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Preface

Closed-loop guidance laws resulting from differential
game models are seldom realized. Several approximations to
the closed-loop law, based upon updating a reference open-loop
trajectory, have been postulated. This thesis represents the
results of my attempt to apply a differential dynamic program-
ming scheme with a new convergence control parameter technique
to an air-to-air missile intercept problem using nonlinear
dynamics.

I wish to gratefully acknowledge the assistance of Major
Gerald M. Anderson for both his classroom presentations on
optimal control and his interest in this thesis. In addition,
I wish to express a great deal of gratitude to.my wife, Terry,
who not only put up with me during this task, but also typed
the entire thing. Most of all, I want to thank my son Mibhael,
who with one of his smiles was ablé to 1ift me from my periods

of gloomy frustration.

Albert H. Ferraris
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Abstract

An intercent problem between an air-to-air missile
and an aircraft is modeled as a zero sum, free final time
differential game which includes nonlinear dynamics and a
payoff related to the kill probability. Previous research
has shown that the currently used guidance scheme,
proportional navigation, is nonoptimal in this type of
problem formulation and a higher kill probability is possible
with a guidance law based upon a differential game theory.

A differential dynamic programming method is applied
to the intercept problem in the search for a real-time feedback
solution. A convergence control procedure is introduced
in an attempt to enhance the convergence of the typically
long-time solution methods. The closed-loop guidance law
which results is compared to both proportional navigation
and some exact open-loop solutions by means of an off-line
simulation on a CDC 6600 computer.,

The method does not yield a real-time solution for this
problem and does not give improvement over a proportional

navigation scheme.
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APPLICATION OF DIFFERENTIAL DYNAMIC PROGRAMMING
TO AN AIR-TO-AIR MISSILE GUIDANCE PROCBLEM
MODELED AS A DISFERENTIAL GAME

I. Introduction

Background
Proportional navigation, whereby a pursuer is guided

toward a target at a rate proportional to the measured
rate of rotation of the pursuer-target line-of-sight, is the
principal guidance law currently in use with most air-to-air
missiles (Ref 10). It has been shown that proportional
navigation is optimum for problems using linear dynamics
and non-maneuvering targets (Ref 5:287-288). Several
attempts (Refs 1, 2, 3, 4) have been made to devise
closed-loop optimal control laws using nonlinear dynamics,
which offer an alternative to proportional navigation if
formulated in a closed-loop feedback strategy. One example
(Ref 4) requires that the evader's future control strategy
be known, but does not allow the evader to take advantage
of the pursuer's limitations in predicting the coantrols.

The theory of differential games (Ref 6) provides a
more realistic modeling of the pursuit-evasion problem,
The evader's natural desire to escape, and the ability
to convert poor pursuer strategy into an advantage for the
evader, can be included in the guidance philosophy.
Correspondingly, any nonoptimal play by the evader would

result in a more favorable condition for the pursuer.
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Optimal open-loop controls can be found for the
problem through the solution of a two point boundary value
problem which arises from the application of optimization
conditions (Ref 5: 212-246). Since these controls are
open~-loop, they do not allow the combatants to capitalize
on each other's errors. Near ovtimal feedback strategies
based upon a linearizgtion about the nominal trajectory
(resulting from the open-loop cpntrols) which is periodically
updated have been proposed (Ref 1, 2, 3). They provide
some real-time, near optimal controls; however, the nominal
saddle-point solution is required for the linearization and
the updating must be accomplished often enough to keep the
assumed linearization valid. This reoresents an enormous
investment in computational time and storage space when
applied to problems which include nonlinear dynamics and
realistic maneuvers.

A comparison between proportional navigation and
differential game guidance (Ref 11) where nonlinear dynamics
and target maneuverability are allowed, conclusively proves
that proportional navigation is not optimal. An off-line
computer simulation (Ref 11: 94-100) was used to solve the
problem but a real-time application was not realized. The
potential gains involved make the search for a.real-time

implementation worthwhile.

Statement of the Problem

An intercept problem between a heat seeking, air-to-air

missile and an aircraft (Ref 11), modeled as a zéro-sum,



free final time, differential game between two intelligent
combatants, forms the model for this thesis. A differential
dynamic programming algorithm (Ref 8) is used to obtain a
closed-loop solution for the problem. The aim is to
test this algorithm for the possibility of obtaining a
real-time guidance law to be used on a short duration
(typically less than six seconds) air intercept problem
by periodically updating a computed control history.
Each combatant can change his control at updating points
to capitalize on deficiencies in the adversary's strategy.

A convergence control procedure (Ref §) was included
in an attempt to accommodate convergence problems associated
with the inciusion of nonlinear dynamics and to aid in
keeping the computational time to a minimum, while not
significantly reducing the accuracy of the final solution.
The major emphasis of this thesis is to seek a real-time
implemenfation of the differential game feedback guidance

law to the nonlinear model.

Overview

Chapter II discusses the mathematical aspects of
differential games. The dynamic programming algorithm
used in obtaining the closed-~loop control strategies is
explained in Chapter III, while the game scenario is
presented in Chapter IV, The results obtained in the
application of this algorithm, and those resulting from

an application of proportional navigation to the missile-

aircraft intercept problem are compared in Chapter V.

3




U

—ﬁ'.\

II. Differential Game Theory

Mathematical Formulation

The zero-sum differential game may consist of the state
equations, some path or terminal constraints, a terminal
(stopping) condition which determines when the game ends,
and a payoff or cost function. The state equations which

describe the motion of the two players are represented as
X = 'F(x’u,,v,i) : x({‘) = X, (2-1)

where x is an n-dimensional vector which represents the
state of each combatant, u is the vector control of the
pursuer (minimizer), and v is the vector control of the

evader (maximizer). Constraints may be imposed upon the

controls of the form
C(xp,u) &0
C(%v) <0

where xp and Xo represent the pursuer and evader components

of the state vector. In addition, terminal constraints of

(2-2)

the form
vf[x(tf) Y ] 0 (2-3)

may be included. For situations in which the final time
is left free and no terminal constraints are imposed, some

stopping condition must be specified, for example %f'(J)=O.




The cost function is expressed in general as
&
5= cp(x(l.'f).f{)fj L(xu,v, ) dt (2-4)
t

The cost is a numerical measure for determining the outcome
of the game and for evaluating the effectiveness of a
particular selected strategy. The game is termed zero-sum
because there is a single payoff and one player's gain is
the other player's loss. The pursuer's goal is to minimize
the cost, J, while the evader strives to maximize it. This
forms the basis upon which each player selects his controls.
The objective of the game is to determine optimal control

strategies, u* and v*, such that
T(wv) & Juhv*) & T(uv) (2-5)

If the pair u* and v* can be found, it is termed a saddle

point of the game.

