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ABSTRACT

Viscoelastic Characterization of a Nonlinear,

Glass/Epoxy Composite Including the
Effects of Damage. (December 1974)
Scott Williams Beckwith, B.S., Texas A&M University

M.S., California Institute of Technology

' Chairman of Advisory Committee: Dr. R. A. Schapery
Y
Isothermal creep and recovery tests were conducted on an

3 epoxy resin and a glass fiber-reinforced composite made from the

O p b i

. same bulk resin. The glass/epoxy which was studied included uni-

T A

directional and leminated (angle-ply) composites as well as samples

The creep
and recovery tests were carried out at a series of stress levels

’l removed from a Minuteman III solid rocket motor case.
' I
E X,
| well into the nonlinear region at temperatures of 20, 75 and 140°F

AT RN e

for several fiber angles. Both the epoxy and glass/epoxy were
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found to be thermorheologically complex materials with a creep
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compliance which may be represented by a power law in time.

it
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The linear viscoelastic principal creep compliances were

determined for the glass/epoxy using fourth-order tensor transfor-
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mations. Using the Halpin-Tsai relationships and the "rule of mix-
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tures", the principal creep compliances were compared with those

i

i

predicted by micromechanics. The experimental results were found

fir 'lp‘

to agree very well with the Halpin-Tsai model except at the highest

b
H

;] R temperatures and were within the upper and lower theoretical bounds
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on compliance. , Lven at Jow stress levels the presence of micro-

/,'cfack growth was found to praduce appreciable softening at the

(\ highest temperatures,

The nonlinear properties were found to depend primgrily on the
stress normal to the fiber, suqggesting a crack opening-mode as the
essential mechanism of growth., Multiple cycles of creep and recovery

showed a disvroportionate amount of damage during the first cycle.

/ Crack growth was fuund tv reduce mure rapidly and with less suftening - ]
ceffect in the laminated (o) composites, probably as a result of the 1
interfacial barrier between the layers. In general, the oft anyle

composites exhibit considerable softening due to micro-crack growth.

c e Bending tests conducted on giass/epoxy beam and plate specimens
brought out a strony influence of the strain gradient.ﬁ&]t was found

that linear theory can be used for most of the useful engineering

3
T T P e = A

range of application. Nonlinegr theory based on tensile tests of

unidirection specimens predicts considerably wore reduction in

L L

bending stiffnc - *han observed experimentally

Wil

Multiple cycling effects un the glass/epoxy composite were

I
1 ol A

found to be niore sensitive to the stress normal to the fibers than

to the shear stress. The second-order Lebesgue norm (L, ) wus

3 found to approximately characterize multiple cycling effeuts such as

seen in a solid rocket moter case. The L, norm which, at a given
B ' time, is proportional to the root mean square value of the stress is,
therefore, proposed as a parameter for defining the damage produced

by hydrotesting.




el

ACKNOWLEDGMENTS

The author wishes to express his sincere gratitude for the

support and assistance of the many individuals who made this work

possible.

The aﬁthor particularly wishes to acknowledge the guidance and
valuable assistance given by his chairman, Dr. R. A. Schapery during
this period. Additional thanks are due his committee members,

2! ) Dr. R. Darby, Dr. J. S. Ham, Dr. J. E. Martinez and Dr. L. D. Webb
5 . for their valuable discussions and suggestions. The interest and

assistance shown by Dr. H. R. Thornton was also appreciated. The

author would Tike to extend a note of special appreciation for the

technical guidance and moral support given by a ¢lose friend and
associate, Dr. D. Saylak.
Additional acknowledgments are due to N. Conrad and

J. B. Hattox for their aid in the development of the computer codes

Lo Ry Sl

used in the analysis, to C. E. Fredericksen for his assistance

with the electronic instrumentation and in the actual testing
program, and special thanks to R. E. Milburn for his considerable
, help and untiring attitude during the data analysis and final
drafting stages.
Acknowledgment is extended to Dr. J. S. Noel (currently at
Texas A&M University), previously with Rockwell internationa], for
conducling the thermal expansion tests,

Financial support for a portion of this work was provided by




Vi

the Air Force Materials Laboratory on a related project involving

graphite/epoxy compnsites. The overall support for this work was

provided by the Aerojet Solid Propulsion Company under contract to
the Air.Force Rocket Propulsion Laboratory. The author is indebted
to the Project Manager, Mr. K. W. Bills, Jr., a close friend and
associate, who fully supported the author's effort with the
experfﬁental materials and technical assistance throughout the
length of the program.

Finally, and especially, appreciation is extended to the

author's wife, Mary Lou, and family for their patience and encour-

agement.




vii

TABLE OF CONTENTS

PAGE
ABSTRACT . . . . . e e e e e e e e e e e e . ifi
ACKNOWLEDGMENTS . & v & ¢ vt v v vt e e s e e e e o v
TABLE OF CONTENTS . . . & v ¢ ¢ v v v v v v v v e e v vii
. LISTOF TABLES . . . . & « v ¢« v it e v v v e e e w ' X
f LIST OF FIGURES . . . . . . .. e et e e e e . xii
3 SECTION
: ) I INTRODUCTION . . . ... e e 1
; 11 REVIEW OF CONSTITUTIVE THEORY FOR FIBROUS
: COMPOSITE MATERIALS . . . « . v + v v v v « v 6 E
Introduction « « . « . v v v v v v uw 6 1
Viscoelastic Behavior and Matrix E
Constitutive Theory . . . . . . . . . . .. 9 3
Linear Viscoelastic Theory . . . . . .. 10 E.
Nonlinear Viscoelastic Behavior . . . . . 29 3
Lamina Constitutive Theory . . . . . ., . . . 39 3
Elastic Anisotropic Materials . . . . . . 41 3
Viscoelastic Composite Material Behavior. 52 .
Structure-Property Relationships . . . . 71 E
Laminate Constitutive Theory . . . . . . . . 78 4
Elastic Orthotropic Materials . . . . . . 80 S
Viscoelastic Orthotropic Materials . . . 82 9
Structure-Property Relationships . . . . 84 4
/ II1  MECHANICAL CHARACTERIZATION TESTS . . . . . . . ‘86 ;
Materials and Equipment . . . . . . . o 87 1
Materials . . . . ¢ ¢« v v v v v o e v v 87 !
Specimen Preparation . . . . . ... .. 95 -
Equipment and Procedures . . . . . . .. 100 |
Experimental Considerations . . . . . . .. 114 §
Bending and Grip Effects . . . . . . .. 114 §
Strain Gage Heating . . . . . . . . RN 114 3
Humidity Effects . . . .. .. . .. .. 115 5

Softening and Transition Temperatures . . 115




. - S ~ . . B e IR
a

viii

L
n

TABLE OF CONTENTS (Continued) 4
PAGE
Preliminary Characterization Tests . . . . . 121 E
Fiber Properties . . . . . . . . . . .. 121 H
Fiber Volumetric Content AN .. 122 §
Tensile Coupon Stress-Strain Behav10r R 125 E
Constant Crosshead Rate Tests . . . . . . . 137
Uniaxial Tension . . . .. Ve e e e 137
Four-Point Beam Bending . . . . . . . . . 137
Plate Twist Test . . . . . e e e e e 139
Single and Multiple Cyc1e Creep and
Recovery Tests . . . e e e e 140
1 Uniaxial Tension . . e e e e e e e 140
: Four-Point Beam Bend1ng e e e e e 147
Plate Twist Test . . . . . . « . . . .. 148
, [V DATA REDUCTION AND ANALYSIS OF RESULTS. . . . . 149
3 Uniaxial Creep and Recovery of Epoxy Matrix. 149 ;7
‘A Determination of Material Constants . . . 149 P
3 Effect of Stress and Temperature. . . . . 153
Multiple Cycling Effects. . . . . . . . . 165 b
Matrix Creep Compliance . . . . . e e 169 ;
3 Uniaxial Creep and Recovery of Unidir- o
| ecticnal Glass/Epoxy Laminae and Laminated Is
Composites . . . 170 :
3 Determ1nat1on of Mater1a1 Constants 1n .
2 Power Law Representation. . . . . 170 o
- Linear Viscoelastic Creep Comp11ances C . 176 P
A Effect of Stress and Temperature. . . . . 178
@ Multiple Cycling Effects. . . . . 206 :
Lamina Angular Dependence and Pr1nc1pa1
3 Creep Compliances . . . . . . 245 :
o Comparison with M1cromechan1cs Theory - 252
2 Censtant Crosshead Rate Tests on Glass/-
1 Epoxy Laminates. . . . . . . . . . C e e 281
A Effect of Temperature . . . . . . .. .o 281
k| Effect of Multiple Cyc]lng and
% Stress Level., . . . e e e e e 286 . #

Four-Point Beam Bending Tests. . . . . . . . 306
Creep and Recovery Tests, . . . . . . . . 3C7




Yy
|

3

|

ix

TABLE OF CONTENTS (Continued)

PAGE
Constant Crosshead Rate Tests. . . . . . 315
Plate Twist Tests . . . e e e e e 332

Creep and Recovery Teété C e v e e e 333

Constant Crosshead Rate Tests. . . . . . 333
V  APPLICATION TO MOTOR CASE DESIGN 349
Review of Present Technology. . . . . . . . 349

Prediction of Multiple Cycling Effects. . . 352

VI CONCLUSIONS. . . v ¢ v v v v v v v e s v v v 367
REFERENCES . . . . . . ot e e e e e e e e e e e 372
APPENDIX . o & o v v v v e e e e e e e e e 389
VITA © 0 0 o o e e s e e e e e e e e e e e e e e 397

A A
bl

BTN TR T T




TABLE

(8]

10

11
12

13

14

LIST OF TABLES

Conversion Between Tensor, Contracted
and Mixed Contracted Notations .

Ingredients of Shell 58-68R Epoxy Resin [181].

Fiber Content of $-901 G1ass/She11 58-68R
Epoxy Resin Materials. . .

Summary of Maximum Bending Moment,
Mx(in-1bs), for Four-Point Bending Tests
(Constant Crosshead Rate). . . . . . .

Sumnary of Uniaxial Creep and Recovery
Tests (T = 20°F) . . . .

........

summary of Uniaxial Creep and Recovery
Tests (T = 75°F) . .

Summary of Uniaxial Creep and Recovery
Tests (T = 140°F). . . . . . . . . .

Summary of Maximum Bending Moment,
My (in-1bs), for Four-Point Bend1ng
Tests (Creep and Recovery) ..

Power Law Constants for Shell 58-68R
Epoxy Resin, . .

-------------

Shift Factors, aT, for Shell 58-68R
Epoxy Resin. . . . . . . . . . .. .

Shell 58-68R Epoxy Creep Compliances . .

Linear Viscoelastic Creep Compliances for
$-901 Glass/Shell 58-48R Epoxy . . . . . . .
Creep Compliances for 5-901 Glass/Shel}
58-68R Epoxy Composite at 140°F. .

Measured Properties Sy,, vy, and vy, for
5-901 Glass/Shell 58-68R Epoxy . .

PAGE

43

89

123

139
142
143

145

164
169

177
228

251

Yt St e A L




J

TABLE

15

16

17

18

LIST OF TABLES

Experimental, Initial Principal Creep
Compliances for 5-901 G]ass/She11

58-68R EPOXY. « v v ¢ ¢ v 4 0 v e e e e e e

Stress History of Multiple Cycling, Constant

Crosshead Rate Tests. . . .+ « v ¢« v + & ¢« o o o

Beam Creep and Recovery Compliances Using

Flexure Formula, Equation (153) . . . . . . ..

Softening Parameters for S5-901 Glass/She11
58-68R Epoxy. . . . . . . R

xi

PAGE

256

288

314

361




et

s Fp s

e
i %

FIGURE
1

10
11

12

13

14

LIST OF FIGURES

Relation between creep and recovery of a
linear viscoelastic material . .

surface layer of a typical glass- f1ber/9poxy
composite after removal of resin . ..

Glass fiber ends, or bundles after resin
removal

Anisotropic tensile specimen . . . . . . .
Section of solid rocket motor case (a)

showing winding pattern and (b) hydrotest
damage . . . . . . . e .

Evidence of fiber fracture in graphite/epoxy
composite e e e e e e

Matrix failure and interfacial adhesive
failure 1n the same composite

Crack arrest mechanism in an E-glass/epoxy
composite subject to tensile stress [12] .

Enlarged view (220X) showing presence of
significant fiber bending [12?

Laminated plate notation . . . . .

Instrumented third stage Minuteman III solid
rocket motor case undergoing prooftesting

Forward dome section of the third stage
Minuteman II] solid rocket motor case

Closeup view of the case region near a
thrust termination port

Typicai tensile coupons used for creep and

recovery and constant crosshead rate tests . .

specimens used for four-point beam
bending tests . e

PAGE

37

20

40

50

61

9¢

94

94

97

101

Xii




W

xiii

LIST OF FIGURES (Continued)

FIGURE PAGE

16 Orthotropic +45° glass/epoxy plate speciwen. . 101

17 (a) Multi-station, dead-weight creep tester
with (b) closeup view of heat chambers and
tensile coUpPOn .« v« ¢ ¢ v v e e e e e e e e s 103

18 Lower grip and pin connections showing
tensile roupon in (&) unloaded (recovery) :
and (b) loaded {creep) condition . . . . . . . 105
19 {a) Lever arm creep tester and (b) closeup
of the sample and grip assembly . . . . . .. 106
4 i
{ 20 Interior view of heat chamber. . . . . . . .. 109 1
1 21 Heat chamber mounted around sample in lever 4
o arm ¢creep tester . . . . . 0 v e 0 e e 4 e . . 109 '
3
l 22 Four-point beam bending test setup for {a) ,
1 creep and recovery test and (b) constant :
£ crosshead rate test. . . . . . . . . . . .., 110
ii 23 Experimental setup for plate twist test for %
%; (ag constant crosshead rate and (b) creep |
. and recovery tests . . . . . . e e e e . 113 P 4
5‘. t §
£ 24 Thermal expansion behavior of aluminum !
% reference material . . . . . . e e e e e e 118
‘ 25  Thermal expansion of Shell 58-68R
BPOXY FeSTN. v v v 4 v v v e e e e e e e e 119
26 Effect of thermal cycling on the thermal L
expansion of glass/epoxy composite . . . . . . 120 .

27 Stress-strain behavior of Shell 58-68R epoxy . 126

[
'

bd

:,;,

R

e
"o
’-

28 Stress-strain behavior of unidirectional

glass/epoxy (6 =0°) . . . . . . .. e e 127
29 Stress-strain behavior of unidirectional

glass/epoxy {e = 20°). . . . . . . . .. v 128




LIST OF FIGURES (Continued)
FIGURE ' PAGE
30 Stress-strain behavior of unidirectional
glass/epoxy (6 = 45°) . . . . .. .. e 129
: 31 Stress-strain behavior of unidirectional
’ glass/epoxy (6 = 90°) . . . . . .. .. ... 130
; 32 Stress-strain behavior of laminated glass/- E
: epoxy (8 =0°/90°) . . . . . . . . o ... . " 3] :
33 Stress-strain behavior of laminated glass/-
epoxy (0 = 110%) . . . ... 0 132 %
34 Stress-strain behavior of laminated glass/-
epoxy (0 = +30%) . . L. o e e 133 E
35 Stress-strain behavior of laminated gluss/-
epoxy (6 = +x45°) e e e e e 134 _
SO 36 Stress-strain behavior of Taminated glass/- i
: epoxy (6 = +60°) . . . . . .. e e e e 135 Y
, 37 Stress-strain behavior of laminated glass/- 2
] epoxy (8 = +80°) . . . . . . . ... 136
] : .
3 38 Evaluation of n using the recovery compli- ) 3
3 ance for the Shell 53-68R epoxy . . . . . . . 152 :
39 Creep compliance for Shell 58-68R epoxy as a
function of temperature . . . . . . . . . .. 155
40 Temperature dependence of initial compliance, ; ]
Do’ for Shell 58-68R epoxy . « « + « « « + « . 156 o
41 Net creep compliance, aD, for Sheli 58-68R [
epoxy at different temperatures . . . . . . . 158 -,
42 Temperature dependence and evaluation of n 1
from recovery compliance of Shell 58-68R
¢ EPOXY '« v v v e e e e e e e e e e e e e 159
g 43 Master curve for net creep compliance, aD,

for Shell 58-68R epoxy . . « « « « « v « « o 161




R ST T I

il

R AR [ Gl

ym

FIGURE

58

60

61

62

63

64

65

66

67

68

69

70

71

LIST OF FIGURES (Continued)

Creep compliance for different stress levels
(9 = i30°, T = 75°F) * . . L) . . L] . 0 . . .

