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ABSTRACT

The acoustic radiation from an elastic cylindrical shell defined by
nonconcentric cylindrical surfaces and submerged in an acoustic fluid is
studied. The driving mechanism is a time harmonic internal pressure. In
particular, the influence of the nonconcentricity parameter, &, on the
resulting radiat;on field is examined. The solution is obtained by means
of an expansion in powers of this parameter about the concentric solution,
§ = 0. Each order of solution is solved in closed form by means of
boundary integral equation methods. Results are given for the zeroth and
first order solutions and it is seen that a jth driving mode will introduce

nearest neighbor ( (j-1) and (j+1) ) modes in the first order solution.




Es INTRODUCTION

We consider the radiation into an infinite acoustic fluid from a submerged
elastic shell subjected to a time harmonic internal pressure with some pre-
scribed spatial distribution. The shell is bounded by surfaces of separable
geometry, i.e., such that the governing (Helmholtz) partial differential equa-
tions have modal solutions, that are nonconcentric, i.e., the origin of the
coordinate system in which the outer boundary is ''separable" is displaced from
that for the inner boundary by a nonconcentricity distance, &6 . If § were zero,
the entire problem could be solved by separation of variables but with §
nonzero, the problem is not separable.

The purpose of this investigation is to study the influence of the noncon-
centricity on the resulting radiation field by making an expansion of the
solution in powers of §&§ . Clearly the zeroth order will give the classical
separation of variables solution. Higher order solutions will then represent
the influence of nonconcentricity on this basic solution.

Rather than work with the governing differential equations, we convert to
a boundary integral equation representation which eventually allows us to solve
a set of algebraic equations for each mode in each order to obtain the exact
solution.

To simplify the algebra, the submerged elastic body will be taken as an
infinite cylinder in plane strain thereby reducing the problem to a two dimen-
sional case. A specific example of nonconcentric circular boundaries is calcu-
lated as an illustration. Analogous three dimensional problems are also being
studied - the axisymmetric three dimensional case requires essentially no more
effort than this two dimensional problem.

The full equations of elasticity shall be used rather than approximating

set of shell equations since the use of the boundary integral equation method




reduces the problem by one dimension anyway thereby accomplishing one of the main
purposes of shell theory.

This type of problem has been studied previously for acoustic radiators,
both by the boundary integral equation method [1] and by shifting and super-

position theorems [2].




I1. GENERAL FORMULATION

A. ACOUSTIC FLUID EQUATIONS

The infinite acoustic fluid exterior to the elastic body is described
in terms of an acoustic (excess) pressure field, p , which satisfies a

Helmholtz equation
2 i 18
(1) V")-\—\e\o:O

where k = w/c is the acoustic wave number, w 1is the frequency of the time
harmonic dependence (taken in the form exp[-iwt]) and ¢ is the acoustic sound
speed. This equation is readily replaced by a Helmholtz (or Weber, for the two

dimensional case) integral equation; e.g., [3]
- T—:, ‘_Q T —a E(FO)]
(2) € P(Y‘) = § "‘P (o) a‘é'(——r—) * G (T;T0\ 2 Mo dSo
" 2 Mo

Ho (L (kR) in two dimensions and G = & exp[ikR]/R in three

where G = F

&)

dimensions. R is the distance between the field point r and the integration
variable, ;o’ no is the outward normal from the fluid, TI' is the line or
surface bounding the fluid, i.e., the elastic solid-acoustic fluid interface with
length or area element dS , and € = 0, 1/2, 1 depending on whether the field
point is exterior to the fluid, on the interface or interior to the fluid. The
radiation condition is automatically satisfied by the choice of G . Since
only Hankel functions of the first kind will occur, the superscript (1) will be
dropped.

The fluid velocity field is related to the pressure field through the
acoustic velocity potential ¢ , which could also have been used as the depen-

dent variable

(a) N = - \Y Cb
) r = 5 3¢/at = —L(.QS’FC}D

is the acoustic fluid density.

3

where p
Pg




B. ELASTIC SHELL EQUATIONS

The elastic shell involves a finite domain with an inner and an outer

boundary (treating the infinite cylinder as a two dimensional plane strain

problem). It is best described by the displacement potentials ¢ and V¥

defined by the displacement field u  as;

—_—

w W=9Yd+UxY , V-¥=0

These potentials also satisfy Helmholtz equations

@ V'd+la =0 |

(5) —

= = = i 12
where kD m/CD, kR w/CR and p V(A+2p)/ps is the dilatational wave speed,
R = Vu/pg is the rotational wave speed in an elastic medium of density os

and Lame parameters, X and u , e.g., [4].

In the two dimensional plane strain case considered here, the vector dis-

placement potential ¥  has only one nonzero component and will be written as a E

scalar, Y .
The displacement potentials are also related to the dilatation A and the

rotation o
R

(a) A= -k &

(6)

(b) Ci)g SR éz' \(:- \*f |

which may also be used as dependent variables.

Clearly these displacement potentials also satisfy Helmholtz integral equa-
tions analogous to equation (2) with two major changes. The wavenumber k must
be changed to either k or k and the surface I' now consists of two parts,

D R

the inner and the outer boundaries. We note that the direction of n changes
C




sign between these boundaries since it is required to be "outward" from the

elastic medium. Then

> b=

[ 3%, + G 222 ] 4 e
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where GD, R

r in any of these boundary integral equations will be placed on (or
infinitesimally near to) either the inner or the outer surface. Thus each of

the above boundary integral equations will produce two separate integral

equations.