Necessary Conditions for a Solution

The problem under consideration in this thesis is a
free final time differential game without terminal constraints.
A necessary condition for the saddle point solution is that

the Hamiltonian, H, defined as
T
Hix,Auv.t)= Af +L (2-6)

be maximized for admissible values of v, and minimized for

admissible values of u. For games in which the Hamiltonian

5
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is separable in u and v, where
H= He(x,v) + H, (x,u)

the following necessary conditions apply (Ref 5):

£ —.EH.
A dx
N(t) = 2@
(). ;t‘
M _ 0
ow
2H - o
oV
o9
H(t,) = - -_.I
7
It &

These conditions hold if there are no control constrain
For the case where control constraints are imposed, the
following conditions apply (Ref 5):

XT: 3 _y 8¢
X ox

X *F
M - ) o<
ow L1'S
-a-'..‘- - -9 e-s
v \"4

o

(2-7)

(2-8)

ts.

(2-9)



where A represents the n-dimensional co-state vector and )
is the Lagrange multiplier vector which obeys the

following (Ref 5: 108-109):
& (o}
¥=06 Fer (< (2-10)
90 ¥Ffor CzoO

The Two Point Boundary Value Problem

The application of the necessary conditions, Egs (2-8)
or (2-9), result in expressions for the saddle-point
controls, u* and v*., These controls, u*(x, A , t) and
v*(x, A , t), are substituted into the state and co-state
equations to form a two point boundary value problem

(TPBVP) of the form:
= f(x,At) 5 x(t)= X,
A.: (xlApf) ; {'): b.g (2-11)
? ; /\(f axlf
H(é‘) — -E_QI
: ot t{:

The solution to the TPBVP yields open-loop controls of the

form
w(t) = u.(x,,/\,,U

v(t) = V("o.*., {) T

These controls are termed open-loop because they depend
only upon the initial conditions, the time, and the
assumption that each player will employ the optimal
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strategy. They do not provide a means for either combatant

to capitalize upon nonoptimal play by the adversary. One
method for determining control strategies which are able

to adapt to variations in the opponent's strategy requires that
the solution to the TPBVP must somehow be periodically

updated based upon more current information. This

philosophy is based upon the fact that optimal closed-loop

and open-loop controls have the same time history and state
trajectories. This idea forms the basis for the determination

of closed-loop controls which are able to transfer one

player's nonoptimal strategy into an advantage for the

other.
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III. Closed-Loop Control Strategy

The traditional open-loop solution to the TPBVP, Eqs
(2-10), requires that initial values of the co-states, A (0),
be known and utilized in a forward integration. These values
are difficylt to arrive at, and they must be reasonably
close to the optimum co-states to hope for obtaining a
solution to the TPBVP (the open-loop controls). Further
complications arise because the TPBVP is extreiuely sensitive
to even small variations in the initial co-state values.
Large trajectory deviations may result and convergence may
be inhibited (even precluded) as indicated in Fig. 1 (Ref 9).
Without an gccurate TPVBP solution, closed-loop controls

based upon the updating of open~loop controls. is impossible,

oel

A (o) -

optimal
trajectory

oeT

A (o) +aA
—

Fig. 1. Co-state Sensitivity

The Differential Dynamic Programming method (DDP) is

an alternative method for obtaining closed-loop controls.
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The DDP Method

The DDP method (Ref 7, 8) attempts to solve the

following problem:

ajo(x,f) + H(X)J:’U."V'. t) = @

ot (3-1)
I(xth), ) = P(x(t k)

M= L(x,d.v,{)i- J:T{-'(x,u,v,t)
30 = U v ) (3-2)
V».(x;:{) = w:{&xt-{(x,J':,u*‘v' t)

; 3
where the subscript © indicates optimality and Jx='§;.

The solution to Eq (3-1) yields an optimal cost, J°(x,t),
which, when substituted into Eqs (3-2), results in optimal
closed-loop controls u* and v*. Unfortunately, Eq (3-1) does
not, in general, readily lend itself to analytical solutions.
The DDP method provides a numerical tool for obtaining the
solution in an iterative manner.

If Eq (3-1) is expanded to first order about the
optimal trajectory, x*, the following relationships emerge:

—a = H(ZW V¥ 3 ¢) - H(X,T,9,3, ¢) 1 alt)=0
» T
-3y = g.‘!‘! (%,w* v T, &)+ [»' :—E (x,u’ V5 t)] (3-3)

L(Fl %) = 39 (2(8), ¢)

where U and V are nominal controls which result in a

10
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nominal trajectory X, and a(t) is the difference between
the optimal cost, J°, resulting from the application of
the optimal controls u* and v* in the state equations, and

the cost, 3, obtained from using nominal controls u and V.
alt) = T (v - (T, (3-4)
The predicted cost change, a(to), can be expressed as
q(t,) * ap(fo) + ae(to) (3-5)

where ap(to) is the predicted cost change due to changes in
the pursuer's control and ae(to) is that due to changes in
the evader's control. These relationships, Eqs (3-3), are
valid if ax = x“(t) - x(¢) is not excessively large
within the time interval remaining due to the linearization.
The derivation of Eqs (3-3) is presented in Appendix C.

The mechanization of the DDP algorithm for obtaining
optimal closed-loop controls is as follows:

(a) Nominal controls, u and v, are used in the
state equations, Eq (2-1), which is then integrated forward
in time until reaching the stopping criterion, to determine
a nominal trajectory x(t) and a cost J(t) from Eq (2-3).

(b) Egs (3-3) are integrated backward in time,

using the same nominal controls, u and v, with appropriate

boundary conditions. At each step of the backward integration,

theconditions of Egs(3-2) are enforced to obtain new controls
u*(t) and v*(t) which are stored in the computer.

(c) The new controls, u* and v*, are applied to

n
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Eqs (2-1) and (2-3) in a forward integration as in step (a).
If the change in cost, a&J = J (w* v".f)'— 3’°(Q,V.'t)‘
is of the same order as a(to), u(t) and v(t) can be
replaced by u*(t) and v*(t). Steps (a) through (c) are
repeated until a(t ), a (t,) and ap(to) are small,

(d) Wnen the predicted cost changes have been
decreased to a prescribed small value, the computed controls
are u;ed as the optimal controls for a specified period of
time (a fixed portion of the trajectory).

(e) At the end of the specified time interval,
the entire sequence is begun again using the conditions
at the end of the interval as the new initial conditions.

If the actual cost change, & J, is not on the order of
the predicted cost change, a(to), some form of convergence
control must be supplied to assure that a solution will be
found. The method used in this problem is the Convergence

Control Parameter method (CCP) (Ref 8).

The CCP Method
The magnitude of @4 x(t) can be restricted if the

control changes between iterations, & u(t) and & v(t),

are not excessively large. The idea behind CCP is to restrict

the magnitude of the control changes by means of convergence
parameters attached to 4 u(t) and & v(t).
An augmented Hamiltonian,'ﬁ, is formed as follows:
o~ ~
H= H(x,u'au,v'av,f,.ﬁ.) Pe ;t)

(3-6)

H=HEuv It) +3owfew -4 avik av

12




where Pp and Pe are the convergience parameters. These are
diagonal matrices whose elements are positive values. A
saddle-point to ﬁ'is sought through the DDP method.

The predicted cost change, a(t ), written as

q(t.) = Q’(to\ +a, (f,)

allows ap(to) to be dependent upon P_ and ae(to) upon P_.

