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Preface

This thesis is the result of my efforts to compare

buckling coefficients determined by trigonometric and con-

ventional finite difference methods incorporating both

“irtual work and equilibrium equations. It is hoped that

the results of this study will aid the engineering community

in deciding the value of trigonometric finite difference

approximations.

I am especially indebted to Dr. Anthony Palazotto for

suggesting this topic. This very knowledgeable man made

himself available at all hours and shared a delightful sense

of humor with me that made the learning effort an enjoyable

experience.

I want to thank my beautiful wife, Georgia, and lovely

girls, Gigi and Angie for their love, patience, and encourage-

ment throughout this educational endeavor.

A special thanks to Jerry Bennington, Jr. for allowing

me to use his tape recorder to preserve many of the valuable

ideas discussed with Dr. Palazotto.

William H. Deschler
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Symbols

A dimension of a plate parallel to x-direction

curvature terms defined in Equation (3-54)

B dimension of a plate parallel to y-direction

C~~ plate stiffness terms defined by Equation ~~~~~~~~~~~~~~~

D isotropic plate flexural stiffness

D11, D12, D22, D66 orthotropic plate flexural stiffness

e
~
, ~~~ ~~~ 

strains

g represents a function

represents the first derivative of function g

h mesh size

mesh size , x-direction

mesh size, y-direction

h
~
,h trigonometric finite difference terms defined by

~‘ Equation (3-29)

j . indices attached to a variable (may refer to a
‘~~~ variable being ..va].uated at either full- or half-

stations, depending on variable) (Fig 4.3)

I]•~ 13 
row designation of boundaries Øand®Fig 3.4

~~21 J4 column designation of boundaries® and®Fig 3.4

• M, N total number of rows and columns of finite difference
stations

M
~
, M~ 1 ~~~ 

bending moments in plate Fig 2.1

in-plane load Fig 2.1

P polynomial equation

Q shear Fig 2.1

t - thickness of plate

U strain energy

v i
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u, v, w displacements in x— , y— , z—directions, respectively

V total potential energy

w first partial of w with respect to x,x
w xx second partial of w with respect to x

x, y plate coordinates Fig 3.4

$ ratio of plate width to buckle length for an
infinitely long plate

tSU internal virtual work

6V virtual work

A A trigonometric parameters defined through Equation (3-29)x, y
v Poisson’s ratio

~~ ~~ 
‘
~~ 

functions defined by Equations (3-41) — (3—44)
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Abstract

Finite difference methods for plate buckling were

investigated for various two-dimensional plates. The plates

were clamped and simply supported. The rate of convergence

to buckling coefficients, considering virtual work and equi-

librium, have been compared. A trigonometric function (based

on long plate theory) was incorporated into the finite

difference approximations of the virtual work expression.

Additional trigonometric parameters were also considered

in the virtual work equation. Little difference in accuracy

was found between results obtained from conventional (poly-

nomial) virtual work versus the equilibrium approach. Notice-

• 
• 

able improvement is obtained by using a trigonometric function

• (long plate assumption) in the virtual work expression. If

one varies the trigonometric function (not based on long

• plate theory), a band of results is created from use of the

virtual work equation. Inaccuracies occurred at low degrees

of freedom, for clamped plates at all length to width ratios,

due to insufficient representation of the boundaries. Two

dominant reasons for poor boundary representation seem to

be1 large mesh size at low degrees of freedom (mesh sizes

were held constant) and the trigonometric function (poly-

nomial for conventional finite difference) failing to satisfy

the kinematic boundary conditions.

viii
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COMPARING TRIGONOMETRIC AND CONVENTIONAL

FINITE DIFFERENCE APPROXIMATIONS FOR

PLATE BUCKLING

I. Introduction

Background

The plate is one of the most effec tive aerospace struc-

tural elements. Many plate characteristics are associated

with thinness , thus thinness becomes an important criteria

• for optimizing the weight considerations of the overall

structure. The concern for optimization involves stress

• calculations which consider equilibrium. Such calculations

are not in themselves the end results, for an analyst must

go one step further and determine the buckling parameters of

the plate structure. This thesis deals with a numerical

approach to plate buckling using a recently developed finite

difference technique [1].

The theoretical buckling stress of a flat plate is the

stress at which an exchange of stable equilibrium occurs

between the straight and slightly bent form of the plate.

It marks the region where continued load application accel-

erates the growth of deflections perpendicular to the plane

of the plate. The importance of this stability condition

lies in the fact that buckling initiates the processes lead-

ing to plate failure [2]. Because of the necessity to

1
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3

incorporate difficult boundary conditions [3 ] ,  very few

plate buckling problems of a practical engineering nature

have been solved by the so—called classical techniques

(series solution). Apparently the earliest solution to a

flat plate stability problem was presented by Bryan [4] in

1891 [5). Since then, many additional solution techniques

have been developed including Navier Solutions [6], use of

Fourier Series in the energy equation [7], Galerkins Method,

and other approaches [8—14]. All are used to derive approx-

imate answer s, but they are lengthy and tedious techniques.

The advent of the high-speed computer and subsequent rapid

development of numerical methods has allowed the engineer

the opportunity to address more precise conceptual represen—

4 tations of actual physical structures.

The succeeding sections of this thesis are directed

towards the development of numerical approaches to buckling

using a CDC6600 computer. The most efficient numerical

technique , referred to as rapid convergence, is defined

herein as that technique which provided useful answers

incorporating the fewest degrees of freedom. Rapid con-

vergence is a definite concern for buckling considerstions.

The evaluation of the convergence rate developed from

finite difference approximations in which the buckling mode

shape characteristics are incorporated into analogous grid

spacing is of prime interest. These characteristics were

presented by M. Stein and J. Housner in 1975 [1] when they

introduced a trigonometric finite difference procedure. A

• 2



comparison between the new trigonometric technique and the

finite difference approximation using the common equilibrium

equation is presented in this thesis.

