " tl r_(145)

The experimental values were tourd to be independent of time and

%
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are given In Table 14 along with the values of v1 2 and v21 measured

during the creep of a 00 and 900 sample, respectively.

Table 14. Measured Properties S12, v 1 2 and v 2 1
for s-901 Glass/Shell 58-68R Epoxy

Temperature 512 V12 V2 1

(OF) (x 10 6 )(psi-)

20 -. 0329 .272 .151

75 -. 0330 .273 .096

140 -. 0359 .283 .051
I•

The values of S12 and v12 are reasonable; however, the values

of v2 1 , when used with the S2 2 compliance in Equation (144) give

values of S21 which differ significantly from S12- It is felt that

most of the error is due to the small transverse strain associated

with v 2 1 measurements and possibly microstructural damage at the

140OF temperature. The average value of S21 over the temperature

range is within 15% of the S12 values. All subsequent analysis

assumed that S12 = S21 and the values of S 1 2 given in Table 14

were used.

The last principal compliance, S66, can be calculated trom the

transformation relation, Equation (89a), from the known values of

S1, S2 2 , S12 and the compliance from one other angle, Si ),a").

Using the 450 creep compliance, S45., yields the following .'Zd

relationship,-I. _ _____ ____
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S66 4S450 - 2S12 - Sl -S22 (146)

The experimental creep compliance, S6(, was calculated using the

linear viscoelastic creep compliance for S4 50, Son(S 1 1 ), S9 0o(S 2 2 )

and S12 (Table 14). The time dependence of S66 is shown in

Figure 113. The solid curve represents the predicted behavior if

one were to use the epoxy aT shift factors on the 75°F creep co-

efficient to obtain the creep coefficients at 20OF and 140 0 F. The

initial compliance remains unchanged. The net compliance,

S6 6(t) - S6 6 (0), shown in Figure 114 can be seen to obey the power

law in time with n = 0.19 as expected. The aT sh~ft factors deter-

miIed by a horizontal shifting of ,•$66 along the time scale are

given in the figure.

All of the four principal compliances h•¢e been determined

experimentally, with S66 predicted from experimental data and not

measured directly. Our attention will now be turned toward the

prediction of the principal compliances using the various micro-

mechanics theories.

Comparison with Micromechanics Theory

The "rule of mixtures" representation, viz., Equations (114)

and (117), was used to predict the major Poisson's ratio, v 1 2 , and

longitudinal modulus, E1 1 . For the glass/epoxy composite, studied

here the last terms in Equations (113) and (116) may be dropped

r
I_
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with only negligible error in order to arrive at the "rule of mix-

tures" relationships. This error is on the order of 0.1 and 2.4%

for the respective equations. The fiber properties, Ef and vf,

given by Equation (129) were considered independent of time and

temperature. A fiber volume fraction, vf, of 0.616 was used for

the analysis (see Table 3 for experimental values of various

plates). The matrix volume fraction was 0.384. The viscoelastic

behavior of Ell and V 12 was readily found by employing the quasi-

elastic approach given by Equations (118a) and (118b). The matrix

modulus was determined using the quasi-elastic approach

E(t) W (147)

m

where the values of Dm(t) are given in Table 11.

The principal creep compliances, 51, and S12, are expressed in

terms of Ell and vl through Equation (83a) and were predicted with

the use of a computer for several decades of time. Calculation of

the other two principal creep compliances, S22 and S6 6 , is more

involved. Several micromechanics theories were considered; however,

the Halpin-Tsai Equations given by Equations (119) and (120) for the

elastic and quasi-elastic cases, respectively, are relatively pop-

ular. The Halpin-Tsai relations are a semi-empirical approach which

has been used by several investigators [29, 33, 62]. The adjust-

ment factors, ýE and CG are selected to give the best fit with

experimental data. The factors are known to be functions of fiber

S. . . . . .

IL
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geometry and spacing; their time-dependence, If any, has not been

investigated by others.

The Initial principal creep compliances which were measured

are summarized in Table 15 for future reference.

Table 15. Experimental, Initial Principal Creep Compliances
for S-901 Glass/Shell 58-68R Epoxy

Temperature S11 x 10-6 S12 x l0-6 S2 2 x 10-6 S6 6 x 10-
(OF) (psi-,) (psi-,) (psi-,) (psi-,)

20 .121 -. 0329 .3115 .8417

75 .121 -. 0330 .3315 .9175

140 .127 -. 0359 .3490 1.0054

In order to determine the optimum values for ýE and ýG' Equations

(147) and (120) were solved for several values of the adjustment

factors using initial properties. Equation (83a) Aas used to con-

vert E22 and G17 to the compliances S22 and S66. The analytical

values of S22 and S66 were plotted as a function of the adjustment

factor. It was found that ýE = CG = 3.14 gave the best fit over the

entire temperature range, never exceeding an error of ±4%.

The temperature dependence of the initial, principal creep

compliances is shown in Figure 115 along with the corresponding

analytical predictions. It is evident that the "rule of mixtures"

and the Halpin-Tsai relations give excellent results. The dotted

line, shown for 522 and S66, represents the predicted Halpin-Tsai

I•1• l" F
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compliances when ýE 2 and 1G 1 are used. The specific values

are based on numerical solutions [2] but it is evident that they

do not give good predictions for the glass/epoxy composite. We

shall comment later concerning the use of these specific values.

The reduced stiffnesses, Qij, are related to the Sij by Equation

(128) and are shown in Figure 116. Again, the agreement with the

predicted values (solid line) is good.

The time dependence of the principal compliances was found by

using a quasi-elastic analysis and the linear viscoelastic creep

compliance for the epoxy matrix (see Table 11). Data over several

decades of time was obtained by using the linear viscoelastic power

law coefficients and extrapolation to times beyond the actual exper-

imental time. The "rule of mixtures", Equations (114) and (117),

and Halpin-Tsai Equations (120) were solved for several decades of

time. Equation (83a) was used to convert the engineering prop-

erties, Ell, etc., to the principal creep compliances, Sij.

Figures 117, 118 and 119 show the time and temperature dependence

of the predicted (solid and dotted lines.) and experimental (open

circles) compliances. All of the curves are based on the last

cycle of creep. Except for 140OF where a significant amount of V

crack growth occurs, the agreement is good over several decades of

time. At 140'F the strong time dependence exhibited by the S22

compliance is evident. The applied stress is normal to the fibers

and, therefore, does not provide any known mechanism for crack
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arrest in the absence of any shear stress component. The opening

mode crack growth is hypothesized to predominate very strongly.

Further evidence of crack growth as a result of the normal stress

can be seen in the behavior of the creep compliance for the e = 90'

specimen. Although the initial compliance appears to be reasonable,

the experimentally determined creep coefficient appears to be high.

As an example, from Figure 75 we can determine the value of log aT

at 140OF to be about -3.25. Using this value of aT and the creep
iT

coefficient at 750 F, the 140°F creep coefficient is predicted to

be 0.0336 (10-6). The experimental value shown in Table 12, for the

last creep cycle at a stress level of 475 psi is more than 4 times

greater than predicted. At 140°F crack growth is significant and

the stress level used to define the linear viscoelastic creep com-

pliance, namely 475 psi, already is creating a strong nonlinearity.

The corresponding reduced stiffnesses, Oij, found by using

Equation (128) are shown in Figures 120, 121 and 122. Again, the

agreement is good except at 140'F.

