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Approximations for Functionals and Optimal Control Problems
on Jump Diffusion Processes

Abstract

The paper treats approximations to stochastic differential

equations with both a diffusion and a jump component, and to

associated functionals and partial-differential-integral equations
of the (degenerate or not) elliptic or parabolic type. Approxima-
tions for the optimal control problem on such a model, or for the
associated non-linear partial-differential~-integral equation is
discussed. The techniques are purely probabilistic and are

extensions of those in {3], which dealt with the diffusion case.
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1. Introduction

The paper treats approximations for the process (1l.1)
(terms to be defined below), and associated functionals, partial
differential integral equations, and for certain optimal control

problems (where £ and k can depend on a control parameter u).

t t

£(x(s))ds + J o (X(s))dw(s)

(1.1) X(t) = x + J
0

0

t
* I J g(x(s"),0)Q(daxds), t > 0,
0

where Q(-,+) 1is a Poisson measure, with associated Poisson

e
process Q(t) = f J oQ (doxds). The process (l.1) is a widely
0

used model for situations where there is a jump and a diffusion
component to the process paths [1].
Define 1 = inf{t: X(t) £ G}, where G is a given

bounded open set, assume that Exr < o, and define the functional

T
(1.2) R(x) = E J k(X(s))ds + E_¢ (X(1)).
X Jo b4

Let Q(*) have jump rate c¢, and jump distribution
p(+). Define the measures m(r*)em(+),f(x,4) and T(x,-)

by (for Borel A and t > s)

l.




m(A,[s,t]) = EQ(Ax[s,t]) = m(A) (t-s),

?(x,A) =Cr(x,A) = m(o: g(x,a) € A) = cp(a: g(x,a) € A).

£ into A
r(x,A) is the jump rate/at t of the last integral in (1.1),

when X(t) = Xx. Under certain smoothness assumptions on R(°),

it satisfies

F (1.3) LV(x) + [ [V(x+a) - V(x)]f(x,da) + k(x) = 0, x € G,

Vix) = ¢(x), X £ G,

the term ¥ is

2
L= Ja =20t ] £.(x) s, 2a(x) = 0(x)0" (x),

’
i3 ij 8xi8xj 3 axi
the differential generator of the diffusion part of (1.1).
We use the following conventions. If Q(¢) Jjumps o at

time t, then in (1.1), g(X(t ),o) is the increment of the

integral at time t. Let Y(*) be constant on [tl’tz)'
2 2
Then J Jg(y(s‘),a)Q(daxds) = J Ig(Y(tl),a)Q(daxds). The
t t
integration is over (tl,t2] only.

The main aim of the paper is to develop computable

approximations to various functionals of (l1.1), such as (l1l.2),

with or without a control. The approximations are also




approximations to weak solutions of equations such as (1.3)

(or their non-linear counterparts in the controlled case).
As in [2], we exploit the close relationship between (1.2)
and (l1.3) to develop approximations to both. The method can
be used to approximate a broad variety of functionals of
(1.1). (See Theorem 7.1l.) Functional (l1.2) is a very special case.
The technique is like that used in [2] or in [3] (we use
results in [3] whenever convenient) for functionals of
diffusions, and for equations such as (1.3) without the
integral term. See, also [4], where a simpler jump problem
is treated. By using suitable finite difference approximations
to (1.3), we can construct a certain Markov chain. Suitable
interpolations of the chain converge weakly to (l1.1), and the
chain can be used to compute approximations to (1.2) or (1.3)
(or to other suitable path functionals). This is true whether
or not (1.3) has a smooth solution. Under conditions to be
given below, the approximations converge to the correct values
as the difference intervals go to zero. Actually, the
difference method is only one of many that can be used - this
will be clear in the sequel. The f.d. method is used only to
get a "consistent" sequence of approximations to X(¢). Any
other technique for doing this can also be used. If £ and k
depend on a control, then the technique is useful for the
approximation of optimal controls. Then, the approximating
chain becomes a controlled chain. See [2] or [3] for an

introduction to the general technique and background. For
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simplicity, only the homogeneous case will be treated. The
non~homogeneous case and parabolic versions of (1.3) are
treated similarly to the case here (see [3], Chap. 7). Also,

reflecting boundaries can be added.

Assumptions. r and r' are given integers

(Al.1) £(*), o(*), k(*), ¢(-) are bounded con-

tinuous Rr, r x r matrix, R and R valued functions, resp.,

on RY; g(+,+) is a bounded measurable R® valued function

r Y : : ¢ .
on R x RF , and continuous in its first argument for each

value of the second.

(Al.2) Q(t), t € [0,®) is a Rr' valued Poisson

process with jump rate ¢, and jump distribution p(-). Let

Q(daxds) denote the associated Poisson measure ([1] or [5]1.,

Chapter 6. Let w(-) be a standard R valued Wiener process

independent of Q(*).

(Al.3) The process (1l.1) has a unique non-anticipative

solution, for each non—anticipative (Qith reépeét to w(+),

Q(C+,+]) initial condition x, with and without the jump term.

By uniqueness, we mean that the solutions - for any w(-),

Q(e,) satisfying (Al.2) - all induce the same measure on

T
D" [0,») (see [3] or [6] for a discussion of D[0,®), the space
of right continuous functions with left hand limits). If

Cc < o, then (Al.3) holds if it holds with g = 0.




(Al.4) (to be dropped in Section 8; see below (2.1)

for @ 6x})

sup(hz/Qh(x)) * g ag h =0,
X

(Al.5) EXT < o for values x of interest.

Section 2 introduces the finite difference approximation

and relates it to a Markov chain. The finite difference solu-
tion is a functional of the chain. In Sections 2 and 3, a
continucus time interpolation of the chain is introduced. The
interpolated process has a diffusion, drift and jump component,
and Section 4 discusses the properties of the weak limit of the
jump component, and also shows that the weak limit (as the
finite difference interval goes to 0) of the interpolation

is the process (l.l). Section 5 discusses an alternative

representation of the jump component, which is particularly

T

useful in approximations to optimal control problems for con-
trolled versions of (l.l1l), or for certain non-linear forms of
(1.3). The section also contains an alternative Markov chain
with which the computation is a little simpler. The case

c = o 1is treated in Section 6, and Section 7 deals with the

convergence of functionals of the chain (or of the finite

difference approximation)to functionals of (l1.1). In Section 8,

we develop an alternative continuous time interpolation, which

is a Markov jump process and which also converges weakly to (l.1l). 1




i
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As with the earlier

interpolation, the finite difference solution ~ or chain func-
tional - is also a functional of the interpolated process, and
this functional converges to the correct functional of (1.1),
as the finite difference interval goes to 0. The limit func-
tional is the desired solution. Section 9 contains some

remarks on the optimal control problem.

2, The Discrete Approximation

Until Section 6, we assume c < «, The operator in
(1.3) will be discretized using the f.d. (finite difference)

approximations of ([2] or [3], Chapter 6.2, for VX ('),Vx 5 (+).
i i)
Let+ h = finite difference interval, and B unit vector in

ith coordinate direction. Let Ri = finite difference grid on

Rr, and define Gh = Ri N G. A convenient way to discretize

the integral in (1.3) is as follows. For each set of integers++

jl""’jr and "finite difference box", bh(jl,...,jr)

b
11 (j;h=h,j;hl, let jlh,...,jlh denote the grid point in the
i=1

closure of the box which is closest to the origin.

*ror simplicity, we let h be independent of the direction. More
general schemes are possible.

++ : ; :
The Ji can be positive, negative or zero.




Define
h : : i :
r (X’Jl""':]r) = I (x,b (le---rjr))-
Then approximate the integral in (1.3) by
* h
2.1} e ) [V(x + _Zleijih) = VT (X dyreeend)e

jl,...,jr i=

By the approximation, any jump into the box is remapped

into ji,...,jé, the "closest" point in the box to the origin.