Purpose

The purpose of this thesis is to compare buckling

coefficients determined by trigonometric and conventional

finite difference methods for two—dimensional plates, incor-

porating both virtual work and equilibrium equations. The

development of rapid convergence is of primary interest.

General Procedure

In the approach followed, the virtual work equation

was evaluated using finite difference approximations of

partial derivatives. This required the separation of a

plate ’s domain ~nto given sets of nodes which were then

used in determining each partial derivative expression.

Results were then placed into the virtual work equation.

Integration was performed leading to the solution of a set

of algebraic expressions. Simple support and clamped

• boundary conditions were investigated. Each plate’s aspect

ratio (length/width=A/?) was varied from 0.5 to 5. Previous

work [1] presented the results for trigonometric finite

difference considering square plates and very long plates

(A/B=5). This thesis considered the borderline between

• . plate and slab theory by investigating aspect ratios

of 2 and 3. Solutions for both trigonometric and conven-

tional finite difference approximations of the virtual

3
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work equation have been obtained and compared to the conven-

tional finite difference approximations of the equilibrium

equation. 
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II. Theory

Assumptions

The buckling analysis of rectangular plates has been

carried out with the following assumptions.

1. Linear Theory of Elasticity [6 ,15,16]

a) Plane sections remain plane.

b) All displacements are related to the middle

surface.

c) The plate is perfectly flat prior to buckling.

2. Isotropic material

3. Homogeneous material

4. In-plane load N
~
=constant and Nxy=Ny=O

5. The nonlinear strain-displacement relationships

used to obtain the virtual work equation are

1 2
e u .+—(wx ,x 2  ,x

ejv,~4(w,~ 
2 (2-1)

e =u +v +w wxy ,y ,x ,x ,y

where e
~~
e
~ s and exy are the strains and u, v, and w are the

displacements in the x— ,y— , and z— directions, respectively

(15]. The virtual work equation is developed in Appendix A.

6. Thickness of plate is constant and the plate is thin.

Governing Equations

Equilibrium Differential ~quation. The general form

5
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- 
• of the differential equation describing the slightly bent

equilibrium configuration of an initially flat plate was

derived by Stowell [17] and reduced to equation (2—2) for

the elastic case in reference [ 2].

= - axw xx+2axyw xy+cyw yy (2—2)

= Nx ta~ 1, 
= Nxy = 0 ta~ = N~ = 0 (2—3)

The force N
~ 

in the plane of the plate is assumed constant

(assumption No. 4) and is thus not dependent on the deflec-

tion nor is it a function of displacement. This makes

• equation (2—2) linear. Hence it becomes

DV4w = N w  (2—4)x ,xx

where D is the flexural rigidity. Equation (2-5) defines

D for an isotropic homogeneous material.

D = Et3/l2(l—u 2) (2—5)

Virtual Work Equation. The virtual work of

the plate during buckling may be expressed as

ÔU = ÔV (2—6)

where

6U J:Io
(Mx6w,xx+My6w ,yY +2M

xY~
w ,xY dxdY (2-7)

a b
= f J (N w 6w )dydx (2—8)

0 0  
X~~~ X ,x

The sign conventions of the bending moments are given in

figure 2-1. Equation (2-6) is developed in Appendix A.

6
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/M d x

H~~dx j  ~~~~~~~~~~~~~~~~~~

t 

~ N
~~

dx

~~~~~~~~~dy

N~dx . Q~dx

Fig 2.1 Forces and !~onents Acting on Differential Elementdx dy.

7
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III. Numerical Techniques

In the nineteenth century,  Boole and others formalized

the f ini te  difference method for solving different ia l  4

equations (5] ,  thus providing the means to reduce the con-

tinuum to a system with finite degrees of freedom. Mario

G. Salvadori in 1949 [18] presented a comprehensive paper

concerning the difference method and applicable extrapola-

tion procedures. Presently, many excellent texts [19-25]

• may be found covering finite differences. This thesis deals

with the central difference approximation. Most texts
S 

develop full-station central difference, however , very

little is written on the use of half—stations.  This section

presents a comparison between half— and full-station central

difference, while also indicating the basic steps for
- 

• 

coupling the finite difference method with plate buckling.

A new trigonometric approach is compared to the standard

polynomial central difference approximation, and a plate

grid system is developed to show how boundary conditions

have been incorporated .

Basic Approach

Plate buckling, as considered in this thesis, makes

use of the central finite difference method. The following

steps indicate how the method was basically employed in

the analysis.

1. Discrete grid points were selected to approximate

the governing partial differential equation within

8 
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the plate.

2. The central finite difference approximation was

• 
• applied at each grid and/or reference point.

3. Each partial differential equation was reduced to

linear algebraic form.

4. The resulting equations were then solved and

buckling coefficient determined.

Half-Station versus Full-Station

For the derivation of f inite difference expressions, it
• is necessary to work with grid arrangements. Finite dif-

ference grids for a one—dimensional case are shown in Figure

3.1 and Figure 3.2. Grid points (indicated by circles)

represent discretely defined functional values while ref-

erence points, indicated by an x in Figure 3.2, locate the

position of the functional value desired. Grid points can

be coincident with reference points but this is not manda-

tory. The degrees of freedom of the system are the specific

values of the unknown functions located at grid points. The

spacing between mesh lines was held constant. The grid

lines in x- and y- directions are represented by the symbols

h
~ 
and h~ respectively.

S 
To develop half-station central difference equations,

in which the reference point is located between grid points,

one can evaluate a function g, at point (Fig 3.2) using
- 

a Taylor series expansion. This of course, implies continuity

9 L
••-.
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—2 —l A0 +1 +2

9 P x

h~~~~
1 

_ _ _  _ _ _  _ _ _  _ _h h h

Figure 3.1 Finite Difference Grid

3 1 1 3 5-

