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Preface

Closed-loop guidance laws resulting from differential

game models are seldom realized. Several approximations to

the closed—loop law, based upon updating a reference open-loop

trajectory, have been postulated. This thesis represents the

results of my attempt to apply a differential dynamic program-

ming scheme with a new convergence control parameter technique

to an air—to—air missile intercept problem using nonlinear

dynamics.

I wish to gratefully acknowledge the assistance of Major

Gerald M. Anderson for both his classroom presentations on

optimal control and his interest in this thes~a. In acidition,

I wish to express a great deal of gratitude to my wife, Terry,

who not only put up with me during this task, but also typed

the entire thing. Most of all, I want to thank my son Michael,

who with one of his smiles was able to lift me from my periods

of gloomy frustration.

Albert H. Perraris
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GA/MC/7 6P-7

Abstrac t

An inte rce : t  problem between an air-to—air missile

and an aircraft is modeled as a zero sum , free final time

dif ferent ia l  game whic h includes nonlinear dynamics and a

payoff related to the kill probability. Previous research

has shown that the currently used guidanc e scheme ,

proportional navigation , is nonop timal in this type of

problem formulation and a higher kill probability is possible

with a guidance law based upon a differential same theory .

A differential dynamic programming method is applied

to the intercept problem in the search for a real—time feedback

solution. A convergence control procedure is introduc ed

in an attempt to enhance the convergence of the typically

( long—time solution methods. The closed—loop guidance law

which results is compared to both proportional navigation

and some exact open—loop solutions by means of an off—line

simulation on a CDC 6600 computer.

The method does not yield a real—time solution for this

problem and does not give improvement over a proportional

navi gation scheme.

I
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APPLIC ATION OF DIFFER ENTIAL DYNAMIC PROCBAMMING

TO AN AIR-TO— A IR MISSILE GUIDANCE PPOBLEM

MODELED AS A DL~FERENTIAL G AME

I. Introduction

Background

Proportional navigation , whereby a pursuer is guided

toward a tarLet at a rate proportional to the measured

rate of rotation of the pursuer—target line—of—sight, is the

principal guidance law currently in use with most air-to-air

missiles (Ref 10). It has been shown that proportional

navigation is optimum for problems using linear dynamics

and non—maneuvering targets (Ref 5:287—288). Several

attempts (Re fs 1 , 2, 3, 1+) have been made to devise

closed—loop optimal control laws using nonlinear dynamics,

which offer an alternative to proportional navigation if

formulated in a closed—loop feedback strategy. One example

(Ref Li) requires that the evader’s future con trol strategy

be known , but does not allow the evader to take advantage

of the pursuer ’s limitations in predicting the controls.

The theory of differential games (Ref 6) provides a

more realistic modeling of the pursuit—evasion problem.

The evader ’s natural desire to escape , and the ability

to convert poor pursuer strategy into an advantage for the

evader , can be included in the guidance philosophy.

Correspondingly , any nonoptimal play by the evader would

result in a more favorable condition for the pursuer.1



Optimal. open—loop controls can be found for the

problem through the solution of a two point boundary value

problem which arises from the application of optimization

conditions (Ref 5: 212—2Lf6). Since these controls are

open—loop, they do not allow the combatants to capitalize

on each other ’s errors. Near optimal feedback strategies

based upon a linearization about the nominal trajectory

(resulting from the open—loop controls) which is periodically

updated have been proposed (Ref 1 , 2, 3). They provide

some real—time, near optimal controls; however , the nominal

saddle—point solution is required for the linearization and

the updating must be accomplished often enough to keep the

assumed linearization valid. This represents an enormous

investment in computational time and storage space when

applied to problems which include nonlinear dynamic s and

realistic maneuvers.

A comparison between proportional navigation and

differential game guidance (Ref ii) where nonlinear dynamics

and target maneuverability are allowed , conclusively proves

that proportional navigation is not optimal. An off-line

computer simulation (Ref 11: 94— 100) was used to solve the

problem but a real— time application was not realized. The

potential gains involved make the search for a real—time

Implementation worthwhile.

Statement of the Problem

An intercept problem between a heat seeking, air-to-air

C missile and an aircraft (Ref ii), modeled as a zero—sum,

2
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free final time, differential game between two intelligent

combatants, forms the model for this thesis. A differential

dynamic programming algorithm (Ref 8) is used to obtain a

closed—loop solution for the problem. The aim is to

test this algorithm for the possibility of obtaining a

real—time guidance law to be used on a short duration

(typically less than six seconds) air intercept problem

by periodically updating a computed control history.

Each combatant can change his control at updating points

to capitalize on deficiencies in the adversary ’s strategy.

A convergence con trol proc edur e (Re f 8) was included

in an attempt to accommodate convergence problems associated

with the inclusion of nonlinear dynamics and to aid in

keeping the computational time to a minimum , while not

significantly reducing the accuracy of the final solution.

The major emphasis of this thesis is to seek a real—time

implementation of the differential game feedback guidance

law to the nonlinear model.

Overview

Chapter II discusses the mathematical aspects of

differential games. The dynamic programming algorithm

used in obtaining the closed—loop control strategies is

explained in Chapter III, while the game scenario is

presented in Chapter IV. The results obtained in the

application of this algorithm , and those resulting from

an application of proportional navigation to the missile-

aircraft intercept problem are compared in Chapter V.



-
II. Differential Game Theory

Mathematical Formulation

The zero—sum differential game may consist of the state

equations, some path or terminal constraints , a terminal

(stopping) condition which determines when the game ends,

and a payoff or cost function. The state equations which

describe the motion of the two players are represented as

x x . ~ v,4) ; x(1~0~ x0

where x is an n-dimensional vector which represents the

state of each combatant, u is the vector control of the

pursuer (minimizer), and v is the vector control of the

evader (maximizer). Constraints may be imposed upon the

controls of the form

C(x~,u.) ~~~. 
0

C( ç~v) ‘. o

where x~, and Xe repreèent the pursuer and evader components

of the state vector. In addition , terminal constraints of

the form

~[x(tf) ,. tf ]  0 (2—3)

may be included. For situations in which the final time

is left free and no terminal constraints are imposed, some

stopping condition must be specified , for example (J)=O.

Li
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The cost function is expressed in general as

4 b.c

p(x (1~) 
~ 

.i 

~ L(x ,u.,v t )  ~t ( 2 z ~)

The cost is a numerical measure for determining the outcome

of the game and for evaluating the effectiveness of a

particular selected strategy. The game is termed zero—sum

because there is a single payoff and one player’s gain is

the other player ’s loss. The pursuer ’s goal is to minimize

the cost , J, while the evader strives to maximize it. This

forms the basis upon which each player selects his controls.

The objective of the game is to determine optimal control

stra tegies , u’ and v~, such that

~7(U~ V) ~ 5(u~~v K) ~ Y(~.L)v ”) (2-5)

If the pair u’ and v~ can be found, it is termed a saddle

point of the game.

Necessary Conditions for a Solu tion

The problem under consideration in this thesis is a

free final time differential game without terminal constraints.

