UNCLASSIFIE	ON T	HE ANAL 76 F A 96	COZZAN	RELLI	THERM S HUA	ILLY AN	DIRRA	DIATION	INDUC N00014	ED CREE	P.(U) 0302 NL	
OF AD A034885						<text><text><text></text></text></text>		-real And a second real and an				
								and a second sec	Band and a second secon			
	Maria Managera Maria Managera Maria Managera Maria Managera Manage											
	ing Approximate					100-	100r. 105.	Harry Ber	ing ing		2-11	
						je -						

ADA 034885

Department of Engineering Science Aerospace Engineering and Nuclear Engineering FACULTY OF ENGINEERING AND APPLIED SCIENCES

State University of New York at Buffalo

Report No. 96

ON THE ANALOGY BETWEEN THERMALLY AND IRRADIATION INDUCED CREEP*

by

F. A. Cozzarelli and S. Huang

LAN 27 1917

September, 1976

COPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

"This research was supported in part by the Office of Naval Research under Contract No. N 00014-75-C-0302. Approved for public release. Distribution unlimited. DEPARTMENT OF ENGINEERING SCIENCE, AEROSPACE ENGINEERING AND NUCLEAR ENGINEERING FACULTY OF ENGINEERING AND APPLIED SCIENCES STATE UNIVERSITY OF NEW YORK AT BUFFALO

Report No. 96

ON THE ANALOGY BETWEEN THERMALLY

AND IRRADIATION INDUCED CREEP*

by

F. A. Cozzarelli and S. Huang

September, 1976

*This research was supported in part by the Office of Naval Research under Contract No. N00014-75-C-0302. Approved for public release. Distribution unlimited.

ABSTRACT

Employing an analogy between thermally induced and irradiation induced creep, physical arguments are used first to deduce a one-dimensional constitutive relation for metals under stress in a high temperature and high neutron flux field. This constitutive relation contains modified superposition integrals in which the temperature and flux dependence of the material parameters is included via the use of two reduced time scales; linear elastic, thermal expansion and swelling terms are also included. A systematic development based on thermodynamics, with the stress, temperature increment and defect density increment as independent variables in the Gibbs free energy, is then employed to obtain general three-dimensional memory integrals for strain; the entropy and coupled energy equation are also obtained. Modified superposition integrals similar to those previously obtained by physical argument are then obtained by substituting special functions into the results of the thermodynamic analysis, and the special case of an isotropic stress power law is examined in detail.

1. INTRODUCTION

Metals under stress at elevated temperatures experience time dependent strain, i.e., the well-known phenomenon called thermally induced creep. As general rule, thermally induced creep in a metal is considered insignificant at temperatures below one third of the melting point. Similarly, metals under stress in a high neutron flux field, even at temperatures well below one third of the melting points, also experience significant creep strains. This less well-known phenomenon is called irradiation induced creep. Gilbert [1] summarized some of the possible microscopic mechanisms associated with irradiation in metals, and observed that irradiation may "enhance" thermal creep mechanisms as well as inducing new creep mechanisms. It is believed that the most significant irradiation effect in a metal is the production of point defects by the collision of high energy neutrons with the lattice atoms. Thus the production of point defects forms an essential element in any study of the enhancement of thermal creep and/or the inducement of irradiation creep.

The main purpose of this paper is to construct material constitutive relations valid in a neutron flux field at high temperatures. Since Andrade's initial work in thermal creep early in this century, many mathematical models have been proposed to represent a great accumulation of constant stress data. These models can be generalized to variable stress by using the strain or time hardening techniques (see [2]), and reasonably good results may be obtained. In [3], a single integral form of the constitutive relation is obtained by applying the strain hardening technique to each thermal creep component, and we follow this approach in the present paper. Also, since the thermal creep properties depend strongly on temperature, a thermorheologically simple material is assumed and a thermal reduced time is employed [4] in the thermal creep compliance function.

As to irradiation induced creep, a limited amount of data has been obtained during the past two decades [5 - 9] for various metals and alloys in various geometries (e.g. rods, spring, etc.). Such data are generally for the case of constant flux and constant stress, and it is found that the creep rates are dependent on the materials, their pre-irradiation treatments, the temperature level, the stress level and the flux level. A reasonable fit for these data is obtained by a creep model characterized by the sum of linear elastic, steady creep and transient creep strain components. The strain hardening technique may be applied to generalize this type model to the case of variable stress, which may then be expressed in terms of memory integrals. The flux dependence of the material parameters in irradiation induced creep plays a role similar to the temperature dependence of the parameters in thermally induced creep, and thus we introduce the concept of a "fluxorheologically" simple material and use an irradiation reduced time in the irradiation creep compliance function. At high levels of both temperature T and flux ϕ , thermal and irradiation creep occur simultaneously (i.e. "thermoirradiation" induced creep), with the material parameters depending on both T and ϕ . For this case, Rashid [10] proposed a single memory integral with a modified reduced time containing functions of T and ϕ . In this paper we use an alternate approach whereby we superpose memory integrals with two distinct reduced times, where both times contain functions of T and ϕ with one dominated by the thermal dependence and the other by the flux dependence.

Constitutive relations are state equations in thermodynamics, and thus they must be consistent with first and second laws. Thermodynamic theory has been applied to viscoelastic materials along basically two different

-2-

approaches: (1) The energy functional approach of Coleman [11], and (2) The state variable approach of Biot [12] and Schapery [13]. Similar results may be obtained through either approach, as discussed in [14]. Chang and Cozzarelli [15] employed the energy functional approach to obtain a single integral constitutive relation for nonlinear thermoviscoelastic materials. A similar approach was used in [16] to develop constitutive relations for thermally and irradiation induced creep; the present paper is essentially an amplification and generalization of that initial effort.

Although the neutron flux ϕ in irradiation creep produces an effect analogous to that of the temperature T in thermal creep, ϕ is an external input and not an internal thermodynamic variable as is T. However, Makin, Whapham and Minter [17] found that if annealing is neglected the rate of change of the imperfection density \dot{n} is proportional to the flux ϕ . Based on this observation, we employ the imperfection density n instead of the neutron flux ϕ in our thermodynamic development.

An important contribution to the total strain in a high radiation field is due to the swelling, which is analogous to the thermal expansion in a thermal field. Swelling is defined as the volume change due to neutron flux in the absence of applied stress. This phenomenon was discussed some time ago by Cawthorne and Fulton [18], and since then various emperical equations have been developed. In this paper, we assume that the swelling is simply proportional to the fluence ϕt , as in [19, 20]. Since ϕ has been taken here proportional to \dot{n} , the swelling is thus proportional to the increment in defect density. This establishes a direct analogy between swelling and thermal expansion, which is of course proportional to the increment in temperature.

In Section 2, simple creep models deduced from one-dimensional creep

-3-

test data are generalized to the case of variable stress, temperature and flux, resulting in modified superposition integrals. In Section 3, the thermodynamic development of the general three-dimensional single integral form of the constitutive relation is discussed in detail. In Section 4, we show that the superposition integral representation in Section 2 is in fact a special case of the general representation in Section 3, obtainable by selecting a special form for the Gibbs free energy. In Section 5, onedimensional expressions and compressibility effects are examined for the special case of isotropic stress power laws. A short summary then follows.

-4-

2. PHYSICAL PRELIMINARIES

In-reactor creep strain ε in metals is a complex function of stress σ , temperature T, and flux ϕ . For convenience, we classify it into three categories: (1) Thermally induced (high T, low ϕ), (2) Irradiation induced (low T, high ϕ), (3) Thermoirradiation induced (high T, high ϕ). One-dimensional constitutive relations for each of these categories of creep are developed here by various physical arguments based on experimental observation.

2(a). Thermally induced creep

Many models for thermal creep are given in [2], resulting in a variety of strain-time relations which contain the effects of temperature and stress. Following the approach in [3], we write the strain ε , at time t, for constant temperature T_0 and constant stress σ_0 , as a sum of linear elastic, thermally induced steady creep, thermally induced transient creep, and thermal expansion components, i.e.,

$$E = \frac{\sigma_{0}}{E} + F_{T}^{(i)}(\sigma_{0}) \Phi_{T}(\tau_{0}) t + \sum_{i=2}^{M} F_{T}^{(i)}(\sigma_{0}) [1 - exp(-A_{T}^{(i)}) \Phi_{T}(\tau_{0}) t] + d_{T} \theta_{0}$$
(1)

Here, E is the elastic modulus, $F_T^{(1)}$ are functions of stress, Φ_T is a function of temperature, $A_T^{(1)}$ are constants, and α_T is the coefficient of thermal expansion for temperature increment, $\theta_0 = T_0 - T_r$, relative to constant reference temperature T_r . In the remainder of this section, we first generalize Equation (1) to the case of variable stress and then generalize it to the case of variable temperature.

Generalization to Variable Stress $\sigma(t)$

The first term in Equation (1), the elastic strain, is, of course, already valid for variable stress $\sigma(t)$. Various techniques may be employed to extend the second and third terms to the case of variable $\sigma(t)$. Following the strain hardening approach in [3], we assume that each component of

-5-

creep strain $\epsilon^{(k)}$ may be written as a function of stress and strain, i.e.,

$$\frac{\partial \mathcal{E}^{(k)}}{\partial t} = \int [\sigma(t), \mathcal{E}^{(k)}(t)]$$
(2)

Applying this approach to Equation (1) term by term, we obtain

$$\frac{\partial \mathcal{E}_{s}(t)}{\partial t} = F_{T}^{(1)}(\sigma(t)) \Phi_{T}(T_{o})$$
(3)

$$\frac{\partial \mathcal{E}_{t}^{(i)}}{\partial t} + A_{\tau}^{(i)} \underline{\Phi}_{\tau}(\tau_{0}) \mathcal{E}_{t}^{(i)} = A_{\tau}^{(i)} \underline{\Phi}_{\tau}(\tau_{0}) F_{\tau}^{(i)}(\sigma(t)) \qquad i = 2, \cdots, M$$
(4)

where ε_s is the steady creep and $\varepsilon_t^{(i)}$ is the i-th component of transient creep. With the use of an integration factor and an integration by parts, an integral form of Equation (1) valid for variable stress may be obtained as

$$\mathcal{E} = \frac{\sigma}{E} + \int_{\sigma}^{t} F_{\tau}^{(i)}(\sigma) \bar{\Phi}_{\tau}(\tau_{0}) dt' + \sum_{i=2}^{M} A_{\tau}^{(i)} \bar{\Phi}_{\tau}(\tau_{0}) \exp[-A_{\tau}^{(i)} \bar{\Phi}_{\tau}(\tau_{0})t] \\ \cdot \int_{\sigma}^{t} \exp[A_{\tau}^{(i)} \bar{\Phi}_{\tau}(\tau_{0})t'] F_{\tau}^{(i)}(\sigma) dt' + d_{\tau} \theta_{0}$$
(5)

Equation (5) may also be rewritten in terms of memory integrals as

$$\mathcal{E} = \frac{\sigma}{E} + \int_{\sigma}^{t} \Phi_{T}(T_{\sigma})(t-t') \frac{\partial F_{T}^{(i)}(\sigma)}{\partial t'} dt' + \sum_{i=2}^{M} \int_{\sigma}^{t} \{1 - \exp\left[-A_{T}^{(i)}(T_{\sigma})(t-t')\right]\} \frac{\partial F_{T}^{(i)}(\sigma)}{\partial t'} dt' + d_{T} \theta_{\sigma}$$
(6)

The integrals in Eq. (6) are modified superposition integrals similar to the type first introduced by Leaderman.