Y
An analysis of the relative magnitudes of the predicted and
actual cost changes allows the penalty terms to be adjusted
individually for the best convergence characteristics as
explained in Appendix D.

If the predicted cost change, a(to), is approximately
equal to the actual cost change, & J, the series expansion
of Eq (3-1) is satisfied. The relationship between 4 J
and a(to) can be plotted and divided into several regions
to indicate the effectiveness of the selected penalty

values in effecting good convergence of the solution.

This is explained in detail in Appendix D.

13

o it P A P P Al 4%




T

IV. Intercept Problem

The specific problem under consideration is a
pursuit-evader situation between an air-to-air missile and
an aircraft. This problem is modeled as a zero-sum

differential game with free final time.

Underlying Concepts

The aircraft is modeled with the stall 1imit, thrust,
and drag dependent upon altitude and velocity. The missile
is a thrust-coast air-to-air missile utilizing an infra-red
seeker. Missile guidance is begun at the termination of
the boost phase with drag dependent upon altitude and velocity.
The game '"ground rules" are as follows:
(a) Each vehicle is represented as a point mass,
maneuverable in three dimensions.
(b) All maneuvers performed are flown in a
co-ordinated fashion.
(c) Gravity is represented as a constant in both
magnitude and direction.
(d) Both combatants are presumed to have perfect
knowledge of the state of the game at all times.
(e) With free final time and no terminal conditions
to meet, the determination of when the game ends is the

point where %f (J) = 0.

Vehicle Models

Aircraft. The aircraft model is based upon the Fi.
The stall limit and thrust variations with velocity and

14
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altitude are represented as polynomials with the maximum

throttle setting used throughout. The equations of

motion are

%
t

v

*-

-
-

L s
-

vcosY Cos o

vV¢cosY Sin o

v sin ¥ .

[Tcosx - D];'\- i Rl Y (4=1)

[L+ rs‘.m].cg.%_ _ Ycos¥
m Vv \"4

[L + Tsing SE.

mvV Cos Y

where the variables are defined as follows:

X

¢
¢
v
¥

r o}

distance in the north direction

distance in the west direction

altitude

magnitude of the velocity

angle between the velocity vector and the
local horizon

angle between the projection of the velocity
vector in the x-y plane and the x-axis

angle of attack (defined as the angle between
the thrust and velocity vectors)

bank angle

force due to drag

1lift (perpendicular to velocity vector)

15
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acceleration due to gravity

LV
n"

T = thrust along the aircraft centerline
)
¥

v (

z(jgit.__
! &

]
' [
n l
‘ |
- W

! l ¥
| .
g o
» ! '
. 2 - l
o /\cx
/ ‘.

Fig. 2. State Variable Depiction

The controls are the bank angle and the load factor.
No constraints are imposed upon the bank angle; however,
the load factor is constrained aerodynamically as a
function of altitude and airspeed, and limited structurally

to six g's. Expressed mathematically, the constraints are

16



written as follows:
Cl(n‘} ,V) 2 0 (4=2)
Cin}j2 ©

where C1 is tne aerodynamic constraint, C2 is the structural
limit, and n is the load factor.

The force due to drag is
D:'.CD Q s (4-3)

where the following relationshivs define the variables:

2
e = G BC
W 4
Q :‘? fo € Ve (4-4)

€

S = reference area

Numerical values for the models are listed in Appendix E.
Missile. The same equations of motion, Egs (4-1),
are used in the missile model; however, the missile is
considered in the coast phase only so that the thrust, T,
is zero. No aerodynamic constraint is imposed upon the
missile load factor. The structural limit is set at

fifteen g's with the corresponding constraint relation as

follows:

Cs('h) 2 (o] (‘+'5)




Selection of the Cost Function

The selection of a suitable cost function is probably
the most subjective portion of the differential game
problem formulation. The cost function used in this

problem is
2 -
J = AR - Bcos(p) +Ctr . B

where R represents the range between the aircraft and the
missile, F represents the angle between the velocity
vectors of the two players (track crossing angle), te is
the final time (time at which &5 (J) = 0), and 4, B, and
C are suitably selected weighting factors.

The selection of the "R°" term is based upon the fact
that the probability of kill, P, , is primarily determined by
the miss distance in an inversely proportional manner (Ref 9).
The "Ra" term heavily penalizes the pursuer for failing
to close to within a small final range, resulting in the
miss distance being the predominant measure of warhead
effectiveness,

Some consideration must be given to the fuzing and
explosive pattern of the warhead. The "destructive fragments"
radiate outward from the explosion. Clearly, a proximity
fuze will be most apt to detonate the warhead within the
lethal range if the flight paths of the missile and aircraft
are closely aligned. The penalty associated with the
track crossing angle (-B cos f ) reflects this consideration.

A small value of f'.results in a small penalty for the

18
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pursuer while a head-on attack results in the maximum
penalty, reflecting the difficulties in fuzing the warhead
for very large closure rates.

The penalty attached to the final time is added to
preclude non-unique solutions when the missile is able to
accomplish the intercept. This term is not significant
unless the missile is .able to reduce the final cost to a
very small number.

The weighting factors are picked so that the range
predominates in the cost function until a distance of ten
feet is reached. The track crossing angle is significant
within the ten foot range while the "tf" term becomes
significant as ¥ and R approach zero. The following

weighting values are selected to reflect this:

A= |
B =10
e 2%

Application of Differential Game Theory

The DDP Equations, Eqgs (3-3),are apvlied to the problem
which allow the adjoint equations to be found as partial
derivatives of the Hamiltonain. For the problem under
consideration, the Hamiltonian is

v TP

H=J,f-3avPav+iauhou (4-7)

e
<

19
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The particular formulation of this problem allows the

of .
Equation for A from Chapter II and the J; equation from

Chapter III to be related as

v ¥ b oW (4-8)
e * o i A%
This allows Eq (4~7) to be written as
H:A*x+,\*% +/\3% +,\vv
o . \ T
+ )'Y.(. )‘_r -z av P av (4~9)
\ h g
+5 au P au
Employing Eqs (4-1) results in the following:
‘kx e &
A, 50
|
i v _)‘v %I- Cos « -'l"smué'—‘- - _3.2]
47 "W L% o SRR
'A!COS/L “ )«E Sm/a.] X
T MY myv cosY
[:L + :T sin + Tcosw 2%
¥ ¥ ¥

20




N < -Axcosx cose - '\?““ sine - f\} sin Y

!
! __,.\- I cosu - Tsm.(-— & Q_Q] + MY Ae®
- ™ IV dv v v

e L 2] x

yav Cos Y

.él'— & .3.—1:- sine + TeoS 9—.'5
| dV dv AV

(4=10)

)«x = A vCoso sin¥ + X}
i - z\xc.' tan ¥

X' - A*VCosXsmr -A%VCosb’cour

»
where
7 T = FtRT LAY
D=%°-P723(c’ kC) (4-11)
: k, C,
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and the rartial derivatives are

A .0 : L - o
% oV
T - F 3 3 E
'S? " ) v 4
deo - 2 G TR
;;—-kl ‘; ’ v k'-av s
o€, : éjiz s —-ELSEL
e Ll
? 2
ek
°%
-:i = ﬂe/rvs (¢, -k C2)
v

Adjustments to Eqs (4-9) must be made to compensate

for the load factor constraints, Eqs (4-2) and Egs (4=5).