~~~~

. -
~~~~~ R~ +~~ - +~~ - +~~

.

9 x ç Q

h h

Figure 3.2 Half-station Finite Difference Grid

conditions for each functional relationship. The basic

Taylor series can be stated as

~~~~~~~~~~~~~~~~~~~ c&
~~~

’’+h ct~ j~~’ ’ ’ +...) (~~ R~) 
(3—1)

where primes denote order of derivatives and

= (Xat —3/2 — Xat ~~ 
(3—2)

and .= h (a constant mesh size). It is now possible to

incorporate the above expressions for specific locations.

g 3,,2
=g_.~Jig

t +.~. [~
fl.)

2
g’ ,_.l [~) 3g’ ~+1

(m)
4
~~ ’~

_ ... (3—3)

10
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I

g_112=g—~~~’4(~)g ’’ —~ {
~
]

3
g ii t +~~~

[
~
)

4
g1’~1...... (3—4)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (3_5)

g~ 312=g+ g ’4[~ilJ
2
g i 

‘4{~ii)
3
g~ ~I +~~~[~~!J

4
g~~T+ .... (3—6)

Equation (3-4) is subtracted from equation (3—5) yielding

h2g =~~ (g~112 
— g_112) — ~~ g’’’ (3—7)

where the half-station representation of the first derivative

is

g’=~ (g~112 
— g_1/2) (3—8)

h2and ~~
-
~

- g ’ ’’  represents the error approximation [5]. On the

S other hand, if equations (3-4) and (3-3) are added to egua- I
tions (3—5) and 3—6), respectively, one obtains the follow-

ing expressions

= 2g+
[~) 

g ’’ + L_[!~
)

4
gi~

/ (3_9)

g
~3/2~~_3/2 

= 2g+
[~i!) 

g’’ + !_[~il)
4
g~~ (3—10)

One can solve equation (3-9) for 2g and substitute into

• equation (3-10)

2 5h4

S 

g~3/2—g~1/2-g_1/2+g_3/2=2h g’’+~~— g
iV (3-11)

This last equation yields the second derivative based upon

half—stations

g’’=—~~~(g~3/2-g~1/2 —g_1/2+g 3/2 )—~~- g
lV (3—12)

11
S 

•

~~~~~~~ 
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Thus , using half-station central difference for the first

and second derivatives and removing higher order terms , one

arrives at

g’=~ (g~1/2 -g 1/2) (3-13)

g = (g~312-g~112-g_1124-g_312) (3—14)

Full—station central difference developed in Ref [5] is

stated here for completeness.

2
g’=~~~(g~1—g_1) 

—
~~~

— g’’’ (3—15)

g ’ ’ =-~-~ (g~1—2g0+g 1) 
Ji~. giv (3—16)

It becomes apparent that first order derivatives are best

• approximated between grid points (half-station) comparing

bound error ~~~
- g ’ ’ ’  versus ~~

— g’ ’’  yet , second derivatives

can be more accurately determined at the grid points (full—

station) if the higher order terms become a consideration

(h 2 iv 5h2 iv
1~~~

g versuS~~~— g  . 
-

Trigonometric versus Polynomial

The simplest method of obtaining approximate expres-

sions for derivatives of a function g(x) employs the

substitution of a parabola. The parabola passes through

three specific functional points, Figure 3.3.

12



P 

~~~~~~~~~~~ 

g (x)

- _ _ _ _ _ _ _ _

—3 —2 —1 0 1 2 3 4 X

Figure 3.3 Function g(x) and a parabola P

Therefore , one can let g(x)=P where

P = A x 2 + B x + C  (3—17)

S 
• A , B, and C are constants. Now, evaluate (3—17) at points

h, 0, and —h , respectively.

g(h) = Ah2 + Bh + C = g~1 (3—18)

• g(o) = C = g0 (3—19)

g(-h)=Ah 2 -Bh + C = g ~1 (3-20)

where etc. are in terms of full station central differ-

ence notation.

Add equations (3—18) and (3—20)

g41 + g 1 
= 2Ah2 +2C (3—21)

Next subtract 2 times equation (3-19)

2Ah2 = g~1 
— 2g0 + g_1 (3—22)

and rearrange

2A = 
~~~~~~ [g41 

- 2g0 + g_1] (3-23)

13
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where the right-hand side of equation (3-23) is the defini-

tion of the second-order full station central difference

(3—16). One can now take the second derivative (D2) of

equation (3-17) with respect to x.

D2g(x) = 2A (3—24)

Thus , equation (3-24) equals equation (3-23) showing

D2g(x) = 
~~~~~~ [g~1 

- 2g0 + g
1] 

(3—25)

Consequently, for this second order system the polynomial

approximation of equation (3—17) becomes an equality.

Conventionally the polynomial approximation was used with

the central difference technique. However, in 1975 M. Stein

and J.Housner [1] decided to let the function g(x) be deter-

• mined by a trigonometric expression (since the buckling mode

shape is normally trigonometric in nature) and they developed

a trigonometric finite—difference solution to gain a faster

convergence rate. Equation (3—26) allows g(x) to be approxi-

mated by a trigonometric expression.

S rr(x—x ) rr (x—x0)g(x) = T
1 + T2 sin A 

0 + T3 cos A (3—26)
x x

The symbol A
~ 

represents a wavelength parameter [1].