Lk 94 FONCRNPSP )

Many other conventions will work as well. The one above was

chosen for definiteness.

i i,J

i#3

We always suppose that Qh(x) > 0, and that aii(x) -

Define Q (x) = 2 ) a;;(x) - Y ]aij(x)] * e )
5t

A A S A S i

a..x)| > 0 for each i. Substituting the approximations
i#g -

J

for %, and (2.1l), into (1.3), multiplying each term by hz,
defining+ ph(-,-) as in [3], Chapter 6.2, or as in [2],
collecting terms and denoting the f.d. approximation to V(-)

by Vh(-), we get (the sum over * denotes the sum over all

combinations)

+In particular, ph(x,y) = 0 unless y =x t eih, or

(for i #3) xt ehtx ejh or x * e;h ¥ ejh.




. (2.2)  [@, ) + e’V (x) = [ o )p"ix,xte,m VP (xte )
! isj . i
e

h - h b5
Qh(x)p (x,xteih+ejh)v (xieih+ejh)

2 s o co . 2
+ ch ) (X¢3qreeesd IV (x+§ e;jih) + h%k(x),

jl,...,jr
X € Gh’

vk =ikl R G

We can work with (2.2), or with various approximations
to (2.2). Egquation (2.2) will be put into a slightly more

convenient form. Define Ath(x) = h2/[Qh(x)+ch2],

1 - (@, (0/10, (x) + ch®]) = eat”(x)

]

(2.3a) g% )

l - exp - cAth(x).

(2.3b) P2 (x)

Rewrite (2.2) as (for x ¢ Gh)

A-PP ] ™ (%, y) VR (%, v) ]
Y

2.4)  vi(x)

-+

h 1 g

PU(x)I( Z rh(x,Jl,...,Jr)vh(x + ) e.jln]

s 5 : E K.
Jl""’Jr b

At () k (%), ]

+




~

is P

~

where P or P. If P is used, then (2.4) =

ﬁ and P

other; the limits do not depend on which is used. For

notational uefiniteness we use (2.3b)

better numerical results also).

.h h

Suppose that the ! ,Ph,p

ph) on R;.
in (2.4) have the following interpretation.

(or grid point pairs for

are in [(0,1] and sum to unity over vy, for each x,

h ; X : :
do the T (X,Jl,...,]r) (summed over Jl,...,]r). Also,

Ph(x) e [0,1]. Thus, the system 5ph(x,y), Ph(x)}
interpretation in terms of a Markov chain ”:‘ on the
space Rg. Let 2: = X. Then w.p. (l-Ph(x)), use the
probabilities {ph(x,y), Yy ¢ R;‘, and w.p. Ph(x), use

- R _
eijih(,

‘ In the
£ n

’ ; h
Fh(x,Jl,...,Jr) B P{in+1 = X + - 5

second instance, we say that the process has jumped at

if a1l 3}

Let Nh = min{n:

are zero.

(2.

are first order approximations (in At) to each

(which seems to give

are defined on all grid points x
Then the coefficients
The ph(x,y)

and so

2)s The

has the following

state

transition

n + 1 - even

52 Z Gh}. Assume, only for the moment,

that

Then (2.4) has a unique solution which is

Nh-l

h h
nZO k(g,)at

Vh(x) = E

(2.5) -

h
+ B o(E, ),
X Nh
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h
where Atn

= ath el

We will next develop a convenient representation for
the {E:} process, and then prove various properties of the
weak limits, ultimately showing that (when suitably inter-
polated), the chains converge weakly to the solution to (1.1),
and vh(x) + R(x), as h » 0. Similarly, many other functionals

of X(¢) can be approximated by functionals of {52}, with

convergence as h - 0 (Theorem 7.1).

3. Properties of the {52} Process

We have (see [2] or [3], Chap. 6, for the calculation in

the "no jump" case),

(3.1) E(eh, ~eM e = x, no jump at ntU= £e0ath o)
h
.23 Covar[£§+l-£:| 52 = x, no jump at n + 1] = Zh(x)At (x)

= 2a(x)atl(x) + athx) (hE(x) - £(x)£' (x)atP(x)]

h h

Define B: = £n+l — En .

- £(gD)AE],

where if there is a jump

==

at n + 1, we alter the definition and assume (to calculate B8

h

only) that gn+1

h
evolves from gn as though there were no

+

£(x) is the diagonal matrix with gh entry lfi(x)
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jump. Henceforth, let us fix the initial condition x = Eg.
Write
h h h .k
(3.3) gn = x + Fn B I En’
n-1 n-1
Ph= § e@hat?, 8- 767,
i=0 i=0
-1 n-1 n-1
T, B K S h
3, = 2 [€1+1 Eghley B, = lgotf(a yaeh + M1l = 12051'

where I?

1 if there is a jump at i + 1, and is zero other-
wise.

Define the piecewise constant interpolations gh(-), Fh(-),

etc. exactly as done in [2] or [3], Chapter 6. E.g., define

n-1

h h o =h h h ;

et 1§oAt , and set P (¢) = F  on [t,t .,). Define

h | SR, SR ; hi s h
my and émi = mi mi—l' i > 2, and m; = Gml, to be the

ith jump time and interjump interval resp., for {Eﬁ}. Let

h Bl : h _ h .th =

L and Gri -y Ti-1’ i2> 2, and Ty 611 be the i jump
time and interjump interval, resp. for &h(-). Define RY' = [0,x).

Theorem 3.1. Under (Al.l), (Al.2), and (Al.4), the

sequence {o%(.), 67, i =1,...1 = (P PP, B, P,

Eh(-),ar?, f=1,2,...} is tight'on D F[0,=) x (R")”. also

Eh(~) converges to the zero process as h = 0.

+
We say that the sequence of processes is tight if the corre-
sponding sequence of measures is tight.




| ~ia-

Proof. Tightness of {Eh(')} and the last assertion

follow from

lim E max |Eh(t)l2 = 0, each T < =,

h+0  t<T
Tightness of {Fh(-),Bh(-)} is proved as in [3 ], Theorem
6.3.1. The average number of jumps of Jh(-) on [0,t] is

h
(3.4) A =E ) I.. N
1 & “{jump at i} {tgit}

E1E . (l-exp-cAt?_l) £ ot
RSt &
l—
Boundedness of g(*,*) and (3.4) imply tightness of {Jh(-)},

since (3.4) implies that the average number of jumps on any

finite interval is bounded independently of h. Tightness of
{&h(-)} follows from the above tightness results. Let 6 (h)

denote any function such that 6(h) >~ 0 as h »+ 0. Finally, we

can show that (see, e.g., the calculations in proof of Theorem 4.1) ,

cT

P{GTE > T} < e """ + o(h), each T < =,

’
which implies tightness of {GT?, i > 1} for any sequence

h » 0. Q.E.D.
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Theorem 3.2, Assume (Al.l), (Al.2) and (Al.4). Let

h index a weakly convergent subsequence of {8h}

{Qh(-),sr?, i > 1}. Denote the limit process by ® =

{e(), 67y, 1 2 1}. The process ¢(-) can be chosen to

have right continuous paths, also

E(t) = x + F(t) + é(t) + J(t),

t
where F(t) = I f(£(s))ds, and there is a standard Wiener
0

process W(-), with respect to which all the other terms of

A . . .
¢ are non-ant1c1pat1ve+and

t
B(t) = J o(E(s))dw(s), t < », w.p.l.
0

Note. All the jumps of J(+) occur at the {Ti},
1z
TS Z Grj, i > 1, but there can be a jump of zero magnitude
J=1

at any T1,. For later use (and until mentioned otherwise),

we say that J(-) or £&(+) jump at each T; — even if the

Jump is of zero magnitude. Thus, J(+) Jjumps at t, if t = T
for some i. Using Skorokhod imbedding, Eh(T?) - Eh(T?_) >
E(ri) - E(TI) = 65(11) w.p.l, as h »+ 0, each i. Also, to
get W(+-) we may have to augment the probability space by

adding an independent Wiener process.

+By non-anticipative T, Wwe mean that the process Ii(-) with

values Ii(t) = I{Tiit} is non-anticipative.