Creep compliance for different stress levels
(6= #M5°, T=75°F) . ......... .

Creep compliance for different stress levels
(8= %60°, T = 75°F) . . .

Creep compliance for different stress levels
(6=20°, T=T80°F) « v v v v v o v v v o
Creep compliance for different stress levels
(6 =45°, T=140°F) . « . . . v v v v ..
Creep compliance for different stress Tevels
(e =90°, T =140°F) . . . ...

Creep compliance for different stress levels
(e = 0°/90°, T = 140°F)

Creep compliance for different stress Tevels
(6 = +30°, T =140°F), . . . . . ..

Creep compliance for different stress levels

(0= #45°, T = 140°F), . « v v v v v v v v o s

Creep compliance for different stress levels
(6 = 260°, T = 140°F), . . . . .

Creep compliances at low stress levels for
various fiber angles (T = 75°F). . .

Creep compliances at low stress levels for
various fiber angles of laminated composites
(T=75T1) . ......

Creep compiiance at Tow stress levels for

various fiber angles (T = 140°F) . . . . . . .

Creep compliances at low stress levels for
various fiber angles of laminated composites
(T = 140°F). . . . . e e e e e e

-------

R

.......

184

185

186

187

188

189

190

191

192

193

197

198

199

200

xvi

b o i Ut




i

LV

s

LIST OF FIGURES (Continued)

FIGURE PAGE
44 Time~temperature shift factor, ar, vs,
inverse temperature for evaluation of
~activation energy. AF, for Shell 58-68R
BPOXY v v 4 v s e e e e e e e e e e 162
45 Temperature dependence of the shift factor,
ars for Shell 58-68R epoxy . . . « « « « « . . 163
46 Effect of multiple loading cycles on creep
compliance of epoxy resin (T = 75°F) . . . . . 166
47 Effect of multiple loading cyc]es on net
creep compliance of epoxy resin (T = 75°F) . 167
[ 48 Effect of multiple loading cycles on recovery ?
compliance of epoxy resin (T = 75°F) . . . . . 168 !
i

49 Creep and recovery of 45° glass/epoxy at 75°F. 171

50 Creep and recovery of 45° glass/epoxy
at 75°F . . . ... 00 e e e e e e e 172

51 Creep and recovery of 45° g1ass/epoxy at

il
g ML Al

T40°F & 0 0 s e e e e e e e e e e 173
52 Creep and recovery of 145° g1ass/epoxy
at TA0°F & . & v v s e e e e e e e e e e 174
53 Creep compliance fcr different stress levels
(6 20 T=758%F) . . v v v v v v o v v v o 179 :
54 Creep compliance for different stress levels '
(8 220°, T=75%F) v v v v v v v v v v v 180
55 Creep compliance for different stress levels

(6 2 45°, T=75°F) . . v v v v v v v v v 181

56 Creep compliance for different stress levels
=90°, T=75%) . v v vi v i 182

57 Creep compliance for different stress levels
(6 =0°/90°, T=75°F) v v v v v v v v v v o 183




xvii

LIST OF FIGURES (Continued) ,
FIGURE PAGE

72 Effect of temperature on creep compliance of
glass/epoxy composite (& = 45°), . . . . . . . 201
73 Effect of temperature on creep compliance of
glass/epoxy composite (6 = +45°) ., . . . ., . . 202
- 74 Temperature dependence of the initial creep

compliances for the glass/epoxy composite. . . 203

| 75 Time-temperature shift factor, ay, for the

?1ass/epoxy composite and epoxy resin
: from Figure 44§ Ve e e e .. 205

76 Effect of multiple loading on the creep
compliance of the glass/epoxy unidirectional
Taminae (e = 20°, T = 75°F, ¢ = 10,500 psi). . 207

77 Effect of multiple loading on the creep
compliance of the glass/epoxy unidirectional
laminae (o = 20°, T = 140°F, o = 2000 psi) . . 208

. ——— Y it L TR
B e T i | 5

78 Effect of multiple loading on the creep
compliance of the glass/epoxy unidirectional
laminae (e = 20°, T = 140°F, o = 4800 psi) . . 209

ol bt

79 Effect of multiple lcading on the creep
compliaince of the glass/epoxy unidirectional
laminae (¢ = 20°, T = 140°F, o = 8500 psi) . . 210

80 Effect of multiple Toading on the creep
compliance of the glass/epoxy unidirectional
laminae (e = 20°, T = 140°F, o = 10,500 psi) . 21

81 Effect of multiple loading on the creep
compliance of the glass/epoxy unidirectional
laminae (6 = 45°, T = 75°F, o = 3015 psi). . . 212

82 Effect of multiple loading on the creep
compliance of the glass/epoxy unidirectional
laminae (6 = 45°, T = 75°F, o = 6350 psi). . . 213

B3 Effect of multiple loading on the creep
compliance of the glass/epoxy unidirectional
Taminae (6 = 45°, T = 140°F, o = 500 psi). . . 214




L L B g sl

TR AR L

FIGURE

84

85

86

8/

88

89

90

9

92

93

94

LIST OF FIGURES (Continued)

Effect of multiple loading on the creep
compliance of the glass/epoxy unidirectional

laminae (0 = 45°, T = 140°F, o = 5000 psi) . .

Effect of multiple loading on the creep
compliance of the glass/epoxy unidirectional

laminae (0 = 90°, T = 75°F, o = 540 psi) . . .

Effect of multiple loading on the creep
compliance of the glass/epoxy unidirectional

laminae (8 = 90°, T = 75°F, o = 2015 psi). . .

Effect of multiple loading on the creep
compliance of the glass/epoxy unidirectional

laminae (9 = 90°, T = 75°F, o = 4000 psi). . .

Effect of multiple loading on the c¢reep
compliance of the glass/epoxy unidirectional

laminae (6 = 90°, T = 140°F, ¢ = 480 psi). . .

Effect of multiple loading on the creep
compliance of the glass/epoxy unidirectional

laminae (0 = 90°, T = 140°F, ¢ = 1480 psi) . .

Effect of multiple loading on the creep
compliance of the glass/epoxy unidirectional

laminae (6 = 90°, T = 140°F, ¢ = 2375 psi) . .

Effect of multiple loading on creep compli-
ance of the glass/epoxy laminated composite
(0= 145°, T = 75°F, o = 3010 psi) . . .

Effect of multiple loading on creep compli-
ance of the glass/epoxy laminated composite
(6 = +45°, T = 75°F, o = 7035 psi)

Effect of multiple loading on creep compli-
ance of the glass/epoxy lTaminated composite

(o = +45°, T = 75°F, o = 8495 psi) . . . . . .

Effect of multiple loading on creep compli-
ance of the glass/epoxy laminated composite

(6 = +845°, T = 140°F, ¢ = 500 psi) . . . . . .

PAGE

215

216

218

219

220

221

222

223

224

225

Coxvidi




' ‘I
L
£
§

[
3’.
o

b oAl
e =

ol “:;‘mmlﬁi‘MWI.iirlmmwﬁﬂﬂ""mluMﬂ‘ﬁﬁiW’

i

FIGURE
95

96

97

98

99

100

101

102

103

104

105

(T = 140°F, Cycle 3) .

LIST OF FIGURES (Continued)

Effect of multiple loading on creep compli-
ance of the glass/epoxy laminated composite
(6 = +45°, T = 140°F, o = 7000 psi). . . .

Multiple loading effects on Sreep coefficient
(T = 75°F) . . .

Initial nonlinear property, go, compared to
the normalized octahedral stress, t,
(T = 75°F) . ..

Initial nonlinear property, g,, compared to
the normalized octahedral stress, g
(T=T140°F), . . « .« ...

Multiple loading effects on creep coefficient
showing dependence on the average shear
stress, T (T = 75%F) . v v v v v v v v v v v
Initial nonlinear property, go, as function
of the stress normal to the fibers

(T = 75°F, Cycle 1)

Initial nonlinear property, go, as function
of the stress normal to the fibers
(T = 75°F, Cycle 2), . . . ..

L N I T S}

‘Initial nonlinear property, go, as function

of the stress normal to the fibers
(T = 75°F, Cycle 3)

Initial nonlinear property, Jo» @S function
of the stress normal to the fibers
(T=T40°F, Cycle 1) v v v v v v v v v s o W
Initial nonlinear property, go» @S function
07 the stress normal to the fibers

(T = 140°F, Cycle 2) v v v v v v v v v e o o
Initial nonlinear property, g,, as function
of the stress normal to the f?bers

............

PAGE

226

230
231

232
22
235

236

237
238

239

240

xix




ﬁ* A S e e —

A%
LIST OF FIGURES (Continued)
FIGURE PAGE
106 Effect of multiple loading on the creep
compliance of the case material o
(6 = £70°, T = 75°F, o = 300 psi). . . . . . . 241
107 Effect of multiple loading on the creep
compliance of the case material
(o = +70°, T = 75°F, o = 1000 psi) . e 242
] 108 Net creep compliance for case material
: subjected to multiple loading (e = +70°,
1 T=758F,c=3000ps1) . « « v v v v v ... 243
109 Net creep compliance for case material
subjected to multipie loading (s = *70°,
T =75°F, ¢ = 1000 psi). . . . . . ... . 244
110 Angular dependence of the linear visco-
elastic creep compliance, Sy; (T = 20°F) . . . 247
111 Angular dependence of the ljnear visco-
elastic creep compliance, S;; (T = 75°F) . . . 248
112 Angular dependence of the linear visco-
elastic creep compliance, Sy; (T = 140°F). . . 249
113 Temperature dependence of principal shear '
compliance, Sgg. . + + . . C e v e e e . 253 1
114 Temperature dependence of net creep T g
compliance, ASgg + « v v v v e e e w e e 254 L2
E|
115 Temperature dependence of initial principal %
linear viscoelastic creep compliances. . . . . 257
116 Temperature dependence of initial transformed
reduced stiffnesses (data from Figure 115) . . 259
117 Linear viscoelastic creep compliances of
glass/epoxy composite (T = 20°F) . . . . . . . 260
118 Linear viscoelastic creep compliiances of -

glass/epoxy composite (T = 75°F) . . . . . . . 261




e

FIGURE
119

120

121

122

123

124

125

126

127

128

129

130

LIST OF FIGURES (Continued)

Linear viscoelastic creep compliances of
glass/epoxy composite (T = 140°F). . . . . ..

Linear viscoelastic reduced stiffness of
glass/epoxy composite (T = 20°F) . . . . . ..

Linear viscoelastic reduced stiffness of
glass/epoxy composite (T = 75°F) . . . . . . .

Linear viscoelastic reduced stiffness of
glass/epoxy composite (T = 140°F). . . . . ..

Comparison of experimental initial compliance,
Do, with "effective" compliances for
Sge11 58-68R epoxy resin . . . . . . . . . .

Principal compliances, S,o and Sgg, predicted
with Halpin-Tsai equations using the Sgg
"effective" resin compliance (T = 20°F§. RN
Principal compliances, S,, and Sgg, predicted
with Halpin-Tsai equations using the S;¢
"effective" resin compliance (T = 75°F3. o

Principal compliances, S,, and Sgg, predicted
with Halpin-Tsai equations using the Sg
"effective" resin compliance (T = 140°F

Comparison of temperature dependence of
initial compliance, S,,, with theoretical
bounds . . . . . L L L e e s e e e e e e

Comparison of temperature dependence of
initial compliance, Sgg, wWith theoretical
bounds . . ¢ . . v e h e e e s e e e e e e

Comparison of experimental compliances S,,
and Sgg With theoretical upper and lower
bounds (T = 20°F). . v +v v v v v v e v 0 v W .

Comparison of experimental compliances S,,
and Sgg with theoretical upper and lower
bounds (T = 75°F). . . . . .. e e e e e

PAGE

262

264

265

266

269

270

2N

272

276

277

278

279




PPAR|

LIST OF FIGURES (Continued)

Nax

FIGURE PAGE
131 Comparison of experimental compliances S;»
and Sgg with theoretical upper and lower
bounds (T = 140°F) . . . . . e e e e e e 280
132 Effect of repeated tensile loading an stress-
strain response (0 = 45°, T = 75°F). . . . . . 282
133 Effect of repeated tensile Tcading on stress-
strain response (6 = +45°, T = 75°F) . . . . . 283 g
134 Effect of repeated tensile loading on stress- :
strain response (6 = 45°, T = 140°F) . . . . . 284
135 Effect of repeated tensile loading on stress- p
strain response (o = +45°, T = 140°F). . . . . 285
136 Effect of cyclic loading on 0°/90° tensile 4
Coupon; apax = 15,000 psi (Cycle 1). . . . . . 289 |
137 Effect of cyclic loading on 0°/90° tensile 5
coupon; o . = 42,000 psi (Cycle 4). . . . . . 290
i 138 Effect of cyclic loading on 0°/90° tensile 3
¢ ' coupon; o .. = 42,000 psi (Cycle 5). . . . . . 291 o
A | 135 Effect of cyclic loading on 45° tensile
3 coupon; o ., = 8000 psi (Cycle 1). . . . . .. 293 .
? 140 Effect of cyclic loading on 45° tensile -
3 coupon; o, = 8000 psi (Cycle 3). . . . . .. 294 2
A
; 141 Effect of cyclic loading on 45° tensile
coupon; o .. = 10,000 psi {(Cycle 7). . . . . . 295
142 Effect of cyclic loading on 45° tensile
coupon; o, . = 10,000 psi (Cycle 8). . . . . . 296
143 Effect of cyclic loading on #45° tensile 4
coupon; o . = 11,500 psi (Cycle 1) v v .« . . 297 S
] 146 Effect of cyclic loading on +45° tensile "
; coupon; o = 11,500 psi (Cycle 2). . . . . . 298 1




FIGURES
145

146

147

148

m ﬂjm\mum L

| . 149

150

151

152

153

154

155

= el o

LIST OF FIGURES (Continued)

Effect of cyclic loading on +45° tensile
coupon; o = 11,500 psi (Cycle 4). . . . . .

Superimposed stress-strain curves (Figures 143
and 145) showing cycle-to-cycle damage effects
on +45° glass/epoxy tensile coupon

(omax = 11,500 psi). « . . v .0 .. ..
Effect of cyclic loading on #£45° tensile
coupon; o = 5000 psi (Cycle 1). . . . . ..

Effect of cyclic 1o .ag on +45° tensile
coupon; o, = 12,000 psi (Cycle 15) . . . . .
Effect of cyclic loading on 45° tensile

coupon; o .. = 12,000 psi (Cycle 17) . . . ..

Damage effects as a result of different stress
histories. Open circle (O) represents mult-
ipie cycles at sequentially higher stresses;
closed circle (@) data represents several
cycles at Omax = 11,500 psi. .« . o . v o 0 .
Effect of multiple cycling on the creep strain
for the +#45° glass/epoxy beam for a 12.5 in-1b
applied moment (T = 75°F). . . . . .. . ...
Effect of multinie cycliing on the creep strain
for the #45° glass/epoxy beam for a 55.5 in-1b
applied moment (T = 75°F). . . . . . ... ..
Effect of multiple cycling on the creep strain
for the +20° case material bean for a 10.5
in-1b applied moment (T = 75°F). . . . . . . .
Effect of multiple cycling on the creep strain
for the x70° case material beam for a 1.5
in-1b applied moment (T = 75°F). . . . . . . .
Effect of multiple cycling on the creep strain
for the +70° case material beam for a 5.5
in-1b applied moment (T = 75°F). .