Earlier paragraphs showed the first derivative could be S

found by half-station central difference, as

Dg(x) = 
~~~ 

(g~1~2 
— g_1,2) (3—27)

Through the use of equation (3-26) the formation of an

equality can be determined as follows

14
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Dg(x0) = 4 [g~1,2 
- g 112] 

(3-28)

where

(3—29)
Ii 2A ~mn [~ ]

Equation (3-26) is repeated for convenience and its develop-

ment is indicated in a step-by-step fashion.

• ,r (x—x ) rr(x—x )
g(x) = T1 +T2 sin A -fT3 cos 

° (3—26)
x x

1. Take derivative of equation (3—26) with respect to x.

I T ( x — x 0) IT (x—x
0)Dg(x) = T2 ~~

- COS — T3 ~~ sin A (3 30)
x x x x

2. Evaluate equation (3-30) at x=x0.

4 Dg(x
0) = T2 IT/A (3-31)

where

T2 = A~Dg(x0)/7r (3—32)

• 3. Now evaluate equation (3-26)at x
0 

±

= T1 + T2 sin 
~~

— [~ + - x ]

+ T3 cos f_ [x +~~~-x ]  (3-33)

g
~1/2 = T1 + T2 sin ~4~— +T3 cos -

~
-
~~~ (3—34)

= T1 + T2 sin E ~ 1 + T
3 cos [ ~ ] ~~

NOTE: cos(—u) = cos u and sin (—u) = —sin u
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4. Subtract equation (3—35) from (3—33).

g~112 
— g_112 = 2T

2 
sin 

~~x 
(3—36)

5. Equation (3—32) is substituted .

g~112 
- g_1/2 = _ 2~ Dg(x0) sin (3 37)

6. Rearrange equation (3—37).

Dg(x0) = 
IT 

ITh 
[g÷1/2 

- 

~~112~~ (3-38)

2A sin
~~

.X.—

or 

Dg(x0) = 
~ [g~1~ 2 

- ~~112~~ (3—38a)

S 

The reader can observe in equation (3-38) that as the wave-

length A
~ 

approaches infinity , ~ approached h, since the

sin (trh/2X
~
) approached (-1rh/2A

~
), thus reducing the trigo-

metric expression to the conventional difference expression.

Both trigonometric and polynomial finite d i f ference are

used to approximate the virtual work equation.

Mesh Arrangement in the Virtual Work Equation

In order to acquaint the reader more fully with the use

of half—station for first order partial derivatives and full-

- 
~S 

station for second order partials an example follows,

employing the trigonometric technique. The virtual work

equation (2—6) is repeated here for completeness.

J0J0
(Mx6w,xx+My6w,yy+2Mxy6w,xy)~~ d f

0f0 xw,x6w,x~~~~~ 
(2-6)

16
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Partial derivatives are replaced by the following trigo—

metric central difference expressions
A2

(W
,xx )i , j  = (w~÷1 

— 2w1~ + w~~1 )/h~,J

(w ) .  . = (w. - - 2w. . + w. . )/h  (3-39),yy 1,3 i,j+l 13 i,j—1 y

(W,xy)ij = (w~÷1,~ ÷1 - ~~~~~~ - ~~~~~~ +

where hx and have been defined in equation (3—29).

Equation (2-6) can now be stated as

= h
~
h
~ 

~~~~~ ~~~~~ 
~~~~~~~~~~~~~~~~~~~~ 

—

+ ~~~~~~~ + Di2(w~,~ +i — 2w~~ +w~ ,~ _1)/

~~2c2 1  r6~~. . - 26w.. + 6w . -
S 

X yJ L i+l,j ij i—l ,j

+ 
~~~~~~ [D12 w~+1,~ - 2w

~~ 
+

+ D22 (w~ j+l 
- 2w~~ + wj,j_i)/h~~] [6w~,~+1

— 26w~~ + ôwi,j_i1 + 2n7 n~ [2D 66 w
~+1,~ +l

— ~~~~~~ - w~+11~ 
+ w~~) (6w~+1,~ +1 -

— ôWj.fl J 
+ 6w~~)/h~h~~] 

(3—40)

where integers N and M are the total number of finite

difference stations in the x— and y- directions and the

~ and r~ coefficients equal

17
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0 w h e n i < I
1
o r j > 13 

S

S 

l/2 w h e n i = I
1 o r i = 1

3 (3—41)

= 1 when < j < 13

~xj 
= 0 when j  < or j  > J4

= 1/2 when j  = or j  = J2 (3—42)

= 1 when J
4

< j < J
2

0 when i l
1 o r j > I

3
(3—43)

= 1 when 1
1

< i < 1
3

= 0 when j  < J4 or j  >

( 3— 44)
= 1 when J4 < j  <

and 13 designate the grid row of boundaries 1 and 3 while

and are column designators for boundaries 2 and 4

(Fig. 3.4). The right hand side of equation (2—6) can also

be expanded incorporating

= (w1~1,~ — w
~~
)/!

~ 
(3—45)

= (w1,~~.1 — w~~) /ui~ (3—46)

w,~ ~~~ 
= ~~~~~~ — w~~ + ~~~~~~~ — w~~1,~ ) (6w~~1,~

— 6wj) + 6w~~1,~~ 1 — 
~~~~~~~~~~~~~~ ( 3—47 )
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and a similar arrangement for w 6w . To fully appreciate
,x ,y

the development of the above equations , the reader ’s atten-

tion is directed to grid point 7 of a twenty-five degree

grid arrangement in Figure 3.4. The numerical approximation

w and its variation 6w are evaluated at reference point

A using half—station central difference. Thus grid point

12 is incorporated with grid point 7.
A2

w,~ 
ów ,~ 

= (w12 — w7) (6w 12 — 6w7)/h~ 
(3—48)

The same procedure is applied to w 6w in the y-direction.,y ,y
A problem occurs when two different directional derivatives

(i.e. w 6w ) become involved. This is due to the fact,y ,x
that derivative functions must be incorporated into the

volume integral using constant quantities (hxhy(~x ~
y ~~

4 i i
In the case referred to above separate ordinate values

(L and M) would be obtained at reference points A and C

(Figure 3.5), respectively

i Vo~uv~ 2.

__  

_

Figure 3.5 Half-Station Differences of w and 6w .,y ,x

20
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Consequently, two ordinate values are obtained, but they are

associated with two distinct volumes for the same functional

w 6w . In order to maintain a half-station technique,x ,y
and to associate the product of two separate directional

derivatives with a particular volume, a reference point is

located at position E and is evaluated in the following

manner.

/E
~~~~ J/

Figure 3.6 The Position of a Reference Point to
Evaluate a Mixed Derivative.