Generalization to Variable Temperature T(t)

We assume that the temperature dependence of the material properties is of the thermorheologically simple type. As in [4], we introduce a reduced time as

$$\xi_{T} = \int_{0}^{t} \overline{\Phi}_{T}(T(t')) dt'$$

(7)

-6-

and transform real time space (x_i, t) into (x_i, ξ_T) space. For clarity, we place a carat above each dependent variable in the new space, for example

$$\hat{f}(x_i,\xi_{\tau}) \equiv f(x_i,t) = f(x_i, g'(x_i,\xi_{\tau}))$$
 (8)

where $g^{-1}(x_i,\xi_T)$ is the inverse of Equation (7). Accordingly, Equation (6) becomes

$$\hat{\xi} = \frac{\hat{\sigma}}{E} + \int_{\sigma}^{\xi_{T}} (\xi_{T} - \xi_{T}') \frac{\partial \hat{F}_{T}^{(i)}(\hat{\sigma})}{\partial \xi_{T}'} d\xi_{T}' + \sum_{i=2}^{M} \int_{\sigma}^{\xi_{T}} \{ 1 - \exp\left[-A_{T}^{(i)}(\xi_{T} - \xi_{T}')\right] \} \frac{\partial \hat{F}_{T}^{(i)}(\hat{\sigma})}{\partial \xi_{T}'} d\xi_{T}'$$

Finally, Equation (9) may be rewritten as

-

$$\hat{\varepsilon} = \frac{\hat{\sigma}}{E} + \sum_{i=1}^{M} \int_{\tau}^{\xi_{\tau}} \hat{J}_{\tau}^{(i)}(\xi_{\tau} - \xi_{\tau}') \frac{\partial \hat{F}_{\tau}^{(i)}(\hat{\sigma})}{\partial \xi_{\tau}'} d\xi_{\tau}' + d_{\tau} \hat{\theta}$$
(10)

(9)

where $J_T^{(i)}(\xi_T)$ are the thermal steady and transient creep compliance functions $J_T^{(i)}(\xi_T) = \xi_T$ and $J_T^{(i)}(\xi_T) = 1 - \exp(-A_T^{(i)}\xi_T)$, $i = 2, \dots, M$.

Equation (10) may be represented by a non-linear generalized Kelvin model, and the terms in the summation are modified superposition integrals for a thermorheologically simple material. In the case where aging effects are significant, a time hardening procedure may be used to generate creep compliances $J_T^{(i)}(\xi_T, \xi_T)$ as in [3]; aging effects are also discussed in detail by Krempl [21].

2(b). Irradiation Induced Creep

For emphasis, we summarize here some pertinent earlier remarks on irradiation creep given in the introduction. Some data has been obtained for steels and alloys by various constant stress and flux tests, such as the stretched spring [5], pressurized tube [6], bent beam [7], torsion rod [8] and uniaxial tension [9], as summarized in [19]. Although reliable data are still scarce (especially at high fluences), a reasonable model can be constructed. It is found that the expression for irradiation induced strain at constant flux (ϕ_0) and constant stress (σ_0) is similar to Equation (1). However, the material creep parameters now depend on a function of the flux rather than of the temperature, and the thermal expansion term in Equation (1) is replaced by a swelling term. It is also found that, in the absence of aging (i.e. annealing), the flux is proportional to the rate of change of the point defect density \dot{n} . For the convenience of our thermodynamic development, we choose to express the material creep parameters as functions of \dot{n} rather that ϕ . The swelling term is often less significant than the other strain terms, and we express it simply as linear in $\phi_0 t$. Since ϕ_0 is proportional to \dot{n}_0 , we may rewrite this term as linear in the imperfection density increment $v_0 = n_0 - n_r$ relative to the reference n_r . Accordingly,

$$\mathcal{E} = \frac{\sigma_0}{E} + F_R^{(1)}(\sigma_0) \Psi_R(\dot{n}) t$$

$$+\sum_{i=2}^{N} F_{R}^{(i)}(\sigma_{o})[1 - \exp(-A_{R}^{(i)}) \Psi_{R}(n_{o}) + d_{R} V_{o}$$
(11)

where $F_R^{(i)}$ are functions of stress, ψ_R is a function of \dot{n}_o (i.e. flux), $A_R^{(i)}$ are constants and α_R is the coefficient of swelling. Equation (11) is remarkably similar to Equation (1), but in addition to the replacement of T_o by \dot{n}_o and θ_o by v_o , it differs in two important respects: (1) Whereas the $F_T^{(i)}(\sigma_o)$ are highly non-linear, the $F_R^{(i)}(\sigma_o)$ are often chosen linear, (2) While ϕ_T is an exponential-like function of temperature, ψ_R is often linear in \dot{n} (i.e. the flux).

-8-

Proceeding by analogy with thermally induced creep, we may generalize each irradiation induced creep term to variable stress by the strain hardening technique (no aging), and then to variable *n* by introducing an irradiation reduced time

$$\xi_R = \int_0^t \Psi_R(n(t')) dt'$$
(12)

Thus,

$$\hat{\varepsilon} = \frac{\hat{\sigma}}{E} + \sum_{i=1}^{N} \int_{R}^{\xi_{R}} \hat{J}_{R}^{(i)}(\xi_{R} - \xi_{R}') \frac{\partial \hat{F}_{R}^{(i)}(\hat{\sigma})}{\partial \xi_{R}'} d\xi_{R}' + d_{R}\hat{v}$$
(13)

where $J_R^{(i)}$ are the irradiation induced creep compliance functions. Continuing the analogy with thermally induced creep, we designate the material as fluxorheologically simple. Note that, for all $F_R^{(i)}(\sigma)$ linear, the summation in Equation (13) may be dropped if a summed compliance is introduced. Finally, we note that aging may be more significant in irradiation creep than in thermally induced creep, and thus it may be necessary to employ a time hardening procedure to generate the irradiation creep compliance functions $J_R^{(i)}(\xi_R^{},\xi_R^{'})$.

2 (c). Thermoirradiation Induced Creep

At high temperature and high neutron flux, the constitutive relation will likely be some complicated extension and combination of Equations (10) and (13). Very little is known about this relation at present, but it appears that the thermally induced creep parameters will now also depend on some weak function of flux $\psi_{\rm T}(\dot{n})$ i.e., irradiation enhancement). For example, in [22], the thermally induced creep rate is increased a factor $\psi_{\rm T}$ equal to $(1 + \beta \dot{n})$. Similarly, the irradiation induced creep parameters will depend on some weak function of temperature $\Phi_{\rm R}(T)$. An example of this is given in [23], where a function $\Phi_{\rm R}(T)$ is given as exp(1.405-0.0027T). Thus, the thermal and irradiation reduced times $\xi_{\rm T}$ and $\xi_{\rm R}$ are now replaced respectively by

$$\gamma_{\tau} = \int_{\tau}^{t} \underline{\Phi}_{\tau}(T(t')) \underline{\Psi}_{\tau}(n(t')) dt' \quad \text{and} \quad \gamma_{R} = \int_{\tau}^{t} \underline{\Phi}_{R}(T(t')) \underline{\Psi}_{R}(n(t')) dt' \quad (14)$$

Utilizing these replacements in Equations (10) and (13), and assuming that the results may be superposed, we obtain

$$\hat{\mathcal{E}} = \frac{\hat{\sigma}}{E} + \sum_{i=1}^{M} \int_{\tau}^{\gamma_{T}} \hat{J}_{T}^{(i)} (\gamma_{T} - \gamma_{T}') \frac{\partial \hat{F}_{T}^{(i)}(\hat{\sigma})}{\partial \gamma_{T}'} d\gamma_{T}'$$

$$+ \sum_{i=1}^{N} \int_{R}^{\gamma_{R}} \hat{J}_{R} (\gamma_{R} - \gamma_{R}') \frac{\partial \hat{F}_{R}^{(i)}(\hat{\sigma})}{\partial \gamma_{R}'} d\gamma_{R}' + d_{T}\hat{\theta} + d_{R}\hat{\nu} \qquad (15)$$

The material characterized by this relation will be termed thermofluxorheologically simple. In some cases, it may also be necessary to generalize the thermal expansion and swelling terms through the introduction of coupled functions such as $G_T(\nu, \theta)$. There appears to be no experimental evidence suggesting that the thermal expansion term $\alpha_T \theta$ be modified to include a dependence on ν . However, temperature may enter into the swelling term as in [24], where the factor exp $\left\{\left(\frac{-Q_L}{RT}\right) - \left(\frac{-Q_2}{RT}\right)\right\}$ is introduced. In this paper, we assume that α_T and α_p are independent of θ and ν .