G

Proof. The continuity, martingale, and representation

properties of B(*) are proved as in [3 ], Theorems 6.3.1

and 6.3.2. In the proof of the latter theorem, we replace Eh(si)

and Elsy) by (€780, d(ag), T Ot) and (E(s;), Iisy),
T Nt), resp., and use only times s; at which £(+),J(*)
are continuous w.p.l. The rest of the details are omitted.

Note that:

P
h B % h
(3.5) Vi(x) = Exj k(€ (s))ds + Ex¢(€ (oh)),
0
where B = min{t: Eh(t) £ G} = tg . The representation (3.5)
h
for Vh(-) in terms of a functional of Eh(-) is critical

for our method, because we show that the representation (3.5)

actually converges to R(x). This also holds for the inter-

polation of Section 8.

4. Properties of J(+)

In this and in the next section, we will give two
methods for showing that there is a Poisson measure Q(+,+) with
the same properties as Q(-,+) (and a corresponding Poisson
process Q(+)) such that W(-) and Q(+) are independent

and

,
Jk) = J jg(ﬁ(s_),a)a(dade), t < », w.p.l.
0




=l 5=

Let 532 denote the o-algebra determined by

{g?, j < n, and m? Fen, all o i¥.  Let £3h(t) be the

h

o-algebra determined by {Eh(s), s < t, and Tj i, all Gk,

Let 4(t), 5/? and \93, resp., be the og-algebras determined

by {&(s), s < t, and Tj @t all o, {Eh(s), s < T?, and

Ti, k <j} and {¢(s), s < Tj' and Ty s k < j}, resp. Let
N(t,t+A] and Nh(t,t+A], resp., denote the number of jumps of

E(s) and &'(-), resp., in the interval (t,t+A], A > 0.

Theorem 4.1. Assume (Al.l), (Al.2), and (Al.4) and consider

the convergent subsequence of Theorem 3.2. Then

Pg(t){N(t,tﬂl] = 0} = exp ~ cA
(4.1) sz(t){N(t,t+A] = 1} = cA + o(4p),
Pg(t){N(t,t+A] > 1} = o(A),

where the o(A) are uniform in w,t. The {GTi}, 6Ti = Ti -

are independent, and each is exponentially distributed with mean

1l/c. Also,

Pyi{ag(ri) = g(ri) - g(ri) € A} =

(4.2)
plas g(&(ty),a) € A} = T(E(1}),A)

w.p.l, for each Borel set A ¢ R
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Proof. Part 1, We first prove the analog of (4.1) for

gh(-). Fix h, and define to be the in-

Tinrliarlizelig
dicators of the sets ((t,s] = empty if s < t).

S;1 = {Eh(-) jumps in (t,tr.ll_l]}
Sy, = {E7(-) Jumps at o

Si3 = {gh(-) jumps in [tk.ll+l,t+A]}
Si4 = {t] € (t,t+l).

: h
Note that S,, is 4, ; measurable. Now

h
P {N" (e 648} 21} R °E 25 OO A
B0 (t) PNy § 12714
h
(4.3) E I R, PO } I.,(l-exp-cAt, .)
ey i M alll Pwmi T =l

< cA + c max AtP(y) = ca + 8(h),
y

by (Al.4). Also

h
P {N"(t,t+4] > 2} = E e TR L PR G A 4
M ¢) My § 14T TiL T3
(4.4) < E ) I.,(1~I.,)I., (cA+6(h))
Qh(t) i i4 il’~i2
< c?a% + o(n),




R .

=] T

i h
(4.5) P {N"(t,t+A] = 1} = E b o U T SN - U JNEE SR
2% (t) ) i 117742 ™ "43° 714
Using 1 - cA + 6(h) < E (1-1.,) < 1, and (which follows from
- gh i3’ =
1

(4.4))

2
E Y R Bk, iG(AT) a8 (hiy
_Qh;t) i i17i27i4

we get that the r.h.s. of (4.5) is
2
(4.6) cA + 0(A") + 6 (h).
By (4.3) and the weak convergence,

(4.7) P{£(*) Jjumps at t} = 0, each t < o,

-

Thus, for each t, £(*) is continuous at t, w.p.l. Define
Ii(t,t+A; x(*)) to be the function on Dr[O,m) X (R+)°o =S

which is 1 if there are i jumps of x(*}) on (t,t+A], and

is zero otherwise. The generic element of S is x(°),

== interjump interval

for a zero or a non-zero jump value. Then, by (4.7), the function

is continuous w.p.l on S, with respect to the ¢(°), {GTi}

measure.
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Let m(-) denote a bounded continuous real valued
function on the appropriate space, q and tl,...,tq < t

arbitrary, and note, by (4.3) - (4.7) and the weak convergence,

Em(gh(tj) ' T? TS q)Ii(t't+A?€h(°))‘—"€>
(4.8)

Em(E (), 1,

j M t, J _<_ q)Ii(tlt+A;£(.))l

as n ~» 0.

The Ii in the l.h.s. of (4.8), can be replaced by
(1-cA+0(a%) + 0(h)) when i = 0, and by ca + 0(a%) + 6(h)
when i = 1.

The same replacements (without the 6(h)) can be made

in the r.h.s. of (4.8). Consequently, we have the relation

0 or 1)

(i

Em(E(tj).rj Nt J @I, (t,t+0;8(0))

in

Em(g(tj)r T @ty 3

i q)Pg(t){N(t,tHS] = i}

Em(£(t;), 15 Nty 3

IA

q) [ (l-cA+o0(A)) or (cA+o(A))],

which, together with the arbitrariness of m(¢), g, and ti’
i < q, imply that (4.1) holds with r.h. sides, 1 - cA + o(4),
cA + o(A), o(A), resp. From this, it is easy to show that (4.1)

holds as stated. The sentence following (4.1l) follows from (4.1).




Part 2. Fix i and let A be a closed Borel set in

rR" such that it is the closure of its interior and

Ep{a: g(g(r'i'),a) e 9A}

= P{GE(Ti) e 0A} = 0.

(I.e., if g has the distribution p(-) and is independent

of E(T;), then P{g(g(t;),q) € 3A} = 0.) Then

(4.9) plo: g(E(T;),a)e 9A} = 0 for almost all i(Tz)

values, (E(*)., T measure) .

By (4.9), and the convergence gh(T?) - E(T;) w.p.l
(Skorokhod imbedding used), and the properties of A and

9A,

4.100  pl: g} ,0) € A) > plaz gEG] @) € A)

for almost all &(IZ) values (E(-),Ti measure). Now, note the

following (m(e),q, are as in Part 1, and the tj are < «):

fi=
i

h :
Em(g ey NTi ) Th M1es 3 & ait

{aggeA}
(4.11)

i A h
); Ty ¥tge 3.3 q)Pﬁ,h{ﬁgi e A}

1

h-

& h
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The l.h.s. of (4.11) converges to

Em(£(t, N 1]), Ty DIfse(r)enl

]mTi' J

IN

(4.12)

Em(g(tj ﬂ‘ri), T.

j ey 3

1A

q)P .{6€(Ti) e A}.

Zi

Also

h -
(4.13) ngh{sgi e A} » pla: g(E(Ti),a) gAY,

1

(a _9? measurable function) for almost all E(TI) values

EC), T measure). Thus, the l.h.s. of (4.11l) also converges
i to (4.12) with the r.h.s. of (4.13) replacing the indicator
in (4.12). Now, the arbitrariness of m(-), q, t., J < q,

; implies (4.2) for A of the chosen class. Since such A

generate the Borel algebra over Rr, (4.2) holds as stated. Q.E.D.

s Theorem 4.2. Under (Al.l) to (Al.4), £(¢) and X(-)

(given by (1.1)) induce the same measure on Dr[O,w).

Proof., Define a jump time of X(*) to be a jump time
of Q(+). Then the interjump times for X(+) are mutually

independent, and exponentially distributed with mean value

1/¢c.

Furthermore, the conditional distribution of the value :

of the ith jump of X(¢) (given X(s), s < ith jump time, and

ik




B
j h

jump time, j < i) is the same as for £(+). Between jumps
the processes evolve as diffusions. Thus, by (Al.3), the induced
measures are the same for §&(*) and X(*). In particular, the

£(+) measure does not depend on the subsequence. Q0.E.D.