The half-station central difference of point E is

w = (wB - w 
) / ui (3-49),y A y

where WB = (w13 + w8)/2 and WA = (w12 + w7)/2

6w = (6W D 
- 6wc)/hx (3—50 )

where 4SW
D 

= (6w 13 + 6w 12)/2  and csWC = (6
~
v18 + 6w7)/2

therefore

w,,, ~~~~ = (w 8 
— w7 + w13 

— w12) (6w 12

— 6w 7 + 6w13 
— 6w8)/4~J~ ( 3—5 1)

thus in total agreement with general form of Equation (3-47).
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Mention has been made of volume referenced to a partic-

ular derivative approximation. The volume is defined as the

area h
~
h
~ 

times the ordinate value at a given grid/reference

point. By treating the volume as a parallelopiped, errors

are developed in the total integral since step function

expressions are created with respect to grid arrangement.

The effects are more noticeable at larger mesh size (lower

number of degrees of freedom).

The above paragraphs have shown how the finite differ-

-
S ence approximations replace the partial derivatives within

a virtual work expression, now the steps leading to the

final buckling equation are discussed. The first step is

to factor all common expressions that relate to specific

i5w~~ s. Thus

~~~~~ 

(C
1~~ + Ai~ Nx) 6w1~ = 0 (3—52)

where N is the only externally applied force considered .

— And

C . . =~~ ~T I~~ N - 2 ~~ M
Y) 

hx L x~~1 ~~~~~~ Xl X].~

+ 
~x~_ 1 

Mx11~~~] 
+ 

~~~ ~~~ ~~~ 
My~~~+1

- 1 1— 2 ~~ M +~~ M I + A Ayj  ~
‘
~~i ~j— 1 ~‘i ,j-l J h~

hy

I - ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

flxj
fly j_ 1

Mxyj,j1 

22 
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[~y . fly . (w
i+l ,j

_W
ij

)_
~ y . flx j 1

(W j j
_W j_ l,j)]/hx ~~~

The reader is directed to Appendix B for the development of

several terms comprising coefficients C1~ and A1~ . It be—

comes obvious that in Equation (3—52), the only way a zero

result can be obtained is • for

r~. . + A. .Nl = 0 (3—55)
L1J 1) xJ

since 6w3~ are arbitrary values throughout the domain.

There is a second ordering step required for evaluat-

ing a buckling quantity. In Equation (3-55) the displace—

ment terms (w1~ s) occur (as can be observed in Appendix B)

indiscriminately. It therefore becomes necessary to factor

and order all the w~~’s leading to .an eigenvector expres—

S1~Ofl~

~~~~~~ 
w .~~ = 0 ( 3— 5 6 )

The E
~j 

matrix contains the quantity N
~ 

(in-plane load)

which is the eigenvalue. Reference El] discusses the

numerical approach used in the final reorientation of the

displacements. This approach is called the marching tech-

- S nique and is developed in Appendix C of Reference [1].

Finite Difference Approximation of the
Equilibrium Equation

It has been stated in Sec II Equation (2—4) that the

equation for buckling is a fourth order partial diffential

equation. The form of this equation is restated here for

convenience.

23
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W ,xxxx + ~~~~~~~ + W,yyyy = 
~~~~~~ 

(3-57)

The finite difference approximation to this equation is

established by making use of full-station approximations

which were developed earlier in this section. This dif-

ference technique can be found in several references. An

excellent reference which presents a detailed example of

a plate buckling problem is “Structural Analysis” by

Ghali and Neville [26]. Thus for further elaboration on
- 

S the equilibrium approach the reader is directed to the

above reference. Yet, for continuity the finite difference

molecule is presented in Figure 3.7.

_ 20 
_

1.

- Figure 3.7 Computational Model
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IV. Numerical Results

Introduction

Two sets of boundary conditions were investigated. The

following terminology is applicable to both the simple sup-

port and clamped conditions.

1. Long Plate - This method employs the trigonometric

finite difference approximations by choosing the

wavelength parameter A based upon the buckle

length of an infinitely long plate [1]. The dif-

ference approximations are then substituted into

the virtual work equation.

2. Conventional - This method is also used in the

virtual work equation and represents the polynomial

approach using half- and full—station finite differ-

ences.

3. Equilibrium — This label applies to the full-

station polynomial finite difference approximations

of the equilibrium equation.

4. Lambda — This label represents the values used

in the virtual work equation when the buckle

wavelength is not based on the buckle length of

an infinitely long plate

Lamdba - X
~
/A (4.1)

Values of Lambda are included and discussed to

present a broader appreciation of the trigonometric

finite difference capabilities.

25
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Throughout this presentation an error of plus or minus

five percent is considered acceptable as is normally the

case in engineering calculations [27].