\ It was noted earlier that the values of cE = 2 and 1G = 1 are

often used in the Halpin-Tsai relations. These values appear to

work reasonably well when the ratio of fiber to matrix properties

is high, e.g., graphite/epoxy and boron/epoxy. A comparison of the

relative stiffness for these two materials gives a range of 50 to

120 typically. Glass/epoxy composites generally lie in the range

from 20-25 at the lower end of the spectrum. Several investigators
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[33, 62) further Justify the use of these specific values in order

to determine an "effective" resin compliance. This procedure in-

volves the solution of the Halpin-Tsai Equaiions (119) or (120)

in terms of the "effective" resin properties Em and I . The argu-

ment for this approach is based on a consideration that:

1. The bulk epoxy resin properties are generally

not available.

2. The mechanical properties of the bulk resin

and the resin in the composite may be different

because of curing conditions and chemical compo-

sition.

3. The effect of stress concentrations around the

fibers may affect the resin properties.

Sims and Halpin [62] used this approach on an E-glass/epoxy

and a graphite/epoxy composite with fiber volume fractions on the

order of 0.56. A comparison of the "effective" resin properties

with measured bulk resin properties showed that the "effective"

properties were within ±i0%. A careful examination of Figures 117,

118 and 119 shows that the time-dependence of the experimental data,

especially for S66, agrees more closely with the Halpin-Tsal re-

lations when one uses CE = 2 and ýG

The primary difference, with the exception of S22 at 140*F,

appears to be in the value of the initial compliances. In order to

check this behavior, the Halpin-Tsai Equation (120) was solved for

"I I1111



268

the "effective" resin compliance using '. 2 and = 1. Only the

initial compliance, D of the epoxy resin was determined. The

solution of Equation (120) yields two real roots, :ne positive and

the other negative. Only the positive value of D was considered
0

on the basis of physical reasons. Figure 123 compares the experi-

mental initial compliances with the "effective" compliances pre-

dicted from the S22 and S66 principal compliances. Note that there

is a considerable difference in the S22 and SGG predictions; how-

ever, the S,2 compliance is not nearly as sensitive to changes in

the matrix D0 as SfnG. The "effective" resin properties indicate

aPproxii;atelyy a twoFol'.d increase In stiffness from the bulk ,atera• a I

This appears to be unreasonably high and it is felt that the fibers

are creating most of the stiffening effect. However, a closer

examination of the theoretical bounds on the principal compliances

will be discussed later in order to justify this hypothesis,

The time-dependence of S22 and S66 using the "effective" S,6

resin compliances and the Halpin-Tsai relations with ýE 2 and

= 1 are shown in Figures 124, 125 and 126. Remember that only

the value of D0 was changed, retaining the original D, values found

expeririientally. The time-dependence of S 66 agrees remarkably well

over several decades of time. The predicted $22 response is in

close agreement except where considerable crack growth is present

at the 140"'F temperature.

The theoretical upper and lcwer bounds for S66 and S22 have
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been established by Hashin and Rosen [189]. The "composite cylin-

der assemblage" (CCA) model corresponds to the upper bounds on

compliance. The CCA model is obtained by progressively filling out

a cylindrical specimen with composite circular cylinders. Each

cylinder consists of a circular fiber and concentric matrix shell

having the same fiber volume fraction as the overall composite and

is filled out in such a manner that the assemblage is statistically

homogeneous and transversely isotropic. The upper and lower bounds

for the shear modulus in the plane parallel to the fibers, G1 2 , are

given by (after some rearrang-,ment)

G12(-) = Gm Gf-l-Vm, + G+ l+vf)] (148ab)

Sm[GfOl-vf) + ~ 1 1 4b

where the subscripts f and m refer to the fiber and matrix, res-

pectively, and G and v are the shear modulus and volume fraction,

respectively.

Determination of the bounds on the transverse modulus, E22

(or S2 2 ), is more involved since it requires the evaluation of the

effective plane strain transverse bulk modulus, k* as well as

bounds on the transverse shear modulus, G*. The effective planeS t'

strain transverse bulk modulus is given by
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v f

k =k + Vf(149) P

where k, the bulk modulus of the fiber (f) and matrix (m) is

defined by

ESk = (150)

In Equation (150), E is the tensile modulus and v is the Poisson's

ratio of the individual constituents.

The upper and lower bounds on the transverse shedr modulus

are given by

V
t f G + Vm (151a)

L-m am 2Gf(kf+Gf)j1!f IG, G 2 GJI ] + °

and

G1G +v +f
Gf G Gm 2GII(km+m

The upper and lower bounds on the transverse modulus, E2 2, may now

be expressed in terms of k Gt and the major Poisson's ratio, V.,.

and longitudinal modulu5, Ell, given by Equations (117) and (114),

respectively. These bounds become

Oat
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4k* G*(+)
Ell+ 4k( k 1 E] (152a)

and

V 4k* G*(-)
E22 ( (152b)22 6(- 1)[ + 4k v1 /E1 ](5

Using Equation (83a) to convert E2 2 and G12 to S22 and Sf,.

respectively, the temperature dependence of the initial compliances,

r;ow using the experimental DO and not the "effective" initial com-

pliance, is compared with the experimental data as shown in Figures

121 and 128. The previous predictions for the Halpin-Tsai rela-

tions are also shown for reference. It should be noted that the

upper bounds (+) on the compliarces are the values determined from

the lower bounds (-) on the moduli due to the inversion. The oppo-

site is true for the lower (-) compliance bounds. The upper bound

on S66(+) also corresponds to using CG 1 in the Halpin-Tsai rela-

tionships.

Time-dependence may be represented by using the associated

relationships and the quasi-elastic analysis approach. Figures

129 through 131 show that the response of S22 and SG6 is well within

the upper and lower bounds with the exception of S2 2 at 140 0 F.

Rather than force the Halpin-Tsai relations to fit the experimental

data by requiring the matrix compliance to change significantly,

it seems more reasonable to adjust the factor ýE and ýG according

-1

4.i
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Figure 129. Comparison of experimental compliances S22

and S66 with theoretical upper and lower
bounds (T 20'F).
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to the best fit over the desired time scale of engineering interest.

The experimental data falls between the bounds, suggesting that

upper bounds for $66(CG = 1) does not represent the actual model for

the glass/epoxy composite within the theoretical constraints orig-

inally imposed.

Constant Crosshead Rate Tests on Glass/Epoxy Laminates

Effect of Temperature

The effects of temperature on the multiple cycling of a 45 and

±45' glass/epoxy composite tensile coupon is shown in Figures 132

through 135. For these figures only, the stress-strain curve has

been drawn for each specimen with the strain always referenced to

the sample length at the start of each cycle, i.e., the strain at

the beginning of each cycle is rezeroed (e = 0). The net result,

as we noted earlier, causes the material to appear to become stiffer

with each succeeding cycle. This effect is misleading and is cited

here oniy to show the trend in cycle-to-cycle behavior. In Figures

132 and 133 the glass/epoxy appears to become nonlinear as a result

of irreversible damage at a stress level near 4000 psi (75°F).

However, at 140'F it appears that this damage occurs at extremely

low stress levels for the 450 unidirectional composite (Figure 134),

approaching zero stress. The ±45' laminated composite, possibly

because of the layering effect on crack arrest, becomes nonlinear

near 2000 psi (Figure 135).
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Figure 133. Effect of repeated tensile loading on stress-
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At 75OF it appears that the degree of crack growth and arrest

are on the same order of magnitude for the second and subsequent

cycles for both the 45 and t45' composites. This is supported by

the relative change from the first to second cycles as seen ir,

Figures 132 and 133, along with the similarity in stress levels,

at which the two cycles begin to differ, viz. 4000 psi. Earlier it

was reported in Table 12 that the initial creep compliance for the

±+45' laminated composite was slightly lower (6..5%) than the 45'

unidirectional composite. The differences in fiber volume fraction,

although in the correct direction of the experimental results, are

only on the order of I% (TAMU data) to 3.5% (SCI data). A compar-

ison of the two tensile stress-strain curves also shows the same

trend in the stiffness.