These equations may be written as

Cngyv) = n(gv) -
Cm)= 6-n (4-13)

c‘(n) = IS§~-n
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where n' is the aerodynamic (or 1ift coefficient) limit upon

the load factor of the aircraft

n'(]'v) = q':.(o.,_-q.,})(v-a‘) (4=14)

For the occasions when the load factor is on the constrzint

boundary, the changes to Egs (4-10) are

\ SH oC
= == -9 L
* % 2%
e TR .
A, = Sy S (4=15)

- OW/om - oH

This gives the following relationships for constrained

load factors

My

kB

v

oH

-‘

n

oH

e

on

Qo

3¢,
°oF (4-16)
C

o

e —y

v

and for unconstrained situations (where ¥y = 0) the stated

relations hold:

2y

My
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Optimal Control Solution

A requirement for an optimal control is that the
augmented Hamiltonian, H, be minimized for the pursuer
and maximized for the evader. The augmented Hamiltonian

can be written in separate form as

~ ~
H = Hg + H'
~ 2 2
.. _p OMe _ an
H= He -R 2 - F < +H, (4-17)
2 3
+ P 24 s P WM
T 3 ._iL

The first order condition for the evader's unconstrained

optimal bank angle is

= O (4-18)

where

L+Tsin«k

ﬁ. = ‘1\‘[ — Co!(/«e-&yez.’

A L+TSim s"‘(
T2 mv cos Y */«') KAy

e sug

ek
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The application of Eq (4-18) with appropriate small

angle approximations results in

e CoSue
L+Ts BRI il
+mvm-c [_A‘ s\y-(‘ % cosy -)
A/ae = (4=-20)
L+ Tsin& A SN
Ay COSU, ¢ =T /09_. P
{ L {8 Fe Cos ¥ §* “
The second order condition
1~
o He < o (4-21)
T -
3 (o)

gives

Sin
2 LD L A Co}ae-l-us <P (4-22)
mv v CoS ¥ ‘
The selection of P, must ensure that Eq (4-22) is

satisfied.
A similar approach results in the following relationships

for computing 9«, :

CoS i, |
aml A Stna + A -
. myv 0 T QosY
A/«' DS . (4-23)
L[ A 304 ] b
— [ ¢ 0 a1
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A Sinu
L CoSu_ + _‘.’.'_____..'.] < P (4-24)
. [/\‘ osu, g =7

The constrained load factor is found with an analogous
approach. For the evader, the separated terms of the

augmented Hamiltonian are

":"e = L\_{[‘t‘c°g.‘- D] 4 .é.!.[l. + T'smo(]Cojae

™ my

2 (4-25)
xf’ T S\n - P -e:s- \

L+ Tsins "He e 2

mv cosy

The application of the first order necessary conditions

gives

I A\ 3¢ _ 3D
ol [’Ts'“ a(en) A(oh)]

o)
X Cos T é"
:‘ /“e L(“) Cos"g—-—(m)] (4-26)

) S\nie -r o
mV CosY [3(.!\) COS‘(A( n).)

—P n @ °
sz

where the partial derivatives are evaluated from Egqs (4-11).
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Solving for &N and assuming small angles, ® ,

results in

-
o [Tew™  2kW
°§ [r’ as |

m

[ )N Tk
.,_“.‘E’... Xgeco}a’a- :?,E_\:/‘_‘E)[l* Q—s";] X (4=27)

Cos ¥e

2 1
F) Tk w“e
LT:’" Q: st 5 Pe:]

The second order conditions, Eq (4-21), are applied to give

L 3 -
s }ve Tkl m" i zk.“ L Pe (4_28)
m{ast Qs T

The same approach is used to find @Wp with the

following results:

"XY' ?'k w nP + ._L'.J.-[*‘ CQS/(' MP]
™ Qs CosY
M\P s (4=-29)
Av 2
bk Qs
x 3
b - k'w e Pp (4-30)
m Q S &

Equation (4-28) is automatically satisfied if Avg?©

and an interior load factor is possible in these circumstances.
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Should the computed load factor, e +&n,, exceed the
constraints, Eqs (4-13), the load factor is set at

maximum. An interior control for the pursuer's load factor
is possible if kv' <0, from Eq (4-30), and the load
factor,'n'-tbnP , is handled in exactly the same manner as
for the evader in consideration of the pursuer's constraint.
A selection of zero values for the penalty functions
reduces the problem to the general differential game

situation (Ref 11: 19-24).

Proportional Navigation Guidance

A proportional navigation scheme was employed against
the DDP "guided" evader to rate the performance of
differential game guidance. The proportional. navigation
pursuer was also allowed to use perfect information to
determine the rate of change of the line-of-sight between
the two vehicles. Two angles were used to determine the
line-of-sight (LOS) as indicated in Fig 3 (Ref 11:25).

Relationships for the angles are

tan 6 = -‘;'— (4=31)

LS

7
J x‘t-nf

tan ¥ = (4-32)
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Fig. 3. Line-of-Sight Angle Determination
The time derivatives are
v 3 ./x‘i- \J 73 3
(3+ "t) 4 \'/ (X v 'a‘)
(4-33)
. ' I 1
" [ £ ]
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The idea is to have ¥, and é} be some multiple of

¥ and é %
SRS T
(4-34)
L Lt
my COSYP
Solving yields
. RP, &
Qc/u =
P - cos Y,
RA ¥ + Lv P
(4-35)
RP, & mv CosY¥
& Lznl = - o
z Slg;;r

If the calculated value of n exceeded the structural limit,

n was set to fifteen.

To contend with situations where ® is small, Eq (4-34)

gives

o et [ % EE0 (4-36)
e i
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V. Results

The results obtained are derived from the closed-loop
application of the DDP algorithm as explained in Appendix B
and Chapter III, and from the proportional navigation scheme
of Chapter IV against an evader employing the DDP algorithm
in a closed-loop fashion. Several TPBVP solutions were
available (Ref 11) and these allowed the algorithm to be

compared to a known reference as a check of accuracy.

DDP Closed-Loon Application

The intercept problem was attempted first without
convergence control., It was found that large control
changes, A u(t) and & v(t), resulted causing trajectory
changes, & x(t), to be too large, thus violating the
linearization of Eq (3-1) and not allowing a solution
to be found. Reducing the problem to extremely favorable
initial pursuer positions did not help the situation, and
the CCP technique was included in the algorithm.

The closed-loop guildance scheme used in this problem
solution utilizes five iterations to determine the control
strategies and the combatants' applied controls are updated
at .5 second intervals. The integration routine uses a dt
of .02 seconds. This formulation does not result in a
real-time guidance philosophy with the use of current
computer technology and is certainly not applicable to a
small, air-to~-air missile; however, it does obviate the

traditional, long execution time, non-linear TPBVP
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solution methods (Ref 11). The resulting trajectories appear
to follow reasonable logic. The aircraft tries to cross

the path of the missile and normally descends to gain a
hetter turning rate and take advantage of the higher thrust
available. This result is consistent with normal air-to-air
evasion tactics and parallels the findings of reference 11.
For purposes of this study, a kill is defined as a pass
within ten feet of the aircraft at any value of track
crossing angle, f , Or a pass within fifteen feet at

values below 450.