Various Aspect Ratios - Simple Support

The long plate theory approach gives accurate findings

for simply supported plates under in-plane loading if the

aspect ratio (A/B) is an integer (see Fig 4.1). The reader

should notice1for fractional ratios, accuracy is affected

by assumption of the buckle length equal to the width of the

plate. At an aspect ratio of 0.5, the plate under this

assumption is more flexible while for a ratio of 1.5, the

structure is stiffer. Yet, comparatively speaking, a long

plate assumption incorporated into finite difference approxi-

mations of the virtual work expression, yields results more

favorable than the conventional virtual work or equilibrium

equation approach. The last two approaches yield about the

same results. One should also notice that increasing the

degrees of freedom (D.O.F.) allows a better evaluation of

boundary condition effects and hence less error.

Various Aspect Ratios - Clamped

Many of the above statements became appropo for clamped

plates (Fig 4.2). Long plate theory gives the best results

for mid-range aspect ratios while conventional virtual work

and equilibrium results parallel each other. It appears for

aspect ratios 1 to 4 at least 81 D.O.F. are needed to keep

26  
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accuracy to 5 percent. One notices at an aspect ratio of

0.5 that the results are more favorable than for the rest

of the aspect ratios. For this aspect ratio we have a

situation in which the boundary conditions are more realis—

tically modeled by the constant mesh arrangement since the

plate is acting similar to a wide beam. At higher aspect

ratios a constant mesh size doesn ’t properly credit the

influences of the boundary effects. Thus to obtain 5 per-

cent accuracy for a buckling clamped plate one should use

at least 81 D.O.F. and refine the mesh size near the bound-

aries.

Degrees of Freedom versus Error — Simple Support

Aspect Ratio 0.5. This discussion concerns Fig 4.3

and the rectangular plate in this case is similar to a 
S

beam where the boundaries, parallel to the in—plane load 
S

are far away from the load itself. In assuming long

plate theory the results for low degrees of freedom are

very good in fact the comparative curves-—equilibrium ,

conventional and Lambda (>1.) give excellent results. In

essence, long plate theory makes use of the fact that the

buckled length is equal to the width of the plate, this

can be illustrated by Fig 4.a.

27
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Fig 4.a Long Plate Theory Fig 4.b A / A  = 1

Now when a value of 1 is selected for Lambda (A /A), this

assumes a buckle length in the y—direction equal to one—

half B (Fig 4.b). This comes from a basic equation (4.2)

developed in Reference [1] to calculate the parameters.

4 ~~~~~~~= 
~~. (4—2)

~ is equal to the aspect ratio for simply supported plates

and 1.5 when the plates are clamped [28]. The reason the

accuracy isn’t as good as long plate theory is that

equation (4—2) for Lambda=l shows the two buckle lengths

in the y—direction rather than an ideal 1 half-sine wave

for the length. Considering Lambda=0.5, then A~/B+0.5 0.5

yields B=4A~ thus now there are four buckle lengths in the

y—direction and two in the x—direction hence a stiffer

plate. This is realistically pointing out what Timoshenko

[ 6 J describes graphically (whenever more than one half—sine

wave is assumed in the y—direction the plate is stiffer).

The curves also indicate a band of Lambda values exist

28
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from one to infinity (Conventional method) that present

excellent results at low D.O.F. as do the Equilibrium and

$ Long Plate methods, while for values of Lambda approaching

zero, the results become erroneous as the plate becomes

stiffer (from a buckling viewpoint).

Aspect Ratio 1.0. Again excellent results at low

D . O . F . ,  with the Long Plate method showing no error (Fig

4.4) as was expected since buckle width does equal buckle

length. A band of Lambda values greater than or equal to

0.8 provides good results. Aspect ratios 2 and 3 also

follow these trends (Figs. 4.5 and 4.6).

Aspect Ratio 5.0. In this instance, the curves (Fig

4 4.7) have inflection points at lower degrees of freedom.

The reader should remember, especially for this set of

curves, the concept being incorporated into the analysis

by assuming various values of Lambda. In effect, a func—

tional value for the displacement is assumed at buckling

in the virtual work approach. The form of the function

selected is like that used in the Rayleigh-Ritz technique

which, in essence, requi res at least the satisfaction of

the kinematic boundary conditions for rapid convergence.

-

S 
It becomes apparent that certain Lambda ratios do not

provide functions that meet the boundary conditions properly ,

(see Fig 4.c), thus one can expect greater inaccuracy at

lower D.O.F. The Long Plate method, however, gives

excellent results at low D.O.F. because the boundary

29
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conditions are satisfied displacement—wise (see Fig 4.d).

________—

~~~~~ 

A 

- -

I 

- 
- 

~ ~ zz ~~ *

A,/A = 0.4 À y/B = 2.0

~ 
Amplitude for Assumed Function “Should Be” Zero

Fig 4.c A Lambda Value Displacement Function.

— _____ - - 
~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ — 

~~~

- 

- 

AX/A = 0.2 A~,/B = 1.0

Fig 4.d Long Plate Theory Displacement Function.

At higher D.O.F. (64) all curves present monotonically

S decreasing error values. This is expected since the

assumed function becomes secondary with its inclusion into

the virtual work equation.

Degrees of Freedom versus Error — Clamped

Aspect Ratio 0.5. This discussion concerns Fig 4.8.

S Again we have the conventional virtual work and equilibrium

method providing almost identical results while the long

plate theory in the trigonometric approximations gives

30
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slightly better results. It is also noticed that a “good”

selection of Lambda (0.65) produces better results at low

D.O.F. This is expected and explained by the fundamental

assumption of Long Plate Theory where the width equals the

buckle length. In reality , however, the clamped boundary

prohibits a full half-sine wave (see Fig 4.e). Thus, with

Lambda=0.65, Ay •975b which is more realistic. Aspect 1

and 2 present the same tendencies, only higher D.O.F. are

needed for better accuracy.

~~B/2l

[HT 
_LI L _ _  £

Long Plate Clamped

Fig 4.e Assumption Versus Actual Wavelentgh in a
Clamped Plate.

