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Preface

The subject of this study was suggested by Dr. J. S.
Shang of the Air Force Flight Dynamics Laboratory in order
to further validate numerical solutions of aerodynamic
boundary layer flows. The study was accémplished by building
upon a computer solution method developed by Dr. Shang. The
study allowed me to apply much of my recent academic train-
ing.

I am indebted to Dr. Shang and Lt John Shea, my advisor,
for their assistance and encouragement in all phases of this
project. I am most grateful for the patience and understand-

ing of my wife, Becki, throughout my study.
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Abstract

A numerical solution of the compressible boundary
layer equations was developed for flows over either two-
dimensional or axisymmetric surfaces. The solution method
is an extension of a computer soluiion developed by Dr. J.
S. Shang of the Air Force Flight Dynamics Laboratory. The

solution method is capable of solving for boundary layer

Giaadi

parameters in either laminar or turbulent flows. In the

case of turbulent flow, closure is achieved by use of a

two-layered eddy viscosity model. The boundary layer equa-

tions are solved by a numerical marching procedure. A

Mangler-Levy-Lees transformation of independent variables |

Gadhe

is used to improve the efficiency of the numerical solu-
'f tion. The transformed boundary layer equations are then
linearized by a three point finite difference scheme. The
linearized equations are solved by a matrix solution tech-
nique. Comparisons of computed boundary layer parameters
with experimentally determined parameters were made for
both laminar and turbulent flows over axisymmetric bodies.
The comparisons show the numerical solution to be very

accurate.
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NUMERICAL SOLUTION OF THE COMPRESSIBLE
BOUNDARY LAYER EQUATIONS OVER
AXISYMMETRIC SURFACES

I. Introduction

Purpose of the Study

The purpose of this study was to develop a numerical
solution for compressible boundary layer flow over axisym-
metric surfaces. This solution was to be applicable to both
laminar and turbulent flows. This study was accomplished by
expanding an existing numerical solution procedure developed
by Dr. J. S. Shang of the Air Force Flight Dynamics Laboratory.

Existing Numerical Solution Procedure. The existing

numerical solution as developed by Dr. Shang was capable of
solving for boundary layer parameters either in a two-dimen-
sional case or the limited axisymmetric case of conical flow.
This numerical solution procedure has been shown to yield
accurate results for compressible boundary layers in both the
laminar and turbulent flow cases with pressure gradients and
heat transfer at the surface.

The original algorithm made use of a transformation of
independent variables in the boundary layer equations to trans-
form the boundary layer equations into a coordinate plane in
which efficient numerical computation was possible. This
transformation was considered only in two-dimensional or
conical axisymmetric flows where the cone radius could be repre-

sented as a linear function of distance along the surface.
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The transformation also employed the assumption that the
boundary layer thickness was negligible in comparison with
the radius of the cone,

The transformed boundary layer equations were linear-
ized by using a finite difference method of approximating
derivatives within the equations. These equations were then
solved by a matrix method, and the boundary layer parameters
of interest were obfained by an inverse transformation.

Modified Numerical Solution Procedure. The numerical

solution developed in this report follows the same general
method of solution as the existing solution procedure. The
primary difference between this solution and the existing
solution is that a more general transformation of indepen-
dent variables is used. By generalizing the transformation,
boundary layer flows over arbitrary axisymmetric bodies can be
considered.

The transformation of independent variables used in
this report represents the axisymmetric body radius as a
polynomial function of distance along intervals of the axis
of symmetry. Using this model of the radius, the transforma-
tion of independent variables, required for efficient numer-
ical computation, can be applied to arbitrary bodies of
revolution.

The new solution is also improved, particularly in
the case of slender bodies of revolution% by accounting for
the transverse curvature effects. These effects were ignored
in the existing solution by assuming the boundary layer
thickness to be negligible in comparison witﬁ the radius of




H- the axisymmetric body.
The boundary layer equations were then transformed by
1 this new transformation, and the resulting equations were
linearized by using a finite difference method of approxi-
gé mating derivatives. These linearized equations were then
i solved by the same matrix method of solution as used in the
existing solution. The inverse of this new transformation

produced the boundary layer parameters of interest.

