

ADA 034976

REPORT DOCUMENTA	TION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
AFRRI-SR76-51	2. GOVT ACCESSION NO.	3. RECIENT'S CATALOG NUMBER
TITLE (and Subsissio)	na a shan na ma dhek bira i ga ar te dekiti sa sha ara ara ara ara ara ara ara ka mata da da sa	TYPE OF REPORT & PERIOD COVERED
DEFICIENCY OF HEMATOP	OIETIC STEM CELLS	6. PERFORMING ORG. REPORT NUMBER
UTHOR(a)	COMPANY AND THE COMPANY OF THE REAL PROPERTY AND	S. CONTRACT OR GRANT NUMBER(+)
K. F. McCarthy, G. D. Ledney	and R. G. Mitchell	
PERFORMING ORGANIZATION NAME AND A	DDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Armed Forces Radiobiology Re	esearch Institute	NWED QAXM
Bethesda Maryland 20014	(m nn)	C 902/10
CONTROLLING OFFICE NAME AND ADDRE	55 ()	IS REPORT DATE
Director	(1	September 1976
Defense Nuclear Agency (DNA) Vashington D. C. 20305		15 (2)14p.
MONITORING AGENCY NAME & ADDRESS	dillerent from Controlling Office)	18. SECURITY CLASS. (of this copper)
		UNCLASSIFIED
		154. DECLASSIFICATION/DOWNGRADING
		SCHEDULE
HSTRIBUTION STATEMENT (of this Report) pproved for public release; (distribution unlimited	
DISTRIBUTION STATEMENT (of this Report) Approved for public release; (DISTRIBUTION STATEMENT (of the obstract	distribution unlimited	schedule m Reportj
DISTRIBUTION STATEMENT (of this Report) Approved for public release; (DISTRIBUTION STATEMENT (of the obstract SUPPLEMENTARY NOTES	distribution unlimited	schedule m Report)
DISTRIBUTION STATEMENT (of this Report) Approved for public release; (DISTRIBUTION STATEMENT (of the ebetrect SUPPLEMENTARY NOTES	distribution unlimited entered in Block 20, 11 different fro	Report)
DISTRIBUTION STATEMENT (of this Report) Approved for public release; (DISTRIBUTION STATEMENT (of the ebstrect SUPPLEMENTARY NOTES	distribution unlimited entered in Block 20, 11 different fro	m Report)
DISTRIBUTION STATEMENT (of this Report) Approved for public release; (DISTRIBUTION STATEMENT (of the obserrect SUPPLEMENTARY NOTES (EY WORDS (Continue on reverse side if nece NESTRACT (Continue on reverse side if nece	distribution unlimited entered in Block 20, 11 different fro entered in Block 20, 11 different fro	m Report)
DISTRIBUTION STATEMENT (of this Report) Approved for public release; (DISTRIBUTION STATEMENT (of the ebstrect SUPPLEMENTARY NOTES (EY WORDS (Continue on reverse elde if nece As the exposure to ioniz: toms of illness which appear f	distribution unlimited entered in Block 20, 11 different fro revery and identify by block number) ing radiation increases irst are caused by injur	during a nuclear event, symp- y to the most radiosensitive
DISTRIBUTION STATEMENT (of this Report) Approved for public release; (DISTRIBUTION STATEMENT (of the ebetrect SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde if nece ABSTRACT (Continue on reverse elde if nece As the exposure to ionizi toms of illness which appear fi blood cell forming system in t teraction of radiation on cellul	distribution unlimited entered in Block 20, 11 different fro entered in Block 20, 11 different fro entered in Block 20, 11 different fro severy and identify by block number) ing radiation increases irst are caused by injur he bone marrow. The jurn lar constituents must be	during a nuclear event, symp- y to the most radiosensitive precise mechanism of the in-
DISTRIBUTION STATEMENT (of this Report) Approved for public release; (DISTRIBUTION STATEMENT (of the obstract SUPPLEMENTARY NOTES (CEY WORDS (Continue on reverse side if neces As the exposure to ionizitoms of illness which appear f blood cell forming system in t teraction of radiation on cellul ful therapeutic means for the o	distribution unlimited entered in Block 20, if different fro entered in Block 20, if different fro entered in Block 20, if different fro seary and identify by block number) ing radiation increases irst are caused by injur he bone marrow. The junc lar constituents must be enhancement of recover	during a nuclear event, symp- y to the most radiosensitive precise mechanism of the in- understood before meaning- y can be developed. Steel-
DISTRIBUTION STATEMENT (of this Report) Approved for public release; (DISTRIBUTION STATEMENT (of the ebstrect SUPPLEMENTARY NOTES (EY WORDS (Continue on reverse elde if nece As the exposure to ioniz) oms of illness which appear f plood cell forming system in t eraction of radiation on cellul ul therapeutic means for the o Dick ie mice which have a gene	distribution unlimited entered in Block 20, 11 different fro recery and identify by block number) ing radiation increases irst are caused by injur he bone marrow. The plar constituents must be enhancement of recover etic defect were selecte	during a nuclear event, symp- y to the most radiosensitive precise mechanism of the in- understood before meaning- y can be developed. Steel- d for a model to determine
DISTRIBUTION STATEMENT (of this Report) Approved for public release; (DISTRIBUTION STATEMENT (of the observed SUPPLEMENTARY NOTES (EY WORDS (Continue on reverse side if nece As the exposure to ionizitoms of illness which appear f blood cell forming system in t ceraction of radiation on cellui ful therapeutic means for the of Dick ie mice which have a gene	distribution unlimited entered in Block 20, 11 different fro entered in Block 20, 11 different fro beery and identify by block number) ing radiation increases irst are caused by injur he bone marrow. The p lar constituents must be enhancement of recover etic defect were selecte	during a nuclear event, symp- y to the most radiosensitive precise mechanism of the in- understood before meaning- y can be developed. Steel- d for a model to determine