A necessary condition for the saddle point solution is that

the Hamiltonian , H, defined as

H(x ) A) i~ v ) t)  ~ A’f + L (2-6)

be maximized for admissible values of v, and minimized for

admissible values of u. For games in which the Hamiltonian

5
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Is separable in u and v, where
r t ~ H H~(x v) + H~ (x ~,u~ (2-7)

the following necessary conditions apply (Ref 5):

4

~ (2-8)

.iii= 0

~~~~ 
-i!j4 g~~ ~

These conditions hold if there are no control constraints.

For the case where control constraints are imposed , the

following conditions apply (Ref 5):

ax ax

a x 4

— (2-9)
au.

!!:L. ~~~~~~~~

= at ~

_ _ -±—

~~~~~

----

~~~~~~

—-
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where A represents the n—dimensional co—state vector and ~

Is the Lagrange multiplier vector which obeys the

following (Ref 5: 108-109):

~
_ 0 F O R  C < 0  (2-10)

FOR C :0

The Two Point Boun dary Value Problem

The application of the necessary conditions, Eqs (2—8)

or (2—9), result in expressions for the saddle—point

controls , u* and v .  These controls , u ( x , A , t) and

A , t), are substituted into the state and co—state

equations to form a two point boundary value problem

(TPBVP) of the form :

( 
* ~ c (X ,A~+) x(f0) :  X 0
A : ~

( x A ,~~) ; A(~): ~~ (2-11)F

The solution to the TPBVP yields open—loop controls of the

form

—

(2—12)

v(t) :

These controls are termed open—loop because they depend

( only upon the initial conditions, the time, and the

assumption that each player will employ the optimal



strategy. They do not provide a means for either combatant

to capitalize upon nonoptimal play by the adversary. One

method for determining control strategies which are able

to adapt to variations in the opponent’s strategy requires that

the solution to the TPBVP must somehow be periodically

updated based upon more current information. This

philosophy is based upon the fact that optimal closed-loop

and open—loop controls have the same time history and state

trajectories. This idea forms the basis for the determination

of closed—loop controls which are able to transfer one

player’s nonoptimal strategy into an advantage for the

other.

8 
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III. Closed—Loop Control Strategy

The traditional open—loop solution to the TPBVP, Eqs

(2—10), requires that initial values of the co-states, A (0) ,

be known and utilized in a forward integration. These values

are difficuj.t to arrive at, and they must be reasonably

close to the optimum co—states to hope for obtaining a

solution to the TPBVP (the open—loop controls). Further

complications arise because the TPBVP is extre~Lely sensitive

to even small variations In the Initial co—state values.

Large trajectory deviations may result and convergence may

be inhibited (even precluded) as indicated in Fig. 1 (Ref 9).

Without an accurate TPVBP solution, closed—loop controls

based upon the updating of open—loop controls .is impossible.

~2 IIIIII1IIIIII~
)+8A

Fig. 1. Co—state Sensitivity

J 
I 

The Differential Dynamic Programming method (DDP) is

j an alternative method for obtaining closed—loop controls.

£ . 9



The DDP Method

The DDP method (Ref 7, 8) atteMpts to solve the
following problem :

+ I-1(~);)u.~,v~’, ~~~) 
0

H L(x % u,v,{)+ If’f(x~.t,v,~ )

= (3-2)

(~si) •:. 

~‘~H(x ,J:,~~ v, ~
)

where the subscript ~ indicates optimality and J~ =

The solution to Eq (3—1) yields an optimal cost s, J°(x ,t),

( which, when substituted into Eqs (3-2), results In optimal

closed-loop controls u and v .  Unfortunately, Eq (3—1) does

not , in general, readily lend itself to anc~lytical solutions.

The DDP method provides a numerical tool for obtaining the

solution in an iterative manner.

If Eq (3—1) is expanded to first order about the

optimal trajectory, x , the following relationships emerge:

~ W ,u~v’~. 3 t) — ;

~;

~~

where ~ and i are nominal controls which result in a

10



nominal trajectory ~~~, and aCt) is the difference between

the optimal cost , J0, resulting from the application of

the optimal controls u’ and v~ in the state equations, and

the cost, J, obtained from using nominal controls U and ~~.

= ~~~~~~~ - (3—k)

The predicted cost change, a(t 0) ,  can be expressed as

.
~ ~~~~~

where a~(t 0) is the predicted cost change due to changes in

the pursuer ’s con trol and ae(t
o) Is that due to changes in

the evader’s control. These relationships, Eqs (3—3), are

valid if ~~x ,c~(4) ~~~~~ 
is not excessively large

within the time interval remaining)due to the linearization.

The derivation of Eqs (3—3) is presented in Appendix C.

The mechanization of the DDP algorithm for obtaining

optimal closed—loop controls is as follows:

(a) Nominal controls , ~ and ~, are used in the

state equations , Eq (2—1), which is then integrated forward

in time until reaching the stopping criterion, to determine

a nominal trajectory ~(t) and a cost J(t) from Eq (2—3).

(b) Eqs (3—3) are integrated backward in time,

using the same nominal controls , ~ and ~ , with appropriate

boundary conditions. At each step of the backward integration,

theconditions of Eqs(3—2) are enforced to obtain new controls

u (t) and v’(t) which are stored in the computer.

C 
(c) The new controls , u and v , are ~pplied to

11



Eqs (2-1) and (2-3) in a forward integration as In step (a).

If the change in cost, 4.J~ 5 (u.* vy) ~ ~°(~~c~~)
is of the same order as a(t0), uCt) and v(t) can be

replaced by u (t) and v’(t). Steps (a) through Cc) are

repeated until a(t0), ae(to) and a~(t0) are small.

(d) When the predicted cost changes have been

decreased to a prescribed small value, the computed controls

are used as the optimal controls for a specified period of

time (a fixed portion of the trajectory).

Ce) At the end of the specified time interval,

the entire sequence is begun again using the conditions

at the end of the interval as the new initial conditions.

If the actual cost change, A J, is not on the order of

the predicted cost change, a(t0), some form of convergence

control must be supplied to assure that a solution will be

found. The method used in this problem is the Convergence

Control Parameter method (CCP) (Ref 8).

The CCP Method

The magnitude of A x(t) can be restricted if the

control changes between iterat ions , A u ( t )  and 6 v ( t ) ’,

are not excessively large. The idea behind CCP is to restrict

the magnitude of the control changes by means of convergence

parameters attached to 4 u(t) and A v(t).

An augmented Hamiltonian, ‘~i, is formed as follows:

C) j~~~~i(~çit ,v i ~~t)  4 f 6U~ P,6I~ - . f A V’~~4V 
-

12
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where P~, and are the conver ~ence parameters. These are

diagonal matrices whose elements are positive values. A

saddle—point to H Is sought through the DDP method .

The predicted cost change, a(t 0), written as

+

allows a~(t0) to be dependent upon P~, and ae(to
) upon Pe u

An analysis of the relative magnitudes of the predicted and

actual cost changes allows the penalty terms to be adjusted

individually for the best convergence characteristics as

explained in Appendix D.

If the predicted cost change, a(t0), Is approximately

equal to the actual cost change , A J , the series expansion

of Eq (3—1) is satisfied. The relationship between A J

and a(t 0) can be plotted and divided into several regions

to Indicate the effectiveness of the selected penalty

values in effecting good convergence of the solution.

This is explained in detail in Appendix D.

I
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IV. Intercept Problem

The specific problem under consideration is a

pursuit—evader situation between an air—to—air missile and

an aircraft. This problem is modeled as a zero—sum

differential game with free final time.

Underlying Concepts

The aircraft is modeled with the stall limit, thrust,

and drag dependent upon altitude and velocity. The missile

is a thrust—coast air-to—air missile utilizing an infra—red

seeker. Missile guidance is begun at the termination of

the boost phase with drag dependent upon altitude and velocity.

The game “ground rules” are as follows:

(a) Each vehicle is represented as a point mass,

maneuverable in three dimensions.

(b) All maneuvers performed are flown in a

co—ordinated fashion. 
-

(c) Gravity is represented as a constant in both

magnitude and direction.

(d) Both combatants are presumed to have p~rfect

knowledge of the state of the game at all times.

Ce) With free final time and no terminal conditions

to meet , the determination of when the game ends is the

point where ~~ (J) = 0.

Vehicle Models

Aircraft. The aircraft model is based upon the FL1.

The stall limit and thrust variations with velocity and

114
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altitude are represented as polynomials with the maximum

throttle setting used throughout. The equations of

motion are

= V c 0s~ co s  a-

~ V~~osY 5j r ~ 0-

V 5Ifl~~~ .

1 = [T COS C P - D]~~
- - 3t ’~ Y (k- i)

( - 11+ 1~ 3%~~~0~~~~CO~~~ 1.5!! !- L  J r r v V

= [L + Tsin.~J 
31’

~kmy Cos ~

where the variables are defined as follows:

= distance in the north direction

= distance in the west direction

= altitude

V = magnitude of the velocity

= angle between the velocity vector and the

local horizon

= angle between the projection of the velocity

vector in the x-y plane and the x—axis

SC = angle of attack (defined as the angle between

the thrust and velocity vectors)

= bank angle

D = force due to drag

L = l if t  (perpendicular to velocity vector )

15
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V 
- — __________________________________________________________________

= acceleration due to gravity

T = thrust along the aircraft centerline

r
?

V
i~

t
~ -

H ’ I