The layering effect seems to cause the material to become

stiffer at both 75 and 140'F. At 140°F crack arrest occurs more

rapidly in the ±45' laminated composite which displays the same

behavior in the second and third cycle. The 450 unidirectional

zomposite, on the other hand, still shows significant change be-

tween the second and third cycle. The effect of temperature appears

to strongly affect the crack growth behavior in the unidirectional

450 composite more than the ±450 laminated composite.

Effect of Multiple Cycling and Stress Level

After the initial set of experiments were completed, it was

I --- .
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decided to conduct another series of tests on 45, 0/90 and ±450

glass/epoxy tensile coupons in order to further study the effects

of multiple cycling and stress level, including the unloading

phase. All of these tests were conducted at 75°F using a ramp

loading and unloading rate of 0.02 inches per minute followed by a

recovery period (no load) equal to two times the total time under

load. The stress histories used for this ;eries of tests are

shown in Table 16.

The first series of tests were carried out on the 00/90'

laminated composite. The results of these tests are shown in

Figures 136, 137 and 138. Only the first cycle is shown for the

stress level of 15,000 psi since there was no visible evidence of

irreversible damage present. All three cycles exhibited nearly

elastic behavior within the time scale of the experiment. Consid-

ering the maximum strain level induced in the 900 layers, one would

not expect any significant damage, at least not visible damage

in this type of test. The total experimental time for one complete

cycle (neglecting recovery) was less than three minutes; therefore,

the viscoelastic effects for the 00/90' fiber angle are negligible.

The next two cycles at the 42,000 psi level reflect the break-

down of the 900 layers at a strain level close to 0.3%. Once the

layers are broken the succeeding cycles (Figure 13C) show a perm-

anent strain an. little if any hysteresis. This condition is prob-

ably represnntative of the behavior in the barrel region of the

L7T~ ~~ ________
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Table 16. Stress History of Multiple Cycling,
Constant Crosshead Rate Tests

Fiber Angle Sample Cycle Maximum

(o) Number Number Stress (psi)

00/900 090.11 1,2,3 15,00J

4,5 42,000

450 45.13 1,2,3 8000

4,5 5000

6 800J

7,8 10,000

9(broke) 12,000

±45' AP45.18 1,2,3,4 11,500

5(broke) 10,500

-+45' AP45.11 1,2 5000

3,4,5 6500

6,7,8 .8100

9,10,11 9700

12,13,14 10,500

15,16,17 12,000

18 12,900

19(broke) 13,100

I .
, '
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Figure 136. Effect of cyclic loading on 00/90D tensilecoupon; a max =15,000 Psi ,C.ycle I).
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Figure 137. Effect of cyclic loading on 00/9 0 0 tensile
coupnn; umax 42,000 psi (Cycle 4).
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Figure 138. Effect of cyclic loading on 0"/900 tensile
coupon; amax 42,000 psi (Cycle 5).
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II

motor case during the first cycle (hydrotest) and subsequent cycles

(motor handling and firing).

In the initial test series on 45' unidirectional glass/epoxy

laminates the maximum stress was about 6000 psi. This series was 4

conducted to study the effects of successively higher stress levels

up to complete fracture. The first three cycles shown in Figures

139 and 140 indicate the amount of irreversible damage as a result

of crack growth. The accumulation of permanent strain and the de-

crease in the hysteresis loop is clearly shown. Figures 141 and 142

show the two cycles conducted at a stress level of 10,000 psi. The

relative change in the hysteresis loop appears to be on.the same

order of maqnitude as the cycles conducted at the lower stress

levels.

The last test series was run on two ±45' laminated composites

using two different stress histories. Sample AP45.18 was tested

completely at a high stress level without cycling at lower levels.

A maximum stress of 11,500 psi was selected for this sample. The

stress history for sample AP45.11 consisted of several cycles at

5000 psi followed by several additional cycles at increasingly high-

er stress levels until fracture occurred. Figures 143, 144 and 145

show the rather dramatic changes which occur through the first four

cycles of loading. It is evident that a dispronortionate amount

of damage is done in the first cycle. This fact agrees with the

results shown earlier for the creep and recovery tests.
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Figure 139. Effect of cyclic loading on 45' tensile
coupon; 0 max 8000 psi (Cycle 1).
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Figure 140. Effect of cyclic loading on 45' tensile
coupon; omax 8000 psi (Cycle 3).
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Figure 141. Effect of cyclic loading on 450 tensile
coupon; 0max 1 10,000 psi (Cycle 7).
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Figure 143. Effect of cyclic loading on ±45' tensile
coupon; aax 11,500 psi (Cycle 1).
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Figure 144. Effect of cyclic loading on t45' tensile
coupon; crmax 11,500 psi (Cycle 2). I)max
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Figure 145. Effect of cyclic loading on ±45" tens-'1e
coupon; Gm~ = 11,500 psi (Cycle 4).
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Close comparison of' the second and fourth cycle indicates that the

shape of the hysteresis loop i• almost identical, differing only by

a slight shift along the strain axis. This corresponds primarily

to slight changes in the initial compliance with the net creep com-

pliance remaining essentially constant. Crack growth, therefore,

appears to be arrested very rapidly in the ±_450 glass/epoxy even at

extremely high stress levels. Figure 146 was drawn to graphically

show the effect of the cycle-to-cycle damage by superimposing the

first and fourth cycle stress-strain curves.

The last series of tests, on sample AP45.11, was conducted to

show the effects of multiple cycles at low stress levels followed

by cycles at sequentially higher stress levels until ultimate

fracture. Figure 147 shows that cyclic response up to 5000 psi

stress levels are relatively insensitive to cycle-to-cycle damage.

Figures 148 and 149 represent the first and third cycle at a max-

imum stress of 12,000 psi. However, the sample has already been

subjected to fourteen previous cycles at stress levels below 12,000

psi as noted in Table 16. Let us now compare the bahavior of the

two samples, AP45.ll and AP45.18. Remember that one sample has

seen only four high stress levels near 11,500 psi while the other

sample has seen a total of seventeen cycles, all at or above 5000

psi. The last cycles for the two samples, conducted at or near

a maximum stress of 11,500 psi, are shown superimposed in Figure 150.

Except for slight differences in maximum stress level and sample



301

12
0Temperature 75OF 0 S

Fiber Angle +450 0

0 0

0

X 6

8 0
Ui

4

0 00

o * 00 Cycle 1

2 * Cycle 4

0 0
0

0 .2 .4 .6 .8 1.0

STRAIN (%)

Figure 146. Superimposed stress-strain curves (Figures 143
and 145) showing cycle-to-cycle damage effects
on ±45' glass/epoxy tensile coupon
(max 1,500 psi).
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:•Figure 150. Damage effects as a result of different stress histories.
S~Open circle (o) represents multiple cycles at sequent- •

.• ially higher stresses; closed c-ircle (0) data represents
!several cycles at max 11,500 psi.ma
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variability the stress-strain behavior appears to be a function of

the maximum stress level achieved during the sample's history. This

behavior is typical of that reported by Farris et al. [20, 128]

for propellant materials although he proposed the dependence on

strain using Lebesgue norms. Schapery [12, 20] has

proposed the use of Lebesgue norms of stress rather than strain to

model this behavior. The functional behavior of the Lebesgue norm

is such tCat it appears ideally suited for the representation of the

response seen in Figure 150; namely, that it is more influenced by

the maximum stress level than the entire past history.

Four-Point Beam Bending Tests

The previously described uniaxial tensile tests were conducted

in order to investigate the time and temperature dependence of the

glass/epoxy composites. The studies have shown that the glass/epoxy

materials are nonlinearly viscoelastic, in part, probably due to

the time-dependent development and growth of microscopic cracks.