Converting Equation (15) into real time space, we obtain the final result

$$\mathcal{E} = \frac{\sigma}{E} + \sum_{i=1}^{M} \int_{\sigma}^{t} J_{\tau}^{(i)} (\gamma_{\tau}(t) - \gamma_{\tau}(t')) \frac{\partial F_{\tau}^{(i)}(\sigma)}{\partial t'} dt' + \sum_{i=1}^{N} \int_{\sigma}^{t} J_{R}^{(i)} (\gamma_{R}(t) - \gamma_{R}(t')) \frac{\partial F_{R}^{(i)}(\sigma)}{\partial t'} dt'$$
(16)
$$+ d_{\tau} \theta + d_{\sigma} \mathcal{V}$$

This result differs from that given in [10] in two respects: (1) Two physically different reduced time scales are present rather than one, and (2) The nonlinear stress dependence is obtained by generalizing stress to

-10-

functions of stress rather than by introducing stress into the compliance. We now seek to show that Equation (16) is consistent with a thermodynamic development of three-dimensional constitutive relations.

3. GENERAL MEMORY INTEGRAL

In the absence of neutron irradiation, the first law of thermodynamics for infinitesimal theory (e.g. see [15]) is given by the equation

$$-\mathcal{E}_{ij}\frac{\partial\sigma_{ij}}{\partial t} - \frac{\partial Q_i}{\partial x_i} = P\left(-\frac{\partial G}{\partial t} + s\frac{\partial T}{\partial t} + T\frac{\partial s}{\partial t}\right)$$
(17)

Here, ε_{ij} is the strain tensor, σ_{ij} the stress tensor, $\Im Q_i / \Im z_i$ the divergence of heat efflux vector Q_i , ρ the mass density (assumed constant), G the Gibbs free energy ($G = \sigma_{ij} \varepsilon_{ij} - u + T_s$, with σ_{ij} and T as independent variables), s the entropy and u the internal energy.

When a metal is exposed to neutron flux, additional energy is transferred throughout the mass (by collision) primarily into two effects: (1) The generation of local heating via lattice vibrations, and (2) The production of point defects. The rate of energy addition via the first effect may be expressed simply by the volume integral $\int_{v} rdv$, where r is the strength of a distributed internal heat source [25]. In considering the second effect, it seems reasonable to postulate that the rate of energy added per unit volume in the creation of point defects is proportional to impection density. Thus, we may express the rate of energy addition due to the second effect as

$$\dot{R} = -\int_{V} e \frac{\partial n}{\partial t} dV$$
(18)

where the negative sign is taken for convenience of later development and e is a material property (the conjugate property to n).

The global form of the first law of thermodynamics is now given as

$$\dot{P} + \dot{Q} + \dot{R} = \dot{U}$$
 (19)

Here, in addition to the usual rate of work (P) and time rate of change of total internal energy (\dot{U}) terms, there is the rate of heat influx term (\dot{Q})

-12-

as modified by the addition of a heat source component, and the new term (\dot{R}) as previously defined in Equation (18). For infinitesimal theory, the \dot{P} , \dot{Q} and \dot{U} terms may be written as

$$P = \int_{V} F_{i} v_{i} dV + \int_{V} \frac{\partial V_{i}}{\partial x_{i}} \sigma_{ij} dV + \int_{V} v_{i} \frac{\partial \sigma_{ij}}{\partial x_{i}} dV$$
(20a)

$$\dot{Q} = -\int_{V} \frac{\partial Q_{i}}{\partial x_{i}} dV + \int_{V} P r dV$$
(20b)

$$\dot{\Box} = \frac{\partial}{\partial t} \left[\int_{V} \frac{1}{2} \rho_{V_{i}} v_{i} dV + \int_{V} \rho_{U} dV \right]$$
(20c)

where F_i is the body force and v_i is the velocity. Combining Equations (18), (19), (20) and the definition of G in the usual manner, we obtain the extented version of local Equation (17) as

$$-\mathcal{E}_{ij}\frac{\partial\sigma_{ij}}{\partial t} - \frac{\partial\mathcal{Q}_i}{\partial x_i} - \rho r - e\frac{\partial n}{\partial t} = \rho\left(-\frac{\partial G}{\partial t} - s\frac{\partial T}{\partial t} - T\frac{\partial s}{\partial t}\right)$$
(21)

where now the independent variables for G are σ_{ij} , T and n. The second law is expressed by the usual Clausius-Duhem inequality with a heat source term

$$PT\frac{\partial s}{\partial t} - PT + \frac{\partial Q_i}{\partial x_i} - \frac{Q_i}{T} \frac{\partial T}{\partial x_i} \ge 0$$
(22)

Combining Equations (21) and (22), and introducing v and θ as previously defined, we obtain for infinitesimal theory

$$- \varepsilon_{ij} \frac{\partial \sigma_{ij}}{\partial t} - \beta \frac{\partial G}{\partial t} - \beta s \frac{\partial \theta}{\partial t} - \frac{Q_i}{T} \frac{\partial \theta}{\partial t} - e \frac{\partial V}{\partial t} \ge 0$$
(23)

This inequality forms the basis of the development in this section, where now the independent variables are σ_{ii} , θ and v.

Proceeding in a manner similar to that in [15], as modified by the addition of the new independent variable v, we express the Gibbs free

energy as

$$PG = G^{I}[\sigma_{ij}(x_{i},t), \theta(x_{i},t), \nu(x_{i},t)] + G^{M}[\sigma_{ij}(x_{i},t), \theta(x_{i},t), \nu(x_{i},t), t]$$
(24)

where G^{I} is the Gibbs free energy function (per unit volume) due to the instantaneous response, and G^{M} the Gibbs free energy function due to memory. We postulate for G^{M} the sum of nonlinear memory integrals

$$G^{M} = \sum_{r=1}^{P} f_{mn}^{(r)}(\sigma_{ij}, \theta, \nu) \int_{0}^{t} g_{k\ell}^{(r)}(\sigma_{ij}', \theta, \nu') \frac{\partial J_{mnk\ell}(\eta(t) - \eta^{(r)}(t'))}{\partial (t - t')} dt'$$
(25)

where $f_{mn}^{(r)}$, $g_{\kappa L}^{(r)}$ are tensor functions of σ_{ij} , θ and v, and the $J_{mn\kappa L}^{(r)}$ are time dependent material properties.

Applying Leibnitz's rule to Equations (24) and (25), we obtain the time derivative

$$P \frac{\partial G}{\partial t} = \frac{\partial G'}{\partial d_{ij}} \frac{\partial \sigma_{ij}}{\partial t} + \frac{\partial G'}{\partial \theta} \frac{\partial \theta}{\partial t} + \frac{\partial G'}{\partial v} \frac{\partial v}{\partial t}$$

$$+ \sum_{r=1}^{P} \left[\frac{\partial f_{mn}}{\partial \sigma_{ij}} \frac{\partial \sigma_{ij}}{\partial t} + \frac{\partial f_{mn}}{\partial \theta} \frac{\partial \theta}{\partial t} + \frac{\partial f_{mn}}{\partial v} \frac{\partial v}{\partial t} \right] \int_{0}^{t} g_{kl}^{(r)} \frac{\partial J_{mnkl}}{\partial (t-t')} dt'$$

$$+ \sum_{r=1}^{P} \int_{0}^{(r)} g_{kl}^{(r)} \left[\frac{\partial J_{mnkl}}{\partial (t-t')} \frac{\partial (t-t')}{t_{ik}} \right] + \sum_{r=1}^{P} \int_{0}^{(r)} g_{kl}^{(r)} \frac{\partial J_{mnkl}}{\partial (t-t')} \frac{\partial (t-t')}{\partial (t-t')} dt'$$
(26)

We now substitute Equation (26) into inequality (23) and group terms to obtain

(27)

$$\begin{cases} -\mathcal{E}_{ij} + \frac{\partial G_{i}}{\partial \sigma_{ij}} + \sum_{r=1}^{p} \frac{\partial f_{mn}}{\partial \sigma_{ij}} \int_{q}^{t} g_{kl}^{(r)} \frac{\partial J_{mnkl}}{\partial (t-t')} dt' \} \frac{\partial \sigma_{ij}}{\partial t} \\ + \left\{ -\rho_{s} + \frac{\partial G_{s}}{\partial \theta} + \sum_{r=1}^{p} \frac{\partial f_{mn}}{\partial \theta} \int_{s}^{t} g_{kl}^{(r)} \frac{\partial J_{mnkl}}{\partial (t-t')} dt' \right\} \frac{\partial \theta}{\partial t} \\ + \left\{ -\rho_{s} + \frac{\partial G_{s}}{\partial \theta} + \sum_{r=1}^{p} \frac{\partial f_{mn}}{\partial \theta} \int_{s}^{t} g_{kl}^{(r)} \frac{\partial J_{mnkl}}{\partial (t-t')} dt' \right\} \frac{\partial \theta}{\partial t} \\ + \left\{ -\rho_{s} + \frac{\partial G_{s}}{\partial \theta} + \sum_{r=1}^{p} \frac{\partial f_{mn}}{\partial \theta} \int_{s}^{t} g_{kl}^{(r)} \frac{\partial J_{mnkl}}{\partial (t-t')} dt' \right\} \frac{\partial \theta}{\partial t} \\ + \left\{ -\rho_{s} + \frac{\partial G_{s}}{\partial y} + \sum_{r=1}^{p} \frac{\partial f_{mn}}{\partial y} \int_{s}^{t} g_{kl}^{(r)} \frac{\partial J_{mnkl}}{\partial (t-t')} \frac{\partial J_{mnkl}}{\partial (t-t')} dt' \right\} \frac{\partial v}{\partial t} \\ + \sum_{r=1}^{p} f_{mn}^{(r)} g_{kl}^{(r)} \left[\frac{\partial J_{mnkl}}{\partial (t-t')} (\eta^{(l)}(t) - \eta^{(l)}(t')) \right]_{t'=t} \\ + \sum_{r=1}^{p} f_{mn}^{(r)} \int_{s}^{t} g_{kl}^{(r)} \frac{\partial J_{mnkl}}{\partial (t-t')} \frac{\partial (\eta^{(l)}(t) - \eta^{(l)}(t'))}{\partial (t-t')} dt' - \frac{Q_{i}}{T_{r}} \frac{\partial \theta}{\partial t} \ge 0 \\ \end{cases}$$