Qutline of the Report

This report is written to describe the modelling and
numerical solution of the boundary layer equations over |
axisymmetric or two-dimensional surfaces. The solution pro-
cedure described in this report was implemented in a computer
:Q program listed in Appendix D.
The equations necessary to model the boundary layer

flow for either two-dimensional or axisymmetric flows are

given in Chapter II. The transformations required for numer-
ical computgtion purposes are also given in this chapter.

Chapter'III provides the actual mechanics involved in
the numerical solution. The logic of this numerical solution
as implemented in the computer program is also given.

Chapter IV presents the results of two test cases used
to validate the numerical solution procedure., A comparison
of accuracy with two other numerical solution methods is also

made,

Chapter V contains conclusions and recommendations re-

sulting from this study.




II. Mathematical Formulation of the Problem

Governing Eguations

The boundary layer equations describing conservation

of mass, momentum, and energy as developed in Appendix A

are
3 r*‘za] 3 [riro‘{}’]=
ax[ o 0 (1)
PAIE % PV AU = 3P SWE 5T
e )9 U
I Y 5 Y A 6_7] =i
P‘Y%[CPT']f ﬁﬁ@_[c,’"] = UP +uE gﬁ]a
X 3y 5% JY
o3 [riué 3 (=
+1 3 2
L ay[ 4 aV(CPT)] (3)

This set of equations can be used to describe either laminar
or turbulent boundary layers. The eddy viscosity terms € and
A

€ reduce to a value of unity for laminar flow. Also the

o ~ & =
normal velocity term 7V, which is the sum of ¥V and &X,

reduces to U for laminar flow. g
The superscript J in equations (1), (2), and (3)
allows the equations to be used for either two-dimensional
or axisymmetric flow. For the two dimensional case, J is

set equal to zero to remove the radius " from the equa-
tions. For the axisymmetric case, J is given the value of

unity.

% A
In equations (2) and (3), € and € are considered as




known functions of P, u, and Y and will be discussed
later in this chapter. The pressure gradient is known from
the inviscid Euler equation (Ref 14:21) given as
P - -f Ue AUe
%i £ 8 Sonime (&)

since flow properties outside the boundary layer can be

determined by inviscid flow theory.

Equations (1), (2), and (3) then contain five unknowns: Al

@ +P+Usi» and T . The perfect gas law and Sutherland's
viscosity law (Ref 17:19), given by equations (5) and (6)
respectively, are used to express  and P as functions of

T and thus reduce the unknowns to &, %, and T .

P=PRT (5)
o % 5 "
M ges TeeeCRY| | T (R) + 198.6°R

The pressuré'? is a known quantity outside the boundary
layer. The pressure within the boundary layer can be consid-
ered constant in a direction normal to the surface bordering
the boundary layer; therefore, equation (5) reduces to a
relation between 2 and T .

The use of equations (4), (5), and (6) can, therefore,
be seen to reduce equations (1), (2), and (3) to a set of

three equations in three unknowns.

el bt LA A P




Pransformation of Independent Variables

The governing equations (1), (2), and (3) have a singu-
larity at the stagnation point (r=0) for axisymmetric
flow. In order to remove the singularity and also to remove
most of the variation in boundary layer thickness along the

surface, a Mangler-Levy-Lees transformation (Ref 2:261)

£(x) :[xe_. Ue /(,_,(%K) dX (7)

"N B )] (R

was introduced. The removai of most of the variation in
boundary layer thickness improves the efficiency of numer-
ical solution of the boundary layer equations.

The duantities re.reX, and ¥ in equations (7) and
(8) are those shown in Fig. 1. The orthogonal coordinate

system X,y is a surface coordinate system in which the

> Z

Fig. 1. Surface Coordinate System

6




X axis is tangent to the surface and points in the stream-
wise direction while the Y axis is perpendicular to the
surface, The term r 1is the distance from the centerline to
any point on the Y axis measured perpendicular to the axis
of symmetry. The term L, is the reference length used in
computing the free stream Reynolds number. The ratio %i in
equation (8) is known as the transverse curvature parameter
and will be represented as t .