~~~~

Fig. 2. State Variable Depiction

The controls are the bank angle and the load factor.

No constraints are imposed upon the bank angle; however,

the load factor is constrained aerodynamically as a

function of altitude and airspeed , and limited structurall y

S to six g ’s. Expressed mathematically , the constraints are

16
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written as follows:

0 (~ -2)

?. C

where C 1 is tne aerodynamic constraint , C 2 is the struc tural

limi t , and n is the load factor .

The forc e due to drag is

b : C D Q s (k-3)

where the followin~, relatIonshi r~s define the variables:

2.C ~~C + k C
b

I ~fl’ tV (k-k)

S reference  area

Numerical values for the models are listed in Appendix E.

Missile. The same equations of motion , Eqs (L1— i ) ,

are used in the missile model ; however , the missile Is

considered in the coast phase only so that the thrust, T,

is zero. No aerodynamic constraint is imposed upon the

missile load factor. The structural limi~ is set at

fifteen g’s with the corresponding constraint relation as

follows :

C3(,~) ? o (L~~-5)

‘
~ 

(
~

~



Selec tion of the Cost Function

The selection of a suitable cost function is probably

the most subjective portion of the differential game

problem formulation. The cost function used in this

problem is

5 ~ AR~- 6cos (~) 1 
- 

(14-6)

where P represents the range between the aircraft and the

missile, ~ represents the angle between the velocity

vectors of the two players (track crossing angle), tf IS

the final time (time at which ~~~~ ( J )  = 0) , and A , B , and

C are suitably selected weighting factors~

The selection of the “R2” term is based upon the fact

that the probability of kill, 
~k’ 

is primarily determined by

the miss distance In an inversely proportional manner (Ref 9).

The ,~~2,, term heavily penalizes the pursuer for failing

to close to within a small final range , resulting in the

miss distance being the predominant measure of warhead

effectiveness.

Some consideration must be given to the fuzing and

• explosive pattern of the warhead. The “destructive fragments”

radiate outward from the explosion. Clearly, a proximity

fuze will be most apt to detonate the warhead within the

lethal range if the flight paths of the missile and aircraft

are closely aligned. The penalty associated with the

track crossing angle (—B cos 
~ 

) reflects this consideration.
C A small value of results in a small penalty for the

18



pursuer while a head—on attack results in the maximum

penalty, reflecting the difficulties in fuzing the warhead

for very large closure rates.

The penalty attached to the final time is added to

preclude non—unique solutions when the missile is able to

accomplish the intercept. This term is not significant

unless the missile is able to reduce the final cost to a

very small number.

The weighting factors are picked so that the range

predominates in the cost function until a distance of ten

feet is reached . The track crossing angle is si~ niuican t

within the ten foot range while the “t 1” term bec omes

significant as and P approach zero. The following

weighting values are selected to reflect this:

B 10

C :

Application of Differential Game Theo~~
• The DDP Equations, Eqs (3—3 )

~ are applied to the problem

which allow the adjoint equations to be found as partial

derivatives of the Hamiltonain. For the problem under

consideration, the Hamiltonian is

— I I
Fl f 

~ 
4V Pe AV + ~~~~ ~ø AU. (14 7)
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The particular formulation of this problem allows the

Equation for A from Chapter II and the 3,~ equation from

Chapter III to be related as

— 
(14-8)

This allows Eq (14—7) to be written as

~ 
A x  + + + X v

4 .
~ ~~~~ i.~~v’i~ ôV (k-9)

~~~~~~~~? p ~~

~nploying Eqs (14-1) results in the 
following:

)
~~

0

CO$s( .-r ~~tr .c —

L T h V  my COS~’J

$ . ~~ 
.. + Tc ~
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— )~~cos~ 5 m b- — 31F~ Y

.
~
.

~~~L�V ~~‘ �vJ V V

1~’~~ 
s ]  x

1
Y”t V vvw co$~’J

I ~~~~~~ + oc + T~ oS.~
LI~

V ~V

(k-to)

= A~v c os a ’ s~r Y  + ~u Y  s ina

_~~~V COS~ ’ + ~~~~~co s
t1 -.

-

~ ~ veo s ’~
s%na- -~X~ VCOS~

’COS0-

where

L ” ~~

‘~~~~ 
I~ + F ~~~+ F v

D~ , t ro e
PI 1

V2 5 (c~0 -k ,C~) (k..11)

7
; 
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± f0efl v’S

and the partial derivatives are

F ~T F— —  2. ) .— — 3

__ : ~~~~ ( 14- 12)
a

~C. _ _ _  - — _ _ _

~~~~~~~

,
, ft p e /

~~
’vt 

~ (Cb• 
- k~ ct)]

,o e h’rv5 (CD0 -k , C~)

Adjustments to Eqs (L ~—9) must be made to compensate

for the load factor constraints, Eqs (14—2) and Eqs ( 14— 5) .
These equations may be wr itten as

C,(n~~,v) v~’ (~ ,v) -

= ‘- Vt 
(14-13)

5.. Yt
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where n ’ is the aerodynamic (or lift coefficient ) limit u pon

the load f a c t o r  of tne a i rc ra f t

0~, 4(~~L
’4
~~))(~~~~~4) 

(4 14)

For the occasions when the load factor is on the constr-int

boundary , the changes to Eqs (14—10) are

• 
— _ i .~! 

_ .~~ C,

: —~~~~~ —~~~~ 
~~cI (4- 15)v

- 

~~~~~~ av~

This gives the following relationships for constrained

load factors

~~~~‘ (14-16)

.

p
$,

V 
~~~

and for unconstrained situations (where ~
) = 0) the stated

relations hold:

£ =)