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

TABLE OF CONTENTS

																							Page
Introd	ueti	on	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	3
Metho	ds	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
	Mic	e																					3
	Irra	dia	tio	n																			3
	Biol	logi	cal	co	mp	our	nds																3
	TE-	CF	U a	iss	ay																		3
	CFU	Jas	sa	y																		•	4
	CFU	J se	eed	ing	eff	ici	enc	y										•	•	•	•	•	4
	Hyd	rox	yuı	rea	kil	lin	g			•	•	•	•		•	•	•	•		•	•	•	4
Result	ts	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
	Fen	nur	ce	llul	ari	itv	and	C	FU	nu	mb	ers											4
	Sple	enic	ce	llu	lar	ity	and	d C	FU	nu	mb	ers	s .										5
	Col	ony	mo	orp	hol	ogy																	5
	Mar	rov	v C	FU	pr	oli	fer	ati	on														6
	App	are	nt	TE	-C	FU	po	pul	atic	on s	size	es	•	•	•	•	•	•	•	•	•	•	7
Discu	ssio	n	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8
Refere	ence	es	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	11

FIGURE

Figure	1.	A comparison of transient endogenous colony develop-	
		ment in bled B6WCF1 mice of genotypes $Sl/+$ and $+/+$.	8

LIST OF TABLES

Table	1.	Colony Forming Ability of Marrow Cells	5
Table	2.	Colony Forming Ability of Spleen Cells	6
Table	3.	The Effect of OHU on Femur CFU Population Size in ${\rm Sl/Sl}^d$ Mice and Their Normal +/+ Congenic Littermates	7
Table	4.	Number of 5-Day Transient Spleen Colonies Appearing in Sl/+ and +/+ Mice Following Various Irradiation Doses and Erythropoietic Treatments	9

INTRODUCTION

Peripheral blood colony forming units (CFU) can be distinguished from marrow CFU by their low self-renewal potential.⁸ Because Sl/Sl^d mice suffer a deficiency of peripheral blood CFU,⁷ it was hypothesized that mutations at the Steel loci disrupt erythropoiesis very early in the erythron, perhaps at the point of commitment of multipotent CFU to the erythrocytic cellular line of differentiation. If this hypothesis is correct, then one would expect an equivalent number of high self-renewal potential CFU, but not low self-renewal potential transient endogenous colony forming units (TE-CFU)² in Sl/Sl^d mice and their normal (+/+) littermates. Therefore, in the present study CFU and TE-CFU population sizes in Sl/Sl^d and +/+ mice were measured and compared.