T L4

PAGE

299

301

302

303

304

308

308

309

310

N

312

xxiii

S LW TR T




i

xxiv

LIST OF FIGURES (Continued)

FIGURE PAGE
156 Typical loading strain history for constant
crosshead rate beam test . . . . . . e e e 37
157 Effect of cyclic loading of +45° glass/epoxy
beam (Cycles 1 and 3). . . . . . . . . ... 318
, 158 Effect of cyclic loading of +45° glass/epoxy
% beam (Cycles 4 and 6). . . . . . . . e e 319
E) 159 Effect of cyclic Toading of +45° glass/epoxy
é beam (Cycles 7 and 9). . . . . . . . . .. . 320
£
P 160 Effect of cyclic loading of #45° glass/epoxy
E beam (Cycles 10 and 11). . . . . . . « . . . 321
B 161 Effect of cyclic loading of 0°/90° glass/epoxy
beam {Cycles 1 and 3). e e e e e e 322
162 Effect of cyclic loading of 0°/90° glass/epoxy ?
beam (Cycles 4 and 5). . e e e e e e e 323 :
163 Effect of cyclic loading of 0°/90° ylass/epoxy
beam (Cycles 6 and 7). . . . . . . . . . . .. 324
164 Effect of cyclic loading of +20° beam cut from
motor case material (Cycles 1 and 2) . . . . . 325

165 Effect of cyclic loading of 220° beam cut from
motor case material (Cycles 3 and 4) . . . . . 326

166 Effect of cyclic loading of #20° beam cut from
motor case material (Cycles 5§ and 6) . . . . . 327

167 Effect of cyclic loading of +£70° beam cut from

motor case material (Cycles 1 and 2) . . . . . 328
168 Effect of cyclic loading of x70° beam cut from

motor case material (Cycles 3 and 4) . . . . . 329
169 Evaluation of load-deflection behavior of

aluminum plate . . . . . . . . . .. N 335




T T

Wd\! EH

FIGURE

170

7N

172

173

174

176

177

178

179

180

181

182

183

LIST OF FIGURES (Continued)

PAGE
Large deflection contribution, AP, to total
plate load versus deflection for aluminum
plate. .« . ¢ ¢ v v i e e e e e e e e e 336
Load~deflection curve for 6061-T6 Aluminum
plate. . « « v o o o o0 0 e e e . AN 338
Load deflection behavior of #45° glass/epoxy
plate (Cycle 1). . . . . . . . .. e e e 329
Load-deflection behavior of +45° glass/epoxy
plate (Cycle 3). . . . . . . . ... e e 340
Load-deflection behavior of *45° glass/epoxy
plate (Cycle 6). + « « v v v v v v v v v v . . 341
Load versus average surface strain for £45°
glass/epoxy plate (Cycle 1). ., . . . . . . .. 343
Load versus average surface strain for x45°
glass/epoxy plate (Cycle 3). . . . . . ... . 344
Load versus average surface strain for #45°
glass/epoxy plate (Cycle 6). . . . . . . . .. 345
Evaluation of load-deflection behavior of
+45° glass/epoxy plate . . . . . . . . . . .. 346
Low Toad level creep and recovery test within
Tinear range (8 = #45°), . . . . . . . .. C 347
High load level constant crosshead rate test
after buckling (o = 245°)., . . . . . . .. .. 347
Softening function, 1 + f, for g = 20° at
759F . L 0 o o e e e e e e e 356
Softening function, 1 + f, for ¢ = 45~ at
75%F L e e e e e e e e e e e e e e 357

Softening function, 1 + f, for g = 90° at
75%F . o . s e e e e e e e e e e e e C . 358

XXV

- X ¥ il




]

E
7.
ot
é‘

XXVi
LIST OF FIGURES (Continued)
FIGURE PAGE
184 Softeniny function, 1 + f, for ¢ = 20° at
140°F. e e e e e e e 359
185 Softening function, 1 + f, for 0 = 45° at
140°F. . . . . . . . e e e e e e e e e . 360
: 186 Normal stress dependence of the softening ,
;1 parameter, A, at 75°F. . . . . . .« . . . . . 362 i
- 187 Normal stress dependence of the softening :
A parameter, B, at 75°F. . . . . . . . .. NN 363 3
\ 188 Normal stress dependence of the softening %
. parameter, A, at 140°F . . . . . . . . . .., 364 §
3
189 Normai stress dependence of the softening "3
parameter. B, at 140°F . . . . . . . . . . .. 365 3
|
.
'3
& '3
3 P
HE
!

il
T




3
g
i 4

il il

1'
1
i
|

vy

SECTION I

INTRODUCTION

During the past fifteen years there has been an increased
emphasis on the development and structural application of composite

materials. In general, there are two primary divisions of compos-

.
I

ite materials, viz., particulate and fibrous composites. These
classes and several others are discussed in detail by Holliday [1];

however, this study is limited to fibrous composites. Typical

fibrous composites in current use within the aerospace and commer-
cial fields consist of composites made from continuous, parallel
fibers embedded in a matri: material. The use of fiber-reinforced
plastic composites such as glass/epoxy and graphite/epoxy for
structural components has evolved as a result of increased interest
in their mechanical properties relative to conventional materials.
Of particular interest are their high strength-to-weight and high
modulus-to-weight characteristics. This type of composite is dis-
cussed in detail by Ashton, Halpin and Petit [2], Lubin [3], Tsai,
Halpin and Pagano [4] and [5]. This interest is also mirrored in
the large number of published works on this class of materials as
evidenced in the abstracts of recent literature surveys conducted

specifically on the mechanics of fiber-reinforced plastics by

The “ormat of this dissertation follows the style of the : o
Journal of Composite Materials.




5

Beckwith et al. [6-8].

Althougn the constituént'materia]s are usually assumed to ex-
hibit linear elastic behavior up to failure, the overall fiber-
reinforced plastic composite exhibits a significant amount of time
and temperature dependent mechanical behavior in many service envi-
ronments. The efficient and safe deSign and utilization of these
composites demand a good understanding of their viscoelastic be-
havior. The surveys by Beckwith et al. [6-8] point out that while a
significant amount of research has been conducted on the visco-
elastic behavior of polymers and particulate composite polymers,
there have been only a limited number of investigations of the
viscoelastic behavior of plastic composites.

1t has further been established by Lou and Schapery [9], Ashton
[10], Halpin [11] and Schapery, Beckwith and Conrad [12], that the
behavior of many of these composites is not linearly viscoelastic
except at small strains, often well below the design iimits
normally imposed fcr structural applications. More recent studies
of the nonlinear viscoelastic behavior of unidirectional glass/-
epoxy composites [S] seem to indicate that the nonlinearity can be
attributed to internal crack growth within the matrix (or at the
fiber/matrix interface) and viscous flow in the plastic matrix.

Composites have typically found their way into several areas
involving pressure vessels through the process of filament winding

techniques [13-16]. The early emphasis on fiber-reinforced

-\*WHMWM .
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cémposites can be attributed to their application in solid rocket

motor cases in the late 1950's and early 1960's. This interest is

iy g

currently at a very high level as evidenced by the use of some of

the "advanced" composites such as graphite/epoxy [15]. Part of

the motor case design problem rests in the complete mechanical

". . ‘ltmwﬂ}ﬁmhix.‘..miv w?

characterization of the material and subsequent application after
the vessel has been subjected to one or more cycles of "hydrotesting"

to pressure levels about 10-25% above the expected operating condi-
tions [17].

o Sl

This technique of "non-destructive testing" (NDT) has,

g

in faci., bren shown to cause considerable internal damage to the

|
'|
3& composite and in glass/epoxy composites creates a condition for

il

oy il ol
w5

further damage due to moisture [14, 15].

The importance of the nonlinearity due to crack growth ﬁs

considered significant, particularly during the first few cycles

it e

when a considerable amount of non-recoverable deformation occurs.
There is also an associated softening of the composite from cycle-
to-cycle, which should be accounted for in determining subsequent
deformations during the application of the service conditions.

Constitutive theory for fibrous composite materials is re-

viewed in Section II. In addition to reviewing the basis for lin-

ear elastic constitutive theory, the definition of linear visco-

elastic behavior is presented and the effects of temperature on the

overall composite response are discussed. Schapery [18] has re-

cently reviewed many of the major areas of viscoelastic behavior
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normally observed in fibrous composite materials,
important areas are reviewéd here, with particular emphasis on
permanent damage as a result of crack propagation [12, 19, 20].
Fiﬁa]]y, the prediction of effective properties using some of the

current micromechanics theories [2, 4, 5] are discussed.

The experimental program, which was designed to provide the
mechanical characterization data necessary for the evaluation of
the glass/epoxy composite material currently used in the third

stage Minuteman III solid rocket motor case [17], is described in

Section IIl. The proygram consists of mechanical characterization

tests on unidirectional and laminated glass/epoxy composites as

well as the matrix material. A small number of tests were also

conducted on samples of the iaminated glass/epoxy composite taken
from the actual motor case.

Reported in Section 1V are the experimental results from a
series of uniaxial creep and recovery tests and several beam tests

designed to emphasize the effects of temperature, stress level and

load history. The linear viscoelastic constitutive properties are

established for the various materials and compared with several of
the micromechanics theories used to predict the effective proper-
ties. The observed effects of material nonlinearities as a result
of crack propagation are discussed.

The effects of the observed nonlinear material behavior of

the glass/epoxy composite on the design and analysis of typical

Some of the mnore
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solid rocket motor cases are reviewed in Section V. The current

approach to motor case design and the effects of hydrotesting and

temperature on the case properties are discussed. A method of

accounting for the effects of multiple loading using second-order

Lebesgue norms is proposed.
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SLCTION 11

REVIEW OF CONSTITUTIVE THEORY FOR
FIBRCUS COMPOSITC MATERIALS

Introduction

The analysis of any structure ¢r body in terms of a resultant
stress (strain) field requires the satisfaction of a set of equil-
ibriun und strain-displacement equations [21-23]. This sel of
equations 1y independen!. i the particular materisi mekeup but the
general solution depends on Lhe relationship between the strese and

strain tensors.

)
3

This relationship is known as the constitutive

equation and in the theory of linear anisotropic elasticity is
~eferred to as generalized Hooke's Taw [22] and simply ac Hooke's

law in the case of isotropic materials, The application of Hooke's

bR ik

law has been extensively studied during the past century, partic-

ularly for homogeneous, isotropic materials.

[ndeed, several excellent treatments of the subject are given
in Love [21], Sokolnikoff [22] and Fung [23] to mention only a few
of the wore classic rere(ences. These references, developed pri-

marily along the lines of c¢lassical elasticity theory, treat Hooke's

O A i -l T Mgy T

law in ycneralized terms initially and then tend to concentrate on

the more specialized case uof isotropic materials.

The analysis of anisotropic materials is obviously more com-

_ plicated due to the nature of the constitutive theory und thercfore

o e e e Lt
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has not received the same degree of attention until recent years.
The works of Lekhnitskii [24, 25] and Ambartsumyan [26] concentrate

" on the deve]opmentrof anisotropic theory. With the current interest
in the use of fiber-reinforced composite materials at an all-time
high, their works have served as primary references for cﬁrrent
analytical developments in areas where fibrous composites are being
used as structural materials.

It has, in fact, oiilly been within the last few years that
these works have been translated and presented to the Western world.
Some of the more notable presentations of their works in the eng-
ineering terminology were done by Ashton et al. [2], Ashton and
Whitney [27], Dong et al. [28] and [5]. The use of fibrous com-
posites by the aerospace industry for structural applications has
resulted in several analytical developments and a complete reassess-
ment of the overall design philosophy.

Fibrous composites have been developed along two different
paths classified by the matrix material holding the load carrying
fibers; namely, metal matrix and plastic matrix., The metal matrix
composites are of interest primarily for their higher temperature

capability, although they often possess potentially higher strength

and stiffness due to the matrix properties. Plastic matrix compos-

ites have a lower density and can be readily fabricated into more
complex shapes than metal matrix composites, thus making them more

attractive for filament-wound pressure vessels and similar

il ...
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structures. We shall be more concerned in this dissertation with
the plastic (polymeric) matrix composites which exhibit a signif-
icant amount of time4de§endent mechanical behavior in many service
envirgnments. This behavior, termed viscoelasticity, has only
recently been investigated with regard to fibrous composites

Lo, i], 12, 18, 29] although considerable attention has been given
to particulate composites [20, 30, 31] (e.g. solid propellants).
Glass fiber/epoxy and graphite fiber/epoxy composites are typical
of this class of materials.

The application of linear, anisotropic viscoelastic theory to
fibrous composites in recent years is cvident in the works of
Schapery [18, 32], Halpin [11, 33] and Hashin [34]. Unfortunately,
as a result of the high volume fraction of fibers in the composite
and the gross difference in both physical and mechanical properties
of the constiluents, Tinear theory is not always adequate to predict
the response to various loading situations. In many cases linear
theory at least provides the starting point. Nonlinear viscoelastic
behavior is reported by Schapery [35] and Ashton [10] in the
United States and by Ogibalov and Tiuneeva [36, 37], Rabotnov et al.
[38] and Martirosian [39-47] in the Soviet Union. The nonlinear
behavior may be "reversible" or "nonreversible", the latter norm-
ally considered to be due to "microcracking". "Reversible non-
linearities" are usually attributed to secondary bond failure within

the polymer and essentially consist of polymer molecules sliding

»
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past one another. On the other hand, primary bond failure in which

the molecules are actually torn apart leads to microstructural
damage. »During fabrication there are s number of voids and flaws
which develop as a result of the polymer's curing process and the
difference in the physical properties of the various constituents.
As a result, microstructural damage in fibrous composites fs
thought to be due primarily to the growth of these small flaws or
“microcracks" [18].

Analysis of fibrous composite structures requires a careful
consideration of the constitutive theory of the material. The
decision to use linear or nonlinear anisotropic viscoelastic thec vy

depends on the particular application and material. The develop-

ment of viscoelastic theory with regard to fibrous composites will

be reviewed in this section. Particular attention will be given to

the contribution of the polymeric matrix tco the overall response

and the influence of microstructural damage on the composite con-

stitutive relationship. Thermal effects will also be discussed

since they strongly affect the behavior of the polymeric phase.
Viscoelastic Behavior and Matrix Constitutive “heory

Typical polymeric matrix materials fall into several classes
of epoxies, phenolics, polyesters, etc. depending on the particular
strength characteristics desired and many other design considera-

tions. A1l of the materials exhibit some degreec of viscoelasticity

s 0 s L G el L N
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and are generally considered to be of a homogeneous, isotropic

nature. Therefore, in addition to reviewing matrix constitutive

theory for this class of materials, it is also fitting that several

ground rules be defined in terms of what is meant by the term

g

“Tinear viscoelasticity".

The behavior of viscuelastic materials falls into two major

divisions; linear and nonlinear. Farris and Schapery [20] recently
conducted an extensive review of the entire field of linear and
nonlinear viscoelastic constitutive theory and the reader is re- -
ferred to this excellent review article. The authors noted that

although an extensive amount of work, both theoretical and exper-

imental, had been conducted during the last decade toward the dev-

clopment of a nonlinear viscoelastic constitutive theory, the

definition of linearity was often incomplete or misunderstood. As

VI
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a starting point we shall review linear viscoelastic theory and ';

proceed from there.

Linear Viscoelastic Theory

:

3 An understanding of linear viscoelastic theory is important
A X

3, for two reasons. First of all, linear theory is at least an
73 approximation to real behavior and one should be familiar with its
k|

range of applicability. Second, the exact definition of material

linearity should be firmly established before one can assess the

b

significaace of nonlinear behavior. All too often it has been
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- found that only part of the definition of linearity has been

applied [43, 44] while in actuality, the material is indeed non-
Tinear.

A definition of linearity compatible with that used in

current literature [18, 20] will be given in order to provide a

g
5
]
E

precise statement of linear viscoelastic behavior. We shall neglect

; the effects of large strains since the strains in fibrous composites

are usually below 3-5 percent.

Statement of linearity.

Following [18], the mechanical be-

havior of a Tinear viscoelastic material can be described in the

il

form of a general input-response relationship.

o
dliid

By applying the
definition of Tinearity along these lines we treat the material as

i Do

o
"

a "black-box" without specifying a priori its physical makeup and

w

the physical significance of the input and response quantities.

v den

At

The representation of a response function, R, due to an input

function, I, is given by

R = R{I} m

in which the brackets { } indicate that the current value of R is

dependent upon the entire history of I, and not just its current
value,

AIIMIMvml\ﬂW.‘- g et b bl S

The resporse R is said to he linear, and the material conse-

3
]
k]
vz

quently, linearly viscoelastic, if and only if it satisfies the

property of homogeneity and obeys the superposition principle [18].

The property of homogeneity, or proportionality is given by
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R{cI} = ¢cR{I} ; ¢ = constant (2)

while the superpasition principle is given by

R{I + L) = R{Ia} + R{Ib} (3)

where Ia and Ib are arhitrary input histories.

Although the use of Equation (2) alone is not sufficient to
prove linearity, many standard characterization wethods used today
use only this criterion to establish linearity. However, if the
material obeys Eguation (3), it can be shown to automatically sat-
isfy homogeneity for all rational values of ¢ (including ¢ = 0).

Thus, the primary condition for a material to be linear is that it
satisfies superposition.

Knowledge that a material is linear is sufficient to establish
explicit single-integral expressions connecting responses to inputs
[45]. The response R can be written as an integral containing the
actual input I and the response of one preselecteu input history.
For use in the characterization of visconelastic materiale it is
customary and convenient to use the Heaviside unit step function,

H, as the preselected input history. The step function is given as

H(t - t') = ?,Ej,t (4)

where t is the current time and t' the time at which the input i is
applied. The response to H is usually denoted by RH, and, for many

applications where aging considerations are not important, the
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representation of RH becomes

Ry = Ry(t - ') (5)

As a consequence of the definition of the step function, RH
vanished when t < t' in as much as aging effects are excluded.