The degree of nonlinearity depends on many factors which already

have been cited, namely, stress level, temperature, fiber angle,

etc. However, the uniaxial tensile test differs significantly

from a bending test in that a strain gradient exists across the

the thickness which is not present in the former one (neglecting

a slight amount of bending due to grip effects). This series of

tests was conducted in order to determine the effect of the strain

SI. . . ., . . . - - • :_•7 • • • . . - :••
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gradient on material nonlinearity.

Creep and Recovery Tests

The results from some of the creep and recovery tests areIl
shown in Figures 151 through 155. The data is plotted as usual for

the previous tests of this type except that strain, c, rather than

compliance is used. Strictly speaking, we cannot assume that all of

the layers of the beam are within the linear viscoelastic range,

particularly in the presence of a significant strain gradient.

Neglecting this situation for the moment, we shall study some of the

behavior shown by the beam tests. Remember also that the strain

used here represents the output from the strain gage on the tension

side of the beam.

In general, the beam cycle-to-cycle variation behaves in the

same manner as the tensile coupons, showing a disproportionate

change between the first and second loading cycles. It has been

found that the strain can be represented by the power law in time

with n = 0.19 for all of the tests, regardless of fiber angle or

stress level, with excellent correlation at each cycle.

With the behavior pattern now established, let us assume that

the stress, a, at the outer fibers of the beam is still within the

linear range. Consequently, we can use the flexure formula

Mc (153)

a=T

L !
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where M is the applied moment (constant for the creep test), I is

the moment of inertia of the cross-section about the neutral axis

and C is the distance from the neutral axis to the outer fibers.

We are, of course, assuming linear elastic (viscoelastic) behavior

although at the higher stress levels this will not be true. The

creep compliance may be uetermined in the same manner as we have

in the previous tests for the constant applied stress. Table 17

shows the effective creep compliance found by using the stress

defined by Equation (153).

The initial creep compliance for tie ±45° glass/epoxy tested

at the bending moment of 12.5 in-lbs is within 2% of the value

shown in Table 12 for the uniaxial creep and recovery tests. The

creep coefficient which does not change significantly with sub-

sequent cycles also agrees with the uniaxial data. At the higher

stress levels (moments) the ±450 glass/epoxy exhibits the soft-

ening effect seen in the tensile coupons.

Consider the ±20' glass/epoxy case material next. Earlier we

predicted the angular dependence of the linear viscoelastic creep

compliances in Figure 111. From the predicted curve based on third

cycle data we find the initial compliance to be 0.187 x l0- 6 (psi'-),

which agrees reasonably well with the beam values. The agreement

is within 4.5% after correcting for the difference in the fiber

volume fraction using the experimental data in Table 3. The third

cycle beam data was corrected by simply multiplying by the ratio of
K
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Table '17. Beam Creep and Recovery Compliances
Using Flexure Formula,Equation (153)

Fiber Angle Moment Cycle Compliance

(e) (in-lbs) (x 10 6 )(psi-1)

±45 12.5 1 .3000 + .0083t. 19

2 .3027 + .0085t-19

±45 55.5 1 .3980 + .0097t.19

2 .4205 + .0067t. 1 -

3 .4371 + .0032t.1 9

±20 O.b 1 .1657 + .0024t. 19

(case) 2 .1724 + .0025t.1 9

3 .1735 + .0028t.1 9

±70 1.5 1 .7694 + .0291t.l 9

(case) 2 .7753 + .0295t.11
3 .8085 + .0212t'1

+70 5.5 1 1.5060 + .1899t-19

(case) 2 1.6394 + .1758t'1

'II
3't

-
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the fiber volume fractions, i.e., 0.635/0.616, to obtain an esti-

mated initial creep compliance.

The ±70° case material does not show good agreement with the

initial linear creep compliance of 0.348 x 10-6 (psi-') which would

be predicted from Figure 111, being in error by about 100%. How-

ever, the strain which exists at the outer fibers of the beam is

on the same order of magnitude as the earlier tensile creep and

recovery tests which had also indicated significant softening.

It is not unreasonable to expect severe softening after one con-

siders the prior history of the case as a result of hydrotesting.
There is a considerable number of surface cracks present in

the case materials as a result of the earlier hydrotesting (see

"Figure 5b). The material is, therefore, much softer in the dome

region of the motor case where the fiber angles are greater ( :200

to ±70°) than in the barrel section (00/900).

Another interesting feature is the relative growth in the

initial creep compliance for the ±700 glass/epoxy with each cycle

while the creep coefficient remains virtually unchanged from cycle

to cycle. The normal stress is considerably higher than the shear

stress for the t70' fiber angle and would tend to explain this

behavior in terms of sudden (rather than slow) crack growth.

Constant Crosshead Rate Tests

T
SThe constant crosshead rate tests were conducted to study the
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effects of multiple cycling under controlled displacement condi-

tions. The test has been observed to be essentially a constant

strain rate test for the sample stiffnesses encountered. A plot of

the outer fiber strain (tension side) as a function of time indi-

cates that the strain rate is constant (Figure 156). The effects

of multiple cycles and applied moment are shown in Figures 157

through 168 for fiber angles of ±45. 0/90, ±20 (case) and ±700

(case).

In all situations the strain shown is the output from the

tension side of the beam. Additional tests conducted using strain

Sgages on both sides of the bea.A (tension and compression) indi-ated

the compression strain to be less than the tension strain for the

00/90' specimen. The neutral axis, therefore, shifts slightly

toward the compression side as a result of the softening which I
occurs under tension in the 90' layers. This effect, however,

appears to be very small and is not considered further in the ana-

lysis of the beam data.

Therefore, by assuming that the strain is a linear function of

the distance from the centroidal axis (plane sections remain plane)

and that the effect of tension and compression stresses is the

same, we c(an.predict the linear and nonlinear behavior by using

the data from constant crosshead rate tensile stress-strain curves.

The moment-strain response for the ±45' glass/epoxy beam was pre-

dicted by us-Ing the constant rate-to-failure stress.-strain curve
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1.0 Fiber Angle +45'

Temperature 75'FI

.8

H 4

F c

.2 C Cycle 10
9 Cycle I1

0 50 100 150

TIME (seconds)

Figure 156. Typical loading strain history for
constant crosshead rate beam test.
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= I

Fiber Angle ±450

- Linear Theory 0
1Temperature 750 F /

'-7

5

0 0 Cycle 1

* Cycle 3

0 .04 .08 .12

STRAIN, 0 (0)

Figure 157. Effect of cyclic loading of ±45'
glass/epoxy beam (Cycles I and 3).

MW1



319

00

Cc

CJ

0w

u +1

Vf)

(NO 0

dCo cS

a- 411.
mC 0. 4-

I.. LALC C

(sL-t INI



320

0 vv;

00 LO)
0)* 

I

00
00

0 r

0 >) c

IS- oJ C\ .- *

im 0~ L).

-t: 4-. 2

La 0* 4

Lr

( L-0I I 0)



321

CD.

a) W

00 0 0 L

0 0 0 -

00 %0 LL +;

0 ~ 0 0
0 0 U

-.

0-

>10 0 0 >1-

ro o 0 C CCC )
L fn 4- -



322

Fiber Angle 0/90°'
- Linear Theory

40 L Temperature 75-F

.• 30 1
LO

Co 20

00 cycle I
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Figure 161. Effect of cyclic loading of 07/90'
glass/epoxy beam (Cycles 1 and 3).
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for the 450 unidirectional glass/epoxy composite (Figure 30).