The partial derivative operators associated with

equations (7) and (8) are

%x), = ue(&f B’%)n +(%’l@n>;} g

(10)

"
N
n
oS
o

|
-
. =y
\/o-
-~
ozlcu
>
—
wm

S

The governing equations (1), (2), and (3) are now transform-
ed from physical surface coordinates X,Y to the transformed

coordinates.g,Wt. The transformed boundary layer equations

are

3—7\{1 =0 - (11)
W E] - v~ sie-F]

=2§F afF (12)
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) g o 28 86 4 " [
[[f, t } VoY = +f 'C (—A )
=2§F —35. (13)

where the following definitions have been used.

F=Hl (14)

Ue

V=28 et £ o4 | e Py
G keL Y [ P e ) Lo
Lr

1 = IZ/—( ' 16
o Me o

6=T_
T (17)
8=25 ou 18
> 5 S5,

= Ue
< o (19)

When equations (5) and (6) are applied to equation (16), the

expression for [ becomes

198.6 ‘R

f=0" " Ten (20)
O + 196.6°R
Te (°R)

Given this relation for ¢/ and assuming ¢, €, and € can

Bt




be expressed as functions of f,©®, and \VV, equations (11),
(12), and (13) become a set of three non-linear differential
equations in three unknowns F ,©, and V . The expressions

for t , €, and ¢ are developed in detail later in this

chapter,

Transverse Curvature Correction

The existing numerical solution prior to modification
assumed that the transverse curvature parameter € was equal
unity. The solution developed in this report retains the
transverse curvature effect in the solution of the boundary
layer equations. Since the parameter t is the ratio of %i,

an expression for t is found by observing from Fig. 1 that

Fr=ro + Y cos & (21)
Dividing equation (21) by [, and using the definition =%
]

gives
+ =0 +% cos & (22)

For a given value of X , the derivative of t is

dt = (c_-;s_.a_f)ay (23)

)

Solving equation (23) for 4Y and substituting the value
into equation (7) yields

ol
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G-t T

[

tdt = La(2§)cos ¢ (g) dn (24)
P

When equation (24) is integrated from the surface outward

in the normal direction, it yields

o

£ = | 4 2Lef28) 253 Cos¢[ Le g0 (25)
/°6(e,

Using equations (5) and (17), the expression for € in the

transformed coordinate plane is
" n ve
tal) « 2hel2f)"® cus ¢[6d7‘l] 126}
@L((r;a o

As equation (22) indicates, t = 1 is a good approxi-
mation for most axisymmetric boundary layer flows. The
numerical solution procedure was, therefore, designed such
that the transverse curvature correction could be retained

or dropped from the solution of the boundary layer equa-

tions.

Method of Modelling Body Radius
The geometry of an axisymmetric body is determined in

the new solution procedure by fitting a quadratic curve of

the form
x 2
r,(Z) = A + BiZ2 +C 2 (27)
through a series of surface coordinates as shown in Fig. 2 .

10
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Fig. 2. Radius Curve Fitting

Since the existing computer solution procedure required
the input of surface pressure at a finite number of surface
locations, the coordinates Q,Z of these locations are input
and used in the new solution procedure to determine n(Z).
The coefficients A;, B8;, and C; are then determined by
fitting equgtion (27) through three consecutive surface
locations stérting with location | . In using equation (27)
to determine I,, the first set of coefficients A,, B,, and
C, 1is used until the second surface location is reached and
then the second set of coefficients would be used until the
third surface location is reached. This technique is contin-
ued for increasing values of X until the last surface loca-
tion (1 = k) is reached. Since the changeover in coefficients
is made at points for which I, is known exactly, errors in

determining JV, do not propogate.

11
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The angle 4 between the centerline axis and the
tangent to the surface is required in order to determine the
transverse curvature parameter t in equation (26). This

angle is observed from Fig. 1 to be

- ¢
g = tan”(§2) (28)
determined from equation (27) is

b - B +2CZ (29)

Qla
o

Since the numerical marching technique used to solve
equations (11), (12), and (13) proceeds stepwise along the
surface of the body, distance along the surface is related

to centerline distance by (See Fig. 1)

dZ = cos & (30)
X

Representation of Turbulence Produced Terms

Closure of the turbulence correlations in the boundary

layer equations is effected by the eddy viscosity terms €
A

and € (See Appendix A), where

.