-14-

Inequality (27) must hold for arbitrary values of $\partial \nu/\partial t$, $\partial \sigma_{ij}/\partial t$ and $\partial \theta/\partial t$; this then implies the constitutive relations

$$\varepsilon_{ij} = \frac{\partial G^{T}}{\partial \sigma_{ij}} + \sum_{r=1}^{p} \frac{\partial f_{mn}^{(r)}}{\partial \sigma_{ij}} \int_{0}^{t} g_{KL}^{(r)} \frac{\partial J_{mnke}^{(r)}(\gamma^{(lt)} - \gamma^{(lt)})}{\partial (t - t')} dt'$$
(28a)

$${}^{P}S = \frac{\partial G}{\partial \theta} + \sum_{r=i}^{P} \frac{\partial f_{mn}^{(r)}}{\partial \theta} \int_{s}^{t} g_{kl}^{(r)} \frac{\partial J_{mnkl}^{(r)}(\eta'(t) - \eta'(t'))}{\partial (t - t')} dt'$$
(28b)

$$e = \frac{\partial G^{T}}{\partial v} + \sum_{r=1}^{p} \frac{\partial f_{mn}^{(r)}}{\partial v} \int_{v}^{t} g_{vt}^{(r)} \frac{\partial J_{makk}(v_{t}^{(r)} - v_{t}^{(r)})}{\partial (t - t')} dt' \qquad (28c)$$

As a consequence of Equation (28), inequality (27) now requires

$$\Lambda - \frac{Q_i}{T_F} \frac{\partial \theta}{\partial x_i} \ge 0 \tag{29}$$

where Λ is the dissipation function given by

$$\Lambda = \sum_{r=1}^{p} f_{mn}^{(r)} g_{xx}^{(r)} \left[\frac{\partial J_{mnkd}^{(r)}(\gamma'(t) - \gamma'(t'))}{\partial (t - t')} \right]_{t'=t} + \sum_{n=1}^{p} f_{nn}^{(r)} \int_{xx}^{t} \frac{\partial^2 J_{mnkd}^{(r)}(\gamma'(t) - \gamma'(t'))}{\partial (t - t') \partial t} dt'$$
(30)

Since Inequality (29) must be satisfied for any case, we may consider the special case of uniform temperature field $\frac{\partial \theta}{\partial x_i} = 0$, which then requires

Returning again to arbitrary $\frac{\partial \theta}{\partial x_i}$, we obtain from (29) and (31)

$$\frac{Q_i}{T_r} \frac{\partial \theta}{\partial x_i} \ge 0$$
(32)

This result is consistent with the Fourier heat conduction law

$$Q_i = -k_{ij} \frac{\partial \theta}{\partial x_j}$$
(33)

and was obtained in a similar manner by Christensen in [26].

With the use of Equations (24), (25) and (28), coupled energy equation (21) may now be rewritten for infinitesimal theory as

$$Pr - \frac{\partial Q_i}{\partial z_i} + \Lambda - T_r \frac{\partial}{\partial t} \left[\frac{\partial G^T}{\partial \theta} + \sum_{r=1}^{p} \frac{\partial f_{mn}^{(r)}}{\partial \theta} \int_{0}^{t} g_{kt}^{(r)} \frac{\partial J_{mnkt}^{(r)}(t^{(l_k)} - t^{(l_t')})}{\partial (t - t')} dt \right] = 0 \quad (34)$$

where the term in the brackets is the entropy s. A coupled energy equation for linearized infinitesimal theory may be obtained by dropping the second order term Λ .

In the following sections, we will show that superposition integral (16) is in fact a special case of Equation (28 a).

4. MODIFIED SUPERPOSITION INTEGRAL

In this section, we obtain a three-dimensional constitutive equation containing superposition integrals similar to those in Equation (16). To this end, we will set in Equations (28)

$$P = M + N \tag{35a}$$

$$f_{mn}^{(r)} = \sigma_{mn} \tag{35b}$$

$$g_{kL}^{(r)} = \begin{cases} (F_{\tau})_{kL}^{(r)} (\sigma_{ij}) & r = 1, 2, \dots, M \\ (F_{R})_{kL}^{(r)} (\sigma_{ij}) & r = M+1, \dots, M+N \end{cases}$$
(35c)

$$J_{mnk\ell}^{(r)} = \begin{cases} (J_T)_{mnk\ell}^{(r)} (\gamma_T^{(t)}) & r = 1, 2, \cdots, M \\ \\ (r) \\ (J_R)_{mnk\ell}^{(r)} (\gamma_R^{(t)}) & r = M+1, \cdots, M+N \end{cases}$$
(35d)

and
$$G^{T} = \overline{G} + \overline{E}_{ij} \sigma_{ij} + \rho \overline{S} \theta + \overline{e} \nu + \frac{1}{2} C_{ijkl} \sigma_{ij} \sigma_{kl} + \frac{1}{2} \frac{\rho \nu}{T_{r}} \theta^{2}$$

 $+ \frac{1}{2} \rho \nu^{2} + (ol_{r})_{ij} \sigma_{ij} \theta + h \theta \nu + (ol_{R})_{ij} \nu \sigma_{ij}$
 $+ \sum_{r=1}^{M} (J_{r})_{ijkl}^{(r)} (o) \int_{0}^{\sigma_{ij}} (F_{\tau})_{kl}^{(r)} (\sigma_{ij}^{\prime}) d\sigma_{ij}^{\prime} + \sum_{r=1}^{N} (J_{R})_{ijkl}^{(r)} (o) \int_{0}^{\sigma_{ij}} (F_{R})_{kl}^{(r)} (\sigma_{ij}^{\prime}) d\sigma_{ij}^{\prime}$ (35e)

Here $(F_T)_{mn}^{(r)}$ and $(F_R)_{mn}^{(r)}$ are functions of stress only, C_{ijkl} is the linear elastic compliance, $(\alpha_T)_{ij}$ the thermal expansion coefficient, C_{σ} the specific heat at constant stress, \overline{G} , \overline{e}_{ij} , \overline{s} and \overline{e} are initial values, and p, h and $(\alpha_R)_{ij}$ are new material constants.

Employing Equations (35a-e) in Equations (28) we obtain

$$\begin{aligned} \mathcal{E}_{ij} &= C_{ijkl} \sigma_{kl} + (ol_{T})_{ij} \theta + (ol_{R})_{ij} v + \sum_{r=1}^{M} \int_{0}^{t} (J_{r})_{ijkl} (\eta_{r}(k) - \eta_{r}(k)) \frac{\partial(F_{r})_{kl}(\sigma_{ij})}{\partial t} dt' \\ &+ \sum_{r=1}^{M} \int_{0}^{t} (J_{R})_{ijkl} (\eta_{R}(k) - \eta_{R}(k')) \frac{\partial(F_{R})_{kl}(\sigma_{ij})}{\partial t'} dt' \end{aligned}$$
(36a)

$$PS = P\overline{S} + (d_T)_{ij}\sigma_{ij} + \frac{PC_{\sigma}}{T_r}\theta + hV$$
(36b)

$$e = \tilde{e} + (d_R)_{ij} \sigma_{ij} + h\theta + p\nu$$
(36c)

where we have used an integration by parts and the conditions $\sigma_{ij}(0) = \epsilon_{ij}(0) = 0$. Inserting the entropy (36b) into energy equation (34), we also obtain

$$\rho r - \frac{\partial Q_i}{\partial x_i} + \Lambda - \rho C_{\sigma \frac{\partial \theta}{\partial t}} - T_{\mu} (d_{\tau})_{ij} \frac{\partial \sigma_{ij}}{\partial t} - T_{\mu} h \frac{\partial V}{\partial t} = 0$$
(37)

Equation (36a) is clearly the desired extension of constitutive equation (16) to three dimensions. Entropy expression (36b) is the same as in linear thermoelasticity, with the addition of the structure dependent term hv. Finally, if we drop the second order dissipation term from coupled energy equation (37), we obtain the result of linear thermoelasticity supplemented by the two new energy terms pr and $-T_rh\frac{\partial v}{\partial t}$.

For an isotropic material, Fourier heat conduction equation (33) reduces to

$$Q_i = -k \frac{\partial \theta}{\partial x_i}$$
(38)

and then energy equation (37) becomes

$$\rho r + k \frac{\partial^2 \theta}{\partial x_i^2} + \Lambda - \rho C_{\sigma} \frac{\partial \theta}{\partial t} - T_r (\partial_r)_{ij} \frac{\partial \sigma_{ij}}{\partial t} - T_r h \frac{\partial v}{\partial t} = 0$$
(39)

Finally, the stress-strain relation (36a) is written for an isotropic material as

$$\mathcal{E}_{ij} = \frac{1+\mathcal{V}_e}{E} \sigma_{ij} - \frac{\mathcal{V}_e}{E} \sigma_{ik} \delta_{ij} + d_T \delta_{ij} \theta + d_R \delta_{ij} \mathcal{V}$$

-18-

$$+\sum_{r=1}^{M}\int_{0}^{t}\left\{(J_{r})_{x}^{(r)}(\eta_{r}(t)-\eta_{r}(t'))\frac{\partial(F_{r})_{ii}^{(r)}}{\partial t'}+\frac{1}{3}\left[(J_{r})_{x}^{(r)}(\eta_{r}(t)-\eta_{r}(t'))-(J_{T})_{x}^{(r)}(\eta_{r}(t)-\eta_{r}(t'))\right]\frac{\partial(F_{r})_{kk}}{\partial t'}\delta_{ij}\right]dt'$$

$$+\sum_{r=1}^{M}\int_{0}^{t}\left\{(J_{r})_{x}^{(r)}(\eta_{r}(t)-\eta_{r}(t'))\frac{\partial(F_{r})_{ii}^{(r)}}{\partial t'}+\frac{1}{3}\left[(J_{r})_{x}^{(r)}(\eta_{r}(t)-\eta_{r}(t'))+(J_{r})_{x}^{(r)}(\eta_{r}(t)-\eta_{r}(t'))\right]\frac{\partial(F_{r})_{kk}}{\partial t'}\delta_{ij}\right]dt'$$

$$(40)$$

Here, v_e and E are the elastic Poisson's ratio and Young's modulus respectively, and the subscripts I and II designate shear and bulk creep compliance functions respectively. In the next section we discussed the power law form of Equation (40).