The 00/90' beam behavior was predicted by using the corres-

ponding 00 and 90' unidirectional stress--strain curves (Figures 28

and 31, respectively). The moment was determined by employing the

following procedure:

1. Select several strain levels, e.g., 1000, 2000,
0., 10,00 ve, etc , corresponding to the max-

inurn outer fiber strain. The d,'ta for the t45'

and 0°/90' specimens indicates the output from

both gages (teision and compression surfaces) is

relatively close; therefore, only the tension

strain gage output is used here.

2. Using the assumption of a linear strain distri-

bution, determine the strain at the mid-point of

each layer and the corres.ponding moment arm meas-

ured from the neutral axi; of the beam (assumed

fixed for all strain level3).

3. Use the strains establishec for the individual

layers to determine the average stress in t,.e

layer from the stress-strain curve represeŽnting

that particular fiber angle. (Some of the stress-

strain curves, e.g., 450, had to be extrapolated

to higher strain levels).

4. The stress acting on a given lay-r, multiplied

p.A
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times the area of the layer cross-section and

the moment arm yields the incremental moment

for that layer.

5. Add all cf the incremental moments to give the

1l total moment for a specified strain level.

The linear theory is shown in the ±450 and 00/900 beam results.

The agreement is very good over a large portion of the range. In

fact, the presence of the strain gradient greatly reduces the soft-

ening effect. In Figure 160 it can be seen that the nonlinear

theory predicts a significant decrease in the applied moment. The

450 data used to predict the bending behavior results in conserva-

tive predictions of moment. Remember that we have already noted

significant crack growth duriig the first few cycles in th, 45'

unidirectional composite specimen with crak Prý-st probably

occurring only when the crack reaches another fiber. the ±45'

tensile specimen e;chlbited more crack arrest during the first few

cycles and this was attributed to the layering effect.

The beam appears much stiffer than nonlinear theory prediLts

(Figure 160). In the beam crack growth must occur at the outer

fibers where the stre.-S is highest and then work inward toward the

center. The cracks are immediutely retarded by the interface at

the second layer and must be redire-ted before proceeding. However,

the cracks have now moved into a region of lower stresses which

reduces the growth rate. It could also be argued from a statistical
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viewpoint, that there is a much larger percentage of critical

cracks at a given stress level in a tensile specimen than a beam.

The cyclic loading of the motor case materials appears to have

reached an equilibrium behavior. The hysteresis loop remains

essentially unchanged from cycle to cycle except at the highest,

moments (Figure 168). However, by using Figure 111, we can pre-

dict the linear behavior using the linear viscoelastic creep compli-

ance. The material exhibits considerable softening in the initial

compliance (see Table 17) although the creep coefficient which re-

flects time-dependent crack growth appears to remain unchanged

with successive cycles.

Plate Twist Tests

The case of plate bending under the action of twisting moments

is discussed by Timoshenko and Woinowsky-Krieger [183] and

Lekhnitski [25]. The specific test outlined earlier in Section III

is commonly called the "plate twitt test". Several authors [184,

191-193] have applied the test to anisotropic, and more specific-

ally, orthotropic materials such as plywood [191] and fiber-rein-

forced compositeý [192, 193]. Whitney [184] and Tsai [193] have

used the test to determine the elastic material properties of

glass/epoxy and boron/epoxy composites using linear theory. The

purpose of these tests in this particular program was to investi-

gate the effects of multiaxiality on the behavior of the



333 _

gl ass/upoxy composite.

Creep and Recovery Tests

Since only one plate was available for the plate twist tests,

low load level creep and recovery tests were conducted first. Two

load levels were used as a check for linearity. The average strain

along the two diagonals (using the absolute value) was found to be

very small for the load levels used. Again, the strain was found

to fit a power law with n = 0.19. Bryzgalin [148, 194] conducted

similar tests on a glass/epoxy plate and found the power law be-

havior. In order to accurately measure the effects of damage

using this test it would be necessary to use higher loads, consid-

erably longer time periods and higher temperatures. At the load

levels which we tested there was no measured amount of damage. The

surface strains were below 600 l, which, from Figure 30, can be

seen to be well within the linear region. Further creep testing

was discontinued and attention was shifted to conducting the con-

stant rate tests to higher load levels.

Constant Crosshead Rate Tests

The constant crosshead rate tests were conducted to loads

which caused large deflections at the plate tips. In addition to

the large deflections encountered, the plate was loaded in a manner

different from that which is normally treated by the analysis.
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rhe analysis usedwithin the linear region assumes that the plate

is loaded at the corner. Experimentally this cduser localized

deformations at the tip due to the conL'entrated load at the edge.

The test also requires excellent balancing between the four load

points to prevent the rlate from slipping off the edges. It was

also noted that the tests are often conducted with the loads con-

centrated a short distance in from the edge, but using the original

analy5is [195]. Although not evident, it is believed that this is

common practice because of the experimental difficulties.

In the Appendix the plate twist test is studied analytically

by using an energy method and a techniquc is proposed to take into

account the co;-er effect. The incorporation of large deflection

theory in the energy formulation results in a nonlinear load-

deflection relationship, Equation (A-13), which predicts that the

load depends on the cube of the deflection in the nonlinear range,

Equation (A-13) represents the case of an isotropic material.

The load-deflection data for the aluminum plate is plotted on a

log-log scale in Figure 169. The cubic behavior in wo is not

clearly evident until the linear contribution is subtracted out as

in Figure 170, after which the data clearly indicate the cubic

behaviur. In fact, apart from the differences due to the material

properties, the glass/epoxy plate would also display the same func-

tional behavior in wo. This cubic variation results from the form

of assumed displacement function as long as the material properties
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do not depend on strain.

The load-deflection curve for the aluminum is shown in Figure

171. The linear theory is given by the first term in Equation

(A-13) using the correction for the corner effect. Linear theory

predicted by this method shows good agreement up to deflections on

the order of one-half the plate thickness. This is the normal limit

for linear theory In plates and shells [183] work. The nonlinear

theory predicted by Equation (A-13) exhibits considerably more

stiffness than noted experimentally. This is probably the result of

the choice of the displacement functions, Equation (A-1). It would

be possible to obtain better agreement by selecting more suitable

displacement functions compatible with loads removed from the cor-

ners a finite distance. The plate also exhibits an instability

which will be discussed later. This behavior creates larger de-

flections for a given load and the displacements appear to reflect

single curvature. Therefore, the assumed displacement functions

are valid only in a very small range.

The load deflection curves for the ±45' glass/epoxy are shown

in Figures 172 through 174 for increasing load levels. The linear

theory for the A450 fiber angle is given by Tsai [193] as

wo P • S(154)

where P is the applied corner load, z is the length of the side,

h is the plate thickness and SG is given as
i 1* '

, r• • T - • ' -•. .. .•- • l -l -m • - .... . . .....
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2.5 I 1

SCycle 1 0

2.0 - :0 0

0
1.5

0
o 

0I- 1

01 .:45' 
Glass/Epoxy

0 Loading
0.5 - Unloading

0 5L in e a r T h e o ry

I I
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LOAD, P (lbs)

Figure 172. Load-deflection behavior of ±450 glass/epoxy
plate (Cycle 1).
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S+450 S = 2(S 2 2 -S 12 ) (155a)

e -450 SG = 2(S 1]-S 1 2 ). (155b)

The _i45 glass/epoxy plate consisted of 15 layers; therefore,

the average value of SG was used in Equation (154). The elastic

values of S11, S12 and S22 are given in Table 15. The predicted

linear theory is shown on the figures after correcting for the

corner effect as we did before. Linear theory agrees reasonably

well up to plate deflections on the order of one-half the plate

thickness.