23
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2ptimal Control Solution

L A requirement for an optimal control is that the

augmented Hanilitonian , H, be minimized for the pursuer

and maximized for the evader. The augmented Hamiltonian

can be written In separate form as

~~~

‘ 
H~ P. ~“ — P. ~!~! + (14-17)

• 
+ I~~~ * Pp~~~~,

z
~‘2 .  z

The first order condition for the evader’s unconstrained

optimal bank angle is

— a 
= 0 (14-18)

where

H, = ~~~~~~~~~ C O T (~~,4~ tM~ J

L + T SU ~1( 1

4 A
~ [_ ~~3~. ~~~~~~~~~~~~~~~~ (14-19)

. 1’, ’
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The application of Eq (14—18) with appropriate small

angle approximations results in

{ 
A4. C034c,’l

L+TSInSC .. )
~~~ 

smy~ ~~ 
~~~~~~~~~~~ jm V

~~ 
= — —- - 

—  (14-20)

i-~
-- {A~ co~,~t;+ -~~~ ~‘~c2 * ~1CoSt j

The second order condition

~ ( o (14—2 1 )

gives

~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ P~ (14-22)

The selection of 
~e 

must ensure that Eq (14—22) is

satisfied.

A similar approach results in the following relationships

• for computing ~~~~~t

,

:

L r ~ CO5Ap1—I- ° cosY j
~~~~~ r ~ = ~~~I L~~~ 

(14 23)

_ _ _  A _ _ _ _ _a- --.--- J p
CoS~’ a

- 

--- -~~~~~~~~~~~~~ •~±•: 
_ H
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14-214)
cos b ’

The constrained load factor is found with an analogous

approach. For the evader, the separated terms of the

augmented Hamiltonian are

= - + !.~ [L ~
(14 —2 5)I

+ 
X a- 1Lsr~%~] ~~~~~~~ — ___

e 2 . 2 .mvco~~ L

The application of the first order necessary conditions

gives
( _ r 

~~ _ _

_ _ _  

X , ‘~5Iv ~
.( 

~~~~~~~~,
~~~

_ _ _ _ _  

j  ~~~~ (14-26)

+ T~~~o~~~~~~~
-

~~~~
- \

~
vc .s i L~

er)

— P e2. &fl 0

j where the partial derivatives are evaluated from Eqs (L~- i i) .
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Solving for 
~~~~~~~~~ 

and assuming small angles, ~

results in

~~~~~ 
.ç -A ~ FTk~~~
“ 

Qs 
J

_ _  + _ _ _ _ _ _  
(14 27 )

~~~~~~~ 
L 

e ~S J )
z —I

[iv, Tk~~
)n e

The second order conditions, Eq ( 1 4 — 2 1) ,  are applied to give

_ _ _  
_ _ _ _ _  

~
• _ _ _ _

Q 

•

~ 

(14-28)

The same approach is used to find 6fl~, with the

following results:

~~ ~~~~~~ Li I 
+ 

}I4~ “~‘,1______  + VW %V L P

AVt~ 

Co2~~ ‘ — (14-29)

_ _ _  

2•k,L) 
~ 

pp ( 3 )

Equation (14-28) is automatically satisfied if A~, ‘ 0

an interior load factor is possible in these circumstances.

J c  

and 
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Should the computeu load factur , P%~~ + 6r ~,, exceed the

constraints, Eqs (14—13), the load factor is set at

maximum. An interior control for the pursuer ’s load factor

is possible if from Eq (1~—30) , and the load

fac tor , n~~~ An~ , is handled in exactly the same manner as

for the evader in consideration of the pursuer’s constraint.

A selection of zero values for the penalty functions

reduces the problem to the general differential game
F

situation (Ref 11 : 1 9—214).

Prqportional Navigation Guidanc e

A proportional navigation scheme was employed against

the DDP “guided” evader to rate the performanc e of

differential game guidance. The proportional navigation

4.. pursuer was also allowed to use perfect information to

determine the rate of change of the line—of—sight between

the two vehicles. Two angles were used to determine the

line—of—sight (LOS) as indicated in Fig 3 (Ref 11:25).

Relationships for the angles are

.
~~,‘

,,
‘ 

0 = -~- (14-31)

_________  (14-32)
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~, 
(_

• - a,

Fig. 3. Line—of—Sight Angle Determination

The time derivatives are

_ _ _ _  — 
_ _ _ _ _

~~~ ~ jL~4 
~
i”ji-

(14—33)

_ _ _ _  

c 4  
_ _• — ._!~~

-a — ___ 
L

$
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The idea is to have and be some multiple of

r y. a n d 0 :

L ~,co~Yp
~ RP1 y. ~ 

CD~~~L~ - —

(14~314)

c-P 
VVIV CO~~Yp

Solving yields

R P 0
t’~flJLp = 

~~~~ .+ 1.~~~
1P

(1+~35)

RP~ 0 my Ce5~ p
L=nW :

-

If the calculated value of n exceeded the structural limit ,

n was set to fifteen.

To contend with situations where • is small , Eq (14—34)

gives

V S

‘
~~~~ 
: — — I RP1 ‘t - 

—. (4-36)
1C’~~ , L .1

$

.4 • - 

~~~~

•
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V. Results
e

The results obtained are derived from the closed—loop

application of the DDP algorithm as explained in Appendix B

and Chapter III, and from the proportional navigation scheme

of Chapter IV against an evader employing the DDP algorithm

in a closed—loop fashion. Several TPBVP solutions were

available (Ref 11) and these allowed the algorithm to be

compared to a known reference as a check of accuracy.

DDP Closed—Loon Application

The intercept problem was attempted first without

convergence control. It was found that large control

changes, Au (t) and A v(t), resulted causing trajectory

• changes, Ax (t), to be too large , thus violating the

linearization of Eq (3—1) and not allowing a solution

to be found. Reducing the problem to extremely favorable

initial pursuer positions did not help the situation, and

the CCP technique was included in the algorithm.

The closed—loop guidance scheme used in this problem

solution utilizes five Iterations to determine the control

strategies and the combatants ’ applied controls are updated

at .5 second intervals. The integration routine uses a dt

of .02 seconds. This formulation does not result in a

real— time guidance philosophy with the use of current

computer technology and is certainly not applicable to a

small, air—to—air missile; however , it does obviate the

traditional, long execution time, non-linear TPBVP

L 31
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solution methods (Ref ii). The resulting trajectories appear

to follow reasonable logic. The aircraft tries to cross

the path of the missile and normally descends to gain a

better turning rate and take advantage of the higher thrust

available. This result is consistent with normal air—to—air

evasion tactics and parallels the findings of reference 11 .

For purposes of this study , a kill is defined as a pass

within ten feet of the aircraft at any value of track

crossing angle, ~ , or a pass within fifteen feet at

values below 1+50.
ease !. The first situation considers an attack from

directly behind the aircraft (six o ’c lock position) . The

altitude for both combatants is 33,000 feet and the initial

controls for both are zero bank angle and one “g” (straight

and level) . The DDP algorithm is applied in a closed-loop

manner as indicated (five iterations between control

updates with .5 second updating intervals). The results

are that the aircraft attempts a straight—ahead (no bank)

maximum flg~ climb. This makes sense if consideration is

given to the speed and load factor advantage of the missile.

By attempting a straight-ahead climb, the aircraft tries to

capitalize on the zero—thrust situation of the missile;

however, a kill is scored in all situations until the
missile is initially positioned far enough behind the

aircraft so that its airspeed is depleted before the intercept

can be completed.