G, are equivalent to the previous G with kD’ kR replacing k .

o




C. BOUNDARY CONDITIONS

We supplement these equations with five boundary conditions requiring zero
shear stress, continuity of the normal displacement or velocity field and
continuity of the normal stress field at the outer boundary of the elastic shell
and zero shear stress and continuity of normal stress at the inner boundary.
(Actually, those at the outer boundary might better be called interface condi-
tions.)

For plane strain in a two dimensional orthogonal curvilinear coordinate

system (x,R), we have the infinitesimal strains, e.g., [5]

@ €an = (M)IU5o + (Vo) Up 20 /3
@) &) €gp = (/&) dUp/ap + (/2 0) U Py Y™

(¢) €°‘P ] (‘Q‘\./R\} g[uplp\'l.]/ao( * (“‘/ﬁm\aﬂl“’/‘&‘]/aﬁ

and the dilatation and rotation
@ A=[ 3(Wab)/aa+ 3(Uph)/ap] /[ ah]
® We= {B(upgu)/ad - B(anL\)/aP] /{2 0&.\9&]

(10)

where h1 and h2 are the metric coefficients (scale factors) for these

coordinates, (h3 =1).

We can also write out equation (4) specifically:

(a) W ot (\/D'L\\ 35/3“ ar (‘/Q\L) ‘a‘\y/ap

h

(11)

(/o) 28/2p - (/h) Vo

We shall choose the boundaries to be surfaces of constant o ; the g

(b) L p

direction is then normal to these surfaces. Continuity of normal stress

requires




which reduced to

2 -1 a3h 28, 1 2k 2
a2 -p=- 0w i’*zﬁ*ig\w\‘ 3k 3k &Ko 2
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Similarly, vanishing of the shear stress requires
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and continuity of normal velocity requires

1 k4
o 2. gt 38 3R]
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D. __ SOLUTION PROCEDURE

There will in general be ten equations, two boundary conditions plus two
integral equations (on ? , ¢) evaluated at the inner boundary and three boundary
conditions plus three integral equations (on p, ¢ and () evaluated at the
outer boundary. Treating p at the inner boundary as known, these equations

describe the behavior of &, 3¢/3a, ¥ , 3y/3a on the inner boundary and

p, op/ia, &, 3d/3da, ¥, 3Y/da on the outer boundary as ten unknown functions of
the remaining independent variable 8 . To emphasize the use of a different
origin, we shall use the symbols (a,B) for the inner boundary coordinate
system and the symbols (a',R') for the outer. We also use a subscript o to
represent an integration coordinate. To simplify the algebra as much as possible,
the inner boundary forcing pressure will be taken proportional to the jth eigen-
function of the separated Helmholtz equation for that surface. Finally the inner
boundary will be a surface of constant a = a and the outer of constant a' =
b, as shown in Figure 1.

We recognize that the inner boundary variables may be expanded as a series
in terms of the inner boundary eigenfunctions; similarly for the outer boundary
variables. The ¥ and 3y/3a series will be in terms of the antisymmetric modes
if p, ¢, etc. are in terms of the symmetric modes and vice-versa as required
by the boundary conditions. Since each boundary condition involves only a

single boundary, they must be separable, i.e., each mode of the series

expansion must satisfy the boundary conditions independently of the other modes

thereby providing five algebraic equations on the unknown coefficients of each
mode of the expansion.

The boundary integral equations, however, have one set of terms wherein the L
integration and field point lie on the same surface, thereby allowing a direct

integration to be carried out independently of § , and another set of '"mixed"
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terms where the integration and field point lie on different surfaces, thereby
involving & explicitly.

We can carry out the integration of the first type quite simply since the
Greens' function possesses an eigenfunction expansion in terms of the same
functions (either completely inner or completely outer boundaries) as did the
other dependent variables. These integrals then pose no real difficulty.
Integrals of the mixed (second) type would pose no difficulty if § were zero,
i.e., in the concentric cases, the eigenfunctions in terms of £ must be
identical on surfaces of constant o . This then suggests a power series expan-
sion in terms of & about § equal to zero of all of the algebraic coefficients
of all of the dependent variable series expansions as well as that of the Greens'
function for the mixed integrals. The equations for the boundary conditions and
for the first type of integral do not involve § explicitly and expressions for
each order of § are identical to the original expression. The mixed integrals
involve a product of two series in powers of ¢ and thereby introduce a coupl-
ing of orders. The zeroth order solution will, of course, be that obtainable
directly by separation of variables for the concentric case. The first order
solution is coupled to the zeroth order solution through the mixed integrals --
this in the first order solution will be found to introduce '"nearest neighbor
modes" to each mode of the zeroth order solution, etc.

By taking the forcing function to excite only a single mode in the zeroth
order solution, we find ten algebraic equations to solve for the ten unknow
coefficients in the zeroth order series expansion, two sets of ten algebraic
equations for the first order nearest neighbor modes, etc.