At the higher loads the load-deflection curves indicate what

appears to be a softening effect. When plotted as a load-strain

curve, as in Figures 175 through 177, the same effect is seen upon

unloading. However, in view of the surface strain levels which are

seen to be less than 1400 uc, one would not expect significant non-

linear behavior such as this. By plotting the load-deflection

curves for cycles 1 and 6 on log-log paper (Figure 178), it can be

seen that there are three linear regions. This behavior has been

described qualitatively by Foye [196] to consist of a linear range

followed by the nonlinear region which possesses an unstable branch.

After reaching this unstable point, the load-deflection relationship

again becomes linear. Closely examine the edges of the plates

shown in Figures 179 and 180. The low level creep and recovery

test shows that the plate edge is essentially straight.

70 P P -7
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iI

Figure 179. Low lo'ad level cre-p and recovery test
within linear range (e ±450).

Figure 180. High load level constant crosshead rate

test after buckling (o A50).
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In Figure 180 the edge shows considerable curvature as a result of

the high load which has caused the plate to become unstable with

respect to the twisting moments. Also noticeable is the lack of

double curvature (saddle effect) after the plate becomes unstable.

Once instability has occurred the plate should be treated

differently analytically. The plate could possibly be considered

as a triangular plate loaded at the corner as a cantilever beam.

A single parabolic displacement function would appear to be a

reasonable choice.

-!

LI
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SECTION V

APPLICATION TO MOTOR CASE DESIGN

The observations and results found in the previous sections

on the effects of stress, temperature and multiple cycling on the

glass/epoxy composite strongly suggest a means for improved design

methodology. In this section, we shall first review the present

problem associated with solid rocket motor case design and analysis

and existing technology. Lebesgue norms are used to predict the

effects of stress and multiple cycling for conditions which are

typical of the motor case as a result of hydrotesting and subse-

quent mission loads.

Review of Present Technology

The present design and analysis of fiber-reinforced composite

solid rocket motor cases is firmly entrenched in the use of linear,

orthotropic elastic analysis coupled with the application of "exper-

ience" factors to account for effects such as temperature, case

thickness, hydrotesting, etc. [13-17]. It should be noted, however,

that in the absence of any sound theoretical baseline, experience

carries considerable weight. Under certain conditions, such as

low stress levels, short time periods and moderate temperatures,

a linear, orthotropic elastic analysis using either measured or

predicted (micromechanics) properties may be adequate. In this
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same context one may extend the approach to linear viscoelasticity

in the absence of significant crack growth.

However, Rawe [197] has pointed out the need to assess the

damage created during hydrotesting of filament-wound motor cases

such as that shown in Figure 5b. Rawe observed that the cracks

become visible at pressures which were only 40% of the required

burst pressure. The number of cracks was found to increase with

pressurization and became a permanent feature of the chamber's

appearance upon release of the pressure. He also noted that a dis-

proportionate amount of cracking occurred during the first (hydro-

test) cycle. In addition to the obvious concern for the softening

effect created by the crack growth, the presence of cracks leads to

eventual reduction in strength as a result of moisture penetration

during prolonged storage. We have also noted the effect of moisture

on the volumetric expansion (see Figure 26) and the evidenceI

suggests [198] that moisture is present in the composite as the

result of small microcracks.

Crownover [14] suggests that a pressure level of 80% of the

burst pressure causes significant damage to the case material. His

results showed that the strength reduction was a function of both

the pressure level and the duration of the holding period. Although

his observations were qualitative, they are consistent with the use

of Lebesgue norms to describe the time-dependent crack growth

effects.

Ill
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In the Minuteman III motor case the design loads are nominally

determined for a safety factor of 1.25 [17]. The hydrotest pressure

is 5% higher than the mean operating pressure and 80% of the min-

imum burst pressure. For design considerations the factor of

safety is applied to the mean operating pressure and not the hydro-

test pressure. The properties used in the motor analysis are based

on a fiber volume content of 0.657 which is slightly higher than

that reported in Table 3. In order to account for damage due to

the hydrotest cycle, secant moduli determined from strain measure-

ments on the surfaces of several 6-inch diameter and full scale

pressure chambers were compared by ASPC [17] with the moduli pre-

dicted from the "rule of mixtures" and laminated plate theory.

These correction factors on stiffness were found to be on the order

of 0.4-0.7, depending on the load (strain) level and motor location

(fiber angle and layer sequence).

Temperature degradation factors were determined by comparing

the flexural stiffness of glass/epoxy specimens at various temper-

atures. As expected, these "temperature degradation factors"

actually reflect the viscoelastic temperature dependence of the

:omposite as well as crack growth behavior as the strain level in-

creases. These factors on stiffness were found to be approximately

0.7-1.0 for the specified operating temperatures. Certain locations

of the motor case actually reach temperatures approaching 250-300OF

for short periods of time. It is entirely possible that the

_&

*1 m. .
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time-dependent growth of cracks during this period is more signif-

icant than the effect of hydrotesting. However, the effects of the

higher temperatures are not known.

The present approach, therefore, is based on prior motor case

experience and utilizes an empirical method for correcting temper-

ature and multiple cycle effects. No effort has been made, to the

authur's knowledge, to correct for more than one loading cycle

(hydrotest) or the time-dependent effects due to crack growth.

Prediction of Multiple Cycling Effects

We have already shown that the linear viscoelastic properties

can be predicted reasonably well using the Halpin-Tsai Equations

(120) and the "rule of mixtures" Equation (118) in the absence of

crack growth. However, we also noted that the crack growth is

significant even at low stress levels when the temperature increases.

Experimental evidence shows that there is considerable softening of

the off-angle glass/epoxy composite which must be considered in the

dome areas of the motor case due to the fiber angles employed.

Multiple cycling effects were noted in Figures 100 through 105

where it was found that the nonlinear behavior depended primarily

on the stress normal to the glass fibers, an. However., the nonlin-

ear property, g0, reflects stress dependence and, as shown in

the figures, does not explicitly account for the cycle-to-cycle

damage.2.
• i-- '• . .. " , i i i i i i i i i i'- -i -'i - V
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In Section II the constitutive relationships were given for

materials exhibiting damage due to the time-dependent growth of

microcracks, viz., Equations (102), (106) and (107). The consti-

tutive theory is based on fracture mechanics and involves the

Lebesgue norm functions of stress given by

1/p

Jf01Hp ft OP dt] (156)

where 1aHllp is normally called the pth order Lebesgue norm or Lp

norm. In Equation (105) the value of p was defined in terms of the

matrix exponent, n. Fracture mechanics implies the use of the L2

norm when the crack tip velocity is proportional to the square of

the stress intensity factor [199]. Both norms were studied in
order to determine which one fit the observed data.

Using the form of Equation (106), the constitutive relation-

ship for the glass/epoxy may be written as

t dof
C } S(t-T) ef dT (157)

0

where S(t) is the linear viscoelastic creep compliance for the

specific fiber angle, o, and aef is the "effective stress" given by

Gef all + f(Iloll)] . (107b)
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The function f is dependent upon the stress level through Lebes.uwe e

norms. The problem involves measuring the experimental strains, .,

due to dn applied constant stress, a, and then determining the

function f.

The form of Equation (157) may be inverted in the usual sense

to obtdin (aifter using the quasi-elastic approach),

tO( 1 dr.d
cJef j S-t)%T d158)

where we can now consider the measured strains as input strains by

fitting the experimental data to a power law

r= o + ni (159)

where - and have the usual definition and reflect the stress
U

dependence due to crack growth. Also, n = n in the linear visco-

elastic region but m > 0.19 in the presence of crack growth.