This test case confirms what experienc e has proven

1 
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in air-to-air combat ; if an evader is unaware of an attack

~~ hi~ ‘~ni~ ~c ~ot maneuverin g at t ile ti~ne ~ni s:~i1e

L Jj d a n ce begins , he .~ill ~no st l ikely be destroyed .

Case 2. This situation is initially the same relative

position as In Case 1; however , the initial controls are

changed . The pursuer again employs zero bank and one “g”

but the evader flies a fixed 9Q0 bank and three “g’s”

throughout. The DDP algorithm is used as the pursuer ’s

guidance law and the evader files the initial controls with

no updating.
/ The first application used an integration-step size of

.02 seconds , an updating interval of 1.5 seconds , and 15

iterations between updates. The result is a 237 foot miss

at the end of the game.

• A second attempt with PD? guidanc e with a one second

updating interval and ten iterations results in a 13 foot

miss at 
~ 

= 11.5°, a kill.

Finally , a third application using five iterations and

a .5 second updating interval gives a four foot miss at

• = 11.5°, within the lethal envelope.

This analysis shows that an improvement is realized by

taking a smaller updating interval and retaining enough

iterations (in this case five) to derive “near optimal”

controls without undue computational time. In the large

updating interval case, the “near-optimal” controls derived

are not close enough to the optimal and , when applied for

long periods (one second and more), cause poor results.