METHODS

<u>Mice</u>. Experimental B6WCF1 mice of genotypes +/+ and Sl/+ were raised at the AFRRI by mating C57BL/6J-+/+ females and WC/Re-Sl/+ males. Experimental WCB6F1 mice of genotypes +/+ and Sl/Sl^d mice were obtained from the Jackson Laboratory, Bar Harbor, Maine. Recipient mice used in the <u>in vivo</u> CFU assay were B6WCF1 hybrids obtained by mating C57BL/6J-+/+ females with WC/Re-+/+ males at the AFRRI.

<u>Irradiation</u>. Mice were exposed to 60 Co whole-body radiation at a dose rate of 150 rads/min to total doses of 600 to 950 rads.

<u>Biological compounds</u>. Lyophilized step III erythropoietin (epo) prepared from plasma of phenylhydrazine treated sheep (Lot 3007-8) was obtained from Connaught Medical Research Laboratories, Ontario, Canada.

<u>TE-CFU assay</u>. B6WCF1 mice of genotypes Sl/+ and +/+ were exposed to 600-800 rads of whole-body radiation and either (1) bled from the orbital sinus (~.5 ml), (2) injected i.p. first with 10 units of epo and 1 unit daily thereafter or (3) injected i.p. with 0.3 ml of heparinized Sl/Sl^d plasma. At intervals thereafter groups of mice were euthanatized and their spleens removed and examined for colonies.

<u>CFU assay</u>. The CFU assay of Till and McCulloch¹² was performed as previously described.⁶ In some experiments, the spleens were sectioned (5 μ m), H and E stained, and the type of colonies in midline sections determined microscopically.

<u>CFU seeding efficiency</u>. The 2-hour seeding efficiencies "f" of CFU from WCB6F1 mice of genotypes +/+ and Sl/Sl^d were determined according to the method of Siminovitch et al.¹¹ Briefly, in the case of femoral CFU, 6×10^6 marrow cells from a pool of three donor mice were injected into five intermediate recipients. Two hours later the mice were euthanatized, their spleens removed and 1/16 to 1/12 of a spleen was then injected into 10 secondary recipients. In the case of splenic CFU, 1 to 2×10^7 spleen cells from a pool of three donor mice were injected into five intermediate recipients. Two hours later 1/4 to 1/2 of a spleen was injected into four secondary recipients. The CFU content of the original cell suspensions was determined in primary recipients by the in vivo CFU assay.

<u>Hydroxyurea (OHU) killing</u>. Each donor mouse was injected i.v. with 900 mg/kg of body weight of freshly prepared OHU in isotonic saline.¹⁰ After 2 hours the mice were euthanatized and a femur cell suspension derived from three mice was prepared. The CFU content of the femurs was then determined and compared with the CFU content of the femurs of control mice which had received no treatment.

RESULTS

<u>Femur cellularity and CFU numbers</u>. Presented in Table 1 are the number and colony forming potential of nucleated cells from the femurs of WCB6F1- Sl/Sl^d and +/+ mice. As reported earlier⁶ the average number of nucleated cells per femur is reduced in Sl/Sl^d mice to approximately 40 percent of control values. Although the remaining cells have a lower colony forming capacity than do cells from +/+ mice, this appears to be a consequence of a lower seeding efficiency "f". Thus, on a per cellular basis the concentration of CFU in the

femurs of Sl/Sl^d mice appears to be normal, but on an organ basis the number of CFU parallels the number of nucleated cells resulting in an overall deficiency of Sl/Sl^d femur CFU of approximately 50 percent.