5. An Alternative Representation for Jh(-) and gh(-)

The representation to be developed in this section is
particularly useful when we treat the control case, for it will
allow us to prove optimality theorems along the lines of those

in [ 3], Chapters 8 and 9.

Theorem 5.1. Assume (Al.l), (Al.2) and (Al.4). Let

ﬁh(-) and ah(-,-) denote a Poisson process (and correspond-

ing measure) satisfying (Al.2). Then we can write

h _ h h ~h ~h
(5.1) En = x + Fn + Bn + Jn + En i

where %h(-), the interpolation of {ﬁg},converges weakly to

the zero process and

I

(5.2) 3 f g (" () ,a) 8" (duxds) =

i+l A
- J J g (M (s™), ) 0" (daxds),
t




2D

o)

and J™(-) is tight on D[0,»). (The integrations

h
ti+l -
j!x are always over the interval (ti’ti+l]‘ Only the
Ry
jumps of 6(-) on (t?’t?+1] play a role. Define
R = R0y, ete.)
Proof. Define sf‘= min{t: t > t? ﬁh(t) - ﬁh(t_) # 0},
and
h
bl
&= - J f g (£2,0) Q" (daxds)..
hnth
= i+l
Then, for any Borel set A,
sh . -h RS TeSLL T ArPRMRE L,
(5.3a) PO; + &5 e AlEy, § i, sy st} = TELA),
and
ch , —h H. . : .
(5.3b) P3 + S eb (31,...,3r)[g?, jei, sl ctl 1a

1ai ol A .
= P (gi, Jlluo-’Jr)s

Let us construct a new chain, also called {&2}, as

follows. 1If ah(') does not jump in (t?,t?;l], then let

h

Ei+l evolve from g? using the Markov law ph(-,-), as

h

before. If ah(-) does jump in (t?,ti+1], then set




&
3

i
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h
£34)

The law of the new chain is exactly the same as the law of the

h . . - 2h , =h h . h . :
- gi o (Jih'.."]]':‘h) if ]i + E:i e b (F’i’Jl""'Jr)'

former chain.

The difference E? = (P

=h
i )

h ~h
#107 Eill csane at 141y T O %€

is due to the method of discretizing the jumps, and {gh(-)}

converges weakly to the zero process, as h -+ 0. Define

E? =-e? + E? + gi' with interpolation ﬁh(-). Then (5.1)

holds, and ﬁh(-) + zero process weakly, as h » 0. Tightness

of {Sh(-)} follows from the properties of {Qh(-)}. Q.E.D.

Theorem 5.2. Assume the conditions of Theorem 5.1, and

lggf g(+,*) be continuous. Then {Eh(-),Bh(~),3h(-),§h(-),

4r+r'[

6“(-)} is tight on D 0,). Let h index a convergent

subsequence, with limit £(-),B(+),J(-),0,Q(+). Then Q(-)

is a Poisson process of the type of (Al.2) (with corresponding

A (¢
Poisson measure Q(-,-)), and there is a standard Wiener process

W(-) (we may possibly have to augment the space, by adding an

independent Wiener process) such that 6(-) and W(-) are

independent, £(-),B(-),J(-) are non-anticipative with respect

to 6(.) and W(*), and

t
(S M) ETEY = % 4 f £(£(s))ds + B(t) + J(t),
0
t
(5.5) B(t) = foa(g(s))dW(s)
t o i
(5.6) J(t) = fo J gle(s") ;010 daxds) .

*The continuity has and (also in Theorems6.l1 and 8.2) can be :
removed by use of a more "careful" choice of the discretization

for the jump.




Proof. The tightness follows from Theorems 3.1 and 5.1.
Also, a(') is a Poisson process of the asserted type since
each ah(-) is. The representation (5.4) follows from the weak
convergence.

A modification of the proof of Theorem 6.3.2 in [3] yields
that B(-) is a continuous martingale with respect to {és(t)},
where éﬁ(t) is the smallest o-algebra which measures

o)

E(s), J(s), Q(s), s £ t. The quadratic covariation of B(-) is

t
I 2a (£ (s))ds. Augment the probability space by adding ¢ (-),
0

an independent Wiener process, and let é(t) be the smallest
o-algebra which measures & (s), J(s), 6(5),¢((s), 8 < t. By
the method of Chapter 1l.4.4 and Theorem 6.3.2 of [3], we obtain
a W(+) (non-anticipatively) from £&(+), B(+) such that
{W(w), @(t)} is a Wiener process and (5.5) holds for all t,
w.p.l. This, together with the fact that 6h(-) is a Poisson
process, implies that {Q(t+s) ~ Q(t), W(t+s) - W(t), s > 0}
is independent of {6(u),W(u),u < t} for each t. Thus
{W('),6(°)} has independent increments (see also Section 9)
and since W(+) is continuous and Q(.) is a pure jump
process, by Gikhman and Skorokhod [5], p. 271, they are mutually
independent.

We have only to prove the representation (5.6). Define

£(07) = £(0), and




=2

A n-1 (piA+A e A
Al =y J [g(E(ih),a) - g(E(sT),a) 10 (daxds)
i=0 “iA
n-=1 (iA+A
aft - .Zo j- [g (R (in) ,0) - g(eM(s7), ) 10" (@axds),
1= 3

and let A({A,°), Ah(A,') denote the functions whose values are given

by the Aﬁ and Ag'A

We can show that (using Skorokhod imbedding)

, on the time intervals [nA,nA+A), resp.

zero process w.p.l

lim A(A,*)
A-+0

zero process w.p.l

Tim 1im ARGk, ~)
A0 B0

Thus, to prove (5.6), we only need to show that

iaHA 5
B(A,h,i) J g (£1(ia),2)Q" (daxds)

iA

g (£ (id) ,)Q(daxds) = B(A,i), w.p.l,

¥

JiA+A
iA
for each A,i (Skorokhod imbedding assumed, as usual, where

convenient).

Now

B(Ah,i) = T g(ePa), g
jeA J
B(A,1) = ) g(a(iA),qj),

jeA
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h

where q? (resp. qj) are the jt jumps of 6h(-), and 6('),

resp., and, by j € A, we mean that we sum over only the j

for which the jth jump occurs in the interval (iA,iA+A].

By weak convergence, we have q? > qj,gh(iA) +~ £ (1i4)

(w.p.l), and using the fact that

P{jump of 6(-) at iA or iA + A} = 0, and the continuity of

g(-,+) we get that
B(A,h,i) » B(A,1i) w.p.l, as h > 0. Q.E.D.

Remark on a useful representation for {52}' Augment

the space on which {52} are defined by adding an independent

standard R® valued Wiener proccess Y (+). In Theorem 6.6.1 of

(3] (where g(-,-) = 0), it was shown that we car write (for some
h
feghl
ho. h h
Bh = O(En)awﬁ Y

where the interpolation of eg converges weakly to the zero

s h h _h h = h

process and Wg (and en) depend on gn’Bn’w(tn+l) vt .

Also, the process Wh(-)J defined by the interpolation of
n-1

Wg = z GWS, converges weakly to a standard rE valued Wiener process.
i=0

W(*), and (5.5) holds with this W(*). We can do the

same thing here, defining 6Wn exactly as it was defined in

(3], Theorem 6.6.1, and Theorem 5.2 holds if W(¢) is con-

structed as a limit of {Wh(')}. We then can write

h - i) h h h
(5.7) Env = En * F(Eg)0%, + (5 oy

n+1
h sh h
+ J Jth g(EnIQ)Q (daxds) + Enr
n

for some {Eg} such that Eh(~) + zero process weakly, as h =+ 0.
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Remarks on an Alternative Chain for that of Section 2.

It is conceivable that the coefficients of all terms in

(2.2) such that Z eiji = 0, are not zero. Then, when there
i

is a jump, the jump could be strictly zero. 1If these probabilities
are small, then its'not important - but, if not, then we may be
able to save some computation by using a slightly different

chain {62}. Define

c(x) = cpla: g(x,a) # 0}
T(x,A) = p{o: g(x,a) ¢ A - {0}}/pla: g(x,a) # O}.
Assume that c(°*) is continuous. Equation (1.3) can be written as
(5.8) KV(x) + c(x) J [V(x+a) - V(x)IT (x,d0) + k(x) = 0.