If the 1ﬁput is time varying, the response is found by considering
the input to be the limit of a sum of step~-inputs. An integral
relationship between input and response immediately foilows in the

form given by Volterra [45] and Pipkin [46] as

t
R =fRH(t - )3 at! (69
Equation (6) is called a hereditary law and is sonetimes referred '%
to as the convolution integral, the Duhamei integral §r the i
Boltzmann superposition integral. é
The superposition integral may be generalized to represent %
multiple responses due to several inputs when the response of the %
materiail or body is linear with respect to all inputs. This gener-
alized form of the responce 1s given by
t dr, - o
R, =/ Rigalt - t')-a-f-%dt' (7)
in which R 1s the cumulative response due to all inputs I, and 2:; i
where RHuB is the unit response of R, when ohly IB = H(t) is ;g;_
applied. The summation convention over the range of indices a and ;;;
p will be implied whenever the index is repeated in a term. :Z;:
B

[
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Isothermal constitutive equations. The general linear rela-

tions between the stresses, N4 (i, d=1, 2, 3) and infinitesimal

strains, Lij may be found by replacing the recponses and inputs in

Equation (7) with these variaoles, respectively, hence

T e e < e

t ':)Ckp
945 =.}f Cijkz(t - t')—affdt' (8)

-1}

nam oy ——

where C. is the "effective relaxation modulus tensor. The

ijke

spatial dependence of Oij’ iy and Cijkx are implied although not -

shown for simplicity in the notation scheme, and the stress, “ij
| and strain, Epy> MY be any time-dependent functions. The inverse
| - relations, in terms of the “cre»p compliance tensor", Sijk?’ are é
| given by
| t ,
3 %% i
, : €5 »~/- Sijkz(t -t )=t (9) 2

-0

TR

The compliances Sijkz and moduli Cijkz

tensors which possess symmetry with respect to index changes of

are fourth-order

S

i with j and k with 2 due to the symmetry of the stress and strain :

tensors [23], i

Ciykelt) = Cyqpp(t) = Cyygpp ) = Cyypp (2 (10a)

Sigka(t) = Sjikat) = Syqp(8) = 55550 (10b) .

Additional synmetry of the tensor with respect to an interchange of
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the first two(ij) and second two (ke) indices, i.e.,

Cykalt) = Capg(®) (11a)
Siia(®) = Syt (11b)

has been shown by Biot [47] based on the thermodynamics of stable,

irreversible systems. These symmetries considerably reduce the

number of material properties required to completely characterize

linear material behavior.

In order to bring out the significance of the material prop-

erties in Equation (9), consider a gencralized creep test where the

3 time-dependent input stress is given by

o4y = v;j H(t) (12)

' where all the o;i are constant. Substitution of Equation (12)

E . into the constitutive relation, Equation (9), leads to the function

g %%n which is the Dirac delta function &(t') given by

‘é .

| 0,t"#0 3
1 s(t') = . (13) ;
| =a =0
| :
§ Conseguently, Equation (9) becomes

1 ¢
4 45 :fs].jkl(t - t')a,, s(th)dt". (14)

i ()

Using the sifting property associated with the Dirac delta function,

0.8 e e
LTI T 2 T
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Equation (14) reduces to

If the test is o uniaxial creep test then a;j = g,; and we find
that |
e11 = S11n1(thoy; (16)

or, with single-index notation for stress and strain [22],

L] = 51]((‘.)0]I (17)

- » . !
where v, is used to denotu the strain in the x; direction, and o,

is the constant value of stress in this direction; S;.(t) is

called the "uniaxial creep compliance". When the material is iso-

tropic it is often common to rewrite Equation (17) after a change

P S, s

in notation to e;

e = D(t)o (18) L

where the corresponding terms still have the same significance as %

before.

Nonisotherimal constitutive equations. It has generally been

found that viscoelastic materials exhibit significant temperature
§ dependence. The influence of temperature on viscoelastic behavior

can be divided into reversible and irreversible effects. [rrever- -

sible effects result in permanent changes such as primary bond
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rupture and weight loss, broughf aBout by thermal degradation.
These effects will not be considered within this discussion.
Reversible effects, on the other hand, consist of therma1
expansion and temperature dependence of those mechanical properties
which appear in the constitutive equations, 1.e., Equét1ons (8) and
(9). Thermal expansion effects will not be treated here; a de-
tailed analysis of these effects is presented by Schapery [48] for
anisotropic materials in the context of irreversible thermodynamics.
We shall concentrate on the temperature dependence of the mechan-
ical properties in our discussion of reversible thermal effects.
In general, these effects further divide material behavior into
two categories: thermorheologically simple behavior and thermo-
rheologically complex behavior.
The simplest realistic representation of material response
for viscoelastic materials under transient temperatures is that
for a "thermorheologically simple naterial” (TSM). Morland and
Lee [49] originally defined a TSM for an isotropic material and
Schapery [50] extended the concept to anisotropic materials using
irreversibls thermodynamic princip]eé. By definition [50] for a

TSM, the constitutive equation is given by

Y
U-'“ = Cijkl(g - 5')3“51—‘dzl (19a)

(*]

or, equivalently,

-~

PR e e

]
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13
) KR

U']J'- = C'ijkl(g - E_:' Y dt' (19b)

where i is the so-called "reduced time" defined by

¢ =¢(t) = gai— ;£ =g (tY) :fcit—'- (20)

The scalar function ar reflects the influence of temperature on

internal viscosity and is quite sensitive to temperature changes.

The so-called "temperature shift-factor" is given by

ap = aglT(t)] (21)

'-
E |
v

and is used to evaluate the reduced times 7 and ¢'. For isothermal

tests, Equation (20) becomes

g st AL TIETIT IR RS SRS St

R T

al £E =7 3 5' = (22)

§ aT aT

% since a; is constant in this case. By rewriting Equation (22), j

% (where log : 10gq), ‘.
8 {
i i ] i)
i log £ = log t - log a; (23)

we find that plots of isothermal moduli, or compliances, can be

gt 1

shifted horizontally along the time scale with the magnitude of the
shift equal to log ar. It is interesting to note that Schwarzl

and Staverman [51] shifted isothermal data in this manner to obtain

_;
3
z
|

é
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a single, "master", curve as a function of & and subsequently

defined a TSM as one which behaved in this manner. A reference

temperature is usually selected with aydefined as ag = 1.
The shift-factor ar is usually obtained by graphically
shifting the data horizontally along the time scale as noted by

Equation (23). However, several analytical representations have

been postulated over the years for polymers. When 7 < T_, an

9
Arrhenius type of temperature dependence is usually observed

[11, 52]. This shift factor has exponential dependence with re-

spect to the inverse of absolute temperature (1/T),

_ MM 1 1
1og a7 = 7303 (1 - 7) (24)

where AH is the activation energy {per mole), R is the universal
gas constant, and TR iz an arbitrary reference temperature. By
plotting log ar against the reciprocal of absolute temperature,

1/T, a straight 1ine results and the activation energy, AH, may be
found.

When T > Tg the so-called WLF equation normally applies [52],

“Cy(T = Tp)

log ay = m (25)

where C; and C, are constants. The form of the equation is sim-

ilar regurdless of the choice of TR, only the values of C; and C,
change. When TR is chosen to be approximately 50°C above the T

g’
the values of C; and C, have been found to be universal constants

19
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for many polymer systems [52, 53] with the following values,

C, = 8.86 (°K=1) (26)
C, = 101.6 (°K)
Schapery [32] has used a power law form of ar when T > Tg,
(T = T,) H
a,. = (27)
T T

where Ta and y are material constants. Again, the value of TR is
arbitrary and it has been found that . assumes a typical range of
12-15. Ta takes on values several degrees below the Tg. This
power law has been found to be a good approximation of experimental
data over a wide range of temperature for filled polymers [54] and
enables the reduced time, viz., Equation (20), to be evaluated
analytically for constant rates of change of temperature whereas
the WLF equation does not.

The inverse representation of Equations (19a) and (19b), in

terms of the :reep compliance tensor, Sijkz’ is given by

: aokl ' \
€§; =‘/R Sike (e - &' )gprde (28a)
0

or, equivalently,

& ' aokl '
s =f S skelE - € )5k ot (28b)
0
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In both cases, Equations (19) and (28), we have neglected the
effects of thermal expansion, however, these termsrgenerally
represent only a simple addition to the strain tensor as shown

in [32]. Furthermore, by specializing these relations tovisotropic
materials and changing notation to correspond with that used in

Equation (18) we find
E

o= [ ete - e (29)
(¢
and
g
e =_[ D(e - £, dt! (30)

for the uniaxial stress-strain behavior of a TSM. These relation-
ships correspoﬁd to the constitutive theory proposed originally by
Morland and Lee [49].

There is a significant amount of published data to-verify
isothermal curve shifting of relaxation moduli and creep compli-
ances from several sources [52, 55]. Moehlenpah et al. [56]
treated isothermal relaxation moduli for an epoxy resin to form a
master curve in terms of.g. The superposition of individual iso-
thermal responses to form a master curve is not sufficient to estab-
1ish the Behavior of a TSM although most characterization methods
tend to totally ignore this fact. Transient temperature tests are

necessary to completely define the TSM behavior. Only recently

tests of this type have been conducted by Leeming [57] and
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Farris [58] on solid propellants, Johnson et al. [59] and Watkins
[60] on epoxy resins, and by Kabelka and Vejchar [61] and Schapery

et al, [12] on fibrous composites,. With few exceptions [12, 60]

the behavior of the materials characterized using transient temp-
erature tests have been TSM. |

The data of Moehlenpah et al. [56], Schapery et al. [12],
Watkins [60], and Sims and Halpin [62] definitely show that hori-
zontal shifting along the time scale 15 not entirely sufficient to
form a smooth, well-defined master curve., However, by using vert-
jcal and horizontal translations, it is possible to superpose
the data over a large time-temperature range [18].

Viscoelastic materials whose temperature dependence cannot be
characterized by Equations (29) and (30) for isotropic materials
and Equations (19) and (28) for general, multiaxial behavior of
anisotropic materials are defined as "thermorheologically complex
materials" (TCM). Some materials are composed of several constitu-
ents or phases, each behaving as a TSM with different ar shift
factors. This particular type of TCM has been designated by
Schapery [18] as TCM-1. The behavior of materials in this class
has been studied only under isothermal conditions which, as we
noted earlier, is nct sufficient to completely verify behavior
under transient temperature conditions [33, 63].

Schapery [18] has also defined a second class, TCM-2, composed

of materials which by definition satisfy the uniaxial strass-strain

i pmiY

T

=

Mz e
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behavior under isothermal or transient temperatures as given by
: t

¢ = Do +[ Dl - €' ) (ot o en

where £ and &' are given by Equation (20), ¢ is any arbitrary

stress input, and'D0 = DO(T) is the initial value of the creep

compliance. For the case of an isothermal creep test, the creep

compliance becomes

D = D,(T) + gz £ (32)

where £ = %‘u Most data reduction techniques follow a normalization
T

condition by assuming 8 = ap = 1 at some arbitrary reference

:
3 temperature, Tp, which results in
3 AD(t) D(t.TR) DO(TR) (33)
§ where aD(t) is the transient component of the compliance at temp- :
9 4
3 erature Tp. %
§ In order to determine ar and ag from experimental data at %
“; different temperatures Schapery [18] rewrote Equation (32) in the §
; form
% log [D - D] = log 4D - log ag. (34)

A plot of log [D - Do] against log t for isothermal tests at various

temperatures, T, will be identical to that at TR exceps for a rigid

horizontai translation of log g and a similar vertical translation :
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of log g The final result is, again, a master curve similar to
that obtained for a TSM.
A special case of Equation (31) occurs when the temperature

dependence of Do is given by
: 0 - PO(TR) (35)
i?; [0} aG( Ij
g which results in
3
= D= Ia) ET (36a)
g G
3 where
: D(c) - B(Tp) + ab(x) . (36b)
g As a result the constitutive relation given in Equatcion (31) becomes
t
: f Bt - &')gdr (2)dt" (37)
3 di™ ‘a
3 G -
Y o 3
B |
‘§ which is the same as Equation (30) excepi for 15 | g
| 3
§ Superposition procedures or normalization techniques, in add- i.%
§ ition to that of Schapery's based on Equation (34), have been i
1 suggested for accounting foir the behavior of T(M [64-69]. McCrum : %
°§ and Pogany [70] have reviewed severa! of these procedures and com- 'gé
3 . pared the master curve predictions for an epoxy resin over a temp- Eg
: , T8
| I 2

erature range which included the glass transition temperature, Tg.

Four of these different techniques are given in-the following

discussion,

P DY £y T LTy e



1. Tobolsky-Ferry procedure [65, 65]:

D (T,)
D (1) = 2R
0 aG
7
an(T) = ¢ B~
AU S

where p and pg are the . "sitiec at temperatures T
~and Tgs respectively.

; . ' 2. Ferry-Fitzgerald procedure [68]:
: D.(T) = D_(To)
(o} o' R (39)
T »p
a (T) = —
G Tr Pg
J 3. Ke procedure [66]:
i - Do(TR)
X 0 = aGiTS
s (40)
3 D_(Ty)
a(T) = 73y
3 G Do
% 4, McCrum-Morris procedure [67]:
3 D_(Tg) - D (Tp)
4 ao(T) = o 00 R
1 6\ T DT - 0,(M)
k)
3

The Tobolsky-Ferry and Ferry-Fitzgerald procedures are bascd

on the kinetic theory of rubber elasticity; the Ke procedure uses
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the initial compliance to define the temperature dependence of a5
and the Mccfum-MoEris procedure contains the first three as special
cases by allowing for arbitrary variations of the initial and long-
term compliances with temperature. The most successful of these
procedures is thé McCrum-Morris normalization although the specific
reduction technique given by McCrum and Pogany [70] requires know-
ledge of the initial and long-term compliances which are not always
available because of exberimenta] limitations. Another form of
ag proposed by Schapery and Martin [69] is based on kinetic theory
and is given as
Y 1"(%—0

(1) =~y )

eY T

where vy is a factor related to pressure, volume and excess molar
energy and In = IOge.

Graphical shift-metheds [18] appear to be the easiest proce-

dure for pfoviding the hest "average" material properties in the
absence of the 1imiting values of compliance. The general techni-
que invoives the use of Equation (32) by making preliminary esti-
mates of D and then forming master curves of AD(E). By using a
smoothing technique, the best master curve may be found by adjusting
the values of the initial estimate of Dj.

Analytical representation of time-dependent properties. No

R e

mention has been made up to this point about the representation of
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the relaxation and creep functions in Equations (8) and (9).

According to thermodynamic theory [47], they have the following

time-dependence,

Cigkal®) = O * Z cl5ks &8 (432)

7

s ot
ket = Sypp * S gt * Zsékﬁ /Ty (a3b)

where the range of the summation index, 5, depends on the particular

material, pg are relaxation times and T, are retardation times. The
constants ijkz are elastic moduli which produce long-term stress

response to strains whereas the constants S are elastic compli-

ijke
ances which produce the short term strain response to stresses. The

(s)

exponential coefficients C1szands13kg and the corresponding con-
stants o, and T define the time and rate-dependence of the material.
The coefficients S1sz lead to steady-flow under constant stress
such as might be found in uncrosslinked polymer systems,

Thermodynamics gives us the general form, Equations (43a) and
(43b), of the material properties. Although there may be a large
number of time constants as a result of the polymer's molecular
configuration, creep and relaxation functions are often approxi-
mated by exponential series [71] consisting of relatively few terms
(typically ten to twenty).