We shall illustrate this by an example.
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ITI. SPECIFIC EXAMPLE - CIRCULAR CYLINDER

A. BOUNDARY CONDITIONS AND EIGENFUNCTION EXPANSIONS

Let us consider nonconcentric circular boundaries such that (a,B) = (r,6)
and (a',B') = (r',8') with r = a the inner and r'=b the outer boundaries.
The scale factors are h] =1 and h, = r and the boundary conditions become

i T
N X -aab_iaé-i‘cﬁ_hé.'a"’]
a5 - ps- Qwt dezu] R 5T T+ 3ot Yt 28 ¥ arae
2 39 galv_,a_a¢+_aa1’]+ x
(16) = /LL[‘YT Tae+ T 3er 3 Y or 9s(-0 W

We have the appropriate eigentunction expansions

) [ 'Y’&' %‘f‘ ]NQ % Z {Am,Asn,Aﬁn]ijo“:I(n’e)
oo 1V, W] a- 2 (A, Aw {5k e

Vo {J‘D» %',i, %’Q] Nl Z [Bm an Bsn B«r\.‘j{smj(ne)
aty EW S b )’f T Bon, Bl [22] 00)

which reduce the boundary conditions to algebraic equations

(22) -Am=-?soo’Am+2M{‘O{A4n+gAsn+<%A5m‘;~_LA““g
(23) o = 2M§éA4h"‘ASn OLA *allAsnz*fswlAsw

(24) - Bm, 3'95001' Ban*ZM{ BA“ b‘ B3“'+€;” Bsn—%Bb“}

n n \ %
@ 0= 2M{ % Ban- 1% Ben~ pr Ban * % Benf+ £ Bea

(26) Ran = F Wt [Bu\- % Bsn]
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We now consider the eigenfunction expansion of the Greens' function:

T4

@) G =i, (kR) <L) Em cosm(e-00] Im(ka) Hm(kp)

where Er T 1 € = 2 (m#0), R2 = az + 82 - 2chos(6-80) and B must be greater

than o. [These B,a have no relationship to the general coordinates used

before but are merely convenient labels here for the field and integration points. ]

6 or 60 may be primed or unprimed depending on the particular cases and «,R

may be either a or b . To keep o from being identically equal to B , we

choose field points just "off'" the integration surface. 1In all cases, we shall

choose them to be "outside" of the region over which the original integration

is performed, i.e., for the infinite acoustic fluid we choose r' b

at while

for the elastic solid we choose r' at b’ and r at a  for field points at

the outer and inner boundaries respectively.

ey
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B. BOUNDARY INTEGRAL EQUATION -~ FLUID

The boundary integral equation for the infinite acoustic fluid becomes

(28) Q= S[{Z an S\n (Y\Go) ZEmCOS[m(G eo)]jm(kr)\-\m(kn,]

= A n k Em ( 3[ (8- eo)] Im Ckr’) Hm_ (kry') deeo’
+}2:—o B‘“{S“}( gk Z sk ]r b,
o= b

Tkl

where we have identified « with r'=b as smaller in magnitude than B which
is identified with ro'=b. This tells us essentially which term to differen-

tiate in the Greens' function series, and leads to a simple relationship

)

(29) O= Z { Bz\q_jn (kk) H\'\ 92\0) kBﬁn 3 (%b) \'\\‘L (k\a)} {?0‘2]("6’)
Y\‘:o

which by the orthogonality of the eigenfunctions reduces, for Jn(kb)#0, to

3 Baa & B k. B il S B b3
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C. BOUNDARY INTEGRAL EQUATION - SOLID

W. may now consider the boundary integral equations for the elastic shell.
+
First, we examine the outer boundary equations with r'sb , i.e., we place the

field point just outside of the outer boundary of the elastic body. Then, for

example, we have

2w ‘
26Gs 2% | vdee
31) O = S i‘&(h) aro'+G° Y0 Jyrg=b, rzb*
(o]
P Rid
I6s ?@MI a d6o
4 § {+ @(o) Sve G AYo AT
sin

The first integral leads directly to terms involving {cos} n6' as in the
acoustic fluid case above. The second integral does not. We cannot mix 6 and
8" in equation (31) as long as they have different origins. To avoid this

dilemma, we expand about ©6=0 such that, for example,
1 G-fH,(kR)= ) S G [s=] =ZQZ°S (Ho (kRI]
2=0 =

The § terms may be removed from the integration leaving an integral over
GD(!)(ﬁ-O), i.e., some Greens function with 6 and 6' measured from the same
origin.

Since this is simply a Taylor Series in & , we have (see reference [ ] for

details)

0 1 (2! Ho(kR)
33 G [s=0l= g 5 R §20

We cannot use the eigenfunction, equation (27), expansion of G directly since
it applies only when 6 and 6' are measured from the same origin. Instead we

can use, for example,
A 9 Ho (kR) ) R
(34) [\-\o(kRﬂS:o =X 5< ]s=o - -k{\-\\(k?) as]s

where

| ——
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(35) RZ = k+ Xol—aAXo (@0 (eo-e) + 25[)\0C056°‘/\CDS 9] + Sl

and

AR _ + e 0SO0 - N COS O]
(36)5_8'[8Awso /R

Here A and XO are distances measured along 6 and 60 respectively from

origins which are a distance & apart on the x axis. We then have the first

shiter st
6n [ W erd]i = - k[ W (kR):-[ o ©s6o- A6l /R]
A N T

188 §“{ 1 fmes) [ W, &), deo

ek e ) [ [ 83 fvn) Tn k) -f G (mne) Ty (ke

We may set ro' equal to b and r equal to a after any appropriate differ-
entiations are carried out.
Similarly for A= r' and >‘o =r

oo | f o Jmen [H k0] de,

o]