5. ISOTROPIC STRESS POWER LAW

In [27], a nonlinear constitutive equation of the isotropic power law type was developed for a three-dimensional viscoelastic material with instantaneous and time dependent compressibility. The development was based on the assumption that creep potentials may be obtained by raising the elastic quadratic form to integer powers, and furthermore the creep compliances used were for the generalized Kelvin model. In [15], Chang et al. equated the integrated function in the Gibbs free energy (in our case $g_{ij} = (F_T)_{ij}$ or $(F_R)_{ij}$ in Equations (25, 36a, 40)) to the derivative $(\frac{\partial}{\partial \sigma_{ij}})$ of the above mentioned potentials, and obtained the same single integral representation. In this section we shall also use these same forms for the functions $(F_T)_{ij}$ and $(F_R)_{ij}$ in Equation (40), and furthermore we will also utilize generalized Kelvin compliances.

Proceeding as described above, we obtain the isotropic stress power law

$$\begin{split} \dot{u}_{ij} &= \frac{1+\nu_{e}}{E} \left(\sigma_{ij} - \frac{\nu_{e}}{1+\nu_{e}} \mathbf{I}_{i} \delta_{ij} \right) + d_{T} \theta \, \delta_{ij} \, + d_{R} \, \nu \, \delta_{ij} \\ &+ C_{TS} \int_{\sigma}^{+} J_{TS} (\eta_{T}(t) - \eta_{T}(t')) \frac{\partial}{\partial t'} \left\{ \left[J_{2} + \frac{1-2}{6(1+\nu_{R})} J_{i}^{2} \right]^{0} (\sigma_{ij} - \frac{\nu_{IS}}{1+\nu_{R}} \mathbf{I}_{i} \delta_{ij}) \right\} dt' \\ &+ \sum_{k=2}^{M} C_{RS}^{(k)} \int_{T}^{+} J_{R}^{(0)} (\eta_{T}(t) - \eta_{T}(t')) \frac{\partial}{\partial t'} \left\{ \left[J_{2} + \frac{1-2}{6(1+\nu_{R})} J_{i}^{(k)} \right]^{2} (\sigma_{ij} - \frac{\nu_{IS}}{1+\nu_{R}} \mathbf{I}_{i} \delta_{ij}) \right\} dt' \\ &+ C_{RS} \int_{\sigma} J_{RS} (\eta_{R}(t) - \eta_{R}(t')) \frac{\partial}{\partial t'} \left\{ \left[J_{2} + \frac{1-2}{6(1+\nu_{R})} J_{i}^{(k)} \right]^{2} (\sigma_{ij} - \frac{\nu_{IS}}{1+\nu_{R}} \mathbf{I}_{i} \delta_{ij}) \right\} dt' \\ &+ C_{RS} \int_{\sigma} J_{RS} (\eta_{R}(t) - \eta_{R}(t')) \frac{\partial}{\partial t'} \left\{ \left[J_{2} + \frac{1-2}{6(1+\nu_{R})} J_{i}^{(k)} \right]^{2} (\sigma_{ij} - \frac{\nu_{IS}}{1+\nu_{R}} \mathbf{I}_{i} \delta_{ij}) \right\} dt' \\ &+ \sum_{K=2}^{M} C_{RS}^{(4)} \int_{\sigma} J_{RS}^{(4)} (\eta_{R}(t) - \eta_{R}(t')) \frac{\partial}{\partial t'} \left\{ \left[J_{2} + \frac{1-2}{6(1+\nu_{R})} J_{i}^{(2)} \right]^{2} (\sigma_{ij} - \frac{\nu_{IS}}{1+\nu_{R}} \mathbf{I}_{i} \delta_{ij}) \right\} dt' \end{split}$$

(41)

-20-

In the above, $I_1 = \sigma_{kk}$ is the first invariant of stress and $J_2 = 1/2s_{1j}s_{1j}$ is the second invariant of the stress deviator $s_{1j} = \sigma_{1j} - 1/3\sigma_{kk}\delta_{1j}$. Subscripts Ts, Tt, Rs and Rt designate thermal steady, thermal transient, irradiation steady and irradiation transient creep quantities respectively. Accordingly, the various creep compliances are defined as

$$J_{TS}(\eta_{T}(t)) = \eta_{T}(t)$$

$$J_{RS}(\eta_{R}(t)) = \eta_{R}(t)$$

$$J_{Tt}^{(k)}(\eta_{T}(t)) = 1 - \exp[-A_{T}^{(k)}\eta_{T}(t)] \qquad k = 2, \cdots, M$$

$$J_{Rt}^{(k)}(\eta_{R}(t)) = 1 - \exp[-A_{R}^{(k)}\eta_{R}(t)] \qquad k = 2, \cdots, N$$
(42)

in conformity with Equations (1) and (11). The powers m_{Ts} , $m_{Tt}^{(k)}$, $m_{Rs}^{(k)}$ and $m_{Rt}^{(k)}$ are all restricted to integers 0,1,2,...; the constants v_{Ts} , $v_{Tt}^{(k)}$, $v_{Rt}^{(k)}$, $v_{Rs}^{(k)}$ are Poisson's coefficients for the various creep components; and the C_{Ts} , $C_{Tt}^{(k)}$, $C_{Rs}^{(k)}$ and $C_{Rt}^{(k)}$ are creep constants which multiply the various compliances.

The time dependent compressibility is displayed by forming the contraction of Equation (41)

$$\begin{aligned} \mathcal{E}_{LL} &= \frac{1-2\nu_{e}}{E} \, \mathcal{G}_{IL} + \frac{(1-2\nu_{r_{s}})C_{IB}}{1+\nu_{r_{s}}} \int_{\bullet}^{t} J_{r_{s}} (\gamma_{r}(t) - \gamma_{r}(t')) \frac{\partial}{\partial t'} \left\{ \left[J_{2} + \frac{1-2\nu_{R}}{6(1+\nu_{R})} J_{1}^{2} \right]^{(m_{r_{s}})} T_{1}^{(m_{r_{s}})} \right\} dt' \\ &+ \frac{M}{E} \frac{(1-2\nu_{r_{s}})C_{r_{s}}}{1+\nu_{r_{s}}^{(m_{s})}} \int_{\bullet}^{t} J_{R_{s}}^{(m_{s})} (\gamma_{r}(t) - \gamma_{r}(t')) \frac{\partial}{\partial t'} \left\{ \left[J_{2} + \frac{1-2\nu_{R_{s}}}{6(1+\nu_{R_{s}})} J_{1}^{2} \right]^{(m_{r_{s}})} (\sigma_{IL}) \right\} dt' \\ &+ \frac{(1-2\nu_{R_{s}})C_{r_{s}}}{1+\nu_{R_{s}}} \int_{\bullet}^{t} J_{R_{s}}^{(m_{s}} (\gamma_{R}(t)) - \gamma_{R}(t')) \frac{\partial}{\partial t'} \left\{ \left[J_{2} + \frac{1-2\nu_{R_{s}}}{6(1+\nu_{R_{s}})} J_{1}^{2} \right]^{(m_{r_{s}})} \left(\sigma_{IL} \right) \right\} dt' \\ &+ \frac{(1-2\nu_{R_{s}})C_{r_{s}}}{1+\nu_{R_{s}}} \int_{\bullet}^{t} J_{R_{s}}^{(m_{s})} (\gamma_{R}(t)) - \gamma_{R}(t')) \frac{\partial}{\partial t'} \left\{ \left[J_{2} + \frac{1-2\nu_{R_{s}}}{6(1+\nu_{R_{s}})} J_{1}^{2} \right]^{(m_{r_{s}})} \left(\sigma_{IL} \right) \right\} dt' \\ &+ \frac{M}{E} \frac{(1-2\nu_{R_{s}})C_{r_{s}}}{1+\nu_{R_{s}}^{(m_{s})}} \int_{\bullet}^{t} J_{R_{s}}^{(m_{s})} (\gamma_{R}(t) - \gamma_{R}(t')) \frac{\partial}{\partial t'} \left\{ \left[J_{2} + \frac{1-2\nu_{R_{s}}}{6(1+\nu_{R_{s}})} J_{1}^{2} \right]^{(m_{s})} \left(\sigma_{IL} \right) \right\} dt' \\ &+ \frac{M}{E} \frac{(1-2\nu_{R_{s}})C_{r_{s}}}{1+\nu_{R_{s}}^{(m_{s})}} \int_{\bullet}^{t} J_{R_{s}}^{(m_{s})} (\gamma_{R}(t) - \gamma_{R}(t')) \frac{\partial}{\partial t'} \left\{ \left[J_{2} + \frac{1-2\nu_{R_{s}}}{6(1+\nu_{R_{s}})} J_{1}^{2} \right]^{(m_{s})} \left(\sigma_{IL} \right) \right\} dt' \\ &+ \frac{M}{E} \frac{(1-2\nu_{R_{s}})C_{r_{s}}}{1+\nu_{R_{s}}^{(m_{s})}} \int_{\bullet}^{t} J_{R_{s}}^{(m_{s})} (\gamma_{R}(t) - \gamma_{R}(t')) \frac{\partial}{\partial t'} \left\{ \left[J_{2} + \frac{1-2\nu_{R_{s}}}{6(1+\nu_{R_{s}})} J_{1}^{2} \right]^{(m_{s})} \left(\sigma_{IL} \right) \right\} dt' \\ &+ \frac{M}{E} \frac{(1-2\nu_{R_{s}})C_{r_{s}}}{1+\nu_{R_{s}}^{(m_{s})}} \int_{\bullet}^{t} J_{R_{s}}^{(m_{s})} (\gamma_{R}(t) - \gamma_{R}(t')) \frac{\partial}{\partial t'} \left\{ \left[J_{2} + \frac{1-2\nu_{R_{s}}}{6(1+\nu_{R_{s}})} J_{1}^{2} \right]^{(m_{s})} \left(\sigma_{IL} \right) \right\} dt' \\ &+ \frac{M}{E} \frac{(1-2\nu_{R_{s}})C_{r_{s}}}{1+\nu_{R_{s}}^{(m_{s})}} \int_{\bullet}^{t} J_{R_{s}}^{(m_{s})} \left(\gamma_{R_{s}}^{(m_{s})} \right] \frac{\partial}{\partial t'} \left\{ \left[J_{2} + \frac{1-2\nu_{R_{s}}}{6(1+\nu_{R_{s}})} J_{1}^{(m_{s})} \right] dt' \\ &+ \frac{M}{E} \frac{(1-2\nu_{R_{s}})C_{r_{s}}}{1+\nu_{R_{s}}^{(m_{s})}} \int_{\bullet}^{t} J_{R_{s}}^{(m_{s})} \left(\gamma_{R_{s}}^{(m_{s})} \right] \frac{\partial}{\partial t'} \left\{$$

This equation is useful in analyzing pressure test data.