Now, proceeding exactly as was done in Section 2, and

defining

2t x) = n%/1, (1) + T)n?) ‘s

h

P (%) 1 - exp - E(x)Ath(x),

yields (2.4), where all other terms are as defined there,

except that Th (defined as Fh was defined, but using T

in lieu of T) replaces Ph there.
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i The Ath(x) are larger than before - since we have

eliminated the zero jumps., With the new definitions,
Theorems 3.1 and 3.2 remain valid. Theorem 4.1 needs to be
! modified as follows. Here, let Oqpreces denote the times of

the actual (not zero) jumps of £(.), and let 9& be the smallest

c-algebra which measu.es £(s), s < Py oj, j £ i. The second
line of (4.1) remains valid, if c¢ is replaced by c(&(t)),
and the third line remains valid. The right side of the first
line of (4.1) must be replaced by

t+A

(5.9) Eg(t) exp - Jt c(E(s))ds,

where £(+) is a diffusion process df = f(§)dt + o(¥)dw on
[t,»), with initial condition & (t), but which is otherwise
indenendent of E£(-°).

Equation (4.2) must be replaced by (what is expected)

(5.10) P@i{ﬁ(oi) -~ E(Gi) e A} = T (¢ (Gi),A)

for each Borel A.
Theorem 4.2 also remains valid for the following
reason. Between jumps, both X(¢) and £(<) behave as

diffusions, and the conditional distribution of the jumps is

the same, where we now define a jump to be an actual non-zero |
jump (of £(¢) or of X(¢)). Furthermore, the distribution of

the interjump times is the same for both, namely

—— _ " ‘



(5.11) P{o,,170; > t]E(s), s < o0 E(0y) =y}
t

= Eyexp - IOEKE(S))dS.
which is also the corresponding distribution for X(-).
The details are similar to those of the foregoing
proofs, except for (5.9) and (5.11), which are a little more
involved. Also, the construction of (5.7) can be carried

out for the new chain, and Theorems 5.1 and 5.2 remains valid.

6. The Case ¢ = =

We now consider the case where the jump rate is infinite,

but where "most" jumps are very small.

Assume

(A6.1) m(A) < » for each A which is disjoint from the

origin. (Then, for each € > 0, m(+) is a finite measure on

R = f%sr [x] < elu)

(A6.2) There is a real K such that |[g(x,a)| < K|a

[o|m(da) <
(A6.3)
lajm(da) ~ 0 as € - O.

la|<e




Other sets of assumptions, besides A6.1-A6.3 can be
used. For example, each component of the vector Q(.) can
be treated separately with the appropriate assumptions on
glese).

For each ¢ > 0, let gE(-,-) denote a function
satisfying (Al.l) and (A6.2) (K independent of <€), and which

is zero when |a| < €/2, and equal to g(-,-) for |a| > €.

If ?(x,Rr) = o for some x, then we would have Ath(x) = 0,

and the approximation procedure in Section 2 has to be modified.
(This makes intuitive sense, for the interpolation interval

should decrease as the jump rate increases.) Choose some sequence
(to be further restricted below) €n 0, as h - 0, and define
fe(x,A) = m(as ge(x,a) € A). With difference interval h, we

discretize (6.1l) in lieu of the current form of (1.3).

Feh(x,A) = m(os Su (x,0) € A)
h

(6.1) Lv(x) + J [V(x+a) - V(x)]feh(x,da) + k(x) = 0, x € G.

~

y : h ; ; :
Define F?h(x,Jl,...,Jr) as T (X,]l,...,]r) was defined,

but using feh in lieu of T. Define c,(x) = {§ }fg i x93 »
i

where the sum is over all (jl,...,jr) for which (ji,...,jé) # 0.

The jumps of zero value are to be deleted, and we will use

st (x) = n?/1g, (x) + h%c, (x)]
Ph(x) = [1 - exp ~ ch(x)Ath(x)] or [ch(x)Ath(x)],

analogously to (2.3).
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Define ph(x,y) as in Section 2. Then we get the discretized
form (2.4), but with 0 Geedpres s il d/e, (K)y oplx) and the
h r
new Atth) and Ph(x) replacing Ph(x,jl,...,jr), c and the

former Ath(x) and Ph(x).
Theorem 6.1l. Choose €h such that
max ch(x)Ath(x) + 0, max m(o: |a| > eh/Z)Ath(x) +0,as R~ 0.
X X

Assume’ (Al.1) to (Al.4) and (A6.1) to (A6.3). Then (omitting

the assertions concerning 5T? and 6t,) Theorems 3.1, 3.2,

“

5.1 and 5.2 (if g(-,-) 4is continuous) continue to hold: in

Theorems 5.1, 5.2, we need to add to (the previously defined)

ﬁh(-) a_process ﬁh('), which also tends to zero weakly as

h - 0. Also, the remarks after Theorem 5.2, concerning wh(~)

and its limit W(*), continue to hold:

Proof. Tightness of {Fh(-),Bh(-)} follows from
Theorem 3.1. The value of €h is chosen to assure that Eh(-)
(see Theorem 3.1) converges to the zero process. Let Jh'a(-) denote
Jh(-), but where all jumps of absolute magnitude < § are deleted.
Then by Theorem 3.1, for each § > 0, {Jh’s(')} is tight. By
(a6.2) - (A6.3), there is a real Ky such that for each T < =,

§ > 0,

E max |J%(t) - Jh's(t)l < K,4T.
t<T g

*Where Al.2 is modified to take account of the jump properties

of 6(-) assumed in this Section.
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The last two sentences imply that, for any subsequence of {Jh(-)}
we can find a further subsequence that converges weakly in Dr[o,w).
Since tightness is used only to get weak convergence, we can
assume that {Jh(-)} is tight. Theorems 3.1 and 3.2 (except for
the assertions concerning GT?,GTi) follow from these remarks.

For Theorems 5.1 and 5.2 (with the appropriate generaliza-

tion of (Al.2)) define E? using g_ (+,*) in lieu of g(-,-), and

define si = min{t: t > t7, [G%(t) - §(t7)| 2 ¢, /2}. Define

i+l .
gh o g (£%,0) - g(t,0)10" (daxds),
x h 1 1

g . UTen

3=0
We continue to define 5? using g(°*,*), as in (5.2). Both ﬁh(-)
and Eh(-) + zero process as h > 0, by (A6.1) to (A6.3). Modify
ﬁg in (5.1) by adding é:. Then Theorem 5.1 continues to hold.

For Theorem 5.2, the assertions there concerning

A(A,+) and Ah(A,-) continue to hold in the present case, and
we only outline the convergence of B(A,h,i) to B{A,i). By

(A6.1) to (A6.3), both




S0

e ) leG®in),dMl, E Y lg(E(i) ay) |
jeA J jeA J

h
Iqj|§6 laylss

tend to zero as 6 - 0, uniformly in h. So we only need to
show convergence when Iqjl and lq?l are restricted to be
> §, for & arbitrarily close to zero. Choose any § >0

such that w(o: Ial = §) = 0. Then, by a weak convergence

argument (using Skorokhod imbedding), as in Theorem 5.2, we get

I gPuar,dM » I gEalag)
jel J jeA J

|51 >6 |a 16

w.p.l, as h > 0. Q.E.D.

Remark. The fact that Theorem 5.2 holds implies that
f £(-) and X(+) have the same distributions under (Al.3), if

| g(e,+) 1is continuous. Suppose that gh(.) is constructed by the

discretization of this section, but without assuming continuity
of g(-,+) 1in the second argument. Then Theorem 4.2 still

holds. The proof is more complicated and is omitted.

7. Convergence of the Functionals Vh(x) to R(x)

The chain {52} can be used to approximate a large
class of functionals of X(+), and of solutions to equations

such as (1.3).