-6-:‘-\-

x[m

(31)

(32)

m>

1"

+
Xl®
;0@
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The actual eddy viscosity € wused in the solution procedure

is a two layered model in which two separate formulas are

used for the inner and outer region of the boundary layer.
The inner region model is based on Prandtl‘'s mixing

length theory (Ref 13: 548),

(%) = —-—p/j”” —‘;i;- (33)

This expression after being fitted with the experimentally

determined mixing length /. of Van Driest (Ref 15: 1009) is
€\ -KY*{|-exe|- 7.\ lé_‘il (34)
(77); I { 52%(',3 |3y

The value of K, used in this report is 0.4 as given by
Van Driest and validated by Cebeci (Ref 4: 23). The wall

shear stress 7, is given as

T = b (%_;l)w (35)

The eddy viscosity model used for the outer region of

the boundary layer (Ref 3: 526) is

(§), = %2 [ (ue-u)ay (36)

2

where the value given for Kk, is 0,0168,

Changeover from the inner region model to the outer

13
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region model is made when the value of '%)‘ is equal to %}o.
Since the transformed boundary layer equations (11),
(12), and (13) are solved in the § 7 plane, it is neces-
sary to transform equations (34) and (36) into this coor-
dinate plane., These equations after being transformed by

use of the transformation equations (9) and (10) are

2
- Pu K\ = 5 RP ,LF
(5), = & | e’“\‘a‘aﬁ%” 7l St
€ k\Ve§ - o
€) = -FYe dn
(A)o s [(\ e, (38)
where
Yo - g J
B plelien e (39)
A e yE o
g oF
Pz = lw (S-ﬁ)w (40)

The turﬁulent Prandtl number Fﬂt appearing in equation
(32) is determined from experimental data, and the value
used in this report is 0.9 as suggested by Cebeci (Ref 2:260)
for air. With this value of Pre¢ and equations (35) and (36),
€ and € are determined since the static Prandtl number ©.
is known for air.

For cases of transition from laminar to turbulent flow,

a transition model developed by Harris (Ref 4:29) is used in

the solution procedure. The model introduces a transition

14
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factor I which is multiplied by the eddy viscosity € such
that equations (31) and (32) become

R (%> T (41)
e (12 ;

The transition factor I is given by

my

m>

T = 1\ -exe [-o,wa(x_i)a] (43)

5 Xe

where X, is the surface location at which the transition

from laminar to turbulent flow begins. With this model, it

can be seen that I would have a value oanpproximately zero

prior to the transition point and then asymptotically

approach unity beyond the transition point,

Boundary Conditions

The transformed boundary layer equations (11), (12),
and (13) are solved by a method in which these equations are
linearized to a first order set of equations in F,6, and
V . This set of equations is then solved subject to boundary

conditions on F,©, and V at both the wall and the outer g

edge of the boundary layer.,
The boundary conditions at the wall or surface of the
body necessary to satisfy the conditions of no slip at the

wall, no mass transfer, and a constant body temperature are

15




u(x,0) =0 (44)
! U(X,O) —_'O (#5)
T(x,0) =0 (46)

The boundary conditions at the outer edge of the boundary

layer, which are determined by external flow properties, are

:((X,Yc)’" Ye (X) (47)
TG = Te(X) (48)

In terms of the transformed variables, these boundary

conditions are

F(§,0)=0 (49)
V {3‘,0) =0 (50)
o(§,0)= ™/Te (st)
F(8, %)= (52)
0(8,7¢) = | (53)
Although there is no physical boundary condition for V' (X,Y),

a mathematical boundary condition on V (Q’Jﬁe) is required

in the numerical solution. Since the numerical solution ;

; 16 |
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technique uses an iterative type solution at each step along
the surface to obtain a solution to the transformed boundary
layer equations, the value used for a boundary condition on

V(f,hA is the last calculated value of V(£ %c) :

WIE MY e N e (54)

1?7




III. Solution Technique

Grid Generation in the Transformed Plane

The transformed boundary layer equations (11),(12), and
(13) are solved by a numerical marching procedure. This
procedure obtains a solution at each step along the surface
moving downstream in the flow field.