For the one-dimensional creep test, $\sigma_{xx} = \sigma_0 H(t)$ where σ_0 is constant and H(t) is the unit step function, and the flux and temperature are also kept constant at ϕ_0 and T_0 . Equation (41) then yields

$$\begin{aligned} \mathcal{E}_{XX} &= \left\{ \frac{\sigma_{o}}{E} + \left(\frac{\sigma_{o}}{\lambda_{T}}\right)^{n_{T}} \Phi_{T}^{T} \psi_{T}^{+} t + \sum_{k=2}^{M} \left(\frac{\sigma_{o}}{\mu_{T}^{(k)}}\right)^{n_{T}} \left[1 - exp\left(-tA_{T}^{(k)} \Phi_{T}^{*} \psi_{T}\right) \right] + \left(\frac{\sigma_{o}}{\lambda_{R}}\right)^{n_{R}} \Phi_{R}^{*} \psi_{R}^{+} t \\ &+ \sum_{k=2}^{N} \left(\frac{\sigma_{o}}{\mu_{R}^{(k)}}\right)^{n_{R}} \left(1 - exp\left(-tA_{R}^{(k)} \Phi_{R}^{*} \psi_{R}\right) \right] \right\} H(t) + \sigma_{T}^{+} \theta_{o} + \sigma_{R}^{+} \nu_{o}^{-} \\ \mathcal{E}_{yy} &= \mathcal{E}_{zz}^{-} = -\left\{ \gamma_{e}^{0} \frac{\sigma_{o}}{E} + \gamma_{15}^{0} \left(\frac{\sigma_{o}}{\lambda_{T}}\right)^{n_{T}} \Phi_{T}^{*} \psi_{T}^{+} + \sum_{k=2}^{M} \gamma_{R}^{0} \left(\frac{\sigma_{o}}{\mu_{T}^{(k)}}\right)^{n_{R}^{-}} \left[1 - exp\left(-tA_{T}^{(k)} \Phi_{T}^{*} \psi_{T}^{-}\right) \right] \\ &+ \gamma_{RS}^{-} \left(\frac{\sigma_{o}}{\lambda_{R}}\right)^{n_{R}} \Phi_{W}^{*} t + \sum_{k=2}^{N} \gamma_{R}^{0} \left(\frac{\sigma_{o}}{\lambda_{R}^{(k)}}\right)^{n_{R}^{-}} \left[1 - exp\left(-tA_{R}^{(k)} \Phi_{R}^{*} \psi_{R}^{-}\right) \right] \\ &+ \gamma_{RS}^{-} \left(\frac{\sigma_{o}}{\lambda_{R}}\right)^{n_{R}} \Phi_{W}^{*} t + \sum_{k=2}^{N} \gamma_{Rk}^{0} \left(\frac{\sigma_{o}}{\lambda_{R}^{(k)}}\right)^{n_{R}^{-}} \left[1 - exp\left(-tA_{R}^{(k)} \Phi_{R}^{*} \psi_{R}^{-}\right) \right] \right\} H(t) + \sigma_{T}^{-} \theta_{T}^{+} \sigma_{R}^{-} \nu_{o}^{-} \end{aligned}$$

$$(44a)$$

In Equations (44) we have eliminated reduced times n_t and n_R by means of Equation (14) with constant ϕ_T , Ψ_T , ϕ_R and Ψ_R , and we have also introduced

$$n_{T} = 2 m_{TS} + 1 \qquad \lambda_{T} = \frac{2^{m_{T}} (2m_{TS}+1) (1+v_{TS})}{(C_{TS})^{1/2} (2m_{TS}+1)} (2m_{TS}+1)}$$

$$(C_{TS})^{(k)} (2m_{TS}+1) (1+v_{TS})^{(k)} (2m_{TS}+1)} (C_{TS})^{(k)} (2m_{TS}+1) (1+v_{TS})} (C_{TS})^{(k)} (2m_{TS}+1)} (2m_{TS})^{(k)} (2m_{TS}+1)} (C_{TS})^{(k)} (2$$

$$n_{R} = 2 m_{Rs} + 1 \qquad \lambda_{R} = \frac{\frac{2^{m_{Rs}/(2m_{Rs}+1)} (1 + v_{Rs})}{(1 + v_{Rs})}}{(C_{Rs})^{1/(2m_{Rs}+1)}}$$

$$g_{DR}^{(k)} = 2 m_{Rt}^{(k)} + 1 \qquad \mu_{R}^{(k)} = \frac{2^{m_{Rt}^{(k)}/(2m_{Rt}^{(n)}+1)} (1+\nu_{Rt}^{(n)})}{(1+\nu_{Rt}^{(k)})^{1/(2m_{Rt}^{(k)}+1)}} \qquad (45)$$

The role of the various Poisson's coefficients becomes clear when we compare Equation (44b) with (44a). In [28] it is suggested that v_{Ts} is close to 1/2 while $v_{Tt}^{(k)}$ lie somewhere between v_e and 1/2. Although some information on v_{Rs} is given in [19], there appears to be no data available on $v_{Rt}^{(k)}$. On comparing Equation (44a) with Equations (1) and (11), we see that we have essentially obtained our initial equations. As remarked earlier, irradiation creep is usually taken as linear in stress. Thus we may, with little loss of accuracy, set $n_R = q_R^{(k)} = 1$ in Equations (44). Finally, one may readily specialize energy equation (39) for the isotropic power law by evaluating dissipation function (30) for this material, but as previously noted it is common practice to simply drop the dissipation function from the energy equation.

-23-

6. SUMMARY

One-dimensional constitutive equations valid for thermal and irradiation creep at constant stress were generalized to variable stress by utilizing the strain hardening technique to obtain modified superposition integrals. Thermal creep terms valid for variable temperature were obtained first by assuming a thermorheologically simple material, accordingly introducing a thermal reduced time to account for temperature dependence of the material terms parameters. Similarly, irradiation creep, valid for variable flux were obtained by assuming a fluxorheologically simple material, and introducing an irradiation reduced time dependent on the rate of change of the imperfection density. An expression for thermoirradiation creep (i.e., temperature and flux both high) was then obtained by superposition of the previous thermal and irardiation creep terms, as modified by a redefinition of the two reduced time scales to account for coupling. Linear elastic, thermal expansion and swelling terms were also included in the one-dimensional constitutive equation.

A systematic development based on the first and second laws of thermodynamics then enabled us to obtain general memory integrals which contain as a special case those previously obtained in the paper by physical argument. The conventional forms of the infinitesimal laws of thermodynamics were first modified to account for the effect of neutron flux on local heating and point defect production. A Gibbs free energy was assumed as the sum of an instantaneous function component and a memory functional component with stress, temperature increment and defect density increment as independent variables. As a result, three-dimensional anisotropic constitutive equations were obtained for the strain, entropy and

-24-

a material property conjugate to the defect density; the coupled energy equation, dissipation function and heat conduction law were also obtained.

Modified superposition integrals similar to those previously developed were then obtained by substituting special functions into the results of the thermodynamic analysis. Finally, an isotropic stress power law was obtained through the use of quadratic forms raised to integer powers, and was then examined for three-dimensional time dependent compressibility and one-dimensional Poisson contraction.

The validity of the analogy between thermally induced and irradiation induced creep as presented here must of course be tested against further experimental evidence. However, we have conclusively shown that the analogy as deduced from simple one-dimensional data is consistent with a more general thermodynamic development. We also point out that the analogy should prove useful in reducing the complexity of future testing programs.

REFERENCES

- Gilbert, E. R., "In-reactor Creep of Reactor Materials," <u>Reactor</u> <u>Technology</u>, Vol. 19, No. 3, pp. 258-285, 1971.
- Finnie, I. and Heller, W., <u>Creep of Engineering Materials</u>, McGraw-Hill, 1959.
- Cozzarelli, F. A. and Shaw, R. P., "A Combined Strain and Time Hardening Nonlinear Creep Law," <u>Int. J. Nonlinear Mechanics</u>, Vol. 7, pp. 221-234, 1972.
- Morland, L. W. and Lee, E. H., "Stress Analysis for Linear Viscoelastic Materials with Temperature Variation," <u>Trans. Soc. Rheol.</u>, Vol. 4, pp. 233-263, 1960.
- Lewthwaite, G. W., Mosdale, D. and Ward, I. R., "Irradiation in Several Metals and Alloys at 100°C," Nature, vol. 216, pp. 472-473, 1967.
- Walters, L. C., Pugacz, M. A. and Walter, C. M., "In-reactor Creep Experiments with Stainless-steel Tubing," Reactor Development Program Progress Report, January, 1971, USAEC report ANL-7776, Argonne National Laboratory, 1971.
- Wolfe, R. A., "Kinetics of In-pile Stress Relaxation," <u>ANS Transactions</u>, Vol. 12, pp. 589-590, 1970.
- Schreider, R. E., "Relaxation of Torsional Stresses in Stainless Steel during Irradiation," DP-369, 1959.
- 9. Gilbert, E. R. and Blackburn, L. D., "Irradiation Induced Creep in Austinite Stainless Steel," USAEC Report WHAN-FR-30, 1970.
- Rashid, Y. R., "Mathematical Modeling and Analysis of Fuel Rods," <u>Nuclear Engineering and Design</u>, Vol. 29, pp. 22-32, 1974.
- Coleman, B. D., "Thermodynamics of Materials with Memory," <u>Arch.</u> <u>Rat. Mech. Anal.</u>, Vol. 17, pp. 1-46, 1964.
- Biot, M. A., "Linear Thermodynamics and The Mechanics of Solids," <u>Proc.</u> Third U.S. National Congress Applied Mechanics, pp. 1-18, 1958.
- Schapery, R. A., "Application of Thermodynamics to Thermomechanical, Fractural and Birefringent Phenomena in Viscoelastic Media," J. Appl. Phys., Vol. 35, pp. 1451-1465, 1964. Energy
- Cost, T. L., "A Free Function for Thermorheologically Simple Materials," Acta Mechanica, Vol. 17, pp. 153-167, 1973.
- Chang, W. P. and Cozzarelli, F. A., "On The Thermodynamics of Nonlinear Single Integral Representations for Thermoviscoelastic Materials with Applications to One-Dimensional Wave Propagation," <u>Acta Mechanica</u>, (in press), 1976.