Theorem 7.1 (see [ 3], Theorem 6.4.1 and [ 61,
Chapters 2 and 4). Under (Al.l) to (Al.4) (and (A6.1l) - (A6.3),

if ¢ =), if F(*) is any real valued bounded and measurable

function on Dr[O,w) which is a.e. continuous with respect to

the measure induced by £(+) or X(-), with initial condition x,

then

h
EFE ()] » EF(ECG)), as h » 0.

The theorem holds if uniform integrability of {F(gh(-))}

replaces boundedness, and the convergence is uniform on

compact x sets.

To treat Vﬁ(x) + R(x), in particular, some more
conditions are needed, since we need to know that our func-
tionals are a.e. continuous  (as in the theorem) and that the
approximations are uniformly integrable. Define T(-): Dr[O,w)
> [0,2] by 7T(x(+)) = inf{t: x(t) £ G}. We need to assume

that

(A7.1) t(*) is continuous w.p.l (X(+) measure,

X(0) = x); i.e., that, w.p.l, there are no path tangencies at

the point of contact of X(*) with 2G.

We also need that
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(A7.2) Exph is uniformly bounded in h (to get

uniform integrability). This is implied by

inf Px{escape time of X(:) from G <z T} > 0
xeG

for some T < =, See (3], Chapter 6.4.

Now, under conditions (Al.l) to (Al.4) (and (A6.1) to

(A6.3), and continuity'of g(-,+), if ¢ = »), and (A7.1) -

(a7.2), and EP(-) = x, we have that £%(.) » £(+) (which has the

law of X(+), X(0) x) as h - «, and

6 ™ (o)) » ¢ (£ ()
ph h T

fo k(c"(s))ds - f k(£ (s))ds
0

in distribution (and the mean values also converge; i.e.,

Vh(xl - R(x)), as h - 0.

8. An Alternative Interpolation Eh(-)

In [3] and in Section 2, the interpolation gh(-) is

constant on time intervals {At?}. Given g? = x, the inter-
polation interval [t?,t?+l) is known, and &h(-) is not a

+Theorem 6.1 assumed the continuity, but Theorem 4.2 still holds
when ¢ = =, although the proof was not given. Under (the
extended) Theorem 4.2, the continuity of g(+,*) can be dropped,
in favor of (Al.1l).
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Markov process. For some purposes, it would be convenient if gh(-)

were Markovian. In this -section, a right continuous Markov interpola-
tion, with random (exponentially distributed) interpolation intervals,

will be developed. It has the additional advantage that sup Ath(x)
X

need not be finite, and the condition (Al.4) can be dropped. We assume
c < o, although there is an analogous development for the case of
Section 6. Unless otherwise specified, symbols retain their earlier

definitions. First, the simple case g(-,*) = 0 will be treated.

8.1. Casg I g(+,*) = Q(-) = 0 (the case of [3],
Chapter 6). Let Ath(x) = hz/Qh(x). Define ah(-) (we use

the same symbol for the new interpolation) to be a Markocv jump

process as follows. Let E?h(t) be the smallest o-algebra which

measures Eh(s), s < t, set Tg = 0 and, for i 5 1, let T?
h h h .t

- —4 h
and T, Ti-1 Gri denote the i

i jump time and interjump time,

resp., of gh(-). Assume that

P(e™(:) changes in (t,t+]| B (), P (t) = x} = 1 -~ exp - (/2P (x)),

(8.1)
P{Eh(T?) - Eh(T?_l) = y| Eh(rg_l) = x} = ph(x,y), all x,y.
By (8.l)r
(8.2) I Ll Iy I Gl G D

I h %
Owing to (8.2), and to the law of gn(rz) - Eh(ri_l), the solution
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to (2.4] with (®"(+) = c = ™ = 0 here) still has the repre-

sentation (3.5), where Ph is the escape time of the new Eh(-)

from G. The fact that Vh(x) still has the representation

(3.5) is critical for our method. This, together with the

i
|
1

(to be proved under (Al.3)) fact that the sequence of new "random"
interpolations converges weakly to (1.1l), implies that the results
of Section 7 still hold for our new interpolation. This justifies
the use of this new interpolation also. Thus: cost functional for
chain = cost functional for interpolation, which, in turn, converges
to R(x). The same is true for the case g, Q Z 0, discussed

below. The actual computations of the approximations to functionals
of X(+), or to solutions of (1.3) will still be done using the law
of the chain. The interpolation is used only for the theoretical

arguments in the convergence proofs.

Define fﬁ(x) = o(x)o'(x) + hg(x) = Zh(x) - f(x)f'(x)(Ath(x))2
= I, ) - BIEY,, - E0] Ep = x1(E[E,, - &1| &8 = x])'. owing to

the nature of the interpolation Eh(-), the (mean)2 term does not

appear in the expression for the quadratic covariation.

Theorem 8.1. Assume (Al.1), (Al.2), and fix gg =

(0) = x, Let g(+,*) = 0. Then we can write

(8.3) Mgy = x + Py + B,

where
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t

PR (e) J £ (M (s) ) ds

t
as"(s),

0
t

8 (t) I [dEh(S) = f(Eh(s))dS] z Jo
0

and Bh(-) is a martingale with quadratic covariation

t
= h
Iozh(£ (s))ds.

The sequence {Eh(°), Fh(°), Bh(-)} is tight on D3r[0,w),

and for any weakly convergent subsequence, with limit denoted

by £&(+), F(+), B(*), there is a Wiener process W(-) such

that &(¢), B(-) are non-anticipative with respect to W(-)

and

t
(8.4) E(E) = x + F(t) + B(t) = x + I f(E(s))ds
0

t
+ J o(§(s))dw(s).
0

There is a martingale process Wh(-) with quadratic

covariation It such that

t t
@.5 @ = [ oEhenale) + e + [ GEen - o @matie),
0 . 0

vhere the last two processes in (8.5) tend to the zero process

i
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weakly, as h » 0, and 0, (x)q}(x) = I, (s), 0p(x) » o(x) as
h -~ 0, The sequence {Wh(')} is tight. Also, any weak limit,

W(+), is a Wiener process with the properties of the W(-) above.

Under (Al.3), the limit &(*) 4is the unique solution to (1.1)

(in the sense of distributions).

Proof. The proof is close to that given for the
original interpolation in [ 3], Chapter 6.3 and 6.6, and only

an outline will be given.

Part 1. Equation (8.3) holds by the definitions.

Fix h. Note that

h h
E[E(t+0) - £7(0) | B (0),eP(e) = %) = (£ atP(x)) ﬁ + 0(a)
At (x)

(= o(A) + conditional (on a jump) average change in Eh(-) over
the interval (t,t+A] times conditional probability of jump,

which is ——HA—— + o(A)) from which the martingale property of
At (x)
h

B (¢) follows. The quadratic covariation formula follows from

e@EM ) - B ) ) - B |BR W), = x)

= E[E"t+a) - £7e)) P era) - £Re)) 1| @Mt ,eRE) = x1 + o)

=T ) atP ) (—2—) + o(a).
h AP (x)




-40-
Part 2. The tightness of Fh(-) is obvious, together
with the fact that any weak limit must be continuous w.p.l.
The proof for {Bh(-)} closely follows that of [3],
Theorem 6.3.1 . In particular, if there is a real K such

that, for each T > S,

(8.6) g|BR (1) - BR(s)|* < k(T-5)% + o(n),

then, using the martingale property of Bh(-), we get both
tightness and continuity of all limits, as in [3], Chapter 6.
For notational convenience, suppose that Bh(-) is scalar valued.

We will evaluate

=[] Bty

by evaluating the four quantities (a) - (d). The l.h.s. of (8.6)
is bounded above by a constant times the sum of (a) - (d). Note
that Bh(-) has an absolutely continuous component, and a pure

jump component.

T L B e
(a) E j as" () J J I1 a8™(s
S

R
s i=2 %
T t 4
(b) Ej (as? (£)12 j j I1 as"(s,)
s g ) w3
T t
(c) E f rag® ()13 J ash(s)
S S




~ T
d) E j 1asP(e) 34,
s

(d) is clearly bounded above by some Kh4 times the
average number of jumps in [S,T], which is less than (T—S)K/hz,
for some real K. The quantity (a) is zero, by the orthogonality
of the increments of Bh(-). The quantity (b) equals, for some

real K,

T i =2
Ef fh(zh(_t))dtJ Hch(si)

s s i=1
g A
< K(T-8) E J J dB (si)
: s/ is1
< B (r-s)°.