In order to implement this method of solution, a grid
is generated in the transformed plane in such a way that the
ratio of any two successive spacings in the 7] direction is
a constant. Spacing of steps in the § direction is variable
in the sense that it can be doubled at any point along the

surface. The grid is generated by the following formula.

AN, = (KY"an, n=2,N (55)

K is the ratio of any two successive spacings in the 7
direction and AN, is the assigned value of the first grid
spacing as syown in Fig. 3. This grid allows for short steps
near the wall where velocity and temperature gradients are
normally greatest and larger steps as the edge of the bound-
ary layer is approached. The values of K, N, and A7Lare
chosen such that a minimum number of points have to be used
in order to obtain‘a solution for any given problem. Typical
values of K, N, and A7Lused in this study were 1.1, 100,
and .0005 respectively. A typical starting value for O X
was .001 which was then doubled at several points along the

surface.
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Fig.3. Grid in Transformed Plane

At each £ station, when a solution to the boundary
layer equations is obtained, the convergence of both F and
© 1is checked at the (N - 15) grid point in the M direction.

This is accomplished by using the following two relations.

F(N-16) - F(N-15) 2 0.000]| ( 56
&(N-16) ~O(N-15) = 0.000]| (57)

This convergence check is based on the fact that f and ©
approach unity as the boundary layer edge is approached. If
either of equations (56) or (57) is true, another grid point
is added in the M direction. This solution procedure is

then capable to some extent to correct for a value of N
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that is too small as the numerical solution steps along the

surface.

Finite Difference Approximations

The partial derivatives in the transformed boundary
layer equations (11),(12), and (13) are approximated by a
three point finite difference scheme. The derivative of a
variable with respect to £ is approximated by a forward
difference method in which the value of a derivative at any
€ station is a function of values of the variable at the
preceding two § stations and the present § station. The
derivatives with respect to N are approximated by a central
difference method in which the value of a derivative at any
grid point is a function of values of the dependent variable
above, below, and at the grid point of interest. The deriva-
tion of these finite difference expressions is given in
Appendix B.

By substituting these finite difference expressions into
the transformed boundary layer equations, a linearized set of
algebraic equations was obtained. If a grid point mMm+,h is
the point for which the boundary layer equations are being
evaluated, these linearized boundary layer equations (See

Appendix B) are

Au" F'mﬂ,h—l + Atzn FMN,” s AlS“an,nn +Bunemw,n-l

+ B;z” emn,n + Bus“ e‘»w-,nn * C"n V‘mu,nﬂ + C'in v”‘", n

* Cin, Vot net T 04 (58)

n
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A.‘!\'l F'mn,n-l * AZZnqu'n + AaS"F'mnlm»l +BZ|“e’mﬂ,n-l
+Ba2ne‘h\+lil\ + 523" ew\u,hﬂ +Czln\/m~ﬂ, n-t ¥ szn\/m-ﬂ,h

#Cax Voot i = Uh (59)
n n

A3l" F‘mn, n-t v A32n F»mn,h * A35h qu, ne ¥ BSI'\ e‘m-n,’l‘l
+ Baan Gwm, h + Bs3n emw, n+l + C3'hv4wu,h-| + Csznv’mﬁ,h

+C33h Vomsi, net = Dsn (60)

The subscripts of F, ©, and V indicate the grid points at
which the variables are evaluated. The subscripted coeffi-

cients A,8,C and D are evaluated from known values of the
boundary layer properties at € stations m-! and ™ as shown

in Appendix B.

Matrix Method of Solution

The linearized boundary layer equations given in equa-
tions (58 )\ ( 59 ), and ( 60 ) were developed for the grid
point M+\,h of Fig.3. If these linearized equations are
written for all grid points of § station mtI with N = 6,
the matrix equation (61) results. This equation has been
written for an unrealistic case of six grid points in the
direction but serves to illustrate the matrix equation that
results regardless of the value of N. The linearized bound-
ary layer equations have fewer terms when written at either
grid point m+\,2 or "™M+i,N-l , This is due to the bound-

ary conditions which are used to specify values of F, 9,
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and V at grid points Mm+i, | and M+t, N,

Matrix equation (61) is then a system of 3x(N -2)
linear equations in 3x(N -2) unknowns. Equation (61) is
solved for F,©, andV by use of a Gaussian elimination
method (Ref 6:301).