	+/+	$\underline{s1/s1}^{d}$
Colonies/10 ⁵ cells	23.52 <u>+</u> 1.84 [*] [10] [†]	13.52 <u>+</u> 1.59 [11]
Nucleated Cells (x 10 ⁷)	2.55 <u>+</u> .24 [10]	1.55 <u>+</u> .13 [11]
"f" (%)	15.10 <u>+</u> .14 [4]	9.37 <u>+</u> .72 [4]
CFU/10 ⁵ cells ‡	155	144
CFU/Femur ‡	39,800	19,500

Table 1. Colony Forming Ability of Marrow Cells

Mean + S. E.

+Figures in brackets refer to number of separate determinations.

+Calculated from data for "f" and colonies/10⁵ cells.

‡Calculated from CFU/10⁵ cells and average number of cells
per donor femur.

Splenic cellularity and CFU numbers. Like marrow cells, Sl/Sl^d splenic hematopoietic cells have a lower colony forming potential (due to a lower "f") than do +/+ splenic cells. However, the nucleated cell count of the Sl/Sl^d spleen is normal and, therefore, the size of the splenic CFU population in Sl/Sl^d mice appears to be normal on both a per cell and organ basis (Table 2).

<u>Colony morphology</u>. The ratios of erythroid colonies to granuloid colonies (E/G ratio) observed in midline section of spleens from primary and secondary recipients (mean \pm S. E. M. of two determinations) receiving Sl/Sl^d marrow cells were $1.02 \pm .34$ and $1.03 \pm .83$, respectively. While for $\pm .44$ marrow cells, the values were $1.69 \pm .31$ and $1.65 \pm .63$, respectively. These

E/G ratios suggest that the lower "f" value characterizing CFU of Sl/Sl^d origin probably is not a result of an impaired spleen localization potential of erythrocytic committed or committable CFU subpopulation from Sl/Sl^d mice as compared to +/+ mice.

	+/+	s1/s1 ^d
Colonies/10 ⁵ cells	2.89 <u>+</u> .59* [5] [†]	0.87 <u>+</u> .33 [5]
Nucleated Cells/Spleen (x 10 ⁻⁸)	1.75 <u>+</u> .30 [5]	2.20 <u>+</u> .17 [5]
"f" (%)	13.8 [1]	5.7 <u>+</u> 1.6 [2]
$CFU/10^5$ cells $\frac{1}{7}$	20.8	15.3
CFU/Spleen ‡	36,000	33,900

Table 2. Colony Forming Ability of Spleen Cells

*Mean + S. E.

tFigures in brackets refer to number of separate determinations.

+Calculated from data for "f" and colonies/10⁵ cells.

Calculated from CFU/10⁵ cells and average number of cells per donor spleen.

<u>Marrow CFU proliferation</u>. In previously reported work, Lahiri et al.⁵ suggested that a relationship might exist between the state of CFU cycling and the numerical "f" value. Apparently, rapidly proliferating CFU are characterized by a lower "f" value than quiescent CFU. Experiments undertaken with OHU suggest that this relationship also holds for CFU of Sl/Sl^d origin. This S-phase specific cytotoxic drug, within 2 hours after i.v. injection, reduced the size of the marrow Sl/Sl^d CFU population to 40 percent of control values (Table 3) while having no effect on the size of the marrow CFU population in normal +/+ mice.

Туре	они	Cells/Femur	Colonies/10 ⁵	"f"	CFU/10 ⁵	CFU/Femur
+/+	-	2.7×10^{7}	24.0	12.0	200	54,000
+/+	+	2.0×10^{7}	19.3	7.2	268	52,000
<u>51/51</u> d	-	1.5×10^{7}	15.4	9.0	270	40,050
<u>s1/s1</u> d	+	1.0×10^{7}	21.2	8.3	254	25,400

Table 3.	The Effect of OHU on Femur CFU Population Size in Sl/Sl ^d Mice
	and Their Normal +/+ Congenic Littermates

- Control group recieving no treatment.