Quantity (c) is bounded above by

t

T
o J @))% @s ) ? + (f as?(s))?1,

S S

which we can bound by using the results for (b) and (d-)t
Putting all the estimates together yields (8.6) for
some real K.
Thus, {Eh(-), Bh(‘)} is tight. Let h index a
convergent subsequence with limit £(¢), B(*). By the method

of Theorem 6.3.2 of [3], it can be shown that B(:) is a
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t
continuous martingale with quadratic covariation J 2a (g (s))ds,
0
and that (8.4) holds for a Wiener process with the asserted

! properties.

Part 3. The proof of the assertion concerning the

representation (8.5) is close to that given in [3],

Chapter 6.6, for a similar result. Let wh(-) denote a
standard R® valued Wiener process, which is independent of
Eh(-). Choose measurable diagonal Dh(-) and orthonormal
Ph(-) matrices such that fh(x) = ﬁh(x)ﬁﬁ(x)?ﬁ(x), where
oy (5} = ?h(x)ﬁh(x) > o(x) as h > 0. Define I, (t) =
fh(gh(t)), PP(e) = PP (t)) ana D (t) = Bh(gh(t)).

Let (dl(t),...,dr(t)) denote the diagonal elements
of Dh(t). Choose o € (0,1). Define the diagonal matrices
D;(t),D;+(t),D§(t), resp., as the matrices with ith diagonal

-1 -1
elements di (t)I{di(t)>0}' di (t)I{di(t)zha} and

di(t’I{di(t)gh"‘}' EEAP.

Define Wh(t) by Wh(O) = 0 and

af'®) = ot mpywa ) + a-of o )@ o).
Then (8.5) follows from'

a¢) = ph(t)nh(t)dv?‘(t) + BNt = oh(gh(t))dwh(t) + aE\t),

+
dEh(t) is defined analogously to the eg above (6.6.6) in [3].
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where Eh(°) is a process which tends weakly to the zero
process as h - 0. The assertions concerning the tightness

of {Wh(-)}, the non-anticipative property of W(+), and the

t
representation I o(£(s))dW(s) are all similar to the proofs
0

of the related assertions in [3], Chapter 6.6, and are
omitted. Q.E.D.

In [3], Chapters 8 and 9, to prove optimality of the
limit of the costs for the discretized problems, it was
frequently necessary to "discretize" an arbitrary control for
the continuous process X(°), and then to apply this to the
discrete model. The wh(-) obtained in this Section can be
used instead of the Wh(-) of those theorems (e.g., [3]

Theorem 8.2.4, etc.)

8.2. The General Case (g, Q Z 0)

Of the several ways in which a Markov gh(-) can be
defined, we will develop one that is particularly easy to

relate to formulas such as (2.4), (2.5) and (3.5). Pure

jump right continuous processes Ah('),Jh(') and Ch(-)

will be defined such that

t t
(8.7) ele) - ePee) = f aal(u) + f ag? (u)
S S

Define E'(x) = h’/Q (x). Note that FE'(x) is
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defined as Ath(x) was in Section 8.1, but not as Ath(x)

was in Sections 2 to 7. The processes are defined by the

following relations. Let S(t) denote the set {Eh(s),Ah(s),

Jh(s), s < t}. All o(+) are uniform in w,t, but not necessarily

in h.

(8.8a) P{2 or more jumps of{Ah(-), JR()} in (t,t+8]l |S(t)} = o(n),
(8.8b) P{Ah(') jumps in (t,t+A] | S(t),Eh(t) =8 b= A/th(x) + o(4),
(8.8¢) P{J™(-) jumps in (t,t+A]|S(t)} = cA + o(A).

th

Let 1 and 94 denote the i jump times of Ah(~) and

i
Jh(-), resp. Then let

(8.80) R{A"(ry) - AM(D) =yl sG]t et = % = PRxw),

(8.8e)  P(I"(o;) - SO = Gih,..., 3t SE 0,8 (0] = x) =

- z rh(xljllG"ljr)l
(jl,...,jr corresp. to ji,...,j;)

(see Section 2). Note that (8.8e) allows jumps of Jh(-) of

zero magnitude, as in Sections 2 to 4.
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Suppose that gh(°) jumps at t, with
Py = Eh(t+l = x. Then Eh(') is constant until the next
jrmp. The interval until the next jump is the smallest of two
random variables, one exponentially distributed with mean 1/c,
the second exponentially distributed with mean KEh(x). Thus ,
given S(t) with &h(t) = x, the probability that the next jump

after t 1is that of Jh(-), rather than that of Ah(')’ is

TR (x) ¢

(8.9) s
1+At (x)c

’
which is precisely §h(x) (see (2.3a)). Thus, the probability
that Jh(-) jump next is just the probability that the
change in €2+l - Eg (given {52 = x} and using (2.3a)) is due to
the "jump component" of the process {E?}.

The average (conditioned on S(t),&h(t) = X) time until
the next jump after t of Eh(~) is

—h
(8.10) T
cAt™ (x)+1

which is precisely the Ath(x) of Section 2. Let {ui} denote
the jump times of Eh(-). Then the distribution of

ih(ui+l) - Eh(ui), given gh(ui) = X, is the same as that of
h h /expression for the

h et : : g
£n+1 - gn given En = x, This, together with the’conditional

average waiting time (8.10), implies that (3.5) remains the
solution to (2.4), where gh(-) is the process just constructed,

and G its' escape time from Gh’
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Thus, the new interpolation makes sense, for our purposes.
It is clearly a Markov jump process, and can be used to study
the limit of Vh(x), and of other functionals of the chain,
provided that &P(.) » X(+) in distribution, as h -+ 0, and
(Al.3) holds.

Using the definition of Bh(-) and Fh(-) of

Section 8.1, and letting Eh(O) = x,

t
(8.11) e wx ¥ f £(eM(s))as + Bty + aP(e)
0

Let Qh(-,-) denote a Poisson measure (with corresponding
Poisson process Qh(-)) satisfying (Al.2). Then we can assume

that Jh(°) has the representation

t 7 ot

(8.12) Jh(t) = f J g(Eh(s ) ,a) ol (daxds) + ER(t),
0

where ﬁh(°) + zero process weakly, as h - 0, and gh(-) is

non-anticipative with respect to Qh(-). The Eh(-) repre=

sents only the indefinite sums of the difference between the

jumps in the integral in (8.12) and the points on the grid

G to which our convention assigns these points; e.g., the

h
assigned point is (jih,...,j;h), if the jump is in the box
bh(jl,...,jr). We can assume the form (8.12), in the sense
that there are processes gh('),ﬁh('),Ah(-) satisfying the
properties below (8.12) and such that (8.8) continues to hold

and where Eh(-) is defined by




L

t

ey = x + AR + J J g (e™(s7) ,000 oxds) + By,

0
(8.13)

Ah(t) = Fh(t) + Bh(t),

and the (EPC-1,F*(),BRC),00¢) + B%(.)) in (8.13) induce the
same measure on D4r[0,m) as does the set in (8.11) (with %h(-)
deleted). The only purpose of ﬁn(-,~) is to generate the jumps
of Jh(~), according to the appropriate distribution. Define

Wh(-) as in Section 8.1.

Theorem 8.2. Assume (Al.l) - (Al.2). Define EN(-),

Fh(-),Bh(-),Jh(-) (and ﬁh(-),ah(-), where appropriate) by the

construction leading to either (8.11) or (8.13). The assertions

of Theorem 8.1 concerning Bh(-) and Wh(-) continue to hold.