Aspect Ratio 3.0. Concerning the interpretation of

the Lambda band, the relative closeness of the Conventional

and Equilibrium methods, and the ability of the trigonometric

finite difference method employing Long Plate theory to be

slightly better than the Conventional and Equilibrium

methods, (Fig 4.11) one can use the previously stated

observations. Inflection points again occur at low degrees

of freedom showing a tendency to be oscillatory . An

explanation of this phenomenon was previously presented.

One can observe that even with the conventional, approach,
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potential energy wise, its more accurate to select 25 D.O.F.

versus 36. This peculiarity is attributed to the failure

of the selected function to appropriately consider the

boundary conditions. Salvadori [29] in analyzing equilibrium

methods experienced oscillations similar to these for certain

cases. It should be noted by the reader that when inflec-

tion points do occur, long plate curves are not effected.

This was true in the simple support case (Fig 4.7) and also

is true in the clamped cases (Fig 4.11 and 4.12). The
S 

assumption of buckle width equal to the width of the plate

seems to incorporate boundary conditions more accurately

(like the simple support cases). This again indicates

that the inflection point is probably being caused by poor

S approximation of boundary conditions at low D.O.F. as well

as an insufficient number of node points adjacent to the

boundary which was previously pointed out.

Aspect Ratio 5.0. Oscillation is now apparent and

troublesome for all curves (except long plate) in Fig 4.12.

Higher D.O.F. are needed to maintain accuracy and this is

expected since again we have increased the mesh size at

low D.O.F. and the finite difference approximations don’t

‘1 represent the boundaries accurately. Previous Lambda

S interpretations are still consistent for this long clamped

plate as well as the close proximity of the conventional

and equilibrium curves. The value of the trigonometric

approach can be appreciated here when it is apparent a
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Lambda value of 0.10 would have given accurate results

around 64 D.O.F. compared to 81 or higher for all other

selections.

‘l
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V. Conclusions

This thesis has compared results using expressions of

S 
virtual work and equilibrium, employing finite difference

-

~~ approximations, over a broad spectrum of aspect ratios for

S a buckling plate which was both simply supported and clamped.

Little difference in accuracy was found between results

obtained from conventional virtual work equation and the

-
~~ equilibrium equation. The virtual work method can be

improved by incorporating into the finite difference expres-

sions a trigonometric function using a buckled shape for a

very long plate. In many instances certain selections of

Lambda values lead to more accurate answers with the trigo-

nometric approach. 
S

Except for an aspect ratio of 5.0, all methods using

simply supported plates were accurate and reliable at all

degrees of freedom (25 or above). At an aspect ratio 5.0,

inflections of the error function were encountered and some

methods oscillated between stiff and flexible. The reason

apparently is that large constant mesh sizes are not able

to properly model the boundary conditions for long simply

supported plates.

For clamped plates, buckling coefficient inaccuracies

began to increase for aspect ratios as low as 1.0 and —

oscillation tendencies were encountered for aspect ratios

of 3.0 and 5.0. Thus, the author feels that additional

reasons for the inaccuracies and oscillations must be put
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forth. They may be thought of as:

I - 1. The inaccuracy encountered by approximating the

-~ boundary conditions in the basic virtual work

equation with an insufficient number of node

points adjacent to the boundary.

- - and 2. The choice of a displacement function (referred

to as Lambda) which doesn’t satisfy the kinematic

1 boundary conditions properly. (It should be

- noticed that the Lambda selection is very similar

to choosing a displacement function for the

Rayleigh—Ritz technique and though this thesis

hasn’t addressed all the ramifications of this

comparison, several inaccuracies created through

- the use of various Lambda ratios have been men-

tioned.)

In essence, rapid convergence can be achieved by select-

ing a Lambda ratio which satisfies the boundary conditions.

S 
It should also be noted that since the function selected is

incorporated into the finite difference approximation,

accuracy can be maintained by using more degrees of -

- - freedom.

I
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Appendix A

Development of the Virtual

Work Equation

The strain energy of a two-dimensional plate problem

in terms of strain is

u = 1 1. E re2+e2+2ue e +!Z~. e
2 ldV (Al)2 (l_u 2) LX y x y 2 xyj

S 
- where the nonlinear strain—displacement relationships

e=u +1(w )2x ,x 2 ,x

e =v + 1(w )2 (A2)y ,y 2 ,y

e =u +v +w Wxy ,y ,x ,x ,y

S Equations (A2) are substituted into equation (Al) and then

integrated over the thickness Ct)

~~~= c: i: c!, ~ (l_u 2) 
[[u,

~ + w ~~~2]2+[v,y+4w,y
2]2

+2u [u,x4(w,x)
2](v,y4(w y)

2
1 

S

+ !? Eu ,y+v,x+w xw,y ]
~1dzdxdY

if
u(x,y,z) = —zw

v(x,y,z ) = -2w (A4),y

- 
- w(x,y) = w (no dependence on z for

small deflections in thin
plates)
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The appropriate partials of equation (A3) are replaced with

the above expressions yielding

= 

~ ]~~~
2 [z

2w2xx_zw xxw
2
x+ x~~

2
’
~~yy

~~~~~~~~~~ ~
w
~y
+2uEz2w,xxw,yy

_ 
4zw,yyw~x~ ~

zw,xxw
2
y

+ 
~~~~~ 

+ !? (z2w~xy+2z
2w~xy_2zw,xyw,xw,y

+z2w~~y
_2zw

,xyw,xw,y+w~xw~y]]dzdxdy (A5)

S Equation (AS) is integrated with respect to z and combined

yielding

= 2 (l_u 2) [
~~ 

~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~ 
+ 
~~ [~~‘~xy

+tw2 w2 ]]dxdY (A6)

The internal virtual work during buckling based on Eq. (A6) is

= 

~ (1-us 
~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~

+T~~,xx óW,yy J xW,y6W ,x+~W,xW y6W,y]

~~~ [2
5-~~w,xy6w,xy+2tw ,xw~y~5w,x

+2tw2xw y6w y]]
dxdy (A?) 