The reciprocal of S(t), which obeys the power law form, is

found to be approximated by

+ +.. 1 - x + x2 - x 3 + (160)

The first few terms are given by

S~tn
(St t - Vo t + (161)

0 " {0

I'
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using the form of S(t) given by Equation (135).

Equation (158) was solved for aef using the experimental data,

Equation (159), as the strain input and the approximation given by

Equation (161) to obtain

0, sit n], ,tm me5 itm+n [r(l+n)r(m)1
a ef =S I - - 021'l+m+n) (162)

by neglecting the terms of order t2n and higher in Equation (161).

(Note: In the actual reduction of the data, all of the terms shown

inWEquation (161) were used; hdwever, the difference was found to be

insignificant). The function, f, or more exactly, the function,

O(+f), was found by using Equation (107b).

Data from the 20, 45 and 900 fiber angles at the 75°F and 1400 F

, temperatures was used to examine the multiple cycle effects. The

data is shown in Figures 181 through 185 as a function of the L2

norm. The L2 norm was found to describe the behavior better than

the norm using n = 0 19 defined by Equation (105). The data clearly

indicated the softening effect in f through several cycles. How-

ever, it appears that the L.2 norm does not completely separate out

the effects of stress level which appear to reflect more crack

growth effects in the initial loading. Evidence of this is re-

flected by the small jumps within each cycle.

Examination of the curves suggests that they may be approx-

imated by a straight line given by
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1 + f A(a) + B(a)HIaI12  (163)

where AWa and 8(a) exhibit stress dependence and 110112 is the L2

norm. As a result of the earlier studies we have found that AWo

and B(a) depend primarily on the stress normal to the fiber, an.*

The functions are shown in Figures 186 through 189. The values

for A(o ) and B(a ) are given in Table 18.

Table 18. Softening Parameters for S-901
Glass/Shell 58.-68R Epoxy

Temperature A(a n) B(O d~

75 1 + 38.5(10-6)o n 6.41~00lG9an

140 1 + 288.3(10-6)an 222.0(10-10)a n

At low stress levels the value of f approaches unity as pre-

dicted by linear viscoelastic theory in the absence of crack growth.

The curies also show the strong dependence on temperature.

At 75"F the softening arises mainly from the A(a n) contribu-A

tion. The slope of the curves, 8(a ), at 75'F could be considered
n

constant; however, there is not enough data available for various

fiber angles and stress levels to assess this assumption. The data

at 140OF suggests that the B(an) contribution is considerably more

s igni f icant.

The softening effect which occurs in the dome region of the

t.
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motor case, as a result of the stress levels and fiber angles,

can be accounted for by using the L2 norm and the softening para-

meters given by Table 18 in Equation (163). The effects Cf multiple

cycles such as hydrotesting, motor handling and subsequent firing

can be predicted through this procedure. It is interesting to note

that the L2 norm given by

HCj112 = a 2dt] (164)

is actually the root mean square (RMS) value of the stress, a,
I/2

times t - This implies that the motor case analysis can incor-

porate the use of the local RMS value of the stress, or the normal

l stress, into existing analyses to determnine the amount of softening

with each loading cycle. Laboratory data fi-om tensile coupons, I
such as used here, can be used to determine the functional relation-

ships between the desired Lp norm and stress.

p3

,

I.!
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SECTION VI

CONCLUSIONS

The Shell 58-68R epoxy resin was found to exhibit linear

viscoelastic behavior for the stress levels studied, which cover

the range from 5 to 50% of ultimate. Isothermal data indicated

the epoxy to be thermorheologically simple except for temperature

dependence of the initial compliance with the creep compliance

represented by a power law in time with a constant exponent

n = 0.19.

Evaluation of the S-901 Glass/Shell 58-58R epoxy composite

under uniaxial tensile loading showed that the creep compliance

could also be represented by a power law in time in the range of

linear viscoelastic behavior with the same exponent n = M,19.

However, the glass/epoxy composite was found to exhibit a strong

nonlinearity with both stress and temperature. Temperature depen-

dence analogous to that of the epoxy was found. At the higher

temperatures and stress levels, the nonlinearity was attributed

primarily to crack growth in addition to the normal reversible

nonlinearity. During the first few loading cycles the exponent in

the power law representation, n, was found to be considerably

greater than 0.19. The value of the exponent decreased with each

subsequent loading cycle. The rate of decrease depended upon the

particular stress level as well as the temperature. The nonlinear -

properties were found to depend primarily on the stress normal to4 .,

Ui
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the fiber. rather than the shear stress, which implies agreement

with Lhe crack opening mode of growth behavior; for reversible

nonlinearity dependence on the octahedral shear stress was

found [9].

The time-d.•pendence of the principal creep compliances, Sil,

Si.., S:,ý, ant' S(,., was determined from experimental data using

fourth-order tensor transformations. Using these tensor relations,

the angular dependence of the compliances was also predicted as a

function of fiber angle and found to agree with the experimental ]
results for all but the hignest temperature of 140°F; at this

temperature the disagreement appears to be a result of significant

crack growth and possible reversible nonlinearity even at low

stress levels.

Crack growth during the first cycle seems to cause a dispro-

portionate amoun,. of damage compared to subsequent cycles. This

behavior is reflected in both the unidirectional and laminated com-

posites. However, it appears that there is a difference in the

crack growth and arrest in the laminated composites in tension.
ti

Both the creep and recovery and constant crosshead rate tests in-

dicate that the any*e-ply (,f) composites probably further reduce

crack growth as a result of the barriers created by the layer inter-

faces. Consequently, the angle-ply composites were found to be

stiffer than their corresponding unidirectional counterparts in

tension.

EL
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The motor case materials were also found to obey the power law

creep compliance with n -- 0.19. They exhibited the same character-

istics as the composites fabricated in plate form. Experimental

data indicate that the off-angle composites exhibit considerable

softening due to crack growth. This behavior will affect the

stiffness of the dome regions of the motor case appreciably more

than the barrel section.

The "rule of mixtures" and Halpin-Tsai relations, Equations

(118) and (120), respectively, were found to describe the principal

creep compliances in the linear viscoelastic range reasonably well

in the absence of significant crack growth. The adjustment factors

were found to be approximately equal with a value of •E ½ 3.14.

Effective epoxy resin compliances predicted by using •E = 2 and

,G 1 I were found to be considerably lower than the bulk epoxy

compliances. Determination of the theoretical upper and lower

bnunds on compliance suggests that the way in which the fibers are

distributed in the cross-section contributes most of the additional

stiffness to tee Halpin-Tsai model rather than the in-situ matrix

as previously suggested by Sims and Halpin [62]. The experimental

data fall within the established bounds, except for $22 at 140'F.

Opening mode crack growth at low stresses appears to exist at that

tempera ture.

Bending tests conducted using beams and plates indicate a i'

strong influence of the strain gradient on reducing the softening
J_
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of the material. The beam tests show that linear theory agrees

very well for laminated composites. The surface cracks are

apparently drrested rapidly by the layer interfaces and concurrent

movement into a region of lower stress (strain). Nonlinear beam

theory, based on the unidirectional data underpredicts the actual

stiffness considerably. The bending tests imply that stretcning,

ratner than bending, creates significantly more softening in the

compos i te.

The experimental plate data show good agreement with linear

theory for small deflections. A nonlinear theory, developed using

the energy method for large deflections, shows that the load-

deflection relationship exhibits cubic dependence on the deflection.

lhe experimental results indicate that an instability occurs in the

plate twist test at higher loads which agrees qualitatively v-ith

Foye's results [196]. Creep arid recovery bending tests on the

platc in the linear range also follow the power law behavior.

Multiple cycling effects on the glass/epoxy composite showed

that the response was independent of earlier lower stresses.