The modified power law [7¢]

A sl i ottt i sl
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E, - E,
'l'o

woere E_, Eo’ o and n are independent of time, often provides an
excellent approximation to polymer behavior above their Tg. Also,

when t/tg >> 1 then Equation (44) reduces to

E(t) = £+ (£, - £)(E) (45)
@ =) TO
] and further to
E(t) =€ (L)" (46)
0 TO *

when E_ << Eo' A similar form for the compliance is [72]

TP TR TE~

i§

(b, - D) (47 %

(t) = Dy + 2 (5 )" ) ]

o} (-I + % )n To %

0 B

where D, D Tgo and n are material properties. If t/ro << 1 ' i

then Equation (47) roduced te : 2

) tyn

D(t) = D, + (D, - D°)(To) (48) -

? and further to i
p : {5

i o -

i o(t) = (X )" (49) Fi
% when D_ >> Do‘ e
. The forms of Equations (48) and (49) have often been found in e
[h L

s -
R T =
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§ the literature as
i |
1 D(t) = 0, + Dyt" (50)
éé and ;
gz .
D(t) = Dyt" (51)
? respectively. These particular forms have been found to represent ‘!1
; the behavior of many rigid plastics with and without reinforcenent ;:
[73-76]. : S
f% Nonlinear Viscoelastic Behavior ;
ig We have already defined the conditions necessary for lipearity, o
f% viz. Equations (8) ahd (9),'and have further commented 6n the use-
i'% fulness of linear viscoelasticity. However, the behavio, of most j
:31 materials s generally nonlinear prior tn complete fracture and, ?
‘-; for some materials, this nonlinearity exists even at small stress é»"
;% levels well within the design range of structural applications. .
i % Therc are many theoretical works on constitutive theory, both 1in-
,? ear and nonlinear, such as those of Green, Rivlin and Spencer i;
H% (77, 78], Coleman and Noll [79, 80], Truesdell [81, 82], Wang sgs
)“é £83, 84], Volterra [45], Pipkin [85, 86], Fermann 587], Lianis and ?;
T% co-workers [88, 891, Schapery [90, 91], Huang and Lee [92], Dong i:i
[93, 941, Williams [72], Tobolsky [85, 95], Alfrey [961, Ferry [52]
;%- and others [97-107]. The development of nonlinear constitutive o
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_ theory has also resulted in several applications to various mater-

ials such as.reportéd in. the works of Findley, Lai and Onaran
[108-113], Gattenbérg et al. []j4]. Lockett [115, 116], Valanis
and Landel [1]7],.Lee and Huang [92}; Schapery [35, 91], Freudenthal
[118], ward'[llg—félj and othersA[122—127]. VIt Wou]d be « formid-'
able task to comment on al] of these works; therefore, in the
sections to follow, we shall comment only on observed deviations
from linear behav%or and discuss some of the mere general approaches
taken to describe nonlinear viscoelastic behavior,

Equations (2) and (3), homogeneity and superposition, respec-
tively, completely define the mathematical rules of linear material

response. Linear viscoelastic behavior is achieved through the use

of these relationships to derive Equations {8) and (9). Nonlinear-

ity is defined only as the failure to satisfy one or both of these
rules. It is therefore possible for a material to satisfy :the
homogeneity rule and fail the superposition rule [128, 129].

Multiple-integral theories. Because of its gererality, the

various approaches to multiple-integral theory have received wide-
spread attention in recent years. These mathematical theories are
probably general enough to account for almost all types of observed
nonlinearities, but they are very impractical with strong noniinear-
ities. This type of representation was developed by Green, Rivlin

and Spercer [77, 130] and has been ap.lied Ly several investigators

over the years [110, 119, 124, 131].
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For the case of uniaxial loading, the multiple-integral repre-
sentation takes the following form,

da(rl)

€ = Kl(t-Tl)TddTl + (52)
, M '

o4 dO(Tl) do(rz)
!!‘ Kz(t-'rl,t-'r-z) dTl 712 ci'rld-r2 +

L ' : do(-rl) do('rz) dc(-ra)
7 [K3kt-rl,t~'r2,t-'ca) ﬁl ?TZ dTg d-cld'rzd"r3 +
0

fiif-

where K , K,, Kj, ... are the kernal functions containing time (t)

and material constants, and Tis Tys Tys oo 8F€ the dummy time

variables of integration. The corresponding creep relatiion

(constant stress) takes the form
e = K (tho + K, (t,t)o? + K (t,t,t)0® + ... . (53)

For a linear viscoelastic representation the highef order kernals
K, and K, do not appear; however in published application: of this

theory, the series is usually truncated at three irtegrals Tor the

representation of nonlirear behavior.

vt WAl M@‘M“WWMW
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In order to define the material behavior one may either solve
the relations by numerical techniques or assume some form of the

kernal functions K;, K, and K4. Findley and Onaran [110]used a

) pkoduct form suggested by Nakada [107] where the kernals take the

form

Ki = ap(t-tp) (54)

~
N
t

= az(t-Tl)l/z (t“Tz)l/z

~
w
]

1 1/, 1
= a3(t-tq) /3 (t-1,) /3 (t-t3) /3

where uy, oy and a3 are material constants. MNolte and Findley

[132] have also used creep kernal functions of the form

Ky = o + Bl(t“TJ)n (58)
Kp = oy + By(t=c;) M (t-r,)"
Ky = ag + Ba(t'Tl)n(t*Tz)n(t“Ta)n

where oy, oz, a3, By, B2, 83 and n are again material constants.
A more general form oY Equation (55) was recently proposed by

Smart and Williams [133] where the kernal functions may be written

Ky = al(t-tl)] (56)
- pHm -p

Ko = ap(t-x1)" " (t-rp)

Ky = a3(t—r1)q+n(t—12)r(t-rg)s

e P kbt
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with g + r +s = 0 and where a;, a2, a3 and-1, m, p, g, r and s are
the material constants. | 7 | |
‘Without going further into multiple-integral rebresentation of
nonlinear viscoelastic materials, one must be impressed at this
point with the complex nature of such an approach. In fact, the
representat1on of nonlinear behavior often requires more than
three integrals, particularly if a strong nonlinearity exists.
The solution of boundary value problems and the inversion of even
the simplest formulation becomes very involved and complex. In
addition, the determination of the material functions requires an
experimental program consisting of many multiple ster loading
sequences. Generally speaking, the multiple-integral approach has
not found its way into serious engineering consideration with regard
to material characterization and subsequent structural applications

of composites. As a result we shall not consider this approach any

further.

Single-integral theories. Several methods exi«t which fall

into a class called single-integral theories of no:linear visco-
elasticity. The modified superposition principle (MSP) was first
suggested by Leaderman [134] who observed that the creep behavior
of certain fibers and plastics could be separated into time and

stress-dependent parts so that the creep response to a stress, o,

could be written as

T S T

TR _-——.r—-'vv“—-: - ——‘I ' " ‘ "y ._- ’ .W’._'"’ i
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t , ' .
£ = Doo +v/"AD(t-T)gg£:d'r (57)
o .

where Do is the initial value of the compTiance,rAD 1; the trans-
1enf component of the compliance and g is a nonlinear function of
the stress, o. This theory has met with varying degrees of success,
the accuracy depending on the particular material as well as on the
type of loading. The MSP cannot represent a material which posses-
es permanent memory effects which exist as a result of permanent
internal changes such as microcracking.

Schapery [90, 91, 135] used thermodynamic theory to develop a
nonlinear constitutive theroy which has been'successfully applied
to several ma’erials [9, 35]. When stress is treated as the inde-

pendent state variable, then the theory can be written as

. d920
e = 9,00 + 9y f aD(y=y' )~ dt (58)
0

where D0 and AD are the initial and transient componénts of the

linear viscoelastic creep compliance, ¢ is the so-called reduced-

t*..e defined by

t
v o= p(t) = /.é—-[g?-%:-n* (59a)
Lo

and
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and the material properties go, 9,1+ 9, and a_ are functions of

stress. When the applied stress is sufficiently small,

9y = 9, = 9, = a_ =1, and Equation (60) reduces to the familfar

_ Bo1tzmannbsuperposition integral for 1inear viscoelastic behavior,
¢ ;

¢ = Do +[ a0 (t )32 ds. (50)
The MsP, i.e., Equation (57), is obtained from Equation (58) by

setting g, =9, =a_ = 1 and 2 Towing all of the nonlinearity to be
contained in 9,- The stress-dependent properties have specific

thermodynamic significance; changes in 9% 9 and 9, reflect third

and higher order dependernce of the Gibb's free energy on the

applied stress, and a arises from similar high-order effects>1n

i kAR Tk e

both entropy production and free energy.
= A constitutive equation with strain-dependent properties has

also been deviloped [90] and can be put in the form

t

dh_e
o= ey [ (o)t o (61)
0

with the reduced-time, p, defined as

t
p = p(t) Efa—rg%:—rn- (62a)
( (¢} €

and

T
dt'
Vo=t z . (62b
p p (T) %!” EZTETT”7TT )

s
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The sfra1n~depéndent properties are he? h1’ h2 and aE;VVariations
‘of the first three are due to third and higher order strain effects
‘in the Helmholtz free energy, while changes in a, arise from similar
strong strain influences in both entropy production and frees energy.
Schapery's theoryAinvolves only a limited amount of e*peri-
mental testing in addition to that normally required by linear
theory. The determination of the nonlinear properties does not
represenf muéh in the way of additional work, especially considering

the improvement over MSP when significant nonlinearity exists.

Consider the case of a creep and recovery test as shown in

Figure 1, where the stress input is given by

g = oo[H(t) - H(t - t")]. (63)

Equation (58) yields the creep strain

T= —t-:-— - o '
=g Do+ 9192AD(86)“0’ 0-t-t (64)

and the recovery strain

¢p = 9, LaD(w) - 8Dy - v')Jogs t >t (65)

where in Equation (65)
V=g s s gt -t (66)

We have already noted, e.g. Equation (50), that many metals

and plastics obey a power law in time where the transient component
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Figure 1. Relation between creep and recovery of
a linear viscoelastic material.
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may be represented as

AD(y) D y"

where Dl and n are independent of stress level and time,

Equation (64) using Equation (67) we find

919, n
£ = goDooo + —;——ﬁult OO
]

and also by a similar substitution into Equation {65),

Ae

fe = g [0+ 2" - (a0

where

and

- "o = n
be, = e(t') €g glglew o,

38

(67)

Rewriting

(68)

(70)

is the transient comvonent of strain existing immediately before

the stress is removed.

Findley and co-workers [76] have found that several of the

material properties obey a hyperbolic sine function as suggested

by Eyring's rate theory,

sinh o/o
g, = —

o/oe

(72a)
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and

9,9, sinho/o
) (72b)

a m
a

~ where the constants o, and o have values which depend on the part-

icular material. The function 99 is generally close to 9 = 1 and
consequently, oe'>> o, for many materfals. Schapery [35] has
shown that a_ contributes most of the stress dependence in Equation

(72b) with gi =g, =1 for a glass fiber-reinforced phenolic

composite.
Lamina Constitutive Theory

In order to study the behavior of laminated fiber-reinforced
composites, it is first necessary to establish the constitutive
theory of the lamina (or laminae) using linear, elastic, aniso-
tropic theory [24, 25]. We shall first review the basis for elas-

tic theory before proceeding on to viscoelastic behavior and sub-

el o S

sequent discussions on structure-property relationships. In des-
cribing the behavior of fibrous composites, it is often helpful to

keep in mind the general nature of the material at hand. Figure 2

shows the surface of a typical glass fiber/epoxy lamina which has : -j;’j
had the epoxy matrix removed by a resin-burnoff process. Evidence
of some degree of fiber misalignment is clearly visible. The fiber
ends are shown in Figure 3, and it can be seen that there are act-

ually groups or bundles of fibers. This is common in glass/epoxy




N - o e -i_

40 4
Z, Figure 2. Surface layer of a typical glass-fiber/- .
i epoxy composite after removal of resin. 4
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Figure 3. Glass fiber ends, or bundles after .

resin removal.




composites because of the fabrication technique, but generally does

not exist with boron/epoxy and graphite/epoxy composites.

iy D T T

Elastic Anisotropic Materials

Governing equations gf_anisdtfqpic elasticity. Since the

principles of anisotropic elasticity represent the foundation for
the mathematical description of the elastic response of composite
materials, the governing equations for this theory will be presented ' ;"

here,

Using the notation of Timoshenko and Goodier [136] we can de-

note the stresses acting on a small cubic element of the material

in the following manner; the three normal stresses are Oy Oy and

9, and the shearing stresses are Txy’ Tyz and Tyz where we have

assumed symmetry with respect to T4 aITE The basic equations of

static equilibrium for an anisotropic body are the same as those

given for an isotropic body,

; . 9C T 3T

’ X Xy Xz -

= X * 3y + 92 *X=0 .
% : art ag aT
XYLy Lt yr Ly, :
] x 3y taz ? v=20 (73) '
' ot T a0 3
b XZ yz , "z, 5 _ i
28 5x T Ay M z=0

where X, Y and Z designate body forces referred to a unit volume

in the directions x, y and z respectively. Py




a2

The infinitesimal linear strai:-displacement relations are

defined in the same way as in isotrupic elasticity, namely,

-..a.':l... . =-a_v— . :g-v!.
®x " Ax 'ty by * %z 7 %z (74)
U, 2V W L av W L AU
B e—— o e . = e e . T e e LS
Yxy " By T ax * Yyz By dz ' Yxz T ax ez °

In the conventional engineering definitjon of strain, the components
are the same as the general tensor notation, e.g. Sokolnikoff [22],
axcept for the shear strain components which are multiplied by a
factor of 2. FEquations (73) and (74) are tensors of order two and,
along with the boundary conditions and constitutive equations, spec-
ify the state of stress and strain at any point within the body.

The transformation relations are tound in the reference by Ashton
et al. [2] and will not be repeated here for the sake of space.

Generalized Hooke's law. Equations (73) and (74) are insuffic-

ient to solve problems of equilibrium, motion or stability of an
elastic body without defining the ~elations between the components
of stress, o5 and the strain, €j5 As in Equations (8) and (9),
we can formulate the relations for in elastic body to obtain

935 = Ciikatke (752)
and

€15 = Sijra% (75b)
where the Cijkn are the elastic moduli and the Sijkz are the

{

il




43

in ‘ 0

L

< Sl M
e LR B
¢
e sl ) ol BRI

il

elastic coﬁp]iances. Each set of material constants defines a
fourth-order tensor and possesses the symmetry discussed earlier, ]
namely, Equations (10) and (11). As a result, for a general aniso- ;

tropic material there are 21 independent elastic constants.

A contracted notation has frequently appeared in the Titerature.

In dealing with fourth-order tensors, this notation reduces the num-

ber of indices from four to two but expands the range from three to

T T TR R R I

six. In contracted notation, engineering strain is used instead of

tensorial strain. Table 1 shows the correlation between normal and

contracted notation where e, represents tensoriai strain given by

J
eij = 1/2(u1,j + uj,f) (76)
and the comma denctes differentiation. A mixed notation used Ly

Ashton et al. [2] is also shown.

Tadle 1. Conversion Between Tensor, Contracted
and Mixed Contracted Notations

o [ o
(] i ol - it ol e e
i s~ U - . -

Tensor Contracted Mixed [2]
; o;1  en o &) o1 €]
2 022 €22 T o2 €2 o2 €2 3
3
1 U323 €33 o3 €3 g3 €3
!
i o235  2ep3 oy Ey 23 Y23
3 031  2ey 95 €5 T3] Y31
X 012  2ey2 Jg €6 T2 Yiz

e JRER T e
* A RO 3 B




44
After changin§ to the mixed contracted notation.rthe constitu- . g i
'tiVe relation is yiven o | % ;
Ter ] PSii Siz Sis Siv S1s Si6| [ ]
3 ' €2 - S22 S23 Say Sas  Sae| | 92
i €3 | ' S33  S3y  S3s  Size| | 03
. = (77) E
8k Y23 Sww  Sus Sugf | 123 -
3% Y31 Synmetric St Syel |t S -
éé | V12| ] See | | 717 ‘ E
?g where use has been made of the symmetry conditions. This represents
1 the most general case of an anisotropic material,
Various kinds of geometric symmetry are often present, whféh,
in furn, lead to elastic symmetry. Elastic symmetry is expressed
L by the property that under certain coordinate rotations the elastic | %l
34 moduli or compliances remained unchanged. Some of the constants Sij ” i%
%é become equal to zero and dependencies appear between other constants.
véE - A monoclinic material has a single plane of symmetry, which by

selecting a suitable reference system yields : i

- - — - - —

i
€] 511 31z S13 0 I I Py

M <
t2 Saa Sp3 0 0 Se| o2 P

‘.-4'«.

i
Y23 Sy Sys 0 23 i

2

Symmetric -
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R e

vith 13 independent elastic constants. , A
If an anisotropic material possesses two orthogonal p1anesrof o lég

symmetry, the materfal is called orthotropic and has the following

constitutive relation

of a - 1

3 €1 S1 S12 S13 0 O 0 9y

. E)> 522 523 0 0 0 ga

E% | es | 5 0o 0 0O :

2 3 33 g3

E = (79) :
E E Y23 Syy 0 O T23 :
3 s =
gN’ Y31 ymetric Ss5 O T31 .
:: : 2 S

: | Y1z i 66 [ {712

with 9 independent elastic constants. This form occurs in many
structural materials such as wood, plywood, fiber-reinforced rubber
and plastics, etc, |

When a material has a plane in which the coefficient matrix is

isotropic, it is called a transversely isotropic material. If we

Y U i

assume that the y - z (or 2 - 3) plane is isotropic, then there is

no preferred orientation in this plane and the constitutive relation

becomes

- -

,
€1 S11 S22 Si2

AN

€2 S22

Syl

€3

2(822-523)
Symmetric
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The number of independent elastic constants for thi;'méter1a1 is 5
if we assume that $,, = S,; or 6 if complete symmetry is not assum- -

ed, e.g.,S¢hapéry [18]. The inverse constitutive relation for the

transversely isotropic material is given by [5]

% - - [~ . - - -]

3 U1 - Gy G2 Cpy 0 0 0 b

F o2 Cow  Cyy 0 o o |l

E ¢y C,s 0 0 0 €4 .
pe! 7 = ( ) (81)

T3 Co2-Coa 0 0 Y23

1 3l Symmetric Les 0 Y31
Z | 12 | L Ceed e ;
% In the case of complete material symmetry, the material is ;

i i isotropic and we obtain %
p i
3 - - T |
4 €] Si1 Sz S 0 0 0 ) E
=§ ° . E1
:g; ) = S 5 - 0 0 O D 3
§ €2 1 12 ’ 3
i 3
3 [ Sll O 0 0 Un . =

S 2)

H Y23 ' 2(511-512) 0 0 T23
- .