Case 1. The first situation considers an attack from
directly behind the aircraft (six o'clock position). The
altitude for both combatants is 33,000 feet and the initial
controls for both are zero bank angle and one "g" (straight
and level). The DDP algorithm is applied in a closed-loop
manner as indicated (five iterations between control
updates with .5 second updating intervals). The results
are that the aircraft attempts a straight-ahead (no bank)
maximum "g" climb. This makes sense if consideration is
given to the speed and load factor advantage of the missile.
By attempting a straight-ahead climb, the aircraft tries to
capitalize on the zero-thrust situation of the missile;
however, a kill is scored in all situations until the
missile is initially positioned far enough behind the
aircraft so that its airspeed is depleted before the intercept
can be completed.

This test case confirms what experience has proven

e
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in air-to-air combat; if an evader is unaware of an attack
upo®t him and is not maneuvering at the time missile
guidance begins, he will most likely be destroyed.

Case 2. This situation is initially the same relative
position as in Case 1; however, the initial controls are
changed. The pursuer again employs zero bank and one "g"
but the evader flies a fixed 90o bank and three "g's”
throughout. The DDP algorithm is used as the pursuer's
guidance law and the evader flies the initial controls with
no updating.

The first application used an integration step size of
.02 seconds, an updating interval of 1.5 seconds, and 15
iterations between updates. The result is a 237 foot miss
at the end of the game.

A second attempt with DDP guidance with a one second
updating interval and ten iterations results in a 13 foot
miss at § = 115", a kill,

Finally, a third application using five iterations and
a .5 second updating interval gives a four foot miss at

¥ = 11.5°, within the lethal envelope.

This analysis shows that an improvement is realiéed by
taking a smaller updating interval and retaining enough
iterations (in this case five) to derive "near optimal"
controls without undue computational time. In the large
updating interval case, the '""near-optimal" controls derived
aie not close enough to the optimal and, when applied for

long periods (one second and more), cause poor results.
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In the explanation of the DDP method (Chapter TII)
it was stated that the predicted cost caanges, ae(tQ) and
ap(to), should be small. In the 1.5 second updating
application, the magnitudes of a, and a, after five iterations
are on the order of 52,000 and decrease to 5020 by the end of
the game. For the one second updating, they are 42,000 after
five iterations and decrease to 200, While with a .5 second
interval, the predicted changes after the iterations are
32,000 but decrease to 1072,

It can be concluded that forcing the evader to use a
particular control and allowing the pursuer to update with
the DDP algorithm on short time intervals will result in a
successful intercept; however, this is not achieved in
real-time, even with the CDC 6600 computer. l

Case 3. In this simulation, both pursuer and evader
use the DDP algorithm to update and compute control histories.
Although a real-time solution is not achieved, the computations
are based upon an integration step size of .02 seconds, a
.5 second updating period, and 5 iterations between updates,
Three particular situations will be presented in detail as
representative.

The first situation is that of Table XI of Appendix A.
The selected initial controls place the aircraft in a 90o
bank, two "g" turn into the missile. The pursuer's initial
control is a zero bank, one "g" path aimed ahead of the
aircraft. This control was selected to reflect the fact

that the pursuer does not have any idea what the aircraft
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will do. It is very similar to the way a hunter would aim
at a duck, some slight lead based on the present control of
the evader, and does not give any inherent advantage to

the missile.

The missile closes to within 15 feet at the intercept
point with f = bOo and the resulting flight path is
depicted in Figure 4. Table I listes the relative values
of actual versus prediéted cost cnanges, 43341(t5) .

The individual predicted cost changes start at magnitudes
on the order of 100,000 and slowly decrease with successive

iterations until they reach .5 at the end of the game.

Table I
Convergence Characteristics

el M Sebat,

o5 13 646
1.0 .85 492
1.5 .9 288
2.0 .85 129
2eD 77 20
3.0 .67 19
3.5 71 : 15
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A second data set, Table XII, is run in the same manner
but the initial evader control is now 90° bank and two "g's"
away from the pursuer. This problem terminates in an 11 foot
miss at Y = 40°, Table II depicts the convergence
characteristics of this problem, The values of ae(to)
and ap(to) start at 42,000 and decrease to 10'2. This

trajectory is shown in Figure 6.

Table II
Convergence Characteristics
Time (Secs) 83/alty Predicted Final
Miss Distances (ft)
e 42 663
1.0 N Shk
1.5 .92 305
2.0 .86 42
2.5 .79 61
3.0 .68 29
3.5 .96 16
4.0 .67 12
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Finally, Table XIII is used to begin an intercept
problem, In this case, the aircraft is in a 300 dive
using 90° bank and two "g's" into the pursuer. This helps
the aircraft since it is gaining both airspeed and control
authority, and the miss distance is 578 feet with the
convergence characteristics presented in Table III. The
individual cost change values begin at 350,000 and decrease

to 10'1. The trajectory is depicted in Figure 8.

Table III
Convergence Characteristics
Time (Secs) 83/att)  Predicted Final
Miss Distances (ft)

5 1.54 1227

1.0 1.00 1467
1.5 1.1 1483
2.0 1.25 1489
2.5 <95 1487
3.0 <99 1468
3.5 <99 013
4.0 .99 1295
k.5 <99 1077
5.0 «90 760
5.5 .87 613
6.0 .70 581
63 «5h 579
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The bank angle histories for the three cases are in

Tables IV, V, and VI,

Time (Secs)

5

1.0

1.5
2.0
2.5
3.0
3.5

Time (Secs)

5

1.0

1.5
2.0
2.5
3.0
3.5
4.0

Table IV
Bank Angle History

Pursuer Bank (Deg)
42
81
7
82
86
81
8y

Table V

Bank Angle History
Pursuer Bank (Deg)

41

86

78

81

83

85

86

87

38

Evader Bank (Deg)
32
82
64
75
78
84
86

Evader Band (Deg)
50
81
70
%
75
77
76
77




Table VI
Bank Ansle History

Time (Secs) Pursuer Bank (Deg) Evader Bank (Deg)

5 76 82
1.0 55 30
B9 52 25
2.0 : o 2k
249 50 22
3.0 50 22
3.5 51 22
4.0 ol 2o
4.5 Sk k.
5.0 58 LL
5.5 62 55
6.0 65 62
6.5 66 63

It can be seen that there are no significant
discontinuities in the updating of the controls; however,
it is also apparent that the controls remain nonoctimal
for a good vortion of the intercept. If more iterations
are used between control updates, better controls would be
derived but at the expense of a real-time implementation.
In general, five iterations is not sufficient for determining
near-ovtimal controls when initial control "guesses " are
not close to the optimal, ’

The final stage of the intercept problem is the most

sensitive and rapid, large control changes are demanded of
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the missile reflecting the missile's desire to line up the
flignt paths (null ‘ ) and eliminate the terminal miss distance
wnile state values are rapidly changing. To overcome this
situation, anytime the time remaining is less than one

full updating period, the missile uses the last control
selected,

The load factor selected by tne guidance scheme was
largely determined by the cenalty values, Pez and sz .
Interior controls result for the missile for a large portion
of the flight while the aircraft normally reaches its
maximum load factor first. The values of Pe and Pp must
be picked large enough to ensure convergence; however,

large values also cause slow convergence as reflected in the

values of ae(to) and ap(to) previously discussed.