Once the solution is obtained, it is checked for con-

vergence by computing

Fansice = Fomerst o (62)
Ahl CONV

each time equation (61) is solved. The present value and the
last computed value of F,,,, are retained so that the fol-

lowing comparison can be made.

> ERROR (63)

oL

= Peswn
NEW

FCONV

The value of ERROR wused in this study was .0005, If
equation (63) is not true then the solution of equation (61)
is accepted-a'.s the solution of the transformed boundary
layer equations. If equation (63) is true then the sub-
scripted coefficients A, B,C, and D are updated using
the values of F,©, and V just obtained from the solution
of equation (61). With these new values of A,B,C, and D
the solution of equation (61) is undertaken again. This
procedure of updating A ,B,C, and U is explained in
detail in Appendix B, This iterative type procedure is
continued until the convergence criteria of equation (63)

is satisfied or 100 attempted solutions of equation (61)
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have been made,

Logic of the Numerical Solution Procedure

This numerical solution procedure as implemented into
a computer program requires certain inputs describing
the problem in order to obtain a solution to the boundary
layer equations. The free stream quantities required to be
input to the computer program are the Mach number h@; tem-~
perature T, , and Reynolds number Rg,. The pressure ﬁ at a
finite number of surface locations and the surface tempera-
ture'nwwhich is assumed constant, are also required inputs
to the computer program. It is also necessary to know
whether the flow is laminar or turbulent, and if the flow
transitions from laminar to turbulent flow, the transition

point X¢ must also be known. These quantities necessary to

describe the physical problem are depicted in Fig. 4.

Fig. 4. Physical Quantities Describing the Problem
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With these quantities describing the problem, the curve
fitting procedure to determine a continuous function for ',
is then accomplished. For portions of the surface where the
radius is changing rapidly, the number of surface pressure
entries should be greater than on portions of the surface
where the radius is slowly varying. This improves the accu-
racy of the radius modelling since the curve fitting proce-
dure uses the coordinates of the surface pressure entries to
determine I, as a function of Z# .

In order to make the transformation of independent
variable from physical coordinates X, Y to transformed
coordinates 5.71 it is also necessary to know the local
boundary layer edge properties of‘@./g. and Y,. These prop-
erties are determined as in the existing solution by first
determining %; at each of the surface pressure points. The
pressure gradient at each of the surface pressure points
is approximated by a central finite difference method as

developed in Appendix B. This approximation for gg is

d_E = (X. "X.‘-.) P;-O-]_ ,(ZX. "X;-| —XA'N P
% ); (Xior =%t J(Riay “Xies}  (Xiy =X ) (X, -x),-,.) '

= u=x) B (64)
G [ Ries ’Ya-.)(x: 'X»’—;).

where the subscripts refer to the surface points of
Fig. 4. The pressure gradient 5% was then made a continuous
function of distance along the surface by a curve fitting

procedure similar to that used for the radius Y, .The local
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edge pressure can then be determined at any point on the
surface by integrating this continuous function 35 forward
from the last known value of the pressure Fk; . This inte-
gration is accomplished in the computer program by use of
a trapezoidal rule for integration. The boundary layer edge

temperature was then computed by assuming that temperature

could be related to pressure by the isentropic relation

¥
T P\ -Y

e _ |le
T° = (P',) (65)
(Ref 9:53) where T, and P, are stagnation values of T and P.
With these quantities known, 4, is calculated from equation
(6). The local edge velocity is determined by using the

energy equation for an inviscid perfect gas (Ref 9:53) which

is given by

= C?To i CPTe (66)

oS,

From the peffect gas equation, A2 is determined. All quan-
tities required for the transformation equation (7) are now
known.

The first step Axlaiong the surface is now taken and
transformed intong‘by equation (7). The grid in the 7 direc-
tion is also generated at this point.

In order to start the solution, the transformed bound-<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>