_ é f Y31 Symmetric 2(S11-512) 0 T3] .

- if viz| | 2(S11-512)] | 712] g
% wiih 2 independent elastic constants.

Engineering constants usually refer to Young's moduli,

Poisson's ratio and shear moduli which can be measured from simple

tests. The following relations between the components of Sii and
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C1J (i,3=1,2, 6)_and the engineering constants can be estab-

. lished immediately ffom the nature of unfaxial and simple shear

tests for the case of a transversely isotropic material:

Sy = 1/Eq
Sz2 = S33 = 1/Ep2

S12 = S13 = =v12/E11 = ~va1/E22

il ‘\m;ti|(uimw1i\||[u1%miu&%llll«imIII‘.|||i||l::lluw.lilwilllwlvl-dih'u'

(83a)
S23 = -v23/Ep2

Suy, = 2(1 + vp3)/Ep 3
= Sgg = 1/G12

it
7]
o
on
g

3 and

sl L, o

Cip = (1 - va3)VEy,

Cap = C33 = (1 - vypva1)VEs

]
C12 = C13 = va1(1 + va3)VEy,

it

vi2(1 + v23)VEzs
o (83b)
Caz = (vag + v12v2; )VE;o
Cyy = (Cop - Cag)/2e ?
= (1 = va3 -~ 2v1pvp1)VEpy/2

Css5 = Cgg = Gy2

where

V= [(1 + v23)(1 - V23 =~ 2V12V21)]‘1 (83C)
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Two-d Imensional composites. Fibrous composites are generally

used in a manner such that the stress state is essentially two-
dimensional. As a résult, the assdmption: df plane strain or plane
stress are often invoked. We shall review the constituti?e rela-
tions giveh in Equations (80) and (81) for the transversely {so-
tropic material in terms of plane stress assumptions. This state
exists more often than most since the composite generally is a

thin laminated structure used in plates or shells.

The p];ne stress problem can be formulated by assuming
U3 = Tp3 % 131 = 0 (84)
and we note that
Y23 = v31 = 0 (85)
as a result of Equation (84). Cquation (80) nov becomes .

€1 S11 S 01lag

(86a)

il
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Thus, for plane stress, the S1j remains the same as a three-dimen-
sional material, whereas the C1j must be replaced by a "reduced

stiffness" denoted as the Qij' The Q1j (1, 3 =1, 2, 6) are given
by o o

¢,.C

Q =c'i

1] 33
where

Q11 = E;1/(1 - vigvar)

Q22 Ep2/(1 - vipvay)

(87b)
Q12

i

va1E11/{1 = vyavay) = vigEna/ (1 = vygvay)

Q56 = G2

This is the constitutive relationship for a specially orthotropic

material in a plane stress state., It is called specially ortho-

tropic when the lamina principal axes (1, 2) coincide with the

reference axes. When the material axes are referred to any other

direction (x, y) as in Figure 4, the constitutive relations must be

transformed accordingly, e.g. Ashton et al. [2],

49

§- —%—3—13— (87a)
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Figure 4. Anisotropic tensile specimen.
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| ok 0 Q2 e[, }é
o, | = |z Q2 Qée | &y (88b) 3
' = ' 3
T Qs Q26 Qee |] v E
,_l X : 2 aLX | 4
where the 81‘j and Q1j matrices are now fully popuﬁatéd and the S;j :g
'3 and Q;j are the transformed compliances and stiffnesses, respec- ,i
§ tively. S;j and Q;j are related to the orthoir0p1c lamina proper- ?
2 ties S1J'and Q1j and the angle of orientation of the lamina, 9. E |
§ The transformation equations are found in the reference by Ashton §
f% et al. [2] and are repeated here for convenience, %
4 S11 = Syic0840 + (25, ,4S4¢)s1n26c0520 + S,,51n"e i
% Syp = Syysinte + (25,2+S6¢)s1n26c0520 + Sppc0848 §
.é Syz = Sya(sinetcos*s) + (S11#5,2-Sg6)s1n20c0s20 (89a) :
é Sés = 2(2511+2522-4512-555)51n29C0520 + Ssg(Sin“9+COSue)
i Siﬁ = 2(2511-2512-555)sin9cos39 - 2(2522-2512~555)Sin390059
é . |
§ Sog = 2(2511-2512-565)Sin39C059 - 2(2522-2512-556)Sin9COS39
. % and
Ty Qil = QllCOS“e + 2(Q12+2Q66)Sin29C0529 + szSin“e
’ / Q5 = Qpysine + 2(Q;,+2Qgs)s1n28c0520 + Q,,c08%0
Q{z = (Q,1+Q5,-4Qgg)sin2ocos2e + Q,,(sin“p+costp) (89b)

Qée = (Ql1+sz“2Q12-2Q56)51n26C0529 + 055(51H“O+COS“9)

13

Q16

] ' i '
i o Q26

(Qll~012°2Q66)5in9C0539 + (Q12'022+2Q66)5in39C059

i

(Q11-Q12-2Qgg)sindocose + {Q;5-022+2Q6s)sinocos 30

e
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Visccelastic Composite Material Behavior

The fibers and matrix materials used to form fiber-reinfqrced

composites are usually assumed by most investigators to exhibit

linear elastic behavior until they fail. In many cases, the matrix

material js actually a viscoelastic material which will exhibit a

significant amount of time dependence within certain ranges of

stress and temperature, However, it has only been within the pest

decade that serious attention has been given to the viscoelastic
behavior of fibrous composites.

The works of Hashin [34, 1371, Schapery [9, 18, 32] and
Halpin [11, 33] have done much tq bring out the'significance of
anisotropic Viscoelasticity. In several recent Tliterature surveys
on fiber-reinforced plastic composites by Beckwith et al. [6-8],
it is evident that these effects cannot be neglected in many design
situations. Experimental studies on the mechanical behavior of
fibrous composites have been reported by Hanson [138], Bott and
Barker [139], Delmonte [140], Zvonar and Tamchyna [141], Martirosian
[39-42] and Ogibalov and Tiuneeva [36, 37]. Some of the-work done
in the Soviet Union, namely that of Antans and Skudra [142, 143],
Bulavs and Skudra [144] and Smotrin and Chebanov [145], have
attempted to model the viscoelastic behavior of glass/epoxy compos-
ites using simple spring and dashpot models consisting of only a

few elements typical of a Maxwell or Voigt model [147].

Perhaps
the best documented work on reinforced polymers done in the Soviet

52
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Union 1s contained in Rabinovich [146] and Tarnopolskiy and Skudra

(147]. Both references contain a vast amount of experimental and

theoretical research on glass and cotton fiber-reinforced composites.

Time and temperature dependence ére treated by using spring and
dashpot models. In most cases it 1s difficult to assess the
accuracy of these models since their data do not cover a very

Tong time scale and is almost always plotted against real time
rather than log time. Bryzgalin [148, 149] used the modified
superposition principle to bredict the creep behavior of glass/-
epoxy plates, however, his work is not typical of the main approach
used by Soviet researchers, namely, mechanical modeling.

Kaye and Saunders [150] investigated the creep behavior of a
glass/epoxy laminate in the 1inear viscoelastic range and over a
small temperature range. They were not able to ascertain the
symmetry of the creep compliance, i.e., Sy, = S5y, 35 a result of
experimental limitations. Cessna [151], who studied a glass/-
polypropylene composite and Findley and Worley [152, 153], who
studied a glass fabric/resin composite both used the activation
energy theory of Eyring [154] and the hyperbolic sine law to des-
cribe the creep behavior, e.g. Equation (74).

Schapery [18, 32] has recently reviewed the use of viscoelastic
analysis of fiber-reinforced composite materials and comments on the

techniques required to characterize the material in terms of linear

and nonlinear viscoelastic behavior. Sims [29] and McQuillen [155]
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have also recertly applied viscoelastic theory to composite mater-

ials using several approximate methods developed earlier by

Schapery [18, 32].

Linear constitutive theory. Throughout this discussion we

shall limit ourselves to the viscoelastic behavior of an orthotropic

material in a state of plane stress, viz. Equations (86) and (88).

However, it should be kepy in mind that the general, three-dimen-

il

sional state of stress (strain) can be described in a similar %
,g?
manner for a linear viscoelastic anisotropic material by Equations - ;
(8) and (9), :
; T 3
95 = Cijkm(t - T) 5e dt (8) :
and t \
ks , ;
e,i\]- = f S‘ijki(t - T)'?r'— dT; \9) é
In an analogous fashion we can rewrite Equation (86a) as
L 80] L '30'? E
€ '-'-'/ Sll(t - T)'r)-T""‘ dr +.[512(t - T)F dr :
0
L . é)ul & 807
o =/ Sia{t - T)ajr‘— dt +! Spn(t - T)ST—"' dt (90)
0

L 9
— S ( Tl?, .
Y1 = golt - ) P dt

rive el w o i gt st g oG
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If the stress inputs are of the type oyy * o;JH(t), i.e., creep
test, then we obtain |
e1 = S11(t)oy + Sy2(t)oy
€2 = S12(t)oy + Sz2(t)oy o (91)

Y12 = Ses(t)ty2

where all of the stresses are time-wise constant. If the lamina

'[H'wﬁmmiﬂM|i|\uﬂWl|\:i[:‘lu-ull||\llll|iim|nv-4-u.,‘m:‘Tnul.mun- -

coordinate system is referred to an arbitrary set of coordinates

e
L L

(x, y) which are not aligned with the principal material directions
(1, 2) then Equation (88a) becomes

t t t
ex=f5 (tr-—-—dr'f'[slztr [ -r)———‘y‘dr ,
1!-

(92)
t

. acx
€y =!Slz(t-r)a—;~ dr +
o 9oy F o 2% »—l
Yyy =[ Syp(t-t)g= dr +f Sz6(t-t)yrt do + f (t-1) d
0 0

where the S;j are related to the Sij compliances in the same manner ,

SZZ(t T) "!‘d‘l‘ 26(t T “““Y‘dT

o\“_’

as given by Equation (89a) except that they are time-dependent. As

in Equation (91), when the stress inputs are of the type

H
H
2
3
=i
5
&

- T——

%43 = o;jH(t), then we have

T o T T TR
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) [) t
t‘.x = S“Ox + SIZUy + SlﬁTX)’
Ly T Sip0, * Sézay + Schxy | (93)
Tyy S160, + S260, * SéGTxy

The solution of the field equations, e.g., Equations (73) and
(74), along with any boundary conditions and elther Equation (90)
or (92) for isothermal conditions can be accomplished with the use
of Laplace transforms in order to reduce the problem t0 an equival-
ent elasticity problem. This analogy is called the “correspondence
principie" and is limited to problems in which:

1. The boundaries do not move except by infinitesimal
displacements,

2. the stress boundary conditions do not change to dis-
placement boundary conditions with time, or vice-versa,
and

3. the differential equations relating stress and strain
have time independent coefficients. If the stress-strain
relations are characterized by integral relations, then
the integral relations must be of the convolution type.

This principle was shown by Lee [156] for isotropic media, and by
Biot [157] for anisotropic materials. Unfortunately conventional

Laplace transform inversion is often not feasible because the elas-

tic solution is known only numerically, or is so analytically

e e e e e e s == 3
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complex that standard methods are not adequate [18]. Schapery
[158] proposed two methods of transform inversion, the collocation
method and the direct metihod.

Anoghér procedure whinh has been used very extensively is the
"quasi-elastic" method of analysis proposed by Schapery t159].
The method is easy to use in that transform inversion is avdided.

In the most general form, the method is eyuivalent to approximating

the constitutive Equations (8) and (9) by

oij(t) * Cijkk(t)em(t) (94)
and
£35(t) = Sig (o, (8) (95)
where we have assumed
S5, (8) = [45,(B7 (96)

This procedure has been applied successfully by Schapery [32] and
Sims [29] to fibrous composites.

In terms of general stress and strair inputs, Equations (90)

and (92) may be rewritten as

El(t) = Sll(t)ol(t) + Slz(t)az(t)
ea{t) = Sia(tdap(t) + Sya(t)oy(t) (97)
v12(t) = Sge(#?cyz(t)
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and

() = S1{E)a, () + Siy(tha (1) + Siglte, (t)
e (t)

(14

[

Yy (t) = Sia(t)o (8) + Sae(t)o (t) + Sglt)r, (t)

Three-dimensional, nonisothermal constitutive equations for an

anisotropic TSM have already been given as

) auky
713 f Cighalt - #)= dr (195)
0
and
t .
1e}
= L opiy_ ke
s fsim(g £ =KL g (28b)
0

where £ and ¢' are defined by Equation (20). The correspondence
principle exists for a TSM if the temperature is spacewise constant;
however, it may be transient as long as the first condition is
satisfied. When the temperature is both transient and spacewise
nonuniform, then Lhe correspondence principle does not exist. When
the material is a TCM of the form of Equation {37), then the corres-
pondence principle is similar to that for a TSM where all the
stresses are divided by ag- The same conditions required by a TSM
must be met by the TCM [18].

If one (or more) phases of the composite is of the type TCM-2,

then a correspondence principle does ngt exist under transient

S12(t)a,(t) + Saa(t)ay(t) + Sze(t)r, () (98)
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temperatures. The overall composite behavior will generally be
more complex than TCM-2 under these conditions. Schapery [18]
discusses several other aspects of nonisothermal behavior of com-

posite materials in.terms of predicting effective properties.

Nonlinear constitutive theory. We shall follow the previous
definition of material nonlinearity, i.e., failure to satisfy
homogeneity and/or superposition. In some fibrous composites one
_important source of nonlinearity appears to be the growth of

cracks as part of the phenomena we shall call mic%ostructural
damage. These cracks are generally a result of the fabrication
process and the mismatch in physical and mechanical properties of
the matrix and fiber. The latter problem leads to significant
thermal, or residual, stress in the matrix material sﬁrroun&ing

the fibers [160] and is further aggrevated by the hich volume
fraction of fibers which creates triaxial stressas between the
fibers. This damage and consequent nonlinearity may be quite sig-
nificant at relatively small strains (stresses) compared to ultimate
values. In particulate composites, e.g., solid propellant, an
advanced stage of crack growth causes a large amount of measurable
dilatation [161, 162]. Studies on several glass/epoxy and graphite/-
epoxy composites by Beckwith [163] at room temperature on both
laminae and laminates show no detectable (greater than 0.1% volume

change) dilatation prior to ultimate failure.

Lou and Schapery [9] and Schapery [35] have reported reversible
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nonlinearities in glass/epoxy composites due primarily to highly "
stress-dependent viscosity behavior. Their experiments Were con-
ducted after mechanically conditioning the specimens until crack
growth effects reached a steady state, i.e., damage reached a con-
stant. No attempt has been made to date to explicitly predict time-
dependent microstructural damage using experimental data from fib-
rous composite materials,

Figure 5a shows the forward dome of a typical solid rocket
motor case made from a glass/epoxy composite. A closeup view
(Figure 5b) shows the winding pattern and the light areas represent
regions of visible damage after the pressurz vessel has been Toaded
just short of failure; The light areas représent sévere damage as
evidenced by very fine cracks in the epoxy resin, limited fiber
fracture, and delamination. The fiber fracture, which is presumed
to occur only in areas where the locai stress is close to the ult-
imate fiber strength, is shown in Figure 6 for a graphite/epoxy
composite [12]. Matrix failure and interfacial adhesive failure is
clearly visible in another region of the same composite as shown
in Figure 7. Microstructrual damage of this type as not always as
severe as shown here; however, the same mu:chanisms are thought to
exist at very low stress (strain) levels within most structural
composites in use today.