Cwk Jn (ko) H;‘:}un..)e')- Hot (ke') ~{ o tame) Hae, (m]

Clearly we must also expand all of the other dependent variables in powers

of § = or equivalently the coefficients of their eigenfunction expansions:

oD
'} ()
@ Ay = 2; 8 Ajm , g=nm s
(40)
SRS i) {2 L2 3556
(b) Bém: Zo S Bam i 9 2,345,
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If we examine the boundary conditions, equations (15-17) and the acoustic
fluid boundary integral equation, (20), we see that they must hold for each
separate order (power of &) since & does not appear explicitly. The elastic

boundary integral equation (31) however becomes
2)

(41) 0= Z o Z Bin {Z:?}(neo') afr:,

V75t B [Sfwen Gef bde
g=0 n=o

r°=b, r'=b*

SERL A (R R s
- Z_g Z A4 sm}(neo) ZS Gomz a.deo

Yo= 0, r'=b*

which may be expanded in powers of & as

ALY [d '
&) aGb (0) ‘] ism z b 36,
“2) Q= S {Z { 3n " Ban Go “"Ime" o'=b, vizbt

° n=o
o °
= @ e _ A 6" [ { e et ade.
+ S 4 In J Yo an 1] .
ro=a, v’k
a n=o

S e el ] e

iin

(15 Tas 38 Aer A AT
- . & d 6 ]
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Solving each order of & separately, we have

(i) Zeroth order equation

Tw %

(43) Q= S {Z [ e ?_&’. * Ban’ G"]{m (“eo')hdao}ro'ﬂ,r':v

o

; 5‘ {2 e 2ot A6 om0 40

o n=o

(ii) First order equation:

AT © DG 0 . {Sm 90}
(44) S ;Z {' in : =+ AAV\ Gb ] I(ne')) 0'6 Yoza,v'=b"

T e e mR e e ]
TS [ - AT 0

We see that the first order solution is coupled to the zeroth order solution.

Furthermore, the form of GD(l) is such that an j mode zeroth order term

will produce (j+1) and (j-1) mode first order terms. A similar equation holds
on { .
The inner boundary integral equations are handled in the same manner with
L

r equal to a—, i.e., the field point just short of the inner boundary. For

example, we now have

FALd
DGo
(45) 0 = S {' @(\9) Yo' + GD S%o' co=h, Fra”

o

+ Sm{ da) %(;':‘: Go ayd)} 0.d 8o

Yo=0,7= a”

Now the first integral is a mixed type. Using the same expansions as before

we have
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(i) Zeroth order equation %
v = to) ]
(©) 96 o s { bde.
(4(’) O = S { Z [— in a YO' i BA ( Q’ ) g
o n=o \’o-b r=Q
o
Sz‘n ©) Go _ (0) G ‘l{sn\ (neo)} & dib
+ v Y, o Sl
o] = fe=0,Y=Q
n-=o

(ii) First order equations

{ Z X B(o\ %_G__. + BA‘:) o) 83,,\) 36;°)+ 84‘7:)6‘;0‘]{5(;?j(n60') bd6

47) = Vo' )
Y'o'=\’;r=°

{ ’\ o aG. . (\)Gb‘lgsm (nea)} oc\e,,

i 3n aro -

(°=0,\'=Q

with a similar equation on ¢, etc.

We now choose p(a) to represent a single mode, i.e., Aln =0, n#j

and Alj = PJ, . The zeroth order boundary integral equations and boundary
conditions will also only involve this one mode. The first order boundary

integral equations will be satisfied only with the (j+1) and (j-1) modes;

the boundary conditions will therefore be applied only for these modes as well.
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D. ZEROTH ORDER SOLUTION

The boundary conditions, equations (15-17), apply for each order separately
and may be used directly as may the acoustic fluid boundary integral equation

(30). The outer boundary shell equation on ¢ , equation (46), integrates to
o0

(48) 0= Z {\m { = 83;\0) &Zo j\{(&,k) * 84:\0) J-n (hok)z
iy €A ko I (ko) = A4k T hoa b W tkob) {iaif e

Since H (ka) cannot be zero and {Sininﬁ' are orthogonal, we have
n cos

o) (o)
(49 0= ko {‘B B};o) T (Reb)+ @ A;n)In/(k°a)}+ b 84:\ Jn (kob)-a Aaw Jn (ksa)

Similarly for Y, with Hn(ka) not equal to zero;

(50) 0= ke {'\" Bsn Ju (beb)+a Aew 3o/ (‘““\}* b B Jn Ckeb)-0 Aen Jnlke)

The inner boundary shell equations give similar results provided Jn(kDa) and

Jn(kRa) are not zero.