+ Experimental group receiving OHU.

Apparent TE-CFU population sizes. While marrow CFU are characterized by their high self-renewal capacity, splenic TE-CFU are characterized by their low self-renewal capacity.² Because the population size of femoral, but not splenic, CFU is restricted in Sl/Sl^d mice, it was of interest to determine what, if any, effect the Steel stromal defect might have on the population size of low self-renewal splenic TE-CFU. Therefore, groups of B6WCF1-Sl/+ mice and their normal (+/+) congenic littermates were exposed to 600 rads wholebody radiation, bled immediately afterwards and groups of three animals euthanatized at intervals thereafter for spleen colony counts. As seen in Figure 1, fourfold fewer transient endogenous colonies appeared in the spleens of Sl/+ mice than in the spleens of +/+ mice. Examination of midline sections of the spleens removed at 5 days indicated that in both +/+ and Sl/+ mice over 80 percent of the colonies were erythrocytic. Other erythrocytic stimulants and radiation doses were employed (Table 4). However, it was not possible to demonstrate an equivalence of TE-CFU in +/+ and Sl/+ mice under any of these conditions.

Figure 1. A comparison of transient endogenous colony development in bled B6WCF1 mice of genotypes Sl/+ and +/+. Means and standard errors are plotted for one experiment.

DISCUSSION

One of several hypotheses concerning the effect of Steel loci mutations on erythropoiesis is that the defective stromal tissue in Sl/Sl^d mice fails to support normal commitment of hematopoietic stem cells to the erythrocytic cellular line of differentiation. Indeed, it has already been reported from this laboratory that Sl/Sl^d mice suffer a deficiency of those CFU characterized as having a low self-renewal potential, i.e., peripheral blood CFU.^{7,8} In the present work, it was

Sex	Genotype	Pads	Postirradi day 0; day	ation Treatment 0 to sacrifice	Colonies/Spleen (no. of mice)
3	+/+	600	bled	none	163.3 <u>+</u> 8.5 (3)
8	<u>51/+</u>	600	bled	none	37.0 <u>+</u> 8.1 (3)
8	+/+	600	none	none	23.5 <u>+</u> 4.5 (2)
8	<u>\$1</u> /+	600	none	none	5.0 <u>+</u> 1.0 (2)
	. /.	(50	blad		24.2.4.0.7.(2)
Ŷ	+/+	650	bled	none	24.3 + 8.7 (3)
Ŷ	<u>s1/+</u>	650	bled	none	5.0 ± 2.5 (3)
ę	+/+	650	none	none	2.6 ± 1.7 (3)
8	+/+	750	s1/s1 ^d	none	13.7 <u>+</u> 4.2 (3)
8	<u>51/+</u>	750	s1/s1d	none	2.0 + 1.5 (3)
ð	+/+	750	none	none	.6 <u>+</u> .6 (5)
8	<u>51/+</u>	750	none	none	0 (1)
Ŷ	+/+	800	10 units	l unit	13.8 ± 8.2 (4)
Ŷ	<u>s1/+</u>	800	10 units epo	l unit epo	.8 <u>+</u> .9 (4)

Table 4. Number of 5-Day Transient Spleen Colonies Appearing in Sl/+ and +/+ Mice Following Various Irradiation Doses and Erythropoietic Treatments

also observed that Sl/+ mice suffer a deficiency of TE-CFU. These stem cells like peripheral blood CFU are characterized by their low self-renewal potential.² Therefore, if the genetic "block" is between the high self-renewal (multipotent?) and low self-renewal (committed?) CFU compartments, then one might expect a normal high self-renewal CFU population size in Sl/Sl^d mice. As such, an extensive amount of effort has been directed towards measuring and comparing CFU population sizes in +/+ and Sl/Sl^d mice.