Proportional Navigation Guided Pursuer

The pursuit-evasion problem was re-solved in a closed-
loop fashion with the evader employing DDP derived controls
and the pursuer relying upon proportional navigation to
compare the DDP performance. The same initial states and
controls were used (Tables XI - XXII). The vroportionality
constants, RP1 and RPa, are set at ten. This represents
a performance level which exceeds that obtainable with
current technology; however, the selection of ten is used
to reflect future capabilities of improved proportional
navigation methods.

Each proportional navigation trajectory follows the
DDP trajectory in Appendix A. In each situation, the
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missile is atle to close to lethal range. The aircraft once
again attempts to cross the pursuer's path, but the missile
is able to keep inside of the turn. This is due to the
selection of ten as a proportionality constant and the

fact that the evader is using the DDP guidance law which is
not optimal.

Both combatants use the maximum load factor throughout
which allows the missile more control authority, but at a
great expense in drag. The more unfavorable the initial
position, the larger the final range. This situation is
expected and reflects missile launches made from outside
of the "firing envelope" where the drag penalty defeats
the missile,

Tables VII, VIII, and IX present the bank angles
resulting from the conditions of Tables XI, XII, and XIII
with the trajectories depicted in Figures 5, 7, and 9.

‘Pable VII
Bank Angle History

Time (Secs) Pursuer Bank (Deg) Evader Bank (Deg)

5 182 87
1.0 72 87
1.5 184 ' 89
2.0 7 89
2.5 180 88
3.0 178 89
3¢5 13 90
4.0 154 " 90
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Time (Secs)

5
1.0
1.5
2.0
245
3.0
3.5
4.0
L5

Time (Secs)

o5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

Table VIII

Bank Angle History

Pursuer Bank (Deg)
-61
=21

Table IX

Bank Angle History

Pursuer Bank (Deg)
=51
88
26
19
52
61
96
104
100
110
112

23

y2

Evader Bank (Deg)

Evader Bank (Deg)
20
%
18
16
19
22
29
40
37
39
L6
28




Open-Loon Com arison

The exact TPEVP solutiun for three intercept probloms,
yielding open-loop controls, were obtained (Ref 11). These
situations are listed in Tatles XX - XXII. The two
guidance schemes previously discussed (DDP and proportional
navigation) were applied to the problems; however, the
initial controls for both players are the saddle-point
controls from the TPBVP solution. Again, five iterations
between .5 second updates are used with the resulting
trajectories displayed in Figures 22 - 30.

For the situation of Table XX, the open-loop controls
give a terminal miss of 20 feet while the DDP method results
in aA1?? foot miss and the proportional navigatiocn scheme
results in a 126 foot miss. The control comparison is
listed in Table X. The predicted cost changes, a (t ) and
ap(to), start at 240,000 and decrease to €0.

From this analysis, it is determined that the DDP
method can converge to a near-optimal solution if nominal
controls are selected which are very close to the optimal
since the trajectories (Figures 22 - 30) are very close
in all cases. In actual applications this is very
difficult to do since there is no sound basis for arriving
at good initial control guesses without long computer

solutions (Ref 11).
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Table X

Control Comparison

Time Cptimal DDP Prop Nav
(secs) Pursuer (Deg) Pursuer (Deg) Pursuer (Deg)
«5 25 21 : 16
1.0 25 22 19
1.5 25 25 22
2.0 25 e 25
2.5 29 2k 28
3.0 25 2 31
3.5 29 23 S
4.0 35 22 38
4.5 39 20 Ly
5.0 L5 20 : 55
5.5 53 29 72
6.0 75 - 40
b
bl




VI. Conclusions and Recommendations

Conclusions

The DDP method has been applied to a non-linear,
differential game modeled air-to-air intercept problem.

A variety of initial positions has been examined as indicated
in Chapter V and Appendix A, and a real-time, closed-loop
implementation of the guidance law was not realized. The
trajectory deviations which arise from large computed
control changes, & u and 4 v, are too large and force the
adoption of the CCP technique. Although this assures
convergence, the computation time is not suitable for
real-time applications,

The restriction to five iterations does not allow
near-optimal controls to be found due to the slow convergence
characteristics as evidenced by the large values of ae(to)
and ap(to) given in Chapter V, It is concluded that any
real-time guidance algorithm (for a short duration air-to-air
missile) which hopes to achieve an increage in kill
probability through the use of differential game theory will
have to sacrifice some of the realism involved through the
inclusion of nonlinear dynamics.

The algorithm demonstrates a strong reliance on the
initial controls. The closer the initial controls to the
optimal, the better the DDP metnod solutions (more near-
optimal). The possibility of storing several near-optimal
control histories aboard a small missile is doubtful, and

merely guessing one does not lead to good results.

45




The tactics which arise through this simulation in a
closed-loop manner are very similar to those which are used
in air-to-air combat situations. The use of DDF, therefore,
may be worthwhile in an off-line computer simulation to
test selected tactics.

Finally, it is concluded that although the traditional
iterative (neighboring extremal) TPBVF solution requirezent of
needing very good "guesses'" for the initial co-states is
eliminated with the DDP method, a strong derendence on
initial conditicns remains. The solution is very
problem~dependent in that in high altitude intercects
(above 30,000 feet) the aircraft is penalized due to lower
thrust and a reduction in the maximum load factor. At
lower altitudes, the aircraft's improved performance and
the nonoptimality resulting from the five iteration
restriction allow the aircraft to defeat the missile as
shown in Figures 10 and 18.

It has been determined (Chapter V) that the DDP method
applied to the aircraft improves the evasion (increases the
final range) over the selection of a particular selecﬁed
strategy which employs no updating method. The final
set of trajectories, Figures 22 - 30, show that the solution
will converge to the optimal, given sufficient time., This

"long-time" requirement precludes the real-time implementation.

Recommendations

It is recommended that further study in this area be

directed toward simplification of the dynamics. A
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reduction in the complexity of the models, while not
completely relinquishing the basic characteristics, may
allow some of the votential gains inherent in the
differential game philosopny to be achieved.