k ~~

-

~~~~~
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I~ the explanation of the DDP method (Chapter III)

it v~~s stated that the predicted cost caa~ge~~, ae (t o ) and

should be s~ al1. In the 1 .5 second u~ dating

application , the magnitudes of ae and a~ a f t e r  five iterations

are on the order of 50,000 and decrease to 50)0 by the end of

the game. For the one second updating , they are 1+0 ,000 after

five iterations and decrease to 200. ?lhIle with a .5 second

interval, the predicted changes after the iterations are

32,000 but decrease to

It can be concluded that forcing the evader to use a

particular control and allowing the pursuer to update with

the DDP algorithm on short time Intervals will result in a

successful intercept; however , this is not achieved in

( real—time , even with the CDC 6600 computer.

Case ~. In this simulation , both pursuer and evader

use the DDP algorithm to update and compute control histories.

Although a real—time solution is not achieved , the computations

are based upon an integration step size of .02 seconds , a

.5 second updating period , and 5 iterations between updates.

Three particular situations will be presented in detail as

representative.

The first situation is that of Table XI of Appendix A.

The selected Initial controls place the aircraft in a 90°

• bank , two “g” turn into the missile. The pursuer’s initial

control is a zero bank, one “g” path aimed ahead of the

aircraft. This control was selected to reflect the fact

C. that the pursuer does not have any idea what the aircraft

31+
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will do. It Is very similar to the way a hunter would aim

at a duck , some slight lead based on the present control of

the evader , and does not tive any inherent advantage to

the missile .

The missile closes to within 15 feet at the intercept

point with = 1+0° and the resulting flight path is

depicted in Figure 1+. Table I lists the relative values

• of actual versus predicted cost crianges , ‘~°-¼ o!

The individual predicted cost changes start at magnitudes

on the order of 100,000 and slowly decrease with successive

iterations until they reach .5 at the end of the game.

• Table I

Convergence Characteristics

Time (Secs) A
~37Q.(t) Predicted Final

° Miss Distance (ft)

.5 .13 61+6

1.0 .85 1.92

1.5 .91 288

2.0 .85 129

2.5 .77 50

3.0 .67 19

3.5 .71 15



A second data set, Table XII, is run in the same manner

but the initial evader control is now 9Q0 bank and two “g’s”

away from the pursuer. This problem terminates In an 11 foot

miss at = 140
0
. Table II depicts the convergence

characteristics of this problem . The values of ae(to)

and a~ (t 0 ) start at 1~2 ,000 and decrease to io .2 . This

trajectory Is shown in Figure 6.

Table II

Convergence Characteristics

Time (Secs) Predicted Final
Miss Distances (ft)

.5 .42 663

1.0 .91 51~4

1.5 .92 305

2.0 .86 11+2

• 2.5 .79 61

3.0 .68 , . 29

3.5 .96 16

14.0 .67 12

( .
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Finally, Table XIII is used to begin an intercept

problem. In this case, the aircraft is in a 30
0 dive

using 900 bank and two “g’s” into the pursuer. This helps

the aircraft since It is gaining both airspeed and control

authority , and the miss distance is 578 feet with the

convergence characteristics presented in Table III. The

individual cost change values begin at 350,000 and decrease

to 10~~. The trajectory is depicted in Figure 8.

Table III

Convergenc e Characteristics

Time (Secs) ~37~(~,) Predicted Final
Miss Distances (ft)

.5 1.54 1227

1.0 1.00 1467

1.5 1.11 11483

2.0 1 .25 11+89

2.5 .95 1487

3.0 .99 11+68

3.5 .99 14 13

14.0 .99 1295

14.5 .99 1077

5.0 .90 760

5.5 .87 613

t 6.0 .70 581

6.5 .5L~ 579

3?



The bank angle histories for the three cases are in

Tables IV, V , and VI.

Table IV

Bank Angle History

Time (Secs) Pursuer Bank (Deg) Evader Bank (Deg)

.5 142 32

1.0 81 82

1.5 7L 61+

2.0 82 75

2.5 86 78
3.0 81 81+

3.5 81. 86

1~ Table V

Bank Angle History

Time (Secs) Pursuer Bank (Deg) Evader Band (Deg)

.5 41 50

1.0 86 81

1.5 78 70

2.0 81 714

2.5 83 75

3.0 85 77

3.5 86 76
4.0 87 77
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Table VI

Bank AnLie History

Time (Secs) Pursuer Bank (Deg) Evader Bank (Deg)

.5 76 82

1 ,0 55 30

1.5 52 25

2.0 51 21+

2.5 50 22

3.0 50 22

3.5 51 22

11. 0 51 25

14.5 514 32

5.0 58 1~L#

5.5 62 55

6.0 65 62

6.5 66 63

It can be seen that there are no significant

discontinuities in the updating of the controls; however ,

it is also apparent that the controls remain nonootimal

for a good portion of the intercept. If more iterations

are used between control updates , better controls would be

derived but at the expense of a real-time impleme~tation.

In general, five iterations is not sufficient for determining

near—optimal controls when initial control “guesses “ are

not close to the optimal. /

The final stage of the intercept problem is the most

sensitive and rapid , large control changes are demanded of

39
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the missile reflecting the missile ’s desire to line up the

f l ignt  paths (null  
~ 

) and eliminate the terminal miss distanc e

while state values are rapidly changing . To overcome this

situation , anytime the time remaining is less than one

full updating period , the missile uses the last control

selected .

The load factor selected b~,’ the guidance scheme was

largely determined by the penalty values, 
~e 

and P
a Pa

Interior controls result for the missile for a large portion

of the flight while the aircraft normally reaches its

maximum load factor first. The values of 
~e 

and P~ must

be picked large enough to ensure convergence; however ,

large values also cause slow convergence as reflected in the

values of ae(t o) and a~ (t 0) previously discussed .

Proportional Navigation Guided Pursuer

The pursuit—evasion problem was re—solved in a closed—

loop fashion with the evader employing DDP derived controls

and the pursuer relying upon proportional navigation to

compare the DDP performance. The same initial states and

controls were used (Tables XI — XXII). The oroportionality

constants, RP1 and RP2, are set at ten. This represents

a performanc e level which exceeds that obtainable with

current technology ; however , the selection of ten is used

to re flect future capabilities of improved proportional

navigation me thods.

Each proportional navigation trajectory follows the

DDP trajectory in Appendix A. In each situation , the

40 
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missile is a le to close to lethal range. The aircraft once

again attempts to cross tne pursuer ’s path , but the missile

is able to keep Inside of the turn. This is due to the

selection of ten as a proportionality constant and the

fact that the evader is using the DDP guidance law which is

not optimal.

Both combatants use the maximum load factor throughout

which allows the r.’Lissile more control authority , but at a

great ex)ense in drag. The more unfavorable the initial

position , the larger the final range. This situation is

expected and reflects missile launches made from outside

of the “firing envelope” where the drag penalty defeats

the missile.

Tables VII , VIII, and IX present the bank angles

resulting from the conditions of Tables XI, XII, and XIII

with the trajectories depicted in Figures 5, 7, and 9.

Table VII

Bank Angle History

Time (Secs) Pursuer Bank (Deg) Evader Bank (Deg)

.5 182 87

1.0 72 87
18~+ 89

2.0 7 89
2.5 180 88
3.0 178 89

3.5 13 90

4.0 154 90
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Tabl e VIII
(

• Bank Angle History

Time (Secs) Pursuer Bank (Deg) Evader Bank (Deg)

.5 —6 1 —59

1.0 —21 —59

1.5 136 —59

2.0 -1~0 -59

2.5 —14 L~ —59

3.0 1143 -60

3,5 130 -60

14.0 — 7 1 -60

14.5 —63 —59

Table lX

Bank Angle History

Time (Secs) Pursuer Bank (Deg) Evader Bank (Deg)

.5 — 5 ’ 20

1.0 88 114

1.5 26 18

2.0 19 16

2.5 52 19

3.0 61 22

3.5 96 29

1.0 1014 140

14.5 100 37
5.0 110 39

5.5 112 146
$ 6.0 • 53 28

1+2
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Open—Loon Corn arison

The exact TPBVP soluti~n for three intercept probl~zns ,

yielding open—loop controls , were obtained (Ref ii). These

situations are listed in Tables XX — XXII. The two

guidance schemes previously discussed (DDP and proportional

navigation) were applied to tne pr’blezns; however , the

initial controls for both players ~re the saddle—point

controls from the TPBVP solution. Again, five iterations

between .5 second updates are used with the resulting

trajectories displayed in Figures 22 — 30.

For the situation of Table XX , the open—loop controls

give a terminal miss of 20 feet while the DDP method results

in a 177 foot miss and the proportional navigation scheme

results in a 126 foot miss. The control comparison is

listed in Table X. The predicted cost changes, ae(to
) and

a~(t0)~ start at 21+0,030 and decrease to €0.

From this analysis, it is detern ined that the DDP

method can converge to a near—optimal solution if nominal

controls are selected which are very close to the optimal

since the trajectories (Figures 22 — 30) are very close

in all cases. In actual applications this is very

difficult to do since there is no sound basis for arriving

at good initial control guesses without long computer

solutions (Ref 11).

I
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Table X

Control Comparison

Time Optimal PD? Prop Nay
(Secs) Pursuer (Deg) Pursuer (Deg) Pursuer (Deg)

.5 25 21 
- 

16

1.0 25 22 19

1.5 25 23 22

2.0 25 23 25

2.5 25 214 28

3.0 25 214 31

3.5 29 23 34

14.0 35 22 38

L~.5 39 20 44

5.0 45 20 55
-, 5.5 53 29 7?

6.0 75 — 40

1
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VI. Conclusions and Recommendations

Conclusions

The DDP rnet iod has been applied to a non—linear ,

differential game modeled air—to—air intercept problem.

A variety of initial positions has been examined as indicated

in Chapter V and Appendix A , and a real—time , closed—loop

implementation of the guidance law was not realized. The

trajectory deviations which arise from large computed

control changes, A u and 4 v, are too large and force the

adoption of the CCP technique. Although this assures

convergence , the computation time is not suitable for

real—time applications.

The restriction to five iterations does not allow

near— optimal controls to be found due to the slow convergence

characteristics as evidenced by the large values of’ ae(to)

and a~(t0) given in Chapter V. It is concluded that any

real-time guidance algorithm (for a short duration air—to-air

missile) which hopes to achieve an increa~e in kill

probability through the use of differential game theory will

have to sacrifice some of the realism involved through the

inclusion of nonlinear dynamics.

The algorithm demonstrates a strong reliance on the

Initial controls. The closer the initial controls to the

optimal, the better the DDP i~etriod solutions (more near—

optimal). The possibility of storing several near-optimal

control histories aboard a small missile is doubtful, and

merely guessing one does not lead to good results.
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The tactics which arise through this simulation in a

closed—loop manner are very similar to those which are used

in air-to—air combat situations. The use of DDP, therefore ,

may be worthwhile in an off—line computer simulation to

test selected tactics.

Finally, it is concluded that although the traditional

iterative (neighboring extremal) TPBVP solution require::~ent of

needing very good “guesses” for the initial co—states is

eliminated with the DD.P method , a strong dependence on

initial conditions remains. The solution is very

problem—dependent in that in high altitude intercepts

(above 30,000 feet) the aircraft is penalized due to lower

thrust and a reduction in the maximum load factor. At

lower altitudes , the aircraft’s improved performanc e and

the nonoptimality resulting from the five iteration

restriction allow the aircraft to defeat the missile as

shown in Figures 10 and 18.

It has been determined (Chapter V) that the DDP method

applied to the aircraft improves the evasion (increases the

final range) over the selection of a particular selected

strategy which employs no updating method . The final

set of trajectories, Figures 22 — 30, show that the solution

will converge to the optimal, given sufficient time. This

“long— time” requirement prec ludes the real—time Implementation .

Recommendations

It is recommended that further study in this area be

directed toward simplification of the dynamics. A

1+6 
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reduction in the complexity of the models , while not

completely relinquishing the basic characteristics , may

allow some of the potential gains inherent in the

differential game philosophy to be achieved.

Beyond the model simplification , an extension of the

intercept problem to include the case of multiple missile

launches may provide some useful tactical information.

Presently , the results confirm accepted logic for air—to—air

counter—maneuvers . Perhaps a new or revised tactic r:iay

be discovered through simulation of different encounters.

I
I

t
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Appendix A

Trajectory Analysis

The following graphs depict the three—dimensional

flight paths and ground tracks of the missile and aircraft

resulting from a closed—loop application of’ the guidance

scheme. In Figures 1+ — 21 , the aircraft uses the DDP

method while the missile uses either the DDP algorithm or

proportional navigation as indicated on each graph. Figures

22 - 30 are the exact TPBVP solution comparisons with

Figures 22, 25 and 28 depicting the “exact” optimal

solutions. The initial conditions for each set of graphs

are given In the preceding tables, Tables XI — XXII .

~~~.
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Table XI

Initial Conditions

State Evader Pursuer

x ft 5000 -1000

y ft 5000 6000

z ft 33160 33160

V ft/sec 706 2219

V rads 0.0 -.01

r rads .524 .01

C ontro~
2 1

,M r ad 1.57 0.0

_ 
_ _  

_ _ _  

50 

_ _ _ _ _ _
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DOP EVI9SION-DDP PURSUIT

~-GND TRK(E)+ ‘QNO TRK (P)

F
I

9 .