1) 0= ke {-b Ban Wy (kob)r0 A Hi (o] s b Ban M (ksb)-a Ay Halks)
52 0+ ke~ b Bsn B (eb) ra Ao’ Ho (kxa) [+ b Bon Ho (keb) - @ Aun Hu (ke
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In summary, our equations are

53) (@) ~Aws (R +2Mm n/or) Asa + 2m (= Aan/a +0 Asn Jar - 0 Aen fa ]

0 0= —amhw/g vanAofe + (8@ ] Aot g Aenfa
©) o0=Bm= [‘ S+ ep “I/b‘] Ban + S {‘ Bqn/b +M Bsn/b‘-n Bsn/b}
(d) 0=-npm Ban/b' + un BAn/b *[ %ﬁt‘/“'nl/b":) Bsn + M Bsa/\;

@ 0=-Ben+ S w[ Ban-nBen/b]

® 0=-Bans RH« (R Bin /Hathb)

® 0% ko[-bTu (keb) Baa+ a T (ko@) Asa]+ b Tn(keb) Ben-aTn (koa) Agn
m o= ke 15T (kab) Bon+a o (kaa) Agn ]+ b Tn (keb) Ben- 0 Tolkna) Aen
() 0= kol-b¥a (kob) Ban + Y (ke@) Asn ] *b Yo (ko b) Ban-a Ya (koa) Aan

0 0= ke [-5Ye (keb) Bsn 0 Yo (kat) Pon] +b Yo (kab) Bon -0 Yalket) Aen




We have dropped the superscript (0) from the coefficients in these equations

and trivially combined the last four equations to give real rather than

complex expressions, although Ain’ B1n are complex anyway due to the complex

term in the sixth equation. If A is zero for

o n# j , all coefficients are

zero for n # j. This then leaves only one mode, n = j , to be determined.

These equations may readily be checked by the well known solution for the

concentric case; they are solved here to indicate the procedure to be used
for the higher order terms which have the same coefficients but a modified
forcing function (inhomogeneous terms).
We may nondimensionalize these equations using a reference '"potential',
2 2
¢, , related to the reference pressure P, b P. = . = (A2 $,
i P ,JprSJ(u)kDJ

We use:

(54) O(D-\Ro(l Ag = \ua pp-\ab\a Fa-\e\: X= k\:
Peles, = 2Mm/O2m) = R Xefolr” }L [xH}w)A‘\jw)_}

and
Ko Ay o/Onandy = b’ ; B (8) By b/ 0em,
@'z: (fr— stb/( A+2M\§
Ry= Ass/ & i Bar B3/ 8y
(55) Aaz Ay /%y ; Bat Bajy b/
BRs= Asy /¥ ;o 8- 85y /8
A= A«3~0./§1' . B Bq~b/§3~

leading to
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(56) (a) —o{‘,z: ‘_'t“sz-o(bz]’,&;s +T[-K4+§K$'j ’A‘b]

®) 0= —3@%41*2« +{o(‘,‘-3’t]/§5+’t':&¢.
() O = Q’é\“"Yglt*ﬁs]§3+t['§4+j§5’jg(.]
d o = "'S’C%s+j’t§4*[P;"ézt]E5*TBG

(e) o=—§;+ﬁo Ba -3 Bo Bs

H Q= -8B, + B/,

® 0=- Pojé/(Fo) %5 + 0(033/(0(\5\[’&5 + Jé(po\€4 —J,j (alv) L
w 0=-pe Ty B0 By ot Ty en By 3 (g0 Bo- T ) Ao
@ 0=-fs \(3'/(Pb) By + olo \g’wxs EN B - Y (otn) A

G) O0=- FR \(QI(PR) gs + olr Yé'l(o(g) XB*‘ Yg (FR) ’ﬁb‘\(j (o/r) Ab




Although this may appear to be a formidable system - ten equations in
ten complex unknowns corresponding to a twenty by twenty matrix system -
the equations are readily reduced, eliminating variables until a simpler
system is reached, e.g., B1 and B2 are eliminated directly using the fifth
and sixth equations:

~

(a) B.

9; [ gd\ ‘{; gs]

(57)

~ L% ~ _N
® 8 = X Ppo [ Bs-38s)
A3, A5 can be written in terms of A4 and A6 with similar equations for

the B3, BS

(a) Ka = Ki + Csw /’&4 + Cae /&b
® Az = Ks + Csa Ay +Ce /Ke

(58)
(c) E33 = ‘)54& §3-4 b —1)34:‘1236
(d) @5 =  Dga Bq + Vs B(,

using the first four equations,

\»<3: o/bl(o(vl"t'éz) /[(dbt'féz)t—ttj"]
with s /AT‘ o(D"/ C W 3

Chee Ces = ~Falw/si L » 3

Czc= Csa= (-4t'-4Too+47T) ' T

and

DIVERE ﬁo‘("C‘GQLP;)/[(@J-té‘)’—»’at‘(é‘c—e%ﬁé)]
Die=Dsa = [§T (§'x-p)-t(4T-ehips)]/C v 7]

Dse: p ﬁ'}’t/l f“]
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The last four equations (56 g-j) are rewritten as

—~ )}.D e 2 et
33 2 {So)lo B“ = T\'o/ofo,ﬁo A"‘
~ ] s o By “A
= 4
S o5 Bodo oy g
(60) 1
o JLR ) g A
Bs = Br Ar Bo =~ T\'olnﬁa,ﬁa ©
P _Z o %R A ;
R M e LB + © "‘
AS ‘\To(gﬁn AR B‘o Ar Ar |
where