In contrast to a previous study reported from this laboratory,⁶ it was found in the present study that the population size of splenic CFU in Sl/Sl^d mice was the same as that in +/+ littermates. This was a result primarily of a lower "f" characterizing Sl/Sl^d splenic CFU as compared to +/+ splenic CFU. However, in agreement with the previous study, a gross deficiency of femoral CFU in Sl/Sl^d mice was observed even though in the present study differences in "f" were taken into consideration when calculating total femoral CFU population sizes. This anomaly of a normal size splenic CFU population detected in the presence of a subnormal size femoral CFU population might argue against the Steel defect specifically "blocking" commitment of multipotent CFU to the erythrocytic cellular line of differentiation for marrow CFU are believed to have a higher self-renewal potential than splenic CFU.¹

However, the present characterization of CFU in Sl/Sl^d mice would indicate that CFU in these mice are responding to a strong stimulus for differentiation. This observation is in agreement with the work of Harrison et al. 3 who reported that the erythropoiesis in Sl/Sl^d mice is essentially stress erythropoiesis. Because stress erythropoiesis is characterized by substantial increases in extramedullary but not medullary CFU population sizes,^{4,9} it is uncertain whether the size of various CFU population in Steel mice should be considered in the light of (1) the size of comparable CFU populations in normal +/+ congenic littermates as was done in the present study or (2) in terms of adaptive long-term erythrostatic processes most likely initiated and perpetuated by the chronic macrocytic anemia suffered by these mice. Therefore, a comparison of CFU population sizes in polycythemic Sl/Sl^d mice and their +/+ congenic littermates is now being attempted. In light of the present work, this comparison should allow a more meaningful conclusion to be drawn concerning the interaction of the Steel stromal element with multipotentcommitted CFU populations and, in general, the erythrocytic cellular line of differentiation.

REFERENCES

- 1. Bennett, M. and Cudkowidz, G. Hemopoietic progenitor cells of the mouse incapable of self-replication. Proc. Soc. Exp. Biol. Med. 129:99, 1968.
- Gregory, C. J., McCulloch, E. A. and Till, J. E. Transient erythropoietic spleen colonies: effects of erythropoietin in normal and genetically anemic W/W^V mice. J. Cell. Physiol. 86:1, 1975.
- Harrison, D. E., Malathi, V. G. and Silber, R. Elevated erythrocyte nucleoside deaminase levels in genetically anemic W/W^V and Sl/Sl^d mice. Blood Cells 1:605, 1975.
- 4. Hodgson, G. S., Bradley, T. R. and Telfer, P. A. Haemopoietic stem cells in experimental haemolytic anemia. Cell Tissue Kinet. 5:283, 1972.
- Lahiri, S. K., Keizer, H. J. and Van Putten, L. M. The efficiency of the assay for haemopoietic colony forming cells. Cell Tissue Kinet. 3:355, 1970.
- McCarthy, K. F. In vivo colony formation by haematopoietic cells from mice of genotype Sl/Sl^d. Cell Tissue Kinet. 8:397, 1975.
- McCarthy, K. F. and MacVittie, T. J. Erythrocytic committed hematopoietic stem cells in the peripheral blood of mice. Acta Haematol. 53: 226-229, 1975.
- 8. Micklem, H. S. Anderson, N. and Ross, E. Limited potential of circulating haemopoietic stem cells. Nature 256:41, 1975.
- 9. Rencricca, N. J., Rizzoli, V., Howard, D., Duffy, P. and Stohlman, F., Jr. Stem cell migration and proliferation during severe anemia. Blood 36:764-771, 1970.
- Richard, K. A., Shadduck, R. K., Howard, D. E. and Stohlman, F., Jr. A differential effect of hydroxyurea on hemopoietic stem cell colonies in vitro and in vivo. Proc. Soc. Exp. Biol. Med. 134:152, 1970.
- Siminovitch, L., McCulloch, E. A. and Till, J. E. The distribution of colony-forming cells among spleen colonies. J. Cell. Comp. Physiol. 62:327, 1963.
- Till, J. E. and McCulloch, E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiation Res. 14:213-222, 1961.