S S~~~~~~~~~~~~~~~1__
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Like terms in w are combined

- 

= c:c [~ (1u
2) 

[w,xx+uw,yy]ILSw xx~h:~
. 
(1u 2) 

~~~~~~~~~

+UW~~~~~] ~W yy+~ ( u )  W,xy~W xy+
Et

2 [w
3

+w
~~
w
~y] 

5w,x+
Et

2 [w~y+w,yw~x]i5w,yJdxdY (A8)

If the higher order terms in equation (A8) are neglected,

then the internal virtual work of a plate during buckling

(specifically derived from nonlinear strain-displacement

relationships, but representing linear strain expressions)

becomes

6U = (Mxdw xx+My~
w yy+2Mxydw xy)dxdY (A9)

where

= D11w~~~+D12w~~

= Di2w,xx+D22w,yy (AlO)

= 2D66w~~~

and

= D22 = Et3/12 (1—u 2) -

D12 = uD11 (All)

D66 = Et
3/24(1+U)

The potential energy of the external forces is completely

developed in Appendix D of [16] (Equations are Shown S

- - 5 - - -~~~~~~ - - 5 — S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 5 -5 



below for completeness). In their development it is pointed

out that the middle surface stresses (N N N ) are assumedx, y, xy
to remain unchanged in the course of the plate’s deflection.

This also implies that no middle surface stretching occurs

during deflection, thus completely eliminating any nonlinear

large strain effects. The total potential energy caused by

in—plane external forces is

1 ratb r- 2 2 -

V = — I I I N w +N w +2N w w ldydx (A12)
2 j0j0~~x ,x y ,y xy ,x 

~~

The virtual work is then

= 

~ cc ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+2N

~y
w,~~

5w,y]dYdx

which reduces to

= (NXW,X~
SW,X

+N
Y
W ,Y 4SW

,X+N
XY
W ,X~

SW
,Y

+N
XY
W ,Y 6W ,X)dYdX

(A13)
Equations (A9) and (A13) are combined. -

This gives the virtual work equation used in this thesis.

f~ f~~
Mx6w,xx+My~w,yy+2Mxy~w,xy dxdY = (NX

W ,X 6W ,X

-
~~ 

+NyW ,y6W ,y+NxyW ,y~SW ,x+Nxy
W ,x~

W ,y) dydx (A14)
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- Appendix B

Factoring Techniques

This particular Appendix is designed to show how

numerical equations are ordered starting from the

expression

M N
E E (C- . + A. .N )6w . - = 0 (3—52)
i=l =l iJ X 1]

An example using several grid points is presented to allow

the reader a fuller appreciation of the numerical volume

integration (Fig 3.4). For completeness, Equation (3-40) is

repeated here in moment form.

M N r ~..4 
A 2 A f l

= ~~~~ 
~=1 j=l 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ D22My /1~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ 2nx1
ny~ [2D66 (w~~1 , ~~~~~~~ ~41—w~+1 ~+w13 ) S

(81)

and

6V = _h
~
h
~ L1 ~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A 21
— 6W ij)/hxJ 

(32)
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For simplicity let M~ = 
~~~ 

= D12 = D66 = 0 thus

Equation (Bi) with (Be becomes

L1 ~~~ 
[Dl1Mxj j ic;~J ~~wi+l ,j

_2
~
wjj+~

wi_i,~ j]

+ 
~~~~~~~~~~~~~~~~~ 

(dw .+l ._~w..)/~2] = 0 (B3)

If one rearranges and combines like terms the following is

obtained

L1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ 
~~~~~~~~~~~~~~~~~~~ 

= 0 (B4)

S 
Consider the terms i=2, j=2 identified as i~2,j=2, and

corresponding to grid point 7. From our boundary Equations

(3—41) thru (3—44)

i=2,j=2
Z E ~ ~~~~~~~~~~ ~, T1 = l f l  = 1  (B5)x

2 
2 y2 x2 y2

SI

Equation (B4) becomes

1 •

S 
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i=2 j=2
.+ E z 

L~~~11Mx7 2 12
_w

7
)hl

j  
6w12

- 

[
~~~2 D N / h lN ( w w)/h

]
6w

+ 

[
~
.
~~ l1M~~

/
~~~

6w2

i=2 i=3 1j “4 ~21+ E E 
[~~

l•DliMx /hx+l•l•Nx(Wl3
_W
8
)/h
]
6W13

1~1 “4 ~21- 

[
~.ls2.DllM / h +l.lsN (w l -w8)/h

j
6w

+ 

[~
.1.DllM~~/~4]

6w3 + --- + ---- + ---- +

1=3 j =2r  1 “4 1 ~21
+ Z E 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- [l.~
.2.D

llMx /i;
~
4.l.Nx(wll

_w
i2)/ui~]6wl2

+ [l.~~
.D1iM~~~/h~Jdw 7

~21+ E S [lSl.DllMx /h +1 1 N
x
(wl8

_w
13)/h

xj
6w18

— [i .1 .2 .DM /ci
4+l.l.N (w —w1 )/i~]ow1

5 r i=3,j=4
+ f1.1.D11M /h416w 8+ S S — (B6)x x
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Thus, as each term is evaluated the virtual displacements

can gain coefficients as can be observed in Equation (B6)

for 6w7 and Sw 8. After evaluating all the terms, the

equation is reordered to gain a final coefficient matrix A

and a virtual displacement vector 6w1~ where the coefficient

matrix A is composed of C. - + A . - N
13 13 X

55
4
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