Fig. 4

1 • 
_ _ _ _  
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DOP EVASION-PROP NF IV PURSUIT

fri

$

LEGEND
o—EVRDER
o — PtJRSUER
a — t t 4 D  TRK(E)
+-G ND 7RK (P )

r
I
I 

.

$ .

Fig. 5 -

52
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Table XII

Initial Conditions

State Evader Pursuer

x ft 10000 4000

y ft 10000 9000

z ft 33163 33160

v ft/sec 706 2219

t rads 0.0 -.01

r rads -.524 -.007

Control

~~g’s 2 1

rad 1.57 0.0

-
t

53
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DDP EVASION-DDP PURSUIT

LEGEND
a-EVADER
o - PURSUER
~-GNO TRK(E)+ — G N O  TRK(P)

V 

14

Fig. 6

51+



DDP EVASION -PROP NAV PURSUIT

I •LEGENP 
.

a - EVADER
o-I3IJRSLJER
A— GND TRK(E)

Ita +-G NO TRK(P)

I .

x 1 
14

Fig. 7
- t  

.
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Table XIII

(

Initial Conditions

State Evader Pursuer

x ft 10000 2000

y ft 10000 9000

z ft 33000 34000

v ft/sec 706 2219

V rads -.521k -.3

~~rads -.524 .01

Control

n g ’s 2 1

~~M rads 1.57 .0.0

(

56
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OUr EVASION-DDP PURSUIT

LEGEND
a-EVADER
0-PURSUER

\ A~~ ND TRK(E)
+-~~NIJ ThK(P)

I .

Fig. 8 
V
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DDP EVASION-PROP NAV PURSUIT

V)

LEGEND
— EVADER

0-PURSUER
A-GNO TRK(E)
+-GND 7f*((P)

I
- 

14
I

Fig. 9

58
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Table XIV
(

Initial Conditio~~

State Evader Pursuer

x ft 5000 - 0.0

y ft 5000 6000

z f t  15000 15000

v ft/sec 770 2065

Y rads -.1 -.02

o rads .524 .01

Control

n g ’s 2 1

,&trads 1.05 0.0

C- -

59
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DEJP EVFISION-DOP PURSUIT

‘I

LEGEND
a-EVADER
0-PURSUER
6-GND TRK(E)
+-~~j rj  7RK(P)

L

I
ss~

Fig. 10

60
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DOP EVASION-PROP NAV PURSUIT

r

‘4

LEGEND
a-EVADER
0—PURSUER

- £-GND 7RK(E)
(.  +—GND IRK(P)

I
5i~~~~~~

Pig. 11

61
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Table XVr
Initial Conditions

State Evader Pursuer

x ft 10000 12000

y ft 10000 2000

z ft 33160 33160

v ft/sec 706 2219

1
’ rads 0.0 -.01

~~rads 0.0 1.57

Control

n g ’s 2 1

rads 1 .57 0.0

I

I

62
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DOP EVASION -DDP PURSUIT

I LEGEND.
a-EVADER
0—PURSUER
6 ”  CND IRK(E)
+-QNO IRK(P)

F -

I -

4O~ J 1U~

Fig. 12 -



DDP EVASION -PROP NAV PURSUIT

8

LEGEND
a - EVADER
0- PURSUER

- 4-GND IRK(E)
+—QN D IRK(P)

I
V r

I
I

~~~~~~~ 

~~~~~~~~ 

1

Fig. 13
(

4 I -~~~~~~~~~~~~~



Table XVI

Initial Conditions

State Evader Pursuer

x ft 10000 4500

y ft 10000 11000

z ft . 15000 15000

v ft/sec 770 2065

I rads .1 .11

i” rads .524 .01

Control

n g ’s 3 1

~M.rads 
.524 0.0

I (
~

: ( ~
65

--1

~

-.  - - 
~~~
--- 



DOP EVAS ION-DOP PURSUIT

LEGEND
o — EVADER
0—PURSUER
A -G ND ‘IRK(E)
+-GND IRK(P)

. 1 -
11~~ x

1Os~

Pig. 14

66



DDP EVASION-PROP NAV PURSUIT

vs

LEGEND
I I a-EVADER
I L o-ptj R5tJER
7 - A E ~ND TRK(E)

/ rs” GND IRK(P)

I
.

t4

• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

IIX

Fig. 15 
-
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Table XVII

Initial Conditions

State Evader Pursuer

x ft 10000 - 3000

y ft 10000 9000

z f t  33160 331 60

v ft/sec 706 2219

I rads 0.0 - 
-.01

~- rads — .521k — .001

Control

n g ’s 2 1

~ trads 1.57 00

68



DDP EVASION -DDP PURSUIT

LEGEND
a—EVADER
0—PURSUER

• V 6—OND TRK(E)
+— QN D TRN(P)

L

~~~~~~~~~
Fig. 1 6

(_ ‘
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-
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DOP EVASION -PROP NI9V PURSUIT

I

LEGEND
a EVADER
0-PURSUER
6-GND TRK(E)

,~ +-GNO IRK(P)

1 -

I

Ftg. 17

70 •
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Table XVIII

Initial Conditions

State Evader Pursuer

x ft 10000 5000

y ft 10000 9000

z ft 11000 11000

v ft/sec 850 2350

I rads 0.0 -.01

rrads -.524 — .01

Control

n g ’s 2 . 1

~~~rads 1.57 0.0

( _ 1

t 
V 

71
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DDP EVASION -DDP PURSUIT

~1
“ — I ~~~~~~~~~

—--~~~ ..—~~~~~~~~ I

LEGEND
a - EVADER
0- PURSUER
6-GND TRK (E)
+- GND TRK(P)

I
r
I

Fig. 18
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DOP EVASION-PROP NFIV PURSUIT

vsV —
.--~~_-~~ I ‘~

‘N.

I
LEGEND

a - EVADER
0 - PURSUER
A-GND TRK(E)
+-GND TRK(P)

r
I

I
7 . 1

Fig. 19
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Table X1X

(

Initial Condition!

State Evader Pursuer

x ft 10000 4000

y ft 10000 11000

z f t  33160 33160

v ft/sec 706 2219

‘
~~
‘ rads 0.0 -.01

c rads .521+ .01

Control

n g ’s 3 1 
V

,st rads 1.05 0.0

C

7’4

_ _ _ _ _ __



OUr EVASION -DOP PURSUIT

§ LEGEND
a-EVADER
0-PURSUER
6-ONO TRK(E)

~~a +-GNO TRK(P)

Fig.20



DDP EVASION-PROP NAV PURSUIT
(

LEGEND
0—EVADER
0—PURSUER

- a-GND TRK(E)
+—GND TRK(P)

$

-

( 

10600 
~~~ 1o~ 1~~n 1

Fig. 21I_ c 
.
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Table XX

Initial Conditions

State Evader Pursuer

x ft 4 178 10920

y ft ~4435 
10242

z ft 11123 7782

v ft/sec 849 2491

~
‘ rads -.5 -.29

o rads -1 .2 —2.18

Control

n g ’s 6 15

~~~rads 1.05 .524

77
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OPT EVASION -OPT PURSUIT

LEGEND
a-EVADER
0 - PURSUER
A-GNU TRK(E)
+- GND TRK(P)

IN
V 

V

- 
Fig.22

78



DOP EVFISION-DDP PURSUIT

- 

LEGEND
0—EVADER

- 0-PURSUER
6-GNU IRK(E)

8 +-Gf ’JIJ TRK(P)
( I

I

I

Fig. 23 -

I
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DDP EVASION-PROP NAV PURSUIT

I ‘

~

\
*\

1SL%~S,~ 
LEGEND

0-EVADER
0-Pt JR SUCR
a-GND TRK(E)
+-~~ IJ 1RK(P)

I

I

~~~~~~~~~~~~~
Fig. 24

80
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Table XXI

Initial Conditions

State Evader Pursuer

x ft 4936 934 1

y ft 3013 1 0358

z ft 33198 33326

v ft/sec 703 2235

~ raos -.84 - .62

V rads — .61+ —2.43

Con trol

n g ’s 2 15

rade 0.0 1 .22

( - )

81

V _ _ _-



OPT EVASION-OPT PURSUIT

I -

LEGEND
a—EVADER
0-PURSUER
A -GNU IRK(E) -

- 

+—GND TRK(P)

I

I
I 

.