- Cozzarelli, F. A., "Thermally and Isradiation Induced Creep in Metals," <u>Proc. 12th Annual Meeting of Soc. of Eng. Sci.</u>, pp. 599-605, 1975.
- Makin, M. J., Whaphan, A. D. and Minter, F. J., <u>Phil. Mag.</u>, Vol. 6, pp. 285-299, 1961.
- Cawthorne, C. and Fulton, E. W., "Voids in Irradiated Stainless Steel," <u>Nature</u>, Vol. 216, p. 515, 1967.
- Gilbert, E. R. and Straalsund, J. L., "A Relationship for Non-Conservative-Volume Creep Under Different States of Stress," <u>Nuclear</u> <u>Engineering and Design</u>, Vol. 12, pp. 421-424, 1970.
- Bates, J. F. and Straalsund, J. L., "A Compilation of Data and Emperical Representations of Irradiation-Induced Swelling of Solution-Treated Types 304 and 316 Stainless Steel," USAEC Report HEDL-TME-71-139, 1971.
- 21. Krempl, E., "On The Interaction of Rate and History Dependence in Structural Metals," Acta Mechanica, Vol. 22, pp. 53-90, 1975.
- Schoeck, G., "Influence of Irradiation on Creep," J. Appl. Phys., Vol. 29, p. 112, 1958.
- Schmitt, R. C. and Bump, T. R., "LMFBR Core-Restrain Design," Equation 15, p. 6.12, Report ANL-RDP-8, 1972.
- Jackson, R. J., Sutherland, W. H. and Metcalf, I. L., "Metal Swelling and Irradiation Creep Effects Upon The Fast Test Reactor Core Component Performance," AEC Report BNWL-1430, 1970.
- Jaeger, R. G., Blizard, E. P., Chilton, A. B., Grotenhuis, M., Horig, A., Jaeger, T. A., Einenlohr, H. H., eds., <u>Engineering Compenduum On</u> <u>Radiation Shielding</u>, Vol. 1, Shielding Fundamentals and Methods, Sec. 7.2 (Springer-Verlag, New York), 1968.
- Christensen, R. M., Theory of Viscoelasticity--An Introduction, Academic Press, 1971.
- Courtine, D., Cozzarelli, F. A. and Shaw, R. P., "Effect of Time Dependent Compressibility on Non-Linear Viscoelastic Wave Propagation," <u>Int. J. Non-linear Mechanica</u>, (in press), 1976.
- Levy, J. C. and Barody, I. J., "Poisson's Ratio In Creep Using The Strain Replica Method," <u>Proc. Conf. On Thermal Loading And Creep</u>, <u>Inst. Mech. Eng.</u>, London, England, p. V-9, 1964.

DOCUMENT CON	TROL DATA - R & D					
and this Activity (Corporate author)	28. REPORT SECURITY CLASSIFICATION					
	Unclassified					
Research Foundation of the State Unive	ersity of 26. GROUP					
ONTATION						
6						
ON THE ANALOGY BETWEEN THERMALL	Y AND IRRADIATION INDUCED CREEP,					
(9) Summary MONT (
"Dates (Frist name, master infite, last plane)	- (12) 01)					
10 F.A. Cozzarelli an S. Huang	((2 31p.)					
OKI DAL	TAL NO. OF PAGES TAL. NO. OF REFS					
(1) Separate 076	27 28					
NTHACT OR CHANNERS NOOT4-75-C03021	94. ORIGINATOR'S REPORTIUMPERIS					
OJECT NO.	Barren No. 196					
	9b. OTHER REPORT NO(5) (Any other numbers that may be assigned this report)					
TRIBUTION STATEMENT						
Approved for Public Release. Distribut	tion Unlimited					
PPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY					
None	Uffice of Naval Research-Structural					
Employing an analogy between them creep, physical arguments are used first constitutive relation for metals under neutron flux field. This constitutive integrals in which the temperature and is included via the use of two reduced expansion and swelling terms are also on thermodynamics, with the stress, ter increment as independent variables in to obtain general three-dimensional mer coupled energy equation are also obtain similar to these previously obtained by substituting special functions into the and the special case of an isotropic st	mally induced and irradiation induced st to deduce a one-dimensional stress in a high temperature and high relation contains modified superposition flux dependence of the material parameters time scales; linear elastic, thermal included. A systematic development based mperature increment and defect density the Bibbs free energy, is then employed mory integrals for strain; the entropy and ned. Modified superposition integrals y physical argument are then obtained by e results of the thermodynamic analysis, tress power law is examined in detail.					

*

PARP 1 - GOVERNMENT

Acministrative & Liaison Activities

Chief of Naval Research Repartment of the Navy Arlington, Virginia 22217 Attn: Code 439 (2) 471

Director ONR Branch Office 195 Summer Street Boston, Massachusetts 02210

Director ONR Branch Office 219 S. Dearborn Street Chicago, Illinois 60604

Director Naval Research Laboratory Attn: Library, Code 2029 (ONRL) Washington, D.C. 20390 (6)

Commanding Officer ONR Branch Office 207 West 21th Street New York, New York 10011

Director ONR Branch Office 1030 E. Green Street Pasadena, California 91101

U.S. Naval Research Laboratory Attn: Technical Information Div. Washington, D.C. 20390 (6)

Defense Documentation Center Cameron Station Alexandria, Virginia 22314 (20)

Army

Commanding Officer U.S. Army Research Office Durham Attn: Mr. J.J. Murray CRD-AA-IP Box CM, Duke Station Durham, North Carolina 27/06 Commanding Officer AMXMR-ATL Attn: Mr. J. Bluhm U.S. Army Materials Res. Agcy. Watertown, Massachusetts 02172

Watervliet Arsenal MAGGS Research Center Watervliet, New York 12189 Attn: Director of Research

Restone Scientific Info. Center Chief, Document Section U.S. Army Missile Command Redstone Arsenal, Alabama 35809

Army R & D Center Fort Belvoir, Virginia 22060

Technical Library Aberdeen Proving Ground Aberdeen, Maryland 21005

Navy

Commanding Officer and Director Navel Ship Research & Development Com Washington, D.C. 20007 Attn: Code Oh2 (Tech. Lib. Br.) 700 (Struc. Mech. Lab.) 720 725 727 012.2 (Dr. W.J. Sette)

Naval Weapons Laboratory Dahlgren, Virginia 22448

Naval Research Laboratory Washington, D.C. 20390 Attn: Code 8400 8430 8440 6300 6305 6380

Undersea Explosion Research Div: Naval Ship R & D Center Norfolk Naval Shipyard Portsmouth, Virginia 23709 Attn: Dr. Schauer Code 780

-1-

Naval Ship R & D Center Annapolis Division Annapolis, Maryland 21402 Attn: Code A800, Mr. W.L. Williams

Technical Library Naval Underwater Weapons Conter Pasadena Annex 3202 E. Foothill Blvd. Pasadena, California 9110,

U.S. Naval Weapons Center China Lake, California 93557 Attn: Code 4520 Mr. Ken Bischel

U.S. Naval Ordnance Laboratory Mechanics Division RFD 1, White Oak Silver Spring, Maryland 20910

U.S. Naval Ordnance Laboratory Attn: Mr. H.A. Perry, Jr. Non-Metallic Materials Division Silver Spring, Maryland 20910

Technical Director U.S. Naval Undersea R & D Center San Diego, California 92132

Supervisor of Shipbuilding U.S. Navy Newport News, Virginia 23607

Technical Director Mare Island Naval Shipyard Vallejo, California 94592

U.S. Naval Ordnance Station Attn: Mr. Garet Bornstelle Research & Development Division Indian Head, Maryland 20640

Chief of Naval Operations Department of the Navy Washington, D.C. 20350 Attn: Code OP-07T

Deep Submergence Systems Naval Ship Systems Command Code 39522 Department of the Navy Washington, D.C. 20240 Attn: Chief Scientary Director, Aero Mechanics Naval Air Development Center Johnsville Warminster, Pennsylvania 18974

Naval Air Systems Command Dept. of the Navy Washington, D.C. 20360 Attn: NAIR 320 Aero. & Structures 5320 Structures 601, Tech. Library 52031F Materials

Naval Facilities Engineering Command Department of the Navy Washington, D.C. 20360 Attn: NFAC 03 Res. & Development Oly Engineering & Design 14114 Tech. Library

Naval Ship Systems Command Dept. of the Navy Washington, D.C. 20360 Attn: NSHIP 031 Ch. Scientists for P 0342 Ship Mats. & Structs 2052 Tech. Library

Naval Ship Engineering Center Prince George Plaza Hyattsville, Maryland 20782 Attn: NSEC 6100 Ship Sys. Engr. & De 6102C Computer-Aided Ship 6105 Ship Protection 6110 Ship Concept Design 6120 Hull Div. 6120D Hull Div. 6128 Surface Ship Struct 6129 Submarine Struct.

Naval Ordnance Systems Command Dept. of the Navy Washington, D.C. 20360 Attn: NORD 03 Res. & Technology 035 Weapons Dynamics 9132 Tech. Library

Engineering Department U.S. Naval Academy Annapolis, Maryland 21402

-2-

Air Farms

Commander WADD Wright-Patterson Air Force Base Dayton, Ohio 45433 Attn: Code WWEMDD AFFDL (FDDS) Structures Division AFT.C (MCEFA) Code WWEC AFFL (MAAM)

Commander Chief, Applied Mechanics Group U.S. Air Force Inst. of Tech. Wright-Patterson Air Force Base Dayton, Ohio 45433

Chief, Civil Engineering Branch MLNC, Research Division Air Force Weapons Laboratory Kirtland AFB, New Mexico 87117

Air Force Office of Scientific Res. 1400 Wilson Blvd. Arlington, Virginia 22209 Attn: Mechs. Div.