Beyond the model simplification, an extension of the
intercept problem to include the case of multiple missile
launches may provide some useful tactical information.
Presently, the results confirm accepted logic for air-to-air
counter-maneuvers. Perhaps a new or revised tactic may

be discovered through simulation of different encounters.
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Appendix A

Trajectory Analysis

The following graphs depict the three-dimensional
flight paths and ground tracks of the missile and aircraft
resulting from a closed-loop application of the guidance
scheme. In Figures 4 - 21, the aircraft uses the DDP
method while the missile uses either the DDP algorithm or
proportional navigation as indicated on each graph., Figures
22 - 30 are the exact TPBVP solution comparisons with
Figures 22, 25 and 28 depicting the "exact" optimal
solutions. The initial conditions for each set of graphs

are given in the preceding tables, Tables XI - XXII.
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Table XI

Initial Conditions

State Evader Pursuer

x ft 5000 -1000

y ft 5000 6000

z ft 33160 331¢€0

v ft/sec 706 2219

¥ rads 0.0 -.01

¢ rads « 524 .01

Control

A g's 2 1
i m rad 1.57 0.0
i
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32700 32800 32800 33000 33100

ot

DDP EVASION-DDP PURSUIT

51

LEGEND

o = EVADER

0 = PURSUER

a =GND TRK(E)
+=06ND TRK(P)




DDP EVASION-PROP NAV PURSUIT

LEGEND
o = EVADER
0 = PURSUER ‘
a=0GND TRK(E) !
+=06ND TRK(P)
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State
x ft

y ft

z ft

v ft/sec
¥ rads

@ rads

Cantrol
r g's

/h rad

Table XII

Initial Conditions

Evader
10000
10000
33160
706
0.0
-.524

53

B

Pursuer

4000
9000
33160
2219
-.0
-.007

0.0




DDP EVASION-DDP PURSUIT

b

33000 33100

T
J2W00

_ LEGEND

o = EVADER

o = PURSUER

A = GND TRK(E)
+=GND TRK(P)

32800

Z

32600 22800 30

P I S e+ e

Fig. 6




31800

DDP EVASION-PROP NAV PURSUIT

LEGEND

b - EVADER

o = PURSUER
a=GND TRK(E)
+=GND TRK(P)

Fig. 7
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State
x ft

y ft

z ft

v ft/sec
¥ rads

¢ rads

Control
ng's

S rads

Table XIII

Initial Conditions

Evader
10000
10000
33000
706
-.524
-.524

56

Pursuer
2000
9000
34000
2219
-3

0.0




-

DOP EVASION-DDP PURSUIT

3

LEGEND
o= EVADER
0 = PURSUER
a=0GND TRK(E)
+=06ND TRK(P)

m—

20800 21000 31500 32000 32500 33000 3300
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34

DDP EVASION-PROP NAV

/

58

PURSUIT

LEGEND
o = EVADER
0 = PURSUER
& = GND TRK(E)
+=06ND TRK(P)
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State

y ft

v ft/sec
¥ rads

o rads

Control
n g's

/-t rads

Table XIV

Initial Conditions

Evader
5000
5000

15000

770
-l
524

29

Pursuer

0.0
6000
15000
2065
-.02

0.0



DDP EVASION-DDP PURSUIT

Fig. 10
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LEGEND
0 = EVADER
0 = PURSUER

a4 =(GND TRK(E)
+=06ND TRK(P)




DDP EVASION-PROP NAV PURSUIT

LEGEND
o - EVADER
o = PURSUER

a =GND TRK(E)
+=06ND TRK(P)
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State
x ft

y ft

z ft

v ft/sec
¥ rads

o rads

Control
ng's

y rads

Table XV

Initial Conditions

Evader Pursuer
10000 12000
10000 2000
33160 33160
706 2219
0.0 -.01
0.0 1.57
2 1
1.57 0.0
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DDP EVASION-DDP PURSUIT

Fig.

63

12

LEGEND.
o = EVRADER
0 = PURSUER ;
a=CND TRK(E) !
+=06ND TRK(P)




DDP EVASION-PROP NAV PURSUIT

D = EVADER

0 = PURSUER

a =GND TRK(E)
+=G6ND TRK(P)

Fig. 13
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»eren

State

y ft

z ft

v ft/sec
¥ rads

¢ rads

Control

n g's

/A rads

Table XVI

Initial Conditions

Evader
10000
10000
15000
770
ol

524

524

€5

Pursuer

4500
11000
15000

2065

-1
.01

0.0
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13500 14000 14500

DDP EVASION-DDP PURSUIT
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o = EVRDER
0 = PURSUER

a=06ND TRK(E)
+=06ND TRK(P) |

|




DDP EVASION-PROP NAV PURSUIT

o - EVADER

{ o = PURSUER
| a=GND TRK(E)
== GND TRK(P)

& ,, \ LEGEND
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Table XVII

Initial Conditions

State Evader Pursuer
x ft 10000 . 3000
y ft 10000 9000
z It 331€0 33160
v ft/sec 706 2219
¥ rads 0.0 ‘ -.01
o rads -+524 -.001
Control
n g's 2 1
u rads 1.57 0.0
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DDP EVASION-DDP PURSUIT

%W
LEGEND |

o - EVADER
0 = PURSUER
8 =GND TRK(E) |
+=GND TRK(P)

32900 33000 33100 33200

Z

—

22700 32800

Fig. 16
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DDP EVASION-PROP NAV PURSUIT

LEGEND
o - EVADER
0 = PURSUER
A = GND TRK(E)
+=06ND TRK(P)
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Fig. 17




Table XVIII

Initial Conditions

State Evader Pursuer
x ft 10000 5000

y It 10000 9000

g It 11000 11000

v ft/sec 850 2350

¥ rads 0.0 -.0

g rads -.524 -.01

Control

n g's 2 il

M rads 1.57 0.0

(A




DDP EVASION-DDP PURSUIT

LEGEND
o = EVADER
0 = PURSUER
a=0GND TRK(E)
+=6ND TRK(P)

Fig. 18
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DDP EVASION-PROP NAV PURSUIT

f
10800

f o~-EVADER
0 = PURSUER

s =GND TRK(E)
+=G6ND TRK(P)

10000 310200 30400
Z

mn




State
x ft

y ft

z ft

v ft/sec
¥ rads

g-rads

Control

n g's

/u rads

Table ¥1X

Initial Conditions

Evader
10000
1000G
33160
706
c.0
524
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Pursuer

4000
11000
331€0

2219

~-.01

.01

0.0




i, T Al
33200 II300

33100

-

3000

. 4

33800 32900
Z

S

32000 32700

DOP EVASION-DDOP PURSUIT

- LEGEND
o0 = EVADER
0 = PURSUER
A =(GND TRK(E)
+=06ND TRK(P)

Fig. 20
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DOP EVASION-PROP NAV PURSUIT

LEGEND
o = EVADER
0 = PURSUER
A =GND TRK(E)
+=06ND TRK(P)
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State
x FC

y ft

z ft

v ft/sec
¥ rads

o~ rads

Control
n g's

y rads

Table XX
Initial Conditions
Evader Pursuer
4178 10920
L4435 10242
11123 7782
849 2491
".5 -.29
-‘.2 "2-18
6 i
1.05 T .54
"
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OO 7SO0 @000 ©S00 9000 9S00 10000 10S00 11000 33

OPT EVASION-OPT PURSUIT

Fig. 22
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LEGEND
o = EVADER
0 = PURSUER
A =GND TRK(E)
+=06ND TRK(P)
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DDP EVASION-DDP PURSUIT

i

10000 108500 131000 11

LEGEND
o - EVADER
0 = PURSUER
a = GND TRK(E)
+=06ND TRK(P)