Perhaps at this point we should recognize that tkere are

additional classifications of viscoelastic materials and divide
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Figure 5. Section of solid rocket motor case (a) showing ,,*
winding pattern and (b) hydrotest damage. Lr
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Figure 6. tvidence of fiber fracture in graphite/-

epoxy composite.

Figure 7. Matrix failure and interfacial adhesive

failure in the same composite.
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them into categories of fading memory and nonfading or permanent
memory. '

1. Fading memory viscoelastic theories are valid for
viscoelastic materials whose time effects are
reversible, such as those caused by internal vis-
cosity effects.

2.

Permanent memory viscoelasti¢ theories are required
for viscoelastic materials possessing additional
time effects or memory phenomena not caused by in-

ternal viscosity and are more permanent in nature,

e.g., microstructural damage.

A single-integral, fading memory representation was used by

Lou and Schapery [9] to characterize a glass/epoxy composite in

the absence of significant crack growth and similarly by Schapery
[35] on a glass/phenclic fabric composite. Equation (60), along

with Equations (61), (69) and (74b), were used to describe the

material behavior. Tt was foura that the nonlinear, uniaxial creep

compliances obeyed a pewer law in time with the exponent being

independent of fiber orientation and stress level. The nonlinear

material properties, e.g., 950 9,0 9, and a_s depended mainly on

the average octahedral shear stress in the matrix. They were able

to determine the principal creep compliances, e.g., 511(t)' Szz(t)
and S,,(t), directly from experiments and calculated Seelt) using

fourth-order tensor transformations and additional creep

umuuu\mL\»,‘.‘m\UMMW\WMM\MWWMH\HMWMWMWMWH
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compliance data. In [164], some preliminary work was done to
relate the viscoelastic behavior at various temperatures using -
the Arrhenius form of ay given by Equation (24). Additional work _
done on a graphife/epoxy in [12] gave similar results, indicating
good agreement when T < Tg. The main conclusion appears to be that
the single-integral, fading memory representation used in [9]

describes the material behavior only in the absence of time-depend-

ent microstructural damage. A constitutive theory which contains
perﬁanent memory effects is needed to describe the behavior of
fibrous composites which generally exhibit time-dependent crack
growth. There are currently two approaches to modeling this type
of behavior; the theories put forth by Farris [44, 58, 128; 129,
161, 162, 165, 166] and those by Schapery [12, 19, 20].

Fitzgerald and Farris [44] proposed the theory originally
for filled elastomers such as solid propellant, Farris successfully
appiied the theory under isothermal [44, 165] and, subsequently,

nonisothermal [58] conditions. Farris based his theory on a linear

cumulative damage model (viz. Miner's law) for the failing micrao-

structure using the form

T

n

D'(8) = D (t/te) o (99)
k=1

ol S ong i WA el

where D'(t) is the accumulating damage, tk is the time the sample

T

spent at strain level £ and tfk is the time-to~failure for the
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écnstant history of strain level € An important parameter in
this theory which results from Equation (99) is the so-called pth

order Lebesque norm of strain,

1 .
Heups[j |c(t')|"at'] ’ (100)
0

where |e| is the absolute value of strain. By judicious selection

]9 1y B

of the Lebesgue norm functions, one is able to satisfy the propor-

I
e g e L i

tionality (homogeneity) condition, but not superposition. This
behavior is similar to that seen in fiber-reinforced composites

except that stress, rather than strain, is the predominant factor.

1l L

Motivated by these results and his own earlier work, Schapery et al.

[12, 20] used fracture mechanics, which resulted in Lebesgue norms

o

of stress, to model the microstructural damage in composite

materials.

The basic mathematical concepts which describe the crack

growth behavior in viscoelastic media are presented in [19]. Using

these concepts, Schapery [20] developed the constitutive equations
for particulate composites, viz. solid propellant, with micro-
structural damage. The theory was developed to predict micro- ?‘j
structural damage effects during the initial stages of crack growth,
prior to extensive dilatation within the propellant. It was

assumed that the cracks propagated in an "opening mode" and that an

T
TN e - e 0

initial distribution of cracks existed within the matrix, or
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possibly between the matrix and filler particles. It was further
assumed that ddring most of the time required for local fracture,

the creep compliance is given by the power law,

. 0 ' (101)
Dm - Dl(t/aT)

where Dl and n are material constants. Fracture mechanics pre-
dicted Lebesgue norms of stress, ]Iolip, rather than strain, appear
in the general constitutive theory.

If linearity for a fixed crack length is assumed, then the -
total strain is the sum of the strain due to the externally applied
stress acting on the undamaged composite material plus the strain

due to microcracking. The resultant constitutive relation is

given by

¢ =f b, (¢ - r.‘)a‘g‘r %0 [1 +f G(g)dg]}dr,' (102) '

0 9

7 where ¢ and ¢' take on the normal definitions for reduced-time, viz,.

vl

Equation (20), G(g) is a distribution function which reflects the

bl o

distribution of the crack lengths and stress concentrations in the

b, L

matrix, and

Rl Tl

gt -1/
g' zg(t') = {[ M1 dr,} | (103)




B 120 |

67
- 1 \
g(e’) (104)
HUHMq : )
The exponent q is given
g =2(1+1/n) (108)
and llolqu is a "weighted" Lebesgue norm where M = M(£) accounts
for aging and rehealing effects. In the absence of these effects
M is unity.
Equation (102) may be rewritten as
& doef
£ =[ Dple - &')gedt (106)

where Oof is the "effective stress" seen by the material and is

given by
Oef * 0[] *f G(g)dg] (107a)
gl
or,
Of = 0[1 " fllcll] . (107b)

The effective stress exhibits both time and temperature dependence
in the usual manner but also is stress-dependent through the
Lesbegue norm function represented by f||o}|. It may also be con-

venient to work with the inverse relationship given by

o sl i ML AR VS 8
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The constitutive theory represented by Equations (106) and (108)
was developed uhder the assumption that the particles are rigfd
relative to the matrix. Therefore, the crack growth is governed by
the stress intensity factor and fracture energy associated with
the matrix material. The theory represents the condition of cracks
which are initially isolated frum each other and do not interact.

It has been found that the cracks actually interact in some
materials depending on the cqnstituent material properties.

Studies using a scanning electron microécope on graphite/epoxy and
glass/epoxy composites show that a c¢rack arrest mechenism is present
under certain loading conditions [12]. Figures 8 and 9 show the
crack arrest mechanism and the degree of fiber bending present in

an E-glass/epoxy laminae which has been subject to a stress normal
to the fibers.

Motivated by this possibility, Schapery et al. [12] studied the
effects of fiber bending on the overall strain energy release rate
as a function of the loading condition and composite properties.

The enerqgy associated with matrix stretching was ultimately neglect-
ed and the effects of fiber bending and shear stress were used to
model the crack growth. Equation (101) was again used to model the

matrix creep compliance and the distribution function representing
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[12].

Crack arrest mechanism in an E-glass/epoxy

composite subject to tensile stress

Figure 8.

s . s

gresence of

(12].

) showing

significant fiber bending

Enlarged view (220X

Figure 9,
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crack lengths and stress concentrations was assumed, as an example,
to be

Fpo=ke'P (108)

where K; and p are positive constants with p>1. The model

allows for the possibility of crack arrest, a phencunennn which is
clearly evident in the behavior of multiple cycle .creep and recov-
ery tests on fibrous composites [12, 167] in which most of the
damage is done during the first loading cycle.

The principle compliance parallel to the fibers, S;,, and the
Poisson's ratio for loading in the fiber directicn will not be
affected by cracks parallel to the fibers. Theréfore, as Tong as
appreciable fiber failure does not occur, the principal stress-

strain equations are identical to those for linear viscoelasticity

except for additional terms of ay,, and se,. Hence, the principal

relations are

t 90 k 302
L] =/ S]l(t-T)‘éTr‘—‘ dt '4'./-512(1;-‘()5—_;— dt
0 0

t t
90 9u
950 =/ S]Q(t-'l')s‘;‘l" dT +f Szz(t—T)s—;" d’r + [\,ﬁg (109)
[o} (o}

t
3Ty,
Y12 */ See(t-7) P -dt + Ay
0
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As an example [12], we can rewrite the shear strain as

t .
* aT12
Y12 =f Sge(t-t)— > dv (110)
0

where Sgs is the principal nonlinear compliance, and is given by

£p 4.9
s* - s 4 Onks 4Asin‘e + BsinZ2e N (ty2-p
66 = Ses ¥ TEII(Zp) 7 o g

(1n)

for the case of a uniaxial creep test where o = oOH(t). In
Equation (111), r is the fracture energy of the matrix, and A and B

are constants which depend on the constituent properties and frac-

ture properties. Their explicit definition is given by Equation

(39) of [12].
Neither theory, Equations (102-108) or Equations (109-111),

has been compared with a specific fibrous composite material al-

though they appear to be general enough to predict the types of

nonlinearity presently observed,

Structure-Property Relationships

3 _ Micromechanics deals with the mechanical interaction between

the constituent materials of a composite. The study of micro-

mechanics of composite materials has received considerable atten-

tion since the early 1960's in an attempt to relate constituent

properties to the overall, macromechanical response of a single




7

ply, or lamina. We have already shown, viz., Lquation (50), that

the constitulive relation for un orthotropic material in o wtate

oF plane stress depends on the detennination of four compl idnce;,

pamely, Sy, Spes Sew, and 5, It has also been noled in Eauution

(&

jlis

3) that these malerial proporties can be related to tfunctions of

3 the engincering constants Ly, Loy Gpo o and either vy or

1t

The latter lwo are reluted through the symmetry condition !

- requiras

e sl el W

-

50 Lhat theve are again only four independent aterial constenl-

e be determinad.  As we noted carlier, Lhe viscociostic nalare ¢f

T ‘mﬂm'ﬁ-mw“ e
ol

the polymeric mubrix also mekes these propertics Lime and Lember-

alure dependent, with Gy, (or b, ) nenerally exhibiling Lhe pro-

dominant viscoclastic effuects.

M

Schapery [18] discusses the measurement of the principal com-

pliances experinmentally using off-angle unidirectional composites

and tourth-order tensor transformations. The direct measurement

OF Svyy Sooy Syo oand S, falls into the classification of wmacro-

mechanics where the ply or Tamina is treated as a single materiai

with anisotropic properties, nenlecting the nverall constitulion of

; 3.—-—{-1-;-- PG i A S -
N EIERE -
5

-

the Tamina. Several experimental Lechriques have boeen pronnsed for

the measurement of these properties dirvectly or indirectly [2, 9,

18, 33, 16871,
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In the subsections which follow we shall discuss some of the
aspects of current micromechanics theory, paying rarticular atten-
tion to the relationship between the constituent properties and the

overall response observed experimentally.

Basic assumptions. There are several basic assumptions which

are common to almost all of the theories presently in use today

with regard to elastic behavior, namely:

3 ’ 1. The ply is macroscopically homogeneous, linearly
’ elastic and orthotropic.

2. The fibers are linearly elastic and homogeneous.

e Ty

The matrix is linearly elastic and homogeneous.

Both the fiber and matrix are free of voids.

o B W

There is complete bonding at the interface of the

TR

constituents end there is no transitional region

between them.
6. The fibers are (a) regularly spaced and (b) aligned.
7. In-situ mechanical properties are the same as the
properties of the constituents when not in the
p composite.
In general, it is realized that the lamina often exhibits

behavior which is nonlinearly viscoelastic, particularly at high

stress levels and temperatures. There are, of course, a great

number of possible deviations from these assumptions and the net

result is an abundance of theories based on relaxing one or more
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of the basi¢ assumptions.

Prediction of effective properties. We shall not attempt to

critique the various micromechanics theories since time and space
do not permit even a minimal treatment. The interested reader is
referred to several excellent critiques of the area given by
Chamis and Sendeckyj [169], Ashton et al. [2], Pagano and Tsai
[170] and others [171, 172]. The various theories which have been
proposed to date can be classified as follows: netting analysis,
mechanics of materials, self-consistent models, variational methods,
exact (elasticity) methods, statistical methods, discrete element
methods and semi-empirical approaches. An exhaustive bibliography
of many of these theories can be found in [6-8, 169] and will,
therefore, not be repeated here.

The prediction of the longitudinal composite properties,

viz., E;, and v,,, has generally proceeded along the classical Tines

of parallel element models [137, 173-176]. The longitudinal com-
posite modulus, Eqq, is given by [137, 174]

2
[G Gm]
f Km, ,
G

v G !
n fmry v G
[ E m ., f'm + ﬂ

—

|

=

£, =Vﬁf*‘%ﬁn+V (113)

f Km

where £ is the modulus of elasticity, G is the shear modulus,

K is the plane strain bulk modulus, v is the volume fraction, and

the subscripts f and w signify the fiber and matrix respectively.
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Hi11 [174] demonstrated that E,, is actually bounded from below by

the "rule of mixtures" and that the last term can be neglected such

that
Eip = vebe + ViEy (]]4)
Tsai [172] allowed for the possibility for fiber misalignment by %
applying a correction factor to Equation (114) %
4
Eyy = k(veEe + v E) (15) i

however, the value of k is often very close to unity for present
composites considering the fabrication techniques used.

The major Poisson's ratio, vy,, was also derived in a form

T S—

sl

similar to Equation (113), namely, [137, 174]

sl

(116)

c i il i
PR N A a

= + +
: Viz T Veve T Vi {

i b

where v is Poisson's ratio and the other symbols are the same as

previously defined. Again, neglecting the last term we have

vyp = Vf\)‘f + Vm\Jm . (]]7)

Most experimental evidence indicates that the "rule of mixtures"
representation, viz , Equations (114) and (117), are auite accurate

for the calculation of E;; and vy, respectively. Extension to
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include viscoelastic behavior can be readily accomplished using

the quasi-elastic approach,

Eqy(t) = vaf(t) + vam(t) (118a)

and

VIZ(t) = Vf\’f(t) + Vm\)m(t) (118b)

where, for most advanced composites, the properties of the fiber
are taken to be independent of time, except possibly at very high
tenperatures.

The representation of the composite transverse modulus, Esp,
and shear modulus, Gi,, is not quite so elementary; also, these
properties are much more sensitive to voids and fiber geometric
arrangement. Many investigators have looked at square arrays, rec-
tangular arrays, hexagonal arrays and random fiber geometries in
various attempts to model the actual behavior. Halpin [171] and
Ashton et al. [2] developed some approximate forms based on
Herman's work [177] who originally used a method developed by
Kerner [178]. These equations are based on the application of
semi-empirical adjustment factors to the theoreticai representa-
tions of the orthotropic engineering parameters. These adjustment
factors depend on the fiber geometry and spacing and can possibly
account for void and microstructural damage effects. The "Halpin-

Tsai equations" are giver by
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- [Ef“*‘s"f) * egEp(T-ve) | (119)
m | ETv) ¥ E (o)

SRR sits s e
AN m o6 f ]

where g and zg are the adjustment factors. Reliable estimates for
the ¢-factor can be obtained by Equations (119a) and (119b) with
various numerical micromechanics solutions. Tynical values for
elastic compusites are ¢ = 2 and g = | [2]. Deviations from
these values account for differences in the assumed microstructural
arrangement of the fibers and microstructural damage. As in

Equation (118) a quasi-elastic viscoelastic solution may be ob-

tained as
Ec(t) (Vhgpvy) + g E (t)(1-v))
5 f E'f E'm f
EZZ(t) = Em(t) [ tf(t)(-l_vf) ¥ Em(t)—-(cE+vf) ] (]20&)
G(t) (1+zave) + £a6 (t)(1-v,)
f G f G'm f
Gy, (t) = G (1) [ CTETT-v ) ¥ 6 (E)Tz7vy) J (120b)

where we can normally assume that Ef and Gf are independent of time.
The principal elastic compliances S;;, S;2, Sy2, and Sgg can

be found by applying Equatior (83) to the engineering properties.

Corresponding viscoelastic compliances are derived by using Equation

(83) and the quasi-elastic method to obtain S;,(t), S,,(t), S:,(t)

and $¢i(t). We can also include temperature dependence by using the

. o G

il
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reduced-time, ¢, provided we do not vinlate the correspundence
principle discussed earlier. Halpin [33] has used the Halpin-Tsai
cquations to predict S.. and S, for a viscoelastic rubber rein-
forced with unidirectional, nylon fibers over a temperature range
uéing isothermal data. Sims [29] has also employed these relations
analytically to calculate the relaxation moduli for unidirectional

graphite and boron fiber-reinforced epoxy composites,

Laminate Constitutive Theory

The behavior of laminated composite materials is directly

related to tne response of the various laminae after taking into

account the geometry and individual properties of the layers.