4000 7
~

o

Fig. 25

82
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DOP EVF ISION-DDP PURSUIT

LEGEND ¶
a—EVADER
0— PUR SUER

B V A— GNU TRK (E)
+—GNO TRK(P)

I
N

1
I

V 

6000 

V

Fig. 26

83
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DDP EVASION-PROP NI9V PURSUIT

I

I
I LEGEND

a—EVADER
0—PURSUER
6— GNU TRK(E)- r ’u’ GNO TRK(P)

I
F
I
I

6000

9 Pig. 27
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- . 4 - 
_ _ _ _ _



Table XXII
(

Initial Conditions

State Evader Pursuer

x ft 1+972 9199

y ft 2985 10260

z ft 33150 33170

v ft/sec 706 2219

Y rads — .846 — .619

r rads -.632 -2.41

Control

n g ’s 2 15

~~* rads 
0.0 1.22

I t
85
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OPT EVASION-OPT PURSUIT

I _LEGEND
a-EVADER
0_PURSUER

- £-tNO IRK(E) -

+—GND IRK(P)

I 
V

I
6000 X

6000
4000

Fig. 28
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DDP EVASIO N— DOP PURSUIT

C

I
LEGEND

o — EVADER
o—P 1JR SUER
& — ~ Nfl TRK(E)
+—G NO IRK(P)

V)

N
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ODP EVASION-PROP NAV PURSUIT

LEGEND
0—EVADER
o—PIJRSUER
o — t NO TRK(E)
+‘- GND TRK(P)

N

1~x 
7E~O

Fig. 30
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Appendix B

r Application of the 
_________

The following discussion explains the application of

the DDP algorithm in a closed—loop manner:

(a) Nominal controls are used in the forward

integration of Eq (2—1) as previously indicated. Penalty

values are selected prior to the Integration and the

mechanization discussed on page 11 is carried out.

(b) The predicted and actual cost changes are

compared as explained in Appendix D and the penalty values

are adjusted. If regions A or A’ are encoun tered , the

iteration is rejected and the nominal controls are used

again with an adjusted penalty value. If the comparison

falls outside regions A or A’, the nominal con trol is

replaced by the control obtained during the backward

integration and the penalties are adjusted.

(c) The controls derived during the backward

integration ;&re exchanged for the controls used during the

forward integration as long as the cost ratios satisfy the

rules of Appendix D. The iterations are continued for some

predetermined number.

Cd) After the required number of iterations is

reached , the resulting controls are applied for a specified

time interval. The state of each combatant at the end of the

time Interval becomes the initial condition for the next

( iteration cycle, and the process is repeated.

89



(e) The Intercept is completed when the derivative

of the cost goes to zero. The state at each updating point

is used to obtain the trajectories of Appendix A. The evader

and pursuer are able to base the choice of controls on the

more current , updated state, thereby giving closed—loop

guidance.

(~



Appendix C

*~ L
Derivation of the DDP Equations

It is assumed that nominal controls, ~(t )  and ~(t),

exist which result in a nominal trajectory to Eq (2—1),

~(t). It is further assumed that this trajectory is

reasonably close to the optimal solu tion , x~(t). If the

optimal solution is written as

~ 4

Eq (3—1) can be written in terms of the nominal as follows:

~~

(

~

+4x;t ) +  m: +4J(I4~y J  •a~i) t) 
(C—2)

4~) ~ o

Equation (C-2) is expanded in 4K , resulting in

+ ..?_J (i;~) 4X

+ “a” ~*1[W (~~~~~3
:.~) + (fi)’~x (C-3)

~~~~~~~~~~~~~~~~~~~~~~~~~~~ Rt]: ~

If LX Ia small , the remainder term, R’, can be neglected

since it represents terms of second order and higher. Since

Eq (C—3) is not dependen t upon choic e ~f 4K , the

I

9’



following relationships hold:
.~ (

~j

_ _ _  + 0

+ ?!_ (~ ) ) V ’,i ) t) +~~~;~ ( v ~~t) (C-Lj )

.4 [~
“ _

~&. (
~ 

: o

~nploying expressions for 
the total derivatives of 3°

and

.
~4t

(C—5)

and Eq (3—k)

: 3° .T (C—6)

in Eqs (C—i,), the DDP equations are determined as

(Ref 8:3—5):

_ o ( t): —

...i; :~!t( v * 11 3 ,t) 49
T
~fj

- - _



Appendix D

Adjustment of the Penalty Functions

To derive the most benefit from the CC? technique , the

penalty function values must be altered base~d upon the

reaction of the problem to the present values. When

convergence is indicated the values should be decreased.

The following discussion forms a basis for the alteration

of the penalties. The following figure is helpful in

determining how to adjust 
~e 

and P~, (Ref 9:30).

A 

6r ~~~~~~~~~~~~~~ sio :e=1

A ’

Fig . 31 Convergence Domain

If th. ratio of the actual coat change, ~ 7 , to the

prsdicted coat chang., a(t 0) ,  falls within :



Area A — The expansion of Eq (3—1) Is not valid

Li ( 
~ x is too large) and the penalty values

should be increased significantly. This

indicates that the pursuer ’s penalty Is

dominant and should be increased more than

the evader’s.

Area B — The expansion is poorly satisfied (pursuer’s
penalty still dominates) and an increase in

is indicated.

Area C - The expansion is satisfied and both penalty

values should be decreased.

Area D — This is similar to Area B but the evader’s

penalty, 
~e’ 

should be increased in this

case.

For points within Areas A’ - D’, the rules pertaining
to Areas A — D apply with the evader and pursuer philosophies
reversed.

It is wise to try to keep the components of a(t0),

a5(t0) and a~(t0)~ of the same order of magnitude by

varying the ratio of to 
~e 

(Ref 8:31).

One area which represents a “special case” is the

region close to the origin in Areas A and A’. In these

areas, the predicted cost change is small; however, the

components, ae(to) and a~(t0)~ may be large. In this

situation, both penalties may be reduced moderately.

C



Appendix E

Numerical Asoects

This Appendix presents the numerical aspects of the

problem. The values of the constants used are presented

to aid further research In this area.

Aircraft Equations

~~~~ 
(z134 & . 7 — .7018 ~ + ie.i~

, v)

CD . O %~.11 + ,~ 2.3 CL

.Ib

.c~ .2IS~~5 C 1

s (ft~
) : 530

(a.) (ILs) : 40,000

Missile Equations ~~~ General Constants

.~~ + •~~~a C
a

s ( ff .’) : .22.3

U (ii~) : 103

~ .ooz 37~;

ft = 3.5 * 10

$ It,
I = 3~.2 (uc

9~

_ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _
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