Viscoelastic fracture mechanics theory, together with the observed

behavior, suggested the use of Lebesgue norms to model multiple

cycling eftects. The second-order, or L:, norm, was used to repre-

sent the softening effect for various stress levels and numerous

loading cycles. Higher order, L:;.., norms, were examined but the

best agreement was obtaii.ed using the L;, norm. The softening

3
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effect was found to depend primarily on the stress normal to the

fiber. The L2 norm, which is equal to the root mean square (RMS)

of the stress multiplied by the square root of time, may be used

to determine the softening at various locations within the motor

case. The use of the L2 norm to model time-dependent crack growth

softening during the hydrotesting and subsequent motor case loads

is, therefore, proposed.

Finally, it was found that several experimental factors should

be considered in terms of refining the determination of the non-

linear effects. The errors resulting from gage misalignment,

assumed fiber orientition (due to sample fabrication), and general V

sample-to-sample variability may easily be corrected by normaliza-

tion. Thus to achieve greater correlation with the data, all

specimens should first be tested at a low stress level (without

crack growth if possible) in order to determine the linear visco-

elastic compliance for the specific specimen. The nonlinearity

resulting from stress dependence in the absence of cracks must be

determined after crack growth has substantially arrested. Non-

linearity due to crack growth can be determined more accurately

by subtracting out the effects due to stress dependence on the

viscosity. Healing effects were not investigated but previous

work [9] showed that they may be significant for long rest

periods.

_-V.-
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APPENDIX

Analysis of Plate Twist Test

In this Appendix the energy method is used to obtain a large

deflection solution for the plate twist test [191-193] for the

case of an isotropic material. The analysis is then corrected for

the experimental application of loads at points removed from the

corners of the plate. Finally, extension of the approach to include

orthotropic materials is indicated.

Consider a square plate with the coordinate system (x, y) as

shown in Figure A-i where a is one-half the length of the diagonal.

A pure twisting moment is imposed on the plate by loading all four

corners with equal forces. The forces are perpendicular to the

plate with those forces at the first and third (diagonal) corners

being downward and the other two forces upward. The corner loads

cause the square plate to assume a hyperbolic paraboloid of saddle- (

shaped surface [183, 184].

Displacement functions are assumed to take the form

w
w = -0 (x 2-y 2 ) (A-la)

a

u = Ay2 x + Cx (A-lb)

v = -Ax 2y + Cy . (A-Ic)

i i
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y(v) x(u)

6 l

/ 3 4

Figure A-1. Plate notation for plate twist test.
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The deflection, w, follows the form for linear theory given by

Timoshenko and Woinowsky-Krieger [183] and reduces to the tip de-

flection, w0 , when x = ±a or y = ±a. The displacements u and v are

even functions of y and x, respectively, as a result of symmetry.

The coefficients A and C will be found by minimizing the potential

energy [183].

The equilibrium equation for small deflections is given by

[183]

!ý-+2 D~- + L 0 .'A-2)

ax ax 2ay2 ay4

The assumed displacement functions automatically satisfy equilibrium

for small deflections. For large deflections, in-place forces N.,

Ny and Nxy are developed which, if exact, will satisfy the following

equilibrium equations,

aNx aN
X+ 0 (A-3a)

ax ay

aN aN
xy + _ 0 (A-3b)

ax ay

The strain-displacement relationships for large deflections

must include the strain in the middle surface of the plate during

bending. The strain components are

i -i



393

L 1x ax2 (A-4a)

__ =v 1 /awr (A-4b)Dy 7 \ay)

Yxy = ay + -x + -- • (A-4c)By ax ax ay

For an isotropic material the constitutive equation is given by

II

S-vN ) (A-5a)

y hE-E N-A~x (A-5b)
•yy

Yxy = -Nxy (A-5c)

where h is the plate thickness, E is the elastic modulus and v

is Poisson's ratio.

The strain energy arises from the pure bending contribution

and the additional energy which results from the stretching of the

middle surface. The bending strain energy is given by

V )f w~ Z W ) -a2WW\ 2Qýwýwa 2 W N2 d (A-6)
;ý ýX2 -7)ax 2 D \ax y/j

where D is the flexural rigidity given by

z. Eh3
•D h (A-7)

A 12(l_-v2 )
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The strain energy due to stretching is given by the expression

VS = h2 + r 2 + 2vc y + I-(1-v)y2xy dA (A-8)

The total strain energy is the sum of VB and VS. The area

integration may be performed over one quadrant to obtain the strain

energy in terms of the three unknown parameters, w0 , A and C, by

applying Equations (A-1), (A-4), (A-6) and (A-8). The total poten-

tial energy of the system is

U= VB+VS - Pwo (A-9)

where the last term represents the potential energy due to the

applied load acting at the corner with the tip deflection wo, The

"coefficients may now be determined by minimizing the total energy

with respect to the coefficients

all = 0 (A-lOa)

U = 0 A-lOb)

- 0 (A-lOc)

The coefficients A and C are found to be

A 2w 2WF 2  7 - vINA1 (A-11)
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'22W 02  1v](-2
3a2  [15 -llv

Equation (A-10c) yields the load-deflection relationship after some

rearrangement

_r[T. .1 + 0 2(1+v)( 1 0

The first term represents the linear contribution while the second

term, cubic in wo3is the membrane or stretching contribution.

Recall that Equation (A-13) gives the corner load and tip

deflection (w ) when the plate is loaded at the corner. Using
0

Equation (A-la) we can write the deflection w' at a distance a'

along the diagonal as

W. .(. w (A-14)

Now let us examine the last term in Equation (A-9) more closely.

We may rewrite this term using Equation (A-14) to obtain

Pwo = P w' (A-15)

which gives the same energy contribution if the load acting at a'

were given by

PI Par 
2

P'(=)P . (A-16)

'I-
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Consequently, Equation (A-14) may be rewritten in terms of the

experimental load, P', and corresponding deflection, w', acting at

point a' on the plate's diagonal,

p. E = Eh3. wIX + r..4Eh(43+33v) (W] (A17

= L3a2(1+v)J L45a 2(+v)(15_l)1 (w'x) (A-17)

where

(2
X Ta . (A-18)

Following this technique we can approximate the load P' and corres-

ponding deflection wo' without having to assume a more complicated

set of displacement functions to account for the contribution of the

region past the loads.

Note that the procedure for transferring the point of load

application is completely independent of the type of material,

differing only in the coefficients in the load-deflection terms.

Consequently, we can apply the procedure equally as well to aniso-

tropic materials.

•i'



397

VITA

Scott Williams Beckwith, the son of John Williams and Alba

Coffrini Beckwith, was born In New York, New York on February 1,

1942. He is married to Mary Louise Beckwith and has two children,

Mary Christina and Michael Williams Beckwith. He graduated from

Texas A&M University in May 1964 with a B. S. degree in Aerospace

Engineering and from the California institute of TechnolCgy in

June 1965 with a M. S. degree in Aeronautics.

After receiving a commission as an officer in the United States

Air Force, he served at the Air Force Rocket Propulsion Laboratory, I
Edwards, California during the period from October 1965 through

August 1969. While there he 'onducted research in the area of solid

propellant characterization, analysis and fracture behavior. In

September 1969, he began working on a Ph.D degree at Texas A&M

Univer-sity where he was employed as an Engineering Research Assoc-

* iate with the Texas Transportation Institute and the Mechanics and

Materials Research Center. He also held an appointment as an in-

structor within the Civil Engineering Department.

He is currently employed as a Technical Specialist with

Hercules Incorporated, Magna, Utah.

Permanent address: Hercules Incorporated
Bacchus Works
P. 0. Box 98
Magna, Utah 84044

This dissertation was typed by Mrs. Mary Lou Beckwith.

iit