4

v L)
2000 8S00

#s00
(A
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10000 10S00 131000 13

v v v v v hJ
00 7000 7800 SOD0 €SO0 2000 SO0

DDP EVASION-PROP NAV

Fig. 24
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PURSUIT

LEGEND
o - EVADER
0 = PURSUER

a=GND TRK(E) |

+=06ND TRK(P)




State
x ft

y ft

z ft

v ft/sec
¥ rads

@ rads

Control
n g's

y rads

Table XXI

Initial Conditions

Evader
4936
3013

33198

703
-.84
-6k

81

Pursuer

9341
10358
33326
2235
-.62
-2.43

15
1.22




.

v

DO 30000 3JIAS00  J1000

B1S00 32000 32500  I3000

Ss——

whlie e

Z

OPT EVASION-OPT PURSUIT
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LEGEND x
o = EVADER '
0 = PURSUER
a=(GND TRK(E)
+=BND TRK(P) |




31000 31S00 32000 S
Z
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DO 30000 IJ0SC0

UL

DDP EVASION-DDP PURSUIT

LEGEND
o = EVADER
0 = PURSUER
a=0GND TRK(E)
+=G6ND TRK(P) |

o ——————— s

~e_e.~0/°/°
‘emo I nes ey SR o

Fig. 26
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DDP EVASION-PROP NAV PURSUIT

LEGEND
o - EVRDER
o = PURSUER
4 - GND TRK(E)
~=BND TRK(P)

32000 32500 33000

™

D00 30S00 31000 31500

/

’ Fig. 27




Table XXII

Initial Conditions

B

R &

State Evader Pursuer
x ft 4972 9199
y ft 2985 10260
z ft 33150 33170
v ft/sec 706 2219
¥ rads -.846 -.619
¢ rads -.632 =-2.41
Congrol

n g's 2 15
A rads 0.0 1.22
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DOP EVASION-DDP PURSUIT

LEGEND
o - EVADER
o = PURSUER
a=GND TRK(E)
+=GND TRK(P)

31000 31S00 22000 32500 33000

v

DO 30000 TJABOO

....

Fig. 29
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Appendix B

Application of the Algorithm

The following discussion explains the application of

the DDP algorithm in a closed-loop manner:

(a) Nominal controls are used in the forward
integration of Eq (2-1) as previously indicated. Penalty
values are selected prior to the integration and the
mechanization discussed on page 11 is carried out.

(b) The predicted and actual cost changes are
compared as explained in Appendix D and the penalty values
are adjusted. If regions A or A' are encountered, the
iteration is rejected and the nominal controls are used
again with an adjusted penalty value. If the comparison
falls outside regions A or A', the nominal control is
replaced by the control obtained during the backward
integration and the penalties are adjusted.

(c) The controls derived during the backward
integration /i.re exchanged for the controls used during the
forward integration as long as the cost ratios satisfy the
rules of Appendix D. The iterations are continued for some
predetermined number. ;

(d) After the required number of iterations is
reached, the resulting controls are applied for a specified
time interval. The state of each combatant at the end of the
time interval becomes the initial condition for the next

iteration cycle, and the process is repeated.

89




SR AT i

(e) The intercept is completed when the derivative
of the cost goes to zero. The state at each updating point
is used to obtain the trajectories of Appendix A. The evader
and pursuer are able to base the choice of controls on the
more current, updated state, thereby giving closed-loop

guidance.
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Appendix C

Derivation of the DDP Equations

It is assumed that nominal controls, u(t) and v(t),
exist which result in a nominal trajectory to Eq (2-1),
x(t). It is further assumed that this trajectory is
reasonably close to the optimal solution, x*(t). If the

optimal solution is written as

x*(t) = %X(¢) + ax (¢) (c-1)

Eq (3-1) can be written in terms of the nominal as follows:

® e ° _

(c=2)
st snit] - o
Equation (C-2) is expanded in AX , resulting in
3]. o ) .T =
3t (x;¢) + I (x;4) ax
T
= oH “(Cc-
+ W m‘?x[“ (X,K,V,J:si) ’ ()x) e !

*
+9’%§ ax +[%3“ Ax] f(i',u,v; t) + R'] =0

If 4Ax 13 small, the remainder term, R', can be neglected
since it represents terms of second order and higher, Since

Eq (C-3) is not dependent upon choice of &X , the

9




following relationships hold:

:z f H(Rw Vi I05t) = o

a%-l': + (x u* v¥ J',,t) 23T f(xwivit)  cew
+ [?T%E' (I: ‘**.V*St)]

o
Employing expressions for the total derivatives of J

and J':

_é_J'°:—a—J:-+J f

dt ot
' (c-5)
_.‘L ® = i_ . -Q—JJ
JtJ" atJ‘*Bx ,{
and Eq (3-4)
a® = J°-TF (C-6)
in Eqs (C-4), the DDP equations are determined as
(Ref 8:3=5):
_alps HERwYSH-HERTH

..J" -3"(,‘ A ut) [ oC
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Appendix D

Adjustment of the Penalty lunctions

To derive the most benefit from the CCP technique, the
penalty function values must be altered based upon the
reaction of the problem to the present values. When
convergence is indicated the values should be decreased.
The following discussion forms a basis for the alteration
of the pehalties. The following figure is helpful in
determining how to adjust P, and Pp (Ref 9:30).

aT | slope = 1

slope = %

al(t)

Fig. 31 Convergence Domain
If the ratio of the actual cost change, 4J , to the
predicted cost change, a(to), falls within:
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Area A - The expansion of Eq (3-1) is not valid
( ax is too large) and the penalty values
should be increased significantly. This
indicates that the pursuer's penalty is
dominant and should be increased more than
the evader's.

Area B - The expansion is poorly satisfied (pursuer's
penalty still dominates) and an increase in
Pp is indicated.

Area C - The expansion is satisfied and both penalty
values should be decreased.

Area D -~ This is similar to Area B but the evader's
penalty, Pe’ should be increased in this
case.

For points within Areas A' - D!, the rules pertaining
to Areas A - D apply with the evader and pursuer philosophies
reversed,

It is wise to try to keep the components of a(t,),
ae(to) and ap(to), of the same order of magnitude by
varying the ratio of Pp to P, (Ref 8:31).

One area which represents a "special case" is the
region close to the origin in Areas A and A'. 1In these
areas, the predicted cost change is small; however, the
components, ae(to) and ap(to), may be large. In this
situation, both penalties may be reduced moderately.
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Appendix E

Numerical Asvects

This Appendix presents the numerical aspects of the

problem. The values of the constants used are presented
to aid further research in this area.

Aircraft Equations

T (1bs) = (22345.7 -.7018 3 + /8.14/ v)
2
C, = .0lL1s + 223 C,

A +(.om.z. -.304 x zo"'}) (v- 250 )

AERO
o= .256s C

s(ft‘) = 8§30
W(lbs) = 49,000

Missile Equations and General Constants

*
C = .9+ .04z G

s(ff) = -.223

W(lbs) = 103
f. .0023769

B = 35 xio™% ft
s = 322 Ft/sqer

UG
f+*
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