»(a,b) = J4 (o) ij (b)—ja‘(b) Yé (o)
oy = Jite ¥y (o) = Ty Yj (o)
As = T3 (e i () - T () Y )

A (a,P) = Ijlfm Y;'/(b)- Ij/(b) le(on

and Pp = p(aD,BD) etc. We then have a four by four system. Using

K, = 2/(7raDBDSD) and K = 2/(mRBRSR) we have,
Yo 0 [Mporo-Dsa) Dse || Aal | 0
0) KR 5 Dsq (n'/PR A(Dss-] Ks E ©
(61) i
K qwloloh 5 C’#“] —(:’JL = Ko v B Ks
e EWnaelel o xR}

with a solution given explicitly in appendix A.
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By backwards substitution, we can evaluate all of the unknown coefficients.
These must, of course, agree with the well-known solution for the concentric

case and are carried out in detail to serve as a procedural check for the

higher order solutions.




E. FIRST ORDER SOLUTION

Again, we use the boundary conditions and acoustic fluid boundary integral
equation directly for the first order coefficients. The outer boundary shell

integral equation on ¢ , equation (44), integrates to %

(2]

0= Z i‘ Bav(\” kﬁto'z'“' jn'(!}oL% BA:"b'Z“’ IW(LDH} \—\Y\(QIDL)

(62) n:‘o

T { AB(Y\\\' 0'\?-0' RN Sr:(gzoﬂ) = AA:;)' o AW ‘jn(gioa)} \‘\V\(QZDQ}

. {;‘sze')}
+ { {Aa(v:\-a-'ﬂ‘-k:-]_nl(lggo.)—- A4l:]~ a T ko Tn.“ioa)j

- { Z\EI((Y\-\)S')' \‘\n—\(knm’ {2;21("““‘9,) : HM‘ (‘295)]}

and a similar equation on ¢ with A

Ay Aén’ B3n’ Pun Sl kD )

The inner boundary shell integral equation on ¢ becomes

A B B and kR replacing

5n’ 6n’ 5n’ 6n

6 0= ‘ {- 3,24 k7 Ha (kob) + Ban b ko T Mo (kob)f

n=o

. { {2:;.{[(“0“0} -Inﬂ (koﬂ) - {Z’;;Z[m-no] 3'“-\ “250)] ] +




=07

x f ﬁ;’ %3:) b2 ke \"!n/ (Rob) + 84:\\" b2t Ha (kob)

n=0

+ Bat - o-mn-ha- Hn, (koa) - A«?-a- 27 \-\n(koa)}

{—\Sh(glo‘l) {cos “6)}]

with again a similar equation on y .

Clearly if there is only one zeroth order mode, n = j , there are only
two first order modes, n = j+l1 and n = j-1 .

The governing equations are

(64) —833“ ko b - 3_3*. (\Qo\") + B43n b- jau(‘?nb)

)

+ A?)j“ k Q- Jau Lnﬂ-) s A41+| o 334\ (koa)

= 50 A ko T oy - Adf ket T (oo |

T Biy heb 3'3/(k,\>)- Bay  kob Ty (keb)]

—833“ \?5\5 Hg“ Lo ) 843“ &) Hau(‘zo\’)

and
' )
% A3;+)\ ko - Haw(‘?nﬁ) A4gn' a Hau(ksa)
(65)

[ Bsm By b \’\S/(bn\a\* Bﬂm' Reb - HJ (\zn\a)]

Consider the j+1 mode first.
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and two similar equations on ¢y . The j-1 mode is essentially the same with

a sign change for the inhomogeneous (zeroth order) terms

/ o)y
(66) - ng-\ kot 3.1 (kob) = Bayi b Ty (kob)
/ Q)

- (\?D &) ~ A4 3 a 3—3_' (}z"a)
T -E\ [ As(;) ke Q jj/(\l,ba)- A45°)~ ke @ ]_3 (kpa)__]

+ A3(‘;"‘ koa :\—

and

o B;;i‘ ko b Héi‘ (kob) + B:;. A HJ" (ko b)
s Asgn kea \—\3-/\ (koo) - /\431. o Hijo (ko)

(67)

= 3 [ B kb Wy (keb) - Bag” keb Wy (iob)]

and two similar equations on Y .

We note that the homogeneous part of these equations plus the first order
boundary conditions and the acoustic boundary integral equation are identical
to the zeroth order equations with j+1 and j-1 for the first order coeffi-
cients replacing j for the zeroth order coefficients. The inhomogeneous terms
are modified and now appear only in the four shell boundary integral equations.
Then we can reuse the solution scheme for the zeroth order j mode coefficients
to solve for the first order (j+1) and (j-1) mode coefficients with a minor
change. We again may write equations (65) and (67) with real coefficients by
combining with the previous equations - equivalently, we replace Hn by Yn

in these equations.

o -
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We may again nondimensionalize using an additional length scale factor of
a for these first order terms which must¢, in final form, be multiplied by the

length & in order to be compared to the zeroth order terms; e.g.,

~~ [Q)) )
Aay. = A33+' ca/ 53

SRR VL

o) )
Bap\ % BB*A‘H ' a/@_a
[@R)

84;; = B4au -ab/é1
ete.