The processes above are all tight, and ﬁh(-)-+ Zero process,

ah(-) ~ Poisson process Q(-), weakly as h + 0. Let h index

a convergent subsequence of the other processes, with limit

E(),F(),B(*),T(-). There exists a Wiener process W(*) (which

can be the limit of Wh(-)) such that

t
E(t) = x + I f(E(s))ds + B(t) + J(t),
0

where

t
B(t) = IOG(E(S))dW(S).
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and £(+),B(*),J() (and 6(-), where appropriate) are non-~

anticipative with respect to W(+). Indeed, 6(-) and W(-)

are independent,

The process J(+) has the same properties as the

J(+) in Section 4. In the case of the construction (8.13)

and if g(-,+) is continuous,
2 o -
J(t) = J { g(g(s ),a)Q(daxds), all t, w.p.l.
0

Under (Al.3), the limit £ (+), under either construction,

induces the same measure on Dr[O,w) as does the solution

of (1.1).

The proof is a combination of those of Theorems 4.1,
4.2, 5.2 and 8.1 and is omitted.

Under (Al.3) and (Al.4), the processes of this section
and that of Section 3 are asymptotically weakly equivalent to
(1.1). The process of this section is clearly Markov. The
results of Section 7 hold without (Al.4). The process in (3.5)
can be replaced by that of (8.11) or (8.13). Equation (3.5)
holds for the interpolation of Section 3 even if (Al.4) does not
hold, but in that case, the weak limits of those interpolations

are not necessarily equivalent to (1.1).
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9, Optimal Stoppping Problems and Auxiliary Results

First, we prove a result which is useful to show that
a control or stopping time is suitably non-anticipative. Let
B(*),Q(),w(*) and Y be processes with paths in some
DPIO,m): and a random variable,such that Q(+) 1is a Poisson
process with the properties of (Al.l), w(+) is a Wiener process
and, for each integer b and bounded continuous fi(') and
each t > s (a given number) and real numbers tl,...,tb < &y let

(9.1)  EBEjME,Q@(E)),wit,),plE;), i < b) Gt = wiE) =0, ux0,

1A

(9.2) Efl(Y)fZ (Q(tl) rW(ti):D(ti): i 5 b) A(tlu) =0, u 2 0,
Alt,u) = WtH) - wt)) witra) - wit)) - uI

(9.3) {Q(stu) - 2(s), u > 0} is independent of

{Q) ,w),p ), u < s,Y}.

Theorem 9.1. Under the above assumptions with s = 0,

Q(s),w(-) have independent increments. In general

{Q(s+u) - Q(s), w(s+u) - w(u), u > 0} is independent of

{Q() ,w),p(u), u < s,Y}.

Proof. Since the first assertion follows from the

second, only the second will be proved. Let Op = 8 and
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{cj, J 2 1} denote the jump times of Q(*) on (s,T], where
T is an arbitrary number > s. Let A(*) and n(+) denote
vector valued bounded continuous functions on [0,T], and let
v denote a vector. Define

t t
A(t) = exp i[v'Y + f At (u)dw(u) + f n'u)ag(u)l.
0 0

By the assumption (9.1) - (9.2), w(*) is a martingale and a
Wiener process on [s,T] with respect to {¥9(t), t > 8},
where 9(t) = 2(Y,w),Q),p), u < t). Also, the oj
are stopping times with respect to { ¥(t), t > s}.

We have

A(t) = A(s) + | (A(o]) - Aloy_p)] + ) (Afoy) - a(o)].

j21 . 321
c.<t o.<t
J= g

By Ito's Lemma, the first sum is (A(u ) can be replaced by

A(u) here)

(» S

j S 2
3 j A(uT) [i2' (w)dw (u) - -]-)‘—(‘z:l—)l-—-du].
J>1 oj-l

o.<t
J—

The second sum is

e i




s
!

4

N A(o'j')[(exp in’(oj)dQ(cj)) - 1]

t t
= J (exp i[v'Y + J

; t
A'(u)dw(U)]dt[exp i j n'(u)dQ(u)].
s 0

0

Define E(t) = EA(t). Then, (9.1) - (9.3) imply that

T 2
©.4)  Ee) =2 + [ B - DY cg@ - niay,
S

where
%(t) = E exp i1 n'(t)X,

where X has the distribution of Q(cj) - Q(og), the jump
in Q(*). The unique solution to (9.4) is

Y

t 2 t
(9.5) E(t) = E(s)exp[f B-(—gLLdu + J c(%(u) - 1)du].

s s
The result follows from the product form of the characteristic
functional in (9.5), since the exponential term is the
characteristic functional of {w(s+u) - w(s), Q(s+u) - Q(s),

0 f_ u i t = S}. QoEcDa

Applications of Theorem 9.1, Let 6(-),W(-) denote

the limits in the past sections. Set s = 0, and drop Y, set
6(4 =Q(), W() =w(), £() = p(+). Equations (9.1) - (9.3), and the

assumptions
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above themsfollow by the type of weak convergence arquments

used in the proof of [3], Theorems 6.3.2 and 6.6.1. In
Theorem 6.3,2, the g(sil (with or without the superscript h)
are to be replaced by g(si),Q(Si),W(si) (with or without the
superscript h).

Theorem 9.1 is the analog for our case of [3],
are
Theorem 8,2.1 and Corollary 8.2.1, which/used to show that |

a stopping time p which is a limit of {ph}, where Ph is

an optimal stopping time for an optimal stopping problem on

the chain, is non-anticipative with respect to W(-). Here, we
Theorem 9.1 is the analog - for our jump case-of [3]
Theorem 8.2.1 and Corollary 8.2.1. These theorems were used to

show that certain limits of optimal controls or stopping times

for optimal control or stopping problems on controlled forms
of {Eg}, actually converged to non-anticipative times and
controls for the limiting controlled process. The same thing
is done here. For example, in the context of [3], Corollary
8.2.1, we would set Y = I{pgs}' where p is the limit of the
"approximate" stopping times, and show (9.1) - (9.3) by weak

convergence arguments as in [3].

The technique in (3], for proving optimality of a .
limiting control or stopping time, involved comparing Eggt
under the optimal policy for each controlled chain {52} to
the cost under a "discretized" form of a policy for the

controlled diffusion. The same thing is done here. We only
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i illustrate the analog of the technique of [3], Theorem 8.2.4,
to which the reader is referred. The remarks below will
suggest the necessary alterations to the other policy
discretization techniques of [3], Chapters 8 and 9.
Let T < T denote a stopping time for (1.1) which is a func-
tional ef wi(:),0(:). Det G <6 << A < T with A/ = q,

an integer. Let .QﬁA(w,Q) denote the smallest o-algebra

which measures {w(ié),Q(id8), ié < nA}. Define
s S ]
pi((s'A) — EX[TlglA(w’Q)]' Ak 1'

and j 1

T/A
t(6,4) = ] (1A)1

=il {pi((SrA)f_iA,pJ((S,A)>J§’J<i}'

If 1(§,A), or any other stopping time, is not defined at some w,

set it equal to T there. Let the decision sets for Tt (§,4)

ig(rx+r')

be Ai(G,A) € R (i.e., TS,A) = 1 if

{w(3s1,Q(38), 3§ < ia} e A;(8,4)).

€
For each ¢ > 0, there are sets Ai(G,A) and Ae i(G,A),
’

which are open and closed, resp., and which satisfy:

€
Ai(érA) , Ai(épA) :)AE i(G,A)r

’

] P{w(38),Q(38), 36 < iA) e AL (§,4) = A_ . (8,A)} < e
i €,1 -




For each i, there is an open set, AE(G,A), containing

Ae i(6,A), and whose closure is in AE(G,A), and such that
’

PL(w(i8),0(38),36 < 1A) e 3AS(5,0)) = oO.

These sets {ii(ﬁ,A)} are used to get the approximate stopping

times, just as the Bg were in the reference. Define

. ; = ; N
CC=1ve pHItEE) e BI(8,8), v £ AJ?(&,A) x gATHEERY o gy
Define
T5(8,8) = 48 if {w(36),Q(36), 36 < iA} c; »

T if not otherwise defined.

‘The t8(8,A) with (Wh(jé),éh(jé)) substituted for (w(j6),Q(3js))

is the appropriate discretized comparison stopping time for

{Eg}. The rest of the development is as in the reference,
here
except that e 0 /replaces n > o there.
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