NASA

Structures Research Division National Aeronautics & Space Admin. Langley Research Center Langley Station Hampton, Virginia 23365 Attn: Mr. R.R. Heldenfels, Chief

National Aeronautic & Space Admin. Associate Administrator for Advanced Research & Technology Washington, D.C. 20546

Scientific & Tech. Info. Facility NASA Representative (S-AK/DL) P.O. Box 5700 Bethesda, Maryland 20014

Other Government Activities

Technical Director Marine Corps Development & Educ. Command Guantico, Virginia 22134 Director National Bureau of Standards Washington, D.C. 20234 Attn: Mr. B.L. Wilson, FM 219

National Science Foundation Engineering Division Washington, D.C. 20550

Director STBS Defense Atomic Support Agency Washington, D.C. 20350

Commander Field Command Defense Atomic Support Agency Sandia Base Albuquerque, New Mexico 87115

Chief, Defense Atomic Support Agcy. Blast & Shock Division The Pentagon Washington, D.C. 20301

Director Defense Research & Engr. Technical Library Room 3C-128 The Pentagon Washington, D.C. 20301

Chief, Airframe & Equipment FS-120 Office of Flight Standards Federal Aviation Agency Washington, D.C. 20553

Chief of Research and Development Maritime Administration Washington, D.C. 20235

Mr. Milton Shaw, Director Div. of Reactor Develo. & Technology Atomic Energy Commission Germantown, Maryland 20767

Ship Hull Research Committee National Research Council National Academy of Sciences 2101 Constitution Avenue Washington, D.C. 20418 Attn: Mr. A.R. Lytle

-3-

PART 2 - O'NTRACTORS AND OTHER TECHNICAL COLLABORATORS

Universities

Professor J.R. Rice Division of Engineering Brown University Providence, Rhode Island 02912

Dr. J. Tinsley Oden Dept. of Engr. Mechs. University of Alabama Huntsville, Alabama 35804;

Professor R.S. Rivlin Center for the Application of Mathematics Lehigh University Bethlehem, Pennsylvania 18015

Professor Julius Miklowitz Division of Engr. & Applied Sciences California Institute of Technology Pasadena, California 91109

Professor George Sih Department of Mechanics Lehigh University Bethlehem, Pennsylvania 18015

Dr. Harold Liebowitz, Dean School of Engrg. & Applied Science George Wachington University 725 23rd Street Washington, D.C. 20006

Professor Eli Sternberg Division of Engr. & Applied Sciences California Institute of Technology Pasadena, California 91109

Professor Burt Paul University of Pennsylvania Towne School of Civil and Mechanical Engrg. Room 113 Towne Building 220 S. 33rd Street Philadelphia, Penna. 19104

Professor S.B. Dong University of California Department of Mechanics Los Angeles, California 90024 Professor Paul M. Naghdi Div. of Applied Mechanics Etcheverry Hall University of California Berkeley, California 94720

Professor W. Nachbar University of California Department of Aerospace & Mech. Engrg La Jolla, California 92037

Professor J. Baltrukonis Mechanics Division The Catholic Univ. of America Washington, D.C. 20017

Professor A.J. Durelli Mechanics Division The Catholic Univ. of America Washington, D.C. 20017

Professor H.H. Bleich Department of Civil Engrg. Columbia University Amsterdam & 120th Street New York, New York 10027

Professor R.D. Mindlin Department of Civil Engrg. Columbia University S.W. Mudd Building New York, New York 10027

Professor A.M. Freudenthal. George Washington University School of Engrg. & Applied Science Washington, D.C. 20006

Professor B.A. Boley Department of Theor. & Appl. Mech. Cornell University Ithaca, New York 14850

Professor P.G. Hodge Department of Mechanics Illinois Institute of Technology Chicago, Illinois 60616

Dr. D.C. Drucker Dean of Engineering University of Illinois Urbana, Illinois 61801 Professor N.M. Newmark Dept. ofCivil Engineering University of Illinois Urbana, Illinois 61801

Professor James Mar Massachusetts Inst. of Tech. Rm. 33-318 Dept. of Acrospace & Astro. 77 Massachusetts Ave. Cambridge, Massachusetts 02139

Library (Code 0384) U.S. Naval Postgraduate School Montercy, California 93940

Dr. Francis Cozzarelli Div. of Interdisciplinary Studies and Research School of Engineering State Univ. of N.Y. Buffalo, New York 14214

Professor R.A. Douglas Dept. of Engrg. Mechs. North Carolina State University Raleigh, North Carolina 27607

Dr. George Herrmann Stanford University Department of Applied Mechanics Stanford, California 94305

Professor J.D. Achenbach Technological Institute Northwestern University Evanston, Illinois 60201

Director, Ordnance Research Lab. Pennsylvania State University P.O. Box 30 State College, Pennsylvania 16801

Professor J. Kempner Dept. of Aero. Engrg. & Applied Mech. Polytechnic Institute of Brooklyn 333 Jay Street Brooklyn, New York 11201

Professor J. Klosner Polytechnic Institute of Brocklyn 333 Jay Street Brocklyn, New York 11201 Professor A.C. Eringen Dept. of Aerospace & Mech. Sciences Princeton University Princeton, New Jersey 08540

Dr. S.L. Koh School of Aero., Astro. & Engr. Sc. Purdue University Lafayett, Indiana 47907

Professor R.A. Schapery Civil Engineering Department Texas A & M University College Station, Texas '77840

Professor E.H. Lee Div. of Engrg. Mechanics Stanford University Stanford, California 94305

Dr. Nicholas J. Hoff Dept. of Aero. & Astro. Stanford University Stanford, California 94305

Professor Max Anliker Dept. of Aero. & Astro. Stanford University Stanford, California 94305

Professor Chi-Chang Chao Div. of Engr. Mechanics Stanford University Stanford, California 94305

Professor H.W. Liu Dept. of Chemical Engr. & Metal. Syracuse University Syracuse, New York 13210

Professor S. Bodner Technion R & D Foundation Haifa, Israel

Dr. S. Dhawan, Director Indian Institute of Science Bangalore, India

Professor Tsuyoshi Hayashi Department of Aeronautics Faculty of Engineering University of Tokyo BUNKYO-KU Tokyo, Japan

-5-

Professor J.E. Fit ge 2 . Ch. Dept. of Civil Engineering University of Utah Salt Lake City, Utah 2

Professor R.J.H. Folla Chairman, Aeronaul call gr. Dept. 207 Guggenheim Hall University of Washington Seattle, Washington 98105

Professor Albert S. Kobayashi Dept. of Mechanical Engr. University of Washington Seattle, Washington 98105

Professor G.R. Irwin Dept. of Mech. Engrg. Lehigh University Bethlehem, Pennsylvania 18015

Dr. Daniel Frederick Dept. of Engr. Mechs. Virginia Polytechnic Inst. Blacksburg, Virginia 24061

Professor Lambert Tall Lehigh University Department of Civil Engrg. Bethlehem, Pennsylvania 18015

Professor M.P. Whuk South Dakota State University Department of Mechanical Engineering Brookings, South Dakota 57006

Professor Norman Jones Massachusetts Insitute of Technology Dept. of Naval Architecture & Marine Engrg. Cambridge, Massachusetts 02139

Professor Pedro V. Marcal Brown University Division of Engineering Providence, Rhode Island 02912

Professor Werner Goldsmith Department of Mechanical Engineering Division of Applied Mechanics University of California Berkeley, California 94720

Professor R.B. Testa Dept. of Civil Engineering Columbia University S.W. Mudd Bldg. New York, New York 10027 Dr. Y. Weitsman Dept. of Engrg. Sciences Tel-Aviv University Ramat-Aviv Tel-Aviv, Israel

Professor W.D. Pilkey Dept. of Acrospace Engrg. University of Virginia Charlottesville, Virginia 22903

Professor W. Prager Division of Engineering Brown University Providence, Rhode Island 02912

Industry and Research Institutes

Mr. Carl E. Hartbower Dept. 4620, Bldg. 2019 A2 Aerojet-General Corporation P.O. Box 1947 Sacramento, California 95809

Library Services Department Report Section, Bldg. 14-14 Argonne National Laboratory 9400 S. Cass Avenue Argonne, Illinois 60440

Dr. F.R. Schwarzl Central Laboratory T.N.O. Schoermakerstraat 97 Delft, The Netherlands

Dr. Wendt Valley Forge Space Technology Cen. General Electric Co. Valley Forge, Pennslyvania 10481

Library Newport News Shipbuilding & Dry Dock Company Newport News, Virginia 23607

Director Ship Research Institute Ministry of Transportation 700, SHINKAWA Mitaka Tokyo, Japan

Dr. H.N. Abramson Southwest Research Institute 8500 Culebra Road San Antonio, Texas 78206 Dr. R.C. DeHart Southwest Research Institute 500 Culebra Road San Antonio, Texas 78206

Mr. Roger Weiss High Temp. Structurs. & Materials Applied Physics Lab. 8621 Georgia Ave. Silver Spring, Maryland 20910

Mr. E.C. Francis, Head Mech. Props. Eval. United Technology Center Sunnyvale, California 94088

Mr. C.N. Robinson Atlantic Research Corp. Shirley Highway at Edsall Road Alexandria, Virginia 222314

Mr. P.C. Durup Aeromechanics Dept., 74-43 Lockheed-California Co. Burbank, California 91503

Mr. D. Wilson Lition Systems, Inc. AMTD, Dept. 400 El Segundo 9920 W. Jefferson Blvd. Culver City, California 90230

Dr. Kevin J. Forsberg, Head Soliti Mechanics Orgn 52-20, Bldg. 205 Lockheed Palo Alto Research Lab. Palo Alto, California 94302

Dr. E.M.Q. Roren Head, Research Department Det Norske Veritas Post Box 6060 Oslo, Norway

Dr. Andrew F. Conn Hydronautics, Incorporated Pindell School Road, Howard County Laurel, Maryland 20810