The same scale factor is used for both A

(1) (1)

and B to keep the same form

of equations as in the zeroth order case. We then have

)

oo ~ ) ~
(@) o= |% (gH)t- 0101.] A‘séu + t[‘Aqy\ + (449 AS;:. (4+1) A61u ]

(83}

(b) 0] ‘-t’(é*') A‘S‘Aiﬂ‘f?’(é‘”’ A4a*\ *‘[ oo = (14!)"(‘] As g+ T < Ab 3!

© 0= B+ [T pa]8a + - Bage + (30 Bsyo (30 B

(68)
(d) s ’t(é+\) Bsa“ + 't(a+\) BAQ*‘ +{ B° - (é+|) T.J] Bs-a-h *’t’ g(:';‘\
o~ o~
&} O =< B *f‘ [ 3%*- (§+1) 851*'1
~ (V) N b

(f) 0 = - 324“ + ‘3*‘ /’Ql'é*‘

(@) 4

u

/ ~ (0) ~ (0
T L8 3j ) Bay - Bag T (pn]

"

~ e / Y m / =W L)
E B;a:\ ?"36“(#") + A31N olo 3—3“ (0(0\ + 8430 Ia-n(ﬁb)' Aﬁéu 3- A (ol¢
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SR o-% [ és‘;) ?R 3—3’/(?*) - —é;;\ 3-3(?2)]
(h)

e 0n / INEL R / el ~
. BS%&\ ﬁa 334“ (P!) + AS%Q\ NR ]—3“ (dR\* Bb(ail_J‘JQq (pR‘—AZ’Q“_‘SQ" (g(g)

1) Ly-= ?{%5;‘” ﬁo\fs/(Fo)‘ @.‘;' Y;‘ (ﬂnﬂ

~ oW Sl L / oo (£ ~ (0
== Bs(gn Po Ygfs (Pﬁ* A;;ﬁ\ ols Ya“ (ofp) + 84(34\ Y3+| (Po)' Aﬁ(énYu (ofo)

~ (o

1) .= ( BSS)PRYS/(pK)‘gl:;)Yé(PR)_l

N

~ (v > / ~ an :
= = Bsgﬂ BR \/3~/\ (Pn)+ Ang\ olr \\/éu (olr) + B"é*‘ Yau (PR\‘ AéanYén(olR;

and a similar set of equations with j-1 replacing j+1 and -Ll, —L2, —L3,
-La replacing Ll’ L2, L3, La.

We see at this point that we have two separate ten by ten systems of
complex algebraic equations - each very similar to those of the zeroth order
case. We again may reduce the unknowns to yield a feasible arithmetic problem -

consider the j+l1 system as an example:

= 0 = vy

(a) %z‘b“ pe g: ('é“;)“ ~ (4+) 851“]

1y

) ~ (v
(b) B\an = K Qb" [ %430\ = (3+") Bsgu-_]

= Iy Lo o oy
L A?jn = C34- A43+| + C}b Abéu

o) ~ 0y

(69) ol L}
(d) Asaf\ = CSA A43+\ - CSB Asau

P ~ vy )
(V)

(e) 833“ = —D}4 843*‘ + D‘Sh B(,o}q-\

~ (\v)
o~ o P

(f) BS(Q‘:‘ = Dsa Bqau + Dse Beau
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where the C's and D's are the same as before with j+1 replacing n .

Clearly the K3 and K5 are no longer present since the inhomogeneity in the

system has moved to the last four equations.

Those last equations are now

/ /
XY o ) Sl o) L531§|(dn)-L\\3q|(dn\_
(a) \{9 A434\ + (A-—Dbfﬁb_ D}A) 846“ o D3b B&QN = Fb o > R‘

% ~ )

( Lot Taas Gigd- L Gaan ldﬂ\
o at 3
®) Ue Aban - Dsa BA;H x (Agpa DS‘) 8"3“ = PR AR =

(70)

) 0 ) L. 3 +/; (Po)" L'\fﬁ*: (ﬁb)_
(c) \_d Ao Cu] Aﬂu - Cae Abgu Wo BAy\: JMDAQ =Ry

) ) ol R

(d)- Cs4 A:AN O(RAA Css] Ab}*\ \(R Bqu = L‘J-r':f:?&: an PR) E4
remembering that the C, D, p, q, r and s are all modified to have j+1
replace n .

The equations for the (j-1) mode are identical to the above with the
corresponding changes of j-1 for j+1 everywhere and with the sign of the
R terms reversed. The solution procedure is the same as for the zeroth
order, and is also given in appendix A.

To convert these first order coefficients to a form suitable for compari-
son to the zeroth order solution, they must be multiplied by (&§/a), which is
a small number in order to have the first order be a sufficient correction to
the zeroth order solution. Higher orders may be calculated in the same
manner -- only a new set of Li need be calculated since the same solution
procedure will hold for higher orders as did for the first order, i.e., the T

same basic program.