Laminated composite theory i3 given in Ashton et al. [2], Ashton
and Whitney [27], Ambartisumyan [26], and Lekhnitskii [25] for ?1
elastic materials and may be extended to linear viscoelastic be-

havior by using the correspondence principle or the quasi-elastic

approach. :
i
A typical laminate consisting of n layers, or lamina, is i
{
shown in Figure 10. The strain-displacement relationships are f
generally derived for small deformations of the laminate anhd are %
. . . , &
written in terms of the midpliane strains c;, g;, c;y and the plate é,

curvatures kx, ky and kx as follows,

Y
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where u_ and v, are the midplane displacements and w is the trans-
verse displacement. The strains in any given layer are related to

the midplane strains and curvatures in Equation (121) by the

relationships

W
I
)
+ .
N
=~

X X X
= % + 7}
ey ey ny (122)
Yay © Txy * PRy

where z is the ccordinate distance measured perpendicular to the

laminate reference surface as shown in Figure 10.

Elastic Orthotropic Materials

Under the assumption that plane sections remain plane the
constitutive equations for an elastic, orthotropic laminate con-
sisting of n laminae having the constitutive relationship which
obeys Equations (88b) and (89b) are given as (see, for example,

Ashton et ai. [2]),

N T T—
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Ny Ali Az Ae , Bin Biz By re;
1
Ny At A2z Az , Bz Bz  Bag E;
1
Xy Aie A26  Ase , Big Bas  Bes | | vy,
] S boee e e g (123)
1 M. Bin Biz Big ' Diy D1z Dig ||k,
£ M By B2z 'Bag ' Dy D2z Dag k
- y . y
M Bjg B2s Bes ' Dsg Dag Dge| | Kk
! L YL ' JL Y
] : where Nx’ Ny and ny are the in-plane forces (stress resultants)

and M,, My and Mxy are the moments (moment resultants) given by

Sl h/y h/2

Nx = cxdz MX = cxzdz
4 ~h/y . %h/y :
| 5
3
h/» h/» 1
N = dz 124 = d 124b
, f oy (212) M, 0,2z (124b)
<h/» “h/o
h/, h/»
. ny = / rxydz Mxy = ~Xyzdz
“h/ 2 ~h/»
The quantities Aij‘ Bij and Dij are the laminate extensional stiff-
‘ nesses, coupling stiffnesses and bending stiffnesses, respectively.
These laminate stiffnesses can be defined in terms of the lamina

stiffnesses given in Equation (89b) as
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n
Ay = 2 (0]l = Byey)
k=1
n
B, 5 = %Z (0, (hp = he_y) (125)
=y
n
015 3D Q450 (hp - ngy)
=y

where hk is the coordinate distance to a lamina from the reference
surface as shown in Figure 10. The Q;j's are the transformed
stiffnesses which depend on the orthotropic laminz stiffness and
the angle of orientation of the lamina as shown in Equation (89b).
The most important feature of Equation (123) is the coupling
phenomena which exists between stretching and bending through the
B;j matrix., If the (Q;j)k is an even function of z (symmetric
layup of the laminate), then Bij = 0 and coupling is eliminated.
Many laminates are constructed in this manner and, therefore, the

governing constitutive equations are considerably simplified.

Viscoelastic Orthotropic Materials

The constitutive equations for a linear viscoelastic laminate
can be formulated by replacing the products of the time-dependent

quantities in Cquation (123) by superposition integrals of the

form
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and, similarly,

n
Ag(8) = D I8 (0T = hy )
k=1

n

] ' 2
D (t) = l}ﬂ_:m‘ (£)] (hg = hey)
| ij 3 1] k'K k-1

i ’ k=1
1 ,

Il

where the 0;;'5 are the

o

time-dependent transformed stiffnesses

defined by Equation (89b).

L

In the application of Equations (123), (126) and (127) for the

solution o2f many viscoelastic problems, the procedure often become:

o

time consuming, Under certain conditions when the time-dependent
b material functions or input quantities are slowly varying functions
4

3 of time, the convolution integral may be omitted. The quasi-elastic

approach used earlier to derive the lamina constitutive equations
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may also be used here. The prucedure involves direct subulitution

of the time-dependent properties of the A%j. B,

t .
.. i rices.,
i3 and D1J wtrice

Structure-Property Relationships

In order to apply the microumechanics theory derived earlicr

to the behavior of the laminate, it 1s necessary to establish the
relation between the Sij and Qij' These relatinons are given in

[2] as 3
: Soo |
,; Q] l ’ ._' ‘v_-—‘-—. v“_ " :) E
4 S119,0 - Sy :
: ) =517 . 1

Jpp =5 (128)

S11922 - 312
Sty

Yoz * $1,5 S1.° §
11922 12 %
Qoo = = 3

S66

where Sy, Sss, S{, and S may either he measured directiy or

gl bl

predicted by the various micromechanics theories already discussed, '

The Halpin-Tsai relations, Equations (114), {117) and (i19), are 5 "
often used because of their relative simplicity. We may also ; '"f

relate the .. to the common engineering constants and apply the
13

i ol Ml

Halpin-Tsai relations directly, [2]




85

Ey
LRI g Vi2V21]
£
Qo = 22
22 7 T v (87b)
Vol VisEs,
] Q)2 =

T-Vvigvar T = viava ' 3
3 Qe = Gi2

In either case, the application of the quasi-elastic approach to f
; the solution of viscoelastic problems proceeds by inputting time-
" dependent properties in Equations (128) and (87b) by using, for

example, time-dependent Halpin-Tsai relations, Equations (118)
and (120).
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SECTION III

MECHANICAL CHARACTERIZATION TESTS

The expefimental program was designed to provide the necessary
isothermal data required to evaluate the effective (overall) lam-
inate stiffness of a typical glass/epoxy composite material. The

1 g]ass/epdxy fibrous composite studied is currently being used in

e

the construction of the third stage Minuteman III solid rocket

motor case.

State-of-the-art filament winding techniques are used

to fabricate the actual case. The basic barrel (cylindrical sec-

ARy

1
tion) consists of 14 layers of hoop-oriented $-901 glass wraps and

8 layers of qlass wraps oriented 14.63% to the longitudinal motor
axis.

The $-901 glass filament rovings are used in a tape prepreg

system consisting of a Shell 58-68R epoxy resin.

TR T A

Glass cloth is interwoven between hoop layers at the Larrel
ends to provide stub skirts for attachment purposes. In the for-

ward and aft dome regions the fiber or wrap angle is variable be-

cause of the shape of the end closures. The geometry is further

complicated with the provision for six thrust términation ports ‘in

the forward dome.

i i A8

These areas are reinforced locally with a glass

tape/epoxy during the winding process.

As a result, the effects of both variable thickness and wrap

o ol it

angle must be taken into account in the forward dome area in order

IFormerly designated as S-HTS or S-994-HTS glass. Owens- .
Corning Fiberglas Corporation trademark.
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to determine the effective stiffness as a function of the fiber
angle. In the discussion of effective stiffness in Section II it
was noted that the controlling factofs are primarily constituent

' properties, volumetric content and stacking sequence. The fiber
content may be somewhat variable in the dome regions due to the
fabrication technique which causes both fiber slippage ("aaps")
and shingling ("overlapping"). Current motor case analysis con-
ducted by the Aerojet Solid Propulsion Company (ASPC)2 assumes a
nominal 65.7% fiber content (volume) as representative of the
actual motor case [17].

The mechanical characterization tests described in this section
were conducted in a manner that would permit the evaluation of the
effective stiffness in the glass/epoxy composite as a function of
fiber angle, stacking sequence and load history. The effects of
multiple loading cycles, typical of the prooftesting of glass/epoxv

rocket motor cases, and temperature were considered in the latter

area.

Materials and Equipment

Materials

The prediction of ef fective properties through the use of the
Halpin-Tsai Equation (119) and other associated micromechanics

theories rely very heavily upon accurate measurements of the

“Aercojet Solid Propulsion Company, Sacramento, California.
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constituent properties. In the glass/epoxy system, the glass fiber
pro#erties are generally assuned to be linearly elastic up to fail-
ure. Epoxy matrix properties, on the other hand, exhibit consider-
able time and temperature dependence.

The materials tested wer; representative of both the consti-
tuent materials as well as the actual rocket motor case. Four
materials were used in the experimental program:

1. Shell 58-68R epoxy resin.
2. $-901 glass/Shell 58-68R epoxy resin unidirectienal
composite laminae.
3.  S$-901 qlass/Shell 58-68R epoxy resin composite
laminates.
4. S-901 glass/Shell 58-68R epoxy resin laminate
sections removed from a third stage Minuteman II!
solid rocket motor case.
The first three materials were fabricated by Structural Composites
Industries (SCI)3 for the experimental program and furnished under
a subcontract with the ASPC. A1l of these materials were made
according to the current ASPC specifications pertaining to the
materials preparation and method of construction as actually used
in the third stage Minuteman III motor case.

Epoxy resin. The Shell 58-68R epoxy resin system was orig-

inally developed by SCI in the early Polaris solid rocket motor

3Structural Composites Industries, Azusa, California.
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~cases and has been used by NASA in several filament-wound tank
applications for cryogenic fuels [179,180]. The epoxy system used in

our tests employs the standard formulation given in Table 2,

1
E
3

2
E
z
3
E

H

Table 2. Ingredients of Shell 58-68R Epoxy Resin [181]

ST
Epon 828 50

Epon 1031 50

Nadic Methyl Anhydride (NMA) 90 ¢+ 5
Benzyldimethylamine (BDMA) 0.55 + 0.05

The epoxy mixture was prepared by mixing the Epon 828 and
Epon 1031 components in an oven at 150°F and then blending them

together once the Epon 1031 was completely melted, While the

components were sti1l warm, the NMA (curing agent) and BOMA

(accelerator) were added separately and mixed thoroughly after each

addition. The resulting mixture was placed in a vacuum bell jar

in order to remove any entrapped air bubbles.

After the 1nitial mixing and degassing, the epoxy mixture was l
poured into flat casting molds with 8" x 8" x 1/8" dimensions.

Sufficient quantity of the epoxy was prepared to cast three sheets

from the same batch. The molds were then placed in an oven in a

vertical position and cured for 2 hours at 200°F and then 2 hours at

350°F. Upon removal from the molds, the plates were visually estiab-

lished to be void free and found to have a uniform thickness of
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0.125 £ 0.003 inches. The density of the cured plates, measured
by water displacement method, was found by SCI to be 1.24 grams/cc
[181]. This is consistent with other studies_using the same resiﬁ
system with slight variations of cure times and temperatures

(179, 180].

Glass/epoxy composites. Both the unidirectional laminae and

the composite laminates were prepared by using the Shell 58-68R
epoxy resin and Owens-Corning $-901 Glass roving (20-end)*. The
20-end roving 1s used in the actual motor case because experience
has shown it to have a higher strength than the 12-end roving
which 1s also available [179].

A1l prepreg broadgoods materials required for panel fabrica-
tion were prepared by a drum-winding process. This process involved
winding the S-901 Glass roving onto a Mylar-film-Tined, 24-inch
diameter cylinder at a controlled winding speed and load, and then
applying a quantity of the Shell 58-58R epoxy resin uniformly over
the entire surface. The amount of glass roving and epoxy required
for the prepregs was precalculated to yield a desired ply thickness
and glass volume percent close to 65% in the molded panels. To
facilitate processing, a 50% resin solution was made in methyi-
ethyl-ketone (MEK). Residual solvents in the prepregs were removed
by heating in an oven at 150°F prior to the final layup.

“An "end" is defined as the smallest commercially available

bundle of glass filaments; each "end" generally consists of 204
monofilaments in a single, continuous, untwisted strand.
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The prepreg broadgoods were cut into 13-inch strips with the

fibers running at the required angle of the molded panel. Single
ply patterns approximately 13" x 13" were cut and fifteen (15)
plies were laid up in a single stack.. A1l panels, unidirectional
and laminated, had fifteen plies such that the outer layers were
oriented in the same direction in order to reduce warpage during
the curing process. The plies were also stacked symmetrically
such that the bending-stretching (coupling) stiffness, Bij’ is zero.
The prepreg plies were laid up on polished aluminum pliates, covered
with a Teflon-impregnated release fabric, followed by another
13" x 13" x 0.065" aluminum cover plate over the cuter layers, and
then subsequently covered with 2 plies of glass bleeder cloth.
The entire assembly was bagged with a Nylon film and placed in an
autoclave for cure. Curing was executed for 2 hours at 200°F and
then 2 hours at 350°F in a 75 psig autoclave pressure in addition
to the vacuum-bag pressure.

The cured panels were inspected for visible defects. The
panel thickness was measured at 25 locations and then trimmed to a
net delivery size of 12" x 12" x 1/8"., \Unidirectional glass/epoxy
panels were fabricated at fiber angles of 0, 20, 45 and 90° while
the laminated glass/epoxy panels were made in symmetric layups of

0/90, +10, +30, *45, +60 and *80°.

Filament-wound case materials. The third stage Minuteman III

solid rocket motor case is shown in Figure 11. The motor shown is
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Figure 11. Instrumented third stage Minuteman III
solid rocket motor case undergoing
prooftesting.
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instrumented and being prooftested by ASPC prior to casting the

solid propellant. The barrel section along with the strain gage

instrumentation can be clearly seen, Figure 12 shows the section

of the forward dome which has been removed from the barrel section.

The thrust termination ports and igniter adapter are shown in more

detail. In Figure 11 they are hidden by the interstage assembly

in the forward end of the mot- asa. A closeup of the area be-

tween two of the thrust termination ports is shown in Figure 13.
In order to make a comparison between the effective stiffness
of the composite plates aid the actual motor case, the ASPC furn-
ished both the forward dome (Figure 12) and the aft end of a third
stage motor case which had undergone prooftesting ("hydrotesting").
Although the effects of the hydrotesting damage may be significant

with regard to the first loading cycle, the results of subsequent

loading cycles (second through nth cycle) could be compared directly

with the glass/epoxy plates fabricated by SCI. For these series

of tests the forward dome was chosen since the aft end has an
outer Tayer of cork insulation which could not easily be removed

without damaging the case material,

Samples were obtained from an area between two of the thrust

termination ports similar to that shown in Figure 13. In this

region the motor case does not possess mid-plane symmetry since

there are eight (8) alternating layers and hence Bij £ 0. The

fiber angles of samples taken from the meridional and
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Figure 12. Forward dome section of the third stege
Minuteman III solid rocket motor case.

Figure 13. Closeup view of the case region near
a thrust termination port.
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circunferential directions were approximately :20 and +70°

respectively,

Aluminum. A 6061-T6 aluminum plate was also used as a refer-
ence material for comparison with the glass/epoxy plate tests

which are discussed in a subsequent section.

Specimen Preparation

Uniaxial tensile coupons. The majority of the tests conducted

during the course of the experimental program utilized uniaxial
tensile coupons cut from the piates fabricated by SCI. Sample
preparation technique for both the Shell 58-68R epoxy resin and
$-801 glass/Shell 58-68R epoxy resin materials was the same.

The surfaces of the plates which were to be used were first
taped completely with masking tape. A sample layout corresponding
to the desired fiber angle and coupon dimensions was drawn directly
on one taped surface. All sample dimensions were drawn slightly
oversize to allow for final trimming. Using a tungsten carbide
band saw blade and a slow band speed, the samples were rough cut
from each plate used in the tests. After carefully removing the
masking tape, several samples were mounted in a vertical mill and
machined to the final dimensions using a fly cutting attachment.
Visual inspection of the sample edges showed 1ittle damage from
the cutting operation provided the cutting tool was resharpened

after each surface was completed.
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Several sets of samples were prepared from the SCI nlates at
different fiber angles, o, with the emphasis placed on the off-angle
specimens (0° < ¢ - 90°). These latter specimens exhibit significant
creep and nonlinearity. A1l of the samples were cut to the nominal
dimensions of 6" «x ]/2“ x 1/8".

Specimens for the failure tests, constant crosshead rate tests
and the creep «nd recovery tests required end tabs to be bonded to
coupons in order to transfer the appiied load to the specimen.
Aluminum end tabs were sandblasted and bonded to the coupon ends
using Micro-Measurements' M-Bond AE-155 adhesive cured under slight
pressure for 2 hours at 170°F. The end tabs for the constant cross-
head rate tests were basically 5° wedges measuring 1.5" x 1" x 1/8"
and the tabs for the failure and creep and recovery tests measured
1" x 5/8" x 1/8" with the edge tapered to about 20-30° (Figure 14).
Different types of tabs were used because of the difference in
grips.

Tensile coupons used for the creep and recovery tests were
loaded by means of pin-connect