P—-——-———-————" »

-3

CALCULATIONS AND CONCLUSIONS

The primary application of this solution is to a thin steel shell
submerged in water. The parameters used were a = 300 cm, b = 303 cm,

¢ = 146000 cm/sec, c. = 496000 cm/sec and e = 270000 cm/sec with

D

P = 7l gm/cm3 and o = 1.0 gm/cm3. Results for the exterior pressure B

S 1’
are shown in Figures 2 and 3 for the case j = 0 and j = 2 respectively for
a unit interior forcing pressure. Results for the first order solutions
are given on the same figure as the zeroth order solution, but to a

scale 50 times as great. Since the first order terms must be multiplied
by 8§/a to determine their contribution to the exterior pressure field,

the actual exterior pressure will depend on §. For § = 0.3 cm, &/a = 10-3
and the first order contribution is generally negligibie. There are
regions, however, where the zeroth order solution is minimum, e.g.

near 300 rad/sec for j = 2. 1In this region, the first order contributions

may be comparable to the zeroth order, but this is for a very limited

frequency band. Figure 4 shows results for a thick shell with a = 200 cm
and the remaining parameters unchanged. In all cases, w runs from 200

to 9000 rad/sec. Here the first order and zeroth order solutions are

plotted on the same scale and are very similar. This implies the first
order contribution, when multiplied by &§/a will be negligible for any
example in which 6/a is small enough to allow a first order theory to
be used.

The general conclusions to be drawn from this work are first that

such an approach is applicable to radiating submerged 'monconcentric"

elastic shells and second that nearest neighbor modes are excited in the

fluid in the higher order solutions for a single mode forcing function.

D - 4——-———-—-—-———“
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Both of these conclusions have already been drawn in the acoustic shell
case, reference [1]; we have shown here that they are applicable to the
physically more meaningful elastic shell case as well, with some addi-
tional effort. A specific result based on these two examples is that

the influence of nonconcentricity is essentially negligible in most cases
where §/a is small. Since higher order solutions may be computed with
the same basic program, extensions to larger values of (§/a) are clearly
possible for thicker shells. Such analytical solutions may be useful
both in their own right and even more importantly as checks on general
numerical schemes which might not be otherwise properly constructed to

include (or recognize) such effects as nearest neighbor modes.
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APPENDIX A

Define

QASD

qD/GDSD - C3l‘

QASR = qgp/agsp = Csg

RBSD = rD/BDsD - D34
Then
Kp 0
0 Kg
D =
QASD ~C36
~Csy QASR
and
R1 0
R Kr
N4 =
Ry =C36
R, QASR
Kp Ry
0 Ry
N6 =
QASD R,
~Cs4 Ry
(Zeroth order)
N .
l"
Rl - 0, R2 -
N6:

such that




_36_
,\,(o)
Al;j = NA/D
f\/(o)

(First order)

D (j+1) = D with j+1 replacing j in all terms

ng (j+1):
Ry, Ry, R3, R, defined in equation 70
N6 (3j+1):
and a similar set for j-1 contribution. l
n (0) n (0) n (0)
A3j = K3 + 034 A‘bj + C36 A6j
v (O) v (0) N (O)
~ (0) ~(0) ~(0)
Ble = KD -K3 + QASD*AAj = C36 A6j
“ (o) v (o) ~ (o)
B6j = Kp -K5 - C54*A4j + QASR*A6j

s A s
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APPENDIX B

A simple test calculation is the "transparent' shell, i.e. PE= Pg»

0 and ep = C- Since the pressure is applied at the inner surface,

=
[

r = a, we have

By Ha (Er)  §sin
AH(r, &) = W {cos}(ne)

On an "offset" circle, we have r' = b given by r =r1'+ § cos 0 +...

r =b+ 6cos 6 +....

and
) p ARLL
/‘: (v'=h, ©) = f(‘%-(h § [\-\,:“ (\a\,\ + RS wse- {Hn (h\"x] = ]{msf(hﬁ)
\HQn a
. /?“(o\(\’.g)*_ S ’f“(,,‘:(“’" {::S\ }[(YH\)G] + %?:-"(\,) {3‘;\}{('\-\)0].;..,
where

K (Rb) {SMK
22 (0,005 Yo yoee Lo

SETOPIE N B GLAlLIRE M
[ Wntrar]

If we return to the integral equation approach, a direct substitution

of these parameters into the zeroth order equations leads to

(o) ] \'\“(E)
Bin = In Ha (o)
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The first order equations lead to

8 ).r P (kb
B ® ~ 5 ————-———m (%o) ;o

kB (kB
Vi g e (k)

We must bear in mind, however, that these are values for the pressure

at the outer surface measured in terms of 6' and not in terms of 6. We

need to convert {sz (n 8.). We need to convert {SinZ(n 8)to {Slnfn 6') which
cos cos

modifies our first order results. We have the definition
9'- 0 4 sm 2_3\; snof

and to a first order

{ S\Y\3 (nB) = {S\ni (\‘\e‘) = % Y% [ { 22}[(n+\)e] ¥ {(ﬁi}[("")e]]‘

€05 o3

Then
' ) Sy
p(e=ep)= By i o1 § we)

a5 Janfimno] + 5B faif ool

YA

1]

B (Kb .{m}me) N 32 NI BTN (1Y
& (ka) R Hn (Ra)

o slc  igla-
e (hb“l{sm} [(vm\e] + Sl’n X \-\M‘ (k) . the (W&{wsj[m )6]

(“(h \

which agrees with